WO2015010299A1 - 一种制备含硫碳材料的方法及其制备的含硫碳材料 - Google Patents

一种制备含硫碳材料的方法及其制备的含硫碳材料 Download PDF

Info

Publication number
WO2015010299A1
WO2015010299A1 PCT/CN2013/080109 CN2013080109W WO2015010299A1 WO 2015010299 A1 WO2015010299 A1 WO 2015010299A1 CN 2013080109 W CN2013080109 W CN 2013080109W WO 2015010299 A1 WO2015010299 A1 WO 2015010299A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfate
sulfur
carbon
carbon material
sulfite
Prior art date
Application number
PCT/CN2013/080109
Other languages
English (en)
French (fr)
Inventor
宁国庆
马新龙
高金森
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Priority to CN201380003852.XA priority Critical patent/CN104520231B/zh
Priority to PCT/CN2013/080109 priority patent/WO2015010299A1/zh
Publication of WO2015010299A1 publication Critical patent/WO2015010299A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon

Definitions

  • the invention belongs to the technical field of novel carbon material preparation, and relates to a preparation method of a sulfur-containing carbon material, and in particular to a method for preparing a sulfur-containing carbon material and a sulfur-containing carbon material prepared thereby. Background technique
  • Carbon materials are a common class of materials that have been studied and applied in humans, including the first discovered graphite and diamond, as well as activated carbon, porous carbon, etc., as well as newerene, carbon nanotubes and graphene newly discovered in recent decades. Due to its outstanding physical and chemical properties, carbon materials have a wide range of applications in many fields such as electricity, mechanics and chemistry.
  • Another object of the present invention is to provide a sulfur-containing carbon material prepared by the method of the present invention.
  • the present invention provides a method for preparing a sulfur-containing carbon material, which comprises using a carbon material and a sulfate and/or a sulfite as a raw material, using a solid phase mixing or a liquid phase impregnation method. A composite of a carbon material and a sulfate and/or a sulfite is obtained, and the composite is calcined to obtain a sulfur-containing carbon material.
  • the present invention can mix a carbon material with a sulfate or a sulfite, and then obtain a composite of a carbon material and a sulfate or a sulfite by a solid phase mixing or a liquid phase impregnation method;
  • the present invention can also mix carbon materials with sulfates and sulfites, and then obtain a composite of carbon materials with sulfates and sulfites by solid phase mixing or liquid phase impregnation.
  • the sulfate and sulfite may be in any mass ratio. According to the method of the present invention, it is preferred that the mass ratio of the carbon material to the sulfate and/or sulfite is 1: 0.01-100.
  • the mass ratio of carbon material to sulfate or sulfite is 1:0.01-100; or when the mixture of sulfate and sulfite is used, the mass ratio of carbon material to sulfate and sulfite mixture is 1: 0.01-100.
  • the mass ratio of the carbon material to the sulfate and/or sulfite is 1: 0.1-20.
  • the carbon material may be any carbon material for preparing a sulfur-containing carbon material in the art, and those skilled in the art can select a suitable carbon material in the field, and the present invention preferably is graphite or graphite sheet.
  • the sulfate includes iron sulfate, cobalt sulfate, nickel sulfate, manganese sulfate, aluminum sulfate, zinc sulfate, titanium sulfate, magnesium sulfate, basic magnesium sulfate, copper sulfate, basic copper sulfate, One or a mixture of lead sulfate, basic lead sulfate, calcium sulfate, potassium sulfate, ammonium sulfate, ammonium hydrogen sulfate, ammonium dihydrogen sulfate, sulfites including sodium sulfite, potassium sulfite, hydrogen sulfite One or a mixture of one of sodium, potassium hydrogen sulfite, and calcium sulfite.
  • the calcination temperature is 500 to 1000 ° C and the time is 5 to 600 minutes.
  • the calcination temperature is preferably 500-900 ° C ;
  • Further preferred time is 30 to 300 minutes.
  • the calcination treatment comprises the steps of: placing a mixture of a sulfate and/or a sulfite and a carbon material into a reactor, introducing a carrier gas, and heating at a temperature;
  • the carrier gas can be any carrier gas for preparing a sulfur-containing carbon material in the art, and those skilled in the art can select a suitable carrier gas in the field.
  • the carrier gas is nitrogen, argon or helium. One of them Or a mixture of more than one.
  • the amount of carrier gas there is no special requirement for the amount of carrier gas, and the conventional ventilation amount of the prior art can be used, for example, 10-5000 mL/min.
  • the step of washing with an acid solution is further included after calcination.
  • the acid solution may be an aqueous solution of an acid conventionally used in the art, such as an aqueous solution of hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid;
  • the aqueous solution concentration of the acid may be a concentration conventionally used in the art, and the specific concentration thereof has no influence on the achievement of the object of the present invention, for example, 0.5 to 5 times by volume of water may be added to 1 volume of the above acid.
  • the pickling is to wash to remove the sulfate and/or sulfite template; those skilled in the art can determine according to the prior art experience and actual operation conditions, without the need for more creative work by those skilled in the art. For example, it can be pickled for 0.5-2 hours, and then for 1 hour.
  • a metal oxide is produced in the process, it is preferably removed at the same time.
  • the liquid phase impregnation method comprises the following steps:
  • step (2) The suspension obtained in the step (1) is dried to obtain a complex of a sulfate or a sulfite and a carbon material. According to the method of the present invention, wherein the drying of step (2) is dry as generally understood in the art, rather than being absolutely dry.
  • the present invention has no particular requirement on the ratio and amount of the water and/or ethanol solution, as long as the carbon material is dispersed therein, and can be easily determined by those skilled in the art according to the conventional operation and practical operation of the prior art. Its amount and proportion.
  • the volume of water and/or ethanol solution is 1-80 times the volume of the carbon material.
  • the alcohol is preferably an alcohol having 1 to 4 carbon atoms, more preferably ethanol or methanol; and the present invention may also use toluene, diethyl ether or nitrogen methylpyrrolidone instead of the alcohol.
  • the solid phase mixing described therein is a conventional operation in the art, such as physical mixing of the carbon material with sulfate and/or sulfite, such as a ball mill, a vessel with a stirring device, or a three-dimensional mixer.
  • the device mixes the above ingredients evenly.
  • the invention also provides a sulfur-containing carbon material prepared by the method.
  • the present invention provides a method for preparing a sulfur-containing carbon material and a sulfur-containing carbon material prepared therefrom.
  • the method of the invention has the following advantages: Compared with the current technology for preparing a sulfur-containing carbon material, the method can obtain various kinds of steps by simple and easy steps by sulfur-doping the existing carbon material post-treatment method. Sulfur-containing carbon material The sulphur content and morphology characteristics of the product can be adjusted by controlling the process parameters.
  • Figure 1 is an X-ray diffraction pattern analysis of the reaction product purified in Example 1 without pickling.
  • Figure 2 is an X-ray diffraction pattern analysis of the reaction product purified in Example 2 without pickling.
  • Example 3 is an X-ray photoelectron spectroscopy (XPS) of sulfur-containing carbon nanotubes in Example 2.
  • XPS X-ray photoelectron spectroscopy
  • Example 4 is a transmission electron micrograph of a sulfur-containing carbon nanotube in Example 2.
  • Fig. 5 is a transmission electron micrograph of the sulfur-containing carbon nanotubes in Example 3.
  • Fig. 6 is an X-ray photoelectron spectroscopy (XPS) of sulfur-containing carbon nanotubes in Example 4.
  • XPS X-ray photoelectron spectroscopy
  • Figure 7 is a transmission electron micrograph of the sulfur-containing graphite sheet of Example 7. detailed description
  • the sulfur-containing multi-walled carbon nanotubes were prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to carbon nanotubes was 5:1.
  • Weigh 10.25 g of MgS0 4 .7H 2 0 add 20 ml of deionized water and 20 ml of ethanol, prepare a solution, weigh 1 g of multi-walled carbon nanotubes, and place the carbon nanotubes in MgS0 4 solution at room temperature. Disperse for 30-60 min to obtain a carbon nanotube suspension.
  • the suspension was dried in an oven at 80 ° C for 48 h.
  • the blocky gray mixture was ground to a fine powder, and the fine powder was placed in a porcelain boat and placed in a horizontal position.
  • Figure 1 is an X-ray diffraction pattern analysis of a reaction product purified without pickling.
  • the characteristic peak of MgO and a small amount of MgS0 4 characteristic peaks indicate that the carbon nanotube reacts with a part of MgS0 4 under the process conditions.
  • MgO and sulfur-containing carbon nanotubes are formed.
  • Example 2
  • the sulfur-containing multi-walled carbon nanotubes were prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to carbon nanotubes was 8:1. Weigh 16.40g of MgS0 4 .7H 2 0, add 20 ml of deionized water and 20 ml of ethanol, prepare a solution, weigh 1 g of multi-walled carbon nanotubes, impregnate the MgS0 4 solution with carbon nanotubes, calcination, pickling The purification and drying steps were the same as in Example 1, and after drying, 0.48 g of sulfur-containing carbon nanotubes were obtained.
  • Figure 2 is an X-ray diffraction pattern analysis of the reaction product purified without pickling.
  • the spectrum contains MgO characteristic peaks and a small amount of MgS0 4 characteristic peaks, but compared with Example 1, MgS0 4 has relatively more characteristic peaks. , indicating that the unreacted MgS0 4 is relatively more.
  • XPS X-ray photoelectron spectroscopy
  • Figure 4 is a transmission electron micrograph of sulfur-containing carbon nanotubes prepared under the conditions of the process.
  • the sulfur-containing multi-walled carbon nanotubes were prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to carbon nanotubes was 15:1. Weigh 30.75 g of MgS0 4 .7H 2 0, add 40 ml of deionized water and 10 ml of ethanol to prepare a solution, and weigh 1 g of multi-walled carbon nanotubes.
  • the procedure of impregnating the MgS0 4 solution with carbon nanotubes is the same as in Example 1.
  • the horizontal furnace was raised to 700 V at a heating rate of 15 °C/min and kept for 30 minutes.
  • the acid washing purification and drying steps were the same as in Example 1. After drying, the sulfur-containing carbon nanotubes were obtained 0.31 go
  • the sulfur-containing multi-walled carbon nanotubes were prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to carbon nanotubes was 20:1. Weigh 41.00g of MgS0 4 .7H 2 0, add 50 ml of deionized water and 20 ml of ethanol, prepare a solution, weigh lg multi-walled carbon nanotubes, impregnate the carbon nanotubes with MgS0 4 solution, calcination, acid wash and purify The drying step was the same as in Example 1, and after drying, 0.29 g of sulfur-containing carbon nanotubes were obtained.
  • the sulfur-containing carbon nanotubes produced by this process condition contain 0.34% (mass fraction) of sulfur.
  • the sulfur-containing graphite was prepared by liquid phase impregnation method, and the mass ratio of FeS04 to graphite was 15:1.
  • the sulfur-containing graphite prepared by this process condition contains 0.98% (mass fraction) of sulfur.
  • the sulfur-containing activated carbon was prepared by a solid phase direct mixing method, and the mass ratio of ZnS0 4 to activated carbon was 8:1.
  • the sulphur-containing activated carbon obtained by the process conditions contains sulfur
  • the sulfur-containing graphite sheet was prepared by liquid phase impregnation method, and the mass ratio of NiS0 4 to graphite sheet was 5:1.
  • Figure 7 shows a transmission electron micrograph of a sulfur-containing graphite sheet prepared under the conditions of the process. According to X-ray photoelectron spectroscopy, the sulfur-containing graphite sheet contains 1.55% by mass of sulfur (mass fraction).
  • Example 8
  • the sulfur-containing porous graphene was prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to porous graphene was 2:1. Weigh 4.1 g of MgS0 4 .7H 2 0, add 40 ml of deionized water, prepare an aqueous solution, weigh 1 g of porous graphene (preparation method is given by Chemical Communications 47 (21): 5976-5978), graphite
  • the olefin impregnated MgS04 solution, calcination, pickling purification and drying steps were the same as in Example 3, and after drying, 0.56 g of sulfur-containing porous graphene was obtained.
  • the sulfur-containing graphene prepared by the process conditions contains 2.98% by mass of sulfur (mass fraction).
  • Example 9 The sulfur-containing porous graphene was prepared by a solid phase direct mixing method, and the mass ratio of MgS0 4 to porous graphene was 5:1. Weigh Mg g0 4 .7H 2 0 after calcination at 5 g 350 °C for 30 min, weigh 1 g of porous graphene (preparation method is given by Chemical Communications 47(21): 5976-5978), put the two The solid phase was directly mixed into a spherical grinder, and the fine powder was placed in a porcelain boat. The calcination, pickling purification and drying steps were the same as in Example 3, and dried to obtain sulfur-containing porous graphene 0.77.
  • the sulfur-containing carbon black was prepared by a solid phase direct mixing method, and the mass ratio of ZnS0 4 to carbon black was 3:1.
  • the sulfur-containing carbon black prepared by the process conditions contains 1.54% sulfur.
  • the sulfur-containing fullerene was prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to fullerene was 10:1.
  • the sulfur-containing carbon black was prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to carbon black was 15:1.
  • the sulfur-containing graphite sheet was prepared by liquid phase impregnation method, and the mass ratio of CoS0 4 to graphite sheet was 20:1.
  • the sulfur-containing graphite flakes prepared by this process condition contain 0.60% by mass (mass fraction).
  • Example 14 the sulfur-containing graphite sheet-Co 3 0 4 composite before purification can be directly used as a battery negative electrode material.
  • the sulfur-containing petroleum coke was prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to powdered petroleum coke was 10:1.
  • the sulphur-containing petroleum coke produced by this process has a sulfur content of 0.53%.
  • the sulfur-containing activated carbon was prepared by liquid phase impregnation method, and the mass ratio of MgS0 4 to activated carbon was 15:1.
  • the sulfur-containing activated carbon produced by the process conditions contains 0.46% sulfur.
  • the sulfur-containing activated carbon was prepared by liquid phase impregnation method, and the mass ratio of MnS0 4 to activated carbon was 0.1:1.
  • the sulfur-containing activated carbon produced by the process conditions contains sulfur 0.03%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供一种制备含硫碳材料的方法,包括采用碳材料与硫酸盐和/或亚硫酸盐作为原料,利用固相混合或液相浸渍法得到碳材料与硫酸盐和/或亚硫酸盐的复合物,对该复合物进行煅烧,得到含硫碳材料。该方法可对现有碳材料进行后处理实现掺硫,能够制备出不同种类的含硫碳材料。

Description

一种制备含硫碳材料的方法及其制备的含硫碳材料 技术领域
本发明属于新型碳材料制备技术领域, 涉及含硫碳材料的制备方法, 具体的说, 涉及一种制备含硫碳材料的方法及其制备的含硫碳材料。 背景技术
碳材料是人类研究和应用较早的一类常见材料, 包括最早发现的石墨和金刚石, 还有活性炭、 多孔碳等, 以及近几十年来新发现的富勒烯、 碳纳米管和石墨烯。 由于 碳材料在物理化学性能上有其突出特点, 在电学、 力学和化学等许多领域具有广泛的 应用。
近几年来, 越来越多的科学工作者对碳材料的掺杂在进行了深入的研究。 以石墨 烯的掺杂为例, 石墨烯可应用于微电子器件的重要原因就是其载流子浓度和载流子极 性的可调性, 而化学掺杂恰恰是实现这种调控的重要方式。 Wei 等人 (Nano Letters 9(5): 1752-1758 ) 采用 CH4和 NH3为原料利用 CVD法在 800 °C条件下于铜薄膜表面上 生长了氮掺杂的少数层石墨烯, 电学测量表明氮掺杂的石墨烯表现出 n-型半导体行 为。 此外, 掺氮或硼的碳纳米管的制备和应用也有较多报道 (Inorganica Chimica Acta 363(15): 4163-4174) 。
除了氮元素掺杂, 硫元素掺杂的碳材料也得到了关注。 Yang 等人 (Acs Nano 2012;6(1):205-211 ) 报道了一种采用化学合成的方法制备掺硫石墨烯的方法。 该研究表 明: 掺硫之后, 石墨烯在燃料电池中具有更高的催化性能。 Paraknowitsch等人 (Chem. Commun., 2011,47, 8283-8285 ) 制备了掺硫的多孔炭。 这些研究多采用含硫的化合物作 为前驱体来制备碳材料, 在材料形貌控制上还有待进一步提高, 而且也还没有任何一 种已有技术可以用于制备各个种类的掺硫碳材料。 为此, 本发明提供了一种对现有碳 材料进行后处理实现掺硫的方法, 能够制备不同种类的含硫碳材料, 是一种普适方 法。 发明内容
本发明的一个目的在于提供一种制备含硫碳材料的方法。
本发明的另一目的在于提供本发明所述方法制备的含硫碳材料。 为达上述目的, 一方面, 本发明提供了一种制备含硫碳材料的方法, 所述方法包 括采用碳材料与硫酸盐和 /或亚硫酸盐作为原料, 采用固相混合或者液相浸渍方法得到 碳材料与硫酸盐和 /或亚硫酸盐的复合物, 对该复合物进行煅烧, 得到含硫碳材料。
本发明可以将碳材料与硫酸盐或亚硫酸盐混合, 然后采用固相混合或者液相浸渍 方法得到碳材料与硫酸盐或亚硫酸盐的复合物;
本发明还可以将碳材料与硫酸盐和亚硫酸盐混合, 然后采用固相混合或者液相浸 渍方法得到碳材料与硫酸盐和亚硫酸盐的复合物。
其中当采用硫酸盐和亚硫酸盐混合物时, 硫酸盐和亚硫酸盐可以为任意质量比。 根据本发明所述的方法, 优选所述碳材料和硫酸盐和 /或亚硫酸盐质量比为 1 : 0.01-100。
可以理解的是, 其中碳材料与硫酸盐或亚硫酸盐质量比为 1 : 0.01-100; 或者当采用硫酸盐和亚硫酸盐混合物时, 碳材料与硫酸盐和亚硫酸盐混合物的质 量比为 1: 0.01-100。
其中优选的是, 所述碳材料和硫酸盐和 /或亚硫酸盐质量比为 1 : 0.1-20。
根据本发明所述的方法, 所述碳材料可以为本领域制备含硫碳材料的任何碳材 料, 本领域技术人员能够在本领域范围内选择适合的碳材料, 本发明优选为石墨、 石 墨片、 碳纳米管、 碳纤维、 石墨烯、 多孔石墨烯、 富勒烯、 活性炭、 多孔炭、 泡沫 炭、 石油焦、 煤焦炭和炭黑之中的一种或者一种以上的混合物。
根据本发明所述的方法, 所述硫酸盐包括硫酸铁、 硫酸钴、 硫酸镍、 硫酸锰、 硫 酸铝、 硫酸锌、 硫酸钛、 硫酸镁、 碱式硫酸镁、 硫酸铜、 碱式硫酸铜、 硫酸铅、 碱式 硫酸铅、 硫酸钙、 硫酸钾、 硫酸氨、 硫酸氢铵、 硫酸二氢铵之中的一种或者一种以上 的混合物, 亚硫酸盐包括亚硫酸钠、 亚硫酸钾、 亚硫酸氢钠、 亚硫酸氢钾、 亚硫酸钙 之中的一种或者一种以上的混合物。
根据本发明所述的方法, 所述所述煅烧温度为 500〜1000°C, 时间为 5-600分钟。 其中优选煅烧温度为 500-900°C ;
其中进一步优选时间为 30-300分钟。
根据本发明所述的方法, 所述煅烧处理包括以下步骤: 将硫酸盐和 /或亚硫酸盐与 碳材料的混合物放入反应器中, 通入载气, 升温煅烧;
其中所述载气可以为本领域制备含硫碳材料的任何载气, 本领域技术人员能够在 本领域范围内选择适合的载气, 本发明优选所述载气为氮气、 氩气、 氦气之中的一种 或者一种以上的混合物。
其中本发明对载气用量并无特殊要求, 采用现有技术常规通气量即可, 譬如为 10- 5000 mL/min。
根据本发明所述的方法, 煅烧后还包括用酸溶液清洗的步骤。
其中所述酸溶液可以为本领域常规使用的酸的水溶液, 譬如盐酸、 硫酸、 硝酸或 磷酸的水溶液;
所述酸的水溶液浓度可以为本领域常规使用的浓度, 其具体浓度对于本发明目的 的实现并无影响, 譬如可以为 1倍体积的上述酸加 0.5-5倍体积的水。
所述酸洗为洗至除去硫酸盐和 /或亚硫酸盐模板剂; 本领域技术人员可以根据现有 技术经验及实际操作情况来确定, 而无需本领域技术人员为此付出更多创造性劳动, 譬如可以为酸洗 0.5-2小时, 再譬如可以为 1小时。
其中如若过程中产生金属氧化物, 也优选一并除去。
根据本发明所述的方法, 所述液相浸渍法包括以下步骤:
( 1 ) 将所述碳材料浸渍在硫酸盐和 /或亚硫酸盐的水和 /或醇溶液中, 超声分散, 得悬浊液;
(2) 将步骤 (1 ) 所得悬浊液干燥, 得到硫酸盐或亚硫酸盐与碳材料的复合物。 根据本发明所述的方法, 其中步骤 (2 ) 的干燥为本领域通常理解的干燥, 而非绝 对干燥。
本发明对所述的水和 /或乙醇溶液的比例和用量并无特定要求, 只要满足碳材料在 其中分散开即可, 本领域技术人员根据现有技术常规操作和实际操作需要可以容易的 确定其用量和比例。 譬如水和 /或乙醇溶液体积为碳材料体积的 1-80倍。
本发明优选所述醇为碳原子数为 1-4 的醇, 其中更优选为乙醇或甲醇; 本发明还 可以使用甲苯、 ***、 氮甲基吡咯烷酮来替代醇。
其中所述的固相混合为本领域常规操作, 譬如采用物理方法将所述碳材料与硫酸 盐和 /或亚硫酸盐混合均匀, 再譬如采用球磨机、 带有搅拌装置的容器或者三维混合机 等装置将上述成分混合均匀。
另一方面, 本发明还提供了所述方法制备的含硫碳材料。
综上所述, 本发明提供了一种制备含硫碳材料的方法及其制备的含硫碳材料。 本 发明的方法具有如下优点: 与目前制备含硫碳材料的技术相比, 本方法可以通过对现 有碳材料后处理的方法进行掺硫, 能够通过简便易行的步骤获得各种各样的含硫碳材 料, 通过控制过程参数可以调节产品中的含硫量和形貌特征。 附图说明
图 1为实施例 1中未经酸洗纯化的反应产物的 X射线衍射图谱分析。
图 2为实施例 2中未经酸洗纯化的反应产物的 X射线衍射图谱分析。
图 3为实施例 2中含硫碳纳米管的 X射线光电子能谱分析 (XPS) 。
图 4为实施例 2中含硫碳纳米管的透射电镜照片。
图 5为实施例 3中含硫碳纳米管的透射电镜照片。
图 6为实施例 4中含硫碳纳米管的 X射线光电子能谱分析 (XPS) 。
图 7为实施例 7中含硫石墨片的透射电镜照片。 具体实施方式
以下结合附图及实施例详细说明本发明的技术方案, 但本发明的保护范围包括但 是不限于此。
实施例 1
采用液相浸渍法制备含硫多壁碳纳米管, MgS04与碳纳米管的质量比为 5: 1。 称取 10.25 g的 MgS04.7H20, 加入 20 ml去离子水和 20 ml乙醇, 配制成溶液, 称取 1 g的多壁碳纳米管, 将碳纳米管置于 MgS04溶液中常温超声分散 30-60 min, 得到碳纳米 管悬浮液, 将此悬浮液置于 80°C烘箱中干燥 48 h, 将块状灰色混合物研磨至细粉, 将细 粉置于瓷舟中, 放入水平管式炉后向炉中通入 Ar, 同时水平炉以 15 °C/min升温速率升 至 800 V, 并保持 30 min , 待炉温自然冷却至室温后取出灰白色产物。 将此产物置于 过量稀盐酸中, 水煮回流酸洗 1 h, 除去 MgS04模板剂以及过程中可能生成的金属氧化 物, 最后用去离子水洗至中性并置于 80 °C条件下干燥得到含硫碳纳米管 0.54 g。
图 1为未经酸洗纯化的反应产物的 X射线衍射图谱分析, 图谱中含有 MgO的特征峰 以及以及含有少量的 MgS04特征峰, 说明在此工艺条件下, 碳纳米管与部分 MgS04反 应生成 MgO与含硫碳纳米管。 实施例 2
采用液相浸渍法制备含硫多壁碳纳米管, MgS04与碳纳米管的质量比为 8: 1。 称取 16.40g的 MgS04.7H20, 加入 20 ml去离子水和 20 ml乙醇, 配制成溶液, 称取 1 g的多壁碳纳米管, 碳纳米管浸渍 MgS04溶液、 煅烧、 酸洗纯化和干燥步骤与例 1相同, 干燥后得到含硫碳纳米管 0.48 g。
图 2为未经酸洗纯化的反应产物的 X射线衍射图谱分析, 图谱中含有 MgO的特征峰 以及以及含有少量的 MgS04特征峰, 但相对于例 1, MgS04的特征峰要相对多一些, 说 明未反应的 MgS04相对较多一些。 根据 X射线光电子能谱分析 (XPS, 图 3 ) , 该种工 艺条件制得的含硫碳纳米管中含硫 1.42% (质量分数) 。 图 4为该工艺条件下制得的含 硫碳纳米管的透射电镜照片。 实施例 3
采用液相浸渍法制备含硫多壁碳纳米管, MgS04与碳纳米管的质量比为 15: 1。 称取 30.75 g的 MgS04.7H20, 加入 40 ml去离子水和 10 ml乙醇, 配制成溶液, 称取 1 g的多壁碳纳米管, 碳纳米管浸渍 MgS04溶液步骤与例 1相同, 水平炉以 15 °C/min升温 速率升至 700 V , 并保持 30 min, 酸洗纯化和干燥步骤与例 1相同, 干燥后得到含硫碳 纳米管 0.31 g o
根据 X射线光电子能谱分析 (XPS, 图 5 ) , 该种工艺条件制得的含硫碳纳米管中 含硫 0.24% (质量分数) 。 产物产率较例 1和例 2要低。 图 6为该工艺条件下制得的含硫 碳纳米管的透射电镜照片。 实施例 4
采用液相浸渍法制备含硫多壁碳纳米管, MgS04与碳纳米管的质量比为 20: 1。 称取 41.00g的 MgS04.7H20, 加入 50 ml去离子水和 20 ml乙醇, 配制成溶液, 称取 lg的多壁碳纳米管, 碳纳米管浸渍 MgS04溶液、 煅烧、 酸洗纯化和干燥步骤与例 1相同, 干燥后得到含硫碳纳米管 0.29 g。
根据 X射线光电子能谱分析 (XPS, 图 6 ) , 该种工艺条件制得的含硫碳纳米管中 含硫 0.34% (质量分数) 。 实施例 5
采用液相浸渍法制备含硫石墨, FeS04与石墨的质量比为 15: 1。
称取 27.43 g FeS04.7¾0, 加入 40 ml去离子水和 20 ml乙醇, 配制成溶液, 称取 1 g 的石墨, 碳纳米管浸渍 MgS04溶液、 煅烧、 酸洗纯化和干燥步骤与例 1相同, 干燥后得 到含硫石墨 0.12 g。
根据 X射线光电子能谱分析, 该种工艺条件制得的含硫石墨中含硫 0.98% (质量分 数) 。 实施例 6
采用固相直接混合法制备含硫活性炭, ZnS04与活性炭的质量比为 8: 1。
称取 8 g 300 °C煅烧 30 min后的 ZnS04.7H20晶体, 称取 lg的活性炭, 将二者放入球 形研磨机中进行固相直接混合, 将细粉置于瓷舟中, 煅烧、 酸洗纯化和干燥步骤与例 1 相同, 干燥后得到含硫活性炭 0.1 g。
根据 X射线光电子能谱分析 ( XPS ) , 该种工艺条件制得的含硫活性炭中含硫
1.00% (质量分数) 。 实施例 7
采用液相浸渍法制备含硫石墨片, NiS04与石墨片的质量比为 5: 1。
称取 8.48 g的 NiS04.6H20, 加入 40 ml去离子水和 20 ml乙醇, 配制成溶液, 称取 1 g 的石墨片, 石墨片浸渍 NiS04溶液、 煅烧、 酸洗纯化和干燥步骤与例 1相同, 件下干燥 得到含硫石墨片 0.36g。
图 7给出了该工艺条件下制得的的含硫石墨片的透射电镜图片, 根据 X射线光电子 能谱分析, 该含硫石墨片中含硫 1.55% (质量分数) 。 实施例 8
采用液相浸渍法制备含硫多孔石墨烯, MgS04与多孔石墨烯的质量比为 2: 1。 称取 4.1 g的 MgS04.7H20, 加入 40 ml去离子水, 配制成水溶液, 称取 1 g多孔 石墨烯 (制备方法由文献 Chemical Communications 47(21): 5976-5978给出) , 石墨烯 浸渍 MgS04溶液、 煅烧、 酸洗纯化和干燥步骤与例 3相同, 干燥后得到含硫多孔石墨 烯 0.56 g。
根据 X射线光电子能谱分析, 该种工艺条件制得的含硫石墨烯中含硫 2.98% (质量 分数) 。 实施例 9 采用固相直接混合法制备含硫多孔石墨烯, MgS04与多孔石墨烯的质量比为 5: 1。 称取 5 g 350 °C煅烧 30 min后的 MgS04.7H20, 称取 1 g的多孔石墨烯 (制备方法由 文献 Chemical Communications 47(21): 5976-5978给出) , 将二者放入球形研磨机中进行 固相直接混合, 将细粉置于瓷舟中, 煅烧、 酸洗纯化和干燥步骤与例 3相同, 干燥后得 到含硫多孔石墨烯 0.77
根据 X射线光电子能谱分析 ( XPS ) , 该种工艺条件制得的含硫石墨烯中含硫 2.36% (质量分数) 。 实施例 10
采用固相直接混合法制备含硫炭黑, ZnS04与炭黑的质量比为 3: 1。
称取 3.00 g 300 °C煅烧 30 min后的 ZnS04.7H20晶体, 称取 1 g的炭黑, 将二者放入 球形研磨机中进行固相直接混合, 将细粉置于瓷舟中, 煅烧、 酸洗纯化和干燥步骤与 例 3相同, 干燥后得到含硫炭黑 0.71 g。
根据 X射线光电子能谱分析 (XPS ) , 该种工艺条件制得的含硫炭黑中含硫 1.54%
(质量分数) 。 实施例 11
采用液相浸渍法制备含硫富勒烯, MgS04与富勒烯的质量比为 10: 1。
称取 20.50 g的 MgS04.7H20, 加入 40 ml去离子水, 配制成水溶液, 称取 1 g富勒烯, 富勒烯浸渍 MgS04溶液、 煅烧、 酸洗纯化和干燥步骤与例 3相同, 干燥后得到含硫富勒 烯 0.70 g。
根据 X射线光电子能谱分析 ( XPS ) , 该种工艺条件制得的含硫富勒烯中含硫
2.03% (质量分数) 。 实施例 12
采用液相浸渍法制备含硫炭黑, MgS04与炭黑的质量比为 15: 1。
称取 30.75 g的 MgS04.7H20, 加入 50 ml去离子水, 配制成水溶液, 称取 1 g炭黑, 炭黑浸渍 MgS04溶液、 煅烧、 酸洗纯化和干燥步骤与例 1相同 , 干燥后得到含硫炭黑 0.77
根据 X射线光电子能谱分析 (XPS ) , 该种工艺条件制得的含硫炭黑中含硫 1.39% (质量分数) 。 实施例 13
采用液相浸渍法制备含硫石墨片, CoS04与石墨片的质量比为 20: 1。
称取 36.23 g的 CoS04.7H20, 加入 70 ml去离子水, 配制成水溶液, 称取 lg的石墨片, 石墨片浸渍 CoS04溶液步骤与例 1相同, 水平炉以 15 °C/min升温速率升至 900 °C, 并保 持 30 min, 酸洗纯化和干燥步骤与例 1相同, 干燥后得到含石墨片 0.51g。
根据 X射线光电子能谱分析 (XPS ) , 该种工艺条件制得的含硫石墨片含硫 0.60% (质量分数) 。
此外, 纯化之前的含硫石墨片 -Co304复合物可以直接用作电池负极材料。 实施例 14
采用液相浸渍法制备含硫石油焦, MgS04与粉末石油焦的质量比为 10: 1。
称取 20.50 g的 MgS04.7H20, 加入 60 ml去离子水, 配制成水溶液, 称取 lg的粉末 石油焦 , 石油焦浸渍 MgS04溶液步骤与例 1相同 , 水平炉以 15 °C/min升温速率升至 500 V , 并保持 30 min, 酸洗纯化和干燥步骤与例 1相同, 干燥后得到含石油焦 0.67g。
根据 X射线光电子能谱分析 (XPS ) , 该种工艺条件制得的含硫石油焦含硫 0.53%
(质量分数) 。 实施例 15
采用液相浸渍法制备含硫活性炭, MgS04与活性炭的质量比为 15: 1。
称取 30.75 g的 MgS04.7H20, 加入 80 ml去离子水, 配制成水溶液, 称取 lg的粉末 活性炭, 活性炭浸渍 MgS04溶液步骤与例 1相同 , 水平炉以 15 °C/min升温速率升至
1000 V , 并保持 30 min , 酸洗纯化和干燥步骤与例 1相同, 干燥后得到含硫活性炭
0.42g。
根据 X射线光电子能谱分析 (XPS ) , 该种工艺条件制得的含硫活性炭含硫 0.46%
(质量分数) 。 实施例 16
采用液相浸渍法制备含硫活性炭, MnS04与活性炭的质量比为 0.1 : 1。
称取 0.1 g的 MnS04, 加入 50 ml去离子水, 配制成水溶液, 称取 lg的粉末活性炭, 活性炭浸渍 MnS04溶液步骤与例 1相同, 水平炉以 15 °C/min升温速率升至 900 , 并 保持 30 min, 酸洗纯化和干燥步骤与例 1相同, 干燥后得到含硫活性炭 0.9 g。
根据 X射线光电子能谱分析 (XPS ) , 该种工艺条件制得的含硫活性炭含硫 0.03%
(质量分数) 。

Claims

权利要求书
1、 一种制备含硫碳材料的方法, 其特征在于, 所述方法包括采用碳材料与硫酸盐 和 /或亚硫酸盐作为原料, 采用固相混合或者液相浸渍方法得到碳材料与硫酸盐和 /或亚 硫酸盐的复合物, 对该复合物进行煅烧, 得到含硫碳材料。
2、 根据权利要求 1所述的方法, 其特征在于, 所述碳材料与硫酸盐和 /或亚硫酸盐 质量比为 1: 0.01-100。
3、 根据权利要求 1所述的方法, 其特征在于, 所述碳材料为石墨、 石墨片、 碳纳 米管、 碳纤维、 石墨烯、 多孔石墨烯、 富勒烯、 活性炭、 多孔炭、 泡沫炭、 石油焦、 煤焦炭和炭黑之中的一种或者一种以上的混合物。
4、 根据权利要求 1所述的方法, 其特征在于, 所述硫酸盐包括硫酸铁、 硫酸钴、 硫酸镍、 硫酸锰、 硫酸铝、 硫酸锌、 硫酸钛、 硫酸镁、 碱式硫酸镁、 硫酸铜、 碱式硫 酸铜、 硫酸铅、 碱式硫酸铅、 硫酸钙、 硫酸钾、 硫酸氨、 硫酸氢铵、 硫酸二氢铵之中 的一种或者一种以上的混合物, 亚硫酸盐包括亚硫酸钠、 亚硫酸钾、 亚硫酸氢钠、 亚 硫酸氢钾、 亚硫酸钙之中的一种或者一种以上的混合物。
5、 根据权利要求 1所述的方法, 其特征在于, 所述煅烧温度为 500〜1000°C, 时间 为 5-600分钟;
6、 根据权利要求 5 所述的方法, 其特征在于, 所述煅烧温度为 600-900°C ; 时间 为 30-300分钟。
7、 根据权利要求 5所述的方法, 其特征在于, 所述煅烧处理包括以下步骤: 将碳 材料与硫酸盐和 /或亚硫酸盐的复合物放入反应器中, 通入载气, 升温煅烧;
8、 根据权利要求 7所述的方法, 其特征在于, 所述载气为氮气、 氩气、 氦气之中 的一种或者一种以上的混合物。
9、 根据权利要求 1〜8任意一项所述的方法, 其特征在于, 煅烧后还包括用酸溶液 清洗的步骤。
10、 根据权利要求 1~8 任意一项所述的方法, 其特征在于, 所述液相浸渍法包括 以下步骤:
( 1 ) 将所述碳材料浸渍在硫酸盐和 /或亚硫酸盐的水和 /或醇溶液中, 超声分散, 得悬浊液;
(2)将步骤 (1 ) 所得悬浊液干燥, 得到硫酸盐和 /或亚硫酸盐与碳材料的复合物。
11、 根据权利要求 10 所述的方法, 其特征在于, 所述的醇为碳原子数为 1- 4的醇。
12、 根据权利要求 11所述的方法, 其特征在于, 所述的醇为乙醇或甲醇。
13、 权利要求 1~12任意一项所述方法制备的含硫碳材料。
PCT/CN2013/080109 2013-07-25 2013-07-25 一种制备含硫碳材料的方法及其制备的含硫碳材料 WO2015010299A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003852.XA CN104520231B (zh) 2013-07-25 2013-07-25 一种制备含硫碳材料的方法及其制备的含硫碳材料
PCT/CN2013/080109 WO2015010299A1 (zh) 2013-07-25 2013-07-25 一种制备含硫碳材料的方法及其制备的含硫碳材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080109 WO2015010299A1 (zh) 2013-07-25 2013-07-25 一种制备含硫碳材料的方法及其制备的含硫碳材料

Publications (1)

Publication Number Publication Date
WO2015010299A1 true WO2015010299A1 (zh) 2015-01-29

Family

ID=52392612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080109 WO2015010299A1 (zh) 2013-07-25 2013-07-25 一种制备含硫碳材料的方法及其制备的含硫碳材料

Country Status (2)

Country Link
CN (1) CN104520231B (zh)
WO (1) WO2015010299A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602013A (zh) * 2016-12-19 2017-04-26 中国科学院山西煤炭化学研究所 一种硫‑活性炭/石墨烯复合材料的制备方法
CN108598378A (zh) * 2018-01-29 2018-09-28 齐鲁工业大学 一种锂/钠离子电池负极材料Fe1-xS/C的制备方法
CN109671934A (zh) * 2018-12-18 2019-04-23 清远佳致新材料研究院有限公司 储能器件负极的制备方法、储能器件负极、储能器件、储能***、用电设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517172A (zh) * 2016-10-27 2017-03-22 中国石油大学(北京) 水溶性掺硫石墨烯的制备方法及由其制备的掺硫石墨烯
CN114540868B (zh) * 2022-01-19 2022-11-08 苏州大学 一种Co、N、S共掺杂碳纳米念珠复合材料的制备方法及其应用
CN115286034B (zh) * 2022-07-07 2023-11-17 中国科学院福建物质结构研究所 一种碱式硫酸铅材料的制备方法及碱式硫酸铅材料和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452592A (zh) * 2000-05-24 2003-10-29 活力韩国株式会社 中孔碳材料,碳/金属氧化物复合材料和使用它们的电化学电容器
CN102760877A (zh) * 2012-07-23 2012-10-31 浙江大学 过渡金属硫化物/石墨烯复合材料及其制备方法和应用
US20130065050A1 (en) * 2010-05-19 2013-03-14 The Governors Of The University Of Alberta Production of decorated carbon nanotubes
CN103395767A (zh) * 2013-07-25 2013-11-20 中国石油大学(北京) 一种含硫碳材料的制备方法及其制备的含硫碳材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132031A (ja) * 1992-10-16 1994-05-13 Mitsubishi Gas Chem Co Inc 改良された非水溶媒リチウム二次電池
CN100569638C (zh) * 2007-08-10 2009-12-16 邹炎 脱汞专用活性炭的制造方法及其产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452592A (zh) * 2000-05-24 2003-10-29 活力韩国株式会社 中孔碳材料,碳/金属氧化物复合材料和使用它们的电化学电容器
US20130065050A1 (en) * 2010-05-19 2013-03-14 The Governors Of The University Of Alberta Production of decorated carbon nanotubes
CN102760877A (zh) * 2012-07-23 2012-10-31 浙江大学 过渡金属硫化物/石墨烯复合材料及其制备方法和应用
CN103395767A (zh) * 2013-07-25 2013-11-20 中国石油大学(北京) 一种含硫碳材料的制备方法及其制备的含硫碳材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602013A (zh) * 2016-12-19 2017-04-26 中国科学院山西煤炭化学研究所 一种硫‑活性炭/石墨烯复合材料的制备方法
CN108598378A (zh) * 2018-01-29 2018-09-28 齐鲁工业大学 一种锂/钠离子电池负极材料Fe1-xS/C的制备方法
CN108598378B (zh) * 2018-01-29 2020-10-02 齐鲁工业大学 一种锂/钠离子电池负极材料Fe1-xS/C的制备方法
CN109671934A (zh) * 2018-12-18 2019-04-23 清远佳致新材料研究院有限公司 储能器件负极的制备方法、储能器件负极、储能器件、储能***、用电设备
CN109671934B (zh) * 2018-12-18 2020-06-30 清远佳致新材料研究院有限公司 储能器件负极的制备方法、储能器件负极、储能器件、储能***、用电设备

Also Published As

Publication number Publication date
CN104520231B (zh) 2016-04-13
CN104520231A (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
Higgins et al. Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte
Wang et al. Rational design of multi-shelled CoO/Co 9 S 8 hollow microspheres for high-performance hybrid supercapacitors
WO2015010299A1 (zh) 一种制备含硫碳材料的方法及其制备的含硫碳材料
Yang et al. Facet-tunable coral-like Mo2C catalyst for electrocatalytic hydrogen evolution reaction
Ji et al. Ionic liquid-assisted bidirectional regulation strategy for carbon quantum dots (CQDs)/Bi4O5I2 nanomaterials and enhanced photocatalytic properties
Du et al. Porous nanostructured ZnCo2O4 derived from MOF-74: High-performance anode materials for lithium ion batteries
Xiong et al. Facile single-step ammonia heat-treatment and quenching process for the synthesis of improved Pt/N-graphene catalysts
Li et al. One step in-situ synthesis of Co@ N, S co-doped CNTs composite with excellent HER and ORR bi-functional electrocatalytic performances
CN103395767B (zh) 一种含硫碳材料的制备方法及其制备的含硫碳材料
Lu et al. Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation
CN110148760B (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
CN107159268B (zh) 一种中空二硫化钼/三氧化钼花球状异质结构纳米材料、制备方法及应用
Chen et al. Ultra-small Co/CoOx nanoparticles dispersed on N-doped carbon nanosheets for highly efficient electrocatalytic oxygen evolution reaction
Wang et al. Simple synthesis of Prussian blue analogues in room temperature ionic liquid solution and their catalytic application in epoxidation of styrene
CN105668552A (zh) 一种易分散氮掺杂石墨烯粉末的制备方法
CN106976917A (zh) 片状一氧化钴‑二维层状碳化钛复合材料及其两步制备法
CN113113584B (zh) 一种NiFe-LDH复合C3N4@Mo2C电池电极材料的制备方法
CN112661145B (zh) 一种氮掺杂石墨烯及其制备方法和应用
Xin et al. Coupling Mo2C@ C core-shell nanocrystals on 3D graphene hybrid aerogel for high-performance lithium ion battery
CN112928388B (zh) 一种氮化铁和单原子铁共修饰氮掺杂石墨复合材料及其制备方法和应用
Qiu et al. Support interactions dictated active edge sites over MoS 2–carbon composites for hydrogen evolution
Hao et al. Hierarchical flower-like Co 3− x Fe x O 4 ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue
CN108557806A (zh) 一种螺旋碳纳米管-石墨烯杂化物的制备方法及其应用
Shi et al. N-doped carbon encapsulated nickel nanoparticles: rational fabrication and ultra-high performance for ethanol oxidation
Yao et al. Novel synthesis of dispersed molybdenum and nickel phosphides from thermal carbonization of metal-and phosphorus-containing resins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890083

Country of ref document: EP

Kind code of ref document: A1