WO2015008615A1 - Metal hydroxide alignment electrode material, metal hydroxide-containing electrode, manufacturing method of these, and metal hydroxide-containing capacitor - Google Patents

Metal hydroxide alignment electrode material, metal hydroxide-containing electrode, manufacturing method of these, and metal hydroxide-containing capacitor Download PDF

Info

Publication number
WO2015008615A1
WO2015008615A1 PCT/JP2014/067514 JP2014067514W WO2015008615A1 WO 2015008615 A1 WO2015008615 A1 WO 2015008615A1 JP 2014067514 W JP2014067514 W JP 2014067514W WO 2015008615 A1 WO2015008615 A1 WO 2015008615A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal hydroxide
graphene
plate
sheet
Prior art date
Application number
PCT/JP2014/067514
Other languages
French (fr)
Japanese (ja)
Inventor
捷 唐
騫 程
禄昌 秦
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013148218A external-priority patent/JP6057293B2/en
Priority claimed from JP2013155384A external-priority patent/JP6161158B2/en
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Publication of WO2015008615A1 publication Critical patent/WO2015008615A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a metal hydroxide oriented electrode material, a metal hydroxide-containing electrode, a method for producing them, and a metal hydroxide-containing capacitor.
  • the present invention relates to a Co (OH) 2 vertically aligned graphene / carbon nanotube composite (hereinafter sometimes referred to as Co (OH) 2 vertically aligned graphene / CNT composite), a method for producing the same, Co (OH) 2 vertically aligned graphene / carbon nanotube composite electrode (hereinafter sometimes referred to as Co (OH) 2 vertically aligned graphene / CNT composite electrode) and Co (OH) 2 vertically aligned graphene / carbon nanotube composite electrode
  • the present invention relates to a body capacitor (hereinafter sometimes referred to as a Co (OH) 2 vertically aligned graphene / CNT composite capacitor).
  • the present invention also relates to a sheet metal hydroxide-containing sheet electrode, a method for producing the same, and a plate metal hydroxide-containing capacitor.
  • the capacitor is a device with a simple operation mechanism and high charge generation efficiency, and has a cycle life of 100,000 cycles or more.
  • the following three electrode materials are mainly used for capacitors.
  • the electrode material is composed of an active substance capable of electrode reaction on the surface and / or inside thereof.
  • the first electrode material is a carbon-based material, for example, activated carbon, carbon nanotube, graphene, or a composite material thereof. With these materials, electrolyte ions can be efficiently absorbed on a wide access surface of the active material, and electrostatically charged to form a double-layer capacitance, thereby forming an electrochemically stable capacitor. Can be formed.
  • the second electrode material is a metal oxide material, for example, a transition metal oxide material such as MnO 2 or RuO 2 .
  • a metal oxide material for example, a transition metal oxide material such as MnO 2 or RuO 2 .
  • the third electrode material is a conductive polymer material, such as ponianiline (PANI) or polypyrrole.
  • PANI ponianiline
  • polypyrrole polypyrrole
  • PANI has advantages that it can be easily synthesized at low cost, has high stability in air, and has high conductivity. Further, when used for a supercapacitor, the specific capacity is as high as 233-1220 F / g (Non-patent Document 1). However, there is a problem that the polymer skeleton is easily decomposed and the cycle stability is poor.
  • graphene which is one of carbon materials and has a wide active surface area per unit amount
  • graphene has a problem in that active surfaces easily overlap each other and become agglomerated by van der Waals force, reducing the active surface area per unit amount.
  • the capacitor performance was greatly reduced.
  • FIG. 8A is a diagram for explaining how ions come into contact with graphene
  • FIG. 8B is a diagram for explaining how ions are brought into contact with restacked graphene.
  • FIG. 8A when the graphene is in a separated state, ions can easily come into contact with the active surface and a reaction can be performed on the active surface.
  • FIG. 7B when graphene easily overlaps with each other on the active surfaces to form a lump, ions cannot easily come into contact with the overlapping active surfaces. Reduced the reaction efficiency.
  • Non-Patent Documents 2 to 8 there is an electrode in which a metal hydroxide or a metal oxide is coated on a carbon material.
  • Cobalt hydroxide such as Co (OH) 2 has been studied as a metal hydroxide to be coated.
  • Cobalt hydroxide is a particularly excellent material as an electrode material because it has a layer structure with a wide interlayer distance, so that ions can be taken in and out quickly between layers, and ions can be efficiently supplied to the surface of the active material. Because.
  • Non-Patent Document 2 relates to “potentiostatically deposited nanostructured a-Co (OH) 2 : A high performance elec trode material for redox-capacitors”.
  • Non-Patent Document 3 relates to “Synthesis of Co (OH) 2 USY composite and its application for electrical supercapacitors”.
  • Non-Patent Document 3 discloses a high theoretical value of a specific capacity of 3458 F / g.
  • Non-Patent Document 4 relates to “Surfactant-associated electrochemical deposition of ⁇ -covalent hydride for supercapacitors”.
  • Non-Patent Document 5 relates to “Selective and Controlled Synthesis of ⁇ -and ⁇ -cobalt Hydroxides in Highly Developed Hexagonal Platelets”.
  • Non-Patent Document 6 relates to “Nanoflake-like cobalt hydroxide / ordered mesoporous carbon composite for electrical capacitors”.
  • Non-Patent Document 7 relates to “High capacity and excellent cycling stability of branched cobalt oxides as Li-insertion materials”.
  • Non-Patent Document 8 relates to “Facile preparation and electrochemical char- acterization of cobalt oxide / multi-walled carbon nanocomposites for supercapacitors”.
  • Non-patent Document 1 There is also a report of a capacitor using an electrode made of a composite of graphene and carbon nanotubes that prevents the formation of such a mass by interposing carbon nanotubes between active surfaces.
  • Non-patent Document 1 Even these capacitor electrode materials have a short cycle life, and sufficient characteristics have not been obtained.
  • the capacitor electrode requires a metallic current collector that conducts electrons, so the total specific capacity of the capacitor electrode as a whole is reduced, and industrial application In addition, sufficient capacitor performance was not obtained. Therefore, a capacitor electrode having a higher specific capacity is desired.
  • An object of the present invention is to provide a metal hydroxide-oriented electrode material, a metal hydroxide-containing electrode, a production method thereof, and a metal hydroxide-containing capacitor having a high specific capacity and a long cycle life.
  • the present invention also provides a Co (OH) 2 vertically aligned graphene / CNT composite having a high specific capacity and a long cycle life, a manufacturing method thereof, a Co (OH) 2 vertically aligned graphene / CNT composite electrode, and Co (OH). ) It is an object to provide a two vertically aligned graphene / CNT composite capacitor.
  • an object of the present invention is to provide a plate-like metal hydroxide-containing sheet-like electrode having a high specific capacity and a long cycle life, a method for producing the same, and a capacitor.
  • the metal hydroxide-containing capacitor of the present invention has a configuration shown in the following (1).
  • Two metal hydroxide-containing electrodes containing a metal hydroxide-oriented electrode material are sandwiched between the electrolyte-impregnated layers, and one or both of the electrodes are Co (OH) 2 vertically aligned graphene / CNT composite is formed on one surface of a plate-like electrode and Co (OH) 2 vertically aligned graphene / CNT composite electrode or groove-formed conductive fibers are knitted in a mesh shape
  • Metallic water characterized in that it is a sheet-like metal hydroxide-containing sheet-like electrode comprising a rare sheet and a plurality of plate-like metal hydroxides accumulated on the surface of the groove-formed conductive fiber Oxide-containing capacitor.
  • the present inventor accumulated Co (OH) 2 by growing a crystal of Co (OH) 2 in the direction perpendicular to the surface of the graphene / CNT composite, and coating the graphene / CNT composite with Co (OH) 2.
  • Co (OH) 2 it is possible to create a porous structure made of Co (OH) 2, to secure an electron transfer path and an ion diffusion path to the surface of the graphene / CNT composite, and to efficiently move these electrons and ions on the active material. It has been found that it can be involved in the redox reaction and can improve the capacitor performance. That is, the present invention has configurations shown in the following (2) to (9).
  • a Co (OH) 2 vertically aligned graphene / CNT composite comprising a composite of graphene and a carbon nanotube having a plate crystal of Co (OH) 2 grown on the surface.
  • Co (OH) 2 is grown on the surface of the graphene so that the main surface of the plate-like Co (OH) 2 is not in contact with the surface of the graphene and only the side surface is in contact with the surface of the graphene.
  • the electrodeposition treatment is a treatment of applying a voltage using the counter electrode and the reference electrode in the electrolytic solution of cobalt chloride or cobalt salt, using the graphene / CNT composite as a work electrode.
  • the method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to (5) which is characterized in that
  • the inventor of the present invention electrodeposited newly produced Co (OH) 2 flakes on a sheet made of electroetched carbon fiber to create a plate-like metal hydroxide-containing sheet-like electrode.
  • the surface of the sheet-like metal hydroxide-containing sheet-like electrode formed a nanostructure in which Co (OH) 2 flakes were integrated so as to be aligned perpendicular to the surface of the carbon fiber.
  • this plate-like metal hydroxide-containing sheet electrode had a mass standard specific capacity of 3404.8 F / g and an area standard specific capacity of 3.3 F / cm 2 which was very high. It became.
  • (10) It is characterized by comprising a sheet in which the groove-formed conductive fibers are knitted in a mesh shape and a plurality of plate-like metal hydroxides accumulated on the surface of the groove-formed conductive fibers.
  • a plate-like metal hydroxide-containing sheet electrode (11) A plurality of groove portions extending in a direction substantially parallel to the axial direction and a wall portion partitioning each groove portion are provided on the surface of the conductive fiber that has been subjected to the groove formation treatment.
  • the plate-like metal hydroxide is made of any material selected from the group consisting of Co (OH) 2 , Ni (OH) 2 , and Mn (OH) 2. Plate-like metal hydroxide-containing sheet-like electrode.
  • the plate-like metal hydroxide-containing sheet-like electrode according to (14), wherein the groove-formed conductive fiber is made of any material selected from the group consisting of carbon, nickel, and titanium. .
  • a sheet in which conductive fibers are woven into a mesh shape is electroetched to form a plurality of grooves on the surface of the conductive fibers, and the groove-formed conductive fibers are knitted into a mesh shape.
  • a step of producing a rare sheet, and a sheet obtained by braiding the groove-formed conductive fibers into a network, and electrodepositing in a solution containing a plate-like metal hydroxide, to form the groove Forming a plate-like metal hydroxide-containing sheet-like electrode in which a plurality of plate-like metal hydroxides are accumulated on the surface of the formed conductive fiber.
  • a method for producing a material-containing sheet-like electrode is produced.
  • Electrodes are disposed opposite each other with an electrolyte-impregnated layer interposed therebetween, and one or both of the electrodes is a sheet metal hydroxide-containing sheet according to any one of (10) to (15) A plate-like metal hydroxide-containing capacitor, wherein the capacitor is a plate-like electrode.
  • a metal hydroxide oriented electrode material a metal hydroxide-containing electrode, a method for producing them, and a metal hydroxide-containing capacitor having a high specific capacity and a long cycle life are provided.
  • the Co (OH) 2 vertically aligned graphene / CNT composite of the present invention is composed of a composite of graphene having a plate crystal of Co (OH) 2 grown on the surface and a carbon nanotube, the surface of the graphene Even when plate crystals are grown at a high density and accumulated, the surface activity of graphene can be prevented from being lowered, and it can be used as an electrode material capable of constituting a capacitor having a high specific capacity and a long cycle life.
  • the method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to the present invention includes a step of preparing a graphene / CNT composite, and the graphene / CNT composite is electrolyzed in an electrolytic solution of cobalt chloride or a cobalt salt. And forming a Co (OH) 2 vertically aligned graphene / CNT composite in which Co (OH) 2 is crystal-grown on the surface of the graphene, so that the graphene can be easily and in a short time.
  • Co which can be used as an electrode material that can grow a plate crystal at a high density on the surface of the metal and can prevent the surface activity of graphene from being lowered even if it is accumulated, can be used to construct a capacitor with a high specific capacity and a long cycle life.
  • (OH) 2 vertically aligned graphene / CNT composites can be made.
  • Co (OH) 2 vertically aligned graphene / CNT composite electrode of the present invention has a constitution in which Co described previously (OH) 2 vertically aligned graphene / CNT composite is formed on one surface of the plate-shaped electrode, the specific capacity Therefore, an electrode capable of forming a capacitor having a high cycle life is provided.
  • the Co (OH) 2 vertically aligned graphene / CNT composite capacitor according to the present invention has two Co (OH) 2 vertically aligned graphene / CNT composite electrodes, which are described above, sandwiched between the electrolyte-impregnated layers. Therefore, a capacitor having a high specific capacity and a long cycle life can be obtained.
  • the plate-like metal hydroxide-containing sheet-like electrode of the present invention includes a sheet in which groove-formed conductive fibers are knitted in a mesh shape, and a plurality of grooves integrated on the surface of the groove-formed conductive fibers. Since it is composed of a plate-like metal hydroxide, it is possible to provide an electrode that can constitute a capacitor having a high specific capacity and a long cycle life.
  • the method for producing a plate-like metal hydroxide-containing sheet-like electrode according to the present invention is such that a sheet in which conductive fibers are knitted in a mesh shape is electroetched to provide a plurality of grooves on the surface of the conductive fibers. And forming a sheet in which the groove-formed conductive fibers are woven into a mesh shape, and forming a sheet in which the groove-formed conductive fibers are knitted into a mesh shape.
  • a plate-like metal hydroxide-containing sheet-like electrode in which a plurality of plate-like metal hydroxides are accumulated on the surface of the groove-formed conductive fiber is prepared by electrodeposition in a solution containing a product. Therefore, an electrode capable of forming a capacitor having a high specific capacity and a long cycle life can be easily produced.
  • the plate-like metal hydroxide-containing capacitor of the present invention two electrodes are disposed opposite to each other with an electrolyte-impregnated layer interposed therebetween, and one or both of the electrodes are any one of (10) to (15). Since it is a structure which is a plate-shaped metal hydroxide containing sheet-like electrode of description, it can be set as a capacitor with a high specific capacity and a long cycle life.
  • They are the TEM image (a) of Example 1, an enlarged TEM image (b), an SEM image (c), and an enlarged SEM image (d).
  • They are the TEM image (a), STEM image (b), C component mapping image (c), O component mapping image (d), and Co component mapping image (e) of Example 1.
  • FIG. 10B is an enlarged view (B) of FIG. 10C, a cross-sectional view taken along line CC ′ of FIG.
  • Example 4 is a CV curve of a plate-like metal hydroxide-containing sheet-like electrode of Example 2-1 (working electrode: coating density 1 mg / cm 2 ), and is a graph showing scan speed dependency.
  • 6 is a charge / discharge curve of a plate-like metal hydroxide-containing sheet-like electrode of Example 2-1 (working electrode: coating density 1 mg / cm 2 ), and is a graph showing the charge current value dependency.
  • It is an EIS curve of the sheet metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1.
  • the inset is a graph with Z1 in the range of 1.5 to 2.0 (high frequency region).
  • FIG. 1 is a schematic view showing an example of a Co (OH) 2 vertically aligned graphene / CNT composite capacitor according to the first embodiment of the present invention, and is a plan view (a) and a side view (b). .
  • the Co (OH) 2 vertically aligned graphene / CNT composite capacitor 1 according to the first embodiment of the present invention has a substantially circular shape in plan view.
  • the shape is not limited to this planar view shape, and may be a rectangular shape or a polygonal shape.
  • FIG. 1 is a schematic view showing an example of a Co (OH) 2 vertically aligned graphene / CNT composite capacitor according to the first embodiment of the present invention, and is a plan view (a) and a side view (b).
  • the Co (OH) 2 vertically aligned graphene / CNT composite capacitor 1 according to the first embodiment of the present invention has a substantially circular shape in plan view.
  • the shape is not limited to this planar view shape, and may be
  • the Co (OH) 2 vertically aligned graphene / CNT composite capacitor 1 according to the first embodiment of the present invention is composed of two sheets of Co according to the first embodiment of the present invention.
  • the (OH) 2 vertically aligned graphene / CNT composite electrode 21 is roughly configured with the electrolyte solution impregnated layer 13 sandwiched therebetween.
  • the electrolyte solution impregnated layer 13 also serves as a separator.
  • the configuration of the symmetric electrode is used, for example, a configuration of an asymmetric electrode in which the positive electrode is Graphene / CNT coated with Co (OH) 2 and the negative electrode is Graphene / CNT may be used.
  • a capacitor In the case of a coin cell, a capacitor is configured by bringing a coin cell cap into contact with each of the two Co (OH) 2 vertically aligned graphene / CNT composite electrodes 21. In this case, a gasket, a spring, a steel spacer, etc. are interposed in the coin cell.
  • the Co (OH) 2 vertically aligned graphene / CNT composite capacitor is an electric double layer capacitor and one of supercapacitors.
  • the Co (OH) 2 vertically aligned graphene / CNT composite electrode 21 according to the first embodiment of the present invention is the Co (OH) according to the first embodiment of the present invention.
  • Two vertically aligned graphene / CNT composites 12 are formed on one surface of the plate electrode 11.
  • the plate-like electrode 11 uses, for example, a metal such as stainless steel, titanium (Titanium), nickel (Nickel) or the like.
  • the plate electrode 11 is used as a current collector.
  • the film thickness of the Co (OH) 2 vertically aligned graphene / CNT composite 12 is 100 nm or more and 10 ⁇ m or less. Thereby, an electric double layer capacitor having a high specific capacity can be formed.
  • FIG. 2 is a schematic view showing an example of the Co (OH) 2 vertically aligned graphene / CNT composite according to the first embodiment of the present invention, and is a plan view (a), a side view (b), (a (B) is an enlarged view (d) of a portion B in (b).
  • the Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention has a substantially circular shape in plan view.
  • the shape is not limited to this planar view shape, and may be a rectangular shape or a polygonal shape.
  • the Co (OH) 2 vertically aligned graphene / CNT composite 12 includes a graphene 31 having a plate crystal 33 of Co (OH) 2 grown on the surface, and It consists of a composite with carbon nanotubes 32.
  • the carbon nanotube 32 is interposed between the two graphenes 31.
  • Co (OH) 2 is crystal-grown by aligning perpendicularly to the surface of graphene so that the main surface of Co (OH) 2 that is a plate-like crystal does not contact the surface of graphene, but only its side surface contacts the surface of graphene It is preferable that Thereby, a porous structure composed of a large number of pores 33c communicating with the surface from the outside is formed. This can be utilized as a supply path of electrons and / or ions to the active surface, and the high active surface performance of graphene can be maintained.
  • the diameter of Co (OH) 2 is 50 nm or more and 400 nm or less and the thickness is less than 20 nm. Thereby, a porous structure composed of pores having a diameter of 400 nm or less can be formed.
  • FIG. 3 is a process diagram illustrating a graphene oxide creation process and a graphene creation process.
  • graphene creation process First, graphene oxide is dispersed in distilled water and irradiated with ultrasonic waves for a predetermined time (for example, 30 minutes). The suspension is then heated to 100 ° C. Next, hydrazine hydrate is added. Next, the suspension is heated at 98 ° C. for a predetermined time (for example, 24 hours) to reduce the graphene oxide to graphene. Next, the reduced graphene is collected by filtration. The collection is then washed with distilled water to remove excess hydrazine. Next, redispersion in water, application of ultrasonic waves, and centrifugation. The final product is then collected by vacuum filtration. Graphene is created through the above steps.
  • FIG. 4 is a process diagram showing an example of a method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to the first embodiment of the present invention.
  • the Co (OH) 2 vertically aligned graphene / CNT composite manufacturing method according to the embodiment of the present invention includes a graphene / CNT composite creating step S1 and a Co (OH) 2 vertically aligned graphene / CNT composite production process S2.
  • Graphene / CNT composite production process S1 First, the graphene prepared in the above process is mixed in an alcohol (for example, ethanol) together with carbon nanotubes (CNT). Next, vacuum filtration is performed. Through the above steps, a film-like graphene / CNT composite is prepared.
  • an alcohol for example, ethanol
  • CNT carbon nanotubes
  • cobalt salt include cobalt (II) acetate (Co (II) acetate: Co (C 2 H 3 O 2 ) 2 ⁇ 4H 2 O), sulfuric acid that is a divalent cobalt sulfate.
  • cobalt (II) Cobalt (II) sulfate: CoSO 4 ).
  • An example of cobalt chloride is cobalt (II) chloride represented by CoCl 2 .
  • the electrolytic solution of cobalt chloride or cobalt salt is an alcohol solution. A 10% ethanol solution is preferred. The concentration of cobalt chloride or cobalt salt is, for example, 1M. Moreover, it is preferable to disperse potassium hydroxide (Potassium hydroxide).
  • each electrode is connected to a power source, and a voltage is applied between the electrodes to perform electrodeposition (cathode deposition) treatment for crystal growth of Co (OH) 2 on the graphene surface of the graphene / CNT composite.
  • the electrodeposition process is preferably performed in two stages, a nucleation process and a crystal growth process.
  • the nucleation step is a step of passing a current of 1 mA or less at room temperature. In this step, nuclei for crystal growth can be formed on the graphene surface.
  • the current density is set to 5 mA / cm 2 or more.
  • crystals can be grown so as to extend from the nucleus in a direction perpendicular to the surface.
  • the Co (OH) 2 vertically aligned graphene / CNT composite 12 includes a graphene 31 having a plate crystal 33 of Co (OH) 2 grown on the surface, a carbon nanotube 32, Because it is composed of a composite of the above, a plate-like crystal can be grown at a high density on the surface of graphene, and even if accumulated, the surface activity of graphene is not lowered, and a capacitor with a high specific capacity and a long cycle life can be configured Can be used for various electrode materials.
  • the Co (OH) 2 vertically aligned graphene / CNT composite 12 has a main surface of Co (OH) 2 that is the plate crystal 33 without contacting the surface of the graphene 31. Since Co (OH) 2 is grown on the surface of the graphene 31 so that only the side surface is in contact with the surface of the graphene 31, the plate crystal is vertically oriented at a high density on the surface of the graphene. Even when grown, formed into a porous structure, and integrated, it can be used as an electrode material that can secure a ion path without degrading the surface activity of graphene, and can constitute a capacitor with a high specific capacity and a long cycle life.
  • the Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention has a configuration in which the diameter of Co (OH) 2 is 50 nm or more and 400 nm or less and the thickness is less than 20 nm.
  • a porous structure composed of dense pores can be formed, and can be used as an electrode material capable of constituting a capacitor having a high specific capacity and a long cycle life.
  • the method for producing the Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention includes a step of producing a graphene / CNT composite, and the graphene / CNT composite is made of cobalt chloride or And a step of producing a Co (OH) 2 vertically aligned graphene / CNT composite in which Co (OH) 2 is crystal-grown on the surface of graphene by electrodeposition in an electrolytic solution of a cobalt salt, Easily grow plate crystals at a high density on the surface of graphene in a short time, so that the surface activity of graphene is not lowered even if it is accumulated, and it is possible to construct a capacitor with a high specific capacity and a long cycle life A Co (OH) 2 vertically aligned graphene / CNT composite that can be used as an electrode material can be produced.
  • the method for producing a Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention is such that the electrodeposition treatment is carried out in an electrolytic solution of cobalt chloride or a cobalt salt. Since the body is a work electrode and a voltage is applied using a counter electrode and a reference electrode, a Co (OH) 2 vertically aligned graphene / CNT composite can be easily produced in a short time. Since the cobalt chloride is CoCl 2 and the cobalt salt is cobalt acetate or cobalt sulfate, the Co (OH) 2 vertically aligned graphene / CNT composite 12 manufacturing method according to the first embodiment of the present invention is configured. A Co (OH) 2 vertically aligned graphene / CNT composite can be easily produced in a short time.
  • the Co (OH) 2 vertically aligned graphene / CNT composite electrode 21 according to the first embodiment of the present invention has a Co (OH) 2 vertically aligned graphene / CNT composite electrode 12 formed on one surface of the plate electrode 11. Therefore, an electrode having a high specific capacity and a long cycle life can be formed.
  • the Co (OH) 2 vertically aligned graphene / CNT composite capacitor 1 includes two Co (OH) 2 vertically aligned graphene / CNT composite electrodes 21 and an electrolyte-impregnated layer 13. Since the structure is sandwiched and opposed, a capacitor having a high specific capacity and a long cycle life can be obtained.
  • Co (OH) 2 vertically aligned graphene / CNT composite manufacturing method thereof, Co (OH) 2 vertically aligned graphene / CNT composite electrode and Co (OH) 2 vertically aligned graphene /
  • the CNT composite capacitor is not limited to the above embodiment, and can be implemented with various modifications within the scope of the technical idea of the present invention. A specific example of this embodiment is shown in Example 1 below. However, the present invention is not limited to these examples.
  • FIG. 9 is a schematic view showing an example of a plate-like metal hydroxide-containing capacitor according to the second embodiment of the present invention, and is a plan view (a) and a side view (b).
  • the plate-shaped metal hydroxide containing capacitor 101 which is 2nd embodiment of this invention is a substantially circular shape in planar view.
  • the present invention is not limited to this, and may be a substantially rectangular shape or a polygonal shape in plan view. As shown in FIG.
  • both of the electrodes are plate-like metal hydroxide-containing sheet-like electrodes 111 which are the second embodiment of the present invention. However, at least one may be configured as a plate-like metal hydroxide-containing sheet electrode 111.
  • a capacitor is configured by bringing a coin cell cap into contact with each of the two plate-like metal hydroxide-containing sheet-like electrodes 111.
  • a gasket, a spring, a steel spacer, etc. are interposed in the coin cell.
  • the plate-like metal hydroxide-containing capacitor is an electric double layer capacitor and is a supercapacitor.
  • FIG. 10 is a schematic view showing an example of a plate-like metal hydroxide-containing sheet electrode according to the second embodiment of the present invention, and is a plan view (a), a side view (b), and (a). It is an A section enlarged view (c).
  • the plate-shaped metal hydroxide containing sheet-like electrode 111 which is 2nd embodiment of this invention is substantially circular shape in planar view.
  • FIG. 10 is a schematic view showing an example of a plate-like metal hydroxide-containing sheet electrode according to the second embodiment of the present invention, and is a plan view (a), a side view (b), and (a). It is an A section enlarged view (c).
  • the plate-shaped metal hydroxide containing sheet-like electrode 111 which is 2nd embodiment of this invention is substantially circular shape in planar view.
  • FIG. 10 is a schematic view showing an example of a plate-like metal hydroxide-containing sheet electrode according to the second embodiment of the present invention, and is a plan view (a), a side view
  • the sheet-like metal hydroxide-containing sheet-like electrode 111 is formed by braiding a surface-coated conductive fiber 121 into a mesh shape. A large number of holes 111c are provided and have a porous structure.
  • FIG. 11 is an enlarged view (b) of the B part in FIG. 10 (c), a sectional view (b) taken along the line CC ′ of (a), and an enlarged view (c) of the D part in (b).
  • the surface-coated conductive fiber 121 includes a groove-formed conductive fiber 43 and a plurality of plate-like metal hydroxides 131 integrated and arranged on the surface 43z.
  • the groove-formed conductive fiber 43 has a plurality of groove portions 43k, 43g, 43e, and 43b extending on the surface 43z thereof in a direction substantially parallel to the axial direction. And it is preferable that the wall part 43m, 43i, 43f, 43d, 43a which divides each groove part is provided, and is comprised roughly.
  • the plate-like metal hydroxide 131 is crystal-grown so as to extend from the surface 43 z of the groove-formed conductive fiber 43.
  • the plate-like metal hydroxide 131 is preferably formed such that its side surface is in contact with the surface.
  • the direction perpendicular to the plane of the plate-like metal hydroxide 131 is preferably a random direction.
  • packing can be arranged on the surface 43z of the groove-formed conductive fiber 43 so that the direction perpendicular to the plane of the plate-like metal hydroxide 131 is aligned.
  • the plate-like metal hydroxide 131 preferably has a diameter d 131a of less than 1 ⁇ m and a thickness t 131b of less than 100 nm. Thereby, packing density can be improved.
  • the plate-like metal hydroxide 131 is preferably any one selected from the group consisting of Co (OH) 2 , Ni (OH) 2 , and Mn (OH) 2 .
  • Cobalt hydroxide has a layer structure with a wide interlayer distance, ions can be taken in and out quickly between the layers, and ions can be efficiently supplied to the layer surface serving as the surface of the active substance.
  • the groove-formed conductive fiber 43 is preferably made of any material selected from the group consisting of carbon, nickel, and titanium. By using these materials, it is possible to efficiently absorb the electrolyte ions on the wide access surface of the active substance, and by electrostatic charging, a double layer capacitance is formed, which is electrochemically stable. Capacitors can be formed.
  • the diameter of the groove-formed conductive fiber 43 is preferably 8 ⁇ m or less. Thereby, the sheet
  • FIG. 12 is a flowchart figure which shows an example of the manufacturing method of the plate-shaped metal hydroxide containing sheet-like electrode which is 2nd embodiment of this invention.
  • FIG. 13 is a process diagram showing an example of a method for producing a plate-like metal hydroxide-containing sheet electrode according to the second embodiment of the present invention.
  • the method for producing a plate-like metal hydroxide-containing sheet-like electrode according to the second embodiment of the present invention includes a groove-formed conductive fiber sheet production step S1 and a plate-like metal hydroxide.
  • FIG. 14 is a figure which shows an example of the electroconductive fiber sheet which is 2nd embodiment of this invention, Comprising: The A section enlarged view (c) of a top view (a), a side view (b), (a) FIG. 4B is an enlarged view (d) of a portion B in FIG.
  • the conductive fiber sheet include a carbon fiber sheet.
  • the carbon fiber has a diameter of 1 ⁇ m to 100 ⁇ m, a thickness of 0.1 mm to 1 cm, and a density of 0.1 g / cm 3 to 10 g / cm 3 .
  • the area and shape are not particularly limited.
  • the carbon fiber sheet is formed by weaving carbon fibers, provided with a large number of holes, and has a porous structure. There may be anisotropy in the direction of the surface resistance of the carbon fiber sheet.
  • the lateral surface resistance may be 5.8 m ⁇ ⁇ cm
  • the vertical resistance may be 80 m ⁇ ⁇ cm.
  • the conductive fiber sheet is electrically etched.
  • the conditions are such that 2 V is applied for 10 minutes in a 1 M H2SO4 electrolyte.
  • the carbon fiber can be changed to an electrically etched carbon fiber.
  • a plurality of groove portions extending in a direction substantially parallel to the axial direction and a wall portion defining each groove portion can be provided on the surface of the conductive fiber.
  • FIG. 15 is a figure which shows an example of the conductive fiber sheet by which the groove formation process which is 2nd embodiment of this invention was carried out, Comprising: The A section expansion of a top view (a), a side view (b), (a) It is a figure (c).
  • FIG. 16 is a view showing an example of the groove-formed conductive fiber, and is an enlarged view of a portion B in FIG. 15C (a), a cross-sectional view taken along the line CC ′ in FIG. ). As shown in FIGS.
  • 43a, 43d, 43f, 43i, and 43m can be provided.
  • the groove portion is made hydrophobic, and can easily form a plate-like metal hydroxide nucleus. Further, by providing the groove portion, the surface area per unit mass of the conductive fiber 43 can be increased.
  • Platinum-like metal hydroxide-containing sheet-like electrode production step S2 Next, using a conductive fiber sheet after groove formation as a working electrode, using a platinum plate as a counter electrode, and using a saturated Ag / AgCl reference electrode, one end side of each electrode Is immersed in an ethanol solution in which raw materials of plate-like metal hydroxide and potassium hydroxide are dispersed.
  • the distance between the work function and the counter electrode is fixed at, for example, 1.5 cm.
  • Examples of the raw material for the plate-like metal hydroxide include cobalt acetate.
  • the cobalt acetate concentration is, for example, 1M.
  • each electrode is connected to a power source, and a voltage is applied between the electrodes.
  • a constant current having a current density of 5 mA / cm 2 is passed.
  • the film thickness and density are controlled by controlling the voltage application time, that is, the time during which the current is applied.
  • FIGS. 17A and 17B are diagrams showing an example of the surface of the groove-formed conductive fiber in the initial stage of the electrodeposition process, where FIG. 17A corresponds to FIG. 16A and FIG. 16B corresponds to FIG. FIG.
  • a small amount of the plate-like metal hydroxide 131 is electrodeposited on the surface 43z of the groove-formed conductive fiber 43 to nucleate.
  • more of the plate-like metal hydroxide 131 is electrodeposited on the surface 43z of the groove-formed conductive fiber 43 and more nucleates. Further, crystals grow from the formed nuclei so as to extend from the surface 43z of the groove-formed conductive fiber 43.
  • a plate-like metal hydroxide-containing sheet-like electrode 111 in which a plurality of plate-like metal hydroxides 131 are accumulated on the surface 43z of the groove-formed conductive fiber 43 is created.
  • the surface 43z can be completely covered with the plate-like metal hydroxide 131 according to the processing time.
  • a second layer can be formed on the formed layer of the plate-like metal hydroxide 131.
  • a multilayer structure of the plate-like metal hydroxide 131 can be formed.
  • the plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention includes a sheet in which the groove-formed conductive fibers 43 are knitted in a mesh shape, and the groove-formed conductive material. Since it is composed of a plurality of plate-like metal hydroxides 131 integrated on the surface 43z of the fiber 41, an electrode capable of constituting a capacitor having a high specific capacity and a long cycle life can be obtained.
  • the plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention has a plurality of groove portions 43b extending in a direction substantially parallel to the axial direction on the surface 43z of the groove-formed conductive fiber 43.
  • the plate-like metal hydroxide-containing sheet-like electrode 111 has a plate-like metal hydroxide 131 having a diameter d 131a of less than 1 ⁇ m and a thickness t 131b of less than 100 nm. Since it is a structure, it can be set as the electrode which can comprise a capacitor with a high specific capacity and a long cycle life.
  • the plate-like metal hydroxide 131 is a group of Co (OH) 2 , Ni (OH) 2 , and Mn (OH) 2 . Therefore, an electrode having a high specific capacity and a long cycle life can be formed.
  • the plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention has a configuration in which the diameter of the groove-formed conductive fiber 43 is 8 ⁇ m or less, so that the specific capacity is high and the cycle life is long. It can be set as the electrode which can comprise a capacitor.
  • the plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention has a configuration in which the groove-formed conductive fiber 43 is made of any material selected from the group of carbon, nickel, and titanium. Therefore, an electrode capable of forming a capacitor having a high specific capacity and a long cycle life can be obtained.
  • the sheet 52 formed by braiding the conductive fibers 42 in a mesh shape is subjected to an electrical etching treatment, thereby providing a conductive property.
  • the sheet 53 in which the conductive fiber 43 is woven into a mesh is electrodeposited in a solution containing the plate-like metal hydroxide 131, and a plurality of plates are formed on the surface 43z of the groove-formed conductive fiber 43.
  • the manufacturing method of the plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention is a step of creating a sheet 53 in which the groove-formed conductive fibers 43 are woven into a mesh shape.
  • the surface 43z of the conductive fiber 42 is provided with a plurality of groove portions 43b, 43e, 43g, 43k extending in a direction substantially parallel to the axial direction, and wall portions 43a, 43d, 43f, 43i, 43m partitioning each groove portion.
  • An electrode capable of constituting a capacitor having a high specific capacity and a long cycle life can be easily produced.
  • the method for producing the plate-like metal hydroxide-containing sheet electrode 111 according to the second embodiment of the present invention has a high specific capacity because the electric etching process is a process of applying a voltage with a potentiostat. Thus, an electrode capable of constituting a capacitor having a long cycle life can be easily produced.
  • the electrodeposition treatment is performed in the solution containing the plate-like metal hydroxide.
  • a structure in which a sheet of conductive fibers woven in a mesh is used as a work electrode, and a voltage is applied using a counter electrode and a reference electrode, so a capacitor with a high specific capacity and a long cycle life can be configured.
  • a simple electrode can be easily produced.
  • the plate-like metal hydroxide-containing capacitor 101 In the plate-like metal hydroxide-containing capacitor 101 according to the second embodiment of the present invention, two electrodes are arranged opposite to each other with the electrolyte solution impregnated layer 113 interposed therebetween, and both of the electrodes are plate-like metal water. Since it is the structure which is the oxide containing sheet-like electrode 111, it can be set as a capacitor with a high specific capacity and a long cycle life.
  • the sheet-like metal hydroxide-containing sheet-like electrode, the method for producing the same, and the plate-like metal hydroxide-containing capacitor according to the second embodiment of the present invention are not limited to the above-described embodiment, but the technology of the present invention. Various modifications can be made within the scope of the technical idea. A specific example of this embodiment is shown in Example 2 below. However, the present invention is not limited to these examples.
  • Example 1 ⁇ Creation of graphene oxide> Graphene oxide was synthesized from graphite by the modified Hummers-Offman method as follows. First, graphite and NaNO 3 were mixed in a flask. Next, H 2 SO 4 (95%) was added into the flask. Next, it was stirred in an ice bath. Next, potassium permanganate was added to the suspension. The suspension was then stirred at room temperature for 2 hours. The suspension became a light brown color. The suspension was then diluted and stirred at 98 ° C. for 12 hours. Then H 2 O 2 was added. The product was then washed with 5% HCl and deionized water. Next, it was centrifuged, filtered, and dried in vacuo. Through the above process, black powder graphene oxide was prepared.
  • (Ii) Crystal growth step The current density was controlled at 5 mA / cm 2 for 30 minutes. The thickness of the Co (OH) 2 layer was controlled by the coating time. Through the above steps, a Co (OH) 2 vertically aligned graphene / CNT composite (Example 1) was prepared.
  • FIG. 5 shows a TEM image (a), an enlarged TEM image (b), an SEM image (c), and an enlarged SEM image (d) of Example 1. Both are graphene images immediately after synthesis. As shown in FIGS. 5A and 5B, a sheet made of several thin and flat graphene layers was observed. As shown in FIGS.
  • Co (OH) 2 arranged in a direction perpendicular to the graphene sheet surface, the main surface facing a random direction, and forming a porous structure could be observed.
  • the thickness of Co (OH) 2 was about 10 nm.
  • FIG. 6 shows TEM images (a), STEM images (b), and (b) of C component mapping images (c) and (b) of Co (OH) 2 vertically aligned graphene / CNT composites (Example 1). It is explanatory drawing (f) of Co component mapping image (e), (a) of O component mapping image (d), (b). Since an amorphous carbon grid was used, no clear image was seen in the C component mapping image. However, from the results shown in FIGS. 6B, 6D, and 6E, as shown in FIG. 6F, FIG. 6A shows that Co (OH) 2 is bonded to the surface of graphene. It was judged that it was a sample. The TEM sample was prepared by irradiating with strong ultrasonic waves. However, since Co (OH) 2 bond to the surface of graphene was observed, this bond was estimated to be very strong.
  • FIG. 7A is a CV curve for each scan speed of 10, 20, 50, and 100 mV / s in EMI-TFSI. As shown in FIG. 7A, a symmetrical and substantially rectangular CV curve was obtained. It is known that the ideal capacitor CV curve has a rectangular shape when the contact resistance is small, and is deformed so that the shape is slanted and the ring is small when the contact resistance is large. It has been. Since the shape of FIG. 7A was symmetrical and was almost rectangular, it was found that charge propagation at the electrode was excellent.
  • FIG. 7B is a galvanostatic charge / discharge curve at 1 mA and 2 mA.
  • the galvanostatic charge discharge curve was relatively flat above 3.5V.
  • the energy density was 172 Wh / kg.
  • the specific capacity of 1 mA was 310 F / g.
  • FIG. 7C is a Nyquist plot of EIS. As shown in FIG. 7C, the imaginary part is rapidly increased so as to be almost vertical in the low-frequency region, and a Warburg curve that is hemispherical in the high-frequency region is shown.
  • R F which is a faradic leak resistance, due to a redox reaction or overcharge due to a functional group or an impurity was estimated, and the dynamic reversibility of the faradic reaction increased as R F decreased.
  • Equivalent series resistance (ESR) was 8.2 ⁇ from the Z1 intercept. The maximum power density p max was obtained by the following formula (1).
  • R ESR is the equivalent series resistance
  • (Cycle characteristics) 7 (d) is a graph showing the cycle characteristics results in a current density of 1 mg / cm 2 coated samples 2A / g. It decreased by 30% at 1500 cycles.
  • Example 2 ⁇ Sheet electrode manufacturing> First, the lateral surface resistance is 5.8 m ⁇ ⁇ cm, the vertical resistance is 80 m ⁇ ⁇ cm, and the density is 0.44 g / cm 3 .
  • a carbon fiber cloth Carbon fiber cloth, Toray, Inc., Japan having an average diameter of 8 ⁇ m and a thickness of 0.19 mm was prepared.
  • the carbon fiber cloth was electrically etched using a potentiostat.
  • the conditions were such that 2 V was applied for 10 minutes in 1 MH 2 SO 4 electrolyte.
  • the electrically etched carbon fiber cloth was cut, and a work electrode was created with a plan view area of 1 ⁇ 2 cm 2 .
  • cobalt acetate (Potassium hydroxide) and ethanol are prepared as Sigma-Aldrich analytical reagent grades, and these are mixed and mixed with 0.1 M acetic acid. A cobalt solution was prepared.
  • FIG. 18 is an SEM image of the carbon fiber sheet.
  • FIG. 19 is an SEM image of carbon fiber. A smooth carbon fiber having an average diameter of 8 ⁇ m was observed.
  • FIG. 20 is an SEM image of the groove-formed carbon fiber sheet. A carbon fiber was observed on the surface, which was elongated in the axial direction and formed with a groove having a groove width of 0.1 to 0.5 ⁇ m.
  • FIG. 21 is an SEM image of a sheet-like metal hydroxide-containing sheet electrode having a coating density of 1 mg / cm 2
  • FIG. 22 is an enlarged SEM image thereof.
  • the plurality of plate-like metal hydroxides were arranged so as to stand perpendicular to the surface of the groove-formed conductive fiber. It was integrated so as to completely cover the surface and to form a uniform layer. The direction perpendicular to the main surface of the plate-like metal hydroxide standing vertically was disordered as a whole.
  • FIG. 23 is an electron diffraction pattern of Co (OH) 2 .
  • the pattern of Bragg reflection arranged in a hexagonal shape is shown, and the crystal orientation of [001] is shown.
  • FIG. 24 is a TEM image of Co (OH) 2 .
  • the crystal contained a hexagonal crystal in plan view.
  • FIG. 25 is a high-resolution TEM (High-Resolution TEM) image. 4.46 angstrom lattice fringes corresponding to the (001) plane of the ⁇ phase of Co (OH) 2 , 2.76 angstrom lattice fringes corresponding to the (100) plane, and 2.37 angstroms corresponding to the (101) plane was observed.
  • FIG. 26 is an SEM image with a coating density of 3 mg / cm 2 .
  • the average diameter was 40 ⁇ m.
  • a substantially bell-shaped lump having an average diameter of about 10 ⁇ m was formed on the surface. Therefore, the surface uniformity was inferior to the plate-like metal hydroxide-containing sheet-like electrode having a coating density of 1 mg / cm 2 .
  • Electrochemical properties and capacitance were measured with a three-electrode system by cyclic voltammetry (CV), constant current charge / discharge test, and electrochemical impedance spectroscopy (EIS). CV was measured at a scan rate of 20 to 500 mV / s.
  • FIG. 27 is a CV curve of the plate-like metal hydroxide-containing sheet-like electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1, and is a graph showing the scan speed dependency.
  • the scan speeds were 20, 50, 100, 200, and 500 mV / s.
  • the potential range was -0.3V to 0.5V. Strong redox peaks and non-rectangular CV curves were observed, indicating CV characteristics dominated by the response of the induced current, rather than pure electric double layer capacitance.
  • the scanning speed was fast, 500 mV / s, the current value changed the most.
  • the electrochemical reaction corresponding to this redox reaction is represented by the following chemical reaction formula (1).
  • the reaction at high potential is expressed by the following chemical reaction formula (2).
  • FIG. 28 is a charge / discharge curve of the plate-like metal hydroxide-containing sheet-like electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1, and is a graph showing the dependency of the charge current value. .
  • the charge current values were 1, 2, 3, 4 mA. When the charge current value was 1 mA, the potential changed most over time.
  • the specific capacity is expressed by the following equation (3).
  • Cm is a specific capacity (F / g)
  • I is a constant charge / discharge current
  • ⁇ t is a discharge time
  • ⁇ V is a charge potential
  • m is an active electrode.
  • FIG. 29 is an EIS curve of the sheet metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1.
  • the inset is a graph with Z1 in the range of 1.5 to 2.0 (high frequency region).
  • the EIS curve is a Nyquist plot of impedance.
  • Z2 vertical axis
  • Z1 horizontal axis
  • the EIS curve could be divided into three regions depending on the frequency.
  • the EIS curve became a small semicircular shape and behaved like a pure resistor.
  • This semi-circular characteristic also indicates the correlation between the active substance and the collector, and the semi-circular diameter depends on the resistance R F of the induced current corresponding to the reciprocal of the potential depending on the charge transfer rate. Involved.
  • a Warburg curve is observed in which the electrolyte penetrates deeper into the pores of the electrode and the surface of the electrode that can be used for ion adsorption increases.
  • the effect of the porosity of the electrode on the EIS curve Observed.
  • the imaginary component increased rapidly and became almost linear, behaving like a capacitor.
  • ESR is an important factor that determines the power density of a supercapacitor and determines the rate at which the supercapacitor can be charged and discharged.
  • FIG. 30 is a graph showing the relationship between the mass standard specific capacity of the plate-like metal hydroxide-containing sheet electrode (work electrode) and the charge current value, and shows the coating density dependency.
  • the coating density was 1.0 mg / cm 2 (Example 2-1), 2.0 mg / cm 2 (Example 2-2), and 3.0 mg / cm 2 (Example 2-3).
  • the coating density was proportional to the thickness.
  • the coating density of 1.0 mg / cm 2 (Example 2-1) was 3404.8 F / g when the charge current value was 1 mA. This was very close to the theoretical value 3458. When the charge current value was 10 mA, it was 1327.3 F / g.
  • the coating density of 2.0 mg / cm 2 (Example 2-2) was 1396.1 F / g when the charge current value was 1 mA.
  • the coating density of 3.0 mg / cm 2 (Example 2-3) was 876.1 F / g when the charge current value was 1 mA.
  • FIG. 31 is a graph showing the relationship between the area-specific specific capacity and the charge current value of the plate-like metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1.
  • the charge current value was 1 mA
  • the area standard specific capacity was 3.3 F / cm 2 .
  • FIG. 32 is a graph showing the relationship between the retention force of the plate-like metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1 and the number of cycles. Even after 2000 times, the holding power of 80% was maintained. The charge current value was 10 mA. Although it was reduced by about 10% by 500 cycles, it was relatively stable up to 1500 cycles thereafter and was only reduced by about 10%. In Examples 2-2 and 2-3, almost the same results were obtained.
  • FIG. 33 is a graph showing the relationship between the total specific capacity of the plate-like metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) and the charge current value of Example 2-1.
  • the total specific capacity composed of the carbon fiber and the active substance Co (OH) 2 was 614.0 F / g when the charge current value was 1 mA.
  • the mass-specific specific capacity of Co (OH) 2 that is an active substance is 3404.8 F / g.
  • Co (OH) 2 vertically aligned graphene / CNT composite of the present invention its production method, Co (OH) 2 vertically aligned graphene / CNT composite electrode and Co (OH) 2 vertically aligned graphene / CNT composite capacitor are High capacity and long cycle life can be used in the battery industry, energy industry and the like.
  • the plate-like metal hydroxide-containing sheet-like electrode of the present invention has a high specific capacity and a long cycle life.
  • the manufacturing method and the plate-like metal hydroxide-containing capacitor can be provided, and can be used in the battery industry, the energy industry, and the like.
  • DESCRIPTION OF SYMBOLS 101 ... Plate-shaped metal hydroxide containing capacitor, 111 ... Plate-shaped metal hydroxide containing sheet-like electrode, 111c ... Hole, 113 ... Electrolyte impregnation layer (separator), 121 ... Surface coating conductive fiber, 131 ... Plate Metal hydroxide, 131a ... diameter, 131b ... thickness, 42 ... conductive fiber, 43 ... groove-formed conductive fiber, 43a, 43d, 43f, 43i, 43m ... wall, 43b, 43e, 43g, 43k ... groove part, 43z ... surface, 52 ... conductive fiber sheet, 53 ... groove-formed conductive fiber sheet.

Abstract

This metal hydroxide-containing capacitor is characterized by comprising two metal hydroxide-containing electrodes containing a metal hydroxide alignment electrode material which are arranged oppositely and sandwich an electrolyte-impregnated layer, wherein one or both electrodes are either a Co(OH)2 vertical alignment graphene/CNT composite electrode formed with a Co(OH)2 vertical alignment graphene/CNT composite formed on one surface of a plate-shape electrode, or, a plate-shape metal hydroxide-containing sheet-shape electrode which comprises a sheet formed with groove formation treated conductive fibers woven in in a mesh-form, and multiple plate-shape metal hydroxides accumulated on the surface of the groove formation treated conductive fibers.

Description

金属水酸化物配向電極材料、金属水酸化物含有電極とそれらの製造方法及び金属水酸化物含有キャパシターMetal hydroxide oriented electrode material, metal hydroxide-containing electrode, method for producing the same, and metal hydroxide-containing capacitor
 本発明は、金属水酸化物配向電極材料、金属水酸化物含有電極とそれらの製造方法及び金属水酸化物含有キャパシターに関する。 The present invention relates to a metal hydroxide oriented electrode material, a metal hydroxide-containing electrode, a method for producing them, and a metal hydroxide-containing capacitor.
 より詳しくは、本発明は、Co(OH)垂直配向グラフェン/カーボンナノチューブ複合体(以下、Co(OH)垂直配向グラフェン/CNT複合体と表記する場合がある。)、その製造方法、Co(OH)垂直配向グラフェン/カーボンナノチューブ複合体電極(以下、Co(OH)垂直配向グラフェン/CNT複合体電極と表記する場合がある。)及びCo(OH)垂直配向グラフェン/カーボンナノチューブ複合体キャパシター(以下、Co(OH)垂直配向グラフェン/CNT複合体キャパシターと表記する場合がある。)に関する。 More specifically, the present invention relates to a Co (OH) 2 vertically aligned graphene / carbon nanotube composite (hereinafter sometimes referred to as Co (OH) 2 vertically aligned graphene / CNT composite), a method for producing the same, Co (OH) 2 vertically aligned graphene / carbon nanotube composite electrode (hereinafter sometimes referred to as Co (OH) 2 vertically aligned graphene / CNT composite electrode) and Co (OH) 2 vertically aligned graphene / carbon nanotube composite electrode The present invention relates to a body capacitor (hereinafter sometimes referred to as a Co (OH) 2 vertically aligned graphene / CNT composite capacitor).
 また、本発明は、板状金属水酸化物含有シート状電極、その製造方法及び板状金属水酸化物含有キャパシターに関する。 The present invention also relates to a sheet metal hydroxide-containing sheet electrode, a method for producing the same, and a plate metal hydroxide-containing capacitor.
 携帯電子機器、ハイブリッド電気自動車、電気自動車等に必要とされる技術の一つとして、高効率エネルギー貯蔵デバイスがある。エネルギー貯蔵デバイスの一つとして、近年、技術発展が顕著なキャパシターがある。キャパシターは、操作機構が単純で、チャージ生成効率が高いデバイスであり、サイクル寿命が100000サイクル以上に長寿命化されている。
 キャパシターには、主として、次の3つの電極材料が用いられている。電極材料は、その表面及び/又は内部で電極反応可能な活性物質からなる。
One of the technologies required for portable electronic devices, hybrid electric vehicles, electric vehicles and the like is a high-efficiency energy storage device. As one of energy storage devices, there is a capacitor whose technological development has been remarkable in recent years. The capacitor is a device with a simple operation mechanism and high charge generation efficiency, and has a cycle life of 100,000 cycles or more.
The following three electrode materials are mainly used for capacitors. The electrode material is composed of an active substance capable of electrode reaction on the surface and / or inside thereof.
 第1の電極材料は、カーボン系材料であり、例えば、活性化カーボン、カーボンナノチューブ、グラフェン、これらの複合体の材料である。これらの材料を用いると、電解質イオンを活性物質の広いアクセス表面で効率よく吸収させることが可能で、静電的にチャージさせることにより、2重層キャパシタンスを形成して、電気化学的に安定なキャパシターを形成できる。 The first electrode material is a carbon-based material, for example, activated carbon, carbon nanotube, graphene, or a composite material thereof. With these materials, electrolyte ions can be efficiently absorbed on a wide access surface of the active material, and electrostatically charged to form a double-layer capacitance, thereby forming an electrochemically stable capacitor. Can be formed.
 第2の電極材料は、金属酸化物系材料であり、例えば、MnO、RuOのような遷移金属酸化物材料がある。これらの材料を用いることにより、活性物質の表面で非常に速いレドックス反応をさせることができ、高効率なレドックス-ベースのキャパシターを形成できる。この比容量は非常に高い理論値を有するが、電気抵抗が高く、パワー性能が貧弱である点が課題とされている。 The second electrode material is a metal oxide material, for example, a transition metal oxide material such as MnO 2 or RuO 2 . By using these materials, a very fast redox reaction can be caused on the surface of the active substance, and a highly efficient redox-based capacitor can be formed. Although this specific capacity has a very high theoretical value, the problem is that the electrical resistance is high and the power performance is poor.
 第3の電極材料は、導電性高分子系材料であり、例えば、ポニアニリン(PANI)、ポリピロールがある。PANIは、低コストで容易に合成でき、空気中の安定性が高く、導電率が高いという利点がある。また、スーパーキャパシターに用いた場合には、比容量は233-1220F/gと高い(非特許文献1)。しかし、ポリマー骨格が容易に分解し、サイクルの安定性は貧弱であるという課題がある。 The third electrode material is a conductive polymer material, such as ponianiline (PANI) or polypyrrole. PANI has advantages that it can be easily synthesized at low cost, has high stability in air, and has high conductivity. Further, when used for a supercapacitor, the specific capacity is as high as 233-1220 F / g (Non-patent Document 1). However, there is a problem that the polymer skeleton is easily decomposed and the cycle stability is poor.
 例えば、上記キャパシターの第1の電極材料として、カーボン系材料の一つで、単位量当たりの活性表面積が広いグラフェンが研究開発されている。
 しかし、グラフェンは活性表面同士で互いに容易に重なり合って、ファンデルワールス力により塊状となり、単位量当たりの活性表面積を小さくしてしまうという問題があった。このような塊状のグラフェンを用いた場合、キャパシター性能は大きく低下した。
For example, as a first electrode material of the capacitor, graphene, which is one of carbon materials and has a wide active surface area per unit amount, has been researched and developed.
However, graphene has a problem in that active surfaces easily overlap each other and become agglomerated by van der Waals force, reducing the active surface area per unit amount. When such massive graphene was used, the capacitor performance was greatly reduced.
 図8は、グラフェンへイオンが接する様子を説明する図(a)と、再スタックしたグラフェンにイオンが接する様子を説明する図(b)である。
 図8(a)に示すように、グラフェンが1枚で分離した状態である場合には、活性表面にイオンが容易に接することができ、活性表面上で反応を行うことができる。しかし、図7(b)に示すように、グラフェンが活性表面同士で互いに容易に重なり合って塊状となった場合には、重なり合った活性表面にイオンは容易には接することができず、活性表面上での反応効率を低下させた。
FIG. 8A is a diagram for explaining how ions come into contact with graphene, and FIG. 8B is a diagram for explaining how ions are brought into contact with restacked graphene.
As shown in FIG. 8A, when the graphene is in a separated state, ions can easily come into contact with the active surface and a reaction can be performed on the active surface. However, as shown in FIG. 7B, when graphene easily overlaps with each other on the active surfaces to form a lump, ions cannot easily come into contact with the overlapping active surfaces. Reduced the reaction efficiency.
 上記いずれの電極材料でも、デバイス応用のためには比容量は十分ではない。そのため、様々な改良のアプローチがなされている(非特許文献2~8)。
 例えば、金属水酸化物又は金属酸化物をカーボン材料上に被膜した電極等がある。
 被膜する金属水酸化物としてはCo(OH)のようなコバルト水酸化物が検討されている。コバルト水酸化物は、層間距離が広い層構造を有するので、層間にイオンを素早く出し入れでき、活性物質の表面となる層面にイオンを効率的に供給でき、電極材料として、特に優れた材料であるためである。
None of the above electrode materials have sufficient specific capacity for device applications. Therefore, various improvement approaches have been made (Non-Patent Documents 2 to 8).
For example, there is an electrode in which a metal hydroxide or a metal oxide is coated on a carbon material.
Cobalt hydroxide such as Co (OH) 2 has been studied as a metal hydroxide to be coated. Cobalt hydroxide is a particularly excellent material as an electrode material because it has a layer structure with a wide interlayer distance, so that ions can be taken in and out quickly between layers, and ions can be efficiently supplied to the surface of the active material. Because.
 例えば、非特許文献2は、“Potentiostatically deposited nanostractured a-Co(OH):A high performance electrode material for redox-capacitors”に関するものである。
 また、非特許文献3は、“Synthesis of Co(OH) USY composite and its application for electrochemical supercapacitors”に関するものである。非特許文献3には、比容量3458F/gという高い理論値が開示されている。
 また、非特許文献4は、“Surfactant-assited electrochemical deposition of α-cobalt hydroxide for supercapacitors”に関するものである。
 また、非特許文献5は、“Selective and Controlled Synthesis of α-and β-cobalt Hydroxides in Highlyu Developed Hexagonal Platelets”に関するものである。 
 また、非特許文献6は、“Nanoflake-like cobalt hydroxide/ordered mesoporous carbon composite for electorchemical capasitors”に関するものである。
For example, Non-Patent Document 2 relates to “potentiostatically deposited nanostructured a-Co (OH) 2 : A high performance elec trode material for redox-capacitors”.
Non-Patent Document 3 relates to “Synthesis of Co (OH) 2 USY composite and its application for electrical supercapacitors”. Non-Patent Document 3 discloses a high theoretical value of a specific capacity of 3458 F / g.
Non-Patent Document 4 relates to “Surfactant-associated electrochemical deposition of α-covalent hydride for supercapacitors”.
Non-Patent Document 5 relates to “Selective and Controlled Synthesis of α-and β-cobalt Hydroxides in Highly Developed Hexagonal Platelets”.
Non-Patent Document 6 relates to “Nanoflake-like cobalt hydroxide / ordered mesoporous carbon composite for electrical capacitors”.
 また、被膜する金属酸化物としてはコバルト酸化物が検討されている。例えば、非特許文献7は、“High capacity and excellent cycling stability of branched cobalt oxide nanowires as Li-insertion materials”に関するものである。
 非特許文献8は、“Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors”に関するものである。
Cobalt oxide has been studied as a metal oxide to be coated. For example, Non-Patent Document 7 relates to “High capacity and excellent cycling stability of branched cobalt oxides as Li-insertion materials”.
Non-Patent Document 8 relates to “Facile preparation and electrochemical char- acterization of cobalt oxide / multi-walled carbon nanocomposites for supercapacitors”.
 また、活性表面間にカーボンナノチューブを介在させることにより、このような塊の形成を防いだグラフェンとカーボンナノチューブの複合体からなる電極を用いたキャパシターの報告もある(非特許文献1)。
しかし、これらのキャパシター電極材料でも、サイクル寿命が短く、十分な特性が得られていなかった。
There is also a report of a capacitor using an electrode made of a composite of graphene and carbon nanotubes that prevents the formation of such a mass by interposing carbon nanotubes between active surfaces (Non-patent Document 1).
However, even these capacitor electrode materials have a short cycle life, and sufficient characteristics have not been obtained.
 すなわち、上記の様々な改良を施した電極材料であっても、キャパシター電極は、電子を伝導する金属性の電流コレクターを必要とするので、キャパシター電極全体としての総比容量は低減し、産業応用上、十分な値のキャパシター性能が得られていなかった。
 そこで、比容量がより高いキャパシター電極が求められている。
In other words, even with electrode materials with various improvements as described above, the capacitor electrode requires a metallic current collector that conducts electrons, so the total specific capacity of the capacitor electrode as a whole is reduced, and industrial application In addition, sufficient capacitor performance was not obtained.
Therefore, a capacitor electrode having a higher specific capacity is desired.
 本発明は、比容量が高く、サイクル寿命の長い、金属水酸化物配向電極材料、金属水酸化物含有電極とそれらの製造方法及び金属水酸化物含有キャパシターを提供することを課題とする。 An object of the present invention is to provide a metal hydroxide-oriented electrode material, a metal hydroxide-containing electrode, a production method thereof, and a metal hydroxide-containing capacitor having a high specific capacity and a long cycle life.
 また、本発明は、比容量が高く、サイクル寿命の長い、Co(OH)垂直配向グラフェン/CNT複合体、その製造方法、Co(OH)垂直配向グラフェン/CNT複合体電極及びCo(OH)垂直配向グラフェン/CNT複合体キャパシターを提供することを課題とする。 The present invention also provides a Co (OH) 2 vertically aligned graphene / CNT composite having a high specific capacity and a long cycle life, a manufacturing method thereof, a Co (OH) 2 vertically aligned graphene / CNT composite electrode, and Co (OH). ) It is an object to provide a two vertically aligned graphene / CNT composite capacitor.
 さらに、本発明は、比容量が高く、サイクル寿命の長い板状金属水酸化物含有シート状電極、その製造方法及びキャパシターを提供することを課題とする。 Furthermore, an object of the present invention is to provide a plate-like metal hydroxide-containing sheet-like electrode having a high specific capacity and a long cycle life, a method for producing the same, and a capacitor.
 上記の課題を解決するために、本発明の金属水酸化物含有キャパシターは、以下の(1)に示される構成を有する。
(1) 金属水酸化物配向電極材料を含む金属水酸化物含有電極が2枚、電解液含浸層を挟み、対向配置されており、前記電極の一方又は双方が、
 Co(OH)垂直配向グラフェン/CNT複合体が板状電極の一面に形成されてなるCo(OH)垂直配向グラフェン/CNT複合体電極又は
 溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートと、前記溝形成処理済み導電性ファイバーの表面に集積された複数の板状金属水酸化物とからなる板状金属水酸化物含有シート状電極
であることを特徴とする金属水酸化物含有キャパシター。
In order to solve the above-mentioned problems, the metal hydroxide-containing capacitor of the present invention has a configuration shown in the following (1).
(1) Two metal hydroxide-containing electrodes containing a metal hydroxide-oriented electrode material are sandwiched between the electrolyte-impregnated layers, and one or both of the electrodes are
Co (OH) 2 vertically aligned graphene / CNT composite is formed on one surface of a plate-like electrode and Co (OH) 2 vertically aligned graphene / CNT composite electrode or groove-formed conductive fibers are knitted in a mesh shape Metallic water characterized in that it is a sheet-like metal hydroxide-containing sheet-like electrode comprising a rare sheet and a plurality of plate-like metal hydroxides accumulated on the surface of the groove-formed conductive fiber Oxide-containing capacitor.
 また、本発明者は、グラフェン/CNT複合体の表面の垂直方向にCo(OH)を結晶成長させて、グラフェン/CNT複合体をCo(OH)で被膜することにより、これを集積させても、Co(OH)からなる多孔構造を作成することができ、グラフェン/CNT複合体表面への電子移動パスやイオン拡散パスを確保でき、これらの電子やイオンを効率よく活性物質上でレドックス反応に関与させることができ、キャパシター性能を向上させることができることを見出した。
 すなわち、本発明は、以下の(2)~(9)に示される構成を有する。
In addition, the present inventor accumulated Co (OH) 2 by growing a crystal of Co (OH) 2 in the direction perpendicular to the surface of the graphene / CNT composite, and coating the graphene / CNT composite with Co (OH) 2. However, it is possible to create a porous structure made of Co (OH) 2, to secure an electron transfer path and an ion diffusion path to the surface of the graphene / CNT composite, and to efficiently move these electrons and ions on the active material. It has been found that it can be involved in the redox reaction and can improve the capacitor performance.
That is, the present invention has configurations shown in the following (2) to (9).
(2) 表面に結晶成長させたCo(OH)の板状結晶を有するグラフェンとカーボンナノチューブとの複合体からなることを特徴とするCo(OH)垂直配向グラフェン/CNT複合体。
(3) 板状結晶であるCo(OH)の主面がグラフェンの表面に接することなく、その側面のみがグラフェンの表面に接するように、グラフェンの表面にCo(OH)が結晶成長されていることを特徴とする(2)に記載のCo(OH)垂直配向グラフェン/CNT複合体。
(4) Co(OH)の径が50nm以上400nm以下であり、厚さが20nm未満であることを特徴とする(3)に記載のCo(OH)垂直配向グラフェン/CNT複合体。
(2) A Co (OH) 2 vertically aligned graphene / CNT composite comprising a composite of graphene and a carbon nanotube having a plate crystal of Co (OH) 2 grown on the surface.
(3) Co (OH) 2 is grown on the surface of the graphene so that the main surface of the plate-like Co (OH) 2 is not in contact with the surface of the graphene and only the side surface is in contact with the surface of the graphene. The Co (OH) 2 vertically aligned graphene / CNT composite according to (2), wherein
(4) The Co (OH) 2 vertically aligned graphene / CNT composite according to (3), wherein the diameter of Co (OH) 2 is 50 nm or more and 400 nm or less and the thickness is less than 20 nm.
(5) グラフェン/CNT複合体を作成する工程と、前記グラフェン/CNT複合体を、塩化コバルト又はコバルト塩の電解液中で電着処理して、グラフェンの表面にCo(OH)を結晶成長させたCo(OH)垂直配向グラフェン/CNT複合体を作成する工程と、を有することを特徴とするCo(OH)垂直配向グラフェン/CNT複合体の製造方法。
(6) 前記電着処理が、塩化コバルト又はコバルト塩の電解液中で、前記グラフェン/CNT複合体を仕事電極にして、対電極及び参照電極を用いて、電圧を印加する処理であることを特徴とする(5)に記載のCo(OH)垂直配向グラフェン/CNT複合体の製造方法。
(5) A step of creating a graphene / CNT composite, and electrodeposition treatment of the graphene / CNT composite in an electrolytic solution of cobalt chloride or a cobalt salt to grow Co (OH) 2 on the surface of the graphene manufacturing method of Co (OH) 2 vertically aligned graphene / CNT composite body characterized by having the steps of creating a Co (OH) 2 vertically aligned graphene / CNT complexes is.
(6) The electrodeposition treatment is a treatment of applying a voltage using the counter electrode and the reference electrode in the electrolytic solution of cobalt chloride or cobalt salt, using the graphene / CNT composite as a work electrode. The method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to (5), which is characterized in that
(7) 前記塩化コバルトがCoClであり、前記コバルト塩が酢酸コバルト又は硫酸コバルトであることを特徴とする(6)に記載のCo(OH)垂直配向グラフェン/CNT複合体の製造方法。
(8) (2)~(4)のいずれかに記載のCo(OH)垂直配向グラフェン/CNT複合体が板状電極の一面に形成されてなることを特徴とするCo(OH)垂直配向グラフェン/CNT複合体電極。
(9) (8)に記載のCo(OH)垂直配向グラフェン/CNT複合体電極が2枚、電解液含浸層を挟み、対向配置されていることを特徴とするCo(OH)垂直配向グラフェン/CNT複合体キャパシター。
(7) The method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to (6), wherein the cobalt chloride is CoCl 2 and the cobalt salt is cobalt acetate or cobalt sulfate.
(8) (2) to (4) either to the description of the Co (OH) 2 vertically aligned graphene / CNT complex is characterized by comprising formed on one surface of the plate-shaped electrode Co (OH) 2 vertical Oriented graphene / CNT composite electrode.
(9) two sheets Co (OH) 2 vertically aligned graphene / CNT composite electrode according to (8), sandwiched the electrolyte impregnated layer, Co (OH) 2 vertical alignment, characterized in that disposed opposite Graphene / CNT composite capacitor.
 さらに、本発明者は、新たに製造したCo(OH)フレークを、電気エッチングしたカーボンファイバーからなるシートに電着して、板状金属水酸化物含有シート状電極を作成した。SEM及びTEMで観察すると、この板状金属水酸化物含有シート状電極の表面では、Co(OH)フレークがカーボンファイバーの表面に垂直に配列するように集積されたナノ構造を形成していた。また、そのキャパシター特性を調べたところ、この板状金属水酸化物含有シート状電極の質量規格比容量は3404.8F/gとなり、面積規格比容量も3.3F/cmと非常に高いものとなった。また、CV、定常電流チャージ-ディスチャージ、電気化学インピーダンス・スペクトロスコピー(EIS)、長期間サイクリングにより特定した電気化学特性も良いものであった。この板状金属水酸化物含有シート状電極は低価格で容易に作成できるとともに、大面積化も容易であるので、次世代の高性能エネルギー貯蔵デバイスに応用可能な部材として有望であることを見出した。
 すなわち、本発明は、以下の(10)~(20)に示される構成を有する。
Furthermore, the inventor of the present invention electrodeposited newly produced Co (OH) 2 flakes on a sheet made of electroetched carbon fiber to create a plate-like metal hydroxide-containing sheet-like electrode. When observed by SEM and TEM, the surface of the sheet-like metal hydroxide-containing sheet-like electrode formed a nanostructure in which Co (OH) 2 flakes were integrated so as to be aligned perpendicular to the surface of the carbon fiber. . Further, when the capacitor characteristics were examined, this plate-like metal hydroxide-containing sheet electrode had a mass standard specific capacity of 3404.8 F / g and an area standard specific capacity of 3.3 F / cm 2 which was very high. It became. The electrochemical characteristics specified by CV, steady current charge-discharge, electrochemical impedance spectroscopy (EIS), and long-term cycling were also good. This sheet-like metal hydroxide-containing sheet-like electrode can be easily produced at a low price, and it is easy to increase the area, so it has been found to be promising as a member applicable to the next-generation high-performance energy storage device. It was.
That is, the present invention has configurations shown in the following (10) to (20).
(10) 溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートと、前記溝形成処理済み導電性ファイバーの表面に集積された複数の板状金属水酸化物とからなることを特徴とする板状金属水酸化物含有シート状電極。
(11) 前記溝形成処理済み導電性ファイバーの表面に、軸方向に略平行な方向に伸びる複数の溝部及びそれぞれの溝部を区画する壁部が設けられており、前記表面から伸長するように前記板状金属水酸化物が結晶成長していることを特徴とする(10)に記載の板状金属水酸化物含有シート状電極。
(10) It is characterized by comprising a sheet in which the groove-formed conductive fibers are knitted in a mesh shape and a plurality of plate-like metal hydroxides accumulated on the surface of the groove-formed conductive fibers. A plate-like metal hydroxide-containing sheet electrode.
(11) A plurality of groove portions extending in a direction substantially parallel to the axial direction and a wall portion partitioning each groove portion are provided on the surface of the conductive fiber that has been subjected to the groove formation treatment. The plate-like metal hydroxide-containing sheet-like electrode according to (10), wherein the plate-like metal hydroxide is crystal-grown.
(12) 前記板状金属水酸化物が、径が1μm未満であり、厚さが100nm未満であることを特徴とする(10)又は(11)に記載の板状金属水酸化物含有シート状電極。
(13) 前記板状金属水酸化物がCo(OH)、Ni(OH)、Mn(OH)の群から選択されるいずれかの材料からなることを特徴とする(12)に記載の板状金属水酸化物含有シート状電極。
(14) 前記溝形成処理済み導電性ファイバーの径が8μm以下であることを特徴とする(10)~(13)のいずれかに記載の板状金属水酸化物含有シート状電極。
(15) 前記溝形成処理済み導電性ファイバーがカーボン、ニッケル、チタンの群から選択されるいずれかの材料からなることを特徴とする(14)に記載の板状金属水酸化物含有シート状電極。
(12) The plate-like metal hydroxide-containing sheet-like material according to (10) or (11), wherein the plate-like metal hydroxide has a diameter of less than 1 μm and a thickness of less than 100 nm. electrode.
(13) The plate-like metal hydroxide is made of any material selected from the group consisting of Co (OH) 2 , Ni (OH) 2 , and Mn (OH) 2. Plate-like metal hydroxide-containing sheet-like electrode.
(14) The plate-like metal hydroxide-containing sheet-like electrode according to any one of (10) to (13), wherein the groove-formed conductive fiber has a diameter of 8 μm or less.
(15) The plate-like metal hydroxide-containing sheet-like electrode according to (14), wherein the groove-formed conductive fiber is made of any material selected from the group consisting of carbon, nickel, and titanium. .
(16) 導電性ファイバーが網目状に編みこまれてなるシートを電気エッチング処理して、前記導電性ファイバーの表面に複数の溝部を設けて、溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを作成する工程と、前記溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを、板状金属水酸化物を含有する溶液中で電着処理して、前記溝形成処理済み導電性ファイバーの表面に複数の板状金属水酸化物が集積されてなる板状金属水酸化物含有シート状電極を作成する工程と、を有することを特徴とする板状金属水酸化物含有シート状電極の製造方法。
(17) 前記溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを作成する工程で、前記導電性ファイバーの表面に軸方向に略平行な方向に伸びる複数の溝部及びそれぞれの溝部を区画する壁部を設けることを特徴とする(16)に記載の板状金属水酸化物含有シート状電極の製造方法。
(16) A sheet in which conductive fibers are woven into a mesh shape is electroetched to form a plurality of grooves on the surface of the conductive fibers, and the groove-formed conductive fibers are knitted into a mesh shape. A step of producing a rare sheet, and a sheet obtained by braiding the groove-formed conductive fibers into a network, and electrodepositing in a solution containing a plate-like metal hydroxide, to form the groove Forming a plate-like metal hydroxide-containing sheet-like electrode in which a plurality of plate-like metal hydroxides are accumulated on the surface of the formed conductive fiber. A method for producing a material-containing sheet-like electrode.
(17) In the step of creating a sheet in which the groove-formed conductive fibers are knitted in a mesh shape, a plurality of grooves extending in a direction substantially parallel to the axial direction on the surface of the conductive fibers, and each groove A method for producing a plate-like metal hydroxide-containing sheet-like electrode according to (16), characterized in that a wall part for partitioning is provided.
(18) 前記電気エッチング処理が、ポテンシオスタットで電圧を印加する処理であることを特徴とする(16)又は(17)に記載の板状金属水酸化物含有シート状電極の製造方法。
(19) 前記電着処理が、板状金属水酸化物を含有する溶液中で、前記溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを仕事電極に、対電極及び参照電極を用いて、電圧を印加する処理であることを特徴とする(16)~(18)のいずれかに記載の板状金属水酸化物含有シート状電極の製造方法。
(18) The method for producing a sheet-like metal hydroxide-containing sheet-like electrode according to (16) or (17), wherein the electric etching treatment is a treatment of applying a voltage with a potentiostat.
(19) In the solution containing the plate-like metal hydroxide in the electrodeposition treatment, a sheet obtained by braiding the groove-formed conductive fibers into a mesh shape is used as a work electrode, a counter electrode and a reference electrode The method for producing a sheet-like metal hydroxide-containing sheet-like electrode according to any one of (16) to (18), which is a treatment for applying a voltage using
(20) 2枚の電極が、電解液含浸層を挟み、対向配置されており、前記電極の一方又は双方が(10)~(15)のいずれかに記載の板状金属水酸化物含有シート状電極であることを特徴とする板状金属水酸化物含有キャパシター。 (20) Two electrodes are disposed opposite each other with an electrolyte-impregnated layer interposed therebetween, and one or both of the electrodes is a sheet metal hydroxide-containing sheet according to any one of (10) to (15) A plate-like metal hydroxide-containing capacitor, wherein the capacitor is a plate-like electrode.
 本発明により、比容量が高く、サイクル寿命の長い、金属水酸化物配向電極材料、金属水酸化物含有電極とそれらの製造方法及び金属水酸化物含有キャパシターが提供される。 According to the present invention, a metal hydroxide oriented electrode material, a metal hydroxide-containing electrode, a method for producing them, and a metal hydroxide-containing capacitor having a high specific capacity and a long cycle life are provided.
 本発明のCo(OH)垂直配向グラフェン/CNT複合体は、表面に結晶成長させたCo(OH)の板状結晶を有するグラフェンとカーボンナノチューブとの複合体からなる構成なので、グラフェンの表面に高密度で板状結晶を成長させ、集積してもグラフェンの表面活性を低下させないようにでき、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極材料に用いることができる。 Since the Co (OH) 2 vertically aligned graphene / CNT composite of the present invention is composed of a composite of graphene having a plate crystal of Co (OH) 2 grown on the surface and a carbon nanotube, the surface of the graphene Even when plate crystals are grown at a high density and accumulated, the surface activity of graphene can be prevented from being lowered, and it can be used as an electrode material capable of constituting a capacitor having a high specific capacity and a long cycle life.
 本発明のCo(OH)垂直配向グラフェン/CNT複合体の製造方法は、グラフェン/CNT複合体を作成する工程と、前記グラフェン/CNT複合体を、塩化コバルト又はコバルト塩の電解液中で電着処理して、グラフェンの表面にCo(OH)を結晶成長させたCo(OH)垂直配向グラフェン/CNT複合体を作成する工程と、を有する構成なので、容易に、短時間で、グラフェンの表面に高密度で板状結晶を成長させ、集積してもグラフェンの表面活性を低下させないようにでき、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極材料に用いることができるCo(OH)垂直配向グラフェン/CNT複合体を作成できる。 The method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to the present invention includes a step of preparing a graphene / CNT composite, and the graphene / CNT composite is electrolyzed in an electrolytic solution of cobalt chloride or a cobalt salt. And forming a Co (OH) 2 vertically aligned graphene / CNT composite in which Co (OH) 2 is crystal-grown on the surface of the graphene, so that the graphene can be easily and in a short time. Co, which can be used as an electrode material that can grow a plate crystal at a high density on the surface of the metal and can prevent the surface activity of graphene from being lowered even if it is accumulated, can be used to construct a capacitor with a high specific capacity and a long cycle life. (OH) 2 vertically aligned graphene / CNT composites can be made.
 本発明のCo(OH)垂直配向グラフェン/CNT複合体電極は、先に記載のCo(OH)垂直配向グラフェン/CNT複合体が板状電極の一面に形成されてなる構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。 Co (OH) 2 vertically aligned graphene / CNT composite electrode of the present invention has a constitution in which Co described previously (OH) 2 vertically aligned graphene / CNT composite is formed on one surface of the plate-shaped electrode, the specific capacity Therefore, an electrode capable of forming a capacitor having a high cycle life is provided.
 本発明のCo(OH)垂直配向グラフェン/CNT複合体キャパシターは、先に記載のCo(OH)垂直配向グラフェン/CNT複合体電極が2枚、電解液含浸層を挟み、対向配置されている構成なので、比容量が高く、サイクル寿命の長いキャパシターとすることができる。 The Co (OH) 2 vertically aligned graphene / CNT composite capacitor according to the present invention has two Co (OH) 2 vertically aligned graphene / CNT composite electrodes, which are described above, sandwiched between the electrolyte-impregnated layers. Therefore, a capacitor having a high specific capacity and a long cycle life can be obtained.
 本発明の板状金属水酸化物含有シート状電極は、溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートと、前記溝形成処理済み導電性ファイバーの表面に集積された複数の板状金属水酸化物とからなる構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。 The plate-like metal hydroxide-containing sheet-like electrode of the present invention includes a sheet in which groove-formed conductive fibers are knitted in a mesh shape, and a plurality of grooves integrated on the surface of the groove-formed conductive fibers. Since it is composed of a plate-like metal hydroxide, it is possible to provide an electrode that can constitute a capacitor having a high specific capacity and a long cycle life.
 本発明の板状金属水酸化物含有シート状電極の製造方法は、導電性ファイバーが網目状に編みこまれてなるシートを電気エッチング処理して、前記導電性ファイバーの表面に複数の溝部を設けて、溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを作成する工程と、前記溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを、板状金属水酸化物を含有する溶液中で電着処理して、前記溝形成処理済み導電性ファイバーの表面に複数の板状金属水酸化物が集積されてなる板状金属水酸化物含有シート状電極を作成する工程と、を有する構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極を容易に作成することができる。 The method for producing a plate-like metal hydroxide-containing sheet-like electrode according to the present invention is such that a sheet in which conductive fibers are knitted in a mesh shape is electroetched to provide a plurality of grooves on the surface of the conductive fibers. And forming a sheet in which the groove-formed conductive fibers are woven into a mesh shape, and forming a sheet in which the groove-formed conductive fibers are knitted into a mesh shape. A plate-like metal hydroxide-containing sheet-like electrode in which a plurality of plate-like metal hydroxides are accumulated on the surface of the groove-formed conductive fiber is prepared by electrodeposition in a solution containing a product. Therefore, an electrode capable of forming a capacitor having a high specific capacity and a long cycle life can be easily produced.
 本発明の板状金属水酸化物含有キャパシターは、2枚の電極が、電解液含浸層を挟み、対向配置されており、前記電極の一方又は双方が(10)~(15)のいずれかに記載の板状金属水酸化物含有シート状電極である構成なので、比容量が高く、サイクル寿命の長いキャパシターとすることができる。 In the plate-like metal hydroxide-containing capacitor of the present invention, two electrodes are disposed opposite to each other with an electrolyte-impregnated layer interposed therebetween, and one or both of the electrodes are any one of (10) to (15). Since it is a structure which is a plate-shaped metal hydroxide containing sheet-like electrode of description, it can be set as a capacitor with a high specific capacity and a long cycle life.
本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体キャパシターの一例を示す模式図であって、平面図(a)と側面図(b)である。It is a schematic diagram which shows an example of the Co (OH) 2 vertical alignment graphene / CNT composite capacitor which is 1st embodiment of this invention, Comprising: It is a top view (a) and a side view (b). 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体の一例を示す模式図であって、平面図(a)、側面図(b)、(a)のA部拡大図(c)、(b)のB部拡大図(d)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the Co (OH) 2 vertical alignment graphene / CNT composite_body | complex which is 1st embodiment of this invention, Comprising: Plan A (a), Side view (b), Part A of (a) It is the B section enlarged view (d) of enlarged view (c), (b). グラフェン酸化物作成工程とグラフェン作成工程を説明する工程図である。It is process drawing explaining a graphene oxide creation process and a graphene creation process. グラフェンからCo(OH)垂直配向グラフェン/CNT複合体への製造工程の一例を示す工程図である。It is process drawing which shows an example of the manufacturing process from a graphene to a Co (OH) 2 vertical alignment graphene / CNT composite. 実施例1のTEM像(a)、拡大TEM像(b)、SEM像(c)、拡大SEM像(d)である。They are the TEM image (a) of Example 1, an enlarged TEM image (b), an SEM image (c), and an enlarged SEM image (d). 実施例1のTEM像(a)、STEM像(b)、C成分マッピング像(c)、O成分マッピング像(d)、Co成分マッピング像(e)である。They are the TEM image (a), STEM image (b), C component mapping image (c), O component mapping image (d), and Co component mapping image (e) of Example 1. 実施例1のCV曲線(a)、ガルバノスタティック・チャージ・ディスチャージ曲線(b)、EISのナイキスト・プロット(c)、サイクル特性(d)である。They are the CV curve (a) of Example 1, a galvanostatic charge discharge curve (b), the Nyquist plot (c) of EIS, and the cycle characteristic (d). グラフェンへイオンが接する様子を説明する図(a)と、再スタックしたグラフェンにイオンが接する様子を説明する図(b)である。It is a figure explaining a mode that an ion contacts graphene, and a figure explaining a mode that an ion contacts restacked graphene. 本発明の第二の実施形態である板状金属水酸化物含有キャパシターの一例を示す模式図であって、平面図(a)と側面図(b)である。It is a schematic diagram which shows an example of the plate-shaped metal hydroxide containing capacitor which is 2nd embodiment of this invention, Comprising: It is a top view (a) and a side view (b). 本発明の第二の実施形態である板状金属水酸化物含有シート状電極の一例を示す模式図であって、平面図(a)、側面図(b)、(a)のA部拡大図(c)である。It is a schematic diagram which shows an example of the plate-shaped metal hydroxide containing sheet-like electrode which is 2nd embodiment of this invention, Comprising: The A section enlarged view of a top view (a), a side view (b), (a) (C). 図10(c)のB部拡大図(a)、(a)のC-C´線における断面図(b)、(b)のD部拡大図(c)である。FIG. 10B is an enlarged view (B) of FIG. 10C, a cross-sectional view taken along line CC ′ of FIG. 10A, and an enlarged view of portion D (c) of FIG. 本発明の第二の実施形態である板状金属水酸化物含有シート状電極の製造方法の一例を示すフローチャート図である。It is a flowchart figure which shows an example of the manufacturing method of the plate-shaped metal hydroxide containing sheet-like electrode which is 2nd embodiment of this invention. 本発明の第二の実施形態である板状金属水酸化物含有シート状電極の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the plate-shaped metal hydroxide containing sheet-like electrode which is 2nd embodiment of this invention. 本発明の第二の実施形態である導電性ファイバーシートの一例を示す図であって、平面図(a)、側面図(b)、(a)のA部拡大図(c)、(c)のB部拡大図(d)である。It is a figure which shows an example of the electroconductive fiber sheet which is 2nd embodiment of this invention, Comprising: Plan view (a), side view (b), A part enlarged view (c) of (a), (c) It is a B section enlarged view of (d). 本発明の第二の実施形態である溝形成処理済み導電性ファイバーシートの一例を示す図であって、平面図(a)、側面図(b)、(a)のA部拡大図(c)である。It is a figure which shows an example of the conductive fiber sheet by which the groove formation process is 2nd embodiment of this invention, Comprising: Plane (a), side view (b), A part enlarged view (a) of (a) It is. 溝形成処理済み導電性ファイバーの一例を示す図であって、図15(c)のB部拡大図(a)、(a)のC-C´線における断面図(b)である。It is a figure which shows an example of the electroconductive fiber by which the groove | channel formation process was carried out, Comprising: It is sectional drawing (b) in CC line of (a) and (a) of the B section of FIG.15 (c). 電着処理の初期における溝形成処理済み導電性ファイバーの表面の一例を示す図であって、(a)は図16(a)、(b)は図16(b)に対応した図である。It is a figure which shows an example of the surface of the conductive fiber by which the groove formation process was carried out in the initial stage of an electrodeposition process, Comprising: (a) is a figure corresponding to FIG.16 (a), (b) is FIG.16 (b). カーボンファイバーシートのSEM像である。It is a SEM image of a carbon fiber sheet. カーボンファイバーのSEM像である。It is a SEM image of carbon fiber. 溝形成処理済みカーボンファイバーシートのSEM像である。It is a SEM image of a carbon fiber sheet having been subjected to groove formation processing. コーティング密度1mg/cmの板状金属水酸化物含有シート状電極のSEM像である。SEM images of the coating density 1 mg / cm 2 of sheet metal hydroxide-containing sheet electrode. コーティング密度1mg/cmの板状金属水酸化物含有シート状電極の拡大SEM像である。It is an enlarged SEM image of a sheet-like metal hydroxide-containing sheet electrode having a coating density of 1 mg / cm 2 . Co(OH)の電子回析パターン(Electron Diffraction Pattern)である。It is the electron diffraction pattern (Electron Diffraction Pattern) of Co (OH) 2 . Co(OH)のTEM像である。It is a TEM image of Co (OH) 2 . 高分解TEM(High -resolution TEM)像である。It is a high-resolution TEM (High-resolution TEM) image. コーティング密度3mg/cmのSEM像である。It is a SEM image with a coating density of 3 mg / cm 2 . 実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)のCV曲線であって、スキャン速度依存性を示すグラフである。4 is a CV curve of a plate-like metal hydroxide-containing sheet-like electrode of Example 2-1 (working electrode: coating density 1 mg / cm 2 ), and is a graph showing scan speed dependency. 実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)のチャージ・ディスチャージ曲線であって、チャージ電流値依存性を示すグラフである。6 is a charge / discharge curve of a plate-like metal hydroxide-containing sheet-like electrode of Example 2-1 (working electrode: coating density 1 mg / cm 2 ), and is a graph showing the charge current value dependency. 実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)のEIS曲線である。挿入図は、Z1を1.5~2.0の範囲(高周波数領域)としたグラフである。It is an EIS curve of the sheet metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1. The inset is a graph with Z1 in the range of 1.5 to 2.0 (high frequency region). 板状金属水酸化物含有シート状電極(仕事電極)の質量規格比容量とチャージ電流値との関係を示すグラフであって、コーティング密度依存性を示すものである。It is a graph which shows the relationship between the mass specification specific capacity | capacitance of a sheet-like metal hydroxide containing sheet-like electrode (work electrode), and a charge current value, Comprising: Coating density dependence is shown. 実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)の面積規格比容量とチャージ電流値との関係を示すグラフである。6 is a graph showing the relationship between the area-specific specific capacity and the charge current value of the plate-like metal hydroxide-containing sheet-like electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1. 実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)の保持力(retention)とサイクル数との関係を示すグラフである。It is a graph which shows the relationship between the retention strength (retention) of the sheet-like metal hydroxide containing sheet-like electrode of Example 2-1 (working electrode: coating density 1 mg / cm < 2 >), and the number of cycles. 実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)総比容量とチャージ電流値との関係を示すグラフである。6 is a graph showing the relationship between the sheet metal electrode-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) total specific capacity and charge current value of Example 2-1.
(本発明の第一の実施形態)
 以下、添付図面を参照しながら、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体、その製造方法、Co(OH)垂直配向グラフェン/CNT複合体電極及びCo(OH)垂直配向グラフェン/CNT複合体キャパシターについて説明する。
(First embodiment of the present invention)
Hereinafter, a Co (OH) 2 vertically aligned graphene / CNT composite, a method for manufacturing the same, a Co (OH) 2 vertically aligned graphene / CNT composite electrode, and a first embodiment of the present invention will be described with reference to the accompanying drawings. A Co (OH) 2 vertically aligned graphene / CNT composite capacitor will be described.
<Co(OH)垂直配向グラフェン/CNT複合体キャパシター>
 まず、本発明の第一の実施形態であるキャパシターについて説明する。
 図1は、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体キャパシターの一例を示す模式図であって、平面図(a)と側面図(b)である。
 図1(a)に示すように、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体キャパシター1は、平面視略円形状である。しかし、この平面視形状に限られるものではなく、矩形状、多角形状としてもよい。
 図1(b)に示すように、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体キャパシター1は、2枚の本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体電極21が、電解液含浸層13を挟み、対向配置されて、概略構成されている。電解液含浸層13は、セパレーターを兼ねる。
 対称電極の構成としたが、例えば、正極がCo(OH)コーティングしたGraphene/CNTであり、負極がGraphene/CNTである非対称電極の構成としてもよい。
 コインセルとする場合には、2枚のCo(OH)垂直配向グラフェン/CNT複合体電極21それぞれにコインセルキャップを接触させて、キャパシターを構成する。この場合、ガスケット、スプリング、スチールスペーサーなどをコインセル内に介在させる。
Co(OH)垂直配向グラフェン/CNT複合体キャパシターは、電気二重層キャパシターであり、スーパーキャパシターの一つである。
<Co (OH) 2 vertically aligned graphene / CNT composite capacitor>
First, the capacitor which is 1st embodiment of this invention is demonstrated.
FIG. 1 is a schematic view showing an example of a Co (OH) 2 vertically aligned graphene / CNT composite capacitor according to the first embodiment of the present invention, and is a plan view (a) and a side view (b). .
As shown in FIG. 1A, the Co (OH) 2 vertically aligned graphene / CNT composite capacitor 1 according to the first embodiment of the present invention has a substantially circular shape in plan view. However, the shape is not limited to this planar view shape, and may be a rectangular shape or a polygonal shape.
As shown in FIG. 1B, the Co (OH) 2 vertically aligned graphene / CNT composite capacitor 1 according to the first embodiment of the present invention is composed of two sheets of Co according to the first embodiment of the present invention. The (OH) 2 vertically aligned graphene / CNT composite electrode 21 is roughly configured with the electrolyte solution impregnated layer 13 sandwiched therebetween. The electrolyte solution impregnated layer 13 also serves as a separator.
Although the configuration of the symmetric electrode is used, for example, a configuration of an asymmetric electrode in which the positive electrode is Graphene / CNT coated with Co (OH) 2 and the negative electrode is Graphene / CNT may be used.
In the case of a coin cell, a capacitor is configured by bringing a coin cell cap into contact with each of the two Co (OH) 2 vertically aligned graphene / CNT composite electrodes 21. In this case, a gasket, a spring, a steel spacer, etc. are interposed in the coin cell.
The Co (OH) 2 vertically aligned graphene / CNT composite capacitor is an electric double layer capacitor and one of supercapacitors.
<Co(OH)垂直配向グラフェン/CNT複合体電極>
 図1(b)に示すように、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体電極21は、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体12が板状電極11の一面に形成されてなる。
<Co (OH) 2 vertically aligned graphene / CNT composite electrode>
As shown in FIG. 1B, the Co (OH) 2 vertically aligned graphene / CNT composite electrode 21 according to the first embodiment of the present invention is the Co (OH) according to the first embodiment of the present invention. Two vertically aligned graphene / CNT composites 12 are formed on one surface of the plate electrode 11.
 板状電極11は、例えば、ステンレス鋼(Stainless steel)、チタン(Titanium)、ニッケル(Nickel)等の金属を用いる。板状電極11は、集電極(current collector)として利用する。
Co(OH)垂直配向グラフェン/CNT複合体12の膜厚は、100nm以上10μm以下とする。これにより、比容量の高い電気二重層キャパシターを形成できる。
The plate-like electrode 11 uses, for example, a metal such as stainless steel, titanium (Titanium), nickel (Nickel) or the like. The plate electrode 11 is used as a current collector.
The film thickness of the Co (OH) 2 vertically aligned graphene / CNT composite 12 is 100 nm or more and 10 μm or less. Thereby, an electric double layer capacitor having a high specific capacity can be formed.
<Co(OH)垂直配向グラフェン/CNT複合体>
 次に、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体について説明する。
 図2は、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体の一例を示す模式図であって、平面図(a)、側面図(b)、(a)のA部拡大図(c)、(b)のB部拡大図(d)である。
 図2(a)に示すように、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体12は、平面視略円形状である。しかし、この平面視形状に限られるものではなく、矩形状、多角形状としてもよい。
<Co (OH) 2 vertically aligned graphene / CNT composite>
Next, the Co (OH) 2 vertically aligned graphene / CNT composite according to the first embodiment of the present invention will be described.
FIG. 2 is a schematic view showing an example of the Co (OH) 2 vertically aligned graphene / CNT composite according to the first embodiment of the present invention, and is a plan view (a), a side view (b), (a (B) is an enlarged view (d) of a portion B in (b).
As shown in FIG. 2A, the Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention has a substantially circular shape in plan view. However, the shape is not limited to this planar view shape, and may be a rectangular shape or a polygonal shape.
 図2(c)、(d)に示すように、Co(OH)垂直配向グラフェン/CNT複合体12は、表面に結晶成長させたCo(OH)の板状結晶33を有するグラフェン31とカーボンナノチューブ32との複合体からなる。
 カーボンナノチューブ32は2枚のグラフェン31の間に介在している。
As shown in FIGS. 2C and 2D, the Co (OH) 2 vertically aligned graphene / CNT composite 12 includes a graphene 31 having a plate crystal 33 of Co (OH) 2 grown on the surface, and It consists of a composite with carbon nanotubes 32.
The carbon nanotube 32 is interposed between the two graphenes 31.
 板状結晶であるCo(OH)の主面がグラフェンの表面に接することなく、その側面のみがグラフェンの表面に接するように、グラフェンの表面に垂直配向させてCo(OH)が結晶成長されていることが好ましい。これにより、外部から表面に連通した多数の細孔33cからなる多孔構造が形成されている。これを電子及び/又はイオンの活性表面への供給パスとして利用でき、グラフェンの高い活性表面の性能を維持することができる。 Co (OH) 2 is crystal-grown by aligning perpendicularly to the surface of graphene so that the main surface of Co (OH) 2 that is a plate-like crystal does not contact the surface of graphene, but only its side surface contacts the surface of graphene It is preferable that Thereby, a porous structure composed of a large number of pores 33c communicating with the surface from the outside is formed. This can be utilized as a supply path of electrons and / or ions to the active surface, and the high active surface performance of graphene can be maintained.
 Co(OH)の径が50nm以上400nm以下であり、厚さが20nm未満であることが好ましい。これにより、400nm以下の径の細孔からなる多孔構造を形成することができる。 It is preferable that the diameter of Co (OH) 2 is 50 nm or more and 400 nm or less and the thickness is less than 20 nm. Thereby, a porous structure composed of pores having a diameter of 400 nm or less can be formed.
<Co(OH)垂直配向グラフェン/CNT複合体電極の製造方法>
 次に、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体の製造方法について説明する。
 まず、原料となるグラフェンを、修正ハマース-オフマン法(Modified Hummers-Offeman method)により合成する。この方法は、グラファイトからグラフェン酸化物を作成するグラフェン酸化物作成工程と、グラフェン酸化物を還元してグラフェンを作成するグラフェン作成工程とからなる。
 図3は、グラフェン酸化物作成工程とグラフェン作成工程を説明する工程図である。
<Method for producing Co (OH) 2 vertically aligned graphene / CNT composite electrode>
Next, a method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to the first embodiment of the present invention will be described.
First, graphene as a raw material is synthesized by a modified Hammers-Offman method (Modified Hummers-Offeman method). This method includes a graphene oxide creation step of creating graphene oxide from graphite and a graphene creation step of reducing graphene oxide to create graphene.
FIG. 3 is a process diagram illustrating a graphene oxide creation process and a graphene creation process.
(グラフェン酸化物作成工程)
 まず、フラスコ中で、グラファイトとNaNOを混合する。
 次に、フラスコ中に、HSO(95%)を加える。
 次に、アイスバス中でかき混ぜ、懸濁液とする。
 次に、懸濁液に過マンガン酸カリウム(potassium permanganate)を加える。
 次に、懸濁液を室温で所定時間(例えば、2時間)かき混ぜる。
 次に、懸濁液を希釈し、98℃で所定時間(例えば、12時間)かき混ぜる。
 次に、Hを加える。
 次に、生成物を酸性水溶液(例えば、5%HCl及び脱イオン水)で洗浄する。
 次に、遠心分離し、濾過してから、真空乾燥する。
 以上の工程により、黒い粉末状のグラフェン酸化物を作成する。
(Graphene oxide production process)
First, graphite and NaNO 3 are mixed in a flask.
Next, H 2 SO 4 (95%) is added to the flask.
Next, stir in an ice bath to make a suspension.
Next, potassium permanganate is added to the suspension.
Next, the suspension is stirred at room temperature for a predetermined time (for example, 2 hours).
Next, the suspension is diluted and stirred at 98 ° C. for a predetermined time (for example, 12 hours).
Next, H 2 O 2 is added.
The product is then washed with an acidic aqueous solution (eg, 5% HCl and deionized water).
Next, it is centrifuged, filtered and then dried in vacuum.
Through the above steps, black powder graphene oxide is formed.
(グラフェン作成工程)
 まず、グラフェン酸化物を蒸留水に分散し、所定時間(例えば、30分間)、超音波を照射する。
 次に、懸濁液を100℃に加熱する。
 次に、ヒドラジン水和物を加える。
 次に、懸濁液を98℃で所定時間(例えば、24時間)加熱し、グラフェン酸化物をグラフェンに還元する。
 次に、濾過により、還元したグラフェンを収集する。
 次に、収集物を蒸留水で洗浄し、過剰なヒドラジンを除去する。
 次に、水中に再分散し、超音波を印加してから、遠心分離する。
 次に、真空濾過により、最終生成物を収集する。
 以上の工程により、グラフェンを作成する。
(Graphene creation process)
First, graphene oxide is dispersed in distilled water and irradiated with ultrasonic waves for a predetermined time (for example, 30 minutes).
The suspension is then heated to 100 ° C.
Next, hydrazine hydrate is added.
Next, the suspension is heated at 98 ° C. for a predetermined time (for example, 24 hours) to reduce the graphene oxide to graphene.
Next, the reduced graphene is collected by filtration.
The collection is then washed with distilled water to remove excess hydrazine.
Next, redispersion in water, application of ultrasonic waves, and centrifugation.
The final product is then collected by vacuum filtration.
Graphene is created through the above steps.
 図4は、本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体の製造方法の一例を示す工程図である。
 図4に示すように、本発明の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体の製造方法は、グラフェン/CNT複合体作成工程S1と、Co(OH)垂直配向グラフェン/CNT複合体作成工程S2と、を有する。
FIG. 4 is a process diagram showing an example of a method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to the first embodiment of the present invention.
As shown in FIG. 4, the Co (OH) 2 vertically aligned graphene / CNT composite manufacturing method according to the embodiment of the present invention includes a graphene / CNT composite creating step S1 and a Co (OH) 2 vertically aligned graphene / CNT composite production process S2.
(グラフェン/CNT複合体作成工程S1)
 まず、上記工程で作成したグラフェンを、カーボンナノチューブ(CNT)とともに、アルコール(例えば、エタノール)中で混合する。
 次に、真空濾過する。
 以上の工程により、フィルム状のグラフェン/CNT複合体を作成する。
(Graphene / CNT composite production process S1)
First, the graphene prepared in the above process is mixed in an alcohol (for example, ethanol) together with carbon nanotubes (CNT).
Next, vacuum filtration is performed.
Through the above steps, a film-like graphene / CNT composite is prepared.
(Co(OH)垂直配向グラフェン/CNT複合体作成工程S2)
 次に、塩化コバルト又はコバルト塩の電解液中に、フィルム状のグラフェン/CNT複合体を仕事電極(working electrode)にして一端側を浸漬させる。また、対電極(counter electrode)及び参照電極も一端側を浸漬させる。
対電極としてプラチナ・プレートを用いる。また、参照電極として飽和Ag/AgCl参照電極を用いる。仕事関数と対電極との間の距離は、例えば、1.5cmに固定する。
 コバルト塩としては、二価コバルトの酢酸塩である酢酸コバルト(II)(Cobalt(II) acetate:Co(C・4HO)、二価コバルトの硫酸塩である硫酸コバルト(II)(Cobalt(II) sulfate:CoSO)を挙げることができる。
 塩化コバルトとしては、CoClで表される塩化コバルト(II)(Cobalt(II) chloride)を挙げることができる。
(Co (OH) 2 vertical alignment graphene / CNT composite preparation step S2)
Next, one end of the film-like graphene / CNT composite is immersed in a cobalt chloride or cobalt salt electrolyte as a working electrode. Also, the counter electrode and the reference electrode are immersed at one end side.
A platinum plate is used as the counter electrode. A saturated Ag / AgCl reference electrode is used as the reference electrode. The distance between the work function and the counter electrode is fixed at, for example, 1.5 cm.
Examples of the cobalt salt include cobalt (II) acetate (Co (II) acetate: Co (C 2 H 3 O 2 ) 2 · 4H 2 O), sulfuric acid that is a divalent cobalt sulfate. Examples thereof include cobalt (II) (Cobalt (II) sulfate: CoSO 4 ).
An example of cobalt chloride is cobalt (II) chloride represented by CoCl 2 .
 塩化コバルト又はコバルト塩の電解液は、アルコール溶液とする。10%エタノール溶液が好ましい。塩化コバルト又はコバルト塩の濃度は、例えば、1Mとする。また、水酸化カリウム(Potassium hydroxide)を分散させることが好ましい。 The electrolytic solution of cobalt chloride or cobalt salt is an alcohol solution. A 10% ethanol solution is preferred. The concentration of cobalt chloride or cobalt salt is, for example, 1M. Moreover, it is preferable to disperse potassium hydroxide (Potassium hydroxide).
 次に、それぞれの電極を電源に接続し、電極間に電圧を印加して、グラフェン/CNT複合体のグラフェンの表面にCo(OH)を結晶成長させる電着(カソード蒸着)処理する。
 電着処理工程は核形成工程と結晶成長工程の2段階で行うことが好ましい。
核形成工程は、室温で1mA以下の電流を流す工程である。この工程で、グラフェン表面に結晶成長のための核を形成できる。
 結晶成長工程では、5mA/cm以上の電流密度とする工程である。この工程で、核から表面に垂直な方向に伸長するように結晶成長させることができる。
 それぞれの電圧印加時間、すなわち、電流を流す時間を制御することにより、形成する核の数、大きさ、結晶成長速度、結晶の大きさ等を制御でき、膜の厚さ、密度を制御することができる。
Next, each electrode is connected to a power source, and a voltage is applied between the electrodes to perform electrodeposition (cathode deposition) treatment for crystal growth of Co (OH) 2 on the graphene surface of the graphene / CNT composite.
The electrodeposition process is preferably performed in two stages, a nucleation process and a crystal growth process.
The nucleation step is a step of passing a current of 1 mA or less at room temperature. In this step, nuclei for crystal growth can be formed on the graphene surface.
In the crystal growth step, the current density is set to 5 mA / cm 2 or more. In this step, crystals can be grown so as to extend from the nucleus in a direction perpendicular to the surface.
By controlling the voltage application time, that is, the current flow time, the number, size, crystal growth rate, crystal size, etc. of the nuclei to be formed can be controlled, and the thickness and density of the film can be controlled. Can do.
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体12は、表面に結晶成長させたCo(OH)の板状結晶33を有するグラフェン31とカーボンナノチューブ32との複合体からなる構成なので、グラフェンの表面に高密度で板状結晶を成長させ、集積してもグラフェンの表面活性を低下させないようにでき、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極材料に用いることができる。 The Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention includes a graphene 31 having a plate crystal 33 of Co (OH) 2 grown on the surface, a carbon nanotube 32, Because it is composed of a composite of the above, a plate-like crystal can be grown at a high density on the surface of graphene, and even if accumulated, the surface activity of graphene is not lowered, and a capacitor with a high specific capacity and a long cycle life can be configured Can be used for various electrode materials.
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体12は、板状結晶33であるCo(OH)の主面がグラフェン31の表面に接することなく、その側面のみがグラフェン31の表面に接するように、グラフェン31の表面に垂直配向させてCo(OH)が結晶成長されている構成なので、グラフェンの表面に高密度で板状結晶を垂直配向させて成長させ、多孔構造を形成し、集積してもグラフェンの表面活性を低下させず、イオンパスを確保でき、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極材料に用いることができる。 The Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention has a main surface of Co (OH) 2 that is the plate crystal 33 without contacting the surface of the graphene 31. Since Co (OH) 2 is grown on the surface of the graphene 31 so that only the side surface is in contact with the surface of the graphene 31, the plate crystal is vertically oriented at a high density on the surface of the graphene. Even when grown, formed into a porous structure, and integrated, it can be used as an electrode material that can secure a ion path without degrading the surface activity of graphene, and can constitute a capacitor with a high specific capacity and a long cycle life.
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体12は、Co(OH)の径が50nm以上400nm以下であり、厚さが20nm未満である構成なので、密な細孔からなる多孔構造を形成でき、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極材料に用いることができる。 The Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention has a configuration in which the diameter of Co (OH) 2 is 50 nm or more and 400 nm or less and the thickness is less than 20 nm. A porous structure composed of dense pores can be formed, and can be used as an electrode material capable of constituting a capacitor having a high specific capacity and a long cycle life.
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体12の製造方法は、グラフェン/CNT複合体を作成する工程と、前記グラフェン/CNT複合体を、塩化コバルト又はコバルト塩の電解液中で電着処理して、グラフェンの表面にCo(OH)を結晶成長させたCo(OH)垂直配向グラフェン/CNT複合体を作成する工程と、を有する構成なので、容易に、短時間で、グラフェンの表面に高密度で板状結晶を成長させ、集積してもグラフェンの表面活性を低下させないようにでき、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極材料に用いることができるCo(OH)垂直配向グラフェン/CNT複合体を作成できる。 The method for producing the Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention includes a step of producing a graphene / CNT composite, and the graphene / CNT composite is made of cobalt chloride or And a step of producing a Co (OH) 2 vertically aligned graphene / CNT composite in which Co (OH) 2 is crystal-grown on the surface of graphene by electrodeposition in an electrolytic solution of a cobalt salt, Easily grow plate crystals at a high density on the surface of graphene in a short time, so that the surface activity of graphene is not lowered even if it is accumulated, and it is possible to construct a capacitor with a high specific capacity and a long cycle life A Co (OH) 2 vertically aligned graphene / CNT composite that can be used as an electrode material can be produced.
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体12の製造方法は、前記電着処理が、塩化コバルト又はコバルト塩の電解液中で、前記グラフェン/CNT複合体を仕事電極にして、対電極及び参照電極を用いて、電圧を印加する処理である構成なので、容易に、短時間で、Co(OH)垂直配向グラフェン/CNT複合体を作成できる。
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体12の製造方法は、前記塩化コバルトがCoClであり、前記コバルト塩が酢酸コバルト又は硫酸コバルトである構成なので、容易に、短時間で、Co(OH)垂直配向グラフェン/CNT複合体を作成できる。
The method for producing a Co (OH) 2 vertically aligned graphene / CNT composite 12 according to the first embodiment of the present invention is such that the electrodeposition treatment is carried out in an electrolytic solution of cobalt chloride or a cobalt salt. Since the body is a work electrode and a voltage is applied using a counter electrode and a reference electrode, a Co (OH) 2 vertically aligned graphene / CNT composite can be easily produced in a short time.
Since the cobalt chloride is CoCl 2 and the cobalt salt is cobalt acetate or cobalt sulfate, the Co (OH) 2 vertically aligned graphene / CNT composite 12 manufacturing method according to the first embodiment of the present invention is configured. A Co (OH) 2 vertically aligned graphene / CNT composite can be easily produced in a short time.
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体電極21は、Co(OH)垂直配向グラフェン/CNT複合体12が板状電極11の一面に形成されてなる構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。 The Co (OH) 2 vertically aligned graphene / CNT composite electrode 21 according to the first embodiment of the present invention has a Co (OH) 2 vertically aligned graphene / CNT composite electrode 12 formed on one surface of the plate electrode 11. Therefore, an electrode having a high specific capacity and a long cycle life can be formed.
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体キャパシター1は、Co(OH)垂直配向グラフェン/CNT複合体電極21が2枚、電解液含浸層13を挟み、対向配置されている構成なので、比容量が高く、サイクル寿命の長いキャパシターとすることができる。 The Co (OH) 2 vertically aligned graphene / CNT composite capacitor 1 according to the first embodiment of the present invention includes two Co (OH) 2 vertically aligned graphene / CNT composite electrodes 21 and an electrolyte-impregnated layer 13. Since the structure is sandwiched and opposed, a capacitor having a high specific capacity and a long cycle life can be obtained.
 本発明の第一の実施形態であるCo(OH)垂直配向グラフェン/CNT複合体、その製造方法、Co(OH)垂直配向グラフェン/CNT複合体電極及びCo(OH)垂直配向グラフェン/CNT複合体キャパシターは、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例1で示す。しかし、本発明はこれらの実施例に限定されるものではない。 Co (OH) 2 vertically aligned graphene / CNT composite, manufacturing method thereof, Co (OH) 2 vertically aligned graphene / CNT composite electrode and Co (OH) 2 vertically aligned graphene / The CNT composite capacitor is not limited to the above embodiment, and can be implemented with various modifications within the scope of the technical idea of the present invention. A specific example of this embodiment is shown in Example 1 below. However, the present invention is not limited to these examples.
(本発明の第二の実施形態)
 以下、添付図面を参照しながら、本発明の第二の実施形態である板状金属水酸化物含有シート状電極、その製造方法及び板状金属水酸化物含有キャパシターについて説明する。
(Second embodiment of the present invention)
Hereinafter, a plate-like metal hydroxide-containing sheet-like electrode, a manufacturing method thereof, and a plate-like metal hydroxide-containing capacitor according to a second embodiment of the present invention will be described with reference to the accompanying drawings.
<板状金属水酸化物含有キャパシター>
 まず、本発明の第二の実施形態である板状金属水酸化物含有キャパシターについて説明する。
 図9は、本発明の第二の実施形態である板状金属水酸化物含有キャパシターの一例を示す模式図であって、平面図(a)と側面図(b)である。
 図9(a)に示すように、本発明の第二の実施形態である板状金属水酸化物含有キャパシター101は、平面視略円形状である。しかし、これに限られるものではなく、平面視略矩形状、多角形状としてもよい。
 図9(b)に示すように、本発明の第二の実施形態である板状金属水酸化物含有キャパシター101は、2枚の電極が、電解液含浸層113を挟み、対向配置されて、概略構成されている。電解液含浸層113は、セパレーターを兼ねる。セパレーターを介在させた構造としてもよい。
 前記電極は双方が本発明の第二の実施形態である板状金属水酸化物含有シート状電極111とされている。しかし、少なくとも一方を板状金属水酸化物含有シート状電極111とした構成としてもよい。
 コインセルとする場合には、2枚の板状金属水酸化物含有シート状電極111それぞれにコインセルキャップを接触させて、キャパシターを構成する。この場合、ガスケット、スプリング、スチールスペーサーなどをコインセル内に介在させる。
 板状金属水酸化物含有キャパシターは、電気二重層キャパシターであり、スーパーキャパシター(pseudocapacitor)である。
<Plate-shaped metal hydroxide-containing capacitor>
First, the plate-shaped metal hydroxide containing capacitor which is 2nd embodiment of this invention is demonstrated.
FIG. 9 is a schematic view showing an example of a plate-like metal hydroxide-containing capacitor according to the second embodiment of the present invention, and is a plan view (a) and a side view (b).
As shown to Fig.9 (a), the plate-shaped metal hydroxide containing capacitor 101 which is 2nd embodiment of this invention is a substantially circular shape in planar view. However, the present invention is not limited to this, and may be a substantially rectangular shape or a polygonal shape in plan view.
As shown in FIG. 9B, in the plate-like metal hydroxide-containing capacitor 101 according to the second embodiment of the present invention, two electrodes are disposed opposite to each other with the electrolyte-impregnated layer 113 interposed therebetween. It is roughly structured. The electrolyte solution impregnated layer 113 also serves as a separator. It is good also as a structure which interposed the separator.
Both of the electrodes are plate-like metal hydroxide-containing sheet-like electrodes 111 which are the second embodiment of the present invention. However, at least one may be configured as a plate-like metal hydroxide-containing sheet electrode 111.
In the case of a coin cell, a capacitor is configured by bringing a coin cell cap into contact with each of the two plate-like metal hydroxide-containing sheet-like electrodes 111. In this case, a gasket, a spring, a steel spacer, etc. are interposed in the coin cell.
The plate-like metal hydroxide-containing capacitor is an electric double layer capacitor and is a supercapacitor.
<板状金属水酸化物含有シート状電極>
 次に、本発明の第二の実施形態である板状金属水酸化物含有シート状電極について説明する。
 図10は、本発明の第二の実施形態である板状金属水酸化物含有シート状電極の一例を示す模式図であって、平面図(a)、側面図(b)、(a)のA部拡大図(c)である。
 図10(a)に示すように、本発明の第二の実施形態である板状金属水酸化物含有シート状電極111は、平面視略円形状である。
 図10(c)に示すように、本発明の第二の実施形態である板状金属水酸化物含有シート状電極111は、表面被膜導電性ファイバー121が網目状に編みこまれてなる。多数の孔部111cが設けられており、多孔構造をとっている。
<Plate-like metal hydroxide-containing sheet electrode>
Next, a plate-like metal hydroxide-containing sheet electrode that is a second embodiment of the present invention will be described.
FIG. 10 is a schematic view showing an example of a plate-like metal hydroxide-containing sheet electrode according to the second embodiment of the present invention, and is a plan view (a), a side view (b), and (a). It is an A section enlarged view (c).
As shown to Fig.10 (a), the plate-shaped metal hydroxide containing sheet-like electrode 111 which is 2nd embodiment of this invention is substantially circular shape in planar view.
As shown in FIG. 10C, the sheet-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention is formed by braiding a surface-coated conductive fiber 121 into a mesh shape. A large number of holes 111c are provided and have a porous structure.
 図11は、図10(c)のB部拡大図(a)、(a)のC-C´線における断面図(b)、(b)のD部拡大図(c)である。
 図11(a)に示すように、表面被膜導電性ファイバー121は、溝形成処理済み導電性ファイバー43と、その表面43zに集積・配置された複数の板状金属水酸化物131とからなる。
FIG. 11 is an enlarged view (b) of the B part in FIG. 10 (c), a sectional view (b) taken along the line CC ′ of (a), and an enlarged view (c) of the D part in (b).
As shown in FIG. 11A, the surface-coated conductive fiber 121 includes a groove-formed conductive fiber 43 and a plurality of plate-like metal hydroxides 131 integrated and arranged on the surface 43z.
 図11(a)、(b)に示すように、溝形成処理済み導電性ファイバー43は、その表面43zに、軸方向に略平行な方向に伸長された複数の溝部43k、43g、43e、43b及びそれぞれの溝部を区画する壁部43m、43i、43f、43d、43aが設けられて、概略構成されていることが好ましい。 As shown in FIGS. 11A and 11B, the groove-formed conductive fiber 43 has a plurality of groove portions 43k, 43g, 43e, and 43b extending on the surface 43z thereof in a direction substantially parallel to the axial direction. And it is preferable that the wall part 43m, 43i, 43f, 43d, 43a which divides each groove part is provided, and is comprised roughly.
 図11(b)に示すように、溝形成処理済み導電性ファイバー43の表面43zから伸長するように板状金属水酸化物131が結晶成長していることが好ましい。
 板状金属水酸化物131は、その側面を表面に接するように形成されていることが好ましい。板状金属水酸化物131の平面に垂直な方向はランダムな方向とされていることが好ましい。
 しかし、溝形成処理済み導電性ファイバー43の表面43z上で、板状金属水酸化物131の平面に垂直な方向を揃えるようにパッキング配列させることもでき、層間距離が広い層間にイオンを素早く出し入れ可能な板状金属水酸化物131を高集積化することにより、活性物質の表面となる層面にイオンを大量に効率的に供給でき、キャパシター性能を高めることができる。
As shown in FIG. 11B, it is preferable that the plate-like metal hydroxide 131 is crystal-grown so as to extend from the surface 43 z of the groove-formed conductive fiber 43.
The plate-like metal hydroxide 131 is preferably formed such that its side surface is in contact with the surface. The direction perpendicular to the plane of the plate-like metal hydroxide 131 is preferably a random direction.
However, packing can be arranged on the surface 43z of the groove-formed conductive fiber 43 so that the direction perpendicular to the plane of the plate-like metal hydroxide 131 is aligned. By highly integrating the possible plate-like metal hydroxide 131, a large amount of ions can be efficiently supplied to the layer surface serving as the surface of the active substance, and the capacitor performance can be improved.
 板状金属水酸化物131が、径d131aが1μm未満であり、厚さt131bが100nm未満であることが好ましい。これにより、パッキング密度を向上させることができる。 The plate-like metal hydroxide 131 preferably has a diameter d 131a of less than 1 μm and a thickness t 131b of less than 100 nm. Thereby, packing density can be improved.
 板状金属水酸化物131が、Co(OH)、Ni(OH)、Mn(OH)の群から選択されるいずれかであることが好ましい。コバルト水酸化物は、層間距離が広い層構造を有し、その層間にイオンを素早く出し入れでき、活性物質の表面となる層面にイオンを効率的に供給できる。 The plate-like metal hydroxide 131 is preferably any one selected from the group consisting of Co (OH) 2 , Ni (OH) 2 , and Mn (OH) 2 . Cobalt hydroxide has a layer structure with a wide interlayer distance, ions can be taken in and out quickly between the layers, and ions can be efficiently supplied to the layer surface serving as the surface of the active substance.
 溝形成処理済み導電性ファイバー43は、カーボン、ニッケル、チタンの群から選択されるいずれかの材料からなることが好ましい。これらの材料を用いることにより、電解質イオンを活性物質の広いアクセス表面で効率よく吸収させることが可能で、静電的にチャージさせることにより、2重層キャパシタンスを形成して、電気化学的に安定なキャパシターを形成できる。 The groove-formed conductive fiber 43 is preferably made of any material selected from the group consisting of carbon, nickel, and titanium. By using these materials, it is possible to efficiently absorb the electrolyte ions on the wide access surface of the active substance, and by electrostatic charging, a double layer capacitance is formed, which is electrochemically stable. Capacitors can be formed.
 溝形成処理済み導電性ファイバー43の径が8μm以下であることが好ましい。これにより、適切な密度で、網目状に編みこまれてなるシートを作成できる。また、板状金属水酸化物131を高集積可能な大きさの溝を形成できる。 The diameter of the groove-formed conductive fiber 43 is preferably 8 μm or less. Thereby, the sheet | seat woven in mesh shape with a suitable density can be created. Moreover, the groove | channel of the magnitude | size which can highly integrate the plate-shaped metal hydroxide 131 can be formed.
<シート電極の製造方法>
 次に、本発明の第二の実施形態である板状金属水酸化物含有シート状電極の製造方法について説明する。
 図12は、本発明の第二の実施形態である板状金属水酸化物含有シート状電極の製造方法の一例を示すフローチャート図である。図13は、本発明の第二の実施形態である板状金属水酸化物含有シート状電極の製造方法の一例を示す工程図である。
 図12に示すように、本発明の第二の実施形態である板状金属水酸化物含有シート状電極の製造方法は、溝形成処理済み導電性ファイバーシート作成工程S1と、板状金属水酸化物含有シート状電極作成工程S2と、を有する。
<Method for producing sheet electrode>
Next, the manufacturing method of the plate-shaped metal hydroxide containing sheet-like electrode which is 2nd embodiment of this invention is demonstrated.
FIG. 12: is a flowchart figure which shows an example of the manufacturing method of the plate-shaped metal hydroxide containing sheet-like electrode which is 2nd embodiment of this invention. FIG. 13 is a process diagram showing an example of a method for producing a plate-like metal hydroxide-containing sheet electrode according to the second embodiment of the present invention.
As shown in FIG. 12, the method for producing a plate-like metal hydroxide-containing sheet-like electrode according to the second embodiment of the present invention includes a groove-formed conductive fiber sheet production step S1 and a plate-like metal hydroxide. Product-containing sheet-like electrode production step S2.
(溝形成処理済み導電性ファイバーシート作成工程S1)
 まず、導電性ファイバーシートを用意する。
 図14は、本発明の第二の実施形態である導電性ファイバーシートの一例を示す図であって、平面図(a)、側面図(b)、(a)のA部拡大図(c)、(c)のB部拡大図(d)である。
 導電性ファイバーシートとしては、例えば、カーボンファイバーシートを挙げることができる。例えば、カーボンファイバーの径は1μm以上100μm以下とし、厚さは0.1mm以上1cm以下とし、密度は0.1g/cm以上10g/cm以下とする。面積、形状は特に限定されない。
 カーボンファイバーシートはカーボンファイバーが編み込まれてなり、多数の孔部が設けられており、多孔構造をとっている。
 カーボンファイバーシートの表面抵抗について方向の異方性があってもよい。例えば、横方向の表面抵抗(lateral surface resistance)が5.8mΩ・cmであり、垂直方向の抵抗(perpendicular resistance)が80mΩ・cmとしてもよい。
(Groove-formed conductive fiber sheet creation step S1)
First, a conductive fiber sheet is prepared.
FIG. 14: is a figure which shows an example of the electroconductive fiber sheet which is 2nd embodiment of this invention, Comprising: The A section enlarged view (c) of a top view (a), a side view (b), (a) FIG. 4B is an enlarged view (d) of a portion B in FIG.
Examples of the conductive fiber sheet include a carbon fiber sheet. For example, the carbon fiber has a diameter of 1 μm to 100 μm, a thickness of 0.1 mm to 1 cm, and a density of 0.1 g / cm 3 to 10 g / cm 3 . The area and shape are not particularly limited.
The carbon fiber sheet is formed by weaving carbon fibers, provided with a large number of holes, and has a porous structure.
There may be anisotropy in the direction of the surface resistance of the carbon fiber sheet. For example, the lateral surface resistance may be 5.8 mΩ · cm, and the vertical resistance may be 80 mΩ · cm.
 次に、ポテンシオスタットを用いて、電圧を印加して、導電性ファイバーシートを電気エッチング処理する。例えば、1M H2SO4 電解液中で、10分間2Vを印加する条件とする。 Next, using a potentiostat, voltage is applied and the conductive fiber sheet is electrically etched. For example, the conditions are such that 2 V is applied for 10 minutes in a 1 M H2SO4 electrolyte.
 図13の工程S1に示すように、カーボンファイバーを、電気エッチングしたカーボンファイバーに変えることができる。電気エッチング処理により、導電性ファイバーの表面に軸方向に略平行な方向に伸びる複数の溝部及びそれぞれの溝部を区画する壁部を設けることができる。 As shown in step S1 of FIG. 13, the carbon fiber can be changed to an electrically etched carbon fiber. By the electroetching process, a plurality of groove portions extending in a direction substantially parallel to the axial direction and a wall portion defining each groove portion can be provided on the surface of the conductive fiber.
 図15は、本発明の第二の実施形態である溝形成処理済み導電性ファイバーシートの一例を示す図であって、平面図(a)、側面図(b)、(a)のA部拡大図(c)である。また、図16は、溝形成処理済み導電性ファイバーの一例を示す図であって、図15(c)のB部拡大図(a)、(a)のC-C´線における断面図(b)である。
 図15、16に示すように、電気エッチング処理により、導電性ファイバー42の表面43zに軸方向に略平行な方向に伸びる複数の溝部43b、43e、43g、43k及びそれぞれの溝部を区画する壁部43a、43d、43f、43i、43mを設けることができる。これにより、溝形成処理済み導電性ファイバー43が網目状に編みこまれてなるシート53を作成できる。
 溝部は疎水性とされ、板状金属水酸化物の核を容易に形成できる。また、溝部を設けることにより、導電性ファイバー43の単位質量あたりの表面積を広くできる。
FIG. 15: is a figure which shows an example of the conductive fiber sheet by which the groove formation process which is 2nd embodiment of this invention was carried out, Comprising: The A section expansion of a top view (a), a side view (b), (a) It is a figure (c). FIG. 16 is a view showing an example of the groove-formed conductive fiber, and is an enlarged view of a portion B in FIG. 15C (a), a cross-sectional view taken along the line CC ′ in FIG. ).
As shown in FIGS. 15 and 16, a plurality of grooves 43b, 43e, 43g, and 43k extending in a direction substantially parallel to the axial direction on the surface 43z of the conductive fiber 42 and wall portions that divide each groove as a result of electrical etching. 43a, 43d, 43f, 43i, and 43m can be provided. Thereby, the sheet | seat 53 in which the conductive fiber 43 by which the groove formation process was carried out was knitted by mesh shape can be created.
The groove portion is made hydrophobic, and can easily form a plate-like metal hydroxide nucleus. Further, by providing the groove portion, the surface area per unit mass of the conductive fiber 43 can be increased.
(板状金属水酸化物含有シート状電極作成工程S2)
 次に、仕事電極(working electrode)として溝形成処理済み導電性ファイバーシートを用い、対電極(counter electrode)としてプラチナ・プレートを用い、飽和Ag/AgCl参照電極を用いて、それぞれの電極の一端側を、板状金属水酸化物の原材料及び水酸化カリウム(Potassium hydroxide)を分散させたエタノール溶液中に浸漬させる。仕事関数と対電極との間の距離は、例えば、1.5cmに固定する。
(Plate-like metal hydroxide-containing sheet-like electrode production step S2)
Next, using a conductive fiber sheet after groove formation as a working electrode, using a platinum plate as a counter electrode, and using a saturated Ag / AgCl reference electrode, one end side of each electrode Is immersed in an ethanol solution in which raw materials of plate-like metal hydroxide and potassium hydroxide are dispersed. The distance between the work function and the counter electrode is fixed at, for example, 1.5 cm.
 板状金属水酸化物の原材料としては、例えば、酢酸コバルト(Cobalt acetate)を挙げることができる。この場合、酢酸コバルト濃度は、例えば、1Mとする。 Examples of the raw material for the plate-like metal hydroxide include cobalt acetate. In this case, the cobalt acetate concentration is, for example, 1M.
 次に、それぞれの電極の他端側を電源に接続し、電極間に電圧を印加する。
 例えば、5mA/cmの電流密度の定電流を流す。電圧印加時間、すなわち、電流を流す時間を制御することにより、膜の厚さ、密度を制御する。
 これにより、図13の工程S2に示すように、溝形成処理済み導電性ファイバーシートに板状金属水酸化物を電着(カソード蒸着)処理することができる。
Next, the other end side of each electrode is connected to a power source, and a voltage is applied between the electrodes.
For example, a constant current having a current density of 5 mA / cm 2 is passed. The film thickness and density are controlled by controlling the voltage application time, that is, the time during which the current is applied.
Thereby, as shown to process S2 of FIG. 13, a plate-shaped metal hydroxide can be electrodeposited (cathode vapor deposition) process to the groove-formed conductive fiber sheet.
 図17は、電着処理の初期における溝形成処理済み導電性ファイバーの表面の一例を示す図であって、(a)は図16(a)、(b)は図16(b)に対応した図である。
 図17に示すように、電着処理の初期においては、板状金属水酸化物131はわずかだけ、溝形成処理済み導電性ファイバー43の表面43zに電着して、核形成する。
 処理時間をより長くすると、板状金属水酸化物131は、より多く、溝形成処理済み導電性ファイバー43の表面43zに電着し、より多く核形成する。また、形成された核からは、溝形成処理済み導電性ファイバー43の表面43zから伸長するように結晶成長する。
 以上の工程により、溝形成処理済み導電性ファイバー43の表面43zに複数の板状金属水酸化物131が集積されてなる板状金属水酸化物含有シート状電極111を作成する。
FIGS. 17A and 17B are diagrams showing an example of the surface of the groove-formed conductive fiber in the initial stage of the electrodeposition process, where FIG. 17A corresponds to FIG. 16A and FIG. 16B corresponds to FIG. FIG.
As shown in FIG. 17, at the initial stage of the electrodeposition treatment, a small amount of the plate-like metal hydroxide 131 is electrodeposited on the surface 43z of the groove-formed conductive fiber 43 to nucleate.
When the treatment time is longer, more of the plate-like metal hydroxide 131 is electrodeposited on the surface 43z of the groove-formed conductive fiber 43 and more nucleates. Further, crystals grow from the formed nuclei so as to extend from the surface 43z of the groove-formed conductive fiber 43.
Through the above steps, a plate-like metal hydroxide-containing sheet-like electrode 111 in which a plurality of plate-like metal hydroxides 131 are accumulated on the surface 43z of the groove-formed conductive fiber 43 is created.
 なお、処理時間に応じて、板状金属水酸化物131で表面43zを完全に覆うこともできる。また、形成された板状金属水酸化物131からなる層上に2層目を形成することもできる。更に、板状金属水酸化物131の多層構造を形成することもできる。 It should be noted that the surface 43z can be completely covered with the plate-like metal hydroxide 131 according to the processing time. In addition, a second layer can be formed on the formed layer of the plate-like metal hydroxide 131. Furthermore, a multilayer structure of the plate-like metal hydroxide 131 can be formed.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111は、溝形成処理済み導電性ファイバー43が網目状に編みこまれてなるシートと、前記溝形成処理済み導電性ファイバー41の表面43zに集積された複数の板状金属水酸化物131とからなる構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111は、溝形成処理済み導電性ファイバー43の表面43zに、軸方向に略平行な方向に伸びる複数の溝部43b、43e、43g、43k及びそれぞれの溝部を区画する壁部43a、43d、43f、43i、43mが設けられており、表面43zから伸長するように板状金属水酸化物131が結晶成長している構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。
The plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention includes a sheet in which the groove-formed conductive fibers 43 are knitted in a mesh shape, and the groove-formed conductive material. Since it is composed of a plurality of plate-like metal hydroxides 131 integrated on the surface 43z of the fiber 41, an electrode capable of constituting a capacitor having a high specific capacity and a long cycle life can be obtained.
The plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention has a plurality of groove portions 43b extending in a direction substantially parallel to the axial direction on the surface 43z of the groove-formed conductive fiber 43. 43e, 43g, 43k and wall portions 43a, 43d, 43f, 43i, 43m partitioning the respective groove portions are provided, and the plate-like metal hydroxide 131 is crystal-grown so as to extend from the surface 43z. Therefore, an electrode capable of forming a capacitor having a high specific capacity and a long cycle life can be obtained.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111は、板状金属水酸化物131が、径d131aが1μm未満であり、厚さt131bが100nm未満である構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。 The plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention has a plate-like metal hydroxide 131 having a diameter d 131a of less than 1 μm and a thickness t 131b of less than 100 nm. Since it is a structure, it can be set as the electrode which can comprise a capacitor with a high specific capacity and a long cycle life.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111は、板状金属水酸化物131がCo(OH)、Ni(OH)、Mn(OH)の群から選択されるいずれか材料からなる構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。 In the plate-like metal hydroxide-containing sheet electrode 111 according to the second embodiment of the present invention, the plate-like metal hydroxide 131 is a group of Co (OH) 2 , Ni (OH) 2 , and Mn (OH) 2 . Therefore, an electrode having a high specific capacity and a long cycle life can be formed.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111は、溝形成処理済み導電性ファイバー43の径が8μm以下である構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。 The plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention has a configuration in which the diameter of the groove-formed conductive fiber 43 is 8 μm or less, so that the specific capacity is high and the cycle life is long. It can be set as the electrode which can comprise a capacitor.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111は、溝形成処理済み導電性ファイバー43がカーボン、ニッケル、チタンの群から選択されるいずれかの材料からなる構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極とすることができる。 The plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention has a configuration in which the groove-formed conductive fiber 43 is made of any material selected from the group of carbon, nickel, and titanium. Therefore, an electrode capable of forming a capacitor having a high specific capacity and a long cycle life can be obtained.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111の製造方法は、導電性ファイバー42が網目状に編みこまれてなるシート52を電気エッチング処理して、導電性ファイバー42の表面43zに複数の溝部43b、43e、43g、43kを設けて、溝形成処理済み導電性ファイバー43が網目状に編みこまれてなるシート53を作成する工程と、溝形成処理済み導電性ファイバー43が網目状に編みこまれてなるシート53を、板状金属水酸化物131を含有する溶液中で電着処理して、溝形成処理済み導電性ファイバー43の表面43zに複数の板状金属水酸化物131が集積されてなる板状金属水酸化物含有シート状電極111を作成する工程と、を有する構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極を容易に作成することができる。 In the method for producing the plate-like metal hydroxide-containing sheet electrode 111 according to the second embodiment of the present invention, the sheet 52 formed by braiding the conductive fibers 42 in a mesh shape is subjected to an electrical etching treatment, thereby providing a conductive property. A step of providing a plurality of groove portions 43b, 43e, 43g, 43k on the surface 43z of the fiber 42 to form a sheet 53 in which the groove-formed conductive fibers 43 are knitted in a mesh shape; The sheet 53 in which the conductive fiber 43 is woven into a mesh is electrodeposited in a solution containing the plate-like metal hydroxide 131, and a plurality of plates are formed on the surface 43z of the groove-formed conductive fiber 43. And a step of producing a plate-like metal hydroxide-containing sheet-like electrode 111 in which the metal-like metal hydroxide 131 is integrated, so that the specific capacity is high and the cycle life is long. Pashita can easily create a configurable electrode.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111の製造方法は、溝形成処理済み導電性ファイバー43が網目状に編みこまれてなるシート53を作成する工程で、導電性ファイバー42の表面43zに軸方向に略平行な方向に伸びる複数の溝部43b、43e、43g、43k及びそれぞれの溝部を区画する壁部43a、43d、43f、43i、43mが設ける構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極を容易に作成することができる。本発明の第二の実施形態である板状金属水酸化物含有シート状電極111の製造方法は、前記電気エッチング処理が、ポテンシオスタットで電圧を印加する処理である構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極を容易に作成することができる。 The manufacturing method of the plate-like metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention is a step of creating a sheet 53 in which the groove-formed conductive fibers 43 are woven into a mesh shape. The surface 43z of the conductive fiber 42 is provided with a plurality of groove portions 43b, 43e, 43g, 43k extending in a direction substantially parallel to the axial direction, and wall portions 43a, 43d, 43f, 43i, 43m partitioning each groove portion. An electrode capable of constituting a capacitor having a high specific capacity and a long cycle life can be easily produced. The method for producing the plate-like metal hydroxide-containing sheet electrode 111 according to the second embodiment of the present invention has a high specific capacity because the electric etching process is a process of applying a voltage with a potentiostat. Thus, an electrode capable of constituting a capacitor having a long cycle life can be easily produced.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極111の製造方法は、前記電着処理が、板状金属水酸化物を含有する溶液中で、前記溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを仕事電極に、対電極及び参照電極を用いて、電圧を印加する処理である構成なので、比容量が高く、サイクル寿命の長いキャパシターを構成可能な電極を容易に作成することができる。 In the method for producing the sheet metal hydroxide-containing sheet-like electrode 111 according to the second embodiment of the present invention, the electrodeposition treatment is performed in the solution containing the plate-like metal hydroxide. A structure in which a sheet of conductive fibers woven in a mesh is used as a work electrode, and a voltage is applied using a counter electrode and a reference electrode, so a capacitor with a high specific capacity and a long cycle life can be configured. A simple electrode can be easily produced.
 本発明の第二の実施形態である板状金属水酸化物含有キャパシター101は、2枚の電極が、電解液含浸層113を挟み、対向配置されており、前記電極の双方が板状金属水酸化物含有シート状電極111である構成なので、比容量が高く、サイクル寿命の長いキャパシターとすることができる。 In the plate-like metal hydroxide-containing capacitor 101 according to the second embodiment of the present invention, two electrodes are arranged opposite to each other with the electrolyte solution impregnated layer 113 interposed therebetween, and both of the electrodes are plate-like metal water. Since it is the structure which is the oxide containing sheet-like electrode 111, it can be set as a capacitor with a high specific capacity and a long cycle life.
 本発明の第二の実施形態である板状金属水酸化物含有シート状電極、その製造方法及び板状金属水酸化物含有キャパシターは、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例2で示す。しかし、本発明はこれらの実施例に限定されるものではない。 The sheet-like metal hydroxide-containing sheet-like electrode, the method for producing the same, and the plate-like metal hydroxide-containing capacitor according to the second embodiment of the present invention are not limited to the above-described embodiment, but the technology of the present invention. Various modifications can be made within the scope of the technical idea. A specific example of this embodiment is shown in Example 2 below. However, the present invention is not limited to these examples.
(実施例1)
<グラフェン酸化物の作成>
 次のようにして、修正ハマース-オフマン法(Modified Hummers-Offeman method)により、グラファイトからグラフェン酸化物を合成した。
 まず、フラスコ中で、グラファイトとNaNOを混合した。
 次に、フラスコ中に、HSO(95%)を加えた。
 次に、アイスバス中でかき混ぜた。
 次に、懸濁液に過マンガン酸カリウム(potassium permanganate)を加えた。
 次に、懸濁液を室温で2時間かき混ぜた。懸濁液は、明るいブラウン色となった。
 次に、懸濁液を希釈し、98℃で12時間かき混ぜた。
 次に、Hを加えた。
 次に、生成物を5%HCl及び脱イオン水で洗浄した。
 次に、遠心分離し、濾過してから、真空乾燥した。
 以上の工程により、黒い粉末状のグラフェン酸化物を作成した。
Example 1
<Creation of graphene oxide>
Graphene oxide was synthesized from graphite by the modified Hummers-Offman method as follows.
First, graphite and NaNO 3 were mixed in a flask.
Next, H 2 SO 4 (95%) was added into the flask.
Next, it was stirred in an ice bath.
Next, potassium permanganate was added to the suspension.
The suspension was then stirred at room temperature for 2 hours. The suspension became a light brown color.
The suspension was then diluted and stirred at 98 ° C. for 12 hours.
Then H 2 O 2 was added.
The product was then washed with 5% HCl and deionized water.
Next, it was centrifuged, filtered, and dried in vacuo.
Through the above process, black powder graphene oxide was prepared.
<グラフェンの作成:グラフェン酸化物の還元>
 まず、グラフェン酸化物を蒸留水に分散し、30分間、超音波を照射した。
 次に、懸濁液を100℃に加熱した。
 次に、ヒドラジン水和物を加えた。
 次に、懸濁液を98℃で24時間加熱した。
 次に、濾過により、黒い粉末状の還元したグラフェンを収集した。
 次に、生成物を蒸留水で洗浄し、過剰なヒドラジンを除去した。
 次に、水中に再分散し、超音波を印加してから、遠心分離した。
 次に、真空濾過により、最終生成物としてのグラフェン(試験例1)を作成した。
<Creation of graphene: reduction of graphene oxide>
First, graphene oxide was dispersed in distilled water and irradiated with ultrasonic waves for 30 minutes.
The suspension was then heated to 100 ° C.
Next, hydrazine hydrate was added.
The suspension was then heated at 98 ° C. for 24 hours.
Next, the reduced graphene in the form of a black powder was collected by filtration.
The product was then washed with distilled water to remove excess hydrazine.
Next, it was re-dispersed in water, applied with ultrasonic waves, and then centrifuged.
Next, graphene (Test Example 1) as a final product was prepared by vacuum filtration.
<Co(OH)垂直配向グラフェン/CNT複合体の合成>
(グラフェン/CNT複合体作成工程)
 まず、グラフェンとCNTをエタノール中に分散した。
 次に、真空濾過により、均一なグラフェン/CNT複合体フィルムを得た。
<Synthesis of Co (OH) 2 Vertically Oriented Graphene / CNT Composite>
(Graphene / CNT composite production process)
First, graphene and CNT were dispersed in ethanol.
Next, a uniform graphene / CNT composite film was obtained by vacuum filtration.
(Co(OH)垂直配向グラフェン/CNT複合体作成工程)
 次に、グラフェン/CNT複合体フィルムを仕事電極として用い、プラチナシート(1×2cm)を対電極として用い、参照電極として飽和Ag/AgCl参照電極を用い、仕事関数と対電極との間の距離を1.5cmに固定して、3電極システムにより、電着(カソード蒸着)した。
 カソード蒸着は、10%エタノールを含む0.1M CoCl電解液中で、ポテンシオスタットにより制御した。
 次の2工程で、Co(OH)被膜した。
(i) 核形成工程:室温で1分間1mAの電流を流した。
(ii)結晶成長工程:30分間、5mA/cmの電流密度に制御した。Co(OH)層の厚さは、コーティング時間で制御した。
 以上の工程により、Co(OH)垂直配向グラフェン/CNT複合体(実施例1)を作成した。
(Co (OH) 2 vertical alignment graphene / CNT composite preparation process)
Next, a graphene / CNT composite film is used as a work electrode, a platinum sheet (1 × 2 cm 2 ) is used as a counter electrode, a saturated Ag / AgCl reference electrode is used as a reference electrode, and the work function and the counter electrode are The distance was fixed at 1.5 cm, and electrodeposition (cathode deposition) was performed by a three-electrode system.
Cathode deposition was controlled by a potentiostat in 0.1 M CoCl 2 electrolyte containing 10% ethanol.
In the next two steps, Co (OH) 2 was coated.
(I) Nucleation step: A current of 1 mA was applied for 1 minute at room temperature.
(Ii) Crystal growth step: The current density was controlled at 5 mA / cm 2 for 30 minutes. The thickness of the Co (OH) 2 layer was controlled by the coating time.
Through the above steps, a Co (OH) 2 vertically aligned graphene / CNT composite (Example 1) was prepared.
<観察>
 Co(OH)垂直配向グラフェン/CNT複合体(実施例1)のナノ構造のモルフォロジーを、SEM(JSM-6500)、TEM(JEM-2100)で観察した。
 図5は、実施例1のTEM像(a)、拡大TEM像(b)、SEM像(c)、拡大SEM像(d)である。いずれも、合成直後のグラフェンの像である。
 図5(a)、(b)に示すように、薄く平坦な数層のグラフェンからなるシートを観測できた。
 図5(c)、(d)に示すように、グラフェンシート面に垂直な方向に配列し、主面がランダムな方向を向き、多孔構造を形成したCo(OH)を観測できた。Co(OH)の厚さは、約10nmであった。
<Observation>
The morphology of the nanostructure of the Co (OH) 2 vertically aligned graphene / CNT composite (Example 1) was observed with SEM (JSM-6500) and TEM (JEM-2100).
FIG. 5 shows a TEM image (a), an enlarged TEM image (b), an SEM image (c), and an enlarged SEM image (d) of Example 1. Both are graphene images immediately after synthesis.
As shown in FIGS. 5A and 5B, a sheet made of several thin and flat graphene layers was observed.
As shown in FIGS. 5 (c) and 5 (d), Co (OH) 2 arranged in a direction perpendicular to the graphene sheet surface, the main surface facing a random direction, and forming a porous structure could be observed. The thickness of Co (OH) 2 was about 10 nm.
 図6は、Co(OH)垂直配向グラフェン/CNT複合体(実施例1)のTEM像(a)、STEM像(b)、(b)のC成分マッピング像(c)、(b)のO成分マッピング像(d)、(b)のCo成分マッピング像(e)、(a)の説明図(f)である。
 アモルファスカーボン製グリッドを用いたため、C成分マッピング像で明確な像は見られなかった。しかし、図6(b)、(d)、(e)に示した結果から、図6(f)に示すように、図6(a)はグラフェンの表面にCo(OH)が結合してなるサンプルであると判断した。
 なお、TEMサンプルは、強い超音波を照射して調製したが、グラフェンの表面へのCo(OH)の結合が観測されたため、この結合は非常に強いものと推定した。
FIG. 6 shows TEM images (a), STEM images (b), and (b) of C component mapping images (c) and (b) of Co (OH) 2 vertically aligned graphene / CNT composites (Example 1). It is explanatory drawing (f) of Co component mapping image (e), (a) of O component mapping image (d), (b).
Since an amorphous carbon grid was used, no clear image was seen in the C component mapping image. However, from the results shown in FIGS. 6B, 6D, and 6E, as shown in FIG. 6F, FIG. 6A shows that Co (OH) 2 is bonded to the surface of graphene. It was judged that it was a sample.
The TEM sample was prepared by irradiating with strong ultrasonic waves. However, since Co (OH) 2 bond to the surface of graphene was observed, this bond was estimated to be very strong.
<評価:電気化学特性及びキャパシタンス>
 サイクリックボルタッメトリ(Cyclic Voltammetry:CV)、ガルバノスタチック・チャージ-ディスチャージ、電気化学インピーダンス・スペクトロスコピー(Electorochemical Impedence Spectroscopy:EIS)を、3電極システムで測定した。
<Evaluation: Electrochemical characteristics and capacitance>
Cyclic voltammetry (CV), galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) were measured with a three-electrode system.
(CV試験)
 CV試験は、1M KCl水溶液中で、0~0.9Vの間で、10、20、50、100mV/sの異なるスキャン速度で実行した。
 1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルフォン)イミド(1-ethyl-3-methylimidazoliumbis(trifluoromethanesulfone)imide:EMI-TFSI)のイオン液体中でも実行した。
(CV test)
CV tests were performed in 1M KCl aqueous solution between 0 and 0.9V with different scan rates of 10, 20, 50, 100 mV / s.
It was also carried out in an ionic liquid of 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfon) imide (1-ethyl-3-methylimidazoliumbis (trifluoromethanesulfone) imide: EMI-TFSI).
 図7(a)は、EMI-TFSI中の10、20、50、100mV/sの各スキャン速度のCV曲線である。
 図7(a)に示すように、対称的で、ほぼ長方形状のCV曲線が得られた。
 理想的なキャパシターのCV曲線の形状は、接触抵抗が小さい場合には、長方形状となり、接触抵抗が大きい場合には、形状を斜めにし、かつ、輪を小さくするように変形されることが知られている。図7(a)の形状は対称的で、ほぼ長方形状であったので、電極でのチャージ伝搬が優れていることが分かった。
FIG. 7A is a CV curve for each scan speed of 10, 20, 50, and 100 mV / s in EMI-TFSI.
As shown in FIG. 7A, a symmetrical and substantially rectangular CV curve was obtained.
It is known that the ideal capacitor CV curve has a rectangular shape when the contact resistance is small, and is deformed so that the shape is slanted and the ring is small when the contact resistance is large. It has been. Since the shape of FIG. 7A was symmetrical and was almost rectangular, it was found that charge propagation at the electrode was excellent.
(ガルバノスタティック・チャージ・ディスチャージ試験)
 図7(b)は、1mAと2mAのときのガルバノスタティック・チャージ・ディスチャージ曲線である。
 ガルバノスタティック・チャージ・ディスチャージ曲線は、3.5V上で比較的平坦となった。
 エネルギー密度は172Wh/kgとなった。
 また、1mAの比容量は310F/gとなった。
(Galbanostatic charge / discharge test)
FIG. 7B is a galvanostatic charge / discharge curve at 1 mA and 2 mA.
The galvanostatic charge discharge curve was relatively flat above 3.5V.
The energy density was 172 Wh / kg.
The specific capacity of 1 mA was 310 F / g.
(EIS試験)
 EIS測定は、周波数範囲100kHz~0.01Hzで実行した。
 図7(c)は、EISのナイキスト・プロットである。
 図7(c)に示すように、低周波数領域では、虚数部分はほとんど垂直になるように急激に増加し、高周波数領域では半球状となるワブルグ(Warburug)曲線を示した。
 官能基又は不純物によるレドックス反応又はオーバーチャージによる、ファラディック・リーク抵抗であるRが推測され、Rが小さくなるに従い、ファラディック反応の動的可逆性は大きくなった。
 等価シリーズ抵抗(Equivalent Series Resistance:ESR)は、Z1切片から8.2Ωとなった。
 最大パワー密度pmaxが次式(1)により得られた。
(EIS test)
EIS measurements were performed in the frequency range 100 kHz to 0.01 Hz.
FIG. 7C is a Nyquist plot of EIS.
As shown in FIG. 7C, the imaginary part is rapidly increased so as to be almost vertical in the low-frequency region, and a Warburg curve that is hemispherical in the high-frequency region is shown.
R F, which is a faradic leak resistance, due to a redox reaction or overcharge due to a functional group or an impurity was estimated, and the dynamic reversibility of the faradic reaction increased as R F decreased.
Equivalent series resistance (ESR) was 8.2Ω from the Z1 intercept.
The maximum power density p max was obtained by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、RESRは等価シリーズ抵抗であり、mは2つの電極(正極がCo(OH)コーティングしたGraphene/CNTであり、負極がGraphene/CNTである。)の総質量であり、Vmaxは最大チャージ電圧である。
 Vmax=4Vのとき、最大パワー密度は198.0kW/kgとなった。
Here, R ESR is the equivalent series resistance, m is (a positive electrode Co (OH) 2 coated Graphene / CNT, the negative electrode is Graphene / CNT.) 2 single electrode is the total mass of the, V max Is the maximum charge voltage.
When V max = 4V, the maximum power density was 198.0 kW / kg.
(サイクル特性)
 図7(d)は、1mg/cmコーティングしたサンプルの2A/gの電流密度でのサイクル特性結果を示すグラフである。1500サイクル時、30%低下した。
(Cycle characteristics)
7 (d) is a graph showing the cycle characteristics results in a current density of 1 mg / cm 2 coated samples 2A / g. It decreased by 30% at 1500 cycles.
(実施例2)
<シート電極製造>
 まず、横方向の表面抵抗(lateral surface resistance)が5.8mΩ・cmであり、垂直方向の抵抗(perpendicular resistance)が80mΩ・cmであり、密度が0.44g/cmであり、カーボンファイバーの平均径が8μmであり、厚さ0.19mmのカーボンファイバー布(Carbon fiber cloth、Toray,Inc.,Japan)を用意した。
(Example 2)
<Sheet electrode manufacturing>
First, the lateral surface resistance is 5.8 mΩ · cm, the vertical resistance is 80 mΩ · cm, and the density is 0.44 g / cm 3 . A carbon fiber cloth (Carbon fiber cloth, Toray, Inc., Japan) having an average diameter of 8 μm and a thickness of 0.19 mm was prepared.
 次に、ポテンシオスタットを用いて、カーボンファイバー布の電気エッチングを行った。1M H2SO4 電解液中で、10分間2Vを印加する条件とした。
 次に、電気エッチングしたカーボンファイバー布をカットして、平面視面積を1×2cmの大きさとして、仕事電極(working electrode)を作成した。
Next, the carbon fiber cloth was electrically etched using a potentiostat. The conditions were such that 2 V was applied for 10 minutes in 1 MH 2 SO 4 electrolyte.
Next, the electrically etched carbon fiber cloth was cut, and a work electrode was created with a plan view area of 1 × 2 cm 2 .
 次に、酢酸コバルト(Cobalt acetate)、水酸化カリウム(Potassium hydroxide)、エタノールは、シグマ―アルドリッチ(Sigma-Aldrich)の分析試薬グレードのものを用意し、これらを混合して、0.1M、酢酸コバルト溶液を調製した。 Next, cobalt acetate (Potassium hydroxide) and ethanol are prepared as Sigma-Aldrich analytical reagent grades, and these are mixed and mixed with 0.1 M acetic acid. A cobalt solution was prepared.
 次に、0.1M、酢酸コバルト溶液を満たしたビーカー中に、先の仕事電極、平面視面積が1×2cmの大きさのプラチナ・プレートを対電極(counter electrode)、飽和Ag/AgCl参照電極を浸漬した。仕事関数と対電極との間の距離は、1.5cmに固定した。 Next, in a beaker filled with 0.1 M cobalt acetate solution, the previous work electrode, a platinum plate having a planar view area of 1 × 2 cm 2, a counter electrode, see saturated Ag / AgCl The electrode was immersed. The distance between the work function and the counter electrode was fixed at 1.5 cm.
 次に、電気化学ステーション(Ivium Technologies,The Netherland)より、0.1M、酢酸コバルト溶液中で、5mA/cmの電流密度の定電流を流し、電極間に電圧を印加することにより、仕事電極にCo(OH)をカソード蒸着(電着)した。コーティング時間を10分、20分、30分と制御することにより、仕事電極(電気エッチングしたカーボンファイバー布)上に被膜したCo(OH)の密度をそれぞれ1.0mg/cm(実施例2-1)、2.0mg/cm(実施例2-2)、3.0mg/cm(実施例2-3)と変化させた。 Next, a constant current having a current density of 5 mA / cm 2 was passed from an electrochemical station (Ivium Technologies, The Netherlands) in a 0.1 M cobalt acetate solution, and a voltage was applied between the electrodes. Co (OH) 2 was subjected to cathode deposition (electrodeposition). By controlling the coating time to 10 minutes, 20 minutes, and 30 minutes, the density of Co (OH) 2 coated on the work electrode (electroetched carbon fiber cloth) was 1.0 mg / cm 2 (Example 2). -1), 2.0 mg / cm 2 (Example 2-2), and 3.0 mg / cm 2 (Example 2-3).
<シート電極のモルフォロジー評価>
 カーボンファイバーシート、シート電極のモルフォロジー評価を、SEM(JSM-6500F、JEOL)及びTEM(JSM-2100、JEOL)で行った。
<Evaluation of sheet electrode morphology>
The morphology evaluation of the carbon fiber sheet and the sheet electrode was performed with SEM (JSM-6500F, JEOL) and TEM (JSM-2100, JEOL).
 図18は、カーボンファイバーシートのSEM像である。図19は、カーボンファイバーのSEM像である。平均径が8μmの表面が平滑なカーボンファイバーが観測された。
 図20は、溝形成処理済みカーボンファイバーシートのSEM像である。表面に、軸方向に伸長され、溝幅が0.1~0.5μmの溝が形成されたカーボンファイバーが観測された。
FIG. 18 is an SEM image of the carbon fiber sheet. FIG. 19 is an SEM image of carbon fiber. A smooth carbon fiber having an average diameter of 8 μm was observed.
FIG. 20 is an SEM image of the groove-formed carbon fiber sheet. A carbon fiber was observed on the surface, which was elongated in the axial direction and formed with a groove having a groove width of 0.1 to 0.5 μm.
 図21は、コーティング密度1mg/cmの板状金属水酸化物含有シート状電極のSEM像であり、図22は、その拡大SEM像である。
 複数の板状金属水酸化物は、溝形成処理済み導電性ファイバーの表面に垂直に立つように配置されていた。表面を完全に覆うように、かつ、均一層を形成するように、集積されていた。垂直に立った板状金属水酸化物の主面に垂直な方向は、全体としては無秩序であった。
FIG. 21 is an SEM image of a sheet-like metal hydroxide-containing sheet electrode having a coating density of 1 mg / cm 2 , and FIG. 22 is an enlarged SEM image thereof.
The plurality of plate-like metal hydroxides were arranged so as to stand perpendicular to the surface of the groove-formed conductive fiber. It was integrated so as to completely cover the surface and to form a uniform layer. The direction perpendicular to the main surface of the plate-like metal hydroxide standing vertically was disordered as a whole.
 図23は、Co(OH)の電子回析パターン(Electron Diffraction Pattern)である。六角形状に配列されたブラッグ反射のパターンを示し、[001]の結晶方位を示した。 FIG. 23 is an electron diffraction pattern of Co (OH) 2 . The pattern of Bragg reflection arranged in a hexagonal shape is shown, and the crystal orientation of [001] is shown.
 図24は、Co(OH)のTEM像である。
平面視略六角形状の結晶を含んでいた。
FIG. 24 is a TEM image of Co (OH) 2 .
The crystal contained a hexagonal crystal in plan view.
 図25は、高分解TEM(High-Resolution TEM)像である。Co(OH)のβ相の(001)面に対応する4.46オングストロームの格子縞と、(100)面に対応する2.76オングストロームの格子縞と、(101)面に対応する2.37オングストロームの格子縞とが観測された。 FIG. 25 is a high-resolution TEM (High-Resolution TEM) image. 4.46 angstrom lattice fringes corresponding to the (001) plane of the β phase of Co (OH) 2 , 2.76 angstrom lattice fringes corresponding to the (100) plane, and 2.37 angstroms corresponding to the (101) plane Was observed.
 図26は、コーティング密度3mg/cmのSEM像である。
 平均径は40μmとなった。表面で平均径10μm程度の略ベル形状の塊部が形成されていた。そのため、表面の均一性としては、コーティング密度1mg/cmの板状金属水酸化物含有シート状電極に劣るものであった。
FIG. 26 is an SEM image with a coating density of 3 mg / cm 2 .
The average diameter was 40 μm. A substantially bell-shaped lump having an average diameter of about 10 μm was formed on the surface. Therefore, the surface uniformity was inferior to the plate-like metal hydroxide-containing sheet-like electrode having a coating density of 1 mg / cm 2 .
<シート電極特性測定>
 電気化学特性とキャパシタンスは、サイクリック・ボルタンメトリー(CV)、定電流チャージ・ディスチャージ試験、電気化学インピーダンス・スペクトロスコピー(EIS)により、3電極システムで測定した。
 CVは、20~500mV/sのスキャン速度で測定した。
<Sheet electrode characteristic measurement>
Electrochemical properties and capacitance were measured with a three-electrode system by cyclic voltammetry (CV), constant current charge / discharge test, and electrochemical impedance spectroscopy (EIS).
CV was measured at a scan rate of 20 to 500 mV / s.
 図27は、実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)のCV曲線であって、スキャン速度依存性を示すグラフである。スキャン速度は20、50、100、200、500mV/sの結果を示した。ポテンシャルレンジは-0.3Vから0.5Vとした。純粋な電気二重層キャパシタンスではなく、誘導電流の反応に支配されたCV特性を示す、強いレドックスピークと非矩形CV曲線が観測された。スキャン速度が速い500mV/sのときに、電流値は最も大きく変化した。
このレドックス反応に対応する電気化学反応は次の化学反応式(1)で表される。
FIG. 27 is a CV curve of the plate-like metal hydroxide-containing sheet-like electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1, and is a graph showing the scan speed dependency. The scan speeds were 20, 50, 100, 200, and 500 mV / s. The potential range was -0.3V to 0.5V. Strong redox peaks and non-rectangular CV curves were observed, indicating CV characteristics dominated by the response of the induced current, rather than pure electric double layer capacitance. When the scanning speed was fast, 500 mV / s, the current value changed the most.
The electrochemical reaction corresponding to this redox reaction is represented by the following chemical reaction formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 高いポテンシャルでの反応は次の化学反応式(2)で表される。 The reaction at high potential is expressed by the following chemical reaction formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 定電流チャージ・ディスチャージ試験は、6MのKOH水性電解質溶液中で実行した。
 図28は、実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)のチャージ・ディスチャージ曲線であって、チャージ電流値依存性を示すグラフである。チャージ電流値は1、2、3、4mAの結果を示した。チャージ電流値が1mAのときに、ポテンシャルは最も時間をかけて変化した。
 比容量(specific capacitance)は、次式(3)で表される。
The constant current charge / discharge test was performed in a 6M KOH aqueous electrolyte solution.
FIG. 28 is a charge / discharge curve of the plate-like metal hydroxide-containing sheet-like electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1, and is a graph showing the dependency of the charge current value. . The charge current values were 1, 2, 3, 4 mA. When the charge current value was 1 mA, the potential changed most over time.
The specific capacity is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、Cmは比容量(F/g)であり、Iは定チャージ・ディスチャージ電流(constant charge/discharge current)であり、Δtはディスチャージ時間であり、ΔVはチャージポテンシャルであり、mは活性電極材料の質量である。 Here, Cm is a specific capacity (F / g), I is a constant charge / discharge current, Δt is a discharge time, ΔV is a charge potential, and m is an active electrode. The mass of the material.
 EIS測定は、10kHzから0.1Hzまでの周波数範囲で実行した。0.005Vの正弦関数のシグナルに対するDCバイアスなしに実行した。
 図29は、実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)のEIS曲線である。挿入図は、Z1を1.5~2.0の範囲(高周波数領域)としたグラフである。EIS曲線は、インピーダンスのナイキストプロットである。複素平面で、Z2(縦軸)は虚数成分であり、キャパシティブ特性を示し、Z1(横軸)は実成分であり、オーミック特性を示す。
EIS measurements were performed in the frequency range from 10 kHz to 0.1 Hz. Run without DC bias for a sinusoidal signal of 0.005V.
FIG. 29 is an EIS curve of the sheet metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1. The inset is a graph with Z1 in the range of 1.5 to 2.0 (high frequency region). The EIS curve is a Nyquist plot of impedance. In the complex plane, Z2 (vertical axis) is an imaginary component and indicates capacitive characteristics, and Z1 (horizontal axis) is a real component and indicates ohmic characteristics.
 EIS曲線は、周波数に応じて3つの領域に分けることができた。
 高周波数領域では、EIS曲線は小さい半円形状となり、純粋な抵抗のような振る舞いをした。この半円形状の特性は、活性物質とコレクターとの間の相関関係を示すものでもあり、半円形状の直径は、チャージトランスファー速度に依存するポテンシャルの逆数に対応する誘導電流の抵抗Rに関係する。
 中周波数領域では、周波数の減少に伴い、電解質がより深く電極の孔の内部に浸透し、イオン吸着に利用できる電極表面が増加するWarburg曲線が観測され、EIS曲線に電極の気孔率の影響が観測された。
 低周波数領域では、虚数成分が急激に増加し、ほとんど線形となり、キャパシターのような振る舞いをした。
 これらの結果は、板状金属水酸化物含有シート状電極がチャージトランスファー抵抗と粒子間抵抗を持つことを示していた。
The EIS curve could be divided into three regions depending on the frequency.
In the high frequency region, the EIS curve became a small semicircular shape and behaved like a pure resistor. This semi-circular characteristic also indicates the correlation between the active substance and the collector, and the semi-circular diameter depends on the resistance R F of the induced current corresponding to the reciprocal of the potential depending on the charge transfer rate. Involved.
In the middle frequency range, as the frequency decreases, a Warburg curve is observed in which the electrolyte penetrates deeper into the pores of the electrode and the surface of the electrode that can be used for ion adsorption increases. The effect of the porosity of the electrode on the EIS curve Observed.
In the low-frequency region, the imaginary component increased rapidly and became almost linear, behaving like a capacitor.
These results indicated that the sheet-like metal hydroxide-containing sheet-like electrode had charge transfer resistance and interparticle resistance.
 図29の挿入図で示したナイキストプロットのZ1切片からスーパーキャパシターのESRが1.65Ωであることが得られた。ESRは、スーパーキャパシターのパワー密度を決定する重要な因子であり、スーパーキャパシターがチャージ・ディスチャージされうる速度を決定する。 From the Z1 intercept of the Nyquist plot shown in the inset of FIG. 29, it was obtained that the ESR of the supercapacitor was 1.65Ω. ESR is an important factor that determines the power density of a supercapacitor and determines the rate at which the supercapacitor can be charged and discharged.
 図30は、板状金属水酸化物含有シート状電極(仕事電極)の質量規格比容量とチャージ電流値との関係を示すグラフであって、コーティング密度依存性を示すものである。コーティング密度は1.0mg/cm(実施例2-1)、2.0mg/cm(実施例2-2)、3.0mg/cm(実施例2-3)の結果を示した。コーティング密度は、厚さに比例した。 FIG. 30 is a graph showing the relationship between the mass standard specific capacity of the plate-like metal hydroxide-containing sheet electrode (work electrode) and the charge current value, and shows the coating density dependency. The coating density was 1.0 mg / cm 2 (Example 2-1), 2.0 mg / cm 2 (Example 2-2), and 3.0 mg / cm 2 (Example 2-3). The coating density was proportional to the thickness.
 コーティング密度が1.0mg/cm(実施例2-1)のものは、チャージ電流値1mAのとき、3404.8F/gとなった。これは理論値3458にきわめて近いものであった。チャージ電流値10mAのとき、1327.3F/gとなった。
 コーティング密度が2.0mg/cm(実施例2-2)のものは、チャージ電流値1mAのとき、1396.1F/gとなった。
 コーティング密度が3.0mg/cm(実施例2-3)のものは、チャージ電流値1mAのとき、876.1F/gとなった。
The coating density of 1.0 mg / cm 2 (Example 2-1) was 3404.8 F / g when the charge current value was 1 mA. This was very close to the theoretical value 3458. When the charge current value was 10 mA, it was 1327.3 F / g.
The coating density of 2.0 mg / cm 2 (Example 2-2) was 1396.1 F / g when the charge current value was 1 mA.
The coating density of 3.0 mg / cm 2 (Example 2-3) was 876.1 F / g when the charge current value was 1 mA.
 図31は、実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)の面積規格比容量とチャージ電流値との関係を示すグラフである。
 チャージ電流値が1mAのときに、面積規格比容量は3.3F/cmとなった。
FIG. 31 is a graph showing the relationship between the area-specific specific capacity and the charge current value of the plate-like metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1.
When the charge current value was 1 mA, the area standard specific capacity was 3.3 F / cm 2 .
 図32は、実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)の保持力(retention)とサイクル数との関係を示すグラフである。2000回を経過しても80%の保持力を維持していた。
 チャージ電流値10mAとした。500サイクルまでに10%程度下げたが、それ以後1500サイクルまでは比較的安定で、10%程度下げただけであった。実施例2-2、2-3もほぼ同様の結果であった。
FIG. 32 is a graph showing the relationship between the retention force of the plate-like metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) of Example 2-1 and the number of cycles. Even after 2000 times, the holding power of 80% was maintained.
The charge current value was 10 mA. Although it was reduced by about 10% by 500 cycles, it was relatively stable up to 1500 cycles thereafter and was only reduced by about 10%. In Examples 2-2 and 2-3, almost the same results were obtained.
 図33は、実施例2-1の板状金属水酸化物含有シート状電極(仕事電極:コーティング密度1mg/cm)の総比容量とチャージ電流値との関係を示すグラフである。
 カーボンファイバーと活性物であるCo(OH)とからなる総比容量は、チャージ電流値1mAのとき、614.0F/gとなった。
 活性物であるCo(OH)の質量規格比容量は、3404.8F/gである。
FIG. 33 is a graph showing the relationship between the total specific capacity of the plate-like metal hydroxide-containing sheet electrode (work electrode: coating density 1 mg / cm 2 ) and the charge current value of Example 2-1.
The total specific capacity composed of the carbon fiber and the active substance Co (OH) 2 was 614.0 F / g when the charge current value was 1 mA.
The mass-specific specific capacity of Co (OH) 2 that is an active substance is 3404.8 F / g.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のCo(OH)垂直配向グラフェン/CNT複合体、その製造方法、Co(OH)垂直配向グラフェン/CNT複合体電極及びCo(OH)垂直配向グラフェン/CNT複合体キャパシターは、比容量を高く、サイクル寿命を長くでき、電池産業、エネルギー産業等において利用可能性がある。 The Co (OH) 2 vertically aligned graphene / CNT composite of the present invention, its production method, Co (OH) 2 vertically aligned graphene / CNT composite electrode and Co (OH) 2 vertically aligned graphene / CNT composite capacitor are High capacity and long cycle life can be used in the battery industry, energy industry and the like.
 また、本発明の板状金属水酸化物含有シート状電極、その製造方法及び板状金属水酸化物含有キャパシターは、比容量が高く、サイクル寿命の長い板状金属水酸化物含有シート状電極、その製造方法及び板状金属水酸化物含有キャパシターを提供することができ、電池産業、エネルギー産業等において利用可能性がある。 Further, the plate-like metal hydroxide-containing sheet-like electrode of the present invention, its production method, and the plate-like metal hydroxide-containing capacitor have a high specific capacity and a long cycle life. The manufacturing method and the plate-like metal hydroxide-containing capacitor can be provided, and can be used in the battery industry, the energy industry, and the like.
1…Co(OH)垂直配向グラフェン/CNT複合体キャパシター、11…板状電極、12…Co(OH)垂直配向グラフェン/CNT複合体、13…電解液含浸層(セパレーター)、21…Co(OH)垂直配向グラフェン/CNT複合体電極、31…グラフェン、32…カーボンナノチューブ(CNT)、33…Co(OH)、33c…孔。 DESCRIPTION OF SYMBOLS 1 ... Co (OH) 2 vertical alignment graphene / CNT composite capacitor, 11 ... Plate electrode, 12 ... Co (OH) 2 vertical alignment graphene / CNT composite, 13 ... Electrolyte impregnation layer (separator), 21 ... Co (OH) 2 vertically aligned graphene / CNT composite electrode, 31 ... graphene, 32 ... carbon nanotube (CNT), 33 ... Co (OH) 2 , 33c ... hole.
101…板状金属水酸化物含有キャパシター、111…板状金属水酸化物含有シート状電極、111c…孔部、113…電解液含浸層(セパレーター)、121…表面被膜導電性ファイバー、131…板状金属水酸化物、131a…径、131b…厚さ、42…導電性ファイバー、43…溝形成処理済み導電性ファイバー、43a、43d、43f、43i、43m…壁部、43b、43e、43g、43k…溝部、43z…表面、52…導電性ファイバーシート、53…溝形成処理済み導電性ファイバーシート。 DESCRIPTION OF SYMBOLS 101 ... Plate-shaped metal hydroxide containing capacitor, 111 ... Plate-shaped metal hydroxide containing sheet-like electrode, 111c ... Hole, 113 ... Electrolyte impregnation layer (separator), 121 ... Surface coating conductive fiber, 131 ... Plate Metal hydroxide, 131a ... diameter, 131b ... thickness, 42 ... conductive fiber, 43 ... groove-formed conductive fiber, 43a, 43d, 43f, 43i, 43m ... wall, 43b, 43e, 43g, 43k ... groove part, 43z ... surface, 52 ... conductive fiber sheet, 53 ... groove-formed conductive fiber sheet.

Claims (20)

  1.  金属水酸化物配向電極材料を含む金属水酸化物含有電極が2枚、電解液含浸層を挟み、対向配置されており、前記電極の一方又は双方が、
     Co(OH)垂直配向グラフェン/CNT複合体が板状電極の一面に形成されてなるCo(OH)垂直配向グラフェン/CNT複合体電極又は
     溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートと、前記溝形成処理済み導電性ファイバーの表面に集積された複数の板状金属水酸化物とからなる板状金属水酸化物含有シート状電極
    であることを特徴とする金属水酸化物含有キャパシター。
    Two metal hydroxide-containing electrodes containing a metal hydroxide oriented electrode material are sandwiched between the electrolyte solution impregnated layers, and one or both of the electrodes are
    Co (OH) 2 vertically aligned graphene / CNT composite is formed on one surface of a plate-like electrode and Co (OH) 2 vertically aligned graphene / CNT composite electrode or groove-formed conductive fibers are knitted in a mesh shape Metallic water characterized in that it is a sheet-like metal hydroxide-containing sheet-like electrode comprising a rare sheet and a plurality of plate-like metal hydroxides accumulated on the surface of the groove-formed conductive fiber Oxide-containing capacitor.
  2.  表面に結晶成長させたCo(OH)の板状結晶を有するグラフェンとカーボンナノチューブとの複合体からなることを特徴とするCo(OH)垂直配向グラフェン/CNT複合体。 A Co (OH) 2 vertically aligned graphene / CNT composite comprising a composite of graphene having a plate crystal of Co (OH) 2 grown on the surface and a carbon nanotube.
  3.  板状結晶であるCo(OH)の主面がグラフェンの表面に接することなく、その側面のみがグラフェンの表面に接するように、グラフェンの表面に垂直配向させてCo(OH)が結晶成長されていることを特徴とする請求項2に記載のCo(OH)垂直配向グラフェン/CNT複合体。 Co (OH) 2 is crystal-grown by aligning perpendicularly to the surface of graphene so that the main surface of Co (OH) 2 that is a plate-like crystal does not contact the surface of graphene, but only its side surface contacts the surface of graphene The Co (OH) 2 vertically aligned graphene / CNT composite according to claim 2, wherein
  4.  Co(OH)の径が50nm以上400nm以下であり、厚さが20nm未満であることを特徴とする請求項3に記載のCo(OH)垂直配向グラフェン/CNT複合体。 Co diameter (OH) 2 is at 50nm or more 400nm or less, Co (OH) 2 vertically aligned graphene / CNT composite according to claim 3 in which the thickness is equal to or less than 20 nm.
  5.  グラフェンとCNTをエタノール中で攪拌・混合した溶液を真空濾過して、フィルム状のグラフェン/CNT複合体を作成する工程と、
     前記グラフェン/CNT複合体を、塩化コバルト又はコバルト塩の電解液中で電着処理して、グラフェンの表面にCo(OH)を結晶成長させたCo(OH)垂直配向グラフェン/CNT複合体を作成する工程と、を有することを特徴とするCo(OH)垂直配向グラフェン/CNT複合体の製造方法。
    A step of vacuum-filtering a solution obtained by stirring and mixing graphene and CNT in ethanol to create a film-like graphene / CNT composite;
    Co (OH) 2 vertically aligned graphene / CNT composite obtained by electrodepositing the graphene / CNT composite in an electrolytic solution of cobalt chloride or cobalt salt to grow Co (OH) 2 on the surface of the graphene A process for producing Co (OH) 2 vertically aligned graphene / CNT composites.
  6.  前記電着処理が、塩化コバルト又はコバルト塩の電解液中で、前記グラフェン/CNT複合体を仕事電極にして、対電極及び参照電極を用いて、電圧を印加する処理であることを特徴とする請求項5に記載のCo(OH)垂直配向グラフェン/CNT複合体の製造方法。 The electrodeposition treatment is a treatment in which a voltage is applied using a counter electrode and a reference electrode in the electrolytic solution of cobalt chloride or a cobalt salt using the graphene / CNT composite as a work electrode. The method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to claim 5.
  7.  前記塩化コバルトがCoClであり、前記コバルト塩が酢酸コバルト又は硫酸コバルトであることを特徴とする請求項6に記載のCo(OH)垂直配向グラフェン/CNT複合体の製造方法。 The method for producing a Co (OH) 2 vertically aligned graphene / CNT composite according to claim 6, wherein the cobalt chloride is CoCl 2 and the cobalt salt is cobalt acetate or cobalt sulfate.
  8.  請求項2~4のいずれか1項に記載のCo(OH)垂直配向グラフェン/CNT複合体が板状電極の一面に形成されてなることを特徴とするCo(OH)垂直配向グラフェン/CNT複合体電極。 Co the Co (OH) 2 vertically aligned graphene / CNT composite according to any one of claims 2-4, characterized by comprising formed on one surface of the plate-shaped electrode (OH) 2 vertically aligned graphene / CNT composite electrode.
  9.  請求項8に記載のCo(OH)垂直配向グラフェン/CNT複合体電極が2枚、電解液含浸層を挟み、対向配置されていることを特徴とするCo(OH)垂直配向グラフェン/CNT複合体キャパシター。 Two sheets Co (OH) 2 vertically aligned graphene / CNT composite electrode according to claim 8, sandwiching the electrolyte solution impregnated layer, Co, characterized in that disposed opposite (OH) 2 vertically aligned graphene / CNT Composite capacitor.
  10.  溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートと、前記溝形成処理済み導電性ファイバーの表面に集積された複数の板状金属水酸化物とからなることを特徴とする板状金属水酸化物含有シート状電極。 A sheet comprising a sheet formed by knitting a groove-formed conductive fiber and a plurality of plate-like metal hydroxides accumulated on the surface of the groove-formed conductive fiber -Like metal hydroxide-containing sheet-like electrode.
  11.  前記溝形成処理済み導電性ファイバーの表面に、軸方向に略平行な方向に伸びる複数の溝部及びそれぞれの溝部を区画する壁部が設けられており、
    前記表面から伸長するように前記板状金属水酸化物が結晶成長していることを特徴とする請求項10に記載の板状金属水酸化物含有シート状電極。
    On the surface of the groove-formed conductive fiber, a plurality of grooves extending in a direction substantially parallel to the axial direction and a wall section that divides each groove are provided,
    The plate-like metal hydroxide-containing sheet-like electrode according to claim 10, wherein the plate-like metal hydroxide is crystal-grown so as to extend from the surface.
  12.  前記板状金属水酸化物が、径が1μm未満であり、厚さが100nm未満であることを特徴とする請求項10又は11に記載の板状金属水酸化物含有シート状電極。 The plate-like metal hydroxide-containing sheet-like electrode according to claim 10 or 11, wherein the plate-like metal hydroxide has a diameter of less than 1 µm and a thickness of less than 100 nm.
  13.  前記板状金属水酸化物がCo(OH)、Ni(OH)、Mn(OH)の群から選択されるいずれかの材料からなることを特徴とする請求項12に記載の板状金属水酸化物含有シート状電極。 The plate-shaped metal hydroxide according to claim 12, wherein the plate-shaped metal hydroxide is made of any material selected from the group consisting of Co (OH) 2 , Ni (OH) 2 , and Mn (OH) 2. Metal hydroxide-containing sheet electrode.
  14.  前記溝形成処理済み導電性ファイバーの径が8μm以下であることを特徴とする請求項10~13のいずれか1項に記載の板状金属水酸化物含有シート状電極。 The plate-like metal hydroxide-containing sheet-like electrode according to any one of claims 10 to 13, wherein the groove-formed conductive fiber has a diameter of 8 µm or less.
  15.  前記溝形成処理済み導電性ファイバーがカーボン、ニッケル、チタンの群から選択されるいずれかの材料からなることを特徴とする請求項14に記載の板状金属水酸化物含有シート状電極。 The plate-like metal hydroxide-containing sheet-like electrode according to claim 14, wherein the groove-formed conductive fiber is made of any material selected from the group consisting of carbon, nickel, and titanium.
  16.  導電性ファイバーが網目状に編みこまれてなるシートを電気エッチング処理して、前記導電性ファイバーの表面に複数の溝部を設けて、溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを作成する工程と、
     前記溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを、板状金属水酸化物を含有する溶液中で電着処理して、前記溝形成処理済み導電性ファイバーの表面に複数の板状金属水酸化物が集積されてなる板状金属水酸化物含有シート状電極を作成する工程と、を有することを特徴とする板状金属水酸化物含有シート状電極の製造方法。
    A sheet in which conductive fibers are woven into a mesh shape is electroetched to form a plurality of grooves on the surface of the conductive fibers, and the conductive fibers after the groove formation are woven into a mesh shape. Creating a sheet;
    A sheet in which the groove-formed conductive fibers are woven into a network is electrodeposited in a solution containing a plate-like metal hydroxide, and a plurality of sheets are formed on the surface of the groove-formed conductive fibers. Producing a plate-like metal hydroxide-containing sheet-like electrode in which the plate-like metal hydroxides are integrated. A method for producing a plate-like metal hydroxide-containing sheet-like electrode, comprising:
  17.  前記溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを作成する工程で、前記導電性ファイバーの表面に軸方向に略平行な方向に伸びる複数の溝部及びそれぞれの溝部を区画する壁部を設けることを特徴とする請求項16に記載の板状金属水酸化物含有シート状電極の製造方法。 In the step of forming a sheet in which the groove-formed conductive fibers are knitted in a mesh shape, a plurality of grooves extending in a direction substantially parallel to the axial direction and the respective grooves are defined on the surface of the conductive fibers. The method for producing a sheet-like metal hydroxide-containing sheet-like electrode according to claim 16, wherein a wall portion is provided.
  18.  前記電気エッチング処理が、ポテンシオスタットで電圧を印加する処理であることを特徴とする請求項16又は17に記載の板状金属水酸化物含有シート状電極の製造方法。 The method for producing a plate-like metal hydroxide-containing sheet-like electrode according to claim 16 or 17, wherein the electric etching treatment is a treatment of applying a voltage with a potentiostat.
  19.  前記電着処理が、板状金属水酸化物を含有する溶液中で、前記溝形成処理済み導電性ファイバーが網目状に編みこまれてなるシートを仕事電極に、対電極及び参照電極を用いて、電圧を印加する処理であることを特徴とする請求項16~18のいずれか1項に記載の板状金属水酸化物含有シート状電極の製造方法。 In the solution containing the plate-like metal hydroxide in the electrodeposition treatment, a sheet in which the groove-formed conductive fibers are knitted in a mesh shape is used as a work electrode, and a counter electrode and a reference electrode are used. The method for producing a sheet-like metal hydroxide-containing sheet-like electrode according to any one of claims 16 to 18, which is a process of applying a voltage.
  20.  2枚の電極が、電解液含浸層を挟み、対向配置されており、前記電極の一方又は双方が請求項10~15のいずれか1項に記載の板状金属水酸化物含有シート状電極であることを特徴とする板状金属水酸化物含有キャパシター。 Two electrodes are disposed opposite to each other with an electrolyte-impregnated layer interposed therebetween, and one or both of the electrodes are plate-like metal hydroxide-containing sheet-like electrodes according to any one of claims 10 to 15. A plate-like metal hydroxide-containing capacitor characterized by being.
PCT/JP2014/067514 2013-07-17 2014-07-01 Metal hydroxide alignment electrode material, metal hydroxide-containing electrode, manufacturing method of these, and metal hydroxide-containing capacitor WO2015008615A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013148218A JP6057293B2 (en) 2013-07-17 2013-07-17 Co (OH) 2 vertically aligned graphene / CNT composite, its manufacturing method, Co (OH) 2 vertically aligned graphene / CNT composite electrode, and Co (OH) 2 vertically aligned graphene / CNT composite capacitor
JP2013-148218 2013-07-17
JP2013-155384 2013-07-26
JP2013155384A JP6161158B2 (en) 2013-07-26 2013-07-26 Sheet metal hydroxide-containing sheet electrode, method for producing the same, and plate metal hydroxide-containing capacitor

Publications (1)

Publication Number Publication Date
WO2015008615A1 true WO2015008615A1 (en) 2015-01-22

Family

ID=52346085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067514 WO2015008615A1 (en) 2013-07-17 2014-07-01 Metal hydroxide alignment electrode material, metal hydroxide-containing electrode, manufacturing method of these, and metal hydroxide-containing capacitor

Country Status (1)

Country Link
WO (1) WO2015008615A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036107A (en) * 2015-06-05 2015-11-11 郑州大学 Ni[1-x-y]CoxMny(OH)2@C material for supercapacitors and preparation method thereof
CN106920932A (en) * 2017-03-10 2017-07-04 上海应用技术大学 A kind of leaf of bamboo shape Co (OH)2/ graphene combination electrode material and preparation method thereof
CN107644743A (en) * 2017-08-25 2018-01-30 天津大学 A kind of preparation method of the three-dimensional porous nitrogen-doped graphene of self-supporting-nickel hydroxide electrochemical capacitance electrode material
CN109903998A (en) * 2019-02-26 2019-06-18 内蒙古科技大学 A kind of combination electrode and its preparation method and application
CN112002564A (en) * 2020-08-26 2020-11-27 郑州航空工业管理学院 Electrode material of super capacitor, preparation method and application
CN114429868A (en) * 2021-12-17 2022-05-03 西安理工大学 Preparation method of sandwich-structure graphene/cobaltosic sulfide nickel electrode material
CN114768810A (en) * 2022-05-13 2022-07-22 重庆科技学院 Graphene-supported cobalt hydroxide photocatalyst and preparation method thereof
JP7399958B2 (en) 2018-10-19 2023-12-18 オシア インク. Electronic shelf label compatible with wireless power

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291515A (en) * 2000-04-10 2001-10-19 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for alkaline secondary battery and its manufacturing method and evaluation method
JP2004532789A (en) * 2001-07-03 2004-10-28 ファキュルテ ユニヴェルシテール ノートル−ダム ド ラ ペ Catalyst support and carbon nanotubes formed on it
JP2007523818A (en) * 2003-06-16 2007-08-23 ウィリアム・マーシュ・ライス・ユニバーシティ Functionalization of carbon nanotube sidewalls at hydroxyl-terminated moieties
JP2009040631A (en) * 2007-08-08 2009-02-26 National Institute For Materials Science Carbon nanotube coated uniformly with ultrathin nanoprecise europium hydroxide layer
JP2013502361A (en) * 2009-08-21 2013-01-24 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Carbon nanotube aggregate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291515A (en) * 2000-04-10 2001-10-19 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for alkaline secondary battery and its manufacturing method and evaluation method
JP2004532789A (en) * 2001-07-03 2004-10-28 ファキュルテ ユニヴェルシテール ノートル−ダム ド ラ ペ Catalyst support and carbon nanotubes formed on it
JP2007523818A (en) * 2003-06-16 2007-08-23 ウィリアム・マーシュ・ライス・ユニバーシティ Functionalization of carbon nanotube sidewalls at hydroxyl-terminated moieties
JP2009040631A (en) * 2007-08-08 2009-02-26 National Institute For Materials Science Carbon nanotube coated uniformly with ultrathin nanoprecise europium hydroxide layer
JP2013502361A (en) * 2009-08-21 2013-01-24 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Carbon nanotube aggregate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036107A (en) * 2015-06-05 2015-11-11 郑州大学 Ni[1-x-y]CoxMny(OH)2@C material for supercapacitors and preparation method thereof
CN106920932A (en) * 2017-03-10 2017-07-04 上海应用技术大学 A kind of leaf of bamboo shape Co (OH)2/ graphene combination electrode material and preparation method thereof
CN106920932B (en) * 2017-03-10 2019-12-03 上海应用技术大学 A kind of leaf of bamboo shape Co (OH)2/ graphene combination electrode material and preparation method thereof
CN107644743A (en) * 2017-08-25 2018-01-30 天津大学 A kind of preparation method of the three-dimensional porous nitrogen-doped graphene of self-supporting-nickel hydroxide electrochemical capacitance electrode material
JP7399958B2 (en) 2018-10-19 2023-12-18 オシア インク. Electronic shelf label compatible with wireless power
CN109903998A (en) * 2019-02-26 2019-06-18 内蒙古科技大学 A kind of combination electrode and its preparation method and application
CN112002564A (en) * 2020-08-26 2020-11-27 郑州航空工业管理学院 Electrode material of super capacitor, preparation method and application
CN112002564B (en) * 2020-08-26 2021-09-07 郑州航空工业管理学院 Electrode material of super capacitor, preparation method and application
CN114429868A (en) * 2021-12-17 2022-05-03 西安理工大学 Preparation method of sandwich-structure graphene/cobaltosic sulfide nickel electrode material
CN114429868B (en) * 2021-12-17 2023-11-28 西安理工大学 Preparation method of graphene/cobalt tetrasulfide nickel electrode material with sandwich structure
CN114768810A (en) * 2022-05-13 2022-07-22 重庆科技学院 Graphene-supported cobalt hydroxide photocatalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
Sanati et al. g-C3N4 nanosheet@ CoAl-layered double hydroxide composites for electrochemical energy storage in supercapacitors
Jia et al. Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors
Wang et al. Establishing highly-efficient surface faradaic reaction in flower-like NiCo2O4 nano-/micro-structures for next-generation supercapacitors
Shang et al. Self-assembled hierarchical peony-like ZnCo2O4 for high-performance asymmetric supercapacitors
Ouyang et al. From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials
Meher et al. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide
Masikhwa et al. Asymmetric supercapacitor based on VS 2 nanosheets and activated carbon materials
Bello et al. High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide
Feng et al. Heterostructure arrays of NiMoO4 nanoflakes on N-doping of graphene for high-performance asymmetric supercapacitors
Cao et al. Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor
Swain et al. Construction of three-dimensional MnO2/Ni network as an efficient electrode material for high performance supercapacitors
WO2015008615A1 (en) Metal hydroxide alignment electrode material, metal hydroxide-containing electrode, manufacturing method of these, and metal hydroxide-containing capacitor
Ding et al. Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors
Huang et al. Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors
Li et al. Hierarchical CoMoO 4@ Co 3 O 4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors
Wang et al. Controllable synthesis of 3D Ni χ Co 1− χ oxides with different morphologies for high-capacity supercapacitors
Justin et al. CoS spheres for high-rate electrochemical capacitive energy storage application
Yang et al. Ni–Co oxides nanowire arrays grown on ordered TiO 2 nanotubes with high performance in supercapacitors
JP6057293B2 (en) Co (OH) 2 vertically aligned graphene / CNT composite, its manufacturing method, Co (OH) 2 vertically aligned graphene / CNT composite electrode, and Co (OH) 2 vertically aligned graphene / CNT composite capacitor
Yang et al. All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnO x nanospike and graphene electrodes
Wu et al. High-performance asymmetric supercapacitors based on cobalt chloride carbonate hydroxide nanowire arrays and activated carbon
Li et al. Rapid in situ growth of β-Ni (OH) 2 nanosheet arrays on nickel foam as an integrated electrode for supercapacitors exhibiting high energy density
Huang et al. Enhanced high-temperature cyclic stability of Al-doped manganese dioxide and morphology evolution study through in situ NMR under high magnetic field
Mao et al. Synthesis of cobalt phosphate nanoflakes for high-performance flexible symmetric supercapacitors
Xu et al. Hierarchical three-dimensional NiMoO 4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826064

Country of ref document: EP

Kind code of ref document: A1