WO2015012587A1 - 배터리 과충전 방지 장치 - Google Patents

배터리 과충전 방지 장치 Download PDF

Info

Publication number
WO2015012587A1
WO2015012587A1 PCT/KR2014/006694 KR2014006694W WO2015012587A1 WO 2015012587 A1 WO2015012587 A1 WO 2015012587A1 KR 2014006694 W KR2014006694 W KR 2014006694W WO 2015012587 A1 WO2015012587 A1 WO 2015012587A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
battery
power
overcharge
Prior art date
Application number
PCT/KR2014/006694
Other languages
English (en)
French (fr)
Inventor
이윤녕
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN201480037727.5A priority Critical patent/CN105359367A/zh
Priority to EP14829094.3A priority patent/EP3026772B1/en
Priority to US14/906,922 priority patent/US10153646B2/en
Publication of WO2015012587A1 publication Critical patent/WO2015012587A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery overcharge protection device, and more particularly, to a battery overcharge protection device for detecting an overvoltage by using the voltage of the battery cell as an input power source of the passive element, and cuts off the power supplied to the battery when overcharged. .
  • Runaway Arrest Device which detects and blocks the battery overcharge of an existing electric drive car, detects the overcharge by using a swelling phenomenon in which the battery cell swells when the battery is overcharged.
  • the configuration is provided with a switch on the side of the battery cell is configured to detect the overcharge by physically pressing the switch by the amount of swelling displacement of the side of the battery cell.
  • the RAD connects the switch to a relay control line that controls the battery power in series to cut off the power supplied to the battery when the battery is overcharged, or through a high voltage interlock loop (HVIL) to detect the battery binding state.
  • HVIL high voltage interlock loop
  • the battery management system may be configured to cut off the battery power supply by notifying an abnormal phenomenon.
  • the RAD depends on the swelling phenomenon that occurs when the battery is overcharged, it may be difficult to accurately detect the overcharge, considering that the battery cell swelling itself is irregular depending on the characteristics of the battery itself.
  • the switch is mounted on the side of the battery cell in order to detect a swelling on the side of the battery cell, such as difficulty in configuring a constant distance between the switch and the battery cell located on the side of the battery cell, external shock, and the like.
  • the CID Current Interrrupt Device
  • the CID which detects and blocks the battery overcharging of an existing electric drive vehicle, uses a swelling phenomenon of the battery cell when the battery is overcharged so that the battery cell is detached from its original position. Has a breaking configuration.
  • CID has to intentionally make weak points mechanically in order to operate sensitively to battery cell swelling phenomenon that occurs during battery overcharging, mechanical reliability deteriorates and battery cell swelling phenomenon, like RAD, can be avoided.
  • the disadvantage is that space is needed on the side of the battery cell for sensing.
  • US Patent Publication No. 2011-0298463 discloses a battery condition monitoring circuit and a battery device.
  • an object of the present invention is to provide a battery overcharge protection device, to detect the overcharge by the electrical change, the passive element is supplied to the battery when overcharged It is an object of the present invention to provide a battery overcharge protection device that can cut off power.
  • the input is connected to both ends of at least one battery cell in a battery pack consisting of a plurality of battery cells, the input to distribute the voltage of the battery cells A voltage divider;
  • a voltage detector connected to the input voltage divider and operable when a voltage input through the input voltage divider is detected by a predetermined voltage or more;
  • a power cut-off unit connected to the voltage sensing unit to cut off power supplied to the battery pack by turning on or off an internal switch by an operation of the voltage sensing unit.
  • the power cutoff unit may include a coil unit and a switch unit, the voltage sensing unit may be connected to the coil unit, and a relay coil side line under the control of a battery management device (BMS) may be connected to the switch unit.
  • BMS battery management device
  • the input voltage divider may include a plurality of resistors connected in series.
  • the voltage sensing unit includes a shunt regulator, an anode of the shunt regulator is connected between a resistance and a resistance of the input voltage divider, and a cathode of the shunt regulator is connected to a positive electrode of the battery cell to which the input voltage divider is connected.
  • the reference of the shunt regulator is connected to the negative electrode of the battery cell to which the input voltage divider is connected, and the cathode and the reference of the shunt regulator are energized when the input voltage divided by the input voltage divider is input above a predetermined voltage. It is characterized by.
  • the power cut-off unit includes a coil unit and a switch unit, one side of the coil unit is connected to the anode of the battery cell to which the input voltage distribution unit is connected, and the other side of the coil unit is connected to the cathode of the shunt regulator.
  • One side of the switch unit may be connected to a relay coil side line under the control of a battery management device (BMS), and the other side of the switch unit may be connected to a common line ( ⁇ ).
  • BMS battery management device
  • common line
  • the power cut-off unit is characterized in that the switch unit is operated when the power is applied to the coil unit by the operation of the voltage sensing unit, and comprises a non-return circuit to maintain the operating state as it is until a separate control.
  • the power cut-off unit is characterized in that consisting of a latching relay.
  • the power cutoff unit may include a resistor connected in parallel between the coil units of the power cutoff unit.
  • a safety unit connected to both ends of the battery cell or the anode of the shunt regulator and the reference of the shunt regulator.
  • the safety unit is characterized in that at least any one selected from a capacitor, a TVS diode.
  • the battery overcharge protection device when overcharge occurs during charging of the battery pack, the power supply to the battery pack is cut off, thereby preventing the fire or explosion.
  • the relay coil side power controlled by the battery management device is cut off when the battery pack is overcharged by the power cut-off unit connected to the relay coil side line under the control of the battery management device, the battery is independent of the control of the battery management device. By cutting off the power supply to the pack, there is an effect of preventing the fire or explosion.
  • the voltage detector can be configured in various ways.
  • the power cut-off unit is configured as a non-return circuit, there is an effect of increasing safety by shutting off power supplied to the battery pack until there is a separate control after overcharge occurs.
  • the error rate is reduced, and by minimizing the effect on other devices by the instantaneous voltage increase has the effect of increasing the stability and operating reliability.
  • FIG. 1 is a conceptual diagram of a battery overcharge protection device according to an embodiment of the present invention.
  • Figure 2 is an exemplary view showing the connection of the power cut-off unit of the battery overcharge protection device according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a battery overcharge protection device according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram illustrating a case in which the battery overcharge protection device according to an embodiment of the present invention is not in an overcharge state.
  • FIG. 5 is a circuit diagram showing an overcharge state in the battery overcharge protection device according to an embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a battery overcharge preventing device including a safety unit according to an embodiment of the present invention.
  • FIG. 7 is a circuit diagram showing an example of implementing a battery overcharge protection device according to an embodiment of the present invention.
  • FIG. 8 is a circuit diagram showing an example of implementing a battery overcharge protection device including a safety unit according to an embodiment of the present invention.
  • FIG. 1 is a conceptual view of a battery overcharge protection device according to an embodiment of the present invention
  • Figure 2 is an exemplary view showing the connection of the power cut-off unit of the battery overcharge protection device according to an embodiment of the present invention
  • Figure 3 4 is a circuit diagram of a battery overcharge protection device according to an embodiment of the present invention
  • FIG. 4 is a circuit diagram showing a case in which the battery overcharge protection device according to an embodiment of the present invention is not in an overcharge state
  • FIG. 5 is an embodiment of the present invention.
  • Figure 6 is a circuit diagram showing a battery overcharge protection device including a safety unit according to an embodiment of the present invention
  • Figure 7 is an embodiment of the present invention
  • FIG. 8 is a circuit diagram illustrating an example of a battery overcharge preventing device according to an embodiment of the present disclosure. This is a circuit diagram showing an example of implementing the entire prevention device.
  • the overcharge preventing apparatus 1000 includes an input voltage divider 100, a voltage detector 200, and a power cut-off unit 300.
  • the passive element may be operated at a predetermined voltage to block overcharge by using the voltage of the battery cell as an input power source of the passive element.
  • the input voltage divider 100 is connected to both ends of at least one battery cell in the battery pack 10 including a plurality of battery cells, and distributes the voltage of the battery cells.
  • the voltage value at both ends of the at least one battery cell which can be determined as overcharge and the voltage value for operating the passive element may be different.
  • the input voltage divider 100 may generate an input voltage (at least Voltage across both battery cells).
  • the input voltage divider 100 is configured to receive a voltage of at least one battery cell as an input voltage in the battery pack 10 including a plurality of battery cells.
  • the battery pack 10 including a plurality of battery cells may be connected to the battery side to receive the voltage of at least one battery cell as an input voltage or to receive the entire voltage of the battery pack 10 as an input voltage.
  • a first input voltage divider that receives a voltage of at least one battery cell as an input voltage in a battery pack 10 including a plurality of battery cells, and a second input that receives the entire voltage of the battery pack 10 as an input voltage.
  • Configure multiple input voltage dividers such as a voltage divider, and configure multiple overcharge prevention devices using the first voltage detector, the second voltage detector, the first power switch, and the second power switch, respectively. can do. That is, a plurality of overcharge preventing devices 1000 may be configured and used.
  • the contactless relay device 110 receives a voltage of a unit battery cell connected to the bottom of the battery pack 10 as an input voltage.
  • the voltage detector 200 is connected to the input voltage divider 100 and operates when a voltage input through the input voltage divider is sensed by a predetermined voltage or more.
  • the power cut-off unit 300 is connected to the voltage detector 200 and cuts off the power supplied to the battery pack 10 by turning on or off the internal switch by the operation of the voltage detector 200.
  • the power supply to the battery pack 10 may be cut off using the power cutoff unit 300. That is, when overcharge occurs during the charging of the battery pack 10 without being affected by an external circuit (battery management device: BMS), the power supply to the battery pack 10 is cut off, thereby preventing fire or explosion. have.
  • BMS battery management device
  • the battery cell 10 controls each relay included in a power relay assembly (PRA) 20 and a power relay assembly 20 connected to the battery cell 10. It may be configured to include a battery management system (BMS) (30).
  • BMS battery management system
  • the power relay assembly 20 includes a first main relay (+) 21, a second main relay (-) 22, a pre-charge relay 23, and a pre-charge resistor ( 24) can be configured to include.
  • the first main relay (+) 21 may be connected to the positive terminal of the battery pack 10 and block electrical connection with the battery pack 10.
  • the second main relay (-) 22 is connected to the negative terminal of the battery pack 10, and may cut off an electrical connection with the battery pack 10.
  • the precharge resistor 24 and the precharge relay 23 allow the current output from the battery pack 10 to be precharged before being connected to the first main relay 21. Through this, it is possible to secure the stability of the circuit by preventing the arc discharge (Arc Discharge) that may occur when directly connected to the first main relay 21.
  • the precharge relay 23 may be connected in parallel with the first main relay (+) 21 and the precharge resistor 24 may be connected in series with the precharge relay 23.
  • the general battery pack 10 may be electrically connected and disconnected through the power relay assembly 20, and each relay of the power relay assembly 20 is controlled by the battery management device 30.
  • the power cutoff unit 300 may include a coil unit and a switch unit.
  • the coil unit is connected to the voltage sensing unit 200.
  • the voltage sensing unit 200 may apply power to the coil of the power interrupting unit 300.
  • the switch unit is connected to the relay coil side line under the control of the battery management device 30.
  • the switch unit of the power cutoff unit 300 may cut off the electrical connection to cut off the power of the relay coil side line. . That is, since the power of the relay coil side line is cut off and power cannot be applied to each relay coil, control of each relay by the battery management device 30 is impossible, and each relay is in an electrically disconnected state. The power supplied to the battery pack 10 is cut off.
  • the input voltage divider 100 may include a plurality of resistors connected in series.
  • the input voltage divider 100 distributes the voltage of the battery cell so that the voltage used for the operation of the voltage detector 200 can be compared with the voltage appearing when the battery cell is overcharged. For example, when the voltage appearing when the battery cell is overcharged is 4.75V and the voltage required for the operation of the voltage sensing unit 200 is 2.5V, as shown in FIG. 3, when the resistance of 18K ⁇ and 20K ⁇ is used, the battery When the voltage of the cell is 4.75V or higher (voltage during overcharging), the voltage detector 200 may be operated.
  • the voltage input to the input voltage divider 100 (the voltage of the battery cell used for the overcharge detection) is a voltage during overcharging
  • a plurality of resistors are set to a voltage capable of operating the voltage detector 200.
  • the voltage can be distributed using.
  • the plurality of resistors connected in series of the input voltage divider 100 may select a battery resistance value according to whether at least one battery cell voltage is input as the input voltage or the entire voltage of the battery pack 10 is input. Can be.
  • the voltage distributed by the input voltage divider is used as the input voltage of the voltage detector
  • various kinds of voltages one cell, multiple cells, the entire battery pack, etc.
  • the voltage detector There is an effect that can be configured in various ways (there is no restriction depending on the voltage for operating the voltage sensing unit).
  • the voltage sensing unit 200 may include a shunt regulator, and the shunt regulator may include an anode, a cathode, and a reference terminal.
  • the anode of the shunt regulator is connected between the resistor and the resistance of the input voltage divider 100
  • the cathode of the shunt regulator is connected to the positive electrode of the battery cell connected to the input voltage divider 100
  • the reference of the shunt regulator The input voltage divider 100 is connected to the negative electrode of the connected battery cell.
  • the cathode and the reference of the shunt regulator are energized.
  • the charging voltage of the unit battery cell is 4.2 volts
  • the voltage level to be detected as overcharge is 5 to 4.2 volts. The value between volts.
  • the voltage appearing when the battery cell is overcharged is 4.75V and the voltage required for the operation of the voltage sensing unit 200 is 2.5V, as shown in FIG.
  • the voltage of is over 4.75V (overcharge)
  • a value of 2.5V or more is applied to the anode of the shunt regulator, so that the cathode and the reference are energized (operated).
  • the shunt regulator can be applied to the need of high precision because the variation of the operating voltage according to the external temperature is much smaller than the solid state relay (SSR), etc., and the operation accuracy is minimized by using this. Can increase.
  • SSR solid state relay
  • the magnitude of the voltage to be detected as the overcharge may be determined according to whether the at least one battery cell voltage is input as the input voltage or the entire voltage of the battery pack 10. .
  • the power cutoff unit 300 may include a coil unit and a switch unit.
  • One side of the coil unit is connected to the positive electrode of the battery cell to which the input voltage distribution unit 100 is connected, and the other side is connected to the cathode of the shunt regulator.
  • One side of the switch unit is connected to the relay coil side line under the control of the battery management device (BMS), the other side is connected to the common line (-).
  • BMS battery management device
  • the overcharge detection circuit circuit connected to the coil part
  • the power supply circuit circuit connected to the switch part
  • the power cut-off unit 300 may operate as a non-return circuit that maintains the operation state until there is a separate control.
  • the switch unit When power is applied to the coil unit, the switch unit is operated, and maintains the operation state of the switch unit until there is a separate control.
  • the non-return circuit power cut-off blocks the power supply to the battery module until a separate control is provided through the non-return circuit, thereby preventing additional accidents from occurring until further action is taken on the battery overcharging. have.
  • the power cut-off unit is configured as a non-return circuit
  • the power supplied to the battery pack 10 may be cut off until there is a separate control after the overcharge occurs, thereby increasing safety.
  • the power cutoff unit 300 may be configured as a latching relay.
  • the latching relay element is a relay element in which the contact remains as it is even if current is cut off in the coil until separate control is performed.
  • the shunt regulator is The power relay control by the battery management device 30 (the first main relay (+), the second main relay (-)) becomes impossible because the state where the energization is impossible and the latching relay also maintains the initial state in which the voltage sensing unit 200 does not operate. And control of the precharge relay).
  • the shunt regulator is energized and the latching relay is operated to cut off the current at the coil end of the power relay assembly, thereby preventing each relay (the first main relay (+ ), The second main relay (-) and the precharge relay) are all disconnected from the electrical connection.
  • the relay switch can be controlled in the initial state (the battery management device 30 can be controlled) while maintaining the internal switch in the current state (overcharge blocking state) until there is a separate control. Does not return).
  • the voltage input to the voltage divider 100 is transferred to the battery management device 30 until there is a separate control.
  • Voltage Sensing To BMS
  • the battery management device 30 may be notified of whether the battery is overcharged.
  • the detected overcharge state may notify an overcharge situation by turning on an alarm light so as to recognize an overcharge inside or outside the vehicle.
  • by providing a signal to continuously inform the battery overcharge state until the latching relay has a separate control it is possible to prevent additional accidents occur until the follow-up of the battery overcharge.
  • the connector is mounted on a PCB mounted only with the elements constituting the battery overcharge preventing device 1000, and can be connected to the battery cell and the power relay assembly 20, and is configured as a unit to be mounted anywhere inside the battery pack 10.
  • elements usable in the battery overcharge prevention apparatus 1000 may be mounted on a sensing PCB that transfers the voltage of the battery cell to the battery management apparatus 30.
  • a sensing PCB that transfers the voltage of the battery cell to the battery management apparatus 30.
  • the mounting position of the battery overcharge protection device 1000 may be mounted regardless of a position such as the voltage sensing PCB or the battery pack 10.
  • the power cutoff unit 300 may include a resistor connected in parallel between the coil units of the power cutoff unit 300.
  • Noise generated when the coil is operated by a resistor connected in parallel with the coil of the power cutoff unit 300 may be reduced, and the effect of the noise of the voltage detector 200 may be minimized to increase the precision of the voltage detector 200. Can be.
  • the overcharge preventing device may include a safety unit 400 connected to both ends of the battery cell or the anode of the shunt regulator and the reference of the shunt regulator.
  • the safety unit 400 may include at least one selected from a capacitor and a TVS diode.
  • FIG. 8 shows an example of directly implementing a battery overcharge prevention device using an applicable device.
  • the present invention can provide a function of detecting a battery overcharge state separately from the battery management device 30, thereby ensuring additional stability of the vehicle and conforms to the ISO26262 standard.
  • the electrical method detects the overcharge and cuts off the power supplied to the battery pack by the electrical method, it can be more reliable than the mechanical method.
  • first main relay 22 second main relay
  • precharge relay 24 precharge resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 본 발명은 배터리 과충전 방지 장치에 관한 것으로, 보다 상세하게는 배터리 셀의 전압을 패시브 소자의 입력전원으로 사용하여 과전압을 감지하고, 과충전 시 배터리에 공급되는 전원을 차단하는 배터리 과충전 방지 장치를 제공한다.

Description

배터리 과충전 방지 장치
본 발명은 배터리 과충전 방지 장치에 관한 것으로, 보다 상세하게는 배터리 셀의 전압을 패시브 소자의 입력전원으로 사용하여 과전압을 감지하고, 과충전 시 배터리에 공급되는 전원을 차단하는 배터리 과충전 방지 장치에 관한 것이다.
기존 전기 구동용 자동차의 배터리 과충전 감지 및 차단하는 RAD(Runaway Arrest Device)는 배터리가 과충전시 배터리 셀이 부풀어 오르는 스웰링(swelling) 현상을 이용하여 과충전 여부를 감지한다. 구성상 배터리 셀의 측면에 스위치를 구비하여 배터리 셀 측면의 스웰링 변위량에 의해 물리적으로 스위치가 눌려짐으로서 과충전 여부를 감지하도록 구성된다. 이러한 RAD는 스위치를 배터리 전원을 제어하는 릴레이 제어선에 직렬 접속시켜 배터리 과충전시 배터리로 공급되는 전원을 차단하거나, 배터리 결속 상태를 감지하는 HVIL(High Voltage Interlock Loop)를 통해 배터리관리장치(BMS: Battery Management System)로 이상 현상을 통보함으로써 배터리 전원 공급을 차단하도록 구성될 수 있다.
그러나 RAD는 배터리 과충전시 발생하는 스웰링 현상에 의존하므로, 배터리 셀 스웰링 현상 자체가 배터리 자체 특성에 따라 나타나는 현상이 불규칙한 점을 감안해 보았을 때에, 과충전 여부를 정확하게 감지하기 어려울 수 있다. 또한, 배터리 셀의 측면에 위치하는 스위치와 배터리 셀 간의 간격을 일정하게 구성해야 하는 어려움, 외부 충격 등에 의해 오동작 가능성, 배터리 셀 측면의 스웰링을 감지하기 위해서 배터리 셀 측면에 스위치가 장착될 공간이 필요한 점 등 여러 사정이 고려되어야 하는 문제점이 존재한다.
그리고 기존 전기 구동용 자동차의 배터리 과충전 감지 및 차단하는 CID(Current Interrrupt Device)는 배터리가 과충전시 배터리 셀의 스웰링 현상을 이용하여 배터리 셀이 본래의 위치에서 이탈되도록 배터리 셀의 텝(tab)부를 끊는 구성을 가진다.
그러나 CID는 배터리 과충전시에 발생되는 배터리 셀 스웰링 현상에 민감하게 동작하기 위해서 기구적으로 weak point를 고의로 만들어야 하기 때문에, 기계적 신뢰성이 저하되는 단점과, 앞서 RAD와 같이 배터리 셀의 스웰링 현상을 감지하기 위해서 배터리 셀 측면에 장치가 장착될 공간이 필요하다는 단점이 존재한다.
미국공개특허 [2011-0298463]에서는 배터리 상태 감시 회로 및 배터리 장치가 개시되어 있다.
따라서, 본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 배터리 과충전 방지 장치에 있어서, 전기적인 변화로 과충전을 감지하고, 패시브 소자를 이용하여 과충전 시 배터리에 공급되는 전원을 차단할 수 있는 배터리 과충전 방지 장치를 제공하는데 그 목적이 있다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 과충전 방지장치는, 복수 개의 배터리 셀들로 구성된 배터리 팩에서 적어도 하나의 배터리 셀의 양단에 연결되며, 배터리 셀의 전압을 분배하는 입력전압 분배부; 상기 입력전압 분배부와 연결되며, 상기 입력전압 분배부를 통해 입력된 전압이 일정전압 이상 감지되면 동작하는 전압 감지부; 상기 전압 감지부와 연결되며, 상기 전압 감지부의 동작에 의해 내부 스위치를 온 또는 오프 시켜 배터리 팩에 공급되는 전원을 차단시키는 전원 차단부;를 포함한다.
또한, 상기 전원 차단부는 코일부와 스위치부를 포함하여 구성되며, 상기 전압 감지부는 상기 코일부와 연결되고, 배터리관리장치(BMS)의 제어를 받는 릴레이 코일측 선로는 상기 스위치부와 연결되며, 상기 전압 감지부의 동작에 의해 상기 코일부에 전원이 인가되면 상기 스위치부가 전기적인 연결을 끊어 상기 릴레이 코일측 선로의 전원을 차단하는 것을 특징으로 한다.
또, 상기 입력전압 분배부는 직렬로 연결된 복수개의 저항을 포함하여 구성되는 것을 특징으로 한다.
또한, 상기 전압 감지부는 션트레귤레이터로 구성되며, 상기 션트레귤레이터의 애노드는 상기 입력전압 분배부의 저항과 저항 사이에 연결되고, 상기 션트레귤레이터의 캐소드는 상기 입력전압 분배부가 연결된 상기 배터리 셀의 양극과 연결되며, 상기 션트레귤레이터의 레퍼런스는 상기 입력전압 분배부가 연결된 상기 배터리 셀의 음극과 연결되고, 상기 입력전압 분배부를 이용하여 분배된 입력전압이 일정전압 이상으로 입력되면 상기 션트레귤레이터의 캐소드와 레퍼런스가 통전되는 것을 특징으로 한다.
또, 상기 전원 차단부는 코일부와 스위치부를 포함하여 구성되며, 상기 코일부의 일측은 상기 입력전압 분배부가 연결된 상기 배터리 셀의 양극과 연결되고, 상기 코일부의 타측은 상기 션트레귤레이터의 캐소드와 연결되며, 상기 스위치부의 일측은 배터리관리장치(BMS)의 제어를 받는 릴레이 코일측 선로와 연결되고, 상기 스위치부의 타측은 공통선(-)과 연결되는 것을 특징으로 한다.
또한, 상기 전원 차단부는 상기 전압감지부의 동작에 의해 상기 코일부에 전원이 인가되면 상기 스위치부가 동작되며, 별도의 제어가 있기 전까지 동작 상태를 그대로 유지시키는 비복귀 회로로 구성되는 것을 특징으로 한다.
또, 상기 전원 차단부는 래칭 릴레이로 구성되는 것을 특징으로 한다.
또한, 상기 전원 차단부는 상기 전원 차단부의 코일부 사이에 병렬로 연결된 저항을 포함하는 것을 특징으로 한다.
또, 상기 배터리 셀의 양단 또는 상기 션트레귤레이터의 애노드와 상기 션트레귤레이터의 레퍼런스에 연결되는 안전부;를 포함한다.
아울러, 상기 안전부는 커패시터, TVS 다이오드 중 선택되는 적어도 어느 하나인 것을 특징으로 한다.
본 발명의 일 실시예에 따른 배터리 과충전 방지 장치에 의하면, 배터리 팩의 충전 중에 과충전이 발생되면 배터리 팩에 공급되는 전원을 차단함에 따라, 발화 또는 폭발을 방지하는 효과가 있다.
또한, 배터리관리장치의 제어를 받는 릴레이 코일측 선로와 연결된 전원 차단부에 의해 배터리 팩의 과충전 시 배터리 관리장치의 제어를 받는 릴레이 코일측 전원이 차단됨에 따라, 배터리관리장치의 제어와 무관하게 배터리 팩에 공급되는 전원을 차단함에 따라, 발화 또는 폭발을 방지하는 효과가 있다.
또, 입력전압 분배부에 의해 분배된 전압을 전압감지부의 입력전압으로 사용함에 따라, 전압감지부를 다양하게 구성할 수 있는 효과가 있다.
또한, 션트레귤레이터로 구성된 전압감지부를 사용함에 따라, 전압감지부의 온도에 따른 동작편차를 최소화 하여 동작정밀도를 높이는 효과가 있다.
또, 과충전 감지회로와 배터리 팩에 공급되는 전원회로를 별도로 구성함에 따라, 평상시 전압감지부에 의해 소비되는 전력을 최소화시킬 수 있는 효과가 있다.
또한, 전원 차단부를 비복귀회로로 구성함에 따라, 과충전 발생 후 별도의 제어가 있기 전까지 배터리 팩에 공급되는 전원을 차단하여 안전성을 높이는 효과가 있다.
또, 래칭 릴레이로 구성된 전원 차단부를 사용함에 따라, 자기유지회로의 별도구성이 필요치 않아 크기, 비용과 무게를 줄이는 효과가 있다.
또한, 전원 차단부의 코일과 병렬로 연결된 저항에 의하여 코일 동작 시 발생되는 노이즈를 줄여 전압감지부가 영향받지 않도록 함에 따라, 전압감지부의 정밀도를 높이는 효과가 있다.
아울러, 안전부의 구성에 따라, 오차율을 감소시키고, 순간적인 전압상승에 의해 다른 소자에 미치는 영향을 최소화 하여 안정성을 높이고 동작 신뢰성을 높이는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 과충전 방지장치의 개념도.
도 2는 본 발명의 일 실시예에 따른 배터리 과충전 방지장치의 전원 차단부의 연결을 보여주는 예시도.
도 3은 본 발명의 일 실시예에 따른 배터리 과충전 방지장치의 회로도.
도 4는 본 발명의 일 실시예에 따른 배터리 과충전 방지장치에 있어서, 과충전 상태가 아닌 경우를 보여주는 회로도.
도 5는 본 발명의 일 실시예에 따른 배터리 과충전 방지장치에 있어서, 과충전 상태를 보여주는 회로도.
도 6은 본 발명의 일 실시예에 따른 안전부를 포함한 배터리 과충전 방지장치를 보여주는 회로도.
도 7은 본 발명의 일 실시예에 따른 배터리 과충전 방지장치를 구현한 예를 보여주는 회로도.
도 8은 본 발명의 일 실시예에 따른 안전부를 포함한 배터리 과충전 방지장치를 구현한 예를 보여주는 회로도.
이하, 도면을 참조하여 본 발명을 보다 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 배터리 과충전 방지장치의 개념도이고, 도 2는 본 발명의 일 실시예에 따른 배터리 과충전 방지장치의 전원 차단부의 연결을 보여주는 예시도이며, 도 3은 본 발명의 일 실시예에 따른 배터리 과충전 방지장치의 회로도이고, 도 4는 본 발명의 일 실시예에 따른 배터리 과충전 방지장치에 있어서, 과충전 상태가 아닌 경우를 보여주는 회로도이며, 도 5는 본 발명의 일 실시예에 따른 배터리 과충전 방지장치에 있어서, 과충전 상태를 보여주는 회로도이고, 도 6은 본 발명의 일 실시예에 따른 안전부를 포함한 배터리 과충전 방지장치를 보여주는 회로도이며, 도 7은 본 발명의 일 실시예에 따른 배터리 과충전 방지장치를 구현한 예를 보여주는 회로도이고, 도 8은 본 발명의 일 실시예에 따른 안전부를 포함한 배터리 과충전 방지장치를 구현한 예를 보여주는 회로도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 과충전 방지장치(1000)는 입력전압 분배부(100), 전압 감지부(200), 전원 차단부(300)를 포함하여 구성된다.
복수 개의 배터리 셀들로 구성된 배터리 팩(10)에 있어서, 배터리 팩(10) 충전 중에 과충전이 발생되면 배터리 셀의 전압이 상승하게 되며, 배터리 셀의 과충전 시의 전압 값을 이용하여 배터리 셀의 과충전 여부를 확인 할 수 있다. 따라서, 배터리 셀의 전압을 패시브 소자의 입력전원으로 사용하여 일정 전압에 패시브 소자가 동작하여 과충전을 차단하도록 구성할 수 있다.
입력전압 분배부(100)는 복수 개의 배터리 셀들로 구성된 배터리 팩(10)에서 적어도 하나의 배터리 셀의 양단에 연결되며, 배터리 셀의 전압을 분배한다.
과충전으로 판단할 수 있는 적어도 하나의 배터리 셀의 양단의 전압 값과, 패시브 소자를 동작시키기 위한 전압 값은 다를 수 있다.
적어도 하나의 배터리 셀의 양단 전압을 패시브 소자의 입력전원으로 사용하여 적어도 하나의 배터리 셀의 양단 전압이 과충전 시 전압으로 나타날 경우, 패시브 소자가 동작되도록 입력전압 분배부(100)가 입력전압(적어도 하나의 배터리 셀의 양단의 전압)을 분배한다.
여기서, 입력전압 분배부(100)는 복수 개의 배터리 셀들로 구성된 배터리 팩(10)에서 적어도 하나의 배터리 셀의 전압을 입력 전압으로 받도록 구성된다.
다시 말해, 복수 개의 배터리 셀들로 구성된 배터리 팩(10)에서 적어도 하나의 배터리 셀의 전압을 입력 전압으로 입력받거나, 배터리 팩(10) 전체 전압을 입력 전압으로 입력받도록 배터리 측과 연결될 수 있다. 또한, 복수 개의 배터리 셀들로 구성된 배터리 팩(10)에서 적어도 하나의 배터리 셀의 전압을 입력전압으로 받는 제1 입력전압 분배부와, 배터리 팩(10) 전체 전압을 입력 전압으로 입력받는 제2 입력전압 분배부 등 여러 개의 입력전압 분배부를 구성하고 이와 각각 연결되는 제1 전압 감지부, 제2 전압 감지부, 제1 전원 차단부, 제2 전원 차단부 등을 이용하여 여러 개의 과충전 방지장치를 구성할 수 있다. 즉, 다수 개의 과충전 방지장치(1000)를 구성하여 사용할 수 있다.
도 1에서는 일 예로 무접점 릴레이 소자(110)가 배터리 팩(10)에서 맨 하위에 연결된 단위 배터리 셀의 전압을 입력 전압으로 입력받는 형태를 도시하고 있다.
전압 감지부(200)는 입력전압 분배부(100)와 연결되며, 입력전압 분배부를 통해 입력된 전압이 일정전압 이상 감지되면 동작한다.
전원 차단부(300)는 전압 감지부(200)와 연결되며, 전압 감지부(200)의 동작에 의해 내부 스위치를 온 또는 오프 시켜 배터리 팩(10)에 공급되는 전원을 차단시킨다.
다시 말해, 전압 감지부(200)에 입력된 전압이 과충전 발생 시의 전압이면, 전원 차단부(300)를 이용하여 배터리 팩(10)에 공급되는 전원을 차단시킬 수 있다. 즉, 외부 회로(배터리관리장치: BMS) 등에 영향을 받지 않고 배터리 팩(10)의 충전 중에 과충전이 발생되면 배터리 팩(10)에 공급되는 전원을 차단시킴에 따라, 발화 또는 폭발을 방지할 수 있다.
도 2에 도시된 바와 같이, 배터리 셀(10)은 배터리 셀(10)과 연결된 파워릴레이어셈블리(PRA: Power Relay Assembly)(20) 및 파워릴레이어셈블리(20)에 포함된 각각의 릴레이를 제어하는 배터리관리장치(BMS: Battery Management System)(30)를 포함하여 구성될 수 있다.
파워 릴레이 어셈블리(20)는 제1 메인 릴레이(+)(21), 제2 메인 릴레이(-)(22), 프치라지(Pre-Charge) 릴레이(23), 프리차지(Pre-Charge) 저항(24)을 포함하여 구성될 수 있다.
제 1메인 릴레이(+)(21)는 배터리 팩(10)의 양극 단자에 연결되고, 배터리 팩(10)과의 전기적인 연결을 차단할 수 있다.
*제2 메인 릴레이(-)(22)는 배터리 팩(10)의 음극 단자에 연결되고, 배터리 팩(10)과의 전기적인 연결을 차단할 수 있다.
프리차지 저항(24)과 프리차지 릴레이(23)는 배터리 팩(10)에서 출력되는 전류가 제1 메인 릴레이(21)에 접속하기 전에 프리차지(Pre-Charge) 되도록 하는 것이다. 이를 통해, 제1 메인 릴레이(21)에 바로 접속 시 발생할 수 있는 아크 방전(Arc Discharge)을 방지하여 회로의 안정성을 확보할 수 있다. 이 때, 프리차지 릴레이(23)는 제1 메인 릴레이(+)(21)와 병렬로 연결되고 프리차지 저항(24)은 프리차지 릴레이(23)와 직렬로 연결될 수 있다.
일반적인 배터리 팩(10)은 파워릴레이어셈블리(20)를 통해 전기적인 연결 및 차단이 가능하며, 배터리관리장치(30)에 의해 파워릴레이어셈블리(20)의 각각의 릴레이가 제어된다.
전원 차단부(300)는 코일부와 스위치부를 포함하여 구성될 수 있다.
코일부는 전압 감지부(200)와 연결된다.
도 2에 도시되지 않았으나, 전압감지부(200)가 전원 차단부(300)의 코일에 전원을 인가 할 수 있다.
스위치부는 배터리관리장치(30)의 제어를 받는 릴레이 코일측 선로와 연결된다.
이때, 전압 감지부(200)의 동작에 의해 전원 차단부(300)의 코일부에 전원이 인가되면 전원 차단부(300)의 스위치부가 전기적인 연결을 끊어 릴레이 코일측 선로의 전원을 차단할 수 있다. 즉, 릴레이 코일측 선로의 전원이 차단되어 각각의 릴레이 코일에 전원이 인가될 수 없기 때문에, 배터리관리장치(30)에 의한 각각의 릴레이 제어가 불가능하며, 각각의 릴레이는 전기적인 연결이 끊어진 상태를 유지하게 되어 배터리 팩(10)에 공급되는 전원이 차단된다.
다시 말해, 배터리관리장치(30)의 제어를 받는 릴레이 코일측 선로와 연결된 전원 차단부(300)에 의해 배터리 팩(10)의 과충전 시 배터리 관리장치의 제어를 받는 릴레이 코일측 전원이 차단됨에 따라, 배터리관리장치(30)의 제어와 무관하게 배터리 팩(10)에 공급되는 전원이 차단되어, 배터리관리장치(30)의 문제 발생에도 영향을 받지 않고 발화 또는 폭발을 방지할 수 있다.
도 3에 도시된 바와 같이, 입력전압 분배부(100)는 직렬로 연결된 복수개의 저항을 포함하여 구성될 수 있다. 여기서, 입력전압 분배부(100)가 배터리 셀의 전압을 분배하는 것은 전압감지부(200)의 동작에 사용되는 전압을 배터리 셀의 과충전 시 나타나는 전압과 비교할 수 있도록 하기 위함이다. 예를 들어, 배터리 셀의 과충전 시 나타나는 전압이 4.75V이고 전압감지부(200)의 동작에 필요한 전압이 2.5V인 경우, 도 3에 도시된 바와 같이, 18KΩ과 20KΩ의 저항을 이용하면, 배터리 셀의 전압이 4.75V(과충전 시 전압) 이상인 경우, 전압감지부(200)를 동작시킬 수 있다.
다시 말해, 입력전압 분배부(100)로 입력된 전압(과충전 감지용으로 사용되는 배터리 셀의 전압)이 과충전 시 전압일 경우 전압감지부(200)를 동작시킬 수 있는 전압으로 맞추기 위해 복수 개의 저항을 이용하여 전압을 분배할 수 있다.
입력전압 분배부(100)의 직렬로 연결된 복수개의 저항은, 입력 전압으로 적어도 하나의 배터리 셀 전압을 입력받는지, 혹은 배터리 팩(10) 전체 전압을 입력받는지에 따라서, 그에 맞추어 배터리 저항 값을 선택할 수 있다.
입력전압 분배부에 의해 분배된 전압을 전압감지부의 입력전압으로 사용함에 따라, 다양한 종류(하나의 셀, 다수 개의 셀, 배터리 팩 전체 등)의 전압을 입력전압으로 사용할 수 있고, 또한 전압감지부를 다양하게 구성(전압감지부를 동작시키기 위한 전압에 따른 제약이 없다.)할 수 있는 효과가 있다.
도 3에 도시된 바와 같이, 전압 감지부(200)는 션트레귤레이터로 구성되며 션트레귤레이터는 애노드, 캐소드 및 레퍼런스 단자를 포함하여 구성될 수 있다.
여기서, 션트레귤레이터의 애노드는 입력전압 분배부(100)의 저항과 저항 사이에 연결되고, 션트레귤레이터의 캐소드는 입력전압 분배부(100)가 연결된 배터리 셀의 양극과 연결되며, 션트레귤레이터의 레퍼런스는 입력전압 분배부(100)가 연결된 배터리 셀의 음극과 연결된다.
이때, 입력전압 분배부(100)를 이용하여 분배된 입력전압이 일정전압 이상으로 입력되면 션트레귤레이터의 캐소드와 레퍼런스가 통전된다.
도 4에 도시된 바와 같이, 션트레귤레이터(SR : Shunt Regulator)의 애노드에 기 설정된 전압 크기보다 작은 전압이 인가될 경우, 캐소드와 레퍼런스가 전기적으로 차단된다.
도 5에 도시된 바와 같이, 션트레귤레이터(SR : Shunt Regulator)의 애노드에 기 설정된 전압 크기보다 큰 전압이 인가될 경우, 캐소드와 레퍼런스가 통전(동작)된다.
통상적으로 단위 배터리 셀의 충전 전압 크기가 4.2 볼트라는 점을 고려해 보았을 때에, 도 3에 도시된 바와 같이 단위 배터리 셀의 전압을 입력 전압으로 받을 경우, 과충전으로 감지되어야 하는 전압 크기는 4.2볼트에서 5볼트 사이 값이다.
예를 들어, 배터리 셀의 과충전 시 나타나는 전압이 4.75V이고 전압감지부(200)의 동작에 필요한 전압이 2.5V인 경우, 도 3에 도시된 바와 같이, 18KΩ과 20KΩ의 저항을 이용하면 배터리 셀의 전압이 4.75V(과충전 시 전압) 이상의 값일때 션트레귤레이터의 애노드에 2.5V 이상의 값이 인가되고, 이에 따라, 캐소드와 레퍼런스가 통전(동작)된다.
션트레귤레이터는 외부 온도에 따른 작동전압의 편차가 무접점 릴레이 소자(SSR: Solid State Relay) 등에 비하여 상당히 작기 때문에 높은 정밀도를 필요로 하는 것에 적용할 수 있으며, 이를 이용하여 동작편차를 최소화함으로써 동작정밀도를 높일 수 있다.
과충전으로 감지되어야 하는 전압 크기는 입력 전압으로 적어도 하나의 배터리 셀 전압을 입력받는지 혹은 배터리 팩(10) 전체 전압을 입력받는지에 따라서 그에 맞추어 배터리 과충전 여부를 감지할 수 있는 전압 크기가 결졍될 수 있다.
도 3에 도시된 바와 같이, 전원 차단부(300)는 코일부와 스위치부를 포함하여 구성될 수 있다.
코일부는 일측이 입력전압 분배부(100)가 연결된 배터리 셀의 양극과 연결되고, 타측이 션트레귤레이터의 캐소드와 연결된다.
스위치부는 일측이 배터리관리장치(BMS)의 제어를 받는 릴레이 코일측 선로와 연결되고, 타측이 공통선(-)과 연결된다.
배터리 팩에 공급되는 전원을 차단하기 위해서는 배터리 팩과 연결된 모든 전기적인 연결을 차단해야 한다. 예를 들어, 파워릴레이어셈블리가 배터리 팩에 연결될 경우 제1 메인릴레이(+), 제2 메인릴레이(-) 및 프리차지 릴레이의 전기적인 연결을 차단해야 한다. 각각의 릴레이 모두의 전기적인 연결을 한 번에 차단하기 위해서는, 각각의 릴레이 코일과 연결된 공통 선로의 사이에 전원 차단부(300)를 연결하여 공통선로를 차단하는 것으로 손쉽게 모든 릴레이의 전기적인 연결을 차단할 수 있다.
또한, 과충전 감지회로(코일부와 연결된 회로)와 배터리 팩(10)에 공급되는 전원회로(스위치부와 연결된 회로)를 별도로 구성함에 따라, 평상시 전압감지부에 의해 소비되는 전력을 최소화시킬 수 있다.
전원 차단부(300)는 전압감지부(200)의 동작에 의해 코일부에 전원이 인가되면 스위치부가 동작되며, 별도의 제어가 있기 전까지 동작 상태를 그대로 유지시키는 비복귀 회로로 구성될 수 있다.
코일부에 전원이 인가되면 스위치부가 동작되는 구성으로, 별도의 제어가 있기 전까지 스위치부의 동작 상태를 그대로 유지시켜 준다.
비복귀회로로 구성된 전원 차단부는 비복귀 회로를 통해서 별도의 제어가 있기 전까지 배터리 모듈로 공급되는 전원을 차단해 줌으로써, 배터리 과충전에 대한 후속 조치가 있기 전까지 추가적인 사고가 발생되는 것을 방지하게 해 줄 수 있다.
또한, 전원 차단부를 비복귀회로로 구성함에 따라, 과충전 발생 후 별도의 제어가 있기 전까지 배터리 팩(10)에 공급되는 전원을 차단하여 안전성을 높일 수 있다.
전원 차단부(300)는 래칭 릴레이로 구성될 수 있다.
도 3은 전원 차단부(300)로 래칭(Latching) 릴레이 소자가 구비된 형태를 도시하고 있다. 래칭 릴레이 소자는, 별도의 제어를 하기 전까지는 코일에 전류가 끊어져도 접점이 그대로 붙어 있는 상태로 있는 릴레이 소자이다.
예를 들어, 배터리 셀의 과충전 시 나타나는 전압이 4.75V이고 전압감지부(200)의 동작에 필요한 전압이 2.5V인 경우, 도 4에 도시된 바와 같이, 셀 전압이 4.75V 미만이면 션트레귤레이터가 통전불가 상태가 되고 래칭 릴레이 역시 전압 감지부(200)가 동작하지 않은 초기상태를 유지하므로 배터리관리장치(30)에 의한 파워릴레이 제어(제1 메인릴레이(+), 제2 메인릴레이(-) 및 프리차지 릴레이의 제어)가 가능하다.
그리고, 도 5에 도시된 바와 같이, 셀 전압이 4.75V 이상이면 션트레귤레이터가 통전 상태가 되고 래칭 릴레가 동작하여 파워릴레이어셈블리의 코일단에 전류가 차단되어 각각의 릴레(제1 메인릴레이(+), 제2 메인릴레이(-) 및 프리차지 릴레이)이 모두가 전기적인 연결이 차단된다.
이때, 래칭 릴레이는 과충전 전압에 근거하여 동작된 이후, 별도의 제어가 있기 전까지 내부 스위치를 계속 현 상태(과충전 차단 상태)로 유지하면서 초기 상태(배터리관리장치(30)에 의한 릴레이 제어가 가능한 상태)로 복귀하지 않는다.
그에 따라, 배터리 과충전 상태가 발생되어 래칭 릴레이 의 스위치가 변경된 경우, 도 3에 도시된 바와 같이, 별도의 제어가 있기 전까지 전압 분배부(100)로 입력되는 전압이 배터리관리장치(30)로 전달되도록 구성(To BMS:Voltage Sensing)될 수 있다. 다시 말해, 파워릴레이어셈블리(20) 내의 릴레이들의 전원 차단 여부에 상관없이 배터리관리장치(30)에 과충전 여부를 알려줄 수 있다. 이렇게 감지된 과충전 상태는 차량 외부나 내부에 과충전을 인지할 수 있도록 알람 등을 켜지게 하여 과충전 상황을 알릴 수 있다. 다시 말해, 래칭 릴레이에 별도의 제어가 있기 전까지 지속적으로 배터리 과충전 상태를 알리는 신호가 외부로 제공되도록 해 줌으로써, 배터리 과충전에 대한 후속 조치가 있기 전까지 추가적인 사고가 발생되는 것을 방지하게 해 줄 수 있다.
그 이외에도 래칭 릴레이로 구성된 전원 차단부를 사용함에 따라, 자기유지회로의 별도구성이 필요치 않아 크기, 비용과 무게를 줄일 수 있다.
도 7은 적용 가능한 소자를 이용하여 배터리 과충전 방지장치(1000)를 직접 구현한 예를 보여준다. 이렇게 배터리 과충전 방지장치(1000)를 구성하는 소자들로만 장착된 PCB에 커넥터를 장착하여, 배터리 셀 및 파워릴레이어셈블리(20)에 연결할 수 있으며, 하나의 유닛으로 구성되어 배터리 팩(10) 내부 어디든 장착할 수 있어 배치가 자유로운 이점이 있다.
다른 예로, 배터리 셀의 전압을 배터리관리장치(30)로 전달하는 센싱PCB에 배터리 과충전 방지장치(1000)에 사용 가능한 소자들을 실장하여 구성할 수 있다. 이 경우, 기존 센싱 PCB 커넥터에 배터리 과충전 방지장치(1000)가 필요한 핀 수만 늘려 커넥터를 추가하지 않아도 구성이 가능하기 때문에 배터리 팩의 크기와 제작 단가와 무게를 줄일 수 있다.
다시 말해, 본 발명의 일 실시예에 따른 배터리 과충전 방지장치(1000)의 장착 위치를 전압 센싱 PCB 또는 배터리 팩(10) 내부 등 위치에 구애받지 않고 장착할 수 있다.
도 3에 도시된 바와 같이, 전원 차단부(300)는 전원 차단부(300)의 코일부 사이에 병렬로 연결된 저항을 포함하여 구성될 수 있다.
전원 차단부(300)의 코일과 병렬로 연결된 저항에 의하여 코일 동작 시 발생되는 노이즈를 줄일 수 있고, 전압감지부(200)의 노이즈에 대한 영향을 최소화하여 전압감지부(200)의 정밀도를 높일 수 있다.
도 6에 도시된 바와 같이, 본 발명의 일 실시예에 따른 과충전 방지장치는 배터리 셀의 양단 또는 션트레귤레이터의 애노드와 션트레귤레이터의 레퍼런스에 연결되는 안전부(400)를 포함하여 구성될 수 있다.
이때, 안전부(400)는 커패시터, TVS 다이오드 중 선택되는 적어도 어느 하나를 포함하여 구성될 수 있다.
도 8은 적용 가능한 소자를 이용하여 배터리 과충전 방지장치를 직접 구현한 예를 보여준다.
이러한 본 발명은 배터리관리장치(30)와 별도로 배터리 과충전 상태를 감지하는 기능을 제공 가능함으로써, 차량의 안정성 추가 확보 및 ISO26262 규격에 부합하도록 해 준다.
또한, 전기적 방식으로 과충전을 감지하고 배터리 팩에 공급되는 전원을 전기적 방식으로 차단하기 때문에 기계적 방식보다 신뢰성을 높일 수 있다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.
[부호의 설명]
10: 배터리 팩 20: 파워릴레이어셈블리
21: 제1 메인 릴레이 22: 제2 메인 릴레이
23: 프리차지 릴레이 24: 프리차지 저항
30: 배터리관리장치 100: 입력전압 분배부
200: 전압 감지부 300: 전원 차단부

Claims (10)

  1. 복수 개의 배터리 셀들로 구성된 배터리 팩에서 적어도 하나의 배터리 셀의 양단에 연결되며, 배터리 셀의 전압을 분배하는 입력전압 분배부;
    상기 입력전압 분배부와 연결되며, 상기 입력전압 분배부를 통해 입력된 전압이 일정전압 이상 감지되면 동작하는 전압 감지부;
    상기 전압 감지부와 연결되며, 상기 전압 감지부의 동작에 의해 내부 스위치를 온 또는 오프 시켜 배터리 팩에 공급되는 전원을 차단시키는 전원 차단부;
    를 포함하여 구성되는 과충전 방지장치.
  2. 제1 항에 있어서,
    상기 전원 차단부는
    코일부와 스위치부를 포함하여 구성되며, 상기 전압 감지부는 상기 코일부와 연결되고, 배터리관리장치(BMS)의 제어를 받는 릴레이 코일측 선로는 상기 스위치부와 연결되며, 상기 전압 감지부의 동작에 의해 상기 코일부에 전원이 인가되면 상기 스위치부가 전기적인 연결을 끊어 상기 릴레이 코일측 선로의 전원을 차단하는 것을 특징으로 하는 과충전 방지장치.
  3. 제1 항에 있어서,
    상기 입력전압 분배부는
    직렬로 연결된 복수개의 저항을 포함하여 구성되는 것을 특징으로 하는 과충전 방지 장치.
  4. 제3 항에 있어서,
    상기 전압 감지부는
    션트레귤레이터로 구성되며, 상기 션트레귤레이터의 애노드는 상기 입력전압 분배부의 저항과 저항 사이에 연결되고, 상기 션트레귤레이터의 캐소드는 상기 입력전압 분배부가 연결된 상기 배터리 셀의 양극과 연결되며, 상기 션트레귤레이터의 레퍼런스는 상기 입력전압 분배부가 연결된 상기 배터리 셀의 음극과 연결되고, 상기 입력전압 분배부를 이용하여 분배된 입력전압이 일정전압 이상으로 입력되면 상기 션트레귤레이터의 캐소드와 레퍼런스가 통전되는 것을 특징으로 하는 과충전 방지 장치.
  5. 제4 항에 있어서,
    상기 전원 차단부는
    코일부와 스위치부를 포함하여 구성되며,
    상기 코일부의 일측은 상기 입력전압 분배부가 연결된 상기 배터리 셀의 양극과 연결되고, 상기 코일부의 타측은 상기 션트레귤레이터의 캐소드와 연결되며,
    상기 스위치부의 일측은 배터리관리장치(BMS)의 제어를 받는 릴레이 코일측 선로와 연결되고, 상기 스위치부의 타측은 공통선(-)과 연결되는 것을 특징으로 하는 과충전 방지 장치.
  6. 제5 항에 있어서,
    상기 전원 차단부는
    상기 전압감지부의 동작에 의해 상기 코일부에 전원이 인가되면 상기 스위치부가 동작되며, 별도의 제어가 있기 전까지 동작 상태를 그대로 유지시키는 비복귀 회로로 구성되는 것을 특징으로 하는 과충전 방지 장치.
  7. 제5 항에 있어서,
    상기 전원 차단부는
    래칭 릴레이로 구성되는 것을 특징으로 하는 과충전 방지 장치.
  8. 제5 항에 있어서,
    상기 전압 전원 차단부는
    상기 전원 차단부의 코일부 사이에 병렬로 연결된 저항을 포함하는 것을 특징으로 하는 과충전 방지장치.
  9. 제5 항에 있어서,
    상기 배터리 셀의 양단 또는 상기 션트레귤레이터의 애노드와 상기 션트레귤레이터의 레퍼런스에 연결되는 안전부;
    를 포함하는 것을 특징으로 하는 과충전 방지장치.
  10. 제9 항에 있어서,
    상기 안전부는
    커패시터, TVS 다이오드 중 선택되는 적어도 어느 하나인 것을 특징으로 하는 과충전 방지 장치.
PCT/KR2014/006694 2013-07-25 2014-07-23 배터리 과충전 방지 장치 WO2015012587A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480037727.5A CN105359367A (zh) 2013-07-25 2014-07-23 电池过充电防止装置
EP14829094.3A EP3026772B1 (en) 2013-07-25 2014-07-23 Battery overcharge preventing device
US14/906,922 US10153646B2 (en) 2013-07-25 2014-07-23 Battery overcharge preventing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0087922 2013-07-25
KR1020130087922A KR20150012425A (ko) 2013-07-25 2013-07-25 배터리 과충전 방지 장치

Publications (1)

Publication Number Publication Date
WO2015012587A1 true WO2015012587A1 (ko) 2015-01-29

Family

ID=52393544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006694 WO2015012587A1 (ko) 2013-07-25 2014-07-23 배터리 과충전 방지 장치

Country Status (5)

Country Link
US (1) US10153646B2 (ko)
EP (1) EP3026772B1 (ko)
KR (1) KR20150012425A (ko)
CN (2) CN110011281A (ko)
WO (1) WO2015012587A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3429054A4 (en) * 2016-03-08 2019-10-30 SK Innovation Co., Ltd. BATTERY OVERLOAD PREVENTION DEVICE AND METHOD FOR PREVENTING BATTERY OVERLOAD USING SUCH A DEVICE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449399B1 (ko) 2015-09-11 2022-09-30 현대모비스 주식회사 과충전 방지 회로 및 이의 제어 방법
KR102491494B1 (ko) 2015-09-25 2023-01-20 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 및 이미지 센서
WO2017155272A1 (ko) * 2016-03-08 2017-09-14 에스케이이노베이션 주식회사 배터리 과충전 방지 장치 및 이를 이용한 배터리 과충전 방지 방법
CN106183823A (zh) * 2016-07-08 2016-12-07 北汽福田汽车股份有限公司 车辆、高压控制***及其控制方法
KR102222119B1 (ko) * 2016-08-11 2021-03-03 삼성에스디아이 주식회사 배터리 팩
KR102363568B1 (ko) * 2017-02-27 2022-02-17 에스케이온 주식회사 배터리 모듈 과충전 방지 장치
KR20180098887A (ko) * 2017-02-27 2018-09-05 에스케이이노베이션 주식회사 배터리 과충전 방지 장치
KR20220012070A (ko) * 2020-07-22 2022-02-03 현대모비스 주식회사 출력단의 이상 전압 출현 방지기능을 갖는 배터리 시스템 및 그 시스템의 제어 방법
KR20220055366A (ko) * 2020-10-26 2022-05-03 주식회사 엘지에너지솔루션 충전 관리 장치, 충전 관리 방법 및 전기 차량
US20240097237A1 (en) * 2022-09-21 2024-03-21 Viridi Parente, Inc. Battery pack system and method for mitigating and responding to thermal runaway

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020009287A (ko) * 2000-07-25 2002-02-01 이형도 정전압 및 정전류 제어 회로
US6678183B2 (en) * 2002-03-20 2004-01-13 Safco Corporation DC power conditioning system
JP2008206250A (ja) * 2007-02-19 2008-09-04 Mitsubishi Electric Corp バッテリ装置の過電圧保護回路
JP2010203790A (ja) * 2009-02-27 2010-09-16 Toyota Motor Corp 車載二次電池の過充電検出装置
US20110298463A1 (en) 2010-06-04 2011-12-08 Hiroshi Saito Battery state monitoring circuit and battery device
JP2012139057A (ja) * 2010-12-27 2012-07-19 Sony Corp 保護回路および充電装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238938B2 (ja) 1992-03-17 2001-12-17 三洋電機株式会社 電池の充電装置
JP3581428B2 (ja) * 1995-04-28 2004-10-27 セイコーインスツルメンツ株式会社 充電式電源装置
US5864458A (en) * 1995-09-14 1999-01-26 Raychem Corporation Overcurrent protection circuits comprising combinations of PTC devices and switches
JP3368124B2 (ja) * 1995-10-26 2003-01-20 キヤノン株式会社 過充電防止回路
KR100425265B1 (ko) 2001-11-13 2004-03-30 장문환 일반/비상 겸용 형광램프 점등제어장치
US6943529B2 (en) 2001-12-16 2005-09-13 Zinc Matrix Power, Inc. Battery charging system
JP2004064977A (ja) 2002-07-31 2004-02-26 Densei Lambda Kk 無停電電源装置
KR100624944B1 (ko) 2004-11-29 2006-09-18 삼성에스디아이 주식회사 배터리 팩의 보호회로
CN201490686U (zh) 2009-07-11 2010-05-26 杭州之江开关股份有限公司 自复式过欠压保护器
KR20110021397A (ko) * 2009-08-26 2011-03-04 에스비리모티브 주식회사 배터리 관리 시스템
JP5494633B2 (ja) * 2011-12-02 2014-05-21 コニカミノルタ株式会社 電子機器および画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020009287A (ko) * 2000-07-25 2002-02-01 이형도 정전압 및 정전류 제어 회로
US6678183B2 (en) * 2002-03-20 2004-01-13 Safco Corporation DC power conditioning system
JP2008206250A (ja) * 2007-02-19 2008-09-04 Mitsubishi Electric Corp バッテリ装置の過電圧保護回路
JP2010203790A (ja) * 2009-02-27 2010-09-16 Toyota Motor Corp 車載二次電池の過充電検出装置
US20110298463A1 (en) 2010-06-04 2011-12-08 Hiroshi Saito Battery state monitoring circuit and battery device
JP2012139057A (ja) * 2010-12-27 2012-07-19 Sony Corp 保護回路および充電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3026772A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3429054A4 (en) * 2016-03-08 2019-10-30 SK Innovation Co., Ltd. BATTERY OVERLOAD PREVENTION DEVICE AND METHOD FOR PREVENTING BATTERY OVERLOAD USING SUCH A DEVICE
US11196273B2 (en) 2016-03-08 2021-12-07 Sk Innovation Co., Ltd. Battery overcharging prevention device and battery overcharging prevention method using same

Also Published As

Publication number Publication date
CN110011281A (zh) 2019-07-12
US20160156205A1 (en) 2016-06-02
EP3026772A1 (en) 2016-06-01
CN105359367A (zh) 2016-02-24
US10153646B2 (en) 2018-12-11
EP3026772B1 (en) 2021-11-10
EP3026772A4 (en) 2017-03-08
KR20150012425A (ko) 2015-02-04

Similar Documents

Publication Publication Date Title
WO2015012587A1 (ko) 배터리 과충전 방지 장치
WO2018194249A1 (ko) 과충전 방지 장치 및 방법
WO2015126036A1 (ko) 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2019103364A1 (ko) 무선 배터리 관리 시스템 및 그것을 이용하여 배터리팩을 보호하는 방법
KR100420460B1 (ko) 배터리의초과방전을보호하기위한제어회로
KR101113415B1 (ko) 배터리 팩의 보호 회로
WO2014077522A1 (ko) 배터리 시스템의 릴레이 융착 검출 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2014025087A1 (ko) 누전 차단 장치
KR101882835B1 (ko) 배터리 과충전 감지 장치
WO2019151631A1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
WO2017003168A1 (ko) 배터리 팩
WO2018048128A1 (ko) 배터리 팩 고장 검출 장치 및 방법
KR20160039936A (ko) 진단 기능을 포함하는 과충전 방지 장치 및 방법
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
KR102218431B1 (ko) 배터리 시스템 과전압 방지 장치
WO2021066394A1 (ko) 병렬 연결 셀의 연결 고장 검출 방법 및 시스템
WO2017155272A1 (ko) 배터리 과충전 방지 장치 및 이를 이용한 배터리 과충전 방지 방법
US20160336730A1 (en) Fuse Box for Mitigating Arc Faults and Current Surges
WO2020045842A1 (ko) 불량 모드 감지를 통한 퓨즈 제어 시스템 및 방법
WO2015030475A1 (ko) 배터리 과충전 방지 장치
WO2018143541A1 (ko) 배터리 팩, 배터리 관리 시스템 및 그 방법
WO2019054712A1 (ko) 통신 단 절연 기능을 포함하는 배터리 팩
WO2020153663A1 (ko) 배터리 보호회로 및 이를 이용한 과전류 차단 방법
WO2024136280A1 (ko) 배터리 시스템 및 연성 회로기판

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037727.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14906922

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014829094

Country of ref document: EP