WO2015005008A1 - 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法 - Google Patents

無線電力伝送装置及び無線電力伝送装置の供給電力制御方法 Download PDF

Info

Publication number
WO2015005008A1
WO2015005008A1 PCT/JP2014/064091 JP2014064091W WO2015005008A1 WO 2015005008 A1 WO2015005008 A1 WO 2015005008A1 JP 2014064091 W JP2014064091 W JP 2014064091W WO 2015005008 A1 WO2015005008 A1 WO 2015005008A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging
input impedance
power transmission
transmission device
Prior art date
Application number
PCT/JP2014/064091
Other languages
English (en)
French (fr)
Inventor
尚 津田
畑中 武蔵
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US14/904,147 priority Critical patent/US10069310B2/en
Priority to CN201480039388.4A priority patent/CN105359376B/zh
Priority to KR1020167001887A priority patent/KR20160022911A/ko
Priority to SG11201600148RA priority patent/SG11201600148RA/en
Priority to EP14823702.7A priority patent/EP3021451A4/en
Publication of WO2015005008A1 publication Critical patent/WO2015005008A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00718Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to charge current gradient

Definitions

  • the present invention provides wireless power for supplying power by a resonance phenomenon from a power supply module connected to a power source to a power reception module including a secondary battery that can be charged by a constant current / constant voltage charging method.
  • the present invention relates to a transmission device and a method for controlling supply power of a wireless power transmission device.
  • a technique of performing power transmission using electromagnetic induction between coils see, for example, Patent Document 1
  • a resonance phenomenon between resonators (coils) included in a power feeding apparatus and a power receiving apparatus A technique for performing power transmission by coupling magnetic fields using a magnetic field resonance state (see, for example, Patent Document 2).
  • a constant current constant voltage charging method As a method for charging a rechargeable battery (for example, a lithium ion secondary battery), a constant current constant voltage charging method is known.
  • the constant current constant voltage charging method charging with constant current is performed for a while after starting charging.
  • the voltage applied while charging with a constant current is increased to a predetermined upper limit voltage
  • charging with a constant voltage is performed while being held at the upper limit voltage.
  • secondary batteries such as lithium-ion secondary batteries tend to have a shortened life due to repeated full charge.
  • an object of the present invention is to provide a wireless power transmission device that can prevent a reduction in charging time and a reduction in the life of a secondary battery.
  • the power supply module connected to the power source is connected to the power reception module to which the power-supplied device including the secondary battery that can be charged by the constant current / constant voltage charging method is connected.
  • a wireless power transmission device that supplies power by a resonance phenomenon, wherein the wireless power transmission device includes an input impedance measuring device that measures an input impedance of a wireless power transmission device including the power-supplied device, and the input impedance measuring device.
  • a control device that determines whether or not the constant current charging period has ended using the measured change in input impedance, and terminates charging when it is determined that the constant current charging period has ended; It is characterized by that.
  • a secondary battery that can be charged by the constant current / constant voltage charging method can charge about 80% of the full charge by charging only during the constant current charging period, so that a sufficient amount of charge can be secured. . Moreover, since charging can be terminated at the end of the constant current charging period without performing constant voltage charging, the charging time can be shortened.
  • the control device is configured such that when the input impedance measured by the input impedance measuring device exceeds or falls below a predetermined threshold value. Further, it is characterized in that it is determined that the constant current charging period has ended.
  • the constant current charging period has ended when the input impedance measured by the input impedance measuring instrument exceeds or falls below a predetermined threshold.
  • the control device is a load fluctuation characteristic which is a change amount of the input impedance with respect to a charging time measured by the input impedance measuring device. However, when it exceeds or falls below a predetermined threshold, it is determined that the constant current charging period has ended.
  • the constant current charging period is determined to have ended when the load fluctuation characteristic, which is the amount of change in the input impedance with respect to the charging time, measured by the input impedance measuring instrument exceeds or falls below a predetermined threshold. can do.
  • the power supply module and the power reception module include at least a power supply coil, a power supply resonator, a power reception resonator, and a power reception coil, At least one of a coupling coefficient between the power feeding coil and the power feeding resonator, a coupling coefficient between the power feeding resonator and the power receiving resonator, and a coupling coefficient between the power receiving resonator and the power receiving coil.
  • the load variation characteristic can be adjusted by adjusting.
  • the load fluctuation characteristics can be adjusted by adjusting one. Thereby, for example, if the load fluctuation characteristic is increased, the change of the load fluctuation characteristic in a short time increases, so that the measurement accuracy with the input impedance measuring instrument can be increased.
  • the load variation characteristic is increased by increasing a coupling coefficient between the power supply coil and the power supply resonator. It is characterized by.
  • the load variation characteristic can be increased by increasing the coupling coefficient between the power supply coil and the power supply resonator.
  • One of the inventions for solving the above problem is that the load fluctuation characteristic is increased by increasing a coupling coefficient between the power receiving resonator and the power receiving coil in the wireless power transmission device. It is characterized by.
  • the load variation characteristic can be increased by increasing the coupling coefficient between the power receiving resonator and the power receiving coil.
  • One of the inventions for solving the above problems is that in the wireless power transmission device, a coupling coefficient between the power feeding coil and the power feeding resonator, and between the power receiving resonator and the power receiving coil.
  • the load variation characteristic is increased by increasing the coupling coefficient of the above.
  • the coupling coefficient between the power feeding coil and the power feeding resonator and the coupling coefficient between the power receiving resonator and the power receiving coil can be increased.
  • a power receiving module connected to a power-supplied device including a secondary battery that can be charged by a constant current / constant voltage charging method is connected to a power receiving module connected to a power source.
  • a method for controlling power supplied to a wireless power transmission device that supplies power by changing a magnetic field, the wireless power transmission device comprising: an input impedance measuring instrument that measures an input impedance of the power transmission device; and the control device.
  • the control device uses a change in input impedance measured by the input impedance measuring device to determine whether or not the constant current charging period has ended, and the constant current charging period includes When it is determined that the charging has been completed, a process for terminating the charging is executed.
  • the secondary battery when a secondary battery that can be charged by shifting from constant current charging to constant voltage charging is charged using a resonance phenomenon, there is a change in input impedance measured by the input impedance measuring instrument. Then, it can be determined that the constant current charging period has ended, and charging can be terminated at the end of the constant current charging period.
  • a secondary battery that can be charged by the constant current / constant voltage charging method can charge about 80% of the full charge by charging only during the constant current charging period, so that a sufficient amount of charge can be secured. . Moreover, since charging can be terminated at the end of the constant current charging period without performing constant voltage charging, the charging time can be shortened.
  • 6 is a graph showing measurement results according to measurement experiment 2-1 and measurement experiment 2-2. 6 is a graph showing measurement results according to Measurement Experiment 2-3 and Measurement Experiment 2-4. 7 is a graph showing measurement results according to measurement experiment 2-5. It is a graph which shows the relationship between the distance between coils and a coupling coefficient in wireless power transmission. It is the flowchart explaining the charge operation
  • Embodiments of a wireless power transmission device and a method for controlling power supply of the wireless power transmission device according to the present invention will be described below.
  • a charger 101 including a power feeding module 2 and a wireless headset 102 including a power receiving module 3 will be described as an example.
  • the wireless power transmission device 1 includes a charger 101 and a wireless headset 102.
  • the charger 101 includes a power supply module 2 having a power supply coil 21 and a power supply resonator 22, a current / voltage detection unit 4 (corresponding to an input impedance measuring device), a control device 5, and the like. It has.
  • the wireless headset 102 includes a power receiving module 3 having an earphone speaker unit 102a, a power receiving coil 31, and a power receiving resonator 32, a stabilization circuit 7 that rectifies received AC power, and charging that prevents overcharging.
  • a circuit 8 and a lithium ion secondary battery are provided (note that a device as an acoustic device is omitted).
  • the power supply coil 21 of the power supply module 2 is connected to an AC power supply 6 (external power supply source 61, oscillation circuit 62) that supplies power to the power supply module 2 via the control device 5.
  • a lithium ion secondary battery 9 is connected to the power receiving coil 31 through a stabilization circuit 7 and a charging circuit 8.
  • the stabilizing circuit 7, the charging circuit 8, and the lithium ion secondary battery 9 are shown outside the power receiving module 3, but actually, a solenoid-shaped power receiving coil 31 and a power receiving resonator 32. It is arrange
  • the stable circuit 7, the charging circuit 8, and the lithium ion secondary battery 9 in the present embodiment are a power-supplied device 10 that is a final power supply destination, as illustrated in FIGS. 1 and 2.
  • the power-supplied device 10 is a general term for all devices that are power supply destinations connected to the power receiving module 3.
  • the charger 101 is provided with a storage groove that accommodates the shape of the wireless headset 102 for storing the wireless headset 102, and a wireless type is provided in the storage groove of the charger 101.
  • the wireless headset 102 can be positioned so that the power supply module 2 provided in the charger 101 and the power receiving module 3 provided in the wireless headset 102 are opposed to each other. ing.
  • the feeding coil 21 serves to supply power obtained from the AC power source 6 to the feeding resonator 22 by electromagnetic induction.
  • the power supply coil 21 constitutes an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 as elements.
  • the coil L 1 moiety using copper wire material (coated by insulation coating), has set the coil diameter having a diameter of 15 mm.
  • the sum of the impedance circuit elements constituting the power feeding coil 21 has a Z 1, in the present embodiment, the resistor R 1 constituting the power feeding coil 21, the coil L 1 and a capacitor C 1 and element RLC the impedance of the total with the circuit (circuit element) is set to Z 1. Further, the current flowing through the feeding coil 21 is set to I 1 .
  • the power receiving coil 31 has a function of receiving electric power transmitted as magnetic field energy from the power feeding resonator 22 to the power receiving resonator 32 by electromagnetic induction, and supplying the power to the lithium ion secondary battery 9 through the stabilization circuit 7 and the charging circuit 8. Fulfill.
  • the power receiving coil 31 forms an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 as shown in FIG.
  • the coil L 4 moiety, using copper wire material (coated by insulation coating), is set to a coil diameter 11Mmfai.
  • the total impedance of the circuit elements constituting the power receiving coil 31 is Z 4, and in this embodiment, the RLC including the resistor R 4 , the coil L 4 , and the capacitor C 4 constituting the power receiving coil 31 as elements.
  • the impedance of the total with the circuit (circuit element) is set to Z 4.
  • the sum of the impedance of the power supply device 10 connected to the receiving coil 31 is set to Z L.
  • the current flowing through the power receiving coil 31 is set to I 4.
  • the sum of the impedance of the power feeding device 10 is set to Z L, convenience may be replaced by R L.
  • the power feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 as elements.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 as elements.
  • Each of the power feeding resonator 22 and the power receiving resonator 32 becomes a resonance circuit and plays a role of creating a magnetic field resonance state.
  • the magnetic field resonance state (resonance phenomenon) means that two or more coils resonate at the resonance frequency.
  • the total impedance of the circuit elements constituting the feed resonator 22 and Z 2 in the present embodiment constitutes a feed resonator 22, resistors R 2, coil L 2, and a capacitor C 2 elements It is a Z 2 the total impedance RLC circuit (circuit element) has to be. Further, the total impedance of the circuit elements constituting the power receiving resonator 32 is Z 3. In this embodiment, the resistor R 3 , the coil L 3 , and the capacitor C 3 constituting the power receiving resonator 32 are elements. is set to Z 3 the total impedance RLC circuit (circuit element) has to be. Further, the current flowing through the power feeding resonator 22 is I 2 and the current flowing through the power receiving resonator 32 is I 3 .
  • the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving coil 31, and the power receiving resonator 32 in the present embodiment is 970 kHz. ... (Formula 1)
  • the power supply resonator 22 uses a solenoid type coil having a coil diameter of 15 mm ⁇ made of a copper wire (with an insulating coating).
  • the power receiving resonator 32 uses a solenoid type coil having a coil diameter of 11 mm ⁇ made of a copper wire (with an insulating coating). Further, the resonance frequencies of the power feeding resonator 22 and the power receiving resonator 32 are matched.
  • the power feeding resonator 22 and the power receiving resonator 32 may be spiral or solenoid type coils as long as the resonators use coils.
  • the distance between the power feeding coil 21 and the power feeding resonator 22 is d12
  • the distance between the power feeding resonator 22 and the power receiving resonator 32 is d23
  • the distance between the power receiving resonator 32 and the power receiving coil 31 Is d34 (see FIG. 1).
  • the coupling coefficient between the coil L 1 and a coil L 2 is denoted as k 12, denoted the coupling coefficient between the coil L 2 and the coil L 3 and k 23, coil the coupling coefficient between L 3 and the coil L 4 are denoted with k 34.
  • a circuit diagram of the wireless power transmission device 1 (including the stable circuit 7, the charging circuit 8, and the lithium ion secondary battery 9) is shown in the lower diagram of FIG.
  • This wireless power transmission apparatus 1 shows the whole (ballast circuit 7, the charging circuit includes 8 and lithium ion secondary battery 9) by replacing one of the input impedance Z in, it is applied to the wireless power transmission device 1
  • the voltage is represented as voltage V in
  • the current input to the wireless power transmission device 1 is represented as I in .
  • the configuration of the wireless power transmission device 1 is represented by an equivalent circuit as shown in FIG. Then, from the equivalent circuit of FIG. 4, the input impedance Z in of the wireless power transmission device 1 can be expressed as (Equation 2). ... (Formula 2)
  • the impedances Z 1 , Z 2 , Z 3 , Z 4, and Z L in the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 of the wireless power transmission device 1 in the present embodiment are respectively It can be expressed as (Equation 3). ... (Formula 3)
  • the resistance value of R 4, L 4, C 4 of the RLC circuit of the power receiving coil 31, the inductance, capacitance, and the coupling coefficient k 12, k 23, k 34 is changeable in design and manufacturing stage, etc.
  • parameters Is preferably set so as to satisfy the relational expression (Formula 4).
  • the current / voltage detection unit 4 included in the charger 101 includes a current detection unit and a voltage detection unit.
  • the voltage V in applied to the wireless power transmission device 1 and the wireless power transmission device 1 are The input current I in is detected.
  • the control device 5 obtains the input impedance Z in based on the voltage V in and the current I in detected by the current / voltage detection unit 4 (see Equation 5), and determines the input impedance Z in thus obtained. In accordance with the change, it has a function of determining whether or not to supply power from the AC power supply 6 to the power supply module 2, and when it is determined not to supply power, the power from the AC power supply 6 to the power supply module 2 is determined. Has a function of shutting off the supply.
  • the control device 5 is configured by, for example, a microcomputer, a storage device, and the like.
  • the current / voltage detector 4 that detects the voltage V in and the current I in corresponds to an input impedance measuring instrument. ... (Formula 5)
  • a lithium ion secondary battery 9 is used as one of the power-supplied devices 10 to which power is supplied. And generally, in order to charge the lithium ion secondary battery 9, the constant current constant voltage charge system is employ
  • I ch constant current
  • V ch voltage applied to the lithium ion secondary battery 9 while charging with a constant current
  • the charging time can be shortened by terminating the charging of the lithium ion secondary battery 9 at the end of the constant current charging (CC).
  • the lithium ion secondary battery 9 that can be charged by the constant current / constant voltage charging method can be charged about 80% of the full charge by charging only in the constant current charging period (CC), the constant current charging (CC Even if the charging of the lithium ion secondary battery 9 is terminated at the end of), a sufficient amount of charge can be secured.
  • the lithium ion secondary battery 9 tends to have a shorter life due to repeated full charge. By terminating the charging of the ion secondary battery 9, the life of the lithium ion secondary battery 9 can be extended.
  • the above object can be achieved by terminating the charging of the lithium ion secondary battery 9.
  • lithium ion secondary battery 9 when the current value (I ch ) input to the lithium ion secondary battery 9 is attenuated when shifting from constant current charging (CC) to constant voltage charging (CV), lithium ion secondary The value of the load impedance of the power-supplied device 10 including the secondary battery 9 is increased.
  • the input of the entire wireless power transmission device 1 including the power-supplied device 10 when shifting from constant current charging (CC) to constant voltage charging (CV). by measuring the change in impedance Z in, if the change in input impedance Z in is measured as the constant current charging (CC) period has expired, and terminate the charging of the lithium ion secondary battery 9.
  • the constant-current charging (CC) period by measuring the change in input impedance Z in is judged whether or not it is completed, as a change of the input impedance Z in is the input impedance Z in.
  • the load fluctuation characteristic is an amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time when the constant current charging is changed to the constant voltage charging.
  • ⁇ Y the predetermined amount of change
  • ⁇ X the predetermined amount of change
  • Mean tilt the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time increases, and the slope becomes steep.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the power frequency of the power supplied to the wireless power transmission device 1 is made to have a bimodal property, and the power supplied to the wireless power transmission device 1 is By adjusting the power supply frequency, the increasing / decreasing tendency of the input impedance value of the wireless power transmission device 1 during constant voltage charging is set.
  • the feeding coil 21 constitutes an RLC circuit including the resistor R 1 , the coil L 1 , and the capacitor C 1 as the elements. In one portion, the coil diameter is set to 15 mm ⁇ .
  • the power receiving coil 31 constitutes an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 as elements, and the coil L 4 portion has a coil diameter set to 11 mm ⁇ .
  • the power supply resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2.
  • the coil L 2 portion uses a solenoid type coil having a coil diameter of 15 mm ⁇ . is doing.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 , and the coil L 3 portion uses a solenoid type coil having a coil diameter of 11 mm ⁇ . is doing. Then, the values of R 1 , R 2 , R 3 , and R 4 in the wireless power transmission device 1 used for the measurement experiments 1-1 to 1-3 are 0.65 ⁇ , 0.65 ⁇ , 2.47 ⁇ , 2. Set to 0 ⁇ . The values of L 1 , L 2 , L 3 , and L 4 were set to 3.1 ⁇ H, 3.1 ⁇ H, 18.4 ⁇ H, and 12.5 ⁇ H, respectively.
  • the coupling coefficients k 12 , k 23 , and k 34 were set to 0.46, 0.20, and 0.52, respectively.
  • the resonance frequency in the power feeding resonator 22 and the power receiving resonator 32 is 970 kHz.
  • the power frequency of the AC power supplied to the power supply module 2 is set to a common mode (to be described later) after setting the wireless power transmission device 1 to have a bimodal property.
  • the lithium ion secondary battery 9 is charged (powered) in place of three states (see FIG. 6) of the resonance mode (fL), the anti-phase resonance mode (fH), and the resonance frequency (f0).
  • Current I in and input impedance Z in are measured.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the power frequency of the power supplied to the wireless power transmission device 1 is measured with a bimodal property.
  • the transmission characteristic “S21” represents a signal measured by connecting a network analyzer (such as E5061B manufactured by Agilent Technologies) to the wireless power transmission device 1, and is displayed in decibels. It means that power transmission efficiency is high.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the power frequency of the power supplied to the wireless power transmission device 1 is determined by the strength of the magnetic field coupling between the power supply module 2 and the power reception module 3 (magnetic field coupling). It is divided into those having unimodal properties and those having bimodal properties.
  • the unimodality means that there is one peak of the transmission characteristic “S21” with respect to the power supply frequency, and that peak appears in the resonance frequency band (f0) (see the broken line 51 in FIG. 6).
  • the bimodality has two peaks of the transmission characteristic “S21” with respect to the power frequency, and the two peaks are a power frequency band (fL) lower than the resonance frequency and a power frequency band (fH) higher than the resonance frequency. ) (See the solid line 52 in FIG. 6). More specifically, bimodality is defined as a state where the reflection characteristic “S11” measured by connecting the wireless power transmission device 1 to the network analyzer has two peaks.
  • the power transmission efficiency refers to the ratio of the power received by the power receiving module 3 to the power supplied to the power supply module 2.
  • the transmission characteristic “S21” is maximized when the power supply frequency is the resonance frequency f0 (the power transmission efficiency is maximized), as indicated by a broken line 51 in FIG. ).
  • the transmission characteristic “S21” has a power frequency band (fL) lower than the resonance frequency f0 and the resonance frequency f0. Is also maximized in the high power frequency band (fH).
  • the maximum value of the transmission characteristic “S21” in the bimodality (the value of the transmission characteristic “S21” at fL or fH). Is a value lower than the maximum value of the transmission characteristic “S21” in the unimodality (the value of the transmission characteristic “S21” at f0) (see the graph of FIG. 6).
  • the power supply frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode)
  • the power supply resonator 22 and the power reception resonator 32 are set.
  • the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are the same.
  • the power supply frequency is not equal to the transmission characteristic “S21” (broken line 51) in the general wireless power transmission device for the purpose of maximizing the power transmission efficiency, but the power supply frequency is changed to the power supply module.
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are the same direction is called an in-phase resonance mode. I will decide.
  • the magnetic field generated on the outer peripheral side of the power feeding resonator 22 and the magnetic field generated on the outer peripheral side of the power receiving resonator 32 cancel each other, whereby the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32 is obtained.
  • the influence of the magnetic field is reduced, and the magnetic field intensity is smaller than the magnetic field strength other than the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32 (for example, the magnetic field strength on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32)
  • a magnetic field space having strength can be formed.
  • the power supply resonator 22 and the power reception resonator 32 are in reverse phase.
  • the resonance state occurs, and the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are reversed.
  • the power supply frequency is not equal to the transmission characteristic “S21” (broken line 51) in the general wireless power transmission device for the purpose of maximizing the power transmission efficiency, but the power supply frequency is changed to the power supply module.
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are opposite to each other is referred to as an antiphase resonance mode. I will call it.
  • the magnetic field generated on the inner peripheral side of the power feeding resonator 22 and the magnetic field generated on the inner peripheral side of the power receiving resonator 32 cancel each other, so that the power feeding resonator 22 and the power receiving resonator 32 are
  • the magnetic field strength on the inner peripheral side of the power supply resonator 22 and the power receiving resonator 32 other than the inner peripheral side is reduced (for example, the magnetic field strength on the outer peripheral side of the power supply resonator 22 and the power receiving resonator 32).
  • a magnetic field space having a smaller magnetic field strength can be formed.
  • the stable circuit 7, the charging circuit 8, the lithium ion secondary battery 9, etc. since the magnetic field space formed by the reversed-phase resonance mode is formed on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32, the stable circuit 7, the charging circuit 8, and the lithium ion secondary battery are formed in this space.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the power frequency of the power supplied to the wireless power transmission device 1 has a bimodal property as described above, the AC power supplied to the power supply module 2 is reduced.
  • the power supply frequency is set to the in-phase resonance mode (fL) or the anti-phase resonance mode (fH), as shown in FIG. it is possible to maximize the value of the input impedance Z in (see solid line 55).
  • the AC power supply frequency to the power-supplying module 2 is set to the resonance frequency (f0), as shown in FIG. 7, possible to minimize the value of the input impedance Z in of the wireless power transmission device 1 (See solid line 55).
  • the power frequency of the AC power supplied to the power supply module 2 is set to 3 of the in-phase resonance mode (fL), the anti-phase resonance mode (fH), and the resonance frequency (f0).
  • the current I in and the input impedance Z in when the lithium ion secondary battery 9 is charged (powered) are measured.
  • the RLC circuit of the feeding coil 21 R 1 , L 1 , C 1 , R 2 , L 2 , C 2 of the RLC circuit of the power feeding resonator 22, R 3 , L 3 , C 3 of the RLC circuit of the power receiving resonator 32, and the RLC circuit of the power receiving coil 31
  • Setting / combination of changeable parameters constituting the power supply module 2 and the power reception module 3 such as resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , k 34 in R 4 , L 4 , and C 4 Is a design item and can be set freely.
  • Measurement experiment 1-1 When the power supply frequency is set to the common-mode resonance mode
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the power supply frequency of the power supplied to the wireless power transmission device 1 is set to have a bimodal property.
  • the power frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side
  • the input impedance Z after shifting from constant current charging (CC) to constant voltage charging (CV) The value of in can be increased.
  • Measurement experiment 1-2 When the power supply frequency is set to the anti-phase resonance mode
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the power frequency of the power supplied to the wireless power transmission device 1 is set so as to have a bimodal property.
  • the power frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side, the input impedance Z in after the transition from constant current charging (CC) to constant voltage charging (CV) The value of can be increased.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the power frequency of the power supplied to the wireless power transmission device 1 is set so as to have a bimodal property.
  • the resonance frequency f0 in if you set the power supply frequency of AC power to the power-supplying module 2, decreasing the value of the input impedance Z in of the shifts from constant-current charging (CC) to the constant voltage charging (CV) Can be.
  • determination can be made by setting a predetermined threshold value for determining that the constant current charging period has ended to a value lower than the load fluctuation characteristic during constant current charging.
  • the load variation characteristics are adjusted by changing the coupling coefficients k 12 , k 23 , and k 34 . Then, how the load fluctuation characteristics change by changing the coupling coefficients k 12 , k 23 , k 34 will be described with reference to measurement experiments 2-1 to 2-5.
  • the wireless power transmission device 1 is set to have a bimodal property, and the power frequency of the AC power supplied to the power supply module 2 is set to the negative phase resonance mode (fH). It is set to.
  • the coupling coefficients k 23 and k 34 are fixed to 0.20 and 0.52, respectively, and the coupling coefficient k 12 is set to 0.3, and the coupling coefficient k 12 is set to 0.46.
  • the input impedance Z in when charging (power feeding) the lithium ion secondary battery 9 was measured.
  • the wireless power transmission device 1 used in the measurement experiment 2-2 is the same as that in the measurement experiment 2-1.
  • the power supply resonator 22 and the power reception resonator 32 have the power frequency of the AC power supplied to the power supply module 2 after setting the wireless power transmission device 1 to the bimodal nature.
  • the resonance frequency (f0) is set.
  • the coupling coefficients k 23 and k 34 are fixed to 0.20 and 0.52, respectively, and the coupling coefficient k 12 is set to 0.3, and the coupling coefficient k 12 is set to 0.46.
  • the input impedance Z in when charging (power feeding) the lithium ion secondary battery 9 was measured.
  • charging with a constant current (CC) is performed by setting the power supply frequency of the AC power supplied to the power supply module 2 to the resonance frequency (f0) of the power supply resonator 22 and the power reception resonator 32.
  • value of the input impedance Z in of the proceeds to the charging by the constant voltage (CV) is set to be on the decline from.
  • the slope that is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time during constant voltage charging is minus ( ⁇ ), but the load fluctuation characteristics are evaluated in absolute values. In the case of the measurement experiment 2-2, it is evaluated that the load fluctuation characteristic is large.
  • the wireless power transmission device 1 used in the measurement experiment 2-3 is the same as that in the measurement experiment 2-1.
  • the power frequency of the AC power supplied to the power supply module 2 is set to the anti-phase resonance mode (fH) after setting the wireless power transmission device 1 to the bimodal nature.
  • the coupling coefficients k 12 and k 23 are fixed to 0.46 and 0.20, respectively, and the coupling coefficient k 34 is set to 0.25, and the coupling coefficient k 34 is set to 0.52.
  • the input impedance Z in when charging (power feeding) the lithium ion secondary battery 9 was measured.
  • the wireless power transmission device 1 used in the measurement experiment 2-4 is the same as the measurement experiment 2-1.
  • the power supply resonator 22 and the power reception resonator 32 have the power frequency of the AC power supplied to the power supply module 2 after setting the wireless power transmission device 1 to the bimodal nature.
  • the resonance frequency (f0) is set.
  • the coupling coefficients k 12 and k 23 are fixed to 0.46 and 0.20, respectively, and the coupling coefficient k 34 is set to 0.25, and the coupling coefficient k 34 is set to 0.52.
  • the input impedance Z in when charging (power feeding) the lithium ion secondary battery 9 was measured.
  • the power frequency of the AC power supplied to the power supply module 2 is set to the resonance frequency (f0) of the power supply resonator 22 and the power reception resonator 32. by, so that the value of the input impedance Z in of the shifts from charging with a constant current (CC) charging by the constant voltage (CV) is decreasing.
  • R 1 , R 2 , R 3 , and R 4 in the wireless power transmission device 1 used in the measurement experiment 2-5 were set to 0.7 ⁇ , 0.7 ⁇ , 2.5 ⁇ , and 2.0 ⁇ , respectively.
  • the values of L 1 , L 2 , L 3 , and L 4 were set to 3.1 ⁇ H, 3.1 ⁇ H, 18.4 ⁇ H, and 12.5 ⁇ H, respectively.
  • the values of C 1 , C 2 , C 3 , and C 4 were set to 8.7 nF, 8.7 nF, 1.5 nF, and 2.3 nF, respectively.
  • the resonance frequency in the power feeding resonator 22 and the power receiving resonator 32 is 970 kHz.
  • the coupling coefficient k 12 is set to 0.46 and the coupling coefficient k 34 is set to 0.52, the coupling coefficient k 12 is set to 0.38 and the coupling coefficient k 34 is set to 0.37. It can be seen that the load variation characteristic is larger.
  • the load fluctuation characteristic is increased, the change in the load fluctuation characteristic in a short time increases, so that the measurement accuracy in the voltage detection unit 4 (including the control device 5) can be increased.
  • the relationship between the distance between the coils and the coupling coefficient k tends to increase the value of the coupling coefficient k when the distance between the coils is shortened (shortened). is there.
  • the distance d12 between the power feeding coil 21 and the power feeding resonator 22, the distance d23 between the power feeding resonator 22 and the power receiving resonator 32, and the power receiving resonator are applied to the wireless power transmission device 1 according to the present embodiment, the distance d12 between the power feeding coil 21 and the power feeding resonator 22, the distance d23 between the power feeding resonator 22 and the power receiving resonator 32, and the power receiving resonator.
  • a magnetic field resonance state is created in a state where the power feeding resonator 22 and the power receiving resonator 32 resonate, and the power feeding resonator 22 changes to the power receiving resonator 32.
  • Electric power is transmitted as magnetic field energy.
  • the power received by the power receiving resonator 32 is supplied to the lithium ion secondary battery 9 through the power receiving coil 31, the stabilization circuit 7, and the charging circuit 8, and constant current charging (CC) is started.
  • the charge amount of the lithium ion secondary battery 9 when the wireless headset 102 is placed on the charger 101 is assumed to be 0%.
  • the control device 5 determines whether or not the voltage V in applied to the wireless power transmission device 1 and the current I in input to the wireless power transmission device 1 are detected by the current / voltage detection unit 4. (S1).
  • the current / voltage detection unit 4 detects the current I in and the voltage V in with a predetermined time interval (the predetermined time interval can be arbitrarily set).
  • the control device 5 calculates the input impedance Z in based on the voltage V in and the current I in detected by the current / voltage detection unit 4. (See Formula 5) (S2).
  • the control device 5 determines whether exceeds a preset threshold value (S3). Then, the input impedance Z in calculated in S2 is, it does not exceed the preset threshold (S3: NO), the process proceeds to S1.
  • the input impedance Z in is constant during constant current charging (CC). has been substantially maintained at 22 ohms, the process proceeds to the constant voltage charging (CV), the input impedance Z in is gradually increased. Then, at the charging time about 45min, input impedance Z in to reach the 25 ⁇ . Therefore, the control device 5, by the input impedance Z in calculated in S2 is determined to have exceeded a preset threshold (25 [Omega]), to cut off the supply of power from the AC power supply 6 to the power supply module 2, lithium Charging the ion secondary battery 9 is terminated.
  • a preset threshold 25 [Omega]
  • the above is a charging operation flow in the case where it is determined that the constant current charging period has ended when the input impedance Z in exceeds a predetermined threshold.
  • the load fluctuation characteristic is calculated in S2, and when the load fluctuation characteristic exceeds the predetermined threshold, (S3)
  • the control device 5 shuts off the supply of power from the AC power supply 6 to the power supply module 2 (S4), thereby terminating the charging of the lithium ion secondary battery 9.
  • the lithium ion secondary battery 9 may extend the life of the lithium ion secondary battery 9 by repeating charging such that the charging is completed while leaving a certain capacity without being fully charged, rather than repeating full charging. it can. For this reason, as described above, the lithium ion secondary battery 9 can be charged with only a constant current charging period (CC), so that the battery can be charged with a certain capacity without being fully charged. The lifetime of the secondary battery 9 can be extended.
  • the lithium-ion secondary battery 9 that can be charged by the constant current / constant voltage charging method can be charged about 80% of the full charge by charging only in the constant current charging period (CC). Can be secured.
  • the charging time can be shortened.
  • the coupling coefficient k 12 between the power feeding coil 21 and the power feeding resonator 22, the coupling coefficient k 23 between the power feeding resonator 22 and the power receiving resonator 32, and the power receiving resonator 32 The load variation characteristic can be adjusted by adjusting at least one of the coupling coefficient k 34 with the power receiving coil 31.
  • the load fluctuation characteristic is increased, the change in the load fluctuation characteristic in a short time becomes larger, so that the measurement accuracy in the voltage detection unit 4 (including the control device 5) can be increased.
  • the coupling coefficient k 12 between the power feeding coil 21 and the power feeding resonator 22 and the coupling coefficient k 34 between the power receiving resonator 32 and the power receiving coil 31 can be increased.
  • the wireless headset 102 has been described as an example.
  • a device equipped with a secondary battery can be used for a tablet PC, digital camera, mobile phone, earphone music player, hearing aid, sound collector, etc. Can also be used.
  • the wireless power transmission device 1 is mounted on a portable electronic device.
  • the usage is not limited to these small devices, and the specification is changed according to the required power amount.
  • it can be mounted on a wireless charging system in a relatively large electric vehicle (EV), a smaller medical wireless gastrocamera, or the like.
  • EV electric vehicle
  • a smaller medical wireless gastrocamera or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 充電時間の短縮及び二次電池の寿命を縮めるのを防止することができる無線電力伝送装置を提供する。 無線電力伝送装置1は、被給電機器10を含む無線電力伝送装置1の入力インピーダンスZinを測定する電流・電圧検出部4と、電流・電圧検出部4が測定した入力インピーダンスZinの変化を利用して、定電流充電期間(CC)が終了したか否かを判定し、定電流充電期間(CC)が終了したと判定した場合に、リチウムイオン二次電池9に対する充電を終了させる制御機器5とを備えた構成をしている。

Description

無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
 本発明は、電源に接続された給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置及び無線電力伝送装置の供給電力制御方法に関する。
 近年、ノート型PC、タブレット型PC、デジタルカメラ、携帯電話、携帯ゲーム機、イヤホン型音楽プレイヤー、無線式ヘッドセット、補聴器、レコーダーなど人が携帯しながら使用できる携帯型の電子機器が急速に普及してきている。そして、これらの携帯型の電子機器の多くには充電池が搭載されており、定期的な充電が必要とされる。この電子機器の充電池への充電作業を簡易にするために、給電装置と電子機器に搭載された受電装置との間で無線による電力伝送を利用した給電技術(磁界を変化させて電力伝送を行う無線電力伝送技術)により、充電池を充電する機器が増えつつある。
 例えば、無線電力伝送技術としては、コイル間の電磁誘導を利用して電力伝送を行う技術や(例えば、特許文献1参照)、給電装置及び受電装置が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う技術が挙げられる(例えば、特許文献2参照)。
 また、充電池(例えば、リチウムイオン二次電池など)を充電する方式に関しては、定電流定電圧充電方式が知られている。定電流定電圧充電方式では、充電を開始してからしばらくの間は、定電流による充電が行われる。そして、定電流による充電が行われている間に印加される電圧が、所定の上限電圧まで上昇したら、その上限電圧に保持されたまま定電圧による充電が行われる。
特許第4624768号公報 特開2010-239769号公報
 もっとも、上記無線による電力伝送を行う無線電力伝送装置によって、リチウムイオン二次電池を定電流定電圧充電方式によって充電する場合、定電流充電から定電圧充電に移行したときに、図5に示すように、充電池に供給される電流値が減衰してしまう。その結果、定電圧充電時には、充電時間に対する充電量が低下してしまい、満充電までに時間を要していた。
 また、一般に、リチウムイオン二次電池等の二次電池は満充電を繰り返すことにより、二次電池の寿命が短くなる傾向にある。
 そこで、本発明の目的は、充電時間の短縮及び二次電池の寿命を縮めるのを防止することができる無線電力伝送装置を提供することにある。
 上記課題を解決するための発明の一つは、電源に接続された給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置であって、前記無線電力伝送装置は、前記被給電機器を含む無線電力伝送装置の入力インピーダンスを測定する入力インピーダンス測定器と、前記入力インピーダンス測定器が測定した入力インピーダンスの変化を利用して、前記定電流充電期間が終了したか否かを判定し、前記定電流充電期間が終了したと判定した場合に、充電を終了させる制御機器と、を備えたことを特徴としている。
 上記構成によれば、定電流充電から定電圧充電に移行して充電可能な二次電池に、共振現象を利用した充電をするに際して、入力インピーダンス測定器が測定した入力インピーダンスの変化があったときに、定電流充電期間が終了したと判定させて、この定電流充電期間の終了をもって充電を終了させることができる。
 一般に、二次電池は満充電を繰り返すより、満充電せずにある程度の容量を残して充電を終えるような充電を繰り返す方が、二次電池の寿命を延ばすことができる。このため、上記のように二次電池に対して定電流充電期間のみの充電で終了させることにより、満充電せずにある程度の容量を残した充電が可能となり、二次電池の寿命を延ばすことができる。なお、一般に、定電流・定電圧充電方式により充電可能な二次電池は、定電流充電期間のみの充電で満充電の約80%の充電が可能でるため十分な充電量を確保することができる。
 また、定電圧充電を経ずに、定電流充電期間の終了をもって充電を終了させることができるので、充電時間の短縮を図ることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置において、前記制御機器は、前記入力インピーダンス測定器が測定した前記入力インピーダンスが、所定の閾値を、上回る又は下回ったときに、前記定電流充電期間が終了したと判定することを特徴としている。
 上記構成によれば、入力インピーダンス測定器が測定した入力インピーダンスが、所定の閾値を、上回る又は下回ったときに、定電流充電期間が終了したと判定することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置において、前記制御機器は、前記入力インピーダンス測定器が測定した、充電時間に対する前記入力インピーダンスの変化量である負荷変動特性が、所定の閾値を、上回る又は下回ったときに、前記定電流充電期間が終了したと判定することを特徴としている。
 上記構成によれば、入力インピーダンス測定器が測定した、充電時間に対する入力インピーダンスの変化量である負荷変動特性が、所定の閾値を、上回る又は下回ったときに、定電流充電期間が終了したと判定することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置において、前記給電モジュール及び前記受電のモジュールは、少なくとも給電コイル、給電共振器、受電共振器及び受電コイルを備え、前記給電コイルと前記給電共振器との間の結合係数、前記給電共振器と前記受電共振器との間の結合係数、及び、前記受電共振器と前記受電コイルとの間の結合係数の少なくとも一つを調整することにより、前記負荷変動特性が調整可能であることを特徴としている。
 上記構成によれば、給電コイルと給電共振器との間の結合係数、給電共振器と受電共振器との間の結合係数、及び、受電共振器と受電コイルとの間の結合係数の少なくとも一つを調整することにより、負荷変動特性を調整することができる。
 これにより、例えば、負荷変動特性を大きくすれば、短時間での負荷変動特性の変化が大きくなるため、入力インピーダンス測定器での測定精度を上げることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置において、前記給電コイルと前記給電共振器との間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴としている。
 上記構成によれば、給電コイルと給電共振器との間の結合係数を大きくすることにより、負荷変動特性を大きくすることができる。これにより、短時間での負荷変動特性の変化が大きくなるため、入力インピーダンス測定器での測定精度を上げることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置において、前記受電共振器と前記受電コイルとの間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴としている。
 上記構成によれば、受電共振器と受電コイルとの間の結合係数を大きくすることにより、負荷変動特性を大きくすることができる。これにより、短時間での負荷変動特性の変化が大きくなるため、入力インピーダンス測定器での測定精度を上げることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置において、前記給電コイルと前記給電共振器との間の結合係数、及び、前記受電共振器と前記受電コイルとの間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴としている。
 上記構成によれば、給電コイルと給電共振器との間の結合係数、及び、受電共振器と受電コイルとの間の結合係数を大きくすることができる。これにより、短時間での負荷変動特性の変化が大きくなるため、入力インピーダンス測定器での測定精度を上げることができる。
 また、上記課題を解決するための発明の一つは、電源に接続された給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の供給電力制御方法であって、前記無線電力伝送装置は、前記電力伝送装置の入力インピーダンスを測定する入力インピーダンス測定器と、前記制御機器と、を備え、前記制御機器は、前記入力インピーダンス測定器が測定した入力インピーダンスの変化を利用して、前記定電流充電期間が終了したか否かを判定する処理と、前記定電流充電期間が終了したと判定した場合に、充電を終了させる処理と、を実行することを特徴としている。
 上記方法によれば、定電流充電から定電圧充電に移行して充電可能な二次電池に、共振現象を利用した充電をするに際して、入力インピーダンス測定器が測定した入力インピーダンスの変化があったときに、定電流充電期間が終了したと判定させて、この定電流充電期間の終了をもって充電を終了させることができる。
 一般に、二次電池は満充電を繰り返すより、満充電せずにある程度の容量を残して充電を終えるような充電を繰り返す方が、二次電池の寿命を延ばすことができる。このため、上記のように二次電池に対して定電流充電期間のみの充電で終了させることにより、満充電せずにある程度の容量を残した充電が可能となり、二次電池の寿命を延ばすことができる。なお、一般に、定電流・定電圧充電方式により充電可能な二次電池は、定電流充電期間のみの充電で満充電の約80%の充電が可能でるため十分な充電量を確保することができる。
 また、定電圧充電を経ずに、定電流充電期間の終了をもって充電を終了させることができるので、充電時間の短縮を図ることができる。
 充電時間の短縮及び二次電池の寿命を縮めるのを防止することができる無線電力伝送装置を提供することができる。
給電モジュールを搭載した充電器、及び、受電モジュールを搭載した無線式ヘッドセットの説明図である。 無線電力伝送装置のブロック図である。 無線電力伝送装置の概略説明図である。 無線電力伝送装置を等価回路で示した説明図である。 リチウムイオン二次電池の充電特性を示すグラフである。 電源周波数に対する伝送特性『S21』の関係を示した説明図である。 電源周波数に対する入力インピーダンスZinの関係を示したグラフである。 測定実験1-1に係る測定結果を示すグラフである。 測定実験1-2に係る測定結果を示すグラフである。 測定実験1-3に係る測定結果を示すグラフである。 測定実験2-1及び測定実験2-2に係る測定結果を示すグラフである。 測定実験2-3及び測定実験2-4に係る測定結果を示すグラフである。 測定実験2-5に係る測定結果を示すグラフである。 無線電力伝送における、コイル間距離と結合係数との関係を示すグラフである。 制御機器が実行する充電動作フローを説明したフローチャートである。
 以下に本発明に係る無線電力伝送装置、及び、無線電力伝送装置の供給電力制御方法の実施形態について説明する。
 (実施形態)
 まず、本実施形態では、図1に示すように、無線電力伝送装置1として、給電モジュール2を備えた充電器101、及び、受電モジュール3を備えた無線式ヘッドセット102を例に説明する。
 (無線電力伝送装置1の構成)
 図1に示すように、無線電力伝送装置1は、充電器101及び無線式ヘッドセット102によって構成されている。そして、充電器101は、図2に示すように、給電コイル21及び給電共振器22を有した給電モジュール2と、電流・電圧検出部4(入力インピーダンス測定器に相当)と、制御機器5とを備えている。また、無線式ヘッドセット102は、イヤホンスピーカ部102a、受電コイル31及び受電共振器32を有した受電モジュール3と、受電された交流電力を整流化する安定回路7と、過充電を防止する充電回路8と、リチウムイオン二次電池とを備えている(なお、音響機器としての装置は省略している)。そして、給電モジュール2の給電コイル21には、制御機器5を介して、給電モジュール2に電力を供給する交流電源6(外部の電力供給源61、発振回路62)が接続され、受電モジュール3の受電コイル31には、安定回路7及び充電回路8を介してリチウムイオン二次電池9が接続されている。なお、図面では、説明の都合上、安定回路7、充電回路8及びリチウムイオン二次電池9を受電モジュール3の外に記載しているが、実際は、ソレノイド状の受電コイル31及び受電共振器32のコイル内周側に配置されている。また、本実施形態における安定回路7、充電回路8、及び、リチウムイオン二次電池9は、図1及び図2に示すように、最終的な電力の給電先となる被給電機器10であり、被給電機器10は、受電モジュール3に接続された電力の給電先の機器全体の総称である。
 また、図示しないが、充電器101は、無線式ヘッドセット102を収納するための、無線式ヘッドセット102の形状に即した収納溝が設けられており、この充電器101の収納溝に無線式ヘッドセット102を収納することにより、充電器101が備える給電モジュール2と無線式ヘッドセット102が備える受電モジュール3とが対向配置されるように無線式ヘッドセット102を位置決めすることができるようになっている。
 給電コイル21は、交流電源6から得られた電力を電磁誘導によって給電共振器22に供給する役割を果たす。この給電コイル21は、図4に示すように、抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路を構成している。なお、コイルL部分は、銅線材(絶縁被膜付)を使用して、コイル径を15mmφに設定している。また、給電コイル21を構成する回路素子が有する合計のインピーダンスをZとし、本実施形態では、給電コイル21を構成する抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路(回路素子)が有する合計のインピーダンスをZとしている。また、給電コイル21に流れる電流をIする。
 受電コイル31は、給電共振器22から受電共振器32に磁界エネルギーとして伝送された電力を電磁誘導によって受電し、安定回路7及び充電回路8を介してリチウムイオン二次電池9に供給する役割を果たす。この受電コイル31は、給電コイル21同様に、図4に示すように、抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路を構成している。なお、コイルL部分は、銅線材(絶縁被膜付)を使用して、コイル径11mmφに設定している。また、受電コイル31を構成する回路素子が有する合計のインピーダンスをZとし、本実施形態では、受電コイル31を構成する抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路(回路素子)が有する合計のインピーダンスをZとしている。また、受電コイル31に接続された被給電機器10の合計のインピーダンスをZとしている。また、受電コイル31に流れる電流をIとしている。なお、被給電機器10の合計のインピーダンスをZとしているが、便宜的にRと置き換えてもよい。
 給電共振器22は、図4に示すように、抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路を構成している。また、受電共振器32は、図4に示すように、抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路を構成している。そして、給電共振器22及び受電共振器32は、それぞれ共振回路となり、磁界共鳴状態を創出する役割を果たす。ここで、磁界共鳴状態(共振現象)とは、2つ以上のコイルが共振周波数において共振することをいう。また、給電共振器22を構成する回路素子が有する合計のインピーダンスをZとし、本実施形態では、給電共振器22を構成する、抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路(回路素子)が有する合計のインピーダンスをZとしている。また、受電共振器32を構成する回路素子が有する合計のインピーダンスをZとし、本実施形態では、受電共振器32を構成する、抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路(回路素子)が有する合計のインピーダンスをZとしている。また、給電共振器22に流れる電流をIとし、受電共振器32に流れる電流をIとする。
 また、給電共振器22及び受電共振器32における共振回路としてのRLC回路では、インダクタンスをL、コンデンサ容量をCとすると、(式1)によって定まるfが共振周波数となる。そして、本実施形態における給電コイル21、給電共振器22、受電コイル31、及び、受電共振器32の共振周波数は、970kMHzとしている。
Figure JPOXMLDOC01-appb-I000001

                        ・・・(式1)
 また、給電共振器22は、銅線材(絶縁被膜付)により構成したコイル径15mmφのソレノイド型のコイルを使用している。また、受電共振器32は、銅線材(絶縁被膜付)により構成したコイル径11mmφのソレノイド型のコイルを使用している。また、給電共振器22及び受電共振器32における共振周波数は一致させている。なお、給電共振器22及び受電共振器32は、コイルを使用した共振器であれば、スパイラル型やソレノイド型などのコイルであってもよい。
 また、給電コイル21と給電共振器22との間の距離をd12とし、給電共振器22と受電共振器32との間の距離をd23とし、受電共振器32と受電コイル31との間の距離をd34としている(図1参照)。
 また、図4に示すように、給電コイル21のコイルLと給電共振器22のコイルLとの間の相互インダクタンスをM12、給電共振器22のコイルLと受電共振器32のコイルLとの間の相互インダクタンスをM23、受電共振器32のコイルLと受電コイル31のコイルLとの間の相互インダクタンスをM34としている。また、無線電力伝送装置1において、コイルLとコイルLとの間の結合係数をk12と表記し、コイルLとコイルLとの間の結合係数をk23と表記し、コイルLとコイルLとの間の結合係数をk34と表記している。
 また、無線電力伝送装置1(安定回路7、充電回路8及びリチウムイオン二次電池9含む)の回路図を示すと図3の下図のようになる。これは、無線電力伝送装置1(安定回路7、充電回路8及びリチウムイオン二次電池9含む)全体を一つの入力インピーダンスZinに置き換えて示したものであり、無線電力伝送装置1に印加する電圧を電圧Vin、無線電力伝送装置1に入力する電流をIinとしている。
 なお、無線電力伝送装置1の入力インピーダンスZinをより詳細に表すために、無線電力伝送装置1の構成を等価回路によって表すと図4に示すようになる。そして、図4の等価回路より、無線電力伝送装置1の入力インピーダンスZinは、(式2)のように表記することができる。                 
 
Figure JPOXMLDOC01-appb-I000002

                       ・・・(式2)
 そして、本実施形態における無線電力伝送装置1の給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31におけるインピーダンスZ、Z、Z、Z4、は、それぞれ(式3)のように表記することができる。            
  
Figure JPOXMLDOC01-appb-I000003
                       ・・・(式3)
 次に、(式2)に(式3)を導入すると、(式4)のようになる。
 
Figure JPOXMLDOC01-appb-I000004

                       ・・・(式4)
 そして、給電コイル21のRLC回路のR、L、C、給電共振器22のRLC回路のR、L、C、受電共振器32のRLC回路のR、L、C、受電コイル31のRLC回路のR、L、Cにおける抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34は、設計・製造段階等で変更可能なパラメータとして、上記(式4)の関係式を満たすように設定されていることが望ましい。
 また、充電器101が備える、電流・電圧検出部4は、電流検出部及び電圧検出部を有しており、それぞれ、無線電力伝送装置1に印加される電圧Vin、無線電力伝送装置1に入力される電流Iinを検出する。
 制御機器5は、詳細は後述するが、電流・電圧検出部4が検出した電圧Vin及び電流Iinに基づいて入力インピーダンスZinを求め(式5参照)、求められた入力インピーダンスZinの変化に従い、交流電源6から給電モジュール2に電力を供給するか否かを判断する機能を有し、電力を供給しない旨の判断がなされた場合には、交流電源6から給電モジュール2への電力の供給を遮断する機能を有する。なお、制御機器5は、例えばマイクロコンピュータ・記憶装置等によって構成される。また、電圧Vin及び電流Iinを検出する電流・電圧検出部4は、入力インピーダンス測定器に相当する。
 
Figure JPOXMLDOC01-appb-I000005

                       ・・・(式5)
 (リチウムイオン二次電池9の充電時における充電特性)
 次に、本実施形態に係る無線電力伝送装置1を使用した際の電力の給電先であるリチウムイオン二次電池9の充電時における充電特性を踏まえた対処方法について説明する。
 本実施形態では、電力が給電される被給電機器10の一つとしてリチウムイオン二次電池9を使用している。そして、一般的に、リチウムイオン二次電池9を充電するには、定電流定電圧充電方式が採用されている。この定電流定電圧充電方式によるリチウムイオン二次電池9の充電では、図5のリチウムイオン二次電池9の充電特性のグラフに示すように、充電を開始してからしばらくの間は、リチウムイオン二次電池9に対して定電流(Ich)による充電が行われる(CC:コンスタントカレント)。そして、定電流による充電が行われている間にリチウムイオン二次電池9に印加される電圧(Vch)が、所定の上限電圧(本実施形態では、4.2V)まで上昇する。電圧(Vch)が上限電圧まで上昇すると、その上限電圧に保持されたまま定電圧による充電に移行する(CV:コンスタントボルテージ)。定電圧(CV)による充電が行われると、リチウムイオン二次電池9に入力される電流値(Ich)が減衰していき、所定の電流値、又は、所定時間経過後に満充電となる。
 もっとも、定電流充電(CC)から定電圧充電(CV)に移行したときに、図5に示すように、リチウムイオン二次電池9に供給される電流値(Ich)が減衰してしまう。その結果、定電圧充電時(CV)には、充電時間に対する充電量が低下してしまい、満充電までに時間を要することになる。
 上記充電特性より、定電流充電(CC)の終了をもって、リチウムイオン二次電池9への充電を終了させることにより、充電時間の短縮を図ることができることがわかる。なお、定電流・定電圧充電方式により充電可能なリチウムイオン二次電池9は、定電流充電期間(CC)のみの充電で満充電の約80%の充電が可能でるため、定電流充電(CC)の終了をもって、リチウムイオン二次電池9への充電を終了させても、十分な充電量を確保することができる。更に、一般に、リチウムイオン二次電池9は満充電を繰り返すことにより、寿命が短くなる傾向にあることが知られているため、満充電せずに、定電流充電(CC)の終了をもって、リチウムイオン二次電池9への充電を終了させることにより、リチウムイオン二次電池9の寿命を延ばすことができる。
 そこで、定電流充電(CC)から定電圧充電(CV)に移行したか否かを判定し、定電流充電(CC)から定電圧充電(CV)に移行したと判定した場合に定電流充電(CC)が終了したとして、リチウムイオン二次電池9への充電を終了させることにより上記目的を達成することが可能である。
 具体的には、定電流充電(CC)から定電圧充電(CV)に移行した際に、リチウムイオン二次電池9に入力される電流値(Ich)が減衰するのに伴い、リチウムイオン二次電池9を含めた被給電機器10の負荷インピーダンスの値が上がることになる。
 そうすると、被給電機器10を含めた無線電力伝送装置1全体の入力インピーダンスZinも変動することになる(図8参照)。
 そこで、本実施形態に係る無線電力伝送装置1の充電動作では、定電流充電(CC)から定電圧充電(CV)に移行した際の被給電機器10を含めた無線電力伝送装置1全体の入力インピーダンスZinの変化を測定して、入力インピーダンスZinの変化が測定された場合に、定電流充電(CC)期間が終了したとして、リチウムイオン二次電池9への充電を終了させている。
 (入力インピーダンスZinの変化)
 本実施形態では、入力インピーダンスZinの変化を測定して定電流充電(CC)期間が終了したか否かを判定しているが、この入力インピーダンスZinの変化としては、入力インピーダンスZinが、所定の閾値を、上回る又は下回ったときに、定電流充電期間が終了したと判定する方法と、充電時間に対する入力インピーダンスZinの変化量である負荷変動特性が、所定の閾値を、上回る又は下回ったときに、定電流充電期間が終了したと判定する方法を採用している。いずれの方法を採用するにしても、定電流充電(CC)から定電圧充電(CV)に移行した際に、入力インピーダンスZinがどのように変化をするのかを予め知った上で所定の閾値を設定する必要がある。そこで、以下に入力インピーダンスZinの変化の設定について測定実験を参照して説明する。
 ここで、負荷変動特性とは、定電流充電から定電圧充電に移行した時における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量であり、この負荷変動特性は、X軸を充電時間、Y軸を入力インピーダンスZin値とした場合における(図8の入力インピーダンスZin参照)、X軸の所定の変化量(ΔX)に対するY軸の所定の変化量(ΔY)であり、傾きを意味する。従って、負荷変動特性が大きくなると、充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量が大きくなり、傾きが急になる。
 (定電圧充電移行時の入力インピーダンスZinの増減傾向の設定)
 本実施形態では、無線電力伝送装置1を使用して、リチウムイオン二次電池9に定電流定電圧充電を行う場合、定電圧充電移行時(CV)の入力インピーダンスZinの値を大きくするために、後述する無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』が双峰性の性質を有するように、給電コイル21のRLC回路のR、L、C、給電共振器22のRLC回路のR、L、C、受電共振器32のRLC回路のR、L、C、受電コイル31のRLC回路のR、L、Cにおける抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34などの給電モジュール2及び受電モジュール3を構成する変更可能なパラメータを設定する。そして、無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するようにしたうえで、無線電力伝送装置1に供給する電力の電源周波数を調整することによって、定電圧充電時における無線電力伝送装置1の入力インピーダンス値の増減傾向を設定している。
 (測定実験1-1~1-3)
 上記無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定した場合に、無線電力伝送装置1に供給する電力の電源周波数を調整することによって、定電圧充電移行時における無線電力伝送装置1の入力インピーダンス値がどのような増減傾向を示すのかを、測定実験1-1~1-3により説明する。
 測定実験1-1~1-3で使用する無線電力伝送装置1では、給電コイル21は、抵抗器R、コイルL、コンデンサCを要素とするRLC回路を構成しており、コイルL部分は、コイル径を15mmφに設定している。同様に、受電コイル31は、抵抗器R、コイルL、コンデンサCを要素とするRLC回路を構成しており、コイルL部分は、コイル径を11mmφに設定している。また、給電共振器22は、抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路を構成しており、コイルL部分は、コイル径15mmφのソレノイド型のコイルを使用している。また、受電共振器32は、抵抗器R、コイルL、及び、コンデンサCを要素とするRLC回路を構成しており、コイルL部分は、コイル径11mmφのソレノイド型のコイルを使用している。そして、測定実験1-1~1-3に使用する無線電力伝送装置1におけるR、R、R、Rの値をそれぞれ、0.65Ω、0.65Ω、2.47Ω、2.0Ωに設定した。また、L、L、L、Lの値をそれぞれ、3.1μH、3.1μH、18.4μH、12.5μHに設定した。また、結合係数k12、k23、k34をそれぞれ、0.46、0.20、0.52に設定した。また、給電共振器22及び受電共振器32における共振周波数は970kHzである。
 そして、測定実験1-1~1-3では、上記構成により、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の電源周波数を、後述する同相共振モード(fL)、逆相共振モード(fH)、及び、共振周波数(f0)の3つの状態(図6参照)に変えて、リチウムイオン二次電池9に充電(給電)を行った際の電流Iin、及び入力インピーダンスZinを測定する。なお、測定実験1-1~1-3では、無線電力伝送装置1への交流電源6からの入力電圧Vin=5Vのときの充電時間(Charging Time(min))に対する電流Iin、及び、入力インピーダンスZinを測定する。
 (双峰性の性質)
 ここで、本測定実験においては、無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有するもので測定している。そして、伝送特性『S21』とは、ネットワークアナライザ(アジレント・テクノロジー株式会社製のE5061Bなど)を無線電力伝送装置1に接続して計測される信号を表しており、デシベル表示され、数値が大きいほど電力伝送効率が高いことを意味する。そして、無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』は、給電モジュール2及び受電モジュール3の間の磁界による結びつき度合い(磁界結合)の強度により、単峰性の性質を有するものと双峰性の性質を有するものに分かれる。そして、単峰性とは、電源周波数に対する伝送特性『S21』のピークが一つで、そのピークが共振周波数帯域(f0)において現れるものをいう(図6の破線51参照)。一方、双峰性とは、電源周波数に対する伝送特性『S21』のピークが二つあり、その二つのピークが共振周波数よりも低い電源周波数帯域(fL)と共振周波数よりも高い電源周波数帯域(fH)において現れるものをいう(図6の実線52参照)。更に詳細に双峰性を定義すると、上記ネットワークアナライザに無線電力伝送装置1を接続して計測される反射特性『S11』が二つのピークを有する状態をいう。従って、電源周波数に対する伝送特性『S21』のピークが一見して一つに見えたとしても、計測されている反射特性『S11』が二つのピークを有する場合には、双峰性の性質を有するものとする。なお、電力伝送効率とは、給電モジュール2に供給される電力に対する、受電モジュール3が受電する電力の比率のことをいう。
 上記単峰性の性質を有する無線電力伝送装置1においては、図6の破線51に示すように、電源周波数が共振周波数f0で伝送特性『S21』が最大化する(電力伝送効率が最大化する)。
 一方、双峰性の性質を有する無線電力伝送装置1では、図6の実線52に示すように、伝送特性『S21』は、共振周波数f0よりも低い電源周波数帯域(fL)と共振周波数f0よりも高い電源周波数帯域(fH)において最大化する。
 なお、一般的に、給電共振器と受電共振器との間の距離が同じであれば、双峰性における伝送特性『S21』の最大値(fL又はfHでの伝送特性『S21』の値)は、単峰性における伝送特性『S21』の最大値(f0での伝送特性『S21』の値)よりも低い値になる(図6のグラフ参照)。
 具体的には、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の電源周波数を設定した場合(同相共振モード)、給電共振器22及び受電共振器32が同位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが同じ向きになる。その結果、図6のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、電源周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが同じ向きとなる共振状態を同相共振モードと呼ぶことにする。
 また、上記同相共振モードでは、給電共振器22の外周側に発生する磁界と受電共振器32の外周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の外周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の外周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の内周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8やリチウムイオン二次電池9などを収納した場合、安定回路7や充電回路8やリチウムイオン二次電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。
 一方、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の電源周波数を設定した場合(逆相共振モード)、給電共振器22及び受電共振器32が逆位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが逆向きになる。その結果、図6のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、電源周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが逆向きとなる共振状態を逆相共振モードと呼ぶことにする。
 また、上記逆相共振モードでは、給電共振器22の内周側に発生する磁界と受電共振器32の内周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の内周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の内周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の外周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8やリチウムイオン二次電池9などを収納した場合、安定回路7や充電回路8やリチウムイオン二次電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。また、この逆相共振モードにより形成される磁界空間は、給電共振器22及び受電共振器32の内周側に形成されるので、この空間に安定回路7や充電回路8やリチウムイオン二次電池9などの電子部品を組み込むことにより無線電力伝送装置1自体のコンパクト化・設計自由度の向上が実現される。
 また、上記のように無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有する場合、給電モジュール2に供給する交流電力の電源周波数を同相共振モード(fL)、又は、逆相共振モード(fH)に設定した際に、図7に示すように、電力伝送効率を高い値に維持した状態で、無線電力伝送装置1の入力インピーダンスZinの値の最大化を図ることができる(実線55参照)。また、給電モジュール2に供給する交流電力の電源周波数を共振周波数(f0)に設定した際に、図7に示すように、無線電力伝送装置1の入力インピーダンスZinの値の最小化を図ることができる(実線55参照)。そして、本測定実験1-1~1-3では、給電モジュール2に供給する交流電力の電源周波数を同相共振モード(fL)、逆相共振モード(fH)、及び、共振周波数(f0)の3つの状態で、リチウムイオン二次電池9に充電(給電)を行った際の電流Iin、及び入力インピーダンスZinを測定している。
 なお、本実施形態では、無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』が双峰性の性質を有するものであれば、給電コイル21のRLC回路のR、L、C、給電共振器22のRLC回路のR、L、C、受電共振器32のRLC回路のR、L、C、受電コイル31のRLC回路のR、L、Cにおける抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34などの給電モジュール2及び受電モジュール3を構成する変更可能なパラメータの設定・組み合わせは設計事項であり自由に設定することができる。
 (測定実験1-1:電源周波数を同相共振モードに設定した場合)
 測定実験1-1では、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の電源周波数を設定した場合(同相共振モード:fL=870kHz)の充電時間(Charging Time(min))に対する入力電流Iin、及び、入力インピーダンスZinを測定し、その測定結果を図8に示す。なお、入力電圧Vinは5V(一定)である。
 図8の測定結果より、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値が増加傾向になっているのが分かる。
 上記測定実験1-1より、無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定したうえで、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の電源周波数を設定した場合、定電流充電(CC)から定電圧充電(CV)に移行してからの入力インピーダンスZinの値を増加傾向にすることができる。これにより、定電流充電期間が終了したと判定するための所定の閾値を、定電流充電時の入力インピーダンスZinよりも高い値にすることにより、判定可能となる。同様に、定電流充電期間が終了したと判定するための所定の閾値を、定電流充電時の負荷変動特性よりも高い値にすることにより、判定可能となる。
 (測定実験1-2:電源周波数を逆相共振モードに設定した場合)
 測定実験1-2では、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の電源周波数を設定した場合(逆相共振モード:fH=1070kHz)の充電時間(Charging Time(min))に対する入力電流Iin、及び、入力インピーダンスZinを測定し、その測定結果を図9に示す。なお、入力電圧Vinは5V(一定)である。
 図9の測定結果より、定電流充電(CC)から定電圧充電(CV)に移行してからの入力インピーダンスZinの値が増加傾向になっているのが分かる。
 上記測定実験1-2より、無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定したうえで、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の電源周波数を設定した場合、定電流充電(CC)から定電圧充電(CV)に移行してからの入力インピーダンスZinの値を増加傾向にすることができる。これにより、定電流充電期間が終了したと判定するための所定の閾値を、定電流充電時の入力インピーダンスZinよりも高い値にすることにより、判定可能となる。同様に、定電流充電期間が終了したと判定するための所定の閾値を、定電流充電時の負荷変動特性よりも高い値にすることにより、判定可能となる。
 (測定実験1-3:電源周波数を共振周波数に設定した場合)
 測定実験1-3では、双峰性における共振周波数f0に、給電モジュール2に供給する交流電力の電源周波数を設定した場合(共振周波数:f0=970kHz)の充電時間(Charging Time(min))に対する入力電流Iin、及び、入力インピーダンスZinを測定し、その測定結果を図10に示す。なお、入力電圧Vinは5V(一定)である。
 図10の測定結果より、定電流充電(CC)から定電圧充電(CV)に移行してからの入力インピーダンスZinの値が減少傾向になっているのが分かる。
 上記測定実験1-3より、無線電力伝送装置1に供給する電力の電源周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定したうえで、双峰性における共振周波数f0に、給電モジュール2に供給する交流電力の電源周波数を設定した場合、定電流充電(CC)から定電圧充電(CV)に移行してからの入力インピーダンスZinの値を減少傾向にすることができる。これにより、定電流充電期間が終了したと判定するための所定の閾値を、定電流充電時の入力インピーダンスZinよりも低い値にすることにより、判定可能となる。同様に、定電流充電期間が終了したと判定するための所定の閾値を、定電流充電時の負荷変動特性よりも低い値にすることにより、判定可能となる。
 (負荷変動特性の設定)
 次に、例えば、上記測定実験1-1のように定電圧充電時(CV)における無線電力伝送装置1の入力インピーダンス値の増減傾向を増加傾向に設定した場合、充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動特性を大きくすることができれば、短時間での負荷変動特性の変化が大きくなるため、電圧検出部4(制御機器5含む)での測定精度を上げることができる。ここで測定精度としては、定電流充電(CC)から定電圧充電時(CV)に移行したことを短時間で判断することが挙げられる。
 (結合係数による負荷変動特性の調整)
 本実施形態では、結合係数k12、k23、k34、を変えることにより、上記負荷変動特性を調整する。そして、結合係数k12、k23、k34、をどのように変えることにより、負荷変動特性がどのように変わるのかを、測定実験2-1~2-5により説明する。
 (測定実験2-1)
 測定実験2-1で使用する無線電力伝送装置1におけるR、R、R、Rの値をそれぞれ、0.65Ω、0.65Ω、2.47Ω、2.0Ωに設定した。また、L、L、L、Lの値をそれぞれ、3.1μH、3.1μH、18.4μH、12.5μHに設定した。また、給電共振器22及び受電共振器32における共振周波数は970kHzである。
 そして、測定実験2-1では、上記構成により、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の電源周波数を、逆相共振モード (fH)に設定している。そして、結合係数k23、k34をそれぞれ、0.20、0.52に固定したうえで、結合係数k12を0.3にした場合と、結合係数k12を0.46にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZinを測定した。なお、測定実験2-1では、無線電力伝送装置1への交流電源6からの入力電圧Vin=5Vのときの充電時間(Charging Time(min))に対する入力インピーダンスZinを測定している。
 図11の測定実験2-1の測定結果より、結合係数k12を0.3にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ10Ωであるのに対して、結合係数k12を0.46にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ20Ωである。従って、結合係数k12を0.3にした場合よりも、結合係数k12を0.46にした場合の方が、負荷変動特性が大きいことが分かる。
 (測定実験2-2)
 測定実験2-2で使用する無線電力伝送装置1は、測定実験2-1と同じものである。そして、測定実験2-2では、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の電源周波数を、給電共振器22及び受電共振器32が有する共振周波数(f0)に設定している。そして、結合係数k23、k34をそれぞれ、0.20、0.52に固定したうえで、結合係数k12を0.3にした場合と、結合係数k12を0.46にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZinを測定した。なお、測定実験2-2では、給電モジュール2に供給する交流電力の電源周波数を、給電共振器22及び受電共振器32が有する共振周波数(f0)に設定することにより、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値が減少傾向になるようにしている。
 図11の測定実験2-2の測定結果より、結合係数k12を0.3にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ3Ωであるのに対して、結合係数k12を0.46にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ6Ωである。従って、結合係数k12を0.3にした場合よりも、結合係数k12を0.46にした場合の方が、負荷変動特性が大きいことが分かる。なお、この場合の定電圧充電時における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である傾きはマイナス(-)であるが、負荷変動特性を絶対値で評価して、測定実験2-2の場合も負荷変動特性が大きいと評価する。
 (測定実験2-3)
 測定実験2-3で使用する無線電力伝送装置1は、測定実験2-1と同じものである。そして、測定実験2-2では、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の電源周波数を、逆相共振モード(fH)に設定している。そして、結合係数k12、k23をそれぞれ、0.46、0.20に固定したうえで、結合係数k34を0.25にした場合と、結合係数k34を0.52にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZinを測定した。
 図12の測定実験2-3の測定結果より、結合係数k34を0.25にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ15Ωであるのに対して、結合係数k34を0.52にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ20Ωである。従って、結合係数k34を0.25にした場合よりも、結合係数k34を0.52にした場合の方が、負荷変動特性が大きいことが分かる。
 (測定実験2-4)
 測定実験2-4で使用する無線電力伝送装置1は、測定実験2-1と同じものである。そして、測定実験2-4では、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の電源周波数を、給電共振器22及び受電共振器32が有する共振周波数(f0)に設定している。そして、結合係数k12、k23をそれぞれ、0.46、0.20に固定したうえで、結合係数k34を0.25にした場合と、結合係数k34を0.52にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZinを測定した。なお、測定実験2-4では、測定実験2-2同様に、給電モジュール2に供給する交流電力の電源周波数を、給電共振器22及び受電共振器32が有する共振周波数(f0)に設定することにより、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値が減少傾向になるようにしている。
 図12の測定実験2-4の測定結果より、結合係数k34を0.25にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ1.5Ωであるのに対して、結合係数k34を0.52にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ6Ωである。従って、結合係数k34を0.25にした場合よりも、結合係数k34を0.52にした場合の方が、負荷変動特性が大きいことが分かる。
 (測定実験2-5)
 測定実験2-5で使用する無線電力伝送装置1におけるR、R、R、Rの値をそれぞれ、0.7Ω、0.7Ω、2.5Ω、2.0Ωに設定した。また、L、L、L、Lの値をそれぞれ、3.1μH、3.1μH、18.4μH、12.5μHに設定した。また、C、C、C、Cの値をそれぞれ、8.7nF、8.7nF、1.5nF、2.3nFに設定した。また、給電共振器22及び受電共振器32における共振周波数は970kHzである。
 そして、測定実験2-5では、上記構成により、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の電源周波数を、逆相共振モード (fH)に設定している。そして、結合係数k23を、0.20に固定したうえで、結合係数k12を0.38、及び、結合係数k34を0.37にした場合と、結合係数k12を0.46、及び、結合係数k34を0.52にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZin、及び、入力電流Iin(I)を測定した。なお、測定実験2-5でも、無線電力伝送装置1への交流電源6からの入力電圧Vin=5Vのときの充電時間(Charging Time(min))に対する入力インピーダンスZin、及び、入力電流Iinを測定する。
 図13の測定実験2-5の入力インピーダンスZinの測定結果より、結合係数k12を0.38、及び、結合係数k34を0.37にした場合は、定電流充電(CC)から定電圧充電(CV)に移行した際における充電時間に対する入力インピーダンスZinの値の変化量はおよそ12Ω(41Ω-29Ω)であるのに対して、結合係数k12を0.46、及び、結合係数k34を0.52にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ17Ω(47Ω-30Ω)である。従って、結合係数k12を0.38、及び、結合係数k34を0.37にした場合よりも、結合係数k12を0.46、及び、結合係数k34を0.52にした場合の方が、負荷変動特性が大きいことが分かる。
 上記のように、負荷変動特性を大きくすれば、短時間での負荷変動特性の変化が大きくなるため、電圧検出部4(制御機器5含む)での測定精度を上げることができる。
 (結合係数の調整方法)
 次に、上記負荷変動特性を調整するためのパラメータである結合係数の調整方法について説明する。
 図14に示すように、無線電力伝送において、コイル間の距離と結合係数kとの関係は、コイルとコイルとの間の距離を縮める(短くする)と結合係数kの値が高くなる傾向がある。これを本実施形態に係る無線電力伝送装置1に当てはめると、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、受電共振器32と受電コイル31との間の距離d34をそれぞれ縮めることによって、給電コイル21(コイルL)と給電共振器22(コイルL)との間の結合係数k12、給電共振器22(コイルL)と受電共振器32(コイルL)との間の結合係数k23、受電共振器32(コイルL)と受電コイル31(コイルL)との間の結合係数k34を高めることができる。逆に、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、受電共振器32と受電コイル31との間の距離d34をそれぞれ伸ばすことによって、給電コイル21(コイルL)と給電共振器22(コイルL)との間の結合係数k12、給電共振器22(コイルL)と受電共振器32(コイルL)との間の結合係数k23、受電共振器32(コイルL)と受電コイル31(コイルL)との間の結合係数k34を低めることができる。
 (無線電力伝送装置1の充電動作:充電動作フロー)
 上記無線電力伝送装置1の構成等を踏まえて、無線電力伝送装置1を利用したリチウムイオン二次電池9の充電動作について説明する(供給電力制御方法)。具体的には、無線電力伝送装置1において、主に制御機器5が実行する充電動作フロー(処理)を、図15を参照して説明する。
 まず、無線式ヘッドセット102が充電器101に載置されることにより、給電共振器22及び受電共振器32が共振した状態で磁界共鳴状態が創出され、給電共振器22から受電共振器32に電力が磁界エネルギーとして伝送される。そして、受電共振器32で受電された電力が受電コイル31、安定回路7及び充電回路8を介してリチウムイオン二次電池9に給電されて定電流充電(CC)が開始される。なお、本説明では、無線式ヘッドセット102が充電器101に載置したときのリチウムイオン二次電池9の充電量は0%として説明する。
 次に、制御機器5は、電流・電圧検出部4によって、無線電力伝送装置1に印加される電圧Vin、無線電力伝送装置1に入力される電流Iinが検出されたか否かを判定する(S1)。なお、電流・電圧検出部4による電流Iin、電圧Vinの検出は、所定の時間間隔を空けて行なわれる(この所定の時間間隔は、任意に設定可能なものである)。
 そして、電圧Vin、電流Iinが検出されない場合(S1:NO)、電圧Vin、電流Iinが検出されるまで待機状態となる。
 一方、電圧Vin、電流Iinが検出された場合(S1:YES)、制御機器5は、電流・電圧検出部4が検出した電圧Vin及び電流Iinに基づいて入力インピーダンスZinを算出する(式5参照)(S2)。
 そして、制御機器5は、S2で算出した入力インピーダンスZinが、予め設定された閾値を超えたか否かを判定する(S3)。そして、S2で算出した入力インピーダンスZinが、予め設定された閾値を超えていない場合(S3:NO)、S1の処理に移行する。
 一方、S2で算出した入力インピーダンスZinが、予め設定された閾値を超えた場合(S3:YES)、制御機器5は、交流電源6から給電モジュール2への電力の供給を遮断する(S4)。即ち、リチウムイオン二次電池9に対する充電を終了させる。そして、本フローは終了される。
 例えば、図8に示す測定実験1-1で使用した無線電力伝送装置1の場合で説明すると、閾値を25Ωに設定していた場合、定電流充電(CC)の間は、入力インピーダンスZinが22Ωでほぼ維持されているが、定電圧充電(CV)に移行すると、入力インピーダンスZinが増加していく。すると、充電時間がおよそ45minのところで、入力インピーダンスZinが25Ωに達する。そこで、制御機器5は、S2で算出した入力インピーダンスZinが、予め設定された閾値(25Ω)を超えたと判断し、交流電源6から給電モジュール2への電力の供給を遮断することで、リチウムイオン二次電池9に対する充電を終了させる。
 なお、上記では、入力インピーダンスZinが、所定の閾値を超えたときに、定電流充電期間が終了したと判定する場合の充電動作フローである。一方、負荷変動特性が、所定の閾値を超えたときに、定電流充電期間が終了したと判定する場合は、S2において、負荷変動特性を算出し、それが、所定の閾値を超えた場合に(S3)、制御機器5が交流電源6から給電モジュール2への電力の供給を遮断することで(S4)、リチウムイオン二次電池9に対する充電を終了させる。
 (効果)
 上記構成・方法によれば、定電流充電(CC)から定電圧充電(CV)に移行することにより充電可能なリチウムイオン二次電池9に、共振現象を利用した充電をするに際して、制御機器5は、電流・電圧検出部4が測定した電流Iin及び電圧Vinに基づいて算出された入力インピーダンスZinの値に変化があったときに、定電流充電期間(CC)が終了したと判定して、この定電流充電期間(CC)の終了をもってリチウムイオン二次電池9に対する充電を終了させることができる。
 一般に、リチウムイオン二次電池9は、満充電を繰り返すより、満充電せずにある程度の容量を残して充電を終えるような充電を繰り返す方が、リチウムイオン二次電池9の寿命を延ばすことができる。このため、上記のようにリチウムイオン二次電池9に対して定電流充電期間(CC)のみの充電で終了させることにより、満充電せずにある程度の容量を残した充電が可能となり、リチウムイオン二次電池9の寿命を延ばすことができる。なお、一般に、定電流・定電圧充電方式により充電可能なリチウムイオン二次電池9は、定電流充電期間(CC)のみの充電で満充電の約80%の充電が可能でるため十分な充電量を確保することができる。
 また、定電圧充電(CV)を経ずに、定電流充電期間(CC)の終了をもってリチウムイオン二次電池9に対する充電を終了させることができるので、充電時間の短縮を図ることができる。
 また、上記構成によれば、電流・電圧検出部4が測定した電流Iin及び電圧Vinに基づいて算出された入力インピーダンスZinの値が、所定の閾値を、上回る又は下回ったときに、定電流充電期間(CC)が終了したと判定することができる。
 また、上記構成によれば、電流・電圧検出部4が測定した電流Iin及び電圧Vinに基づいて算出された負荷変動特性が、所定の閾値を、上回る又は下回ったときに、定電流充電期間(CC)が終了したと判定することができる。
 また、上記構成によれば、給電コイル21と給電共振器22との間の結合係数k12、給電共振器22と受電共振器32との間の結合係数k23、及び、受電共振器32と受電コイル31との間の結合係数k34の少なくとも一つを調整することにより、負荷変動特性を調整することができる。これにより、例えば、負荷変動特性を大きくすれば、短時間での負荷変動特性の変化が大きくなるため、電圧検出部4(制御機器5含む)での測定精度を上げることができる。
 また、上記構成によれば、給電コイル21と給電共振器22との間の結合係数k12を大きくすることにより、負荷変動特性を大きくすることができる。これにより、短時間での負荷変動特性の変化が大きくなるため、電圧検出部4(制御機器5含む)での測定精度を上げることができる。
 また、上記構成によれば、受電共振器32と受電コイル31との間の結合係数k34を大きくすることにより、負荷変動特性を大きくすることができる。これにより、短時間での負荷変動特性の変化が大きくなるため、電圧検出部4(制御機器5含む)での測定精度を上げることができる。
 また、上記構成によれば、給電コイル21と給電共振器22との間の結合係数k12、及び、受電共振器32と受電コイル31との間の結合係数k34を大きくすることができる。これにより、短時間での負荷変動特性の変化が大きくなるため、電圧検出部4(制御機器5含む)での測定精度を上げることができる。
 (その他の実施形態)
 上記説明では、無線式ヘッドセット102を例示して説明したが、二次電池を備えた機器であれば、タブレット型PC、デジタルカメラ、携帯電話、イヤホン型音楽プレイヤー、補聴器、集音器などにも使用することができる。
 また、上記説明では、無線電力伝送装置1を携帯型の電子機器に搭載した場合を想定して説明したが、用途はこれら小型なものに限らず、必要電力量に合わせて仕様を変更することにより、例えば、比較的大型な電気自動車(EV)における無線充電システムや、より小型な医療用の無線式胃カメラなどにも搭載することができる。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態・実施例に限定されず、その他の実施形態・実施例にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 1 無線電力伝送装置
 2 給電モジュール
 3 受電モジュール
 4 電流・電圧検出部
 5 制御機器
 6 交流電源
 7 安定回路
 8 充電回路
 9 リチウムイオン二次電池
10 被給電機器
21 給電コイル
22 給電共振器
31 受電コイル
32 受電共振器
102 無線式ヘッドセット
101 充電器
 

Claims (8)

  1.  電源に接続された給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置であって、
     前記無線電力伝送装置は、
     前記被給電機器を含む無線電力伝送装置の入力インピーダンスを測定する入力インピーダンス測定器と、
     前記入力インピーダンス測定器が測定した入力インピーダンスの変化を利用して、前記定電流充電期間が終了したか否かを判定し、前記定電流充電期間が終了したと判定した場合に、充電を終了させる制御機器と、を備えたことを特徴とする。
  2.  前記制御機器は、前記入力インピーダンス測定器が測定した前記入力インピーダンスが、所定の閾値を、上回る又は下回ったときに、前記定電流充電期間が終了したと判定することを特徴とする請求項1に記載の無線電力伝送装置。
  3.  前記制御機器は、前記入力インピーダンス測定器が測定した、充電時間に対する前記入力インピーダンスの変化量である負荷変動特性が、所定の閾値を、上回る又は下回ったときに、前記定電流充電期間が終了したと判定することを特徴とする請求項1に記載の無線電力伝送装置。
  4.  前記給電モジュール及び前記受電モジュールは、少なくとも給電コイル、給電共振器、受電共振器及び受電コイルを備え、
     前記給電コイルと前記給電共振器との間の結合係数、前記給電共振器と前記受電共振器との間の結合係数、及び、前記受電共振器と前記受電コイルとの間の結合係数の少なくとも一つを調整することにより、前記負荷変動特性が調整可能であることを特徴とする請求項3に記載の無線電力伝送装置。
  5.  前記給電コイルと前記給電共振器との間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴とする請求項4に記載の無線電力伝送装置。
  6.  前記受電共振器と前記受電コイルとの間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴とする請求項4に記載の無線電力伝送装置。
  7.  前記給電コイルと前記給電共振器との間の結合係数、及び、前記受電共振器と前記受電コイルとの間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴とする請求項4に記載の無線電力伝送装置。
  8.  電源に接続された給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の供給電力制御方法であって、
     前記無線電力伝送装置は、
     前記電力伝送装置の入力インピーダンスを測定する入力インピーダンス測定器と、
     前記制御機器と、を備え、
     前記制御機器は、
     前記入力インピーダンス測定器が測定した入力インピーダンスの変化を利用して、前記定電流充電期間が終了したか否かを判定する処理と、
     前記定電流充電期間が終了したと判定した場合に、充電を終了させる処理と、を実行する。
     
PCT/JP2014/064091 2013-07-09 2014-05-28 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法 WO2015005008A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/904,147 US10069310B2 (en) 2013-07-09 2014-05-28 Wireless power transmission apparatus and supply power control method of wireless power transmission apparatus
CN201480039388.4A CN105359376B (zh) 2013-07-09 2014-05-28 无线电力传输装置和无线电力传输装置的供给电力控制方法
KR1020167001887A KR20160022911A (ko) 2013-07-09 2014-05-28 무선 전력 전송 장치 및 무선 전력 전송 장치의 공급 전력 제어 방법
SG11201600148RA SG11201600148RA (en) 2013-07-09 2014-05-28 Wireless power transmission apparatus and supply power control method of wireless power transmission apparatus
EP14823702.7A EP3021451A4 (en) 2013-07-09 2014-05-28 Wireless power transmission apparatus and supply power control method of wireless power transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-143293 2013-07-09
JP2013143293A JP5639693B1 (ja) 2013-07-09 2013-07-09 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法

Publications (1)

Publication Number Publication Date
WO2015005008A1 true WO2015005008A1 (ja) 2015-01-15

Family

ID=52145694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064091 WO2015005008A1 (ja) 2013-07-09 2014-05-28 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法

Country Status (8)

Country Link
US (1) US10069310B2 (ja)
EP (1) EP3021451A4 (ja)
JP (1) JP5639693B1 (ja)
KR (1) KR20160022911A (ja)
CN (1) CN105359376B (ja)
SG (1) SG11201600148RA (ja)
TW (1) TWI568126B (ja)
WO (1) WO2015005008A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168359A (ja) * 2013-02-28 2014-09-11 Nitto Denko Corp 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
EP3121932B1 (en) * 2014-03-18 2020-10-28 IHI Corporation Power supply device and non-contact power supply system
KR20160080499A (ko) * 2014-12-29 2016-07-08 엘지이노텍 주식회사 무선 전력 송신 장치 및 이를 포함하는 무선충전 시스템
JP6699883B2 (ja) * 2016-02-12 2020-05-27 株式会社ダイヘン 非接触電力伝送システム、および、送電装置
CN105978071A (zh) * 2016-06-06 2016-09-28 薛寿贞 无线充电***
CN106541844B (zh) * 2016-10-26 2020-04-10 深圳市沃尔核材股份有限公司 无线充电线圈对准方法、装置及***
JPWO2018146786A1 (ja) * 2017-02-10 2019-11-07 富士通株式会社 送電装置、電力伝送システム、及び、送電装置の制御方法
US10416742B2 (en) * 2017-02-17 2019-09-17 Microsoft Technology Licensing, Llc Smart battery for ultrafast charging
JP6977663B2 (ja) * 2018-05-24 2021-12-08 株式会社オートネットワーク技術研究所 車両用ルーフ
JP7070347B2 (ja) * 2018-11-06 2022-05-18 オムロン株式会社 非接触給電装置
CN110531161B (zh) * 2019-07-29 2020-10-23 北京航空航天大学 一种印刷电路板各位置输入阻抗非接触式在线测试装置
US12042043B2 (en) 2020-06-11 2024-07-23 Kohler Co. Temperature tracking mirror
WO2023136454A1 (ko) * 2022-01-14 2023-07-20 삼성전자주식회사 무선 전력 송신 장치 및 이의 동작 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183810A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 非接触電力伝送装置
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2013070581A (ja) * 2011-09-26 2013-04-18 Hitachi Maxell Energy Ltd 共鳴型ワイヤレス充電装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843077A (en) * 1994-06-24 1998-12-01 Somnus Medical Technologies, Inc. Minimally invasive apparatus for internal ablation of turbinates with surface cooling
AUPP767898A0 (en) * 1998-12-14 1999-01-14 Carter (New Zealand) Limited Spinal monitor apparatus and method
JP2004166384A (ja) 2002-11-12 2004-06-10 Sharp Corp 非接触型給電システムにおける電磁結合特性調整方法、給電装置、および非接触型給電システム
US8169185B2 (en) 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US20090160261A1 (en) 2007-12-19 2009-06-25 Nokia Corporation Wireless energy transfer
CN101316053B (zh) 2008-06-04 2011-05-11 哈尔滨工业大学 磁耦合谐振式无线能量传输装置
US8338991B2 (en) 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
JP5751326B2 (ja) * 2011-06-17 2015-07-22 株式会社豊田自動織機 共鳴型非接触給電システム
JP6691777B2 (ja) * 2012-12-18 2020-05-13 インディゴ テクノロジーズ, インク.Indigo Technologies, Inc. ワイヤレス電力転送の最適化のための非線形システム識別
JP6276532B2 (ja) * 2013-07-29 2018-02-07 キヤノン株式会社 受電装置、送電装置およびそれらの制御方法並びにプログラム
JP2015042091A (ja) * 2013-08-22 2015-03-02 キヤノン株式会社 送電装置、受電装置及びそれらの制御方法、プログラム
US10170933B2 (en) * 2013-11-20 2019-01-01 Samsung Electro-Mechanics Co., Ltd. Non-contact type power supplying apparatus and non-contact type power supplying method
JP2015220853A (ja) * 2014-05-16 2015-12-07 株式会社Ihi 非接触給電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2010183810A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 非接触電力伝送装置
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP2013070581A (ja) * 2011-09-26 2013-04-18 Hitachi Maxell Energy Ltd 共鳴型ワイヤレス充電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3021451A4

Also Published As

Publication number Publication date
EP3021451A1 (en) 2016-05-18
CN105359376A (zh) 2016-02-24
JP2015019438A (ja) 2015-01-29
CN105359376B (zh) 2018-11-20
SG11201600148RA (en) 2016-02-26
EP3021451A4 (en) 2017-02-22
US10069310B2 (en) 2018-09-04
JP5639693B1 (ja) 2014-12-10
KR20160022911A (ko) 2016-03-02
US20160141885A1 (en) 2016-05-19
TW201517441A (zh) 2015-05-01
TWI568126B (zh) 2017-01-21

Similar Documents

Publication Publication Date Title
JP5639693B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
WO2014171163A1 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
JP6169380B2 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
WO2015182604A1 (ja) 無線電力伝送装置
JP6199058B2 (ja) 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法
WO2014162766A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
JP5622901B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
WO2014132479A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015108030A1 (ja) 無線電力伝送装置及びその製造方法
WO2014132480A1 (ja) 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法
WO2014199827A1 (ja) 無線電力伝送に用いる給電モジュール及び給電モジュールの電力供給方法
WO2014199830A1 (ja) 無線電力伝送装置及び無線電力伝送装置の電力供給方法
WO2014125675A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015102116A1 (ja) 無線電力伝送装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039388.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14904147

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014823702

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014823702

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167001887

Country of ref document: KR

Kind code of ref document: A