WO2015005006A1 - 中性子線減速材用フッ化物焼結体及びその製造方法 - Google Patents

中性子線減速材用フッ化物焼結体及びその製造方法 Download PDF

Info

Publication number
WO2015005006A1
WO2015005006A1 PCT/JP2014/064038 JP2014064038W WO2015005006A1 WO 2015005006 A1 WO2015005006 A1 WO 2015005006A1 JP 2014064038 W JP2014064038 W JP 2014064038W WO 2015005006 A1 WO2015005006 A1 WO 2015005006A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
hours
temperature
neutron
mgf
Prior art date
Application number
PCT/JP2014/064038
Other languages
English (en)
French (fr)
Inventor
博明 熊田
哲之 中村
卓二 重岡
池田 毅
Original Assignee
国立大学法人筑波大学
株式会社大興製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52279701&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015005006(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 国立大学法人筑波大学, 株式会社大興製作所 filed Critical 国立大学法人筑波大学
Priority to EP14806519.6A priority Critical patent/EP2865658B1/en
Priority to CN201480001165.9A priority patent/CN104640824B/zh
Priority to US14/405,585 priority patent/US10961160B2/en
Priority to EP17165429.6A priority patent/EP3214058B1/en
Priority to JP2014561664A priority patent/JP5813258B2/ja
Publication of WO2015005006A1 publication Critical patent/WO2015005006A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/28Fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/12Moderator or core structure; Selection of materials for use as moderator characterised by composition, e.g. the moderator containing additional substances which ensure improved heat resistance of the moderator

Definitions

  • the present invention relates to a fluoride sintered body and a method for producing the same, and more specifically, a fluoride for a neutron beam moderator having a dense structure suitable for a moderator for suppressing the radiation speed of various types of radiation such as neutron beams.
  • the present invention relates to a sintered body and a method for manufacturing the same.
  • CaF 2 single crystal As the fluoride, calcium fluoride (CaF 2 ) single crystal, magnesium fluoride (MgF 2 ) single crystal and the like are relatively widely used in the optical field. There are very few cases where fluoride is used outside the optical field, and CaF 2 single crystals are rarely used in semiconductor manufacturing processes due to their high plasma resistance. It has been devised to be applied to a member requiring the most plasma resistance in a silicon wafer plasma etching furnace, such as a ring boat or a ceiling board. However, the CaF 2 single crystal is extremely expensive, and no report has been made that it has been used in an actual production line. CaF 2 single crystal, lithium fluoride (LiF), or aluminum fluoride (AlF 3) single crystal was rarely used as a shield for neutron radiation, which is one of the radiation.
  • LiF lithium fluoride
  • AlF 3 aluminum fluoride
  • Neutron rays that are considered to have the highest penetrating power among the radiation are further classified according to energy level.
  • An example is shown below.
  • the parentheses indicate the energy levels of various neutron beams, and the larger the value, the greater the transmission power.
  • low-temperature neutrons ⁇ 0.002 eV
  • thermal neutrons ⁇ 0.025 eV
  • epithermal neutrons ⁇ 1 eV
  • slow neutrons (0.03 to 100 eV
  • medium-speed neutrons (0. 1 to 500 keV)
  • fast neutrons 500 keV or more.
  • the energy values in parentheses are not exact, and there are various theories on the classification of neutron beams. For example, there is a theory that describes the energy of epithermal neutrons of 40 keV or less that falls within the above-mentioned medium speed neutron energy range.
  • neutron radiation A typical example of effective use of neutron radiation is in the medical field.
  • radiotherapy that destroys malignant tumor cells by irradiating them with neutrons has been rapidly spreading.
  • neutron beams With a certain amount of energy.
  • a high energy neutron beam is irradiated, it is not possible to avoid an influence on a part other than the affected part (healthy part) of the patient, and there are side effects. Therefore, at present, radiation therapy is limited to severe patients.
  • IMRT intensity-modulated radiation therapy
  • moving body tracking radiation that irradiates radiation in accordance with body movements such as patient breathing and heart movement.
  • Treatment method or “Particle beam therapy” that intensively irradiates heavy particle beam or proton beam with high therapeutic effect.
  • boron is reacted with a patient's malignant tumor cells to form a reaction product (boron compound) in the tumor portion, and the reaction product is subjected to neutron radiation (mainly heat, which has little effect on the healthy part). Irradiation with external neutrons and thermal neutrons.
  • neutron radiation mainly heat, which has little effect on the healthy part.
  • a nuclear reaction is caused only in a very fine range where the boron compound is formed, and only tumor cells are killed.
  • a desirable medical particle beam can be formed by increasing the ratio of neutron beams having a high effect (for example, low-energy portions of medium-speed neutron beams and epithermal neutron beams).
  • the low-energy part of epithermal neutrons and medium-speed neutrons has a high level of penetration into the patient's body tissue, for example, no craniotomy is required even for brain tumors, or laparotomy is performed in other major organs. Even if it is not easy, it does not require laparotomy, and effective irradiation to the affected area is possible. On the other hand, when extremely low energy neutron beams such as thermal neutron beams are used, craniotomy or laparotomy is required due to low depth of penetration, resulting in a heavy burden on the patient.
  • Non-patent Document 1 and Non-Patent Document 2 boron neutron capture therapy
  • This method is not attached to an existing nuclear reactor, a dedicated cyclotron accelerator is provided as a neutron beam generator, and a medical dedicated neutron beam generator is employed.
  • the moderator selected as the radiation shield includes lead (Pb), iron (Fe), aluminum ( In addition to Al) and polyethylene, polyethylene containing calcium fluoride (CaF 2 ) and lithium fluoride (LiF) is used.
  • the neutron beam obtained after decelerating with a combination of these moderators obtains the necessary dose of epithermal neutrons most suitable for treatment with BNCT When the conditions were set, it was configured to contain a large amount of fast neutrons that adversely affect the healthy tissue.
  • the thickness of the moderator becomes considerably thick.
  • the speed reduction device becomes large, and the entire device cannot be sufficiently downsized. there were.
  • downsizing of the entire device is an essential requirement, and in order to reduce the size of the accelerator and the speed reduction system, it is urgent to develop a moderator with excellent deceleration performance. It was.
  • the standard of the epithermal neutron beam and the thermal neutron dose required when the irradiation time is about 1 hour is said to be approximately 1 ⁇ 10 9 [n / cm 2 / sec].
  • Be beryllium
  • approximately 5 to 10 MeV is required as the energy of the emitted beam from the accelerator that is the source of neutron beam generation.
  • the beam emitted from the accelerator collides with the target (Be) and generates high-energy neutrons such as fast neutrons mainly by nuclear reaction.
  • a fast neutron beam decelerating method first, Pb or Fe having a large inelastic scattering cross section is used, and decelerating while suppressing attenuation of the neutron beam.
  • These two kinds of moderators will decelerate to a certain extent (up to about 1 MeV), and then decelerate and optimize according to the neutron beam energy required for the irradiation field.
  • Aluminum oxide (Al 2 O 3 ), aluminum fluoride (AlF 3 ), CaF 2 , graphite, heavy water (D 2 O), or the like is used as a moderator for the neutron beam after being moderated to some extent. It is demanded that a neutron beam decelerated to the vicinity of 1 MeV is incident on these moderators to decelerate to an epithermal neutron energy region (4 keV to 40 keV) suitable for BNCT.
  • polyethylene containing Pb, Fe, Al, CaF 2 , polyethylene, and LiF is used as a moderator.
  • polyethylene and LiF-containing polyethylene are shielding moderators that are provided so as to cover the outside of the apparatus in order to prevent leakage to places other than the irradiation field of high-energy neutron rays.
  • LiF-containing polyethylene used in the latter half of the stage with CaF 2 is used to cover the entire surface other than the neutron beam exit on the treatment room side, and is installed to prevent the whole body from being exposed to fast neutrons to the patient. It is not used as a moderator at the exit.
  • the polyethylene as the moderator in the first half is used to cover the entire outer surface of the device other than the treatment room side in the same way as the LiF-containing polyethylene in the second half, thereby preventing leakage of fast neutrons around the device. Is installed. Therefore, instead of CaF 2 in the latter half of the stage, it is hoped to develop an excellent moderator that can block and slow down high-energy neutron beams while suppressing the attenuation of neutron beams at the medium energy level required for treatment. It was rare.
  • the present inventors mainly use epithermal neutron rays that are expected to have the highest therapeutic effect from the neutron rays ( ⁇ 1 MeV) moderated to a certain extent, and have optimal energy (4 keV to 40 keV) for treatment.
  • MgF 2 sintered body As a moderator for obtaining a neutron beam having a distribution, attention was paid to the MgF 2 sintered body.
  • MgF 2 has been used for a neutron moderator.
  • MgF 2 -based sintered bodies including MgF 2 sintered bodies and MgF 2 -CaF 2 binary sintered bodies have been adopted as neutron moderators.
  • MgF 2 sintered body is a colorless crystal called a melting point of 1248 ° C., a boiling point of 2260 ° C., a density of 3.15 g / cm 3 , a cubic system, and a rutile structure.
  • the single crystal is highly transparent and can be used mainly as a window material for excimer lasers because of its high light transmission in a wide wavelength range of approximately 0.2 to 7 ⁇ m and its wide band gap and high laser resistance.
  • MgF 2 is deposited on the surface of the lens and used for optical applications such as internal protection and irregular reflection prevention.
  • JP-A-2000-86344 As an application example of a sintered body based on MgF 2 to a plasma-resistant member, there is JP-A-2000-86344 (Patent Document 1 below).
  • the claims include a fluoride of at least one alkaline earth metal selected from the group consisting of Mg, Ca, Sr and Ba, and the total amount of metal elements other than the alkaline earth metal is 100 ppm in terms of metal.
  • the average particle diameter of the fluoride crystal particles is 30 ⁇ m or less and the relative density is 95% or more.
  • the substances listed in the list of the examples of this publication are calcined using the respective metal fluorides of the four alkaline earth metals (that is, MgF 2 , CaF 2 , SrF 2 , BaF 2 ) as raw materials. There is no description that the mixture of these raw materials was fired.
  • the firing temperature of the case evaluated as appropriate is MgF 2.
  • the temperatures are 850 ° C., 950 ° C., and 1050 ° C., and the relative density of the sintered body is 95% or more.
  • the temperature is 950 ° C., 1040 ° C., and 1130 ° C., and it is described that the relative density of each sintered body is 97% or more.
  • both MgF 2 and CaF 2 exhibit sublimation from a temperature equal to or lower than these firing temperatures, and severe foaming occurs at the above firing temperatures. It was found that it was impossible to obtain a relative density of 95% or more with MgF 2 and a relative density of 97% or more with CaF 2 .
  • the sintered body was produced at a firing temperature higher than the temperature at which the sublimation starts.
  • active foaming occurs inside the sintered body during the firing process in which the raw powder is sintered, and sintering is performed under conditions where it is difficult to obtain a dense sintered body. .
  • the present inventors have studied such a phenomenon and studied a method for reducing the influence of the sublimation phenomenon as much as possible in the sintering process, and developed an excellent sintering method capable of stably obtaining a dense sintered body. developed.
  • MgF 2 simple sintered body has a drawback of weak mechanical strength, it contains at least one non-alkali metal material whose average linear thermal expansion coefficient is lower than MgF 2 such as Al 2 O 3, AlN, SiC, MgO.
  • a method for compensating for the drawback of the mechanical strength of the MgF 2 simple sintered body being weak is disclosed.
  • the sintered body of such mixtures when used in moderator of the neutron, the influence of the non-alkaline metal to be mixed with MgF 2, differ significantly from that the reduction performance of the MgF 2 plain, baked of such mixture It was foreseen that it would be difficult to apply the moderator to the moderator material.
  • Patent Document 3 JP-A-2000-302553
  • the biggest drawback of sintered fluoride ceramics such as MgF 2 , CaF 2 , YF 3 , and LiF is that the mechanical strength is weak.
  • these fluorides and Al 2 O 3 It is said that it is the sintered compact which compounded these by the predetermined ratio.
  • the corrosion resistance and the mechanical strength of the sintered body produced by this method are merely obtained with any combination of the properties of both fluoride and Al2O3.
  • a compound that exceeds both characteristics by compounding has not been obtained.
  • the present invention has been made in view of the above problems, and is a moderator used to decelerate the energy of a neutron beam when effectively using a neutron beam which is a kind of radiation, and is a high-purity simple substance.
  • Neutron beams that do not become as expensive as crystals and that can provide an effective deceleration effect, resulting in an increase in therapeutic effect and a reduction in the size of the treatment device It aims at providing the fluoride sintered compact for moderators, and its manufacturing method.
  • the present inventors first made basic considerations regarding selection of a substance (metal or compound) having a sufficient moderating effect on high-energy neutron beams.
  • BNCT high-energy neutron rays that are harmful during treatment are reduced as much as possible, and on the other hand, in order to obtain a large therapeutic effect, neutron rays mainly composed of epithermal neutron rays and slightly including thermal neutron rays are used. It is important to irradiate the affected area.
  • a guideline for the extra-thermal and thermal neutron dose required when the irradiation time is about 1 hour is approximately 1 ⁇ 10 9 [n / cm 2 / sec]. Therefore, it is said that the emitted beam energy from the accelerator, which is a neutron beam generation source, requires approximately 5 to 10 MeV when beryllium (Be) is used as a neutron beam generation target.
  • Be beryllium
  • the beam emitted from the accelerator collides with the target (Be), and mainly generates high-energy neutron rays (fast neutron rays) by nuclear reaction.
  • the fast neutron beam is decelerated to some extent while suppressing attenuation of the neutron beam with Pb or Fe having a large inelastic scattering cross section.
  • the moderator for the neutron beam that has been decelerated to some extent is optimized according to the amount of neutron energy required for the irradiation field.
  • Al 2 O 3 aluminum oxide
  • AlF 3 aluminum fluoride
  • CaF 2 calcium fluoride
  • D 2 O heavy water
  • the present inventors selected two types of fluorides, MgF 2 and CaF 2 , as potential moderator candidates for neutron beams that have been moderated to some extent from various compounds, and investigated the moderation effect described below. went.
  • Fig. 4 the neutron beam decelerated to the vicinity of 1 MeV is incident on the moderator made of MgF 2 , so that the fast neutron beam harmful to BNCT can be almost completely removed, and the energy region most suitable for the treatment. It has been found that epithermal neutron beams (4 keV to 40 keV) can be obtained.
  • the manufacturing method includes a crystal method, a single crystal method, and a polycrystal method (that is, a sintering method). Crystals produced by the crystal method generally have segregation in crystal orientation, and are likely to segregate with respect to impurities, and when used as a moderator, moderation performance tends to vary depending on the site. Therefore, it is considered unsuitable for the moderator.
  • a single crystal produced by the single crystal method requires high control accuracy in production, is inferior in stability of quality, and is extremely expensive. Therefore, it must be said that it is not suitable for a moderator. Therefore, this time, the present inventors have completed the present invention by researching and developing a moderator production method by a polycrystal method (hereinafter referred to as a sintering method).
  • the sintering reaction is mainly due to grain growth by solid-phase reaction (hereinafter referred to as solid-phase sintering), and in the main sintering process, sintered body formation (hereinafter referred to as solid solution formation reaction) is performed mainly in the solid solution generation temperature range.
  • solid solution sintering Solid solution sintering
  • melt sintering formation reaction
  • the moderator must be resistant to damage during handling, such as being installed in a deceleration system, and to be resistant to dust generation due to neutron irradiation impact. That is, it is required that the material has excellent mechanical strength.
  • the mechanical strength of the sintered body is the defoamed state such as the micro-strength of the joint part between the particles, the size, shape, distribution, number of bubbles, in other words, the thickness of the joint part (matrix) of the joint part and the original particle.
  • the length is determined by the degree of brittleness caused by the shape such as length (denseness of the sintered body) and the crystal structure (single crystal, polycrystal, etc.) of the matrix.
  • MgF 2 which is a raw material for forming a high-density sintered body by suppressing foaming in the sintering process and reducing large residual bubbles, tends to cause a vaporization (sublimation) phenomenon in the sintering process, generates fluorine gas, Many fine bubbles are likely to be generated inside the sintered body. Foaming due to this vaporization contradicts the reduction of voids due to the progress of the original sintering process, and foaming was suppressed as much as possible.
  • the fluoride material When the fluoride material is heated at a high temperature, a part of the material is vaporized.
  • the temperature at which vaporization starts varies depending on the composition, and in the case of a composition mainly composed of MgF 2 , vaporization starts from about 800 ° C., and the vaporization starts fairly actively from about 850 ° C.
  • fluorine gas When vaporized, fluorine gas is generated, and fine bubbles are generated in the sintered body.
  • the shape of the generated bubble is almost spherical, and when the fracture surface of the sintered body is observed with an electron microscope (SEM), the cross section of the bubble appears to be a circle close to a perfect circle.
  • the small one is several ⁇ m and the large one is about 20 to 40 ⁇ m.
  • the shape of small ones of several ⁇ m is almost circular, and the shape of large ones is rare, and most of them are elongated, square, or irregular. From these shapes, it is considered that small bubbles are just generated, and large bubbles are a collection of some of the generated bubbles.
  • the fluoride sintered body (1) for a neutron moderator according to the present invention is made of MgF 2 having a dense polycrystalline structure and has a bulk density of 2.90 g / cm 3 or more. It is characterized by that.
  • the fluoride sintered body for neutron beam moderator (1) since it is a dense polycrystalline MgF 2 sintered body having a bulk density of 2.9 g / cm 3 or more, the structure of the sintered body Is uniform, the difference between the inner and outer positions is small, and the amount of solid solution produced can be suppressed to suppress crystal growth, the generation of brittle portions can be reduced, and the strength of the sintered body can be increased. Therefore, cracks and chips are not easily generated in the processing steps during the production of the sintered body and in handling between the steps.
  • the fluoride sintered body for neutron beam moderator (2) according to the present invention is a machine having a bending strength of 10 MPa or more and a Vickers hardness of 71 or more in the above-mentioned fluoride sintered body for neutron beam moderator (1). It has a characteristic strength.
  • the sintered body for neutron beam moderator (2), the sintered body has extremely excellent mechanical strength, and causes cracking or the like during machining when used as a moderator. In addition, it is possible to have sufficient impact resistance against neutron irradiation impact irradiated during use as a moderator.
  • the method (1) for producing a fluoride sintered body for a neutron moderator comprises grinding a high-purity MgF 2 raw material to a median diameter of about 1 to 2 ⁇ m and sintering aid.
  • a step of adding 0.1 to 1 wt.% Of an agent and blending a step of molding the compounded raw material using a uniaxial press molding machine as a starting material at a molding pressure of 5 MPa or more, and cold isostatic pressing of the uniaxial molded product
  • CIP molding
  • CIP is a uniaxial molded product placed in a bag sealed with a plastic bag so as not to come into direct contact with the water, and the degassed product is placed in a pressure vessel, and water is poured into the vessel.
  • a pressure forming method in which a predetermined water pressure is applied.
  • the foaming start temperature refers to a temperature at which a part of the fluorine compound starts to decompose, generates fluorine gas, and starts generating fine bubbles.
  • a pre-sintered body formed by heat treatment at 550 ° C. for 6 hours in an air atmosphere is pulverized, and this pulverized product is used as a test sample for a differential thermal analyzer.
  • the change and the change of heat absorption and heat generation were investigated. A slight decrease in weight was observed from about 800 ° C, but this was due to weak bonding, for example, fluorine attached to the base material of the pre-sintered body or fluorine dissolved in the base material first dissociated and decomposed first.
  • the temperature at the inflection point that is, about 850 ° C. is referred to as the foaming start temperature.
  • the temperature range immediately below the foaming start temperature specifically refers to a temperature range of 750 to 840 ° C.
  • the temperature range where the solid solution starts to be generated refers to a temperature range around 980 ° C., which is the temperature at which the solid solution starts to form in the MgF 2 —CaF 2 binary phase diagram shown in FIG.
  • the sintered body manufactured using the method (1) for manufacturing a fluoride sintered body for a neutron moderator according to the present invention has a strong bonding force between particles, and a mechanical strength ( Micro strength) is high.
  • the bending strength and impact resistance, which were the problems, were remarkably improved, and a neutron moderator that could be used without any problem in practice was obtained.
  • the sintered body to be manufactured has a higher density by selecting the purity of MgF 2 , the heating atmosphere, the heating temperature pattern, and the like. Further, since it is a sintered body, its crystal structure becomes polycrystalline, and the brittleness is remarkably improved as compared with a single crystal.
  • the sintered body manufactured using the method (1) for manufacturing a fluoride sintered body for a neutron moderator according to the present invention is cut, ground, and polished for a moderator in a BNCT moderator system.
  • it has sufficient mechanical strength for handling such as forming and the like, and handling such as installation in the speed reduction system apparatus, and can be constructed without problems. Further, even when irradiated with neutron beams, it can be used without problems with respect to the irradiation impact, and the neutron beam decelerating performance was extremely excellent.
  • the method (2) for producing a fluoride sintered body for a neutron beam moderator according to the present invention is the same as the method for producing a fluoride sintered body for a neutron beam moderator (1) in the main sintering step.
  • the active gas atmosphere is characterized by comprising one kind of gas selected from nitrogen, helium, argon, and neon, or a mixture of plural kinds of gases.
  • nitrogen (N 2 ), helium (He), argon (Ar), or neon (Ne) can be used as the inert gas.
  • FIG. I is a table showing changes in neutron species after reduction and the relative density of MgF 2 sintered body. It is a table
  • Embodiments of a fluoride sintered body for a neutron moderator and a method for producing the same according to the present invention will be described below with reference to the drawings.
  • high-purity (purity 99.9 wt.% Or more) MgF 2 powder is used, and, for example, carboxymethylcellulose (sintering aid) CMC) solution was added to 0.03 to 0.5 wt.% (Outer coating) of the powder 100 and kneaded to obtain a starting material.
  • the material After filling the raw material in a mold with a predetermined size, the material is compressed with a molding pressure of 5 MPa or more using a uniaxial press, and the molded product is further molded using a cold isostatic pressing (CIP) machine. Molding was performed at a pressure of 5 MPa or more.
  • CIP cold isostatic pressing
  • This CIP molded product is pre-sintered by heating in a temperature range of 550 to 600 ° C. in the air atmosphere, and the pre-sintered product is subjected to foaming start temperature (in a differential thermal analyzer in the atmosphere or in an inert gas atmosphere). For 4 to 16 hours in the temperature range (750 to 840 ° C.) immediately below the temperature determined in the measurement of (about 850 ° C.). By heating, the sintering proceeds more uniformly, and then heated in the vicinity of the temperature range where the solid solution starts to form, that is, in the temperature range of 900 to 1100 ° C. for 0.5 to 3 hours, and then cooled to form a dense structure. An MgF 2 sintered body is manufactured.
  • the temperature at which the solid solution starts to be generated is in the temperature range of about 980 ° C., but the present inventors actually sintered. From observation of the cross section of the sintered body, it was estimated that in the case of MgF 2 alone, there is a high possibility that a solid solution is generated at a temperature several tens of degrees lower than the display temperature of 980 ° C. in this phase diagram. Therefore, the vicinity of the temperature range where the solid solution starts to be generated is 900 ° C. or higher, and it is considered that the solid solution is generated even when heated at less than 980 ° C.
  • the raw material MgF 2 was pulverized by filling a ball for ball mill in a pot mill, filling 3 kg of the raw material therein, and kneading and pulverizing for one week.
  • the pot mill was made of alumina and had an inner diameter of 200 mm and a length of 250 mm.
  • the filled balls were made of alumina and had a diameter of 5: 1800 g, 10: 1700 g, 20: 3000 g, and 30: 2800 g.
  • the particle size of the pulverized raw material was measured with a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by Horiba. The median diameter was approximately 1.2 to 1.3 ⁇ m.
  • the sintering aid two types of CMC and calcium stearate were selected, and the respective addition ratios were changed, and a test for examining the effect of each sintering aid was conducted. For comparison, a test without using a sintering aid was also performed.
  • the mixing of the sintering aids two types of sintering aids are added at a blending ratio of 0 to 2 wt.%, And the ball mill balls are filled in the pot mill and kneaded all day and night in the same manner as the pulverization of the raw materials. Was done.
  • the CIP compact was pre-sintered in an air atmosphere at various temperatures within a range of 500 to 700 ° C. for 3 to 18 hours with various heating conditions. After observing the appearance of this temporary sintered body, the temperature was raised from room temperature to 550 ° C. over 6 hours at a constant rate in a nitrogen gas atmosphere, and kept at that temperature for 8 hours. Thereafter, the temperature was raised to 950 ° C. over 2 hours at a constant rate, maintained at the same temperature for 1 hour, and then cooled to 100 ° C. over 20 hours. The appearance of the sintered body taken out and the state of densification inside were observed, and proper blending, processing conditions and pre-sintering conditions were investigated.
  • the shape maintaining performance of the uniaxial press-molded product was inferior, and there were many types of deformation during handling to the next CIP molding step. .
  • the mixing ratio of the sintering aid is 0.03 wt.% Or more, the above-mentioned mold distortion is not observed, and when the mixing ratio exceeds 0.6 wt.%, The sintering aid remains in the temporary sintered body or the sintered body. Coloring that seems to be a thing may be recognized. For these reasons, the appropriate range of the mixing ratio of the sintering aid is set to 0.03 to 0.5 wt.
  • the bulk density of the sintered body in the test for optimizing the heating conditions for preliminary sintering and main sintering is 2% in all tests compared to the case where the molding pressure is 5 MPa or more. It was lower than that.
  • the compacting pressure is 10 MPa
  • the sintered body sintered under the same sintering conditions has a bulk density of 2.95 g / cm 3
  • the compacted body has a compacting pressure of 4.8 MPa.
  • the bulk density was 2.86 g / cm 3 and was 3% lower.
  • the molding pressure was gradually increased from 5 MPa to 20 MPa, the bulk density of the sintered body after sintering tended to increase little by little.
  • the test was performed up to 50 MPa by further gradually increasing the molding pressure.
  • the molding pressure was 20 MPa or higher, the increase in the bulk density of the temporary sintered body and the sintered body was only a slight increase, and no linear improvement was observed between 5 and 20 MPa.
  • the appropriate value of the molding pressure is set to 5 MPa or more, desirably 20 MPa or more.
  • the pre-sintering condition of the molded body in the air atmosphere is that the shrinkage is small compared to the size of the molded body when the heating temperature is less than 550 ° C., and the shrinkage is higher than 610 ° C. Large and difficult to control shrinkage. For this reason, the appropriate range of the pre-sintering temperature was set to 550 to 600 ° C.
  • the appropriate value of the heating time was optimal at 8 to 9 hours from the evaluation of the shrinkage rate at 550 ° C., and it was determined that 4 to 10 hours were appropriate. At 600 ° C., 6 to 8 hours was optimum, and 4 to 10 hours could be judged appropriate. From these results, the heating condition for pre-sintering was set to 550 to 600 ° C. for 4 to 10 hours in an air atmosphere.
  • the “primary agglomeration process” is the first half stage of sintering, and in the initial stage, the interval between the particles gradually decreases and the gap between the particles also decreases. Furthermore, the contact portion between the particles becomes thick, and the gap between them becomes small. However, the majority of the voids are open pores and communicate with the surrounding atmosphere. Such a stage is referred to as “primary aggregation process”.
  • the gaps between the particles of the temporary sintered body are small and the gaps are gathered by fine pulverization of raw materials, particle size adjustment, kneading of sintering aid, uniaxial press molding, CIP molding, temporary sintering, etc. It was confirmed that the particles were dispersed almost uniformly without any treatment (the first half of the primary aggregation process).
  • the heating temperature is gradually raised in the temperature raising process of the next main sintering step, and the aggregation of particles starts from around the pre-sintering temperature range (550 to 600 ° C.). Subsequently, the solid solution starts to form from 980 ° C. However, the reaction between the solid phases starts from a considerably low temperature range, and the aggregation of the particles progresses accordingly, the distance between the particles becomes shorter, and the void becomes smaller. However, in the case of heating for a short time at a relatively low temperature (a temperature close to 550 ° C.) such as pre-sintering, most of the voids still remain in the open pore state (the second half stage of the primary aggregation process).
  • the reaction between solid phases generally starts from a temperature range of about 10% or more from that temperature. From the observation of the cross-section of the sintered body in the preliminary test of the present inventors, it is considered that the reaction between solid phases starts from a temperature range lower than the generally called temperature, and starts from about 500 ° C. It was. The reason for this is that the sintering has already proceeded considerably at 550 ° C., which is the lower limit of the proper pre-sintering temperature, and the pre-sintered body shrinks considerably as compared with the molded body. In this preliminary test, the bulk volume contracted by about 10 to 20 vol.%. It was considered that the reaction proceeded at a slow reaction rate in this temperature range, and that the reaction rate was considerable in the temperature range of about 700 ° C. or higher and below 980 ° C.
  • the point to be noted here is the behavior of fine bubbles (foaming gas) generated when a part of the raw material is vaporized in a temperature range of about 850 ° C. or higher.
  • fine bubbles foaming gas
  • the heating temperature is less than 980 ° C.
  • the reaction between the solid phases proceeds, and as time passes, the voids gradually decrease and become closed pores.
  • the gas components in the closed pores diffuse into the bulk (matrix) of the sintered body, and defoaming proceeds, resulting in a dense sintered body with few bubbles (secondary aggregation process).
  • heating for a considerably long time is required, and productivity is lowered, which is not economical.
  • the difference in appearance between this foaming gas and the air bubbles that closed during the sintering process and could not be removed (hereinafter referred to as residual air bubbles) is described.
  • the size of the foamed gas generated by heating for a relatively short period of time is about several ⁇ m in diameter, and the shape is almost spherical.
  • the size of residual bubbles is large, medium, and small, and the shape is not a perfect sphere, but an indeterminate shape, and it is possible to distinguish both from the difference in shape.
  • the foaming gases or the residual bubbles and the foaming gas are aggregated to form a large irregular shape. It grows into bubbles and it becomes difficult to distinguish the origin.
  • the voids between the particles become smaller, and all or most of the voids are surrounded by particles or a bridge portion of the sintered body to form closed pores (bubbles).
  • the gas is degassed through voids (open pores), or the gas component in the bubbles penetrates into the bulk of the particles or the bridge portion of the sintered body to degas and the bubbles disappear (defoaming phenomenon).
  • the voids between the particles remain as closed pores (bubbles) or whether they disappear as a result of degassing and do not remain as bubbles determines the degree of densification of the sintered body and thus the characteristics of the sintered body It is a big factor.
  • the preliminary sintering process corresponding to the first half of the primary agglomeration process and the main sintering process corresponding to the second half of the primary agglomeration process and the secondary agglomeration process are performed separately. It is easy to proceed uniformly as a whole. However, it does not make sense if the heating conditions are not appropriate just because the sintering process is divided into two in the preliminary sintering and the main sintering. For example, heating at a high temperature exceeding the proper range in the preliminary sintering process, rapid heating at the temperature rising stage of the main sintering process, or holding temperature in the main sintering process at a high temperature exceeding the proper range.
  • the density was higher than 2.90 g / cm 3 , but in the case of a sintering temperature of 850 ° C. or lower, conversely, in the case of a sintering temperature of 1150 ° C. or higher, The bulk density was less than 2.90 g / cm 3 .
  • the bridge width of the sintered portion was narrow when it was 800 ° C. or lower, and it was judged that the progress of sintering was insufficient, and at 850 ° C., there were slight open pores. .
  • At 1100 ° C. some amorphous bubbles were observed inside, and at 1150 ° C.
  • a porous pumice-like structure was formed in which countless amorphous bubbles were generated inside.
  • Innumerable fine bubbles having a substantially spherical shape with a diameter of several to several tens of ⁇ m and irregular bubbles with a diameter of 10 ⁇ m or more were observed innumerably on the entire cross section of the sintered body. From this shape, it was possible to determine that this spherical bubble was a foamed gas, and this irregularly shaped bubble was also an aggregated bubble from its shape.
  • This sublimation generates fine bubbles throughout the sintered body as described above.
  • the behavior of whether the generated fine bubbles (foaming gas) are defoamed or remain as bubbles is determined depending on the degree of progress of the sintering process and at which part of the sintered body.
  • the entire sintered body is still mainly composed of open pores, most of the bubbles are degassed through the open pores, and few remain as bubbles.
  • the sintered body is mainly composed of closed pores, a large amount of foaming gas cannot be defoamed and remains as bubbles. Basically, it can be said that promptly completing the sintering in the secondary agglomeration process is a direction in which residual bubbles can be reduced.
  • the transition from the primary agglomeration process to the secondary agglomeration process should be made as small as possible in the entire sintered body.
  • the present inventors perform lower heating in a temperature range immediately below the foaming start temperature (about 850 ° C.) for a relatively long time to complete the primary aggregation process and the first half of the secondary aggregation process, and then a solid solution is formed.
  • the second half of the secondary agglomeration process was completed by heating for a relatively short time in the vicinity of the starting temperature (980 ° C.) region. It has been found that this is an excellent sintering method capable of matching the degree of sintering progress in the entire sintered body and generating less foaming gas.
  • the size of the temporary sintered body is a rectangular parallelepiped shape of approximately 212 mm ⁇ 212 mm ⁇ t72 mm.
  • the heating atmosphere was changed to a nitrogen gas atmosphere, and a preliminary test was performed in three cases of heating time and temperature lowering conditions of 3, 6, and 9 hours, respectively. As a result, small cracks occurred in the sintered body in 3 hours, and the others were good, so the time was set to 6 hours.
  • the heating atmosphere is changed to a nitrogen gas atmosphere.
  • the heating temperature is changed in the range of 700 to 1250 ° C.
  • the holding time is set to 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18 hours. It was carried out in 11 cases.
  • the temperature was 750 ° C. or lower, the densification was insufficient regardless of the holding time.
  • the holding time was 4 hours or less, densification was insufficient at temperatures other than 1100 ° C.
  • the sintered state was good when the holding time was 8 hours or more, and slightly under-sintered after 6 hours. In the case of 900 ° C., it was good at 5 hours or longer, slightly sintered at 4 hours or shorter, and could not be judged at 16 hours or longer. In the case of 950 ° C., 5 to 14 hours were good, the sintering was slightly insufficient in 4 hours or less, and the pass / fail judgment was impossible in 15 hours or more. When the temperature was 1000 ° C., 5 to 12 hours were good, sintering was slightly insufficient at 4 hours or less, and foaming was large at 14 hours or more.
  • the main sintering process is divided into two stages. Since there is a kneading step, it was decided that the evaluation in the previous main sintering step was good.
  • the same temporary sintered body as described above is used and the holding time is made constant for 6 hours.
  • the heating temperature was changed in the range of 600 to 1300 ° C.
  • the heating temperature is 900 ° C.
  • the bulk density is approximately 2.90 g / cm 3
  • the sintered body having a bulk density higher than this is likely to be broken by handling in the subsequent process, as in the result shown in FIG. There was no trouble and it was judged that densification was sufficient.
  • the heating temperature is 850 to 1100 ° C.
  • the holding time is 3 to 14 hours (high temperature within this range, heating for a short time, It was judged that heating at a low temperature for a relatively long time was an appropriate condition.
  • the inventors of the present application as a basic policy of the main sintering process, suppresses foaming as much as possible, and further proceeds the sintering reaction sufficiently, and is good in the subsequent machining process. It was decided to produce a sintered body having processability.
  • the basic policy is to prevent foaming as much as possible in the first stage of the main sintering process, and to proceed with sintering slowly and to minimize the difference in the degree of sintering between the sintered body and its outer periphery. did.
  • the heating temperature and the holding time range were set in the range of 800 to 1100 ° C. as described above. Since the temperature at which foaming becomes prominent is about 850 ° C., the temperature is 840 ° C. or lower, that is, the heating temperature in the first stage of the sintering process is 750 to 840 ° C., and the holding time is 5 to 12 hours.
  • the heating at the stage of enhancing the sintering reaction of the next sintered body was performed in a temperature range of around 980 ° C., that is, a temperature at which the solid solution starts to be generated within the above appropriate conditions, that is, 900 to 1100 ° C.
  • the holding time is as short as possible in order to enhance the sintering reaction and suppress foaming, and 0.5 hours using the results of FIG. 3 and examples and comparative examples described later as judgment materials. If the ratio is less than 4, the sintering reaction is not sufficiently enhanced, and if it is 4 hours or more, foaming becomes excessive, so that the holding time is 0.5 to 3 hours.
  • the holding time is 6 hours using the same temporary sintered body as described above.
  • the heating temperature was varied in the range of 600 to 1300 ° C. The result is the same as in the case of nitrogen gas, and the bulk density is approximately 2.90 g / cm 3 at a heating temperature of 900 ° C. It was judged that the densification was sufficient without being broken by handling. On the other hand, when the heating temperature is 1110 ° C. or higher, the mass loss TG becomes ⁇ 0.8% or higher, and the yield is significantly reduced. Occurred.
  • the heating temperature was 900-1100 ° C. and the holding time 0.5-2.5 hours were the proper conditions. Furthermore, when the heating temperature is 950 to 1050 ° C. and the holding time is 0.5 to 3 hours, defects such as cracks are difficult to occur when subjected to machining, and the machinability is also good, so that the desired heating temperature and holding are maintained.
  • the time was judged to be 950 to 1050 ° C. and 0.5 to 3 hours. Therefore, the proper heating conditions for the main sintering step in the helium gas atmosphere are the same as in the nitrogen gas atmosphere described above.
  • the initial heating in the main sintering step is a holding time of 750 to 840 ° C. for 5 to 12 hours.
  • the subsequent heating was performed under the proper conditions of 900 to 1100 ° C. and a holding time of 0.5 to 3 hours.
  • the inert gas is not limited to nitrogen and helium, and the same effect can be obtained with argon or neon.
  • argon or neon since the sintered body is expected to have high solubility or diffusivity in the same manner as helium, the defoaming phenomenon is further promoted, and the same or further improvement as helium is expected.
  • the final state of the sintered body is always dense, and there are obvious defects such as locally large voids and cracks found in general ceramic sintered bodies. Was not found in these sintered bodies.
  • Non-Patent Document 3 The total thickness of the second-half moderator to be evaluated was constant at 320 mm, and the types of moderators were MgF 2 and CaF 2 . Further, a case where MgF 2 and CaF 2 were superposed in two layers (total thickness was fixed at 320 mm) was also evaluated.
  • the contents to be evaluated here are how many fast neutrons remaining in the neutron beam decelerated by the moderator are likely to adversely affect the patient.
  • the result is shown in FIG.
  • MgF 2 and CaF 2 here, a dense sintered body having a relative density (100 ⁇ (actual density) / (true density), unit%)) of 95 ⁇ 2% was used.
  • MgF 2 is an excellent moderator.
  • the relative density of MgF 2 (i.e., compactness) was investigated the effect that on the deceleration capability.
  • the moderator only MgF 2 sintered body with a relative density of 90 to 97% was used.
  • High purity MgF 2 raw material (average particle size 20 ⁇ m, purity 99.9 wt.% Or more) is pulverized using the pot mill and the balls made of alumina described in the above “Mode for Carrying Out the Invention” to obtain high purity MgF 2 powder (average particle size 1.2 ⁇ m, purity 99.9 wt.% Or more).
  • a carboxymethyl cellulose (CMC) solution as a sintering aid was added to this powder at a rate of 0.2 wt.% With respect to the MgF 2 powder 100 and mixed for 12 hours in a pot mill as a starting material.
  • This starting material was filled into a mold (mold size 220 mm ⁇ 220 mm ⁇ H 150 mm) using a uniaxial press, and compressed and molded by applying a uniaxial press pressure of 10 MPa.
  • This press-molded body (dimensions: about 220 mm ⁇ 220 mm ⁇ t85 mm) is placed in a thick plastic bag, degassed and sealed, and the molded part of a cold isostatic pressing (CIP) machine (inside dimensions: inner diameter 350 mm ⁇ H120 mm).
  • CIP cold isostatic pressing
  • isotropic pressure is applied at a molding pressure of 20 MPa, and the molded body by CIP molding (dimensions of about 215 mm x 215 mm x t75 mm) ).
  • This molded body was pre-sintered at 600 ° C. for 5 hours in an air atmosphere to obtain a pre-sintered body having a size of about 208 mm ⁇ 208 mm ⁇ t 72 mm.
  • This pre-sintered body was heated from room temperature to 830 ° C. over 6 hours at a constant rate in a nitrogen gas atmosphere, and kept at the same temperature for 6 hours. Thereafter, the temperature was raised to 1000 ° C. over 2 hours at a constant rate, and kept at the same temperature for 1 hour. Thereafter, the heating was stopped, and the mixture was naturally cooled (furnace cooling) over about 20 hours to 100 ° C., which was set to the removal temperature, and then removed.
  • the bulk density of the sintered body was calculated to be 3.05 g / cm 3 (relative density 96.8%) from the approximate dimensions (193 mm ⁇ 193 mm ⁇ t62 mm) and weight.
  • the sintered state was good.
  • the "bulk density” here refers to the appearance of the sintered body in a plan view and a square shape, so the bulk volume is calculated from the two sides and thickness of the square, and the weight measured separately The method obtained by dividing by the bulk volume was adopted. Hereinafter, it carried out similarly.
  • Example 2 Using the same starting materials as in Example 1 above, uniaxial press forming and cold isostatic pressing (CIP) were performed, followed by temporary sintering at 550 ° C. for 10 hours in an air atmosphere. Thus, a temporary sintered body of 208 mm ⁇ 208 mm ⁇ t 73 mm was obtained.
  • the preliminary sintered body was heated from room temperature to 750 ° C. in a nitrogen gas atmosphere at a constant rate over 6 hours and held at the same temperature for 9 hours. Thereafter, the temperature was raised to 920 ° C. over 2 hours at a constant rate, maintained at the same temperature for 2 hours, and then cooled in the furnace to 100 ° C., which was set as the removal temperature, and then taken out.
  • the approximate dimensions of the sintered body were 195 mm ⁇ 195 mm ⁇ t64 mm, bulk density 2.90 g / cm 3 (relative density 92.1%), and the sintered state was good. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results were all good.
  • Example 3 Using the same starting materials as in Example 1 above, similarly to a uniaxial press molding and the same cold isostatic pressing (CIP), pre-sintering at 600 ° C. for 8 hours in an air atmosphere The preliminary sintered body of 206.5 mm ⁇ 207 mm ⁇ t71 mm was obtained. This pre-sintered body was heated from room temperature to 840 ° C. at a constant rate over 6 hours in a nitrogen gas atmosphere, and kept at the same temperature for 12 hours. Thereafter, the temperature was raised to 1080 ° C. over 2 hours at a constant rate, maintained at the same temperature for 1 hour, and then cooled to 100 ° C., which was set to the removal temperature, and then taken out.
  • CIP cold isostatic pressing
  • the approximate dimensions of the sintered body were 192 mm ⁇ 192 mm ⁇ t61 mm, the bulk density was 3.00 g / cm 3 (relative density 95.2%), and the sintered state was good. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results were all good.
  • Example 4 Using the same starting materials as in Example 1 above, the raw materials are filled into a uniaxial press-molding mold, compressed and molded by applying a uniaxial press pressure of 70 MPa, and then cold isostatic pressing (CIP) Using a machine, the molding pressure was set to 40 MPa, and molding was performed to obtain a molded body (dimensions of about 213 mm ⁇ 214 mm ⁇ t 74 mm).
  • This molded body was pre-sintered at 600 ° C. for 10 hours in an air atmosphere to obtain a pre-sintered body of 204.5 mm ⁇ 205 mm ⁇ t 70 mm.
  • the pre-sintered body was heated from room temperature to 830 ° C. at a constant rate over 6 hours in a nitrogen gas atmosphere and held at that temperature for 12 hours. Thereafter, the temperature was raised to 1080 ° C. over 2 hours at a constant rate, kept at the same temperature for 1 hour, then cooled to 100 ° C., which was set to the take-out temperature, and then taken out.
  • the approximate dimensions of the sintered body were 190.5 mm ⁇ 191 mm ⁇ t60 mm, the bulk density was 3.07 g / cm 3 (relative density 97.5%), and the sintered state was good. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results were all good.
  • Example 5 Using the same starting materials as in Example 1 above, pre-sintering was carried out at 580 ° C. for 10 hours in an air atmosphere on a molded body that was similarly subjected to uniaxial press molding and cold isostatic pressing (CIP). As a result, a temporary sintered body of 206 mm ⁇ 206 mm ⁇ t 70.5 mm was obtained. This pre-sintered body was heated from room temperature to 800 ° C. at a constant rate over 6 hours in a nitrogen gas atmosphere, and kept at the same temperature for 12 hours. Thereafter, the temperature was raised to 920 ° C.
  • CIP cold isostatic pressing
  • Example 6 Using the same starting materials as in Example 1 above, pre-sintering was carried out in an air atmosphere at 580 ° C. for 7 hours on a compact that was similarly subjected to uniaxial press molding and cold isostatic pressing (CIP). As a result, a temporary sintered body of 207 mm ⁇ 207 mm ⁇ t 71.5 mm was obtained. The pre-sintered body was heated from room temperature to 830 ° C. at a constant rate over 6 hours in a nitrogen gas atmosphere and held at that temperature for 12 hours. Thereafter, the temperature was raised to 1000 ° C.
  • CIP cold isostatic pressing
  • Example 7 Using the same starting materials as in Example 1 above, pre-sintering was carried out at 580 ° C. for 10 hours in an air atmosphere on a molded body that was similarly subjected to uniaxial press molding and cold isostatic pressing (CIP). As a result, a temporary sintered body of 206 mm ⁇ 206 mm ⁇ t 70.5 mm was obtained. This pre-sintered body was heated from room temperature to 840 ° C. at a constant rate over 6 hours in a nitrogen gas atmosphere, and kept at that temperature for 8 hours. Thereafter, the temperature was raised to 980 ° C.
  • CIP cold isostatic pressing
  • the approximate dimensions of the sintered body were 193 mm ⁇ 193.5 mm ⁇ t 62.5 mm, bulk density 2.96 g / cm 3 (relative density 94.0%), and the sintered state was good. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results were all good.
  • Example 8 Using the same starting materials as in Example 1 above, uniaxial press forming and cold isostatic pressing (CIP) were performed, and tentative sintering was performed at 560 ° C. for 8 hours in an air atmosphere. Thus, a temporary sintered body of 207 mm ⁇ 206 mm ⁇ t 70.5 mm was obtained. This pre-sintered body was heated from room temperature to 840 ° C. in a nitrogen gas atmosphere at a constant rate over 6 hours and held at the same temperature for 5 hours. Thereafter, the temperature was raised to 920 ° C. over 2 hours at a constant rate, maintained at the same temperature for 3 hours, and then cooled in the furnace to 100 ° C., which was set to the removal temperature, and then removed.
  • CIP cold isostatic pressing
  • the approximate dimensions of the sintered body were 194.5 mm ⁇ 194.5 mm ⁇ t 64 mm, bulk density 2.91 g / cm 3 (relative density 92.4%), and the sintered state was good. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results were all good.
  • Example 9 Using the same starting materials as in Example 1 above, pre-sintering was carried out at 580 ° C. for 10 hours in an air atmosphere on a molded body that was similarly subjected to uniaxial press molding and cold isostatic pressing (CIP). Thus, a temporary sintered body of 205 mm ⁇ 205 mm ⁇ t 70.5 mm was obtained. This pre-sintered body was heated from room temperature to 840 ° C. at a constant rate over 6 hours in a helium gas atmosphere and held at that temperature for 8 hours. Thereafter, the temperature was raised to 980 ° C.
  • CIP cold isostatic pressing
  • the approximate dimensions of the sintered body were 192.5 mm ⁇ 192.5 mm ⁇ t62 mm, the bulk density was 3.00 g / cm 3 (relative density 95.2%), and the sintered state was good. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results were all good.
  • Example 10 Using the same starting materials as in Example 1, uniaxial press molding and cold isostatic pressing (CIP) were performed, and tentative sintering was performed at 560 ° C. for 6 hours in an air atmosphere. , 207 mm ⁇ 207 mm ⁇ t 70.5 mm pre-sintered body was obtained. This pre-sintered body was heated from room temperature to 770 ° C. at a constant rate over 6 hours in a nitrogen gas atmosphere and held at that temperature for 10 hours. Thereafter, the temperature was raised to 900 ° C. over 2 hours at a constant rate, maintained at the same temperature for 3 hours, and then cooled to 100 ° C., which was set to the take-out temperature, and then taken out.
  • CIP cold isostatic pressing
  • the approximate dimensions of the sintered body were 194.5 mm ⁇ 194.5 mm ⁇ t64 mm, bulk density 2.90 g / cm 3 (relative density 92.1%), and the sintered state was good. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results were all good.
  • Example 11 Using the same starting materials as in Example 1, uniaxial press molding and cold isostatic pressing (CIP) were performed, and calcination was performed at 550 ° C. for 8 hours in an air atmosphere. , A pre-sintered body of 207 mm ⁇ 207 mm ⁇ t 70 mm was obtained. This pre-sintered body was heated from room temperature to 790 ° C. over 6 hours at a constant rate in a nitrogen gas atmosphere and kept at the same temperature for 6 hours. Thereafter, the temperature was raised to 940 ° C. over 2 hours at a constant rate, maintained at the same temperature for 1.5 hours, and then cooled in the furnace to 100 ° C., which was set to the removal temperature, and then taken out.
  • CIP cold isostatic pressing
  • the approximate dimensions of the sintered body were 194.5 mm ⁇ 194.5 mm ⁇ t64 mm, bulk density 2.91 g / cm 3 (relative density 92.4%), and the sintered state was good. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results were all good.
  • Example 1 Using the same starting materials as in Example 1 above, uniaxial press forming and cold isostatic pressing (CIP) were performed, followed by temporary sintering at 550 ° C. for 10 hours in an air atmosphere. Thus, a temporary sintered body of 208 mm ⁇ 208 mm ⁇ t 73 mm was obtained.
  • the preliminary sintered body was heated from room temperature to 750 ° C. in a nitrogen gas atmosphere at a constant rate over 6 hours and held at the same temperature for 9 hours. Thereafter, the temperature was raised to 920 ° C. over 2 hours at a constant rate, kept at the same temperature for 2 hours, and then cooled in the furnace to 100 ° C. which was set to the removal temperature, and then taken out.
  • the approximate dimensions of the sintered body were 195 mm ⁇ 195 mm ⁇ t64 mm, bulk density 2.90 g / cm 3 (relative density 92.1%), and the sintered state was good.
  • the neutron beam deceleration performance and various characteristics evaluation results show that there are many fast neutron beams that can adversely affect the body in the neutron beam bundle after deceleration. It was not done, and it left a problem. Moreover, the mechanical strength is low, and this also has a problem.
  • Example 2 Using the same starting materials as in Example 1 above, pre-sintering was carried out at 530 ° C. for 5 hours in an air atmosphere on a molded body that was similarly subjected to uniaxial press molding and cold isostatic pressing (CIP). As a result, a temporary sintered body of 209 mm ⁇ 209 mm ⁇ t76 mm was obtained. This pre-sintered body was heated from room temperature to 740 ° C. in a nitrogen gas atmosphere at a constant rate over 6 hours and held at the same temperature for 4 hours. Thereafter, the temperature was raised to 890 ° C.
  • CIP cold isostatic pressing
  • the approximate dimensions of the sintered body are 198 mm x 198 mm x t68 mm, bulk density 2.80 g / cm 3 (relative density 88.9%), and the sintered state is clearly porous, which is problematic in handling. It was inconvenient to come.
  • the neutron beam deceleration performance and various characteristics evaluation results show that there are many fast neutron beams that can adversely affect the body in the neutron beam bundle after deceleration. It was not done, and it left a problem. Moreover, the mechanical strength is so low that it cannot be measured, which also has a problem.
  • Example 3 Using the same starting materials as in Example 1 above, uniaxial press forming and cold isostatic pressing (CIP) were performed, followed by temporary sintering at 550 ° C. for 10 hours in an air atmosphere. Thus, a temporary sintered body of 208 mm ⁇ 208 mm ⁇ t 73 mm was obtained.
  • the preliminary sintered body was heated from room temperature to 750 ° C. in a nitrogen gas atmosphere at a constant rate over 6 hours and held at the same temperature for 9 hours. Thereafter, the temperature was raised to 880 ° C. over 2 hours at a constant rate, maintained at the same temperature for 1.5 hours, and then cooled in the furnace to 100 ° C., which was set to the removal temperature, and then taken out.
  • the approximate dimensions of the sintered body were 197 mm ⁇ 196 mm ⁇ t 67 mm, and the bulk density was 2.88 g / cm 3 (relative density 91.4%).
  • the sintered state was good in appearance, a phenomenon in which the grinding fluid was absorbed in the sintered body was observed at the stage of grinding to finish the sintered body with a grinding machine. Therefore, the microstructure in the sintered body was examined in detail. As a result, it was found that many open pores were formed and sintering was insufficient.
  • the neutron beam deceleration performance and various characteristics evaluation results show that there are many fast neutron beams that can adversely affect the body in the neutron beam bundle after deceleration. It was not done, and it left a problem. Moreover, the mechanical strength is low, and this also has a problem.
  • Example 4 Using the same starting materials as in Example 1 above, a uniaxial press molding and a cold isostatic pressing (CIP) molded body were pre-sintered at 600 ° C. for 10 hours in an air atmosphere. Thus, a temporary sintered body of 208 mm ⁇ 208 mm ⁇ t 73 mm was obtained. This pre-sintered body was heated from room temperature to 840 ° C. at a constant rate over 6 hours in a nitrogen gas atmosphere, and kept at that temperature for 8 hours. Thereafter, the temperature was raised to 1150 ° C.
  • CIP cold isostatic pressing
  • the neutron beam deceleration performance and various characteristics evaluation results show that there are many fast neutron beams that can adversely affect the body in the neutron beam bundle after deceleration. It was not done, and it left a problem. Moreover, the mechanical strength is low, and this also has a problem.
  • Example 5 Using the same starting material as in Example 1, this material was filled into a mold (mold size 220 mm ⁇ 220 mm ⁇ H 150 mm) using a uniaxial press, and compressed and molded by applying a uniaxial pressing pressure of 4 MPa. .
  • This press-molded body (dimensions: about 220 mm ⁇ 220 mm ⁇ t85 mm) is placed in a thick plastic bag, degassed and sealed, and the molded part of a cold isostatic pressing (CIP) machine (inside dimensions: inner diameter 350 mm ⁇ H120 mm).
  • CIP cold isostatic pressing
  • isotropic pressurization with a molding pressure of 4 MPa is performed to form a molded body by CIP molding (dimensions of about 218 mm ⁇ 218 mm ⁇ t75 mm ).
  • the molded body was pre-sintered at 550 ° C. for 5 hours in an air atmosphere to obtain a pre-sintered body having dimensions of about 211 mm ⁇ 211 mm ⁇ t 73 mm.
  • This pre-sintered body was heated from room temperature to 740 ° C. over 6 hours at a constant rate in a nitrogen gas atmosphere and kept at the same temperature for 6 hours. Thereafter, the temperature is raised to 900 ° C. over 2 hours at a constant rate and maintained at the same temperature for 1 hour. Thereafter, the heating is stopped, and natural cooling (furnace cooling) is performed over about 20 hours up to 100 ° C., which is set to the take-out temperature. ) And then removed.
  • the bulk density of the sintered body was calculated as 2.86 g / cm 3 (relative density 90.8%) from the approximate dimensions (199 mm ⁇ 199 mm ⁇ t68 mm) and weight, and the sintered state was porous.
  • Table 2 the neutron beam deceleration performance and various characteristics evaluation results show that there are many fast neutron beams that can adversely affect the body in the neutron beam bundle after deceleration. It was not done, and it left a problem. Moreover, the mechanical strength is low, and this also has a problem.
  • This press-molded body (dimensions: about 220 mm ⁇ 220 mm ⁇ t85 mm) is placed in a thick plastic bag, degassed and sealed, and the molded part of a cold isostatic pressing (CIP) machine (inside dimensions: inner diameter 350 mm ⁇ H120 mm).
  • CIP cold isostatic pressing
  • isotropic pressure is applied at a molding pressure of 20 MPa, and the molded body by CIP molding (dimensions of about 215 mm x 215 mm x t75 mm) ).
  • the molded body was pre-sintered at 500 ° C. for 4 hours in an air atmosphere to obtain a pre-sintered body having dimensions of about 211 mm ⁇ 211 mm ⁇ t 72 mm.
  • the pre-sintered body was heated from room temperature to 730 ° C. in a nitrogen gas atmosphere at a constant rate over 6 hours and held at the same temperature for 5 hours. Thereafter, the temperature is raised to 900 ° C. over 2 hours at a constant rate and maintained at the same temperature for 1 hour. Thereafter, the heating is stopped, and natural cooling (furnace cooling) is performed over about 20 hours up to 100 ° C., which is set to the take-out temperature. ) And then removed.
  • the bulk density of the sintered body was calculated to be 2.85 g / cm 3 (relative density 90.5%) from the approximate dimensions (198 mm ⁇ 198 mm ⁇ t68 mm) and weight, and the sintered state was insufficient and porous. .
  • Table 2 the neutron beam deceleration performance and various characteristics evaluation results show that there are many fast neutron beams that can adversely affect the body in the neutron beam bundle after deceleration. It was not done, and it left a problem. Moreover, the mechanical strength is low, and this also has a problem.
  • Example 7 Using the same starting material as in Example 1, this material was filled into a mold (mold size 220 mm ⁇ 220 mm ⁇ H 150 mm) using a uniaxial press, and compressed and molded by applying a uniaxial pressing pressure of 4 MPa. .
  • This press-molded body (dimensions: about 220 mm ⁇ 220 mm ⁇ t85 mm) is placed in a thick plastic bag, degassed and sealed, and the molded part of a cold isostatic pressing (CIP) machine (inside dimensions: inner diameter 350 mm ⁇ H120 mm).
  • CIP cold isostatic pressing
  • isotropic pressurization with a molding pressure of 4 MPa is performed to form a molded body by CIP molding (dimensions of about 218 mm x 218 mm x t75 mm). ).
  • the molded body was pre-sintered at 550 ° C. for 5 hours in an air atmosphere to obtain a pre-sintered body having dimensions of about 211 mm ⁇ 211 mm ⁇ t 72.5 mm.
  • This pre-sintered body was heated from room temperature to 740 ° C. over 6 hours at a constant rate in a helium gas atmosphere and held at that temperature for 6 hours. Thereafter, the temperature is raised to 900 ° C. over 2 hours at a constant rate and maintained at the same temperature for 1 hour. Thereafter, the heating is stopped, and natural cooling (furnace cooling) is performed over about 20 hours up to 100 ° C., which is set to the take-out temperature. ) And then removed.
  • the bulk density of the sintered body was calculated as 2.89 g / cm 3 (relative density 91.7%) from the approximate dimensions (198 mm ⁇ 198.5 mm ⁇ t 67.5 mm) and weight, and the sintered state was porous. It was. As shown in Table 2, the neutron beam deceleration performance and various characteristics evaluation results show that there are many fast neutron beams that can adversely affect the body in the neutron beam bundle after deceleration. It was not done, and it left a problem. Moreover, the mechanical strength is low, and this also has a problem.
  • This raw material was filled into a mold (mold size 220 mm ⁇ 220 mm ⁇ H 150 mm) using a uniaxial press, and compressed and molded by applying a uniaxial press pressure of 10 MPa.
  • This press-molded body (dimensions: about 220 mm ⁇ 220 mm ⁇ t85 mm) is placed in a thick plastic bag, degassed and sealed, and the molded part of a cold isostatic pressing (CIP) machine (inside dimensions: inner diameter 350 mm ⁇ H120 mm).
  • CIP cold isostatic pressing
  • isotropic pressure is applied at a molding pressure of 20 MPa, and the molded body by CIP molding (dimensions of about 215 mm x 215 mm x t75 mm) ).
  • the molded body was pre-sintered at 600 ° C. for 6 hours in an air atmosphere to obtain a pre-sintered body having a size of about 208 mm ⁇ 208 mm ⁇ t 72 mm.
  • This pre-sintered body was heated from room temperature to 870 ° C. over 6 hours at a constant rate in a nitrogen gas atmosphere and kept at the same temperature for 6 hours. Thereafter, the temperature is raised to 1100 ° C. over 2 hours at a constant rate and held at the same temperature for 1 hour. Thereafter, the heating is stopped, and natural cooling (furnace cooling) is carried out over about 20 hours until the temperature is set to 100 ° C. ) And then removed.
  • the bulk density of the CaF 2 sintered body is 3.05 g / cm 3 (relative density 95.9%.
  • the true density of CaF 2 is 3.18 g / cm 3 ) based on the approximate dimensions (193 mm ⁇ 193 mm ⁇ t62 mm) and weight. Calculated and the sintered state was good.
  • Table 2 a sintered body in a dense sintered state was obtained, and the mechanical strength was sufficient.
  • the speed reduction performance with respect to neutron beams has a large amount of remaining fast neutron beams and has left a major problem. This result showed that even if the CaF 2 sintered body was sufficiently dense, the properties as a moderator were inferior to those of the MgF 2 sintered body.
  • It can be used as a moderator for suppressing the radiation speed of various types of radiation such as neutrons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

 高エネルギーの中性子線を減速して身体深部の患部に照射して腫瘍を消滅させる治療用中性子線などを生ぜしめる減速材に適したフッ化物焼結体であって、緻密な多結晶構造のMgF2からなり、嵩密度が2.90g/cm以上、曲げ強度が10MPa以上、ビッカース硬度が71以上の機械的強度を有する中性子線減速材用フッ化物焼結体を提供する。

Description

中性子線減速材用フッ化物焼結体及びその製造方法
 本発明は、フッ化物焼結体及びその製造方法に関し、より詳細には、中性子線など各種放射線の放射速度を抑制するための減速材に好適な緻密な構造を有する中性子線減速材用フッ化物焼結体およびその製造方法に関する。
 フッ化物は、フッ化カルシウム(CaF2)単結晶体、フッ化マグネシウム(MgF2)単結晶体などが光学分野において比較的広く使用されている。フッ化物が光学分野以外に使用されているケースは極めて少なく、CaF2単結晶体が、その高い耐プラズマ性を生かし、半導体製造工程において稀に用いられている。シリコンウエハーのプラズマエッチング処理炉内において最も耐プラズマ性が要求される部材、例えばリングボートとか天井板などに応用することなどが考案されている。しかしながら、CaF2単結晶体は極めて高価なものであり、実際の製造ラインで使用されたという報告は未だなされていない。
 放射線のひとつである中性子線の遮蔽物用としてCaF2単結晶体、フッ化リチウム(LiF)あるいはフッ化アルミニウム(AlF3)単結晶体が稀に使用される程度であった。
 放射線は宇宙では大量に存在するが、地球上においては地球の磁場とか大気圏の影響を受け、その大部分が遮断され、ごく微量にしか存在していない。人為的には、例えば原子炉内での原子核反応により中性子線などの放射線を発生させている。
 放射線は、アルファ(α)線、ベータ(β)線、ガンマ(γ)線、エックス(X)線および中性子線などに分けられ、この順番で物質を透過する能力(透過力)が徐々に大きくなる。
 放射線の中で一番透過力が大きいとされる中性子線は、さらにエネルギーレベルによって細かく分類される。その一例を以下に示す。括弧内は各種中性子線が有するエネルギーレベルを表しており、その数値が大きいほど透過力が大きいことを示している。
 透過力の小さい方から順に、低温中性子(~0.002eV)、熱中性子(~0.025eV)、熱外中性子(~1eV)、低速中性子(0.03~100eV)、中速中性子(0.1~500keV)、高速中性子(500keV以上)に分類される。ただし、括弧内のエネルギー値は厳密なものではなく、中性子線の分類には諸説が存在する。例えば、熱外中性子のエネルギーとして、上記の中速中性子のエネルギー領域に入る40keV以下を記す説などもある。
 中性子線の有効利用の代表的なものが医療分野への応用である。悪性腫瘍細胞に中性子線を照射して破壊する放射線治療は近年急速に普及しつつある。現在の放射線治療で、十分な医療効果を得るためには、ある程度高エネルギーの中性子線を使用せざるを得ない状況にある。高エネルギー中性子線を照射すると、患者の患部以外の部位(健全部)への影響を回避することはできず、副作用を伴うこととなる。そのため、現状では、放射線治療は重度の患者への適用に限られている。
 高エネルギーの放射線が正常細胞に照射されるとDNAが傷つき、皮膚炎や放射性貧血、白血球減少などの副作用が引き起こされる。さらには、治療後しばらくしてから晩期障害を生じ、直腸や膀胱に腫瘍ができて出血することもある。
 こうした副作用や晩期障害を生じさせないために、放射線を腫瘍にピンポイントで当てる方法が研究されている。その例が、正確に腫瘍部分にだけ高い線量を立体照射する“強度変調放射線治療法(IMRT)”、あるいは患者の呼吸や心臓の動きなど体内の動きに合わせて放射線を照射する“動体追跡放射線治療法”、あるいは治療効果の高い重粒子線や陽子線などを集中的に照射する“粒子線治療法”などである。
 この様な放射線治療に使用されることが多い中性子の半減期は887.0±2.0秒(約15分)と短く、短時間で崩壊して電子とニュートリノを放出し、陽子に変わる。また、中性子は電荷を持たず、このため原子核と衝突した時に吸収されやすい。この様に中性子を吸収することを中性子捕獲と言い、この性質を利用した医療分野への応用例が、近年注目されつつある“ホウ素中性子捕捉療法(Boron Neutron Capture Therapy:以下、BNCTと称す)”である。
 この方法は、まず患者の悪性腫瘍細胞にホウ素を反応させてその腫瘍部分に反応生成物(ホウ素化合物)を形成しておき、その反応生成物に、健全部に影響の少ない中性子線(主として熱外中性子線と熱中性子線で構成)を照射する。そして前記ホウ素化合物が形成されたごく微細な範囲内だけに核反応を生じさせて腫瘍細胞のみを死滅させる方法である。
 この方法は約60年前に提案され、患者の健全部への影響が少ないことなどから、優れた放射線治療法としてかなり以前から注目され、各国で研究が成されてきた。しかし、中性子線発生装置、治療に有効な中性子線の選択、選定を行う装置(減速系装置)、患者の健全部への影響の回避(その必要条件のひとつは、ホウ素化合物を腫瘍部分にだけ形成すること)など、多岐に渡る開発課題があった。
 現時点ではこれらの多くの課題が十分に解決されているとはいえず、一般的な治療法として普及するには至っていない。普及に至っていない大きな要因の一つとして、中性子線の発生装置に関して言えば、過去のほとんどの場合、既設の原子炉に付随して設置され、研究、開発、臨床のすべてがその場所で行われ、医療用途に適した状況が実現できていなかったことが挙げられる。このような状況を抜本的に改善するには、医療用専用の中性子線発生装置の開発、実用化が必須であり、我が国では2、3の装置メーカーがその期待を担ってこの種中性子線発生装置の開発を進めつつある。
 小型で高性能な中性子線発生装置の開発に加え、普及に至っていないもう一つの大きな要因は、減速系装置に関しても同様に高性能化、小型化を図らなければならない点にあり、この点が実用化に向けてのもう一つの大きな課題となっている。
 医療用の粒子線として中性子線を効果的に利用するためには、中性子線の線種の選定が重要であり、その一例を以下に示す。
 医療効果の面から見ると、健全な身体組織に悪影響を与える高エネルギーの中性子線を除去し、また、医療効果の少ない極低エネルギーの中性子線(例えば、熱中性子線と低温中性子線)を減らし、同効果の高い中性子線(例えば、中速中性子線の内の低エネルギー部分と熱外中性子線)の割合を高めることにより、望ましい医療用粒子線を形成することができる。
 熱外中性子線及び中速中性子線の内の低エネルギー部分は、患者体内組織への深達性が高く、例えば脳腫瘍の場合も開頭手術を必要とせず、あるいは他の主要な臓器で開腹手術が容易でない場合も開腹手術を必要とせず、患部への効果的な照射が可能である。
 一方、熱中性子線などの極低エネルギーの中性子線を使用すると、深達性が低いが故に、開頭または開腹手術が必要となり、患者への負担が大きなものとなる。
 放射線を安全に、且つ、有効に利用するには、減速材を適宜選定して配置することが必要である。放射線の中で最も透過能力が高い中性子線を有効に利用するには、各種物質の中性子線に対する減速性能を把握し、効果的な減速をすることが重要である。
 サイクロトロンなどの加速器で発生させた中性子線の大部分は高エネルギー中性子線であり、これを減速材を用い、まずは身体に悪影響を及ぼすレベルの高エネルギー中性子線(例えば、高速中性子線と中速中性子線の内の高エネルギー部分など)を極力除外することである。
 上記した医療効果の高い中性子線の必要量を確保し、且つ、身体に悪影響を及ぼす高エネルギー中性子線をカットして皆無にすることは、難易度の高い減速制御を必要とする。一般的には、医療効果の高い中性子線の必要量を確保しようとすれば、必然的に高エネルギー中性子線を含んだものとなり、この高エネルギー中性子線を次の減速工程で極力除去することが必要となる。
 上記ホウ素中性子捕捉療法(BNCT)の一つの方式として、京都大学を中心とするグループが近年進めているものがある(非特許文献1および非特許文献2)。この方式は、既存の原子炉に附帯させておらず、中性子線発生装置として専用のサイクロトロン加速器が設けられており、医療専用の中性子線発生装置が採用されている。
 しかし、そのサイクロトロン加速器の小型化は不十分で、大きなものとなっている。また、このサイクロトロン加速器で発生させた放射線(主として中性子線)を安全に、且つ有効に利用するため、放射線用遮蔽物として選定された減速材には鉛(Pb)、鉄(Fe)、アルミニウム(Al)、ポリエチレンとともに、フッ化カルシウム(CaF)とフッ化リチウム(LiF)とを含有するポリエチレンが使用されている。
 これら減速材の減速性能は十分とは言えず、詳しくは後述するが、これら減速材の組合せで減速させた後に得られる中性子線は、BNCTによる治療に最も適する熱外中性子線の必要線量を得る条件に設定した場合、健全組織に悪影響を及ぼす高速中性子線が多量に混入する構成となってしまっていた。
 また、必要な減速を行うためには減速材の厚さがかなり厚いものとなってしまい、換言すれば、減速系装置が大きくなってしまい、装置全体の小型化が十分に図れないといった課題があった。このBNCTの一般病院への普及には、装置全体の小型化が必須要件であり、加速器の小型化と減速系装置の小型化のためには減速性能に優れた減速材の開発が急務となっていた。
 以下、治療効果の向上とBNCT装置の小型化にとって重要な減速材の選定について詳述する。
BNCTにおいては、高速中性子線などの高エネルギー中性子線を除去し、熱外中性子線を主体とし、熱中性子線を少量含む中性子線を患部に照射することが必要とされている。
 具体的には、照射時間を1時間程度とした場合に必要とされる熱外中性子線と熱中性子線量の目安は、おおよそ1×10 [n/cm/sec] といわれている。そのためには、中性子線生成のターゲットにベリリウム(Be)を使用した場合、中性子線の発生源である加速器からの出射ビームのエネルギーとして、およそ5~10MeVが必要といわれている。
 つぎに、加速器を用いたBNCT用中性子線照射場での各種減速材による粒子線種の選択について述べる。
 加速器から出射されたビームはターゲット(Be)に衝突し、核反応により主として高速中性子線などの高エネルギー中性子線を発生させる。高速中性子線の減速方法として、まずは非弾性散乱断面積の大きいPbやFeなどを使用し、中性子線の減衰を抑えながら減速する。これら2種類の減速材である程度(~1MeV程度)まで減速し、その後、照射場に必要な中性子線エネルギーに応じて減速・最適化してゆく。
 ある程度減速された後の中性子線に対する減速材としては、酸化アルミニウム(Al)、フッ化アルミニウム(AlF)、CaF2、黒鉛、あるいは重水(DO)などが使われている。1MeV近傍まで減速された中性子線を、これら減速材に入射させることによって、BNCTに適した熱外中性子エネルギー領域(4keV~40keV)まで減速させることが求められている。
 京都大学を中心とする上記グループの場合、減速材として、Pb、Fe、Al、CaF2、ポリエチレン、及びLiFを含有させたポリエチレンを使用している。
 この内、ポリエチレンと、LiF含有ポリエチレンとは高エネルギー中性子線の照射場以外への漏洩防止のため、装置外部を覆うように設けられる遮蔽用の減速材である。
 これら減速材の内、高エネルギー中性子線をPb、Feを使用してある程度まで減速させること(減速の前半段階)は望ましいものであったが、このある程度まで減速したあとの、Al、CaF2を用いた後半段階の減速に関しては、あまり望ましいものとは言えなかった。このある程度まで減速された線種の中には、健全細胞にとって有害な高エネルギー中性子線がまだかなり残っていた。これら高エネルギー中性子線を皆無になるまで除去しつつ、医療効果の高い熱外中性子線などの中エネルギーレベルの中性子線を必要量残すことが必要であったが、この点が十分達成されているとはいえなかった。
 すなわち、後半段階に使用されていた減速材(Al、CaF2)では、前半段階の減速で残っていた高エネルギー中性子線の多くが遮断されずに透過してしまい、この中性子線をそのまま治療に使用すると、患者の健全組織への悪影響が避けられない状況にあった。
 その原因は、後半段階の減速材のうち、CaF2の高エネルギー中性子線に対する遮断性能が十分でなく、一部が遮断されずに透過してしまうことにあった。
 CaF2と共に後半段階で使用されているLiF含有ポリエチレンは、治療室側の中性子線の出射口以外の全面を覆うように使用され、患者への高速中性子線による全身被爆を防ぐために設置されており、出射口における減速材としては使用されていない。
 また、前半段階における減速材としてのポリエチレンは、この後半段階の
LiF含有ポリエチレンと同様に、治療室側以外の装置外周の全面を覆うように使用され、装置周囲への高速中性子線の漏洩を防ぐために設置されている。
 このため、後半段階のCaF2に代わり、治療に必要とされる中エネルギーレベルの中性子線の減衰を抑えながら、高エネルギー中性子線を遮断し、減速させることが出来る優れた減速材の開発が望まれていた。
 本発明者らは種々の調査・研究から、上記ある程度減速された中性子線(~1MeV)から、最も治療効果が高いと見込まれる熱外中性子線を主体とし、治療に最適のエネルギー(4keV~40keV)分布を有する中性子線を得るための減速材としてMgF2系焼結体に着目した。
 MgF2系焼結体には、MgF2焼結体のほか、MgF2-CaF2二元系焼結体、MgF2-LiF二元系焼結体、MgF2-CaF2-LiF三元系焼結体なども含まれる。これまでに中性子線の減速材用としてMgF2が使用されたという報告は見当たらない。ましてや、MgF2焼結体やMgF2-CaF2二元系焼結体をはじめとするMgF2系焼結体が中性子線減速材に採用された例は報告されていない。
 本件出願では、MgF2単味(単独と同意語)の焼結体(以下、MgF2焼結体と記す)に関する発明について記述する。
 MgF2は、理化学辞典によると、融点1248℃、沸点2260℃、密度3.15g/cm、立方晶系、ルチル構造と称される無色の結晶である。その単結晶体は透明度が高く、おおよそ波長0.2~7μmの広範囲の波長域で高い光透過性が得られることと、バンドギャップが広くレーザー耐性が高いことから主としてエキシマレーザー用窓材として使用されている。また、MgF2はレンズの表面に蒸着されて内部保護や乱反射防止用など、いずれも光学用途に使用されている。
 これらの用途はいずれもMgF2単結晶体を光学用途に使用したものであるが、単結晶体は単結晶成長に長時間を要し、且つその結晶成長の制御の難度が高く、極めて高価となる。そのため、経済性の面から用途が限定される。
 他方、MgF2焼結体は多結晶構造のため、光透過性に乏しく、透明度が低いことから光学用途には不向きである。
 単結晶体、焼結体ともにMgF2が光学用途以外に使用されたケースは極めて少なく、以下に記述する耐プラズマ性部材用に焼結体が使用された例が2,3ある程度である。
 MgF2をベースとした焼結体の耐プラズマ性部材への適用例としては、特開2000-86344号公報(下記特許文献1)がある。当該特許請求の範囲には、Mg、Ca、SrおよびBaの群から選ばれる少なくとも1種のアルカリ土類金属のフッ化物からなり、前記アルカリ土類金属以外の金属元素の総量が金属換算で100ppm以下、前記フッ化物の結晶粒子の平均粒径が30μm以下であり、かつ相対密度が95%以上であること、が記載されている。
 しかしながら、この公報の実施例の一覧表に記載されている物質は、前記アルカリ土類金属4種の各々単独の金属フッ化物(すなわちMgF2、CaF2、SrF2、BaF2)を原料として焼成されたものであり、それら原料の混合物が焼成されたとする記載は無い。
 また、実施例の表1に記載されているMgF2およびCaF2を原料とする焼成において、適正と評価される(表中の表記で◎または○で示される)ケースの焼成温度は、MgF2の場合、850℃、950℃、1050℃となっており、その焼結体の相対密度はいずれも95%以上となっている。また、CaF2の場合、950℃、1040℃、1130℃となっており、その焼結体の相対密度はいずれも97%以上になった、と記載されている。
 この点に関し、本発明者らの研究・実験によれば、MgF2およびCaF2はいずれもこれらの焼成温度と同等、またはこれよりも低い温度から昇華現象を呈し、上記の焼成温度では激しい発泡現象を生じることとなり、MgF2で相対密度95%以上、またCaF2で相対密度97%以上を得ることは不可能であることが判明した。
 本発明者らは、この焼成実験に先立ち、原料粉の示差熱分析により、MgF2の昇華は約800℃から発生し始め、850℃以上では活発に昇華すること、また、CaF2の昇華は約850℃から発生し始め、900℃以上では活発に昇華することを突き止めた。
 この示差熱分析の結果は、特許文献1の実施例中のMgF2とCaF2で“適正”と表示された各々3ケースの焼成温度では、いずれも焼成過程で昇華現象が活発に生じる温度条件となっており、焼結体を緻密化させることは実際には困難であることを示している。
 この特許文献1の発明者らも、本文中では、「AlF3は比較的低温から昇華し始めるため、昇華を抑制しつつ焼成する必要があり、緻密な焼結体を得ることは難しいものであった。」と記載しており、“焼成時の昇華現象の顕在化”すなわち“焼結体の発泡”すなわち“緻密な焼結体を得にくい”との見識は持っていたようである。
 しかし、何故か、前述したように、MgF2およびCaF2に関し、いずれも上記昇華が始まる温度よりも高い焼成温度で焼結体を製造したことが記載されている。これでは、原料粉の焼結を進める焼成過程で、その焼結体の内部で活発な発泡が生じてしまい、緻密な焼結体を得ることが困難な条件で焼結を行ってしまっている。
 本発明者らは、このような現象を把握したうえで、焼結過程でその昇華現象の影響を極力減らす方法を研究し、緻密な焼結体が安定的に得られる優れた焼結方法を開発した。
 その他に、MgF2をベースとした焼結体の耐プラズマ性部材への適用例としては、特開2012-206913号公報(下記特許文献2)がある。この発明では、
MgF2単味の焼結体は機械的強度が弱い欠点があるため、Al2O3、AlN、SiC、MgOなどの平均線熱膨張係数がMgF2よりも低い、非アルカリ金属系物質を少なくとも1種混合し、MgF2単味の焼結体の機械的強度が弱い欠点を補う方法が開示されている。このような混合物の焼結体を、上記中性子線の減速材に使用すると、MgF2に混合する非アルカリ金属の影響で、MgF2単味の減速性能と大きく異なることとなり、この種混合物の焼結体では、減速材用途への適応は困難であることが予見された。
 また、MgF2焼結体に関する発明としては、特開2000-302553号公報(下記特許文献3)がある。MgF2、CaF2、YF3、LiFなどのフッ化物セラミックス焼結体の最も大きな欠点は、機械的強度が弱いことであるとし、これを解決すべく発明したのが、これらフッ化物とAl2O3とを所定の比率で複合化した焼結体である、としている。しかしながら、この方法で製造された焼結体の耐蝕性と機械的強度は、いずれの組合せでも、単にそれらフッ化物とAl2O3との双方の特性の中間の特性を持ったものが得られたに過ぎず、複合化により双方の特性を超えるものまでは得られていない。
 上記したように、従来の方法で焼結されたMgF2と他の物質との混合物を焼成し、焼結体としたものでは、耐プラズマ性部材以外の用途、具体的には、放射線のひとつである中性子線減速材用などの新たな用途に用いるには解決すべき多くの課題が残されていた。
特開2000-86344号公報 特開2012-206913号公報 特開2000-302553号公報
H.Tanaka et al.、Applied  Radiation  and Isotopes 69(2011)1642-1645 H.Tanaka et al.、Applied  Radiation  and Isotopes 69(2011)1646-1648 熊田博明ら、保健物理、42(2007)23~37
課題を解決するための手段及びその効果
 本発明は上記課題に鑑みなされたものであって、放射線の一種である中性子線を有効利用する際に、その中性子線のエネルギーを減速させるために使用される減速材であって、高純度単結晶体のように高価格なものとはならず、しかも、有効な減速効果が得られ、その結果、治療効果を高めることが出来ながら、しかも治療用装置の小型化を図ることができる中性子線減速材用フッ化物焼結体及びその製造方法を提供することを目的としている。
 本発明者らは、まず、高エネルギー中性子線に対する十分な減速効果を有する物質(金属または化合物)の選定に関する基本的な考察を行った。
 BNCTにおいては、上記したように、治療時に有害となる高エネルギー中性子線を極力少なくし、他方、大きな治療効果を得るために、熱外中性子線を主体とし、熱中性子線をわずかに含む中性子線を患部に照射することが重要となる。具体的には、照射時間を1時間程度とした場合に必要とされる熱外及び熱中性子線量の目安は、おおよそ1×10[n/cm/sec]である。そのための中性子線の発生源である加速器からの出射ビームエネルギーは、中性子線生成のターゲットにベリリウム(Be)を使用する場合、おおよそ5~10MeVが必要と言われている。
 つぎに、加速器を用いたBNCT用中性子線照射場での各種減速材による粒子線種の選択について記述する。
 加速器から出射されたビームはターゲット(Be)に衝突し、核反応により主として高エネルギー中性子線(高速中性子線)を発生させる。高速中性子線の減速方法としては、まずは非弾性散乱断面積の大きいPbやFeなどで中性子線の減衰を抑えながらある程度まで減速する。ある程度(~1MeV)まで減速された中性子線に対する減速材は、照射場に必要な中性子エネルギー量に応じて最適化させていく。
 ある程度減速された中性子線に対する減速材としては一般的には、酸化アルミニウム(Al23)、フッ化アルミニウム(AlF3)、CaF2、黒鉛、あるいは重水(D2O)などが使われている。1MeV近傍まで減速された中性子線をこれらの減速材に入射させることによって、BNCTに適したエネルギー(4keV~40keV)の熱外中性子線領域まで減速させる。しかし、上記減速材を用いた方法では治療時に患者の健全組織に害を及ぼす高速中性子線の除去が不十分となり易い。そこで、この高速中性子線の除去に重点をおくと、逆に減速し過ぎとなって熱外中性子線領域よりもさらに減速してしまい、熱外中性子線よりも治療効果の少ない熱中性子線の割合が多いものとなってしまう。
 このため、本発明者らは各種化合物の中から、ある程度減速された中性子線に対する有力な減速材の候補としてMgF2とCaF2の2種類のフッ化物を選択し、後述する減速効果の調査を行った。その結果(図4)、1MeV近傍まで減速させた中性子線をMgF2製の減速材に入射させることによって、BNCTに有害な高速中性子線をほぼ完全に除去でき、同治療に最も適したエネルギー領域(4keV~40keV)の熱外中性子線を得ることができることを突き止めた。
 MgF2製減速材を製造する際の課題は種々あったが、まず最初に考えなければならなかったのは、その製造方式であった。製造方式としては、結晶法、単結晶法、多結晶法(すなわち焼結法)などを挙げることができる。
 結晶法で製造した結晶は、一般的に、結晶方位に偏析があり、不純物に関しても偏析を生じやすく、減速材として使用した場合、その部位により減速性能にばらつきを生じ易い。従って、減速材には不向きと考えられる。
 単結晶法で製造する単結晶は、製造に際して高い制御精度を要し、品質の安定度に劣り、価格は極めて高価なものとなる。従って、減速材には不向きと言わざるを得ない。
 そこで、今回は、多結晶法(以下、焼結法と記す)による減速材の製造方法について研究、開発し、本発明を完成するに至った。
 本発明における基本的な技術的思想
 (1)減速材としての性能確保のための製品純度の確保
 MgF2減速材としての性能の確保のためには、まずは製品純度の確保が重要となる。純度確保のためには、原料レベルでの純度の確保、及び製造過程における不純物混入の阻止が重要と考え、これらを考慮することで減速性能を確保した。
 市販品のMgF2原料の純度レベルには2N(99.0%)、3N(99.9%)、4N(99.99%)の3種類があり、予め小規模な試験でこれら3種類の純度の原料を使用し、焼結性の状態を評価した。
 (2)原料を微粉化することによる焼結条件の緩和
 原料粒子の微粉化により、焼結過程における粒子間の反応界面を増加させて脱泡の進行を促進し、焼結部位毎の焼結反応の進行を均一化した。
 (3)焼結工程の分割による焼結反応の均一化
 焼結工程を仮焼結と本焼結(本焼結をさらに分割すると効果が増す傾向にある)とに分割することで、仮焼結工程では焼結反応を主として固相間反応による粒成長(以後、固相焼結と記す)によるものとし、本焼結工程では固溶体生成温度域で主として固溶体生成反応による焼結体形成(以後、固溶体焼結と記す)、あるいは溶融体生成反応による焼結体形成(以後、溶融焼結と記す)によるものとした。このことにより、上記(2)の原料の微粉化による効果と相俟って、焼結部位毎の焼結反応の進行を均一化し、焼結体を強固な粒子間結合力を有するものとすることができた。
 減速材には減速性能に加え、減速系装置への設置などのハンドリング時における損傷発生耐性、中性子線照射衝撃による粉塵発生耐性も必要である。すなわち、特性として機械的強度に優れたものであることも要求される。焼結体の機械的強度は、粒子間結合部のミクロ強度、気泡の大きさ、形状、分布、数など脱泡状態、換言すれば、結合部および元の粒子の結合体(母体)の太さ、長さなどの形状(焼結体の緻密さ)、さらにはその母体の結晶構造(単結晶、多結晶など)に起因する脆性度によって決定される。
 (4)焼結過程での発泡抑制と大型残留気泡の低減による高密度焼結体の形成原料であるMgF2は、焼結過程で気化(昇華)現象を生じ易く、フッ素ガスを発生し、焼結体の内部に多数の微細な気泡を生じ易い。この気化による発泡は、本来の焼結過程の進行による空隙の減少と相反しており、発泡を極力抑制することした。
 フッ化物系原料は高温加熱されると、原料の一部が気化する。気化し始める温度は組成により異なり、MgF2が主体の組成の場合は約800℃から気化し始め、約850℃からはかなり活発に気化する。気化するとフッ素ガスを発生するため、焼結体中に微細な気泡が生成される。発生した気泡の形状はほぼ球形で、電子顕微鏡(SEM)で焼結体の破断面を観察すると、気泡の断面は真円に近い円形に見える。その気泡のサイズを、破断面に見える径で表示すると、小さなもので数μm、大きなもので20~40μm程度である。小さい数μmのものの形状はほぼ円形に近く、大きなものの形状は円形のものは希で、大半は細長いものとか、角ばったものとか、不定形なものとなっている。これら形状から、小さなものは発生したばかりの気泡、大きなものは発生した気泡の幾つかが集合したものと考えられる。
 このため、低温の加熱で焼結させることにより、小さな気泡の発生(発泡)を可能な限り避け、また加熱の経過によって小さな気泡が集合することも可能な限り避けて緻密な焼結体とすることとした。上記(1)~(3)の思想を併用し、中性子線減速系装置の部材として減速性能以外の要求特性である機械的強度に優れた特性を有する中性子線減速材用フッ化物焼結体を製造することとした。
 上記目的を達成するために、本発明に係る中性子線減速材用フッ化物焼結体(1)は、緻密な多結晶構造のMgF2からなり、嵩密度が2.90g/cm以上であることを特徴としている。
 上記中性子線減速材用フッ化物焼結体(1)によれば、嵩密度が2.9g/cm以上の緻密な多結晶構造のMgF2焼結体であるため、焼結体の組織構造が均一で、内外部位での差が小さくなっており、かつ固溶体生成量を抑制して結晶成長を抑え、脆性部分の発生を減少させ、焼結体の強度を高めることができる。従って、焼結体製造時の加工工程において、また工程間のハンドリング時において割れ、欠けが容易に発生することがない。また、BNCT装置への設置時において、あるいは同装置の操業時において中性子線照射衝撃が加わっても、割れ、欠けなどの損傷が発生しない機械的強度のものを得ることができる。従って、良好な減速性能を有し、且つハンドリングが容易な機械的強度を有する中性子線減速材用フッ化物焼結体を提供することができる。
 また、本発明に係る中性子線減速材用フッ化物焼結体(2)は、上記中性子線減速材用フッ化物焼結体(1)において、曲げ強度が10MPa以上、ビッカース硬度が71以上の機械的強度を有するものであることを特徴としている。
 上記中性子線減速材用フッ化物焼結体(2)によれば、当該焼結体は極めて優れた機械的強度を有しており、減速材とする際の機械加工時においてひび割れなどを起こすことがなく、また、減速材としての使用中に照射される中性子線照射衝撃に対しても十分な耐衝撃性を有するものとすることができる。
 上記目的を達成するために、本発明に係る中性子線減速材用フッ化物焼結体の製造方法(1)は、高純度MgF2原料をメディアン径で1~2μm程度まで粉砕し、焼結助剤を0.1~1wt.%添加して配合する工程、該配合原料を出発原料として一軸プレス成形機を用いて成形圧5MPa以上で成形する工程、該一軸成形品を冷間等方加圧成形(CIP)機を用いて成形圧5MPa以上で成形する工程、該CIP成形品を大気雰囲気中で550~600℃に加熱して仮焼結を行わせる工程、不活性ガス雰囲気中で、発泡開始温度直下の温度範囲で4~16時間加熱して焼結をより均一に進行させ、その後、固溶体を生成し始める温度域近傍で0.5~3時間加熱し、緻密な構造のMgF2焼結体を形成する本焼結工程を含むことを特徴としている。
 ここでCIPとは、上水と直接触れないようにビニール製袋などでシールした袋内に一軸成形品を入れ、脱気したものを圧力容器内に置き、その容器内に上水をはり、所定の水圧を掛ける加圧成形方法をいう。
 ここで、発泡開始温度とは、フッ素化合物の一部が分解し始め、フッ素ガスを発生して微細な気泡を生成し始める温度のことをいう。MgF2原料を用い、大気雰囲気中で550℃で6時間加熱処理して形成した仮焼結体を粉砕し、この粉砕物を示差熱分析計の供試試料とし、加温しつつ試料の重量変化と吸発熱量の変化を調査した。およそ800℃くらいから極わずかに重量減少が認められたが、これは結合性の弱い、例えば仮焼結体の母材に付着したフッ素とか母材中に溶解したフッ素がまず先に解離、分解したことによるものと思われた。さらに加温していくと、850℃あたりで重量減少曲線の変曲点が現れ、その重量減少は活発なものとなった。これ以上の温度域では、MgF2中の結合したフッ素の一部が分解し始め、フッ素ガスを発生して微細な気泡を生成する原因になる、と想定された。このため、この変曲点の温度、すなわち約850℃を発泡開始温度と称することにした。
 ここで、発泡開始温度直下の温度範囲とは、具体的には750~840℃の温度範囲のことをいう。
 ここで、固溶体を生成し始める温度域とは、図1に示すMgF2-CaF2二元系状態図における固溶体を生じ始める温度である980℃前後の温度域のことをいう。
 上記本発明に係る中性子線減速材用フッ化物焼結体の製造方法(1)を用いて製造された焼結体は、強固な粒子間の結合力を有し、結合部の機械的強度(ミクロ強度)は高いものとなる。課題であった曲げ強度、耐衝撃性は著しく向上し、中性子線用減速材として実用上全く問題なく使用出来るものが得られた。また、製造される焼結体は、MgF2の純度、加熱雰囲気、加熱温度パターンなどの選定により、より緻密度の高いものとなる。また、焼結体であるため、その結晶構造は多結晶となり、単結晶と比較して脆性度は著しく向上する。
 従って、上記本発明に係る中性子線減速材用フッ化物焼結体の製造方法(1)を用いて製造された焼結体は、BNCTの減速系装置中の減速材用として切断、研削、研磨等の加工成形、更には、その減速系装置への設置などのハンドリングに際しても十分な機械的強度を有しており、問題無く施工することができるものであった。また、中性子線が照射されても、その照射衝撃に対して問題無く使用できるものであり、中性子線の減速性能に関しても、極めて優れたものであった。
 また、本発明に係る中性子線減速材用フッ化物焼結体の製造方法(2)は、上記中性子線減速材用フッ化物焼結体の製造方法(1)において、前記本焼結工程における不活性ガス雰囲気が、窒素、ヘリウム、アルゴン、及びネオンの中から選択される1種類のガス、または複数種類のガスを混合させたものからなることを特徴としている。
 このように、不活性ガスとしては、窒素(N)、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)が使用され得る。
MgF2-CaF2二元系の状態図である。 仮焼結工程の加熱条件と仮焼結体の収縮率との関係を示す図である。 窒素ガス雰囲気中での焼結工程の加熱条件と焼結体の生成状態との関係を示す図である。 減速材としてのMgF2焼結体とCaF2焼結体とを重ね合わせ構造にした場合の減速後の中性子線種の変化(減速後に、混入する高速中性子線量と治療に適する熱外中性子線量の変化)を示す図である。 MgF2焼結体の相対密度と減速後の中性子線種の変化を示す表である。 実施例、比較例の測定データを示す表である。
 以下、本発明に係る中性子線減速材用フッ化物焼結体及びその製造方法の実施の形態を図面に基づいて説明する。
 実施の形態に係る中性子線減速材用に好適なフッ化物焼結体の製造には、高純度(純度99.9wt.%以上)のMgF2粉末を用い、焼結助剤として例えばカルボキシメチルセルロース(CMC)溶液を前記粉末100に対し、0.03~0.5wt.%添加(外掛け)し、混練したものを出発原料とした。
 所定の寸法の型枠内に前記原料を充填した後、一軸プレス機を使用して成形圧5MPa以上で圧縮し、その成形品をさらに冷間等方加圧成形(CIP)機を用いて成形圧5MPa以上で成形した。
 このCIP成形品を大気雰囲気中で550~600℃の温度範囲で加熱して仮焼結を行い、その仮焼結品を大気中または不活性ガス雰囲気中で発泡開始温度(示差熱分析計での測定で定めた前記温度、約850℃)の直下の温度範囲(750~840℃)で4~16時間加熱する。この加熱により、焼結をより均一に進行させた後、固溶体が生成し始める温度域近傍、すなわち、900~1100℃の温度範囲で0.5~3時間加熱し、その後冷却して緻密な構造のMgF2焼結体を製造する。
 上記したように、図1に示すMgF2-CaF2二元系状態図においては、固溶体を生じ始める温度は980℃前後の温度域であるが、本発明者らは、実際に焼結させた焼結体の断面の観察などから、MgF2単味の場合はこの状態図の表示温度980℃よりも数10度低めの温度から固溶体が生じてくる可能性が高いと推測した。従って、固溶体が生成し始める温度域近傍は900℃以上とし、980℃未満で加熱した場合でも、固溶体は生成しているものと考えた。
 原料であるMgF2の粉砕は、ポットミル中にボールミル用のボールを充填し、そこに原料を3kg充填して一週間混練、粉砕した。ポットミルはアルミナ製で内径200mm、長さ250mmのものを使用し、充填したボールはアルミナ製で、φ5:1800g、φ10:1700g、φ20:3000g、φ30:2800gとした。粉砕後の原料の粒度を堀場製作所製のレーザ回析・散乱式粒度分布測定装置LA-920型で計測した。メディアン径はおおよそ1.2~1.3μmになっていた。
 焼結助剤は、前記CMCとステアリン酸カルシウムとの2種類を選定し、それぞれの添加割合を変えて実施し、各々の焼結助剤の効果を調べる試験を実施した。対比のため、焼結助剤を使わない試験も併せて行った。
 焼結助剤の混合は、焼結助剤二種類をおのおの0~2wt.%の配合比で添加し、前記原料の粉砕と同様に、ポットミル中にボールミル用のボールを充填して一昼夜混練することにより行った。
 この混合原料を、一軸プレス機の型枠(型寸法220mm×220mm×H150mm)内に充填した後、20MPaのプレス圧を掛けて圧縮成形し、続いて、このプレス成形体をビニール袋に入れて封入し、CIP機成形部(内寸法:内径350mm×高さ120mm)に装填し、該成形部内の空間を上水で満たした後、室温で水圧による等方加圧力を種々変化させて冷間等方加圧成形(CIP)を行った。
 このCIP成形体を大気雰囲気中で温度500~700℃、時間3~18時間の範囲内で加熱条件を種々変化させて仮焼結を行った。この仮焼結体の外観を観察した後、窒素ガス雰囲気中で、室温から550℃まで6時間掛けて一定速度で昇温させ、同温度に8時間保持した。その後950℃まで2時間掛けて一定速度で昇温させ、同温度に1時間保持し、その後20時間を掛けて100℃まで冷却した。取り出した焼結体の外観、及び内部の緻密化状態を観察し、適正な配合、処理条件と仮焼結条件を調査した。
 その結果、焼結助剤2種類の効果に大差は無かったが、焼結助剤無しでは一軸プレス成形品の形状維持性能が劣り、次工程であるCIP成形工程へのハンドリング時に型くずれが多発した。焼結助剤の配合比が0.03wt.%以上で前記型くずれが認められなくなり、また、配合比が0.6wt.%を超えると仮焼結体あるいは焼結体に焼結助剤の残留物とみられる着色が認められることがあった。これらのことから、焼結助剤の配合比の適正範囲を0.03~0.5wt.%とした。
 CIP機の成形圧が5MPa未満では仮焼結、本焼結の加熱条件の適正化試験における焼結体の嵩密度が、いずれの試験においても、成形圧が5MPa以上の場合と比べて2%以上低くなっていた。例えば、成形圧10MPaの場合に、同じ焼結条件で焼結させた焼結体の嵩密度が2.95g/cmであったのに対し、成形圧4.8MPaの場合の焼結体の嵩密度は2.86g/cmとなり、3%低くなっていた。成形圧を5MPaから20MPaまで徐々に増加させると、焼結後の焼結体の嵩密度は少しずつ増加する傾向が認められた。成形圧をさらに徐々に増加させて50MPaまで試験を行った。成形圧20MPa以上の場合の仮焼結体、焼結体の嵩密度の増加は、わずかな増加にとどまり、5~20MPa間のような直線的な向上は認められなかった。これらのことから、成形圧の適正値は5MPa以上、望ましくは20MPa以上とした。
 成形体の大気雰囲気中での仮焼結条件は、図2に示したように、加熱温度が550℃未満では成形体の寸法と比較して収縮はわずかであり、610℃以上ではその収縮が大きく、収縮の制御が困難になった。このことから、仮焼結温度の適正範囲を550~600℃とした。
 また加熱時間の適正値は、図2に示したように、550℃では収縮速度の評価から8~9時間が最適であり、4~10時間が適正と判断できた。600℃では6~8時間が最適であり、4~10時間が適正と判断できた。これらの結果から、仮焼結の加熱条件は、大気雰囲気中で550~600℃、4~10時間の加熱とした。
 次に、中性子線減速材用に好適なMgF2焼結体を製造するうえで重要な本焼結工程およびその焼結機構について記載しておく。
 焼結工程の進行度を表現する用語である“一次凝集過程”、“二次凝集過程”の定義について記述する。“一次凝集過程”とは、焼結の前半段階であり、その初期段階では粒子と粒子との間隔が徐々に狭まり、粒子同士の間の空隙も狭まってくる。さらには、粒子同士の接触部分が太くなり、その間の空隙は小さくなる。ただし、その空隙の大多数は開気孔で周りの雰囲気と通じている。この様な段階までを“一次凝集過程”と称する。
 一次凝集過程を終え、さらに焼結が進むと、開気孔が徐々に減り、閉気孔化して行く。大まかには、この閉気孔化の段階と、さらにその後の脱泡、緻密化の段階を含めて“二次凝集過程”と称する。
 本発明では、原料の微粉砕、粒度調整、焼結助剤の混練、一軸プレス成形、CIP成形、仮焼結などで、仮焼結体の粒子間の空隙は小さく、且つ、その空隙は集合せずにほぼ均一に分散しているとみとめられた(一次凝集過程の前半段階)。
 次の本焼結工程の昇温過程で徐々に加熱温度を上昇させ、仮焼結温度域(550~600℃)あたりから粒子同士の集合がはじまり、それに引き続き、固溶体が生成し始める980℃よりもかなり低い温度域から固相間反応が始まり、それに伴い粒子同士の凝集が進行し、粒子間距離は短くなり、空隙が小さくなる。ただし、仮焼結程度の比較的低い温度(550℃付近の温度)で短時間の加熱では、大半の空隙は依然として開気孔状態のままである(一次凝集過程の後半段階)。
 固相間反応は、一般的には、その温度から10%程度またはそれ以上低い温度域から始まると言われている。本発明者らの予備試験での焼結体断面の観察などから、固相間反応は一般的にいわれている温度よりもさらに低い温度域から始まり、おおよそ500℃程度から始まっていると考えられた。その根拠は、適正な仮焼結温度の下限である550℃ではすでにかなり焼結が進行し、仮焼結体は成形体に比べてかなり収縮するからである。この予備試験では、おおよそ10~20vol.%程度嵩体積が収縮していた。この温度域ではゆっくりとした反応速度で進み、およそ700℃近傍またはそれ以上の980℃以下の温度域ではかなりの反応速度を有すると考えられた。
 また、ここで注意すべき点は、約850℃以上の温度域における、原料の一部が気化して発生する微細な気泡(発泡気体)の挙動である。約850℃以上の加熱をする場合には、この気泡の発生が顕著になるため、可能な限り短時間の加熱にすべきと考えられた。
 つぎに、原料粒子のミクロな挙動について説明する。固溶体を生じ始める980℃を超えたあたりからは、MgF2の微粒子が存在する粒子界面付近から溶融し始め、MgF2の固溶体が生成し始める。図1に基づいて説明したとおり、本発明者らは予備試験での焼結体の断面観察などから、MgF2単味系の場合、実態としてはこの温度よりも数十度程度低い温度域から固溶体は生成し始めていると推定した。この固溶体が粒子間の空隙を埋めていき、一部では毛細管現象により微細な空隙も埋められると推定された。
 他方、加熱温度が980℃未満であっても、前述のように約700℃以上で長時間加熱すると、固相間反応が進み、時間の経過とともに空隙は徐々に減少して閉気孔化し、それと並行して閉気孔内のガス成分が焼結体のバルク(母体)内に拡散して脱泡が進み、気泡の少ない緻密な焼結体となる(二次凝集過程)。ただし、700℃程度の比較的低い温度域での加熱で緻密化させるには、かなり長時間の加熱を要することとなり、生産性が低くなり、経済的ではない。
 ここでも、約850℃以上の加熱では、原料の気化によって発生する微細な気泡(発泡気体)の存在に注意が必要である。気泡中にはフッ素ガスが内包されていると推定される。フッ素は原子番号が9、原子量が18.998と空気よりも重く、軽元素の中では比較的重い元素である。焼結体のバルク(母体と同意語)内での拡散速度は遅く(拡散し難く)、一旦形成された気泡は簡単には消滅しないと考えられる。発泡抑制策としては、発泡する温度域での加熱を可能な限り避けること、またその温度域での加熱を短時間にとどめることなどが挙げられる。
 この発泡気体と焼結工程で閉気孔化し脱泡出来ずに残った気泡(以下、残留気泡と称す)との外観上の差異を記す。通常の比較的短時間の加熱で発生した発泡気体のサイズはおおよそ直径数μm、形状はほぼ真球状である。他方、残留気泡のサイズは大中小まちまちであり、形状は真球状ではなく不定形であり、形状の差異から両者を見分けることが可能である。ただし、980℃をはるかに超える高温での加熱とか、980℃を超えた温度域での長時間加熱の場合には、発泡気体同士、あるいは残留気泡と発泡気体とが集合して大きな不定形の気泡に成長してしまい、発生由来の判別は困難となる。
 二次凝集過程の進行に伴い、粒子間の空隙は小さくなり、空隙の全部または大半は粒子または焼結体のブリッジ部分などに囲まれ、閉気孔(気泡)となる。条件によっては空隙(開気孔)を通じて脱ガスし、あるいは粒子とか焼結体のブリッジ部分などのバルク内に気泡内のガス成分が浸透して脱ガスし、気泡が消滅する(脱泡現象)。この粒子間の空隙が閉気孔(気泡)として残るか、あるいは脱ガスして気泡として残らずに消滅してしまうかは、焼結体の緻密化の達成度、ひいては焼結体の特性を決めるうえで大きな要素となる。とくに不活性ガス(He、Neなどの軽元素ガス)雰囲気中での焼結では、軽元素ほど細孔内とか焼結体のバルク内を拡散し易く、毛細管現象と脱泡現象とが促進され、気泡が残り難く、緻密化が容易になると考えられた。この様に全体を緻密化させるためには、一次凝集過程と二次凝集過程とを連続的にバランスよく進めることが重要である。
 本発明では、主として一次凝集過程の前半段階に当たる仮焼結工程と、主として一次凝集過程の後半と二次凝集過程に当たる本焼結工程とを分けて行うこととし、二つの凝集過程が焼結体全体として均一に進みやすくしている。しかしながら、このように仮焼結と、本焼結とに焼結工程を2つに分けたからと言って加熱条件が適正でなければ意味をなさない。例えば、仮焼結工程で適正域を超えた高温で加熱したり、本焼結工程の昇温段階で急速に加熱をしたり、本焼結工程の保持温度が適正域を超えた高温であったりすると、焼結体の外周部と内部とで緻密化の程度に著しく差を生じてしまう。このような状態になると、焼結体内部の緻密化過程で脱ガスが困難となり、内部の緻密化が不十分となる。そこで、サイズに応じた焼結工程の加熱温度パターンの適正化が重要となる。
 前述のとおり、本焼結工程直前までの適正条件が明らかになっており、この本焼結工程に供される仮焼結体はその全体が既に一次凝集の前半段階まで進んだ状態になっている。ここで重要なことは、仮焼結体の全体が既に均一に一次凝集の途中まで進んでいることである。
 中性子線減速材用に好適なフッ化物焼結体の製造方法を探るため、種々の本焼結工程を実施してみた。
 粉砕した原料であるMgF2に、焼結助剤としてCMCを0.2wt.%添加した配合原料に、一軸プレス成形とCIP成形を施し、550℃で6時間の仮焼結を実施した仮焼結体を用いた。いずれも加熱時間を一定の6時間にして焼結温度を600℃から1200℃までの間で、50℃毎にそれぞれ変更させた場合の焼結体の嵩密度を測定した。おおよそ900℃から1100℃の範囲の場合は、2.90g/cmを超える高密度となったが、850℃以下の焼結温度の場合、逆に1150℃以上の焼結温度の場合はいずれも嵩密度が2.90g/cmを下回った。それらの焼結体の断面を観察すると800℃以下のものの場合、焼結部分のブリッジ幅が細く、如何にも焼結進行不足と判断でき、850℃ではわずかではあるが開気孔が認められた。1100℃では内部に幾つかの不定形の気泡が見られ、さらに1150℃以上では内部に不定形の気泡が無数に発生したようなポーラスな軽石状の組織となっていた。また、焼結体全体に直径数~10数μmのほぼ真球状の微細な気泡と径10μm以上の不定形の気泡が観察した断面の全面に無数に認められた。この真球状の気泡はその形状から発泡気体、また、この不定形の気泡は同じくその形状から集合気泡であると判断できた。
 一方、本発明者らの調査では、これらを粉砕したMgF2原料を示差熱分析計にかけて昇温させていく過程で、温度800℃くらいから重量が明確に減少し始め、850℃くらいから急激に重量が減少することが分かった。これは、800℃くらいからMgF2が分解・気化し始めてフッ素ガスが発生するいわゆる昇華現象が始まっており、850℃くらいからこの現象が活発化すること(いわゆる発泡現象を呈する)を意味している。
 この昇華により、上記したように、焼結体全体に微細な気泡が発生することとなる。発生した微細な気泡(発泡気体)は、焼結工程の進行度、焼結体のどの部位での発生なのかなどにより、脱泡するか、気泡として残るかなどの挙動が決定される。
 例えば一次凝集過程では、焼結体全体がまだ主として開気孔で構成されているため、大半の気泡が開気孔を通じて脱泡され、気泡として残るものは少ない。二次凝集過程では、焼結体が主として閉気孔で構成されているため、多くの発泡気体が脱泡出来ず、気泡として残ってしまう。また、基本的には二次凝集過程での焼結を速やかに完了させることが残留気泡を少なくできる方向であるといえる。
 これらのことから、一次凝集過程から二次凝集過程への移行は焼結体全体で可能な限り時間差少なく推移させることが望ましい。しかしながら、一次凝集過程から二次凝集過程への移行を焼結体全体で時間差なく行なわせることは容易ではない。
 そこで本発明者らは、発泡開始温度(約850℃)直下の温度域での低めの加熱を比較的長い時間行い、一次凝集過程と二次凝集過程前半を完了させ、その後、固溶体が生成し始める温度(980℃)域近傍で比較的短時間加熱にして二次凝集過程後半を完了させることとした。これが焼結体全体における焼結進行度を合わせることができ、発泡気体の生成も少ない優れた焼結方法であることを見出した。
 次に、焼結条件の適正範囲について記すことにする。仮焼結には、大気中で600℃に6時間保持した。その仮焼結体のサイズは、おおよそ212mm×212mm×t72mmの正方体形状である。
 次に、加熱雰囲気を窒素ガス雰囲気とし、加熱パターンのうち、まず昇温、降温条件はおのおの所要時間を3、6、9時間の3ケースで予備試験を行った。その結果、3時間では焼結体に小さな亀裂が発生し、その他は良好であったので6時間に設定した。
 引き続き、加熱雰囲気を窒素ガス雰囲気とし、まず加熱温度を700~1250℃の範囲で変化させ、保持時間を2、3、4、5、6、8、10、12、14、16、18時間の11ケースで実施した。結果は図3に示したように、750℃以下の場合、保持時間に依らず、緻密化が不十分であった。また、保持時間4時間以下では、1100℃以外の場合では緻密化が不十分であった。一方、1150℃を超える加熱温度では、保持時間に依らず焼結速度が速過ぎるためか気泡が多く発生し、保持時間16時間以上では焼結体外周の一部が発泡して外観形状が崩れることが生じた。
 図3の結果を詳細に見てみると、850℃の加熱の場合、保持時間8時間以上で焼結状態は良好であり、6時間以下ではやや焼結不足気味であった。
 900℃の場合、5時間以上で良好であり、4時間以下ではやや焼結不足であり、16時間以上では良否判定不能であった。
 950℃の場合、5~14時間が良好で、4時間以下ではやや焼結不足となり、15時間以上では良否判定不能であった。
 1000℃の場合、5~12時間が良好で、4時間以下ではやや焼結不足となり、14時間以上では発泡が多いものとなった。
 1100℃の場合、3~8時間が良好で、10時間以上では発泡が多いものとなった。
 1150℃の場合、いずれの保持時間でも発泡が多く見られた。
 1200℃の場合、3時間以下では焼結不足となり、4時間以上では、良否判定不能か、溶け過ぎなどの不良なものであった。
 800~850℃の比較的低目の加熱温度の場合、保持時間4~8時間ではやや焼結不足気味であったが、本発明では本焼結工程を二段に分け、次の後本焼結工程が有るため、前本焼結工程における評価では良好と位置付けることにした。
 つぎに、加熱温度と焼結体の嵩密度、歩留りに相当する焼結体の質量減TGとの関係を調べるために、上記と同じ仮焼結体を使用して保持時間は6時間一定とし、加熱温度を600~1300℃の範囲で変化させた。
 結果は、加熱温度が900℃で嵩密度はおおよそ2.90g/ cmとなり、これ以上の嵩密度の焼結体は、図3に示した結果と同様に、後工程での取扱いで崩れる様なトラブルは無く、緻密化は十分と判断できた。
 一方、加熱温度が1150℃以上では質量減TGは-0.8%以上となり、歩留低下が著しい状態となり、またこの温度以上になると、焼結体外周の一部が発泡して外観形状が崩れたりするトラブルが発生した。
 図3に示した結果から、焼結工程をひとつの加熱工程とした場合の加熱温度は850~1100℃、保持時間は3~14時間(この範囲内で高温度では短時間の加熱、また、低温度では比較的長い時間の加熱)が適正条件であると判断できた。
 この中で顕著になったことは、例えば900℃で16時間以上、1000℃で14時間以上、1100℃で10時間以上の比較的長時間の加熱を実施した場合、発泡量が多く、その一部は集合して大きな気泡に成長しつつあることである。この様な焼結体は、次工程の機械加工工程において、大きな気泡部分から亀裂が発生したり、割れの原因になるなどの欠陥を内包することが確認された。
 この様な状況から、本願発明者らは、本焼結工程の基本的な方針として、発泡を極力抑制し、尚且つ焼結反応は十分に進行させることとし、その後の機械加工工程で良好な加工性を有する焼結体を製造することとした。
 本焼結工程の最初の段階では発泡を極力生じさせず、ゆっくりと焼結を進行させ、焼結体内部とその外周部との焼結の進行度合いに極力差を生じさせないことを基本方針とした。加熱温度、同保持時間域としては上記のとおり800~1100℃の範囲内とした。発泡が顕著になる温度が約850℃のため、それを下回る840℃以下、すなわち本焼結工程の最初の段階の加熱温度は750~840℃、保持時間は5~12時間とした。
 次の焼結体の焼結反応を高める段階の加熱は、上記の適正条件の内で、固溶体が生成し始める温度である980℃前後の温度域、すなわち900~1100℃とした。保持時間については、焼結反応を高めて、且つ発泡を抑えるため極力短時間にすることとし、図3の結果と後述する実施例、比較例の事例などを判断材料にして、0.5時間未満では焼結反応の高まりに乏しく、4時間以上では発泡が多くなり過ぎることから0.5~3時間の保持とした。
 雰囲気ガスをヘリウムに変えた場合も、その結果は窒素ガスの場合と変わらず、800℃未満では保持時間に依らず、また、保持時間4時間以下では緻密化が不十分であり、1110℃以上の場合、窒素ガスの場合と同様に保持時間に依らず焼結速度が速過ぎて気泡が多く発生し、保持時間4時間以上では発泡して外観形状が崩れることがあった。
 つぎに、加熱温度と、焼結体の嵩密度と、歩留りに相当する焼結体の質量減TGとの関係を調べるために、上記と同じ仮焼結体を使用して保持時間は6時間一定とし、加熱温度を600~1300℃の範囲で変化させた。結果は窒素ガスの場合と同じように、加熱温度900℃で嵩密度はおおよそ2.90g/ cmとなり、これ以上の嵩密度の焼結体は、窒素ガスの場合と同様に、後工程での取扱いで崩れる様なこともなく、緻密化は十分と判断した。一方、加熱温度が1110℃以上では質量減TGが-0.8%以上となり、歩留低下が著しい状態となり、また、焼結体外周の一部が発泡して外観形状が崩れたりするトラブルが発生した。
 よって、加熱温度は900~1100℃、保持時間0.5~2.5時間が適正条件であると判断した。さらに、加熱温度が950~1050℃、保持時間0.5~3時間の場合、機械加工に供す場合に割れ等の欠陥が生じ難く、機械加工性も良好であったことから望ましい加熱温度、保持時間は950~1050℃、0.5~3時間であると判断した。よって、ヘリウムガス雰囲気中での本焼結工程の適正な加熱条件は、上記窒素ガス雰囲気の場合と同様に、本焼結工程の最初の加熱は750~840℃、5~12時間の保持時間、後工程の加熱は900~1100℃、0.5~3時間の保持時間を適正条件とした。
 不活性ガスとしては窒素、ヘリウムに限らず、アルゴンでもネオンでも同様の効果が得られる。ネオンに関しては、ヘリウムと同様にこの焼結体の母材への溶解度とか拡散性が高いと見込まれるため、脱泡現象をより促進し、ヘリウムと同等ないしはさらなる改善が期待される。
 本焼結工程の加熱条件が適正範囲である場合、焼結体の出来上がり状態は常に全体が緻密となり、一般的なセラミックス焼結体で見られる局部的に大きい空隙とか亀裂などの明らかな欠陥部位は、これらの焼結体には見られなかった。
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 最初に、実施例の中で焼結体について行う代表的な特性評価試験方法を説明しておく。
中性子線の減速性能を評価するには、まず、加速器から出射されたビームをターゲットであるBeに衝突させ、核反応により主として高エネルギーの中性子線(高速中性子線)を発生させる。次に、これを前半の減速材としての非弾性散乱断面積の大きいPbとFeとを用い、中性子数の減衰を抑えながらある程度(おおよそ、~1MeV)まで減速する。次に、これを評価したい減速材(後半の減速材)に照射し、減速させたあとの中性子線を調べることにより評価する。中性子線の内容(以下、「中性子束」と称す)の測定は、本発明者らが考案した方法(前記の非特許文献3)に準じて行った。評価する後半の減速材のトータル厚さは320mmの一定とし、減速材の種類はMgF2、CaF2の2種類とした。
さらに、MgF2とCaF2とを2層に重ね合わせたケース(トータル厚さは320mmの一定)の評価も行った。
 ここで評価する内容は、減速材によって減速された中性子線のなかに患者に悪影響を与える可能性が高い高速中性子線がどの程度の数量残留しているかである。その結果を図4に示す。ここでのMgF2及びCaF2は、その相対密度(100×(実密度)/(真密度)、単位%)はいずれも95±2%の緻密な焼結体を用いた。
 図4からは、減速材としてMgF2の層厚が増すにつれて(横軸の右方向に向かうにつれて)、患者に悪影響を与える可能性がある高速中性子線の数量が減少し、CaF2のみの場合に比べてMgF2のみの場合、約1/3~1/4に低減できており、MgF2の方が減速材としては優れたものであることが理解できる。
 次に、上記の評価装置を用い、同じ方法で、MgF2の相対密度(すなわち、緻密度)が減速性能に及ぼす影響について調査した。減速材としてはMgF2焼結体のみとし、相対密度が90~97%のものを用いた。
 その結果を表1に示した。相対密度が高いものほど高速中性子線の混入量が減少しており、減速材として優れた性能が得られている。また、相対密度が92%未満のものは減速性能に大きなバラツキがあり、高速中性子線の混入量が急に増加したり、熱外中性子線量が急激に増加したりする不安定なケースが認められた。これは、緻密度が不十分で減速性能が不十分となったり、また開気孔が生じて焼結体の成形加工時に焼結体内に不純物が混入して減速性能にイレギュラーな影響を及ぼしたためと考えられる。安定した減速性能を発揮させるためには、相対密度は92%以上、すなわち嵩密度は2.90g/cm以上が必要であることが判明した。
 機械的強度の評価指数としては、曲げ強度、ビッカース硬度を採用した。曲げ強度の準備試料は、JIS C2141に準拠して試料寸法4mm×46mm×t3mmで上下面光学研磨とし、3点曲げ試験JIS R1601に準拠して試験を行った。ビッカース硬度は、島津製作所製の商品名“Micro Hardness Tester”を使用し、荷重100g、荷重時間5秒で圧子を押しつけ、圧痕の対角長を測定し、下記の硬度換算を行った。
      硬度 = 0.18909 × P/(d)2
             ここで、P:荷重(N)、 d:圧痕対角線長さ(mm)
[実施例1]
高純度のMgF2原料(平均粒径20μm、純度99.9wt.%以上)を、上記の「発明を実施するための形態」中で説明したポットミルとアルミナ製ボールを用いて粉砕し、高純度のMgF2粉末(平均粒径1.2μm、純度99.9wt.%以上)とした。この粉末に焼結助剤としてカルボキシメチルセルロース(CMC)溶液を前記MgF2粉末100に対し、0.2wt.%の割合で添加し、ポットミルで12時間混合したものを出発原料とした。
 この出発原料を一軸プレス機を用いて型枠(型寸法220mm×220mm×H150mm)内に充填し、一軸のプレス圧を10MPa掛けて圧縮、成形した。
 このプレス成形体(寸法約220mm×220mm×t85mm)を厚手のビニール袋内に入れ、脱気、封入したものを冷間等方加圧成形(CIP)機の成形部(内寸法:内径350mm×H120mm)に装填した。このプレス成形体が入った前記ビニール袋と前記CIP機成形部との隙間に上水を満たしてから成形圧20MPaの等方加圧を行い、CIP成形による成形体(寸法約215mm×215mm×t75mm)とした。
 この成形体に大気雰囲気中で600℃、5時間の仮焼結を実施し、寸法約208mm×208mm×t72mmの仮焼結体とした。
 この仮焼結体を窒素ガス雰囲気中で室温から830℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持した。この後、1000℃まで2時間掛けて一定速度で昇温させ、同温度に1時間保持した。この後、加熱を停止し、取り出し温度に設定した100℃まで約20時間かけて自然冷却(炉冷)し、その後、取り出した。
 焼結体の嵩密度は、概略寸法(193mm×193mm×t62mm)と重さから、3.05g/ cm(相対密度96.8%)と算出された。焼結状態は良好であった。ここで言う“嵩密度”は、焼結体の外観が、平面視、正方形形状であるため、計測したその正方形の2辺と厚さから嵩体積を計算で求め、別に計測した重さを前記嵩体積で除して求める方法を採用した。以下、同様に行った。
 この焼結体から採取した試料を用い、前記非特許文献3に示す方法で、中性子線の減速性能および各種の特性評価試験を行った。その結果を表1に示す。以下、実施例、比較例ともに同様とした。
 中性子線の減速性能は、比較材であるCaF2と比べて熱外中性子線量の減少はわずかに少ない程度であったが、患者に悪影響を与える可能性が高い高速中性子線量は約1/4に低減され、優れた減速性能を有するものであることが分かった。
 また、同じく表2に示したように、その他の機械的強度は問題のない良好なものであった。
[実施例2]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で550℃、10時間の仮焼結を実施し、208mm×208mm×t73mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から750℃まで6時間掛けて一定速度で昇温させ、同温度に9時間保持した。この後、920℃まで2時間掛けて一定速度で昇温させ、同温度に2時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、195mm×195mm×t64mm、嵩密度2.90g/ cm(相対密度92.1%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[実施例3]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、同じ冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で600℃、8時間の仮焼結を実施し、206.5mm×207mm×t71mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から840℃まで6時間掛けて一定速度で昇温させ、同温度に12時間保持した。その後、1080℃まで2時間掛けて一定速度で昇温させ、同温度に1時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、192mm×192mm×t61mm、嵩密度3.00g/ cm(相対密度95.2%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したように、いずれも良好なものであった。
[実施例4]
 上記実施例1の場合と同じ出発原料を用い、この原料を一軸プレス成形の型枠内に充填し、一軸プレス圧を70MPa掛けて圧縮、成形し、その後、冷間等方圧力成形(CIP)機を用いて成形圧を40MPaに設定して成形を行い、成形体(寸法約213mm×214mm×t74mm)を得た。
 この成形体に大気雰囲気中で600℃、10時間の仮焼結を実施し、204.5mm×205mm×t70mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から830℃まで6時間掛けて一定速度で昇温させ、同温度に12時間保持した。その後、1080℃まで2時間掛けて一定速度で昇温させ、同温度に1時間保持し、この後取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、190.5mm×191mm×t60mm、嵩密度3.07g/ cm(相対密度97.5%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[実施例5]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で580℃、10時間の仮焼結を実施し、206mm×206mm×t70.5mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から800℃まで6時間掛けて一定速度で昇温させ、同温度に12時間保持した。その後、920℃まで2時間掛けて一定速度で昇温させ、同温度に3時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、191.0mm×191.5mm×t62mm、嵩密度3.02g/ cm(相対密度95.9%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[実施例6]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で580℃、7時間の仮焼結を実施し、207mm×207mm×t71.5mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から830℃まで6時間掛けて一定速度で昇温させ、同温度に12時間保持した。その後、1000℃まで2時間掛けて一定速度で昇温させ、同温度に3時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、192.5mm×192.5mm×t63mm、嵩密度2.99g/ cm(相対密度94.9%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[実施例7]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で580℃、10時間の仮焼結を実施し、206mm×206mm×t70.5mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から840℃まで6時間掛けて一定速度で昇温させ、同温度に8時間保持した。その後、980℃まで2時間掛けて一定速度で昇温させ、同温度に3時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、193mm×193.5mm×t62.5mm、嵩密度2.96g/ cm(相対密度94.0%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[実施例8]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で560℃、8時間の仮焼結を実施し、207mm×206mm×t70.5mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から840℃まで6時間掛けて一定速度で昇温させ、同温度に5時間保持した。その後、920℃まで2時間掛けて一定速度で昇温させ、同温度に3時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、194.5mm×194.5mm×t64mm、嵩密度2.91g/ cm(相対密度92.4%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[実施例9]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で580℃、10時間の仮焼結を実施し、205mm×205mm×t70.5mmの仮焼結体を得た。この仮焼結体をヘリウムガス雰囲気中で室温から840℃まで6時間掛けて一定速度で昇温させ、同温度に8時間保持した。その後、980℃まで2時間掛けて一定速度で昇温させ、同温度に3時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、192.5mm×192.5mm×t62mm、嵩密度3.00g/ cm(相対密度95.2%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[実施例10]
 実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で560℃、6時間の仮焼結を実施し、207mm×207mm×t70.5mmの仮焼結体を得た。
 この仮焼結体を窒素ガス雰囲気中で室温から770℃まで6時間掛けて一定速度で昇温させ、同温度に10時間保持した。その後、900℃まで2時間掛けて一定速度で昇温させ、同温度に3時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、194.5mm×194.5mm×t64mm、嵩密度2.90g/ cm(相対密度92.1%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[実施例11]
 実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で550℃、8時間の仮焼結を実施し、207mm×207mm×t70mmの仮焼結体を得た。
 この仮焼結体を窒素ガス雰囲気中で室温から790℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持した。その後、940℃まで2時間掛けて一定速度で昇温させ、同温度に1.5時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、194.5mm×194.5mm×t64mm、嵩密度2.91g/ cm(相対密度92.4%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したようにいずれも良好なものであった。
[比較例1]
上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で550℃、10時間の仮焼結を実施し、208mm×208mm×t73mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から750℃まで6時間掛けて一定速度で昇温させ、同温度に9時間保持した。その後、920℃まで2時間掛けて一定速度で昇温させ、同温度に2時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、195mm×195mm×t64mm、嵩密度2.90g/ cm(相対密度92.1%)であり、焼結状態は良好であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したように、減速後の中性子線束において身体に悪影響を及ぼす恐れがある高速中性子線が多く残存しており、十分な減速効果が得られておらず、問題を残したものとなっていた。しかも、機械的強度が低く、このことも問題がある結果となっていた。
[比較例2]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で530℃、5時間の仮焼結を実施し、209mm×209mm×t76mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から740℃まで6時間掛けて一定速度で昇温させ、同温度に4時間保持した。その後、890℃まで2時間掛けて一定速度で昇温させ、同温度に2時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、198mm×198mm×t68mm、嵩密度2.80g/ cm(相対密度88.9%)であり、焼結状態は明らかにポーラスなものになっており、取扱いに問題を来す不都合なものであった。
 中性子線の減速性能および各種特性評価結果は、表2に示したように、減速後の中性子線束において身体に悪影響を及ぼす恐れがある高速中性子線が多く残存しており、十分な減速効果が得られておらず、問題を残したものとなっていた。しかも、機械的強度は測定出来ないほど低くなっており、このことも問題がある結果となっていた。
[比較例3]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で550℃、10時間の仮焼結を実施し、208mm×208mm×t73mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から750℃まで6時間掛けて一定速度で昇温させ、同温度に9時間保持した。その後、880℃まで2時間掛けて一定速度で昇温させ、同温度に1.5時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、197mm×196mm×t67mm、嵩密度2.88g/ cm(相対密度91.4%)であった。焼結状態は外観上は良好であったが、焼結体を研削機で仕上げる研削加工する段階において、焼結体内に研削液を吸収する現象が認められた。そのため、焼結体内のミクロ組織を詳細に調べた。その結果、開気孔が多数出来ており、焼結が不十分であることが判明した。
 中性子線の減速性能および各種特性評価結果は、表2に示したように、減速後の中性子線束において身体に悪影響を及ぼす恐れがある高速中性子線が多く残存しており、十分な減速効果が得られておらず、問題を残したものとなっていた。しかも、機械的強度が低く、このことも問題がある結果となっていた。
[比較例4]
 上記実施例1の場合と同じ出発原料を用い、同様に一軸プレス成形、冷間等方圧力成形(CIP)を施した成形体に、大気雰囲気中で600℃、10時間の仮焼結を実施し、208mm×208mm×t73mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から840℃まで6時間掛けて一定速度で昇温させ、同温度に8時間保持した。その後、1150℃まで2時間掛けて一定速度で昇温させ、同温度に3時間保持し、この後、取り出し温度に設定した100℃まで炉冷し、その後、取り出した。焼結体の概略寸法は、196.5mm×197mm×t68mm、嵩密度2.87g/ cm(相対密度91.1%)であった。焼結状態はポーラスであった。焼結体内のミクロ組織を調べたところ、組織が疎になっており、激しい発泡により多孔質化した跡が観察された。
 中性子線の減速性能および各種特性評価結果は、表2に示したように、減速後の中性子線束において身体に悪影響を及ぼす恐れがある高速中性子線が多く残存しており、十分な減速効果が得られておらず、問題を残したものとなっていた。しかも、機械的強度が低く、このことも問題がある結果となっていた。
[比較例5]
 上記実施例1の場合と同じ出発原料を用い、この原料を一軸プレス機を用いて型枠(型寸法220mm×220mm×H150mm)内に充填し、一軸のプレス圧を4MPa掛けて圧縮、成形した。
 このプレス成形体(寸法約220mm×220mm×t85mm)を厚手のビニール袋内に入れ、脱気、封入したものを冷間等方加圧成形(CIP)機の成形部(内寸法:内径350mm×H120mm)に装填した。このプレス成形体が入った前記ビニール袋と前記CIP機成形部との隙間に上水を満たしてから成形圧4MPaの等方加圧を行い、CIP成形による成形体(寸法約218mm×218mm×t75mm)とした。
 その成形体に大気雰囲気中で550℃、5時間の仮焼結を実施し、寸法約211mm×211mm×t73mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から740℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持した。その後、900℃まで2時間掛けて一定速度で昇温させ、同温度に1時間保持し、この後、加熱を停止し、取り出し温度に設定した100℃まで約20時間かけて自然冷却(炉冷)し、その後、取り出した。
 焼結体の嵩密度は概略寸法(199mm×199mm×t68mm)と重さから2.86g/cm3(相対密度90.8%)と算出され、焼結状態はポーラス気味であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したように、減速後の中性子線束において身体に悪影響を及ぼす恐れがある高速中性子線が多く残存しており、十分な減速効果が得られておらず、問題を残したものとなっていた。しかも、機械的強度が低く、このことも問題がある結果となっていた。
[比較例6]
 上記実施例1の場合と同じ出発原料を用い、この原料を一軸プレス機を用いて型枠(型寸法220mm×220mm×H150mm)内に充填し、一軸のプレス圧を10MPa掛けて圧縮、成形した。
 このプレス成形体(寸法約220mm×220mm×t85mm)を厚手のビニール袋内に入れ、脱気、封入したものを冷間等方加圧成形(CIP)機の成形部(内寸法:内径350mm×H120mm)に装填した。このプレス成形体が入った前記ビニール袋と前記CIP機成形部との隙間に上水を満たしてから成形圧20MPaの等方加圧を行い、CIP成形による成形体(寸法約215mm×215mm×t75mm)とした。
 その成形体に大気雰囲気中で500℃、4時間の仮焼結を実施し、寸法約211mm×211mm×t72mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から730℃まで6時間掛けて一定速度で昇温させ、同温度に5時間保持した。その後、900℃まで2時間掛けて一定速度で昇温させ、同温度に1時間保持し、この後、加熱を停止し、取り出し温度に設定した100℃まで約20時間かけて自然冷却(炉冷)し、その後、取り出した。
 焼結体の嵩密度は概略寸法(198mm×198mm×t68mm)と重さから2.85g/ cm(相対密度90.5%)と算出され、焼結状態は不十分でポーラス気味であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したように、減速後の中性子線束において身体に悪影響を及ぼす恐れがある高速中性子線が多く残存しており、十分な減速効果が得られておらず、問題を残したものとなっていた。しかも、機械的強度が低く、このことも問題がある結果となっていた。
[比較例7]
 上記実施例1の場合と同じ出発原料を用い、この原料を一軸プレス機を用いて型枠(型寸法220mm×220mm×H150mm)内に充填し、一軸のプレス圧を4MPa掛けて圧縮、成形した。
 このプレス成形体(寸法約220mm×220mm×t85mm)を厚手のビニール袋内に入れ、脱気、封入したものを冷間等方加圧成形(CIP)機の成形部(内寸法:内径350mm×H120mm)に装填した。このプレス成形体が入った前記ビニール袋と前記CIP機成形部との隙間に上水を満たしてから成形圧4MPaの等方加圧を行い、CIP成形による成形体(寸法約218mm×218mm×t75mm)とした。
 その成形体に大気雰囲気中で550℃、5時間の仮焼結を実施し、寸法約211mm×211mm×t72.5mmの仮焼結体を得た。この仮焼結体をヘリウムガス雰囲気中で室温から740℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持した。その後、900℃まで2時間掛けて一定速度で昇温させ、同温度に1時間保持し、この後、加熱を停止し、取り出し温度に設定した100℃まで約20時間かけて自然冷却(炉冷)し、その後、取り出した。
 焼結体の嵩密度は概略寸法(198mm×198.5mm×t67.5mm)と重さから2.89g/ cm(相対密度91.7%)と算出され、焼結状態はポーラス気味であった。
 中性子線の減速性能および各種特性評価結果は、表2に示したように、減速後の中性子線束において身体に悪影響を及ぼす恐れがある高速中性子線が多く残存しており、十分な減速効果が得られておらず、問題を残したものとなっていた。しかも、機械的強度が低く、このことも問題がある結果となっていた。
[比較材:CaF2
 高純度のCaF2原料(平均粒径20μm、純度99.9wt.%以上)を、上記ポットミルとアルミナ製ボールを用いて粉砕し、高純度のCaF2粉末(平均粒径1.4μm、純度99.9wt.%以上)とした。この粉末に焼結助剤としてカルボキシメチルセルロース(CMC)溶液を前記CaF2粉末100に対し、0.2wt.%の割合で添加し、ポットミルで12時間混合したものを出発原料とした。
 この原料を一軸プレス機を用いて型枠(型寸法220mm×220mm×H150mm)内に充填し、一軸のプレス圧を10MPa掛けて圧縮、成形した。
 このプレス成形体(寸法約220mm×220mm×t85mm)を厚手のビニール袋内に入れ、脱気、封入したものを冷間等方加圧成形(CIP)機の成形部(内寸法:内径350mm×H120mm)に装填した。このプレス成形体が入った前記ビニール袋と前記CIP機成形部との隙間に上水を満たしてから成形圧20MPaの等方加圧を行い、CIP成形による成形体(寸法約215mm×215mm×t75mm)とした。
 その成形体に大気雰囲気中で600℃、6時間の仮焼結を実施し、寸法約208mm×208mm×t72mmの仮焼結体を得た。この仮焼結体を窒素ガス雰囲気中で室温から870℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持した。その後、1100℃まで2時間掛けて一定速度で昇温させ、同温度に1時間保持し、この後、加熱を停止し、取り出し温度に設定した100℃まで約20時間かけて自然冷却(炉冷)し、その後、取り出した。
 CaF2焼結体の嵩密度は概略寸法(193mm×193mm×t62mm)と重さから3.05g/ cm(相対密度95.9%。CaF2の真密度は3.18g/ cm)と算出され、焼結状態は良好であった。
評価結果は、表2に示したように緻密な焼結状態の焼結体が得られており、機械的強度は十分なものであった。しかしながら、中性子線に対する減速性能は高速中性子線の残存量が多く、大きな問題を残すものとなっていた。この結果は、CaF2焼結体においては十分に緻密なものであっても、減速材としての特性は、MgF2焼結体に比べると劣るものであることを示していた。
 中性子線など各種放射線の放射速度を抑制するための減速材に利用することができる。

Claims (4)

  1.  緻密な多結晶構造のMgF2からなり、嵩密度が2.90g/cm以上であることを特徴とする中性子線減速材用フッ化物焼結体。
  2.  曲げ強度が10MPa以上、ビッカース硬度が71以上の機械的強度を有することを特徴とする請求項1記載の中性子線減速材用フッ化物焼結体。
  3.  MgF焼結体からなる中性子線減速材用フッ化物焼結体の製造方法であって、
     高純度のMgF2原料を微粉砕し、焼結助剤を0.1~1wt.%添加して混合する工程、
     一軸プレス機を用いて成形圧5MPa以上で成形する工程、
     冷間等方加圧成形(CIP)機を用いて成形圧5MPa以上で成形する工程、
     大気雰囲気中、550~600℃の温度範囲、4~10時間の条件で仮焼結させる工程、
     不活性ガス雰囲気中で、750~840℃の温度範囲で、5~12時間加熱する工程、
     前工程と同じ雰囲気中で900~1100℃の温度範囲で、0.5~3時間加熱して緻密な構造のMgF2焼結体を形成する本焼結工程、
     を含むことを特徴とする請求項1記載の中性子線減速材用フッ化物焼結体の製造方法。
  4.  前記本焼結工程における不活性ガス雰囲気が、窒素、ヘリウム、アルゴン、及びネオンの中から選択される1種類のガス、または複数種類のガスを混合させたものからなることを特徴とする請求項3記載の中性子線減速材用フッ化物焼結体の製造方法。
PCT/JP2014/064038 2013-07-08 2014-05-27 中性子線減速材用フッ化物焼結体及びその製造方法 WO2015005006A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14806519.6A EP2865658B1 (en) 2013-07-08 2014-05-27 Method for producing a magnesium fluoride sintered compact for neutron moderator
CN201480001165.9A CN104640824B (zh) 2013-07-08 2014-05-27 用于中子射线减速材料的氟化物烧结体的制造方法
US14/405,585 US10961160B2 (en) 2013-07-08 2014-05-27 Fluoride sintered body for neutron moderator and method for producing the same
EP17165429.6A EP3214058B1 (en) 2013-07-08 2014-05-27 Use of magnesium fluoride sintered compact as neutron moderator
JP2014561664A JP5813258B2 (ja) 2013-07-08 2014-05-27 中性子線減速材用フッ化物焼結体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-142704 2013-07-08
JP2013142704 2013-07-08

Publications (1)

Publication Number Publication Date
WO2015005006A1 true WO2015005006A1 (ja) 2015-01-15

Family

ID=52279701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064038 WO2015005006A1 (ja) 2013-07-08 2014-05-27 中性子線減速材用フッ化物焼結体及びその製造方法

Country Status (6)

Country Link
US (1) US10961160B2 (ja)
EP (2) EP3214058B1 (ja)
JP (1) JP5813258B2 (ja)
CN (2) CN104640824B (ja)
TW (1) TWI496744B (ja)
WO (1) WO2015005006A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310540A (zh) * 2015-05-04 2017-01-11 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
WO2017014230A1 (ja) * 2015-07-21 2017-01-26 日本軽金属株式会社 フッ化マグネシウム焼結体、フッ化マグネシウム焼結体の製造方法、中性子モデレータ及び中性子モデレータの製造方法
CN107921273A (zh) * 2015-05-04 2018-04-17 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
JP2018514325A (ja) * 2015-05-04 2018-06-07 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. 中性子捕捉療法用ビーム整形アセンブリ
CN110251847A (zh) * 2015-05-04 2019-09-20 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
JP2022164529A (ja) * 2021-04-16 2022-10-27 国立大学法人 筑波大学 放射線遮蔽材用焼結体、放射線遮蔽材及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789335B2 (en) 2014-09-24 2017-10-17 Techno Eye Corporation MgF2—CaF2 binary system sintered body for radiation moderator and method for producing the same
US10777330B2 (en) * 2014-12-26 2020-09-15 Techno Eye Corporation MgF2 system fluoride sintered body for radiation moderator and method for producing the same
CN109568808A (zh) * 2015-09-11 2019-04-05 南京中硼联康医疗科技有限公司 热压烧结设备及烧结工艺
CN110507915B (zh) * 2015-10-15 2021-03-09 南京中硼联康医疗科技有限公司 中子缓速材料
CN105957576B (zh) * 2016-04-27 2017-10-20 华南协同创新研究院 一种中子慢化用Al/AlF3复合材料及其制备方法
CN109411108B (zh) * 2017-08-18 2020-06-12 南京中硼联康医疗科技有限公司 用于慢化中子的缓速体
CN111072387A (zh) * 2019-12-31 2020-04-28 中国建筑材料科学研究总院有限公司 氟化铝复合陶瓷及其制备方法
CN113186440A (zh) * 2021-04-28 2021-07-30 禾材高科(苏州)有限公司 一种氟化铝基陶瓷中子慢化材料及其制备方法
CN113808772A (zh) * 2021-09-10 2021-12-17 中山大学 一种中子慢化材料
CN113956043B (zh) * 2021-11-29 2023-02-10 中国科学院上海光学精密机械研究所 氟化物红外复相透明陶瓷及其制备方法
CN115872746A (zh) * 2023-01-03 2023-03-31 中国原子能科学研究院 氟化镁复合陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086344A (ja) 1998-09-14 2000-03-28 Kyocera Corp 高密度フッ化物焼結体およびその製造方法並びにそれを用いた半導体製造装置用部材
JP2000302553A (ja) 1999-04-14 2000-10-31 Taiheiyo Cement Corp 耐蝕性フッ化物基複合セラミックス焼結体
JP2004233168A (ja) * 2003-01-29 2004-08-19 Japan Science & Technology Agency 中性子捕捉療法に用いる中性子遮蔽板、およびヒト以外の哺乳動物に対して行なう中性子捕捉療法、ならびに治療用中性子照射装置
JP2009204428A (ja) * 2008-02-27 2009-09-10 Sumitomo Heavy Ind Ltd ターゲット回収装置
JP2012206913A (ja) 2011-03-30 2012-10-25 Ngk Insulators Ltd フッ化マグネシウム焼結体、その製法及び半導体製造装置用部材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826072A (ja) 1981-08-08 1983-02-16 住友電気工業株式会社 弗化マグネシウム多結晶体の製造方法
JPS58110466A (ja) * 1981-12-24 1983-07-01 住友電気工業株式会社 弗化マグネシウム多結晶体の製造方法
CA1318691C (en) * 1987-08-28 1993-06-01 Akira Yamakawa Sintered body of aluminum nitride and method for producing the same
FI92890C (fi) 1993-06-14 1995-01-10 Otatech Oy Neutronien hidastinmateriaali ja sen käyttö
US5597495A (en) * 1994-11-07 1997-01-28 Keil; Mark Method and apparatus for etching surfaces with atomic fluorine
US6868106B1 (en) * 1998-06-04 2005-03-15 Lambda Physik Ag Resonator optics for high power UV lasers
EP1895819A1 (en) 2006-08-29 2008-03-05 Ion Beam Applications S.A. Neutron generating device for boron neutron capture therapy
JP4576368B2 (ja) * 2006-10-16 2010-11-04 三菱重工業株式会社 中性子モデレータ及び中性子照射方法並びに危険物質検出装置
JP5112105B2 (ja) 2008-02-18 2013-01-09 住友重機械工業株式会社 減速材及び減速装置
JP5578507B2 (ja) * 2009-11-05 2014-08-27 株式会社大興製作所 CaF2−MgF2二元系焼結体、及び耐プラズマ性フッ化物焼結体の製造方法
CN101817683B (zh) * 2010-03-30 2014-12-03 武汉理工大学 MgAlON透明陶瓷的无压烧结制备方法
JP5711511B2 (ja) 2010-12-09 2015-04-30 株式会社大興製作所 CaF2−MgF2二元系焼結体、及び耐プラズマ性フッ化物焼結体の製造方法
WO2015111586A1 (ja) * 2014-01-22 2015-07-30 日本軽金属株式会社 フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086344A (ja) 1998-09-14 2000-03-28 Kyocera Corp 高密度フッ化物焼結体およびその製造方法並びにそれを用いた半導体製造装置用部材
JP2000302553A (ja) 1999-04-14 2000-10-31 Taiheiyo Cement Corp 耐蝕性フッ化物基複合セラミックス焼結体
JP2004233168A (ja) * 2003-01-29 2004-08-19 Japan Science & Technology Agency 中性子捕捉療法に用いる中性子遮蔽板、およびヒト以外の哺乳動物に対して行なう中性子捕捉療法、ならびに治療用中性子照射装置
JP2009204428A (ja) * 2008-02-27 2009-09-10 Sumitomo Heavy Ind Ltd ターゲット回収装置
JP2012206913A (ja) 2011-03-30 2012-10-25 Ngk Insulators Ltd フッ化マグネシウム焼結体、その製法及び半導体製造装置用部材

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. TANAKA ET AL., APPLIED RADIATION AND ISOTOPES, vol. 69, 2011, pages 1642 - 1645
H. TANAKA ET AL., APPLIED RADIATION AND ISOTOPES, vol. 69, 2011, pages 1646 - 1648
HIROAKI KUMADA ET AL., HEALTH PHYSICS, vol. 42, 2007, pages 23 - 37
See also references of EP2865658A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921273B (zh) * 2015-05-04 2019-10-01 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
US10617893B2 (en) 2015-05-04 2020-04-14 Neuboron Medtech Ltd. Beam shaping assembly for neutron capture therapy
CN110251847A (zh) * 2015-05-04 2019-09-20 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
CN107921273A (zh) * 2015-05-04 2018-04-17 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
CN106310540A (zh) * 2015-05-04 2017-01-11 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
JP2018514325A (ja) * 2015-05-04 2018-06-07 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. 中性子捕捉療法用ビーム整形アセンブリ
JPWO2017014230A1 (ja) * 2015-07-21 2018-05-24 日本軽金属株式会社 フッ化マグネシウム焼結体、フッ化マグネシウム焼結体の製造方法、中性子モデレータ及び中性子モデレータの製造方法
RU2686785C1 (ru) * 2015-07-21 2019-04-30 Ниппон Лайт Метал Компани, Лтд. Спеченный компакт фторида магния, способ изготовления спеченного компакта фторида магния, замедлитель нейтронов и способ изготовления замедлителя нейтронов
WO2017014230A1 (ja) * 2015-07-21 2017-01-26 日本軽金属株式会社 フッ化マグネシウム焼結体、フッ化マグネシウム焼結体の製造方法、中性子モデレータ及び中性子モデレータの製造方法
US10343951B2 (en) 2015-07-21 2019-07-09 Nippon Light Metal Company, Ltd. Magnesium fluoride sintered compact, method for manufacturing magnesium fluoride sintered compact, neutron moderator, and method for manufacturing neutron moderator
CN107848895A (zh) * 2015-07-21 2018-03-27 日本轻金属株式会社 氟化镁烧结体、氟化镁烧结体的制造方法、中子减速剂和中子减速剂的制造方法
CN107848895B (zh) * 2015-07-21 2021-04-09 日本轻金属株式会社 氟化镁烧结体、氟化镁烧结体的制造方法、中子减速剂和中子减速剂的制造方法
JP2022164529A (ja) * 2021-04-16 2022-10-27 国立大学法人 筑波大学 放射線遮蔽材用焼結体、放射線遮蔽材及びその製造方法
JP7165339B2 (ja) 2021-04-16 2022-11-04 国立大学法人 筑波大学 放射線遮蔽材用焼結体、放射線遮蔽材及びその製造方法

Also Published As

Publication number Publication date
US10961160B2 (en) 2021-03-30
CN104640824B (zh) 2018-03-20
TWI496744B (zh) 2015-08-21
EP3214058A1 (en) 2017-09-06
JPWO2015005006A1 (ja) 2017-03-02
JP5813258B2 (ja) 2015-11-17
EP2865658A4 (en) 2016-03-30
US20160002116A1 (en) 2016-01-07
CN104640824A (zh) 2015-05-20
EP3214058B1 (en) 2021-04-07
CN107082642A (zh) 2017-08-22
EP2865658A1 (en) 2015-04-29
CN107082642B (zh) 2021-11-16
TW201502073A (zh) 2015-01-16
EP2865658B1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP5813258B2 (ja) 中性子線減速材用フッ化物焼結体及びその製造方法
JP6377587B2 (ja) 放射線減速材用MgF2−CaF2二元系焼結体及びその製造方法
US10777330B2 (en) MgF2 system fluoride sintered body for radiation moderator and method for producing the same
JP6843766B2 (ja) 中性子捕捉療法用ビーム整形アセンブリ
US20150376023A1 (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
WO2023045367A1 (zh) 一种中子减速复合材料
US20220336117A1 (en) Sintered body for radiation shielding material, radiation shielding material, and method for producing the same
TWI804800B (zh) 中子減速材料及其製作方法
JP7165339B2 (ja) 放射線遮蔽材用焼結体、放射線遮蔽材及びその製造方法
Hamodi et al. Microstructure Characterization of Simulated Tri‐Isotropic Particles Embedded in Alkaline Borosilicate Glass
ROLEČEK DESIGN OF NUCLEAR CERAMIC MATERIALS WITH ENHANCED THERMAL CONDUCTIVITY

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14405585

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014806519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014806519

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014561664

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE