WO2015007000A1 - 一种栅极驱动器的电压补偿电路和方法以及液晶显示装置 - Google Patents

一种栅极驱动器的电压补偿电路和方法以及液晶显示装置 Download PDF

Info

Publication number
WO2015007000A1
WO2015007000A1 PCT/CN2013/080929 CN2013080929W WO2015007000A1 WO 2015007000 A1 WO2015007000 A1 WO 2015007000A1 CN 2013080929 W CN2013080929 W CN 2013080929W WO 2015007000 A1 WO2015007000 A1 WO 2015007000A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
resistor
control signal
operational amplifier
adjustment unit
Prior art date
Application number
PCT/CN2013/080929
Other languages
English (en)
French (fr)
Inventor
张峻恺
吴智豪
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/232,277 priority Critical patent/US9354458B2/en
Publication of WO2015007000A1 publication Critical patent/WO2015007000A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a voltage compensation circuit for a gate driver, a voltage compensation method, and a liquid crystal display device.
  • the timing controller 12 controls the source driver 14 to drive the data lines of the liquid crystal display panel 13, and controls the gate drivers 10, 11 to drive the scanning lines of the liquid crystal display panel 13.
  • the VGH voltage is the gate turn-on voltage, is input to the gate drivers 10 and 11 via the traces, and is transmitted to the liquid crystal display panel 13 through the gate drivers 10 and 11.
  • the resistor Rp1 and the resistor Rp2 are trace resistances between the gate drivers.
  • the scan voltages transmitted to the gate drivers 10 and 11 are different due to the voltage loss of the trace resistors, and the gate driver 11 outputs
  • the voltage will be lower than the voltage output from the gate driver 10 and become VGH- ⁇ V.
  • the line width will be narrowed, and the cross-sectional area thereof will be reduced, resulting in an increase in the resistance per unit length. If the size of the liquid crystal display panel 13 is further increased, the trace will become longer, and the resistance values of the resistor Rp1 and the resistor Rp2 will also rise.
  • the voltage drop ⁇ V tends to cause a display mura phenomenon in the liquid crystal display panel 13, which in turn affects display quality.
  • the technical problem to be solved by the present invention is to provide a voltage compensation circuit for a gate driver, a voltage compensation method, and a liquid crystal display device capable of adjusting a VGH voltage transmitted to different gate drivers to avoid existence between output voltages of different gate drivers.
  • the voltage drop is used to solve the display unevenness of the liquid crystal display panel and improve the display quality.
  • an embodiment of the present invention provides a voltage compensation circuit for a gate driver, which includes a voltage detecting unit, a digital comparison correcting unit, and a voltage adjusting unit.
  • the voltage detecting unit detects the input voltage of the gate driver and transmits it to the digital comparison correcting unit; the digital comparison correcting unit further receives a reference voltage supplied from a controller external to the gate driver, and compares the input voltage with the reference voltage to generate a corrected control signal
  • the voltage adjustment unit transmits the voltage to the voltage adjustment unit, the voltage adjustment unit adjusts the input voltage according to the correction control signal, and outputs the target voltage, and the gate driver outputs the target voltage to the liquid crystal display panel.
  • the digital comparison correction unit is an I 2 C module, and the external controller and the I 2 C module communicate through the I 2 C data line.
  • the controller is a timing controller
  • the correction control signal is a digital control signal
  • the I 2 C module compares and obtains the gain of the input voltage and the reference voltage, and then converts the gain into a digital control signal through ADC conversion.
  • the voltage adjustment unit is an automatic gain adjustment unit.
  • the automatic gain adjustment unit includes a first resistor, an operational amplifier and a second resistor.
  • the first end of the first resistor is connected to the I 2 C module, and the first end of the operational amplifier is connected to the input voltage.
  • the second end of the operational amplifier is grounded via a second resistor, and the second end of the operational amplifier is further connected to the second end of the first resistor, and the third end of the operational amplifier is connected to the third end of the first resistor.
  • the operational amplifier is a non-inverting operational amplifier, and the first resistor is a programmable variable resistor.
  • an embodiment of the present invention further provides a voltage compensation method for a gate driver, comprising: detecting an input voltage of a gate driver by a voltage detecting unit and transmitting the signal to a digital comparison correcting unit; and the digital comparison correcting unit inputs the input The voltage is compared with a reference voltage provided by a controller external to the gate driver to generate a correction control signal and transmitted to the voltage adjustment unit; the voltage adjustment unit adjusts the input voltage according to the correction control signal and outputs a target voltage; and the target is passed through the gate driver The voltage is output to the liquid crystal display panel.
  • the digital comparison correction unit is an I 2 C module
  • the controller is a timing controller, and the timing controller and the I 2 C module communicate through the I 2 C data line;
  • the correction control signal is a digital control signal, I 2 C
  • the module compares the gain of the input voltage and the reference voltage through a difference amplifier and converts the gain into a digital control signal through ADC conversion.
  • the voltage adjustment unit is an automatic gain adjustment unit, and the automatic gain adjustment unit includes a first resistor, an operational amplifier and a second resistor, and the automatic gain adjustment unit changes the resistance of the first resistor according to the correction control signal; the operational amplifier is configured according to the first resistor
  • an embodiment of the present invention further provides a liquid crystal display device, including: a liquid crystal display panel for display; a gate driver for providing a driving voltage for the liquid crystal display panel; wherein the gate driver includes a a voltage compensation circuit, the voltage compensation circuit includes a voltage detection unit, a digital comparison correction unit, and a voltage adjustment unit; the voltage detection unit detects an input voltage of the gate driver and transmits the input voltage to the digital comparison correction unit; and the digital comparison correction unit further receives the outside of the gate driver
  • the reference voltage provided by the controller compares the input voltage and the reference voltage to generate a correction control signal to be transmitted to the voltage adjustment unit, the voltage adjustment unit adjusts the input voltage according to the correction control signal, and outputs a target voltage, and the gate driver sets the target voltage Output to the LCD panel.
  • the digital comparison correction unit is an I 2 C module, and the external controller and the I 2 C module communicate through the I 2 C data line.
  • the controller is a timing controller
  • the correction control signal is a digital control signal
  • the I 2 C module compares and obtains the gain of the input voltage and the reference voltage, and then converts the gain into a digital control signal through ADC conversion.
  • the voltage adjustment unit is an automatic gain adjustment unit.
  • the automatic gain adjustment unit includes a first resistor, an operational amplifier and a second resistor.
  • the first end of the first resistor is connected to the I 2 C module, and the first end of the operational amplifier is connected to the input voltage.
  • the second end of the operational amplifier is grounded via a second resistor, and the second end of the operational amplifier is further connected to the second end of the first resistor, and the third end of the operational amplifier is connected to the third end of the first resistor.
  • the operational amplifier is a non-inverting operational amplifier, and the first resistor is a programmable variable resistor.
  • the automatic gain adjustment unit changes the resistance of the first resistor according to the correction control signal, and the operational amplifier outputs the target voltage according to the resistance of the first resistor by using the following relationship:
  • V2 V1(R1+R2)/R2, where V1 is the input voltage, V2 is the target voltage, R1 is the resistance of the first resistor, and R2 is the resistance of the second resistor.
  • the beneficial effects of the present invention are: comparing the input voltage of the gate driver detected by the voltage detecting unit with the reference voltage provided by the external controller by the digital comparison correcting unit to generate a correction control signal,
  • the voltage adjustment unit adjusts the input signal according to the correction control signal and outputs the target voltage, thereby being able to adjust the VGH voltages transmitted to different gate drivers, so that different gate drivers output the same target voltage, avoiding different gate drivers.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel of the prior art
  • FIG. 2 is a schematic structural diagram of a voltage compensation circuit of a gate driver according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a voltage compensation method of a gate driver according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention.
  • the voltage compensation circuit 20 of the gate driver of the present embodiment includes a voltage adjustment unit 21, a digital comparison correction unit 22, and a voltage detection unit 23.
  • the voltage detecting unit 23 detects the input voltage V1 of the gate driver and transmits it to the digital comparison correcting unit 22.
  • the digital comparison correcting unit 22 also receives the reference voltage supplied from the timing controller 24 outside the gate driver, and compares the input voltage V1 with the reference voltage to generate a correction control signal to be transmitted to the voltage adjusting unit 21.
  • the voltage adjustment unit 21 adjusts the input voltage V1 according to the correction control signal and outputs the target voltage V2, and the gate driver outputs the target voltage V2 to the liquid crystal display panel.
  • the digital comparison correcting unit 22 is an I 2 C module, and the timing controller 24 and the I 2 C module communicate through the I 2 C data line.
  • the correction control signal is a digital control signal, and the I 2 C module compares the gain of the input voltage and the reference voltage by, for example, a difference amplifier (not shown), and converts the gain into a digital control signal through ADC conversion.
  • the voltage adjustment unit 21 is an automatic gain adjustment unit including a first resistor 26, an operational amplifier 25, and a second resistor 27.
  • the first end 261 of the first resistor 26 is connected to the I 2 C module, the first end (in-phase input terminal) of the operational amplifier 25 is connected to the input voltage V1, and the second end (inverting input terminal) of the operational amplifier 25 is grounded via the second resistor 27
  • the inverting input of the operational amplifier 25 is also coupled to the second terminal 262 of the first resistor 26, and the third terminal (output) of the operational amplifier 25 is coupled to the third terminal 263 of the first resistor 26.
  • the operational amplifier 25 is a non-inverting operational amplifier, and the first resistor 26 is a programmable variable resistor.
  • the automatic gain adjustment unit changes the resistance of the first resistor 26 according to the correction control signal, and the operational amplifier 25 outputs the target voltage V2 according to the resistance of the first resistor 26 by using the following relationship:
  • V2 V1(R1+R2)/R2
  • V1 is an input voltage
  • R1 is a resistance of the first resistor 26
  • R2 is a resistance of the second resistor 27.
  • FIG. 3 is a flow chart showing a voltage compensation method of a gate driver according to an embodiment of the present invention. As shown in FIG. 3, the voltage compensation method of the gate driver of this embodiment includes the following steps:
  • Step S101 The input voltage of the gate driver is detected by the voltage detecting unit and transmitted to the digital comparison correcting unit.
  • the digital comparison correction unit is an I 2 C module.
  • Step S102 The digital comparison correcting unit compares the input voltage with a reference voltage supplied from a controller external to the gate driver to generate a correction control signal and transmits it to the voltage adjusting unit.
  • the voltage adjustment unit is an automatic gain adjustment unit
  • the correction control signal is a digital control signal
  • the external controller is a timing controller, and communicates with the I 2 C module through the I 2 C data line.
  • the I 2 C module compares the difference between the input voltage and the reference voltage by the difference amplifier, and converts the gain into a digital control signal through ADC conversion.
  • Step S103 The voltage adjustment unit adjusts the input voltage according to the correction control signal and outputs the target voltage.
  • the automatic gain adjustment unit further includes a first resistor, an operational amplifier, and a second resistor.
  • the automatic gain adjustment unit changes the resistance of the first resistor according to the correction control signal, and the operational amplifier outputs the target voltage according to the resistance of the first resistor by using the following relationship:
  • V2 V1(R1+R2)/R2
  • V1 is the input voltage
  • V2 is the target voltage
  • R1 is the resistance of the first resistor
  • R2 is the resistance of the second resistor.
  • Step S104 outputting the target voltage to the liquid crystal display panel through the gate driver.
  • the digital comparison correction unit compares the input voltage of the gate driver detected by the voltage detecting unit with the reference voltage provided by the controller outside the gate driver to generate a correction control signal, and then passes the voltage adjustment unit according to the correction control signal. Adjusting the input signal and outputting the target voltage to the liquid crystal display panel through the gate driver, thereby compensating for the loss generated when the input voltage is transmitted to different gate drivers, so that different gate drivers output the same target voltage, avoiding different There is a voltage drop between the output voltages of the gate drivers, thereby solving the display unevenness of the liquid crystal display panel and improving the display quality.
  • FIG. 4 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention.
  • the liquid crystal display device 30 includes a liquid crystal display panel 31, a gate driver 32, and a timing controller 33.
  • the liquid crystal display panel 31 is used for display
  • the gate driver 32 is used to supply a driving voltage to the liquid crystal display panel 31, and the timing controller 33 is used to control the driving gate driver 32.
  • the gate driver 32 includes the voltage compensation circuit of the gate driver as shown in FIG. 2, and the specific structure and operation principle thereof are not described herein again.
  • the present invention generates a correction control signal by comparing the input voltage of the gate driver detected by the voltage detecting unit with the reference voltage provided by the external controller by the digital comparison correcting unit, and the voltage adjusting unit adjusts the input signal according to the correction control signal. And outputting a target voltage, and the target voltage is output to the liquid crystal display panel through the gate driver.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

提供了一种栅极驱动器的电压补偿电路(20)和方法以及液晶显示装置。电压补偿电路(20)包括电压检测单元(23)、数字比较校正单元(22)和电压调整单元(21);电压检测单元(23)检测栅极驱动器的输入电压(VI)并传送给数字比较校正单元(22);数字比较校正单元(22)还接收所述栅极驱动器外部的控制器(24)提供的参考电压,并将输入电压(VI)和参考电压进行比较以产生校正控制信号传送给电压调整单元(21),电压调整单元(21)根据校正控制信号对输入电压(VI)进行调整并输出目标电压(V2),栅极驱动器将目标电压(V2)输出至液晶显示面板(13)。通过上述方式,能够调整传输至栅极驱动器的扫描电压,避免在不同栅极驱动器的输出电压之间存在压降,从而解决液晶显示面板的显示不均现象,提高显示品质。

Description

一种栅极驱动器的电压补偿电路和方法以及液晶显示装置
【技术领域】
本发明涉及液晶显示技术领域,特别是涉及一种栅极驱动器的电压补偿电路、电压补偿方法以及液晶显示装置。
【背景技术】
如图1所示,现有的液晶显示装置中,时序控制器12控制源极驱动器14驱动液晶显示面板13的数据线,并且控制栅极驱动器10、11驱动液晶显示面板13的扫描线。其中,VGH电压为栅极开启电压,经走线输入至栅极驱动器10、11,通过栅极驱动器10、11传输至液晶显示面板13。
电阻Rp1、电阻Rp2为栅极驱动器之间的走线电阻,VGH电压经走线传输时由于走线电阻的电压损耗导致传输至栅极驱动器10、11的扫描电压不同,栅极驱动器11所输出的电压将低于栅极驱动器10所输出的电压,变为VGH-△V。当液晶显示面板13采用窄边框设计时,走线线宽将会变窄,其截面积将会缩小,造成单位长度的阻值上升。若液晶显示面板13的尺寸进一步增大时,则走线将变得更长,电阻Rp1、电阻Rp2的阻值也会上升,根据线性电阻公式△V=IR,R变大,则△V也将变得更大。压降△V易于导致液晶显示面板13出现显示不均(mura)现象,进而影响显示品质。
【发明内容】
本发明解决的技术问题是提供一种栅极驱动器的电压补偿电路、电压补偿方法以及液晶显示装置,能够调整传输至不同栅极驱动器的VGH电压,避免在不同栅极驱动器的输出电压之间存在压降,从而解决液晶显示面板的显示不均现象,提高显示品质。
为解决上述技术问题,本发明实施例提供一种栅极驱动器的电压补偿电路,其包括电压检测单元、数字比较校正单元和电压调整单元。电压检测单元检测栅极驱动器的输入电压并传送给数字比较校正单元;数字比较校正单元还接收栅极驱动器外部的控制器提供的参考电压,并将输入电压和参考电压进行比较以产生校正控制信号传送给电压调整单元,电压调整单元根据校正控制信号对输入电压进行调整并输出目标电压,栅极驱动器将目标电压输出至液晶显示面板。
其中,数字比较校正单元为I2C模块,外部控制器与I2C模块之间通过I2C数据线进行通信。
其中,控制器为时序控制器,校正控制信号为一数字控制信号,其中,I2C模块进行比较得到输入电压和参考电压的增益,再经过ADC转换将增益转换成数字控制信号。
其中,电压调整单元为自动增益调整单元,自动增益调整单元包括第一电阻、运算放大器和第二电阻,第一电阻的第一端连接I2C模块,运算放大器的第一端连接输入电压,运算放大器第二端经过第二电阻接地,运算放大器的第二端还连接第一电阻的第二端,运算放大器的第三端连接第一电阻的第三端。
其中,运算放大器为非反向运算放大器,第一电阻为其可程式化的可变电阻。
其中,自动增益调整单元根据校正控制信号改变第一电阻的阻值,运算放大器根据第一电阻的阻值利用以下关系式输出目标电压:V2=V1(R1+R2)/R2,其中,V1为输入电压,V2为目标电压,R1为第一电阻的阻值,R2为第二电阻的阻值。
为解决上述技术问题,本发明实施例还提供了一种栅极驱动器的电压补偿方法,包括:通过电压检测单元检测栅极驱动器的输入电压并传送给数字比较校正单元;数字比较校正单元将输入电压和栅极驱动器外部的控制器提供的参考电压进行比较以产生校正控制信号并传送给电压调整单元;电压调整单元根据校正控制信号对输入电压进行调整并输出目标电压;通过栅极驱动器将目标电压输出至液晶显示面板。
其中,数字比较校正单元为I2C模块,控制器为时序控制器,时序控制器与I2C模块之间通过I2C数据线进行通信;校正控制信号为一数字控制信号,I2C模块通过差值放大器进行比较得到输入电压和参考电压的增益并经过ADC转换将增益转换成数字控制信号。
其中,电压调整单元为自动增益调整单元,自动增益调整单元包括第一电阻、运算放大器和第二电阻,自动增益调整单元根据校正控制信号改变第一电阻的阻值;运算放大器根据第一电阻的阻值利用以下关系式输出目标电压:V2=V1(R1+R2)/R2;其中,V1为输入电压,V2为目标电压,R1为第一电阻的阻值,R2为第二电阻的阻值。
为解决上述技术问题,本发明实施例还提供了一种液晶显示装置,包括:液晶显示面板,用于显示;栅极驱动器,用于为液晶显示面板提供驱动电压;其中,栅极驱动器包括一电压补偿电路,电压补偿电路包括电压检测单元、数字比较校正单元和电压调整单元;电压检测单元检测栅极驱动器的输入电压并传送给数字比较校正单元;数字比较校正单元还接收栅极驱动器外部的控制器提供的参考电压,并将输入电压和参考电压进行比较以产生校正控制信号传送给电压调整单元,电压调整单元根据校正控制信号对输入电压进行调整并输出目标电压,栅极驱动器将目标电压输出至液晶显示面板。
其中,数字比较校正单元为I2C模块,外部控制器与I2C模块之间通过I2C数据线进行通信。
其中,控制器为时序控制器,校正控制信号为一数字控制信号,其中,I2C模块进行比较得到输入电压和参考电压的增益,再经过ADC转换将增益转换成数字控制信号。
其中,电压调整单元为自动增益调整单元,自动增益调整单元包括第一电阻、运算放大器和第二电阻,第一电阻的第一端连接I2C模块,运算放大器的第一端连接输入电压,运算放大器第二端经过第二电阻接地,运算放大器的第二端还连接第一电阻的第二端,运算放大器的第三端连接第一电阻的第三端。
其中,运算放大器为非反向运算放大器,第一电阻为其可程式化的可变电阻。
其中,自动增益调整单元根据校正控制信号改变第一电阻的阻值,运算放大器根据第一电阻的阻值利用以下关系式输出目标电压:
V2=V1(R1+R2)/R2,其中,V1为输入电压,V2为目标电压,R1为第一电阻的阻值,R2为第二电阻的阻值。
通过上述方案,与现有技术相比,本发明的有益效果是:通过数字比较校正单元将电压检测单元检测的栅极驱动器的输入电压与外部控制器提供的参考电压比较以产生校正控制信号,电压调整单元根据校正控制信号对输入信号进行调整并输出目标电压,以此能够调整传输至不同栅极驱动器的VGH电压,使得不同的栅极驱动器输出相同的目标电压,避免在不同栅极驱动器的输出电压之间存在压降,从而解决液晶显示面板的显示不均现象,提高显示品质。
【附图说明】
图1是现有技术的液晶显示面板的结构示意图;
图2是本发明实施例的栅极驱动器的电压补偿电路的结构示意图;
图3是本发明实施例的栅极驱动器的电压补偿方法的流程示意图;
图4是本发明实施例的液晶显示装置的结构示意图。
【具体实施方式】
图2是本发明实施例的栅极驱动器的电压补偿电路结构示意图。电压补偿电路设置在栅极驱动器的输出端前,用于调整栅极驱动器提供至液晶显示面板的电压,优选为,每个栅极驱动器上设置一个电压补偿电路。如图2所示,本实施例的栅极驱动器的电压补偿电路20包括电压调整单元21、数字比较校正单元22和电压检测单元23。
电压检测单元23检测栅极驱动器的输入电压V1并传送给数字比较校正单元22。数字比较校正单元22还接收栅极驱动器外部的时序控制器24提供的参考电压,并将输入电压V1和参考电压进行比较以产生校正控制信号传送给电压调整单元21。电压调整单元21根据校正控制信号对输入电压V1进行调整并输出目标电压V2,栅极驱动器将目标电压V2输出至液晶显示面板。
在本实施例中,数字比较校正单元22为I2C模块,时序控制器24与I2C模块之间通过I2C数据线进行通信。校正控制信号为一数字控制信号,I2C模块例如通过差值放大器(图未示)进行比较得到输入电压和参考电压的增益,再经过ADC转换将增益转换成数字控制信号。
在本实施例中,电压调整单元21为自动增益调整单元,包括第一电阻26、运算放大器25和第二电阻27。第一电阻26的第一端261连接I2C模块,运算放大器25的第一端(同相输入端)连接输入电压V1,运算放大器25第二端(反相输入端)经过第二电阻27接地,运算放大器25的反相输入端还连接第一电阻26的第二端262,运算放大器25的第三端(输出端)连接第一电阻26的第三端263。其中,运算放大器25为非反向运算放大器,第一电阻26为其可程式化的可变电阻。自动增益调整单元根据校正控制信号改变第一电阻26的阻值,运算放大器25根据第一电阻26的阻值利用以下关系式输出目标电压V2:
V2=V1(R1+R2)/R2
其中,V1为输入电压,R1为第一电阻26的阻值,R2为第二电阻27的阻值。
在本实施例中,通过对传输至不同栅极驱动器的输入电压进行调整,对应补偿输入电压传输至不同栅极驱动器时产生的损耗,使得不同的栅极驱动器输出相同的目标电压,避免在不同栅极驱动器的输出电压之间存在压降,从而解决液晶显示面板的显示不均现象,提高显示品质。
图3是本发明实施例的栅极驱动器的电压补偿方法的流程示意图。如图3所示,本实施例的栅极驱动器的电压补偿方法包括以下步骤:
步骤S101:通过电压检测单元检测栅极驱动器的输入电压并传送给数字比较校正单元。其中,数字比较校正单元为I2C模块。
步骤S102:数字比较校正单元将输入电压和栅极驱动器外部的控制器提供的参考电压进行比较以产生校正控制信号并传送给电压调整单元。其中,电压调整单元为自动增益调整单元,校正控制信号为一数字控制信号,外部控制器为时序控制器,与I2C模块之间通过I2C数据线进行通信。在步骤S102中,I2C模块通过差值放大器进行比较得到输入电压和参考电压的增益,并经过ADC转换将增益转换成数字控制信号。
步骤S103:电压调整单元根据校正控制信号对输入电压进行调整并输出目标电压。其中,自动增益调整单元还包括第一电阻、运算放大器和第二电阻。在步骤S103中,自动增益调整单元根据校正控制信号改变第一电阻的阻值,运算放大器根据第一电阻的阻值利用以下关系式输出目标电压:
V2=V1(R1+R2)/R2
其中,V1为输入电压,V2为目标电压,R1为第一电阻的阻值,R2为第二电阻的阻值。
步骤S104:通过栅极驱动器将目标电压输出至液晶显示面板。
在本实施例中,通过数字比较校正单元将电压检测单元检测的栅极驱动器的输入电压与栅极驱动器外部的控制器提供的参考电压比较产生校正控制信号,再通过电压调整单元根据校正控制信号对输入信号进行调整并输出目标电压经栅极驱动器输出到液晶显示面板,由此补偿输入电压传输至不同栅极驱动器时产生的损耗,使得不同的栅极驱动器输出相同的目标电压,避免在不同栅极驱动器的输出电压之间存在压降,从而解决液晶显示面板的显示不均现象,提高显示品质。
本发明还提供一种液晶显示装置30。如图4所示,图4是本发明实施例的液晶显示装置的结构示意图。液晶显示装置30包括:液晶显示面板31、栅极驱动器32、时序控制器33。其中,液晶显示面板31用于显示,栅极驱动器32用于为液晶显示面板31提供驱动电压,时序控制器33用于控制驱动栅极驱动器32。在本实施例中,栅极驱动器32包括上述如图2所示的栅极驱动器的电压补偿电路,其具体结构和工作原理在此不再赘述。
综上所述,本发明通过数字比较校正单元将电压检测单元检测的栅极驱动器的输入电压与外部控制器提供的参考电压比较产生校正控制信号,电压调整单元根据校正控制信号对输入信号进行调整并输出目标电压,目标电压经栅极驱动器输出到液晶显示面板。由此,通过对传输至不同栅极驱动器的输入电压进行调整,对应补偿输入电压传输至不同栅极驱动器时产生的损耗,使得不同的栅极驱动器输出相同的目标电压,避免在不同栅极驱动器的输出电压之间存在压降,从而解决液晶显示面板的显示不均现象,提高显示品质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种栅极驱动器的电压补偿电路,其中,所述电路包括电压检测单元、数字比较校正单元和电压调整单元;所述电压检测单元检测所述栅极驱动器的输入电压并传送给所述数字比较校正单元;所述数字比较校正单元还接收所述栅极驱动器外部的控制器提供的参考电压,并将所述输入电压和所述参考电压进行比较以产生校正控制信号传送给所述电压调整单元,所述电压调整单元根据所述校正控制信号对所述输入电压进行调整并输出目标电压,所述栅极驱动器将所述目标电压输出至液晶显示面板。
  2. 根据权利要求1所述的电路,其中,所述数字比较校正单元为I2C 模块,所述外部控制器与所述I2C 模块之间通过I2C 数据线进行通信。
  3. 根据权利要求2所述的电路,其中,所述控制器为时序控制器,所述校正控制信号为一数字控制信号,其中,所述I2C 模块进行所述比较得到所述输入电压和所述参考电压的增益,再经过ADC转换将所述增益转换成所述数字控制信号。
  4. 根据权利要求1所述的电路,其中,所述电压调整单元为自动增益调整单元,所述自动增益调整单元包括第一电阻、运算放大器和第二电阻,所述第一电阻的第一端连接所述I2C 模块,所述运算放大器的第一端连接所述输入电压,所述运算放大器第二端经过所述第二电阻接地,所述运算放大器的第二端还连接所述第一电阻的第二端,所述运算放大器的第三端连接所述第一电阻的第三端。
  5. 根据权利要求4所述的电路,其中,所述运算放大器为非反向运算放大器,所述第一电阻为其可程式化的可变电阻。
  6. 根据权利要求5所述的电路,其中,所述自动增益调整单元根据所述校正控制信号改变所述第一电阻的阻值,所述运算放大器根据所述第一电阻的阻值利用以下关系式输出所述目标电压:
    V2=V1(R1+R2)/R2,其中,V1为所述输入电压,V2为所述目标电压,R1为所述第一电阻的阻值,R2为所述第二电阻的阻值。
  7. 一种栅极驱动器的电压补偿方法,其中,所述方法包括:
    通过电压检测单元检测所述栅极驱动器的输入电压并传送给数字比较校正单元;
    所述数字比较校正单元将所述输入电压和所述栅极驱动器外部的控制器提供的参考电压进行比较以产生校正控制信号并传送给电压调整单元;
    所述电压调整单元根据所述校正控制信号对所述输入电压进行调整并输出目标电压;
    通过所述栅极驱动器将所述目标电压输出至液晶显示面板。
  8. 根据权利要求7所述的方法,其中,所述数字比较校正单元为I2C 模块,所述外部控制器为时序控制器,所述时序控制器与所述I2C 模块之间通过I2C 数据线进行通信;所述校正控制信号为一数字控制信号,所述I2C 模块通过差值放大器进行所述比较得到所述输入电压和所述参考电压的增益并经过ADC转换将所述增益转换成所述数字控制信号。
  9. 根据权利要求7所述的方法,其中,所述电压调整单元为自动增益调整单元,所述自动增益调整单元包括第一电阻、运算放大器和第二电阻,所述自动增益调整单元根据所述校正控制信号改变所述第一电阻的阻值;所述运算放大器根据所述第一电阻的阻值利用以下关系式输出所述目标电压:
    V2=V1(R1+R2)/R2;
    其中,V1为所述输入电压,V2为所述目标电压,R1为所述第一电阻的阻值,R2为所述第二电阻的阻值。
  10. 一种液晶显示装置,其中,所述装置包括:
    液晶显示面板,用于显示;
    栅极驱动器,用于为所述液晶显示面板提供驱动电压;
    其中,所述栅极驱动器包括一电压补偿电路,所述电压补偿电路包括电压检测单元、数字比较校正单元和电压调整单元;所述电压检测单元检测所述栅极驱动器的输入电压并传送给所述数字比较校正单元;所述数字比较校正单元还接收所述栅极驱动器外部的控制器提供的参考电压,并将所述输入电压和所述参考电压进行比较以产生校正控制信号传送给所述电压调整单元,所述电压调整单元根据所述校正控制信号对所述输入电压进行调整并输出目标电压,所述栅极驱动器将所述目标电压输出至液晶显示面板。
  11. 根据权利要求10所述的液晶显示装置,其中,所述数字比较校正单元为I2C 模块,所述外部控制器与所述I2C 模块之间通过I2C 数据线进行通信。
  12. 根据权利要求11所述的液晶显示装置,其中,所述控制器为时序控制器,所述校正控制信号为一数字控制信号,其中,所述I2C 模块进行所述比较得到所述输入电压和所述参考电压的增益,再经过ADC转换将所述增益转换成所述数字控制信号。
  13. 根据权利要求12所述的液晶显示装置,其中,所述电压调整单元为自动增益调整单元,所述自动增益调整单元包括第一电阻、运算放大器和第二电阻,所述第一电阻的第一端连接所述I2C 模块,所述运算放大器的第一端连接所述输入电压,所述运算放大器第二端经过所述第二电阻接地,所述运算放大器的第二端还连接所述第一电阻的第二端,所述运算放大器的第三端连接所述第一电阻的第三端。
  14. 根据权利要求13所述的液晶显示装置,其中,所述运算放大器为非反向运算放大器,所述第一电阻为其可程式化的可变电阻。
  15. 根据权利要求14所述的液晶显示装置,其中,所述自动增益调整单元根据所述校正控制信号改变所述第一电阻的阻值,所述运算放大器根据所述第一电阻的阻值利用以下关系式输出所述目标电压:
    V2=V1(R1+R2)/R2,其中,V1为所述输入电压,V2为所述目标电压,R1为所述第一电阻的阻值,R2为所述第二电阻的阻值。
PCT/CN2013/080929 2013-07-19 2013-08-06 一种栅极驱动器的电压补偿电路和方法以及液晶显示装置 WO2015007000A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/232,277 US9354458B2 (en) 2013-07-19 2013-08-06 Voltage compensation circuit of gate driver and method thereof and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310307310.3A CN103366706B (zh) 2013-07-19 2013-07-19 一种栅极驱动器的电压补偿电路和方法以及液晶显示装置
CN201310307310.3 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015007000A1 true WO2015007000A1 (zh) 2015-01-22

Family

ID=49367917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080929 WO2015007000A1 (zh) 2013-07-19 2013-08-06 一种栅极驱动器的电压补偿电路和方法以及液晶显示装置

Country Status (3)

Country Link
US (1) US9354458B2 (zh)
CN (1) CN103366706B (zh)
WO (1) WO2015007000A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570431A (zh) * 2015-01-29 2015-04-29 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031685B1 (ko) * 2013-12-31 2019-10-15 엘지디스플레이 주식회사 액정표시장치 및 그의 구동방법
CN104537985B (zh) * 2015-01-19 2017-06-30 深圳市华星光电技术有限公司 一种有机发光显示面板及其压降补偿方法
JP2017108204A (ja) * 2015-12-07 2017-06-15 ルネサスエレクトロニクス株式会社 半導体装置、電源装置及び半導体装置の制御方法
CN105374336B (zh) * 2015-12-15 2019-02-26 深圳市华星光电技术有限公司 液晶显示设备及栅极信号补偿方法
CN105427823A (zh) 2016-01-04 2016-03-23 京东方科技集团股份有限公司 一种栅极驱动电压的调节方法、调节装置及显示装置
CN105468063B (zh) * 2016-01-04 2017-03-08 京东方科技集团股份有限公司 电源电压控制电路、方法、驱动集成电路和显示装置
CN105845096B (zh) * 2016-06-03 2018-07-20 京东方科技集团股份有限公司 面板驱动装置以及显示装置
CN105931600A (zh) * 2016-07-08 2016-09-07 京东方科技集团股份有限公司 Amoled显示器件及其补偿方法
CN106409260B (zh) * 2016-11-17 2019-04-26 京东方科技集团股份有限公司 电压补偿电路及其电压补偿方法、显示面板及显示装置
TWI627622B (zh) * 2017-08-30 2018-06-21 友達光電股份有限公司 電壓補償電路及電壓補償方法
CN108198536B (zh) 2017-12-29 2020-06-09 深圳市华星光电技术有限公司 基于时序控制器的电压校准方法及校准***
CN108932923B (zh) * 2018-07-03 2020-09-01 深圳市华星光电半导体显示技术有限公司 Amoled的侦测***及侦测方法
JP7210224B2 (ja) * 2018-10-22 2023-01-23 キヤノン株式会社 表示素子、表示装置、撮像装置
EP3702793A1 (en) * 2019-03-01 2020-09-02 Mitsubishi Electric R & D Centre Europe B.V. A method and a device for monitoring the gate signal of a power semiconductor
CN110111737A (zh) * 2019-05-05 2019-08-09 深圳市华星光电半导体显示技术有限公司 显示面板、显示装置及栅极点电位的补偿方法
CN110148387A (zh) * 2019-05-21 2019-08-20 合肥奕斯伟集成电路有限公司 一种驱动电路的输出补偿方法及***
CN111179825A (zh) * 2020-01-02 2020-05-19 昆山国显光电有限公司 显示装置的电压调整模块、电压调整方法和显示装置
CN114627832B (zh) * 2022-02-28 2023-06-16 长沙惠科光电有限公司 电压补偿电路和显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020060655A1 (en) * 2000-11-22 2002-05-23 Seung-Hwan Moon Liquid crystal display device
JP2004199065A (ja) * 2002-12-17 2004-07-15 Samsung Electronics Co Ltd 異なる大きさの共通電圧を生成する液晶表示装置
CN102262852A (zh) * 2010-05-27 2011-11-30 快捷韩国半导体有限公司 用来生成斜坡波形的设备和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288142B2 (ja) * 1992-10-20 2002-06-04 富士通株式会社 液晶表示装置およびその駆動方法
KR101167314B1 (ko) * 2005-06-29 2012-07-19 엘지디스플레이 주식회사 액정표시장치
CN100562917C (zh) * 2006-11-01 2009-11-25 联詠科技股份有限公司 具有非线性增益的电压转换装置
JP4375463B2 (ja) * 2007-08-31 2009-12-02 ソニー株式会社 表示装置及び表示方法
CN102968970B (zh) * 2012-11-01 2015-01-28 合肥京东方光电科技有限公司 一种显示面板的驱动装置及驱动方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020060655A1 (en) * 2000-11-22 2002-05-23 Seung-Hwan Moon Liquid crystal display device
JP2004199065A (ja) * 2002-12-17 2004-07-15 Samsung Electronics Co Ltd 異なる大きさの共通電圧を生成する液晶表示装置
CN102262852A (zh) * 2010-05-27 2011-11-30 快捷韩国半导体有限公司 用来生成斜坡波形的设备和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570431A (zh) * 2015-01-29 2015-04-29 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置

Also Published As

Publication number Publication date
CN103366706A (zh) 2013-10-23
CN103366706B (zh) 2016-03-30
US20150153605A1 (en) 2015-06-04
US9354458B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2015007000A1 (zh) 一种栅极驱动器的电压补偿电路和方法以及液晶显示装置
WO2014183323A1 (zh) 削角电路及其控制方法
WO2014153768A1 (zh) 一种液晶显示装置及其驱动方法
CN107578752B (zh) 公共电压校准电路、电路板及显示装置
WO2013181853A1 (zh) 一种led背光***及显示装置
CN100483194C (zh) 液晶显示装置及其驱动方法
US9135882B2 (en) Data driver circuit having compensation module, LCD device and driving method
US20140176839A1 (en) Liquid crystal display device and driving method thereof
KR20080107778A (ko) 액정표시장치 및 그의 구동방법
US20020027540A1 (en) Liquid crystal display device and driving method thereof
US20040104903A1 (en) Display device
WO2013181860A1 (zh) 显示面板、平板显示装置及其驱动方法
WO2015043032A1 (zh) 液晶显示装置及其显示控制方法
WO2017088234A1 (zh) 一种显示屏控制***以及显示装置
KR20110094839A (ko) 데이터 신호와 클럭 신호 간의 스큐 보정 장치와 이를 이용한 표시장치
WO2021012327A1 (zh) 显示面板的公共电压补偿电路和补偿***
WO2018157419A1 (zh) 驱动电路及液晶显示装置
WO2016101306A1 (zh) 触控显示面板及触控显示装置
WO2018086297A1 (zh) 显示面板和显示器
WO2018223519A1 (zh) Goa驱动电路及液晶显示器
TW201308297A (zh) 顯示裝置及其伽瑪電壓產生器
WO2014190582A1 (zh) 主动矩阵显示面板、扫描驱动电路及扫描驱动方法
WO2015168934A1 (zh) 一种液晶显示面板及液晶显示装置
WO2018188141A1 (zh) 显示面板及显示装置
CN105845096B (zh) 面板驱动装置以及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14232277

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889721

Country of ref document: EP

Kind code of ref document: A1