WO2015012302A1 - 木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システム - Google Patents

木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システム Download PDF

Info

Publication number
WO2015012302A1
WO2015012302A1 PCT/JP2014/069428 JP2014069428W WO2015012302A1 WO 2015012302 A1 WO2015012302 A1 WO 2015012302A1 JP 2014069428 W JP2014069428 W JP 2014069428W WO 2015012302 A1 WO2015012302 A1 WO 2015012302A1
Authority
WO
WIPO (PCT)
Prior art keywords
charcoal
water gas
gas
combustion chamber
superheated steam
Prior art date
Application number
PCT/JP2014/069428
Other languages
English (en)
French (fr)
Inventor
正博 深澤
清美 和田
Original Assignee
富士古河E&C株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士古河E&C株式会社 filed Critical 富士古河E&C株式会社
Priority to JP2015528304A priority Critical patent/JPWO2015012302A1/ja
Publication of WO2015012302A1 publication Critical patent/WO2015012302A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1646Conversion of synthesis gas to energy integrated with a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a production method and apparatus for producing a charcoal water gas from charcoal and water by a water gas reaction, and a fuel cell power generation system using the production method and apparatus.
  • Fuel cell power generation systems are being put to practical use as clean energy.
  • the type of fuel cell depends on the polymer solid electrolyte type (PEFC), phosphoric acid type (PAFC), molten carbonate type (MCFC), and oxide solid electrolyte type ( SOFC), etc., and the latter has a higher operating temperature.
  • PEFC polymer solid electrolyte type
  • PAFC phosphoric acid type
  • MCFC molten carbonate type
  • SOFC oxide solid electrolyte type
  • a PEFC having a relatively low operating temperature of about 80 ° C. is expected to be used in a distributed manner for home use (see Patent Document 1).
  • PAFC with an output of about 100 kW (operating temperature is about 200 ° C.) is expected to be used as a medium- and small-scale distributed power source.
  • MCFC operating temperature is about 650 to 700 ° C.
  • SOFC operating temperature is about 900 to 1000 ° C.
  • city gas (13A gas) has been generally used as a fuel gas for small and medium-sized distributed fuel cells such as PEFC and PAFC.
  • fuel cells using digestion gas obtained by methane fermentation from naphtha, LP gas, and sewage sludge are also known (see Patent Document 2).
  • the components of the city gas are generally methane (CH 4 ) 89.6 [%] ethane (C 2 H 6 ), although there are some differences depending on the gas companies.
  • CH 4 methane
  • ethane C 2 H 6
  • the methane concentration in methane gas derived from sewage sludge is said to be about 60%.
  • LPG liquefied petroleum gas
  • Patent Document 3 In addition to the fuel gas, use of woody biomass fuel is also being studied (see Patent Document 3).
  • paragraph [0003] of Patent Document 3 the following is described as a power generation method using biomass fuel. That is, “(1) A method in which biomass fuel is directly burned in a boiler, for example, power generation by a steam turbine; (2) Fermentation of biomass fuel using microorganisms to extract methane gas, for example, a gas engine, a dual fuel diesel engine (3) Biomass resources are gasified in a gas generation furnace to generate a combustible gas, and this gas is supplied to, for example, a gas engine or a dual fuel diesel engine to generate electricity. There is a system etc. ".
  • biomass fuel is introduced into a gasifier, and oxidation, reduction reaction, and the like are performed using CO, H 2 , CH 4 , C 2 H 6, and the like. It is described that gas is generated and power is generated using the generated gas.
  • the manufacturing method and apparatus for producing a charcoal water gas from the charcoal and water by a water gas reaction have been completed to some extent due to the history of automobiles using charcoal (charcoal bus).
  • the inventors of the present application have also developed a system for generating electricity by driving a gasoline engine for automobiles in the form of a gas engine using charcoal water gas, and have completed a demonstration experiment.
  • the charcoal water gas is produced by a water gas reaction from charcoal (3C 10 H 5 O + C 30 H 20 O 3 ) obtained by making wood (2C 42 H 60 O 28 ) and water (H 2 O). Its composition is a mixed gas of hydrogen gas (H 2 ) of about 60 [%], carbon monoxide (CO) of about 20 [%], remaining carbon dioxide (CO 2 ), and methane gas (CH 4 ).
  • H 2 hydrogen gas
  • CO carbon monoxide
  • CH 4 methane gas
  • the water gas reaction of charcoal is an endothermic reaction, and it is essential to supply the necessary heat energy.
  • city gas is used at the time of start-up in the reformer, and heat energy is supplied using off-gas in the fuel cell operation after start-up.
  • this method there is a large difference in the calorific values of both gases, and it is necessary to burn with the same burner because of the structure, and advanced control technology is required to ensure its stability.
  • charcoal water gas reaction charcoal water gas is made from charcoal (solid) and water, so the heat energy required for endothermic reaction can be easily secured by burning a part of charcoal. . Further, the control regarding the combustion is facilitated by making it visible.
  • FIGS. 7 and 8 show a schematic configuration of a conventional charcoal water gas generator and a reaction form of charcoal water gas generation.
  • Conventional devices generally have an oxide layer (hereinafter also referred to as a combustion chamber). ),
  • a vertical charcoal water gas generator composed of a reducing layer and a dry layer is configured to generate charcoal water gas by supplying water from the outside below the oxide layer.
  • FIG. 7, FIG. 8 the structure of an apparatus and the reaction form of charcoal water gas generation
  • a vertical charcoal water gas generator 51 shown in FIG. 7 includes a charcoal filling part 52, a grate 53 provided below the charcoal filling part 52, and a take-out device 58 for taking out the charcoal water gas G from above the charcoal filling part 52.
  • the charcoal filling section 52 includes an oxidation layer (combustion chamber) 7a, a reduction layer 9a, and a dry layer 10a.
  • a burned charcoal ash layer 11a is Below the grate 53.
  • a burning port 54, a combustion chamber inspection port 55, and a refractory material 56 surrounding the combustion chamber side wall are provided below the charcoal water gas generator 51, and Is provided with a gas inspection torch 57 for confirming the generation of charcoal water gas.
  • the take-out device 58 is provided with a filter 60 for removing dust in the gas.
  • the filter 60 includes, for example, a coke layer and a layer such as a gold scrubber.
  • the combustion air A and the water W are supplied below an apparatus. Then, the water is heated by the combustion heat of the charcoal, and by the water gas reaction between the water and the charcoal, the charcoal filling gas 52 mainly generates the H 2 ⁇ CO gas-based charcoal water gas in the reduction layer 9a, The charcoal water gas G is taken out from the take-out device 58 via the dry layer 10a.
  • the combustion of the oxide layer 7a is performed so that the temperature zone of each part is maintained at about 900 to 1300 ° C for the oxide layer 7a, 800 to 900 ° C for the reduction layer 9a, and 600 to 800 ° C for the dry layer 10a. Control the degree. Combustion is started by igniting a suitable combustion auxiliary material in the outlet 54 below the oxide layer. After the ignition, it is confirmed by ignition in the gas inspection torch portion 57 that the internal temperature condition is established and the charcoal water gas is generated.
  • FIG. 8 is created with reference to Kozo Shionoya's “Charcoal Vehicle” (published by Power Corporation in 1996).
  • the aforementioned oxide layer 7a, reduction layer 9a, dry layer 10a, and ash layer 11a are schematically shown on the left side, and the chemical reaction in each layer is shown on the right side.
  • C + O 2 ⁇ CO 2 complete combustion of carbon
  • 2C + O 2 ⁇ 2CO incomplete combustion of carbon
  • C + CO 2 ⁇ 2CO reduction reaction
  • C + H 2 O ⁇ CO + H 2 and C + 2H 2 O ⁇ CO 2 + 2H 2 water gas reaction
  • CO + H 2 O ⁇ CO 2 + H 2 shift reaction
  • Reactions of CO + 3H 2 ⁇ CH 4 + H 2 O and C + 2H 2 ⁇ CH 4 are performed.
  • the reduction reaction and the water gas reaction are endothermic reactions. Therefore, in order to perform the reaction properly, heat supply is required, and this heat supply is caused by the combustion heat in the oxide layer 7a. Done.
  • the charcoal water gas is a mixed gas mainly containing H 2 ⁇ CO gas and containing CO 2 ⁇ CH 4 .
  • the composition is a mixed gas of hydrogen gas (H 2 ) approximately 60 [%], carbon monoxide (CO) approximately 20 [%], the remaining carbon dioxide (CO 2 ), and methane gas (CH 4 ).
  • Patent Document 4 describes an improved technique related to a production method and apparatus for producing the above charcoal water gas. It also describes the use of charcoal water gas for power generation devices.
  • Patent Document 4 states that “carbonization without consuming fossil fuel at all, and that the controllability of the carbonization temperature and the controllability of high-temperature carbonization are improved.
  • the charcoal is heated to a temperature of 800 ° C to 1200 ° C, it is brought into contact with air and water vapor to cause a gasification reaction to generate a large amount of combustible gas.
  • a charcoal gas is produced, and the object to be treated is heated by a combustion gas obtained by burning the charcoal gas in the combustion gas generation and supply means 3 to perform carbonization treatment.
  • this charcoal gas is used to perform gas power generation by the power generation means 12, and the carbonization processing system equipment is operated with the obtained electric power.”
  • Patent Document 4 describes in the embodiment of FIG. 1 or FIG. 2 that “the charcoal gas generated in the carbonization furnace 2 or the gasification furnace 10 generates water vapor by heating water through a heat exchanger. Is introduced into the upper part of the carbonization furnace 2 or the lower part of the gasification furnace 10 to perform a charcoal water gas reaction ".
  • JP 2002-124288 A Japanese Patent Laid-Open No. 11-126629 JP 2006-83293 A JP 2003-253278 A
  • the present invention has been made in view of the above points, and its purpose is to improve the stability of the water gas reaction and the gasification efficiency, and to improve the operation controllability when combined with a fuel cell.
  • a vertical cylindrical charcoal water gas generator having an oxidation layer (combustion chamber), a reduction layer, and a dry layer, and charcoal, water, and air are supplied to the charcoal water.
  • a method for producing a charcoal water gas by a water gas reaction from charcoal and water using a charcoal water gas production device comprising each supply means for supplying to the gas generator,
  • the reduction layer and the combustion chamber are arranged concentrically with the combustion chamber outside and a heat transfer wall, and a heat exchanger is provided in the combustion chamber, and water is supplied to the heat exchanger to increase the temperature.
  • the high-temperature superheated steam is generated, and the water gas reaction is performed by introducing the superheated steam into the reduction layer.
  • the temperature of the superheated steam is preferably different depending on the charcoal used.
  • the reason for this is that the water gas reactivity and water gas shift reactivity fluctuate depending on charcoal properties such as refinement and pore area in the temperature zone of the reducing layer (800-900 ° C), so the reaction is controlled appropriately. This is because it is preferable to set the temperature of the superheated steam to a different temperature depending on the nature of the charcoal used.
  • a vertical cylindrical charcoal water gas generator having a combustion chamber, a reducing layer, and a dry layer, charcoal, water
  • the charcoal water gas production apparatus comprising each supply means for supplying air to the charcoal water gas generator,
  • the reduction layer and the combustion chamber are arranged concentrically with the combustion chamber outside and a heat transfer wall, a heat exchanger is provided in the combustion chamber, and water is supplied to the heat exchanger to High pressure superheated steam is generated, and the superheated steam and CO 2 gas generated by the combustion of charcoal in the combustion chamber are introduced into the reduction layer, and the combustion chamber is
  • the heat transfer wall and the lower cylindrical part are formed, the reduction layer is formed by the heat transfer wall and the upper cylindrical part, and the dry layer is formed by the upper cylindrical part, and the upper cylindrical part is formed on the upper cylindrical part.
  • the lower cylindrical part is provided with a charcoal inlet and combustion air inlet
  • the upper lid part of the upper cylindrical part Shall be provided with a charcoal inlet
  • the heat exchanger provided in the combustion chamber is formed by spirally winding a tube inside the cylinder of the lower cylindrical portion, and water is passed through the tube. From the viewpoint of simplifying the configuration of the heat exchanger, it is preferable.
  • a lattice is provided below the reducing layer and the combustion chamber arranged in the concentric cylindrical shape, and CO 2 gas generated by combustion of the charcoal is introduced into the reducing layer through a gap between the lattice, and this It is preferable to discharge ash generated with combustion below the grid.
  • the superheated steam is introduced into the reduction layer through the lattice from below the reduction layer, or through the upper lid and the dry layer from above the reduction layer. It is preferable to do so.
  • a charcoal water gas production comprising a vertical cylindrical charcoal water gas generator having a combustion chamber, a reducing layer and a dry layer, and each supply means for supplying charcoal, water and air to the charcoal water gas generator.
  • Apparatus a superheated steam generator that superheats water by combustion heat of charcoal generated in the combustion chamber to generate high-temperature and high-pressure superheated steam, and a charcoal water gas generated in the charcoal water gas production apparatus
  • a charcoal water gas fuel cell power generation system comprising a fuel cell device that generates electricity by supplying a fuel gas as a fuel gas, The superheated steam generated in the superheated steam generator is introduced into a reduction layer of the charcoal water gas generator so as to cause a water gas reaction.
  • the charcoal water gas generator and the superheated steam generator are combined, and superheated steam generated in the superheated steam generator is introduced into the reduction layer of the charcoal water gas generator.
  • the apparatus for causing the water gas reaction to be performed is an integrated charcoal water gas production apparatus, and the integrated apparatus is an apparatus according to any one of the aforementioned charcoal water gas production apparatuses. It is characterized by.
  • a CO reformer for reforming CO contained in the charcoal water gas is provided between the charcoal water gas generator and the fuel cell device, and the CO reformer is provided with the superheated steam generator. It is preferable to supply the generated superheated steam so that a shift reaction for shifting CO to CO 2 is performed.
  • the fuel cell is a PEFC, PAFC, or the like, it is not preferable to include CO in the fuel gas from the viewpoint of deterioration of the electrode catalyst. Therefore, the shift reaction is preferably performed.
  • a gas cooler or a gas heating device for cooling or heating the charcoal water gas is provided between the charcoal water gas generator and the fuel cell device according to the operating temperature of the fuel cell device.
  • a gas cooler is required, and when the fuel cell is an MCFC or SOFC, particularly a SOFC, a gas heating device is required.
  • a fuel cell off-gas utilization device for utilizing the energy of the residual gas (off gas) of the charcoal water gas that has not been consumed in the fuel cell device.
  • heat supply for the charcoal water gas reaction can be performed by heat transfer through a heat transfer wall of combustion heat generated in the combustion chamber, combustion exhaust gas, Because it uses the heat of superheated steam, etc., it is possible to achieve an appropriate and stable heat supply, and the control of the heat supply will be unified, so the charcoal water gas reaction temperature zone can be maintained more stably than in the prior art. Can control. As a result, the thermal efficiency of the charcoal water gas generation is improved, and as described later in detail, the operation controllability when combined with the fuel cell can be improved.
  • the above production method can be carried out with a simple configuration, and the controllability is also improved.
  • the charcoal water gas is used as the fuel gas of the fuel cell
  • the conventional fuel cell power generation system that is, city gas, sewage sludge-derived methane gas, woody biomass fuel, etc.
  • the above-described charcoal water gas production apparatus it is possible to improve efficiency and improve operation controllability.
  • a fuel cell power generation system using charcoal water gas has not been implemented conventionally. Therefore, although partially overlapping with the above description, the technical and social superiority of the charcoal water gas fuel cell power generation system is listed as follows. (1) The use of charcoal water gas makes the greenhouse gas (especially CO 2 ) free, and the only waste from the fuel cell is water. (2) Since noise reduction can be easily realized, it can be installed close to the power demand destination and can be diversified as a distributed energy facility in the region, which has a great merit for social use. (3) The entire facility can be made compact. (4) Good controllability of the entire equipment and easy handling.
  • Forest land can be optimized by promoting the use of thinned wood, and there is a social merit that can contribute to forest restoration.
  • the schematic cross section of the charcoal water gas manufacturing apparatus by embodiment of this invention The sectional side view of the charcoal water gas manufacturing apparatus by the Example of this invention.
  • 1 is a schematic system diagram of a charcoal water gas fuel cell power generation system according to an embodiment of the present invention.
  • 1 is a schematic system diagram of a charcoal water gas fuel cell power generation system according to a different embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a charcoal water gas production apparatus according to an embodiment of the present invention
  • FIG. 2 is a side cross-sectional view of a charcoal water gas production apparatus according to an embodiment of the present invention
  • FIG. It is a sectional side view of the charcoal water gas manufacturing apparatus by a different Example.
  • the charcoal water gas production apparatus shown in FIG. 1 includes a charcoal water gas generator 1, supply means (not shown) for supplying charcoal, water, and air to the gas generator, a temperature measurement device and an operation control device, and an overheat It consists of water vapor introducing means (shown in FIGS. 2 and 3).
  • the charcoal water gas generator 1 includes a charcoal inlet top lid 2, a combustion air suction port 3 at startup, a charcoal inlet / combustion air hole 4, an ash outlet 5, a grid 6, an oxide layer (combustion chamber) 7, a reduction Layer 9, dry layer 10, ash layer 11, water pipe 12 as heat exchanger, lower cylindrical part 13, charcoal water gas outlet 14, upper cylindrical part 15, heat transfer wall 16, lower cylindrical part 13 and upper part A flange coupling part 17 with the cylindrical part 15 is provided.
  • FIGS. 2 to 3 is an embodiment of the apparatus for producing charcoal water gas according to FIG. 1, and a part of the description is omitted or added.
  • the embodiment of FIG. 2 is an embodiment provided with superheated steam introduction means 18 configured to introduce superheated steam generated in a water pipe 12 as a heat exchanger through the lattice 6 from below the reducing layer 9.
  • FIG. 3 shows an embodiment provided with superheated steam introducing means 18a which is introduced through the upper lid portion 2 and the dry layer 10 from above the reducing layer 9. From the viewpoint of structure, introduction from above is simple and advantageous, but from the viewpoint of heat loss, introduction from below is advantageous.
  • the introduced superheated steam S flows upward from the introduction portion of the superheated steam S and diffuses by the suction action of the gas flowing out from the charcoal water gas outlet 14.
  • the fundamental difference between the charcoal water gas generator 1 shown in FIG. 1 and the conventional charcoal water gas generator 51 shown in FIG. 7 is the arrangement relationship of the oxidation layer and the reduction layer.
  • the reducing layer is arranged vertically in the vertical direction, in the case of the charcoal water gas generator 1 shown in FIG. 1 according to the present invention, it is arranged concentrically below the apparatus. Is a point. That is, the reducing layer 9 and the combustion chamber 7 are arranged concentrically with the combustion chamber 7 outside and a heat transfer wall 16, and a water pipe 12 as a heat exchanger is provided in the combustion chamber 7. Water is supplied to the heat exchanger 12 to generate high-temperature and high-pressure superheated steam, and the superheated steam and the CO 2 gas 8 generated by the combustion of charcoal in the combustion chamber 7 are reduced. The point is that it is introduced into the layer 9.
  • combustion control in the oxide layer (combustion chamber) 7 is facilitated, and high temperature and high pressure that are important for the reaction mechanism of charcoal water gas generation by suitable control of the oxide layer 7. It becomes possible to generate superheated steam and facilitate its control.
  • the components of the charcoal water gas generator 1 shown in FIG. 1 are, for example, generally made of a steel plate, and the lower cylindrical portion 13 and the upper cylindrical portion 15 are bolted by a flange coupling portion 17, and each cylindrical portion is It has a heat insulation layer inside.
  • natural water tank which is not shown in figure can be provided in the water introduction part to the water pipe as a heat exchanger.
  • the superheated steam introduction means can be provided with a steam tank (not shown) as a buffer means for superheated steam pressure. Examples having these configurations (not shown) will be described later with reference to FIGS.
  • each part of the oxidation layer (combustion chamber) 7, the reduction layer 9 and the dry layer 10 is filled with charcoal, and it is confirmed that a valve (not shown) provided at the charcoal water gas outlet 14 is closed.
  • the combustion air suction port 3 is opened at start-up, and suction is performed with a suction blower (not shown) attached to the suction port.
  • ignition is performed from the positions of a plurality of (for example, six) combustion charcoal inlets / combustion air holes 4 provided around the upper portion of the oxidation layer (combustion chamber) 7.
  • an air amount adjusting shutter (not shown) provided in the combustion charcoal inlet / combustion air hole 4 is adjusted so that the entire oxidation layer (combustion chamber) 7 is measured by a temperature measuring device (not shown). After confirming that the temperature has reached a temperature (temperature display I indicated by an operation control device not shown), the combustion state is maintained.
  • the confirmation nozzle is closed, a valve (not shown) provided at the charcoal water gas outlet 14 is opened, and, for example, the charcoal water gas is sent to a fuel gas circuit in a fuel cell system to be described later.
  • the amount of air necessary for maintaining combustion and the charcoal water gas reaction is adjusted by adjusting the output of a suction high-pressure blower on the fuel cell side (not shown) and adjusting the air amount adjusting shutter.
  • the water pipe 12 provided in the combustion chamber 7, a raw water tank provided outside (not shown), and a water vapor supply function unit including a water vapor tank enter the reduction layer 9 in a high temperature atmosphere.
  • Supply high-temperature, high-pressure superheated steam Thereby, the charcoal water gas reaction shown in FIG. 8 is maintained.
  • the temperature of the superheated steam is 600 ° C., for example.
  • the temperature is set to 800 ° C., for example.
  • charcoal is burned in the oxidation layer (combustion chamber) 7 first, and the reducing layer 9 of the charcoal water gas generator 1 is maintained in a temperature zone necessary for the reaction.
  • a stable combustion state is a condition.
  • carbon dioxide (CO 2 ) generated by combustion is guided from the oxidation layer 7 to the reduction layer.
  • the charcoal filled in the reduction layer 9 is heated from the oxidation layer (combustion chamber) 7 through, for example, a concentric steel plate heat transfer wall 16, and a high-temperature reducing atmosphere is formed in the reduction layer.
  • the high-temperature and high-pressure superheated steam previously generated in the oxide layer 7 is supplied to cause the charcoal water gas reaction (C + H 2 O ⁇ CO + H 2 , C + 2H 2 O ⁇ CO 2 + 2H 2 ).
  • a shift reaction CO + H 2 O ⁇ CO 2 + H 2
  • heat is supplied through the heat transfer wall 16 to maintain a temperature zone necessary for the water gas reaction.
  • an operation control device displays the measurement value by inputting the measurement value in the temperature measurement device, and performs control for adjusting the combustion air amount so that a necessary temperature band can be maintained.
  • FIG. 4 is a schematic system diagram of a charcoal water gas fuel cell power generation system according to an embodiment of the present invention.
  • the fuel cell is a polymer solid electrolyte type (PEFC) / phosphorus fuel using only hydrogen gas (H 2 ) as a fuel.
  • PEFC polymer solid electrolyte type
  • HP 2 hydrogen gas
  • PAFC charcoal water gas for acid type
  • the fuel cell power generation system shown in FIG. 4 includes a charcoal water gas generator 1a, a superheated steam generator 12a, a fuel cell device 20, a dust remover 21, a CO reformer 22, a gas cooler 23, a gas It comprises a filter 24 and a fuel cell off gas utilization device 26.
  • Reference numeral 25 denotes condensed water generated in the gas cooler 23.
  • the superheated steam generated in the superheated steam generator 12a is introduced into the reduction layer of the charcoal water gas generator 4 to cause a water gas reaction.
  • the charcoal water gas generator 1a and the superheated steam generator 12a are combined, and the superheated steam generated in the superheated steam generator is introduced into the reduction layer of the charcoal water gas generator to perform a water gas reaction.
  • the apparatus to be performed can be configured integrally, and the integrated apparatus is preferably the charcoal water gas production apparatus shown in FIG.
  • carbon monoxide (CO) is contained in the composition of the charcoal water gas, so that the final hydrogen content is increased by further steam reforming. It is necessary to let Therefore, the CO reformer 22 is provided.
  • carbon monoxide (CO) is removed by a process such as adsorption / re-release, but the CO reformer 22 does not remove (CO) but a superheated steam generator.
  • the reforming is performed by converting (CO) into (CO 2 ) by a shift reaction (CO + H 2 O ⁇ CO 2 + H 2 ) between superheated steam supplied from 12a to the CO reformer 22 and (CO).
  • a slow duster 21 or a gas filter 24 is provided between the charcoal water gas generator 1a and the fuel cell device 20 in order to remove dust in the gas. Further, in order to cool the charcoal water gas in accordance with the operating temperature of the fuel cell device 20, a gas cooler 23 is provided, and the energy of the residual gas (off gas) of the charcoal water gas that has not been consumed in the fuel cell device 20 is provided. In order to utilize this, a fuel cell off-gas utilization device 26 is provided.
  • FIG. 5 is a schematic system diagram of a charcoal water gas fuel cell power generation system according to a different embodiment of the present invention.
  • the fuel cell can use both hydrogen gas (H 2 ) and carbon monoxide (CO) as fuel.
  • the system flow when using charcoal water gas for molten carbonate type (MCFC) and oxide solid electrolyte type (SOFC) is shown.
  • a gas heating device 30 is provided to heat the charcoal water gas according to the operating temperature of the fuel cell device 20.
  • the combustion heat of charcoal is necessary for (i) maintaining the charcoal water gas reaction temperature zone and (b) improving the efficiency of water gasification. It can utilize for a superheated steam generation part.
  • the control of the heat supply system with respect to the endothermic reaction is unified, the control becomes easier as compared with the conventional technique in which multiple control is performed.
  • (c) it is possible to unify heating energy sources in the fuel cell, thereby facilitating operational management and stabilizing the system.
  • the reformer heat source when city gas (13A) or the like is used in a conventional fuel cell system, the reformer heat source generally uses a city gas and a fuel cell off-gas that is fluctuating rapidly. System control becomes multi-dimensional. Compared to such a conventional method, in the case of the present invention using the charcoal water gas, the heat source for heating of each part can be unified to the combustion state control of the oxidation layer (combustion chamber) as described above, so that the control is possible. It becomes easy.
  • FIG. 6 is a diagram showing an example of a calculation result of the energy balance of the embodiment according to the charcoal water gas fuel cell power generation system of FIG.
  • FIG. 6 is a trial calculation for a phosphoric acid fuel cell (PAFC) with an output of 100 kW.
  • PAFC phosphoric acid fuel cell
  • the required amount of charcoal water gas is 90 [m 3 / h]
  • the amount of charcoal supplied is approximately 23 [kg / h].
  • the weight of the hydrogen content in the charcoal water gas 1 [m 3 ] is 53.58 g with a maximum hydrogen concentration of 60%.
  • the charcoal water gas generator 1 shown in FIG. 1 has a two-part structure in which an upper cylindrical portion and a lower cylindrical portion are flange-coupled, and the capacity of the charcoal water gas gas generator can be changed according to the output of the fuel cell.
  • a divided structure of three or more divisions can also be used.
  • positioning of the water pipe 12 as a heat exchanger can be suitably changed as needed.
  • the water pipe 12 as the heat exchanger shown in FIG. 1 is merely a steam generating means, and the superheated steam introducing means 18 or 18a shown in FIG. Reheating means may be provided to generate superheated steam.
  • the reheating means may be a charcoal combustion apparatus provided separately from the combustion chamber of FIG. 1 or another heating apparatus, for example, an induction heating apparatus using electromagnetic induction.
  • the introduction part of the superheated steam S shown in FIGS. 2 and 3 can be provided with a plurality of injection nozzles inside the ring-shaped hollow pipe.
  • FIG. 9 is a conceptual diagram of a charcoal water gas production apparatus according to an embodiment using the induction heating apparatus of the present invention
  • FIG. 10 is a charcoal water gas showing the form of a heated steam spray nozzle with respect to the embodiment of FIG. It is a composition conceptual diagram of a manufacturing device.
  • the charcoal water gas generator main body 1 in FIG. 9 is substantially the same as the charcoal water gas generator main body 1 shown in FIG. 1, but the introduction portion of the superheated steam into the reduction layer 9 is a reduction layer lower introduction portion 65a, The main difference is that the reducing layer intermediate portion introducing portion 65b and the reducing layer upper portion introducing portion 65c are arranged at three locations. Then, superheated steam heated by the induction heating device 64 is introduced into the introduction portions 65a, 65b, and 65c through the flow rate adjusting valves 44, 45, and 46, respectively, and as shown in FIG. Superheated steam is jetted into the reduction layer 9 from, for example, six superheated steam jet nozzles 66 provided in a ring shape at the introduction portion.
  • the steam generated by supplying water from the raw water tank 61 to the steam generating coil 62 serving as a heat exchanger provided in the combustion chamber 7 is supplied to the induction heating device 64.
  • Superheated steam is generated by heating by flowing.
  • 9 and 10 63 is a steam tank provided for pressure buffering, 41, 42 and 43 are flow rate adjusting valves, and 64a is a power source for the induction heating device 64.
  • a superheated steam generator “Genesis (trade name)” manufactured by Nomura Engineering Co., Ltd. can be used.
  • the reason why the superheated steam introduction part to the reducing layer 9 is arranged at three places, the lower part of the reducing layer, the middle part of the reducing layer, and the upper part of the reducing layer as described above will be described. Since the aquatic gas reaction occurs at a portion where the steam contacts the charcoal, the more the portion where the superheated steam is injected from the superheated steam injection nozzle to the reduction layer, the more the amount of generated charcoal aquatic gas is increased. Therefore, according to the embodiment of FIGS. 9 and 10, the introduction ratio of superheated steam in the introduction part of superheated steam to the reducing layer 9 according to the amount of power generation required for the fuel cell device using charcoal aquatic gas.
  • the introduction part of the superheated steam into the reduction layer may be only the lower part of the reduction layer, or when combining the lower part, the middle part, and the upper part, It is possible to use all three locations.
  • SYMBOLS 1, 1a Charcoal water gas generator, 2: Charcoal inlet upper lid part, 3: Combustion air suction port at start-up, 4: Charcoal inlet / combustion air hole, 5: Ash outlet, 6: Grid, 7: Oxidation Layer (combustion chamber), 8: CO2 gas, 9: reducing layer, 10: dry layer, 11: ash layer, 12: water pipe (heat exchanger), 12a: superheated steam generator, 13: lower cylindrical part, 14 : Charcoal water gas outlet, 15: Upper cylindrical part, 16: Heat transfer wall, 17: Flange joint, 18, 18a: Superheated steam introduction means, 20: Fuel cell power generator, 21: Dust remover, 22: CO Reformer, 23: gas cooler, 24: gas filter, 25: condensed water, 26: fuel cell off-gas utilization device, 30: gas heating device, 41 to 46: valve, 61: raw water tank, 62: steam generating coil 63: Steam tank, 64: Induction heating device, 65a

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】水性ガス反応の安定性やガス化効率の向上を図り、また、燃料電池と組み合わせた場合の運転制御性の向上を図った木炭水性ガス製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システムを提供する。 【解決手段】燃焼室7と還元層9と乾燥層10とを有する縦型円筒状の木炭水性ガス発生装置1と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置において、前記還元層と燃焼室とを、燃焼室を外側とし伝熱壁16を介して同心円筒状に配設し、前記燃焼室内に熱交換器12を設け、この熱交換器に水を供給して高温・高圧の過熱水蒸気を発生するか、あるいは、熱交換器に原水タンクから水を供給して水蒸気を発生し、この水蒸気を誘導加熱装置を介して加熱することにより過熱水蒸気を発生するようにし、この過熱水蒸気を前記還元層9に導入することによって水性ガス反応を行わせる。

Description

木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システム
 本発明は、木炭と水とから水性ガス反応により木炭水性ガスを製造する製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システムに関する。
 クリーンなエネルギーとして燃料電池発電システムの実用化が進められている。燃料電池の形式には、電解質の種類、改質原料の種類等によって、高分子固体電解質型(PEFC),リン酸型(PAFC),熔融炭酸塩型(MCFC),ならびに酸化物固体電解質型(SOFC)等があり、後者程、運転温度が高い。
 例えば、運転温度が約80℃と比較的低いタイプのPEFCは、家庭用としての分散型の利用が期待されている(特許文献1参照)。また、出力100kW程度のPAFC(運転温度が約200℃)は、中小規模の分散型の電源としての利用が期待されている。一方、MCFC(運転温度が約650~700℃)やSOFC(運転温度が約900~1000℃)は、比較的高い発電効率のため、大規模な電源としての利用が期待されている。
 PEFCやPAFCなどの中小規模の分散型燃料電池用の燃料ガスとしては、特許文献1にも記載されたように、従来、都市ガス(13Aガス)が一般的に使用されている。都市ガス以外に、ナフサやLPガス、さらには下水汚泥からメタン発酵処理して得られる消化ガスを利用した燃料電池も知られている(特許文献2参照)。
 ここで、燃料ガスの成分について言及すると、上記都市ガス(13Aガス)の成分は、ガス会社により多少の差異はあるものの、一般に、メタン(CH4)89.6[%]・エタン(C2H6)5.62[%]・プロパン(C3H8)3.43[%]・ブタン(C4H10)1.35[%]とされている。また,下水汚泥由来のメタンガスにおけるメタンの濃度は約60[%]と言われている。
 これらのガスを利用した燃料電池発電システムは既に実用化されているが、都市ガスを利用する場合は都市的インフラストラクチャーの普及度に左右される。また下水汚泥由来のメタンガスを利用する場合には、下水汚泥メタン発酵プラントとの併設になるので、分散用としては利用し難い面がある。また、分散型電源とし常用ならびに非常用に備えるために移動設置可能な液化石油ガス(LPG)を利用することも選択肢としては考えられているが、これも供給体制の面で制約される。そこで,地域単位で備蓄可能で持続可能なエネルギー源の調達が必要となる。
 前記燃料ガス以外に、木質バイオマス燃料の利用も検討されている(特許文献3参照)。
特許文献3の段落[0003]には、バイオマス燃料を用いた発電方式として、下記が記載されている。即ち、「(1)バイオマス燃料を直接ボイラで燃焼させ、例えば、蒸気タービンにより発電する方式、(2)微生物を利用してバイオマス燃料を発酵させてメタンガスを取り出し、例えばガスエンジン、デュアルフュエルディーゼルエンジン、または燃料電池に供給して発電する方式、(3)バイオマス資源を、ガス発生炉においてガス化して可燃ガスを発生し、このガスを、例えばガスエンジンやデュアルフュエルディーゼルエンジンに供給して発電する方式等がある。」と記載されている。
 また、特許文献3の段落[0014]~[0015]には、ガス化炉にバイオマス燃料を投入して、酸化および還元反応を用いて、CO, H2, CH4, C2H6等のガスを発生させ、この発生ガスを用いて発電することが記載されている。
 しかしながら、上記のようなバイオマス燃料を直接ガス化したガスを利用する場合には、発生ガスに含まれるタール分の処理が必要となり、この問題が、木質バイオマス燃料を利用した発電方式の実用化を妨げる大きな要因となっている。
 さらに、東日本大震災を経験した我が国においては、持続可能な安全でかつ取扱いの容易なエネルギー源として、歴史的に利用されてきた木炭の活用が注目されている。木炭は薪と比較してエネルギー密度が高く貯蔵ならびに流通性に優れる。さらに、持続性の点から見ても地域社会単位の歴史的な製炭業を復活させれば容易に確保できる利点があると考えられる。特にエネルギー源としての貯蔵の容易さならびに質の変動のなさは地域単位で備蓄する場合の優位性に富むと言える。
 上記木炭と水とから水性ガス反応により木炭水性ガスを製造する製造方法と装置に関しては、従来から木炭を利用した自動車(木炭バス)の歴史もありある程度完成している。
本願発明者等も、木炭水性ガスを利用して、自動車用ガソリンエンジンをガスエンジンの形で駆動し発電を行う方式を開発し実証実験を完了している。
 この木炭の利用によれば、現代における地球規模の課題である温室効果ガス(特に、CO2)フリーとなるので、環境上のメリットも期待できる。
 木炭水性ガスは、木材(2C42H60O28)を製炭して得られる木炭(3C10H5O+C30H20O3)と水(H2O)とから水性ガス反応により作られる。その組成は、水素ガス(H2)約60[%]・一酸化炭素(CO)約20[%]・残り二酸化炭素(CO2)・メタンガス(CH4)の混合ガスである。木炭水性ガスを利用する場合には、都市ガスなどを利用する時に必要な「脱硫器」を必要とせず、プロセスのシンプル化が期待できる。
 ところで、木炭の水性ガス反応は吸熱反応であり、それに必要な熱エネルギーの供給が不可欠となる。都市ガス利用の場合には、改質器において起動時には都市ガスを使い、起動後は燃料電池動作におけるオフガスを用いて熱エネルギーの供給を行う。この方式の場合、両ガスの発熱量に大きな差異があること、ならびに構造上同一バーナーで燃焼させることが必要であり、その安定性確保に高度な制御技術が必要となる。これに対して、木炭水性ガス反応の場合には、木炭(固体)と水とから木炭水性ガスを作るので、吸熱反応に必要な熱エネルギーは木炭の一部を燃焼させることで容易に確保できる。またその燃焼に関する制御も目視可能とすることで容易となる。
 従来の木炭水性ガス発生装置の概略構成および木炭水性ガス発生の反応形態を説明する図を、図7および図8に示す。従来の装置は、一般に、酸化層(以下、燃焼室ともいう。
)、還元層、乾燥層とから構成された縦型木炭水性ガス発生装置の前記酸化層の下方に、外部から水を供給することにより、木炭水性ガスを発生するように構成されている。図7、図8に基づいて、装置の構成および木炭水性ガス発生の反応形態について詳述する。
 図7に示す縦型木炭水性ガス発生装置51は、木炭充填部52と、その下方に設けた火格子53と、木炭充填部52の上方から木炭水性ガスGを取出すための取出装置58とからなる。前記木炭充填部52は後述する図8に示すように、酸化層(燃焼室)7aと、還元層9aと、乾燥層10aとからからなる。なお、火格子53の下方は、燃焼した木炭の灰層11aである。
 さらに、図7に示すように、木炭水性ガス発生装置51の下方には、焚き口54と、燃焼室の点検口55と、燃焼室の側壁を包囲する耐火材56とが設けられ、上方には、木炭水性ガスの発生を確認するためのガス点検トーチ57が設けられている。また、前記取出装置58には、ガス内のダストを除去するためのフィルター60が設けられている。このフィルター60は、例えば、コークス層と金タワシ等の層とからなる。
 そして、木炭水性ガスGを発生するためには、装置下方に、燃焼用の空気Aと水Wとを供給する。そして、木炭の燃焼熱により水を加熱し、水蒸気とされた水と木炭との水性ガス反応によって、木炭充填部52の主として還元層9aにおいてH2・COガス主体の木炭水性ガスを発生し、乾燥層10aを経由して、前記取出装置58から木炭水性ガスGを取出す。
 上記装置の運転の際、各部の温度帯域は酸化層7aは約900~1300℃,還元層9aは800~900℃,乾燥層10aは600~800℃に維持されるように酸化層7aの燃焼度合いを制御する。なお、燃焼は酸化層下部の焚き口54に適当な燃焼副材を投入後着火し開始する。着火後内部の温度条件が確立し木炭水性ガスが発生したことを、ガス点検トーチ部57における着火により確認する。
 ガス発生の安定状態を確認後は、燃焼に必要な理論空気量ならびに内部温度条件を維持する。各層間で木炭由来の炭素と燃焼用空気ならびに水(水蒸気)により生じる化学反応は、図8に示す通りと言われている。この結果、木炭水性ガス発生装置で水素ガス(H2)ならびに一酸化炭素(CO)主体の混合ガスが作られる。
 次に、図8について詳述する。図8は、塩ノ谷幸造著「木炭自動車」(1996年、株式会社パワー社発行)を参考にして作成したものである。前述の酸化層7a、還元層9a、乾燥層10a、灰層11aを左側に模式的に示し、その右側には各層における化学反応を示す。
 酸化層7aでは、C+O2→CO2(炭素の完全燃焼)および2C+O2→2CO(炭素の不完全燃焼)が行われ、燃焼熱を発生する。
 還元層9aでは、C+CO2→2CO(還元反応)、C+H2O→CO+H2およびC+2H2O→CO2+2H2(水性ガス反応)、CO+H2O→CO2+H2(シフト反応)、ならびに、CO+3H2→CH4+H2OおよびC+2H2→CH4の反応が行われる。なお、上記5つの反応の内、還元反応および水性ガス反応は吸熱反応であるので、反応を適正に行うためには、熱供給が必要であり、この熱供給は、酸化層7aにおける燃焼熱によって行われる。
 従って、木炭水性ガスとしては、H2・COガス主体で、その他CO2・CH4を含む混合ガスとなる。その組成は前述のように、水素ガス(H2)約60[%]・一酸化炭素(CO)約20[%]・残り二酸化炭素(CO2)・メタンガス(CH4)の混合ガスである。
 ところで、上述したような従来の木炭水性ガス製造装置によって木炭水性ガスを製造する場合、水性ガス反応の安定性やガス化効率が十分ではなく、また、燃料電池と組み合わせた場合の運転制御性にも難がある等の問題がある。その理由は下記のとおりである。
 上記従来の装置の場合、木炭水性ガスを発生する際に、装置下方に水Wを滴下して水蒸気を発生し、その水蒸気を還元層に導入するようにしているので、水蒸気が燃焼用の空気Aに乗って飛散し、還元層への水蒸気の導入制御が適正にできない。即ち、木炭水性ガス反応温度帯域維持の安定的制御ができない。また、酸化層(燃焼室)における燃焼の制御も適正にできない。従って、水性ガス反応の安定性やガス化効率が低下する。また、上記の不適正は、燃料電池における燃料ガスの供給にも影響を及ぼし、燃料電池の運転制御性にも問題が生ずる。
 一方、特許文献4には、上記木炭水性ガスを製造する製造方法と装置に関する改良技術が記載されている。また、木炭水性ガスを発電装置に利用することも記載されている。
 特許文献4は、その要約や段落[0014]の記載から明かなように、「化石燃料を全く消費しないで炭化処理すること、および炭化温度の制御性を高めるとともに高温炭化の制御性を高めることを目的として、炭化炉2内もしくは別置きのガス化炉内で、木炭が800℃~1200℃に高温化した段階において空気および水蒸気と接触させてガス化反応を起こさせて多量の可燃ガスを含む木炭ガスを製造し、この木炭ガスを燃焼ガス発生供給手段3にて燃焼させて得られる燃焼ガスで被処理物を加熱して炭化処理を行うこと」を開示している。また、「この木炭ガスを使用して発電手段12にてガス発電を行い、得られた電力で炭化処理システムの機器を運転する。」ことも開示している。
 さらに、特許文献4は図1又は図2の実施例において、「炭化炉2又はガス化炉10において発生した木炭ガスにより、熱交換器を介して水を加熱して水蒸気を発生し、この水蒸気を炭化炉2の上部又はガス化炉10の下部に導入することにより、木炭水性ガス反応を行うこと」も開示している。
 しかしながら、特許文献4に記載された製造方法と装置によっても、下記のように、水性ガス反応の安定性やガス化効率が十分ではなく、燃料電池と組み合わせた場合の運転制御性にも問題がある。
 即ち、特許文献4に記載された方式の場合、後述する本願発明と比較して、木炭水性ガス反応のための熱供給系の制御が多元的となるので、木炭水性ガス反応温度帯域維持の安定的制御ができず、また、燃料電池と組み合わせた場合の運転制御性にも難がある。詳細は後述する本願発明の説明によって理解される。
特開2002-124288号公報 特開平11-126629号公報 特開2006-83293号公報 特開2003-253278号公報
 本発明は上記の点に鑑みなされたものであり、その目的は、水性ガス反応の安定性やガス化効率の向上を図り、また、燃料電池と組み合わせた場合の運転制御性の向上を図った木炭水性ガス製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システムを提供することにある。
 前記目的を達成するために、本発明によれば、酸化層(燃焼室)と還元層と乾燥層とを有する縦型円筒状の木炭水性ガス発生装置と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置を用いて、木炭と水とから水性ガス反応により木炭水性ガスを製造する方法において、
 前記還元層と燃焼室とを、燃焼室を外側とし伝熱壁を介して同心円筒状に配設し、かつ前記燃焼室内に熱交換器を設け、この熱交換器に水を供給して高温・高圧の過熱水蒸気を発生し、この過熱水蒸気を前記還元層に導入することによって前記水性ガス反応を行わせることとする。
 また、前記過熱水蒸気の温度は、使用する木炭に応じて異なった温度とすることが好ましい。その理由は、還元層の温度帯域(800~900℃)において、水性ガス反応度ならびに水性ガスシフト反応度が、精煉度・孔の面積などの木炭の性質により変動するので、反応を適正に制御するためには、使用する木炭の性質に応じて、過熱水蒸気の温度を異なった温度とすることが好ましいからである。
 さらに、前記目的を達成するための木炭水性ガス製造装置としては、本発明によれば、燃焼室と還元層と乾燥層とを有する縦型円筒状の木炭水性ガス発生装置と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置において、
 前記還元層と燃焼室とを、燃焼室を外側とし伝熱壁を介して同心円筒状に配設し、前記燃焼室内に熱交換器を設け、この熱交換器に水を供給して高温・高圧の過熱水蒸気を発生するようにし、かつ、前記過熱水蒸気と、前記燃焼室において木炭の燃焼により発生したCO2ガスとを、前記還元層に導入するようにしてなり、さらに、前記燃焼室は前記伝熱壁と下部円筒形部とにより形成し、前記還元層は前記伝熱壁と上部円筒形部とにより形成し、前記乾燥層は上部円筒形部により形成し、前記上部円筒形部には木炭水性ガス取出し口と木炭水性ガス発生装置の起動時燃焼空気吸引口とを設け、前記下部円筒形部には木炭投入口兼燃焼空気導入口を設け、かつ前記上部円筒形部の上蓋部には、木炭投入口を設けるものとする。
 また、前記発明の実施態様としては、前記燃焼室内に設ける熱交換器は、前記下部円筒形部の筒の内部に管を螺旋状に巻回したものとし、前記管内に水を通流してなるものとすることが、熱交換器の構成をシンプルとする観点から好ましい。
 さらに、前記同心円筒状に配設した前記還元層および燃焼室の下方には格子を設け、この格子の隙間から、前記木炭の燃焼により発生したCO2ガスを前記還元層へ導入し、かつこの格子の下方に、燃焼に伴って発生する灰を排出するようにすることが好ましい。
 また、前記過熱水蒸気の前記還元層への導入は、前記還元層の下方から前記格子を貫通して行うようにするか、あるいは、前記還元層の上方から前記上蓋部および乾燥層を貫通して行うようにすることが好ましい。
 そして、前記目的を達成するための燃料電池発電システムの発明としては下記を特徴とする。即ち、燃焼室と還元層と乾燥層とを有する縦型円筒状の木炭水性ガス発生装置と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置と、前記燃焼室において発生した木炭の燃焼熱により水を過熱して、高温・高圧の過熱水蒸気を発生するようにした過熱水蒸気発生器と、前記木炭水性ガス製造装置において生成した木炭水性ガスを燃料ガスとして供給して発電する燃料電池装置とを備える木炭水性ガス式燃料電池発電システムであって、
 前記過熱水蒸気発生器において発生した過熱水蒸気を前記木炭水性ガス発生装置が有する還元層へ導入して水性ガス反応を行わせるようにすることを特徴とする。
 また、前記発明の実施態様としては、前記木炭水性ガス発生装置と過熱水蒸気発生器とを組合せ、かつ、前記過熱水蒸気発生器において発生した過熱水蒸気を前記木炭水性ガス発生装置が有する還元層へ導入して水性ガス反応を行わせるようにする装置は一体化して構成した木炭水性ガス製造装置とし、この一体化して構成した装置は、前述した木炭水性ガス製造装置のいずれか一つに記載の装置とすることを特徴とする。
 さらに、前記木炭水性ガス発生装置と前記燃料電池装置との間に、前記木炭水性ガスに含有するCOを改質するCO改質機を設け、このCO改質機に、前記過熱水蒸気発生器において発生した過熱水蒸気を供給して、COをCO2にシフトするシフト反応を行わせるようにすることが好ましい。燃料電池が前記PEFCやPAFCなどの場合には、燃料ガス内にCOを含むことは、電極触媒劣化の観点から好ましくないので、前記シフト反応を行わせるようにすることが好ましい。
 また、前記木炭水性ガス発生装置と前記燃料電池装置との間に、前記燃料電池装置の運転温度に応じて前記木炭水性ガスを冷却または加熱するガス冷却器またはガス加熱装置を設けることが好ましい。燃料電池が、前記PEFCやPAFCなどの場合にはガス冷却器を必要とし、MCFCやSOFC、特にSOFCの場合にはガス加熱装置を必要とする。
 さらに、前記木炭水性ガス発生装置と前記燃料電池装置との間に、ガス内のダストを除去するために、徐塵機またはガスフィルタを設けることが好ましい。
 さらにまた、前記燃料電池装置において消費されなかった木炭水性ガスの残ガス(オフガス)のエネルギーを活用するための燃料電池オフガス利用装置を備えることが、省エネの観点から好ましい。
 上記の木炭水性ガス製造方法の発明によれば、木炭水性ガス反応(吸熱反応)のための熱供給を、燃焼室において発生する燃焼熱の伝熱壁を介しての熱伝達や、燃焼排ガスや過熱水蒸気が有する熱などにより行うので、適正かつ安定した熱供給が実現可能であり、かつ熱供給の制御が一元的となるので、従来技術に比較して木炭水性ガス反応温度帯域維持の安定的制御ができる。その結果、木炭水性ガス発生の熱効率が向上すると共に、後に詳述するように、燃料電池と組み合わせた場合の運転制御性の向上を図ることができる。
 また、上記の木炭水性ガス製造装置の発明によれば、シンプルな構成により上記の製造方法が実施でき、また、制御性も良好となる。
 さらに、上記の燃料電池発電システムの発明によれば、燃料電池の燃料ガスとして木炭水性ガスを利用するので、従来の燃料電池発電システム、即ち、都市ガス、下水汚泥由来のメタンガス、木質バイオマス燃料等を利用したシステムに比較して、背景技術の項で記載したような利点を有する。また、上記の木炭水性ガス製造装置と組み合わせることにより、効率の向上および運転制御性の向上を図ることができる。
 木炭水性ガスを利用した燃料電池発電システムは、従来実施されていないシステムである。そこで、前述の記載と一部重複するものの、あらためて、木炭水性ガス式燃料電池発電システムの技術的かつ社会的優位性についてまとめて列記すると、以下のとおりである。
(1)木炭水性ガスの利用によれば温室効果ガス(特に、CO2)フリーとなり、また、燃料電池からの排出物は水のみとなるので、環境上のメリットが大きい。
(2)低騒音化が容易に実現できるので電力需要先に近接設置可能であり、かつ、地域の分散型エネルギー設備として多様化も可能であり、社会的利用メリットが大きい。
(3)設備全体のコンパクト化が可能である。
(4)設備全体の制御性が良く、かつ取扱いが容易である。
(5)従来のバイオマス燃料を直接ガス化したガスを利用する場合と比較して、発生ガスに含まれるタール分の処理が不要のためメンテナンス性が良く、かつ、高効率である。
(6)間伐材の利用促進により林地の適正化を図ることができ、森林の修復に貢献できる社会的メリットがある。
本発明の実施形態による木炭水性ガス製造装置の模式断面図。 本発明の実施例による木炭水性ガス製造装置の側断面図。 本発明の異なる実施例による木炭水性ガス製造装置の側断面図。 本発明の実施形態による木炭水性ガス式燃料電池発電システムの概略系統図。 本発明の異なる実施形態による木炭水性ガス式燃料電池発電システムの概略系統図。 図4の木炭水性ガス式燃料電池発電システムに係る実施例のエネルギー収支の試算結果の一例を示す図 従来の木炭水性ガス発生装置の概略構成を示す図 従来の木炭水性ガス発生装置における木炭水性ガス発生の反応形態の説明図 本発明の誘導加熱装置を用いた実施例による木炭水性ガス製造装置の構成概念図。 図9の実施例に関し加熱水蒸気噴射ノズルの形態を示した木炭水性ガス製造装置の構成概念図。
 以下、この発明による実施の形態について、図1~6、9および10に示す実施例に基づいて説明する。なお、前記図1~6、9および10において、機能が同一の対応部材には同一符号を付して、それらの重複説明を省略する。
 図1は本発明の実施形態による木炭水性ガス製造装置の模式断面図であり、図2は、本発明の実施例による木炭水性ガス製造装置の側断面図であり、図3は、本発明の異なる実施例による木炭水性ガス製造装置の側断面図である。
 図1に示す木炭水性ガス製造装置は、木炭水性ガス発生装置1と、図示しない木炭、水および空気を前記ガス発生装置へ供給する各供給手段と、温度計測装置および運転制御装置と、ならびに過熱水蒸気導入手段(図2,3には図示)とからなる。
 前記木炭水性ガス発生装置1は、木炭投入口上蓋部2、起動時燃焼空気吸引口3、木炭投入口兼燃焼空気孔4、灰排出口5、格子6、酸化層(燃焼室)7、還元層9、乾燥層10、灰層11、熱交換器としての水管12、下部円筒形部13、木炭水性ガス取出し口14、上部円筒形部15、伝熱壁16、下部円筒形部13と上部円筒形部15とのフランジ結合部17を備える。
 図2~3に示す実施例は、上記図1に係る木炭水性ガス製造装置の実施例であり、一部の記載を省略または追加した図である。図2の実施例は、熱交換器としての水管12において生成した過熱水蒸気を還元層9の下方から前記格子6を貫通して導入するようにしてなる過熱水蒸気導入手段18を備えた実施例であり、図3は還元層9の上方から前記上蓋部2および乾燥層10を貫通して導入するようにしてなる過熱水蒸気導入手段18aを備えた実施例である。構造上の観点からは上方から導入する方が簡便で有利であるが、熱ロスの観点からは下方から導入する方が有利である。なお、導入された過熱水蒸気Sは、木炭水性ガス取出し口14から流出するガスの吸引作用により、過熱水蒸気Sの導入部から上方へ流れて拡散する。
 図1に示す木炭水性ガス発生装置1と、図7に示した従来の木炭水性ガス発生装置51との基本的な相違は酸化層と還元層の配置関係であり、従来の装置は酸化層と還元層とが円筒状に垂直方向上下に配設されているのに対し、本発明に係る図1に示す木炭水性ガス発生装置1の場合には、装置の下方に同心円筒状に配設した点である。即ち、前記還元層9と燃焼室7とを、燃焼室7を外側とし伝熱壁16を介して同心円筒状に配設し、前記燃焼室7内に熱交換器としての水管12を設け、この熱交換器12に水を供給して高温・高圧の過熱水蒸気を発生するようにし、かつ、この過熱水蒸気と、前記燃焼室7において木炭の燃焼により発生したCO2ガス8とを、前記還元層9に導入するようにした点である。
 この構成により、本発明によれば、酸化層(燃焼室)7における燃焼制御が容易となり、また、酸化層7の好適な制御により、木炭水性ガス発生の反応メカニズム上、重要となる高温・高圧の過熱蒸気を発生させ、その制御も容易にすることが可能となる。
 なお、図1に示す木炭水性ガス発生装置1の構成部材は、例えば、概ね鋼板製で、下部円筒形部13および上部円筒形部15はフランジ結合部17でボルト結合され、各円筒形部は、その内方に断熱層を備えている。また、熱交換器としての水管への水導入部には、図示しない原水タンクを設けることができる。さらに、過熱水蒸気導入手段には、過熱水蒸気圧力の緩衝手段として図示しない水蒸気タンクを設けることもできる。これらの図示しない構成を有する実施例については、図9および10に基づいて後述する。
 次に、木炭水性ガス製造装置の運転方法について述べる。
 まず、酸化層(燃焼室)7、還元層9および乾燥層10の各部に木炭を充填し、木炭水性ガス取出し口14に設けた図示しないバルブが、閉の状態であることを確認する。
 続いて、起動時燃焼空気吸引口3を開とし,同吸引口に装着する図示しない吸引ブロアで吸引する。燃焼用空気を吸引しつつ、酸化層(燃焼室)7上部周辺に設けた複数個(例えば6個)の燃焼用木炭投入口兼燃焼用空気孔4の位置から着火する。着火後は、燃焼用木炭投入口兼燃焼用空気孔4に設けた図示しない空気量調節用シャッターを調節し、酸化層(燃焼室)7全体が、図示しない温度計測装置によって計測された所定の温度(図示しない運転制御装置が示す温度表示I)に達した状態を確認後、その燃焼状態を維持する。
 酸化層(燃焼室)7の燃焼状態安定後、酸化層の外周に設けた伝熱壁16を介し伝達される燃焼熱ならびに格子6経由で還元層9に流入する燃焼排ガス(CO2ガス)8により還元層9内の木炭が加熱される。還元層9内の温度が所定の温度(図示しない運転制御装置が示す温度表示II)に達した後、木炭水性ガスの発生状況を、木炭水性ガス取出し口14に併設する図示しないガス点検トーチに設けた確認用ノズルを開とし、ガスに着火し確認する。この場合、前記燃焼用空気の吸引ブロアは停止し前記起動時燃焼空気吸引口3は閉にしてから行なう。
 その後、前記確認用ノズルを閉とし、木炭水性ガス取出し口14に設けた図示しないバルブを開にして、例えば、後述する燃料電池システムにおける燃料ガスの回路に木炭水性ガスを送る。この状態において燃焼ならびに木炭水性ガス反応を維持するために必要な空気量の調整は、図示しない燃料電池側の吸引高圧ブロワーの出力調整と、前記空気量調節用シャッターの調節とにより行う。
 燃焼状態ならびに還元層内の温度の安定を確認後、燃焼室7に設けた水管12、図示しない外部に設けた原水タンクならびに水蒸気タンクからなる水蒸気供給機能部により、高温雰囲気の還元層9内に、高温・高圧の過熱水蒸気を供給する。これにより、図8に示した木炭水性ガス反応が維持される。過熱水蒸気の温度は、例えば、600℃である。なお、使用する木炭の性質によっては、例えば、800℃とする。
 木炭水性ガス発生装置1内での各種の反応については、図8に示した通りである。まず、第一に酸化層(燃焼室)7で木炭を燃焼し、木炭水性ガス発生装置1の還元層9を反応に必要な温度帯域に維持する。そのためには燃焼状態の安定が条件となる。加えて、還元層9での還元反応(C+CO2→2CO)を安定させるために燃焼で生じた二酸化炭素(CO2)を有効に利用すべく酸化層7から還元層に誘導する。
 次に酸化層(燃焼室)7から例えば同心円状の鋼板製伝熱壁16を介して、還元層9に充填された木炭が加熱され、還元層内は高温の還元雰囲気となる。この状態で、先に酸化層7で発生した高温・高圧の過熱水蒸気を供給することにより、木炭水性ガス反応(C+H2O→CO+H2,C+2H2O→CO2+2H2)を生じさせる。さらに、還元層9内ではシフト反応(CO+H2O →CO2+H2)が起こる。これらの還元反応,水性ガス反応は吸熱反応であるので、前記伝熱壁16を介して熱供給を行い、水性ガス反応に必要な温度帯域を維持する。
 なお、図1に示す木炭水性ガス製造装置に設ける図示しない温度計測装置は、少なくとも、酸化層(燃焼室)7および還元層9にそれぞれ設け、必要に応じて、その他の部分に設けることもできる。また、図示しない運転制御装置は、温度計測装置における計測値の入力によってその計測値を表示すると共に、必要な温度帯域が維持できるように、燃焼空気量の調整操作を行うための制御を行う。
 水性ガス反応,還元反応,シフト反応で作られる木炭水性ガスの組成は、前述のように一般に、水素ガス(H2)約60[%],一酸化炭素(CO)約20[%],残り(二酸化炭素CO2・メタンCH4)といわれている。この一酸化炭素(CO)ならびに水素ガス(H2)主体の木炭水性ガスを燃料電池の燃料に使う場合、燃料電池の形式によっては、一酸化炭素(CO)の分離・改質を必要とする。
 次に、木炭水性ガスを燃料ガスとして利用する燃料電池発電システムについて述べる。
 図4は、本発明の実施形態による木炭水性ガス式燃料電池発電システムの概略系統図であり、燃料電池が、水素ガス(H2)のみを燃料とする高分子固体電解質型(PEFC)・リン酸型(PAFC)に木炭水性ガスを利用する場合のシステムフローを示す。
 図4に示す燃料電池発電システムは、木炭水性ガス発生装置1aと、過熱水蒸気発生器12aと、燃料電池装置20と、除塵機21と、CO改質機22と、ガス冷却器23と、ガスフィルタ24と、燃料電池オフガス利用装置26とからなる。なお、25はガス冷却器23において発生した凝縮水を示す。
 そして、上記システムにおいては、前記過熱水蒸気発生器12aにおいて発生した過熱水蒸気を前記木炭水性ガス発生装置4が有する還元層へ導入して水性ガス反応を行わせるようにする。
 なお、前記木炭水性ガス発生装置1aと過熱水蒸気発生器12aとを組合せ、かつ、前記過熱水蒸気発生器において発生した過熱水蒸気を前記木炭水性ガス発生装置が有する還元層へ導入して水性ガス反応を行わせるようにする装置は一体化して構成することができ、この一体化して構成した装置は、前記図1に示した木炭水性ガス製造装置とすることが好ましい。
 図4に示すシステムにおける燃料電池が前記PEFCおよびPAFCの場合、木炭水性ガスの組成中に一酸化炭素(CO)が約20%含まれるので、さらに水蒸気改質を行い最終的な水素含量を増大させる必要がある。そのため、前記CO改質機22を設ける。従来技術によれば、一酸化炭素(CO)を吸着・再放出などのプロセスにより除去しているが、前記CO改質機22においては、(CO)を除去するのではなく、過熱水蒸気発生器12aからCO改質機22に供給する過熱水蒸気と(CO)とのシフト反応(CO+H2O→CO2+H2)により、(CO)を(CO2)化することにより改質する。
 図4に示すシステムにおいては、木炭水性ガス発生装置1aと燃料電池装置20との間に、ガス内のダストを除去するために、徐塵機21またはガスフィルタ24を設けている。また、燃料電池装置20の運転温度に応じて木炭水性ガスを冷却するために、ガス冷却器23を設け、さらに、燃料電池装置20において消費されなかった木炭水性ガスの残ガス(オフガス)のエネルギーを活用するために、燃料電池オフガス利用装置26を設けている。
 前記PEFCならびにPAFCにおいて、従来より一般的に行なわれている都市ガス(13A)を使用する場合には、ガス中に含まれる硫黄分を除去するために脱硫器が必要であり、また、下水汚泥や畜産廃棄物由来のメタンを利用する場合には、前処理装置で硫化水素(H2S)・シロキサ(R3SiO-(R2SiO)n-SiR3)・アンモニア(NH3)を除去する必要がある。木炭水性ガスを利用する場合には、その必要性がなく、システムがシンプル化すると同時に、除去に伴い発生する硫化水素などの有害物処理の必要性もなく、設備全体の維持管理が容易となる。
 次に図5について述べる。図5は、本発明の異なる実施形態による木炭水性ガス式燃料電池発電システムの概略系統図であり、燃料電池が、水素ガス(H2)と一酸化炭素(CO)双方を燃料として使可能な溶融炭酸塩型(MCFC)ならびに酸化物固体電解質型(SOFC)に木炭水性ガスを利用する場合のシステムフローを示す。
 図5に示すシステムの場合、一般的に都市ガス(13A)を使用する時必要とする脱硫器ならびに下水汚泥や畜産廃棄物由来のメタンを利用する場合不可欠とされている前処理装置の必要性がないことに加え、一酸化炭素(CO)改質機も必要としない。従って、システムが極めてシンプルとなり、設備の維持管理も一層容易となる。
 図5に示すシステムの場合、燃料電池の運転温度が比較的高いので、燃料電池装置20の運転温度に応じて木炭水性ガスを加熱するためにガス加熱装置30を設けている。
 図5に示すシステムによれば、図4に示すシステムと同様に、木炭の燃焼熱を、(イ)木炭水性ガス反応温度帯域維持や、(ロ)水性ガス化の効率向上のために必要な過熱水蒸気発生部に利用することができる。その際、吸熱反応に対する熱供給系の制御が一元的であるので、多元的制御となる従来技術に比較して制御が容易となる。さらに、(ハ)燃料電池における加熱のエネルギー源を一元化でき、運転管理の容易さと系の安定化を図ることができる。
 特に、従来の燃料電池システムにおいて都市ガス(13A)などを利用する場合、改質器用熱源を、都市ガスと、変動の激しい燃料電池オフガスとを利用する方式が一般的であるので、この場合、系の制御が多元的になる。このような従来の方式に比較して、木炭水性ガスを利用する本発明の場合には、上述の通り各部の加熱用熱源を酸化層(燃焼室)の燃焼状態制御に一元化できるので、制御が容易となる。
 次に、図6について述べる。図6は図4の木炭水性ガス式燃料電池発電システムに係る実施例のエネルギー収支の試算結果の一例を示す図である。
 図6は、出力100kWのリン酸型燃料電池(PAFC)を対象として試算したもので、この場合、必要な木炭水性ガス量は、90[m3/h]であり、木炭供給量は、約23[kg/h]となる。ここで、木炭水性ガス1[m3]中の水素分の重量は、水素濃度最大60%として、53.58gである。
 以上、図1~図6に基づいて、本発明の基本的な実施形態を説明したが、本発明は上記の実施形態または実施例に限定されるものではなく、本発明の技術思想の範囲内において、適宜、変更が可能である。
 例えば、図1に示す木炭水性ガス発生装置1は、上部円筒形部および下部円筒形部をフランジ結合した2分割構造であるが、燃料電池の出力に応じて木炭水性ガスガス発生装置の容量を可変とできるようにすべく、3分割以上の分割構造とすることもできる。また、熱交換器としての水管12の構成や配置は、必要に応じて適宜変更可能である。
 さらに、図1~3の実施形態の変形として、図1に示す熱交換器としての水管12は単なる水蒸気発生手段とし、図2または3に示す過熱水蒸気導入手段18または18aに水蒸気を再加熱する再加熱手段を設けて過熱水蒸気を発生するようにすることもできる。前記再加熱手段としては、図1の燃焼室とは別に設けた木炭の燃焼装置とすることや、別の加熱装置、例えば、電磁誘導を用いた誘導加熱装置とすることもできる。
 また、図2,3に示す過熱水蒸気Sの導入部は、複数個の噴射ノズルをリング状中空配管のリング内方に設けたものとすることができる。
 次に、過熱水蒸気発生手段として誘導加熱装置を用いた異なる実施例や、過熱水蒸気の導入部に噴射ノズルを設けた実施例について、図9および10に基づいて述べる。
 図9は、本発明の誘導加熱装置を用いた実施例による木炭水性ガス製造装置の構成概念図であり、図10は、図9の実施例に関し加熱水蒸気噴射ノズルの形態を示した木炭水性ガス製造装置の構成概念図である。
 図9における木炭水性ガス発生装置本体1は、図1に示す木炭水性ガス発生装置本体1と略同一であるが、過熱水蒸気の還元層9への導入部は、還元層下部用導入部65a、還元層中間部用導入部65b、還元層上部用導入部65cの3か所に配設している点が主に異なる。
 そして、前記導入部65a、65b、65cに対して、それぞれ流量調節用のバルブ44、45、46を介して誘導加熱装置64によって加熱された過熱水蒸気が導入され、図10に示すように、前記導入部にリング状に設けた例えば6個の過熱水蒸気噴射ノズル66から、還元層9へ過熱水蒸気が噴射される。なお、かならずしも、噴射ノズルをリング状に複数個設ける必要はなく、棒状で縦長の導入部に複数個設けることもできる。
 また、図9および10に示す実施例においては、燃焼室7内に設けた熱交換器としての水蒸気発生コイル62に原水タンク61から水を供給して発生した水蒸気を、前記誘導加熱装置64に通流して加熱することにより過熱水蒸気を発生する。
 なお、図9および10において、63は圧力緩衝用に設けた水蒸気タンク、41,42,43は流量調節用のバルブ、64aは誘導加熱装置64用の電源である。誘導加熱装置としては、例えば、野村技工株式会社製の過熱蒸気発生装置「Genesis(商品名)」を用いることができる。
 次に、前述のように過熱水蒸気の還元層9への導入部を、還元層下部、還元層中間部および還元層上部の3か所に配設する理由について述べる。
 前記水生ガス反応は、木炭に水蒸気が接触した部分で起きるので、過熱水蒸気噴射ノズルから還元層へ過熱水蒸気が噴射される部分が多い程、木炭水生ガスの発生量が増大する。従って、前記図9および10の実施例によれば、木炭水生ガスを利用する燃料電池装置が必要とされる発電量に応じて、過熱水蒸気の還元層9への導入部における過熱水蒸気の導入割合を、噴射ノズルの位置や各噴射ノズルにおける噴射量の調節によって、位置的および量的に制御することができる。
 なお、対象とするシステムによっては、前記過熱水蒸気の還元層への導入部は、還元層下部のみでよい場合もあるし、また、下部、中間部、上部の2か所を組合せる場合や、3か所全てを用いる場合があり得る。
 なお、過熱水蒸気発生手段として、前記誘導加熱装置に代えて、木炭燃焼装置を用いることも可能である。
 1、1a:木炭水性ガス発生装置、2:木炭投入口上蓋部、3:起動時燃焼空気吸引口、4:木炭投入口兼燃焼空気孔、5:灰排出口、6:格子、7:酸化層(燃焼室)、8:CO2ガス、9:還元層、10:乾燥層、11:灰層、12:水管(熱交換器)、12a:過熱水蒸気発生器、13:下部円筒形部、14:木炭水性ガス取出し口、15:上部円筒形部、16:伝熱壁、17:フランジ結合部、18、18a:過熱水蒸気導入手段、20:燃料電池発電装置、21:除塵機、22:CO改質機、23:ガス冷却器、24:ガスフィルタ、25:凝縮水、26:燃料電池オフガス利用装置、30:ガス加熱装置、41~46:バルブ、61:原水タンク、62:水蒸気発生コイル、63:水蒸気タンク、64:誘導加熱装置、65a:還元層下部用導入部、65b:還元層中間部用導入部、65c:還元層上部用導入部、66:過熱水蒸気噴射ノズル。

Claims (16)

  1.  酸化層(以下、燃焼室という。)と還元層と乾燥層とを有する縦型円筒状の木炭水性ガス発生装置と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置を用いて、木炭と水とから水性ガス反応により木炭水性ガスを製造する方法において、
     前記還元層と燃焼室とを、燃焼室を外側とし伝熱壁を介して同心円筒状に配設し、かつ前記燃焼室内に熱交換器を設け、この熱交換器に水を供給して高温・高圧の過熱水蒸気を発生し、この過熱水蒸気を前記還元層に導入することによって前記水性ガス反応を行わせることを特徴とする木炭水性ガス製造方法。
  2.  前記過熱水蒸気の温度は、使用する木炭に応じて異なった温度とすることを特徴とする請求項1に記載の製造方法。
  3.  燃焼室と還元層と乾燥層とを有する縦型円筒状の木炭水性ガス発生装置と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置において、
     前記還元層と燃焼室とを、燃焼室を外側とし伝熱壁を介して同心円筒状に配設し、前記燃焼室内に熱交換器を設け、この熱交換器に水を供給して高温・高圧の過熱水蒸気を発生するようにし、かつ、前記過熱水蒸気と、前記燃焼室において木炭の燃焼により発生したCO2ガスとを、前記還元層に導入するようにしてなり、
     さらに、前記燃焼室は前記伝熱壁と下部円筒形部とにより形成し、前記還元層は前記伝熱壁と上部円筒形部とにより形成し、前記乾燥層は上部円筒形部により形成し、前記上部円筒形部には木炭水性ガス取出し口と木炭水性ガス発生装置の起動時燃焼空気吸引口とを設け、前記下部円筒形部には木炭投入口兼燃焼空気導入口を設け、かつ前記上部円筒形部の上蓋部には、木炭投入口を設けることを特徴とする木炭水性ガス製造装置。
  4.  前記燃焼室内に設ける熱交換器は、前記下部円筒形部の筒の内部に管を螺旋状に巻回したものとし、前記管内に水を通流してなるものとすることを特徴とする請求項3に記載の装置。
  5.  前記同心円筒状に配設した前記還元層および燃焼室の下方には格子を設け、この格子の隙間から、前記木炭の燃焼により発生したCO2ガスを前記還元層へ導入し、かつこの格子の下方に、燃焼に伴って発生する灰を排出するようにすることを特徴とする請求項3に記載の装置。
  6.  前記過熱水蒸気の前記還元層への導入は、前記還元層の下方から前記格子を貫通して行うようにしてなることを特徴とする請求項5に記載の装置。
  7.  前記過熱水蒸気の前記還元層への導入は、前記還元層の上方から前記上蓋部および乾燥層を貫通して行うようにすることを特徴とする請求項1に記載の装置。
  8.  燃焼室と還元層と乾燥層とを有する縦型円筒状の木炭水性ガス発生装置と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置と、前記燃焼室において発生した木炭の燃焼熱により水を過熱して、高温・高圧の過熱水蒸気を発生するようにした過熱水蒸気発生器と、前記木炭水性ガス製造装置において発生した木炭水性ガスを燃料ガスとして供給して発電する燃料電池装置とを備える木炭水性ガス式燃料電池発電システムであって、
     前記過熱水蒸気発生器において発生した過熱水蒸気を前記木炭水性ガス発生装置が有する還元層へ導入して水性ガス反応を行わせるようにすることを特徴とする燃料電池発電システム。
  9.  前記木炭水性ガス発生装置と過熱水蒸気発生器とを組合せ、かつ、前記過熱水蒸気発生器において発生した過熱水蒸気を前記木炭水性ガス発生装置が有する還元層へ導入して水性ガス反応を行わせるようにする装置は一体化して構成した木炭水性ガス製造装置とし、この一体化して構成した装置は、請求項3ないし7のいずれか1項に記載の装置とすることを特徴とする請求項8に記載の燃料電池発電システム。
  10.  前記木炭水性ガス発生装置と前記燃料電池装置との間に、前記木炭水性ガスに含有するCOを改質するCO改質機を設け、このCO改質機に、前記過熱水蒸気発生器において発生した過熱水蒸気を供給して、COをCO2にシフトするシフト反応を行わせるようにすることを特徴とする請求項8または9に記載の燃料電池発電システム。
  11.  前記木炭水性ガス発生装置と前記燃料電池装置との間に、前記燃料電池装置の運転温度に応じて前記木炭水性ガスを冷却または加熱するガス冷却器またはガス加熱装置を設けることを特徴とする請求項8または9に記載の燃料電池発電システム。
  12.  前記木炭水性ガス発生装置と前記燃料電池装置との間に、ガス内のダストを除去する徐塵機またはガスフィルタを設けることを特徴とする請求項8ないし11のいずれか1項に記載の燃料電池発電システム。
  13.  前記燃料電池装置において消費されなかった木炭水性ガスの残ガス(オフガス)のエネルギーを活用するための燃料電池オフガス利用装置を備えることを特徴とする請求項8ないし12のいずれか1項に記載の燃料電池発電システム。
  14.  燃焼室と還元層と乾燥層とを有する縦型円筒状の木炭水性ガス発生装置と、木炭、水および空気を前記木炭水性ガス発生装置へ供給する各供給手段とを備える木炭水性ガス製造装置において、
     前記還元層と燃焼室とを、燃焼室を外側とし伝熱壁を介して同心円筒状に配設し、前記燃焼室内に熱交換器を設け、この熱交換器に原水タンクから水を供給して水蒸気を発生しこの水蒸気を誘導加熱装置を介して加熱することにより、高温・高圧の過熱水蒸気を発生するようにし、かつ、前記過熱水蒸気と、前記燃焼室において木炭の燃焼により発生したCO2ガスとを、前記還元層に導入するようにしてなり、
     さらに、前記燃焼室は前記伝熱壁と下部円筒形部とにより形成し、前記還元層は前記伝熱壁と上部円筒形部とにより形成し、前記乾燥層は上部円筒形部により形成し、前記上部円筒形部には木炭水性ガス取出し口と木炭水性ガス発生装置の起動時燃焼空気吸引口とを設け、前記下部円筒形部には木炭投入口兼燃焼空気導入口を設け、かつ前記上部円筒形部の上蓋部には、木炭投入口を設けることを特徴とする木炭水性ガス製造装置。
  15.  前記過熱水蒸気の前記還元層への導入部は、還元層下部、還元層中間部、還元層上部の少なくとも一か所とすることを特徴とする請求項14に記載の木炭水性ガス製造装置。
  16.  前記過熱水蒸気の前記還元層への導入部は、リング状に配設した複数個の噴射ノズルを備え、前記噴射ノズルから前記還元層へ過熱水蒸気を噴射して導入することを特徴とする請求項14または15に記載の木炭水性ガス製造装置。
PCT/JP2014/069428 2013-07-24 2014-07-23 木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システム WO2015012302A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528304A JPWO2015012302A1 (ja) 2013-07-24 2014-07-23 木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013153711 2013-07-24
JP2013-153711 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015012302A1 true WO2015012302A1 (ja) 2015-01-29

Family

ID=52393335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069428 WO2015012302A1 (ja) 2013-07-24 2014-07-23 木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システム

Country Status (2)

Country Link
JP (1) JPWO2015012302A1 (ja)
WO (1) WO2015012302A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869291A (ja) * 1981-07-08 1983-04-25 Okutama Kogyo Kk 固体燃料のガス化方法及びガス発生炉
JP2001192675A (ja) * 2000-01-12 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd チャー改質ガス製造方法
JP2004189932A (ja) * 2002-12-12 2004-07-08 Kozo Shionoya 固形燃料ガス化装置
JP2006143983A (ja) * 2004-10-20 2006-06-08 Mitsui Eng & Shipbuild Co Ltd ガス化装置の運転方法及びガス化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869291A (ja) * 1981-07-08 1983-04-25 Okutama Kogyo Kk 固体燃料のガス化方法及びガス発生炉
JP2001192675A (ja) * 2000-01-12 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd チャー改質ガス製造方法
JP2004189932A (ja) * 2002-12-12 2004-07-08 Kozo Shionoya 固形燃料ガス化装置
JP2006143983A (ja) * 2004-10-20 2006-06-08 Mitsui Eng & Shipbuild Co Ltd ガス化装置の運転方法及びガス化装置

Also Published As

Publication number Publication date
JPWO2015012302A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
CA2902981C (en) Integrated power generation and chemical production using fuel cells
KR20160030559A (ko) 발전 플랜트 연도 가스의 co₂ 메탄화를 포함하는 메탄화 방법 및 발전 플랜트
JP5085358B2 (ja) 固体酸化物形燃料電池−水素製造システム
US20040265223A1 (en) Method and device for the producing of a gas rich in hydrogen by thermal pyrolysis of hydrocarbons
TWI420732B (zh) 間接內部重組式固體氧化物燃料電池系統及其運轉方法
KR101241848B1 (ko) 수소 발생 장치 및 방법
CN111344249B (zh) 氢产生装置
KR101197438B1 (ko) 고압축 내연기관-플라즈마 반응기 일체형 개질장치 및 이를 이용한 수소 또는 합성가스 생산방법
WO2014189109A1 (ja) 直接還元鉄の製造装置、及び直接還元鉄の製造方法
JP2007246369A (ja) 水素製造装置、水素製造システム及び水素製造方法
JP2009037814A (ja) 固体酸化物形燃料電池の高温域の温度低減法及びそのための装置
KR101632633B1 (ko) 이중관 구조의 플라즈마/촉매 일체형 가스 개질 장치 및 가스 개질 방법
JP5283091B2 (ja) ガス製造装置
KASAEİAN Evaluating integration of biomass gasification process with solid oxide fuel cell and torrefaction process
CN114843551B (zh) 一种燃料处理器及制氢方法
WO2015012302A1 (ja) 木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システム
RU2587736C1 (ru) Установка для утилизации низконапорного природного и попутного нефтяного газов и способ её применения
KR100674622B1 (ko) 연료전지 발전시스템
CN206907859U (zh) 乙醇重整燃料电池发电***
CN108097188B (zh) 等离子体裂解渣油与废气的气化装置
Shcheklein et al. Thermodynamic modeling of cogeneration mini CHP using air conversion of diesel fuel and electrochemical generator
US20230070320A1 (en) Reforming system and method
JP2005325322A (ja) 還元ガス化木質バイオマス系のエネルギー回収法
EA013775B1 (ru) Система топливных элементов с риформером и пламенным нейтрализатором
KR20210072227A (ko) 석탄가스화 복합발전 시스템를 기반으로 한 종래의 연료 가스화를 적용한 연료전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14830153

Country of ref document: EP

Kind code of ref document: A1