WO2015004834A1 - リチウムイオン二次電池の負極材用粉末 - Google Patents

リチウムイオン二次電池の負極材用粉末 Download PDF

Info

Publication number
WO2015004834A1
WO2015004834A1 PCT/JP2014/002666 JP2014002666W WO2015004834A1 WO 2015004834 A1 WO2015004834 A1 WO 2015004834A1 JP 2014002666 W JP2014002666 W JP 2014002666W WO 2015004834 A1 WO2015004834 A1 WO 2015004834A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
negative electrode
electrode material
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2014/002666
Other languages
English (en)
French (fr)
Inventor
祥章 喜多
悠介 柏谷
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to JP2015526139A priority Critical patent/JP5996802B2/ja
Publication of WO2015004834A1 publication Critical patent/WO2015004834A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a powder for a negative electrode material of a lithium ion secondary battery, and more particularly to a powder for a negative electrode material capable of obtaining a lithium ion secondary battery having good cycle characteristics.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries and polymer batteries.
  • lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a cross-sectional view showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents.
  • the gasket 4 is provided.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c.
  • Lithium cobaltate (LiCoO 2 ) or manganese spinel (LiMn 2 O 4 ) is mainly used for the counter electrode 1c.
  • the negative electrode 2 includes a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c.
  • the negative electrode material used for the working electrode 2c generally includes an active material capable of occluding and releasing lithium ions (negative electrode active material), a conductive additive, and a binder.
  • silicon oxide powder represented by SiO x (0 ⁇ x ⁇ 2) such as SiO is a general term for amorphous silicon oxides obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and silicon. Silicon oxide can be a negative electrode active material having a large effective charge / discharge capacity because it has little degradation due to the collapse of the structure due to insertion and extraction of lithium ions during charge / discharge and the generation of irreversible substances.
  • Patent Document 2 discloses a powder of silicon oxide represented by the general formula SiO x (1.0 ⁇ x ⁇ 1.6) and having a carbon (graphite) coating amount of 3% by weight or more. Yes. According to Patent Document 2, by using this powder, a lithium ion secondary battery having better cycle characteristics (ratio of charge / discharge capacity after initial charge / discharge capacity to initial charge / discharge capacity) than conventional ones. It is said that a negative electrode is obtained.
  • Patent Document 3 listed below discloses a silicon oxide powder having a conductive carbon coating on the surface, wherein the conductive carbon coating has a uniform thickness.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a powder capable of obtaining high cycle characteristics when used as a negative electrode material for a lithium ion secondary battery.
  • FIG. 2 shows a secondary electron image (SEI: Secondary Electron Image) of a conventional powder for a negative electrode material made of silicon oxide. As shown in this figure, the particles constituting the powder have a large number of corners (tips and sharp parts).
  • the corners of the carbon coating are covered by the expansion and contraction of particles constituting the negative electrode during charging and discharging of the lithium ion secondary battery. It is considered that the stress concentrates on the part and the destruction of the carbon coating proceeds, resulting in deterioration of the cycle characteristics. Under such expectation, the present inventors performed a process of rounding the corners of the particles constituting the negative electrode material powder, evaluated the battery characteristics using the processed powder, and the cycle characteristics were Confirmed to improve.
  • the gist of the present invention is a powder for a negative electrode material for lithium ion secondary batteries of the following (1) and (2).
  • the repose angle of the negative electrode material powder of the present invention is 40 to 50 °, which is smaller than the repose angle (eg, 55 °) of the conventional negative electrode material powder. This is because the particles constituting the negative electrode material powder of the present invention have fewer corners than the conventional particles constituting the negative electrode material powder.
  • the powder of the present invention is used for a negative electrode material of a lithium ion secondary battery, the cycle characteristics of the lithium ion secondary battery are improved as compared with the case where a conventional powder for negative electrode material is used. This is presumably because the powder of the present invention is difficult to destroy the carbon coating even if the particles expand and contract during charging and discharging.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • FIG. 2 is a secondary electron image of a conventional powder for a negative electrode material.
  • FIG. 3 is a secondary electron image of the powder after the powder shown in FIG. 2 is processed by an apparatus for stirring the powder with a rotor.
  • FIG. 4 is a secondary electron image of the silicon oxide powder used for producing the powders of Comparative Examples 1 to 3.
  • FIG. 5 is a secondary electron image of the silicon oxide powder used for producing the powders of Examples 1-1 to 1-3.
  • FIG. 6 is a secondary electron image of the silicon oxide powder used for producing the powders of Examples 2-1 to 2-3.
  • FIG. 7 is a secondary electron image of the silicon oxide powder used for producing the powders of Examples 3-1 to 3-3.
  • FIG. 8 is a secondary electron image of the silicon oxide powder used for producing the powders of Examples 4-1 to 4-3.
  • This negative electrode material powder can be used, for example, as a material for the working electrode 2c in the lithium ion secondary battery shown in FIG.
  • the carbon film can be formed by, for example, chemical vapor deposition (CVD) (for example, thermal chemical vapor deposition (thermal CVD)).
  • CVD chemical vapor deposition
  • thermal CVD thermal chemical vapor deposition
  • the cycle characteristics (hereinafter also simply referred to as “battery”) and the initial charge / discharge capacity (battery capacity) of the battery can both be increased.
  • x ⁇ 0.5 the cycle characteristics deteriorate, and when 1.5 ⁇ x, the battery capacity decreases.
  • the volume median diameter D 50 is the particle diameter thereof at an accumulation of 50% from the fine side of the cumulative particle size distribution on the volume basis (or coarse side).
  • the particle size distribution of the particles can be measured by, for example, a laser diffraction type particle size distribution measuring apparatus.
  • D 50 ⁇ 0.5 ⁇ m the bulk density of the powder is low, and the filling rate in the negative electrode material is low. Thereby, battery capacity becomes low.
  • 10 ⁇ m ⁇ D 50 even if a carbon film is formed on the surface of the particles, the conductivity of the negative electrode material using this powder cannot be sufficiently lowered.
  • a desirable range of the volume median diameter D 50 is 2 to 7 ⁇ m.
  • the cycle characteristics of the battery including the negative electrode material using the powder can be improved as compared with the case where the angle of repose is greater than 50 °. This is presumably because the particles constituting the powder having a small angle of repose have few corners, so that stress is less concentrated on the carbon film at the corners and the destruction of the carbon film is difficult to proceed. If the powder is to be processed so that the angle of repose is less than 40 °, the processing yield decreases, so the angle of repose is 40 ° or more.
  • the angle of repose shall be measured according to the method described in JIS R 9301-2-2: 1999 (“Alumina powder—Part 2: Physical property measurement method-2: Angle of repose”).
  • the powder used for the measurement of the angle of repose is not granulated (secondary particles are not formed).
  • the angle of repose is measured within 60 minutes after the powder used for measurement is held at 200 ° C. for 2 hours and then cooled to room temperature (15 to 25 ° C.). Thereby, the water
  • the proportion of carbon constituting the carbon coating is preferably 0.5 to 7.0 mass%. If the coating carbon concentration is less than 0.5% by mass, the effect of increasing the conductivity of the negative electrode material cannot be sufficiently obtained, and a high initial discharge capacity cannot be obtained as a battery. On the other hand, when the coating carbon concentration is higher than 7% by mass, occlusion / release of lithium ions with respect to the silicon oxide powder particles is inhibited, and the battery capacity when this powder is used as a negative electrode material of the battery is reduced. In order to sufficiently increase the battery capacity, the coating carbon concentration is desirably 5% by mass or less.
  • the powder for negative electrode material of the present invention comprises a preparation step of preparing a silicon oxide powder, and particles constituting the silicon oxide powder while the silicon oxide powder is suspended in an air stream. It can be manufactured by a manufacturing method including a collision step of causing collision with each other and a step of coating the silicon oxide powder after the collision step with carbon.
  • the silicon oxide powder prepared in the preparation step can be manufactured by a known method, for example, a method of cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and silicon. Such powders may have an angle of repose greater than 50 °.
  • the collision process can be performed using, for example, a classifier that classifies powder by an air stream, for example, a classifier based on the principle of cyclo classification.
  • a classifier that classifies powder by an air stream
  • the powder is swirled in the chamber by an air current, for example, and the particles collide with each other.
  • Classification produces multiple types of powders with different particle sizes. Of these powders, only necessary ones may be selected and used, or all kinds of powders may be mixed and used.
  • the present inventors also tried to take the corners of the particles constituting the powder by processing with a device that stirs the powder with a rotor (for example, a propeller).
  • This treatment was performed on the silicon oxide powder whose secondary electron image is shown in FIG.
  • the rotational speed of the rotor was 8000 to 10000 rpm.
  • FIG. 3 shows a secondary electron image of the powder obtained by this treatment.
  • the particles are refined by this treatment, but the corners of the particles are not rounded.
  • the powder adheres to and aggregates on the rotor and the support columns that support the rotor, and the rotor collides with particles constituting the powder. It was almost impossible to make it.
  • a rotor rotating at high speed collides with particles at a large relative speed.
  • the particles are destroyed even at portions other than the corners, and new corners are generated, so it is considered that the shape of the particles was not rounded.
  • the rotor collides with the particles excessive force is applied to the particles, while when the particles collide with each other in an air stream, the appropriate force is applied to the particles.
  • the carbon coating step can be performed by, for example, thermal chemical vapor deposition (thermal CVD).
  • the angle of repose and the volume median diameter of the silicon oxide powder that has been subjected to the treatment in the collision process usually do not substantially change depending on the carbon coating process.
  • the collision step by processing the silicon oxide powder so as to obtain a target angle of repose and volume median diameter, a powder having a target angle of repose and volume median diameter is obtained after carbon coating. It is done. If the angle of repose or volume median diameter changes substantially due to the carbon coating process, a process that considers the change is performed in the collision process, and the desired angle of repose or volume median diameter is obtained after the carbon coating is formed. Need to be able to.
  • silicon oxide powder (powder A) used as a raw material for conventional negative electrode material powder was prepared.
  • the powder was classified using a classifier “Aero Fine Classifier” manufactured by Nissin Engineering Co., Ltd. While the powder is subjected to this treatment, the particles making up the powder collide with each other. As a result, the corners of the particles constituting the powder are taken and the particles are expected to be rounded.
  • the processing product fine powder and coarse powder were sufficiently mixed.
  • the classification treatment and subsequent mixing were repeated a plurality of times to obtain four types of silicon oxide powders (powder BE) having different repetition times.
  • the number of repetitions increases in the order of powder B, powder C, powder D, and powder E.
  • 4 to 8 show secondary electron images of powders A to E, respectively.
  • the corners of the particles decrease in the order of powder A, powder B, powder C, powder D, and powder E, and the shape of the particles is rounded.
  • each of powders A to E was coated with carbon by a thermal chemical vapor deposition method (thermal CVD) to obtain a silicon oxide powder having a carbon film formed on the surface.
  • the coating carbon concentration ratio (% by mass) of carbon constituting the carbon coating in the silicon oxide powder after carbon coating) was 10% by mass, 7% by mass, and 5% by mass with respect to each powder A to E. did.
  • a negative electrode material was produced, a lithium ion secondary battery was produced using the negative electrode material, a charge / discharge test was performed using the lithium ion secondary battery, and cycle characteristics were measured.
  • the negative electrode was produced as follows. First, each of the above silicon-coated silicon oxide powders, acetylene black and polyacrylic acid were mixed at a mass ratio of 65:10:25, and an appropriate amount of n-methylpyrrolidone was added to prepare a slurry. . The slurry was applied on a copper foil having a thickness of 20 ⁇ m, dried at 120 ° C. for 30 minutes to form a sheet, and then the sheet was punched into a square having a side of 1 cm to form a negative electrode.
  • the lithium ion secondary battery was produced as follows.
  • a coin cell was prepared using the above-described negative electrode, lithium foil as a counter electrode, and a polyethylene porous film (thickness: 20 ⁇ m) as a separator.
  • As an electrolyte LiPF 6 (lithium hexafluorophosphate) was added at a ratio of 1 mol / liter to a mixed solution obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a solution dissolved in (1) was prepared, and this solution (electrolytic solution) was impregnated in the separator.
  • Such a coin cell was used as a lithium ion secondary battery for battery evaluation.
  • the charge / discharge test was performed using a secondary battery charge / discharge test apparatus manufactured by Nagano Corporation. Charging was performed at a constant current of 0.1 C until the voltage reached 0V, and after the voltage reached 0V, the cell voltage was maintained at 0V. Charging was terminated when the current value fell below 20 ⁇ A. Discharging was performed at a constant current of 0.1 C until the voltage reached 1.5V.
  • the value of 1C was calculated assuming that the discharge capacity of silicon oxide was 1500 mAh / g.
  • the 100th discharge capacity discharge capacity of the 100th charge / discharge
  • Tables 1 to 3 show the angle of repose of the carbon-coated silicon oxide powder used, the coating carbon concentration, and the discharge capacity at the 100th charge / discharge.
  • Table 1 shows the results of powders (Comparative Example 1 and Examples 1-1 to 4-1) in which powders A to E were coated with carbon at a coating carbon concentration of 10%.
  • Table 2 shows the results for powders (Comparative Example 2 and Examples 1-2 to 4-2) in which powders A to E were coated with carbon at a coating carbon concentration of 7%.
  • Table 3 shows the results for powders (Comparative Example 3 and Examples 1-3 to 4-3) in which powders A to E were coated with carbon at a coating carbon concentration of 5%.
  • the samples of Comparative Examples 1 to 3 are those using powder A that has not been subjected to the above-described treatment using a classifier (hereinafter referred to as “square cutting treatment”).
  • the repose angles of the samples of Comparative Examples 1 to 3 were all 55 °, which was outside the range of angles defined as the present invention.
  • the angle of repose of samples (Examples 1-1 to 4-1, Examples 1-2 to 4-2, Examples 1-3 to 4-3) using powders B to E that had been subjected to chamfering treatment was 40 to 50 °, and all were within the range of angles defined as the present invention.
  • the sample with a higher number of repetitions of classification and mixing in the chamfering treatment (after carbon coating) has a smaller angle of repose.
  • the samples using powders B to E had the same angle of repose (50 °, 48 °, 46 °, and 40 °, respectively) regardless of the coating carbon concentration.
  • the discharge capacity at the 100th charge / discharge is a value with the measured value of Comparative Example 1 as 100.
  • Table 2 and Table 3 the increase / decrease value (%) when the discharge capacity by the sample using the same powders A to E in Table 1 is set to 100 is shown in parentheses.
  • the discharge capacity at the 100th charge / discharge cycle increases as the angle of repose decreases.
  • the coating carbon concentration decreases, the rate at which the discharge capacity at the 100th charge / discharge is improved with respect to the decrease in the angle of repose increases.
  • the coating carbon concentration has to be 10% by mass or more. From the results shown in Tables 1 to 3, according to the present invention, the 100th charge / discharge operation equivalent to or higher than that in the case where the conventional coating carbon concentration is 10% by mass with a smaller coating carbon concentration (for example, 7% by mass or less) It can be seen that the discharge capacity can be obtained, that is, the cycle characteristics are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 このリチウムイオン二次電池の負極材用粉末は、炭素被膜を有する酸化珪素粉末を含み、当該負極材用粉末全体として、モル比で、Si:O=1:x(0.5≦x≦1.5)の平均組成を有し、体積メディアン径D50が、0.5μm≦D50≦10μmの関係を満たし、安息角が、40~50°である。この粉末は、リチウムイオン二次電池の負極材として用いたときに、当該電池のサイクル特性を向上させることができる。当該負極材用粉末において、前記炭素被膜を構成する炭素の割合が0.5~7.0質量%であることが好ましい。

Description

リチウムイオン二次電池の負極材用粉末
 この発明は、リチウムイオン二次電池の負極材用粉末に関し、より詳しくは、サイクル特性が良好であるリチウムイオン二次電池を得ることができる負極材用粉末に関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化との観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池およびニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す断面図である。リチウムイオン二次電池は、同図に示すように、正極1、負極2、電解液を含浸させたセパレータ3、および正極1と負極2との電気的絶縁性を保つとともに電池内容物を封止するガスケット4を備えている。充放電を行うと、リチウムイオンがセパレータ3の電解液を介して正極1と負極2との間を往復する。
 正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO)またはマンガンスピネル(LiMn4)が主に使用される。負極2は、作用極ケース2aと、作用極集電体2bと、作用極2cとを備えている。作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵・放出が可能な活物質(負極活物質)と導電助剤およびバインダーとを備えている。
 リチウムイオン二次電池の負極活物質として、SiO等、SiO(0<x≦2)で表される酸化珪素の粉末を用いることが、試みられている(下記特許文献1参照)。ここで、酸化珪素とは、二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させて得られた珪素非晶質の酸化物の総称である。酸化珪素は、充放電時のリチウムイオンの吸蔵・放出による構造の崩壊および不可逆物質の生成等による劣化が少ないことから、有効な充放電容量が大きな負極活物質となり得る。
 負極材としての抵抗値を低減するために、酸化珪素粉末を炭素で被覆(コート)することが試みられている。下記特許文献2には、一般式SiO(1.0≦x<1.6)で表される酸化珪素であって、炭素(黒鉛)被覆量が3重量%以上である粉末が開示されている。特許文献2によれば、この粉末を用いることにより、従来に比して、サイクル特性(充放電を繰り返した後の充放電容量の初期充放電容量に対する割合)が良好なリチウムイオン二次電池の負極が得られるとされている。
 しかし、本発明者らが、引用文献2に記載の要件を満たす粉末を作製し、この粉末を用いて負極を作製して、電池を組み立て、充放電を繰り返したところ、100回目の放電容量は、十分に高いものではなかった。その原因について調査したところ、炭素被膜が不均一であるため、充放電によるSiO粉末の膨張・収縮によって炭素被膜が破壊されることが一因であることがわかった。
 下記特許文献3には、表面に導電性炭素被膜を有する酸化珪素粉末であって、導電性炭素被膜の厚さが均一にされたものが開示されている。
 しかし、本発明者らが、この粉末を用いて負極を作製して、電池を組み立て、充放電を繰り返したところ、サイクル特性は、特許文献2の粉末を用いた場合に比して改善されているが、実用化には不十分であった。
特許第2997741号公報 特許第4171897号公報 国際公開第2012/108113号
 本発明は、これらの問題に鑑みてなされたものであり、リチウムイオン二次電池の負極材として用いたときに高いサイクル特性を得ることができる粉末を提供することを目的としている。
 本発明者らは、リチウムイオン二次電池のサイクル特性が十分に高くならない原因に関して、負極を構成する粒子の形状に着目した。図2に、負極材用の従来の粉末であって、酸化珪素からなるものの二次電子像(SEI:Secondary Electron Image)を示す。この図に示すように、粉末を構成する粒子は、多数の角部(尖端、および鋭利な部分)を有している。
 このような形状を有している粉末に炭素被覆して負極材に用いると、リチウムイオン二次電池の充放電時に、負極を構成する粒子の膨張・収縮によって、炭素被膜のうち角部を覆う部分に応力が集中して、炭素被膜の破壊が進行し、これに起因して、サイクル特性が劣化すると考えられる。このような予想の下に、本発明者らは、負極材用粉末を構成する粒子の角を丸める処理をし、この処理を施した粉末を用いて電池特性の評価をして、サイクル特性が向上することを確認した。
 粒子の角を丸めることにより、当該負極材用粉末の安息角は小さくなる。本発明者らは、負極材用粉末の安息角と、サイクル特性との間に、相関があることを見出し、本発明を完成するに至った。
 本発明の要旨は、下記(1)および(2)のリチウムイオン二次電池の負極材用粉末である。
(1)リチウムイオン二次電池の負極材用粉末であって、炭素被膜を有する酸化珪素粉末を含み、当該負極材用粉末全体として、モル比で、Si:O=1:x(0.5≦x≦1.5)の平均組成を有し、体積メディアン径D50が、0.5μm≦D50≦10μmの関係を満たし、安息角が、40~50°であることを特徴とする、リチウムイオン二次電池の負極材用粉末。
(2)当該負極材用粉末において前記炭素被膜を構成する炭素の割合が、0.5~7.0質量%であることを特徴とする、上記(1)に記載の、リチウムイオン二次電池の負極材用粉末。
 本発明の負極材用粉末の安息角は、40~50°であり、従来の負極材用粉末の安息角(たとえば、55°)に比して小さい。これは、本発明の負極材用粉末を構成する粒子は、従来の負極材用粉末を構成する粒子に比して、角部が少ないことによる。本発明の粉末をリチウムイオン二次電池の負極材に使用すると、従来の負極材用粉末を用いた場合に比して、リチウムイオン二次電池のサイクル特性が向上する。これは、本発明の粉末は、充放電時に、粒子が膨張・収縮しても、炭素被膜が破壊され難いためであると考えられる。
図1は、コイン形状のリチウムイオン二次電池の構成例を示す断面図である。 図2は、負極材用の従来の粉末の二次電子像である。 図3は、回転子で粉体を撹拌する装置により、図2に示す粉末を処理した後の当該粉末の二次電子像である。 図4は、比較例1~3の粉末を製造するために用いた酸化珪素粉末の二次電子像である。 図5は、実施例1-1~1-3の粉末を製造するために用いた酸化珪素粉末の二次電子像である。 図6は、実施例2-1~2-3の粉末を製造するために用いた酸化珪素粉末の二次電子像である。 図7は、実施例3-1~3-3の粉末を製造するために用いた酸化珪素粉末の二次電子像である。 図8は、実施例4-1~4-3の粉末を製造するために用いた酸化珪素粉末の二次電子像である。
1.本発明の負極材用粉末
 本発明の負極材用粉末は、「リチウムイオン二次電池の負極材用粉末であって、炭素被膜を有する酸化珪素粉末を含み、当該負極材用粉末全体として、モル比で、Si:O=1:x(0.5≦x≦1.5)の平均組成を有し、体積メディアン径D50が、0.5μm≦D50≦10μmの関係を満たし、安息角が、40~50°であることを特徴とする、リチウムイオン二次電池の負極材用粉末」である。
 この負極材用粉末は、たとえば、図1に示すリチウムイオン二次電池において、作用極2cの材料として使用することができる。
 酸化珪素粉末に炭素被膜を形成することにより、この粉末を用いた負極材の導電性を高くすることができる。炭素被膜は、たとえば、化学蒸着法(CVD)(たとえば、熱化学蒸着法(熱CVD))により形成されたものとすることができる。
 負極材用粉末全体として、モル比で、Si:O=1:x(0.5≦x≦1.5)の平均組成を有することにより、この負極材用粉末を用いたリチウムイオン二次電池(以下、単に、「電池」ともいう。)のサイクル特性と電池の初期充放電容量(電池容量)とが、いずれも高くなるようにすることができる。x<0.5であると、サイクル特性が悪くなり、1.5<xであると、電池容量が低下する。
 体積メディアン径D50は、体積基準の累積粒度分布の微粒側(または粗粒側)から累積50%の粒径である。粒子の粒度分布は、たとえば、レーザー回折式粒度分布測定装置により測定することができる。D50<0.5μmであると、この粉末のかさ密度は低く、負極材中での充填率は低い。これにより、電池容量が低くなる。10μm<D50であると、粒子の表面に炭素被膜を形成しても、この粉末を用いた負極材の導電性を十分に低くすることができない。体積メディアン径D50の望ましい範囲は、2~7μmである。
 安息角が50°以下であることにより、安息角が50°より大きい場合に比して、その粉末を用いた負極材を備えた電池のサイクル特性を高くすることができる。これは、安息角が小さい粉末を構成する粒子は、角部が少ないので、角部で炭素被膜に応力が集中することが少なく、炭素被膜の破壊が進行しにくいためであると考えられる。安息角が、40°を下回るように、粉末を加工しようとすると、加工歩留まりが低下するので、安息角は、40°以上とする。
 安息角の測定は、JIS R 9301-2-2:1999(「アルミナ粉末-第2部:物性測定方法-2:安息角」の項)に記載の方法に従うものとする。安息角の測定に用いる粉末は、造粒されていない(二次粒子が形成されていない)ものを用いる。安息角の測定は、測定に用いる粉末を、200℃で2時間保持した後、室温(15~25℃)まで冷却してから、60分以内に行う。これにより、粉末に吸着されている水分を除去して、水分が安息角の測定に与える影響を排除することができる。
 本発明の負極材用粉末において炭素被膜を構成する炭素の割合(以下、「被覆炭素濃度」ともいう。)は、0.5~7.0質量%であることが望ましい。被覆炭素濃度が、0.5質量%未満であると、負極材の導電性を高くする効果が十分に得られず、電池として、高い初期放電容量が得られない。一方、被覆炭素濃度を7質量%より多くすると、酸化珪素粉末粒子に対するリチウムイオンの吸蔵・放出が阻害され、この粉末を電池の負極材として用いたときの電池容量が低下してしまう。電池容量を十分に高くするために、被覆炭素濃度は、5質量%以下とすることが望ましい。
2.本発明の負極材用粉末の製造方法
 本発明の負極材用粉末は、酸化珪素粉末を準備する準備工程と、前記酸化珪素粉末を気流中に浮遊させながら、前記酸化珪素粉末を構成する粒子を相互に衝突させる衝突工程と、前記衝突工程後の前記酸化珪素粉末を炭素で被覆する工程とを含む製造方法により、製造することができる。
 準備工程で準備される酸化珪素粉末は、公知の方法、たとえば、二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させる方法により、製造することができる。このような粉末は、安息角が50°より大きいものであってもよい。
 衝突工程により、粉体を構成する粒子の角がとれて、粒子の形状は丸みを帯びるようになり、この酸化珪素粉末の安息角を小さく(たとえば、40~50°の範囲内に入るように)することができる。衝突工程は、たとえば、気流により粉体を分級する分級機、たとえば、サイクロ分級の原理により分級するものを用いて実施することができる。この場合、粉体は、気流により、たとえば、チャンバー内で旋回運動するようにされ、その際、粒子が相互に衝突する。分級により、粒度が異なる複数種の粉末が生じる。これらの粉末のうち、必要なもののみ選択して使用することとしてもよく、すべての種類の粉末を混合して使用することとしてもよい。
 本発明者らは、回転子(たとえば、プロペラ)により粉体を撹拌する装置で処理することにより、粉体を構成する粒子の角をとることも試みた。この処理を、図2に二次電子像を示す酸化珪素粉末に対して施した。回転子の回転数は、8000~10000rpmとした。図3に、この処理により得られた粉末の二次電子像を示す。図2と図3とを対比すると明らかなように、この処理によって、粒子は微細化されているが、粒子の角部は丸められていない。また、このような処理では、回転子の回転を開始してから数分で、回転子、および回転子を支持する支柱等に、粉末が付着凝集し、粉末を構成する粒子に回転子を衝突させることがほとんどできなくなった。
 このような装置では、高速回転している回転子が、粒子に、大きな相対速度で衝突する。これにより、粒子が、角部以外の部分でも破壊され、新たな角部が生じるので、粒子の形状が丸みを帯びなかったものと考えられる。できる限り、粒子の角部のみを取り去り、角部以外の部分が破壊されないようにするには、粒子に過度の力が加えられないようにする必要がある。この目的のためには、回転子を粒子に衝突させると、粒子には過度の力が加えられ、一方、気流中で粒子を相互に衝突させると、粒子に適切な力が加えられる。
 炭素被覆する工程は、たとえば、熱化学蒸着法(熱CVD)によるものとすることができる。衝突工程での処理を施した酸化珪素粉末の安息角、および体積メディアン径は、通常、炭素被覆する工程によっては、実質的に変化しない。この場合、衝突工程において、目的の安息角、および体積メディアン径が得られるように、酸化珪素粉末を処理することにより、炭素被覆した後、目的の安息角、および体積メディアン径を有する粉末が得られる。炭素被覆する工程により、安息角、または体積メディアン径が、実質的に変化する場合は、その変化を考慮した処理を衝突工程で行い、炭素被膜形成後に目的の安息角、または体積メディアン径が得られるようにする必要がある。
 本発明の効果を確認するために、以下の試験を行い、その結果を評価した。
1.試験条件
 まず、従来の負極材用粉末の原料として用いられる酸化珪素粉末(粉末A)を用意した。この粉末に対して、日清エンジニアリング株式会社製の分級機「エアロファインクラシファイア」を用いて、分級処理をした。粉末がこの処理を施されている間、粉末を構成する粒子は相互に衝突する。これにより、粉末を構成する粒子の角がとれて、粒子が丸みを帯びることが予想される。
 分級処理が終了した後、処理生成物である微粉と粗粉とを十分に混合した。分級処理とその後の混合とを、複数回繰り返し、当該繰り返し回数が異なる4種類の酸化珪素粉末(粉末B~E)を得た。繰り返し回数は、粉末B、粉末C、粉末D、および粉末Eの順に、多くなる。
 図4~図8に、それぞれ、粉末A~Eの二次電子像を示す。概ね、粉末A、粉末B、粉末C、粉末D、および粉末Eの順に、粒子の角部が少なくなり、粒子の形状は丸みを帯びていくことがわかる。
 次に、粉末A~Eのそれぞれに、熱化学蒸着法(熱CVD)により、炭素を被覆して、表面に炭素被膜が形成された酸化珪素粉末を得た。被覆炭素濃度(炭素被覆後の酸化珪素粉末において、炭素被膜を構成する炭素の割合(質量%))は、各粉末A~Eに対して、10質量%、7質量%、および5質量%とした。
 得られた粉末を用いて、負極材を作製し、この負極材を用いてリチウムイオン二次電池を作製し、このリチウムイオン二次電池を用いて充放電試験を行い、サイクル特性を測定した。
 負極は、以下のようにして作製した。まず、炭素被覆をした上記酸化珪素粉末の各々と、アセチレンブラックと、ポリアクリル酸とを、65:10:25の質量比で混合し、適量のn-メチルピロリドンを添加してスラリーを作製した。このスラリーを、厚さが20μmの銅箔上に塗布し、120℃で30分間乾燥して、シートにした後、このシートを一辺が1cmの四角形に打ち抜いて負極とした。
 リチウムイオン二次電池は、以下のようにして作製した。上述の負極と、対極として、リチウム箔と、セパレータとしてポリエチレン製多孔質フィルム(厚さは20μm)とを用いてコインセルを作製した。電解液として、エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを体積比で1:1で混合してなる混合溶液に、LiPF(六フッ化リンリチウム)を、1モル/リットルの割合で溶解させた溶液を作製し、この溶液(電解液)を、セパレータに含浸させた。このようなコインセルを、電池評価用のリチウムイオン二次電池とした。
 充放電試験は、株式会社ナガノ製の二次電池充放電試験装置を用いて行った。充電は、電圧が0Vに達するまでは0.1Cの定電流で行い、電圧が0Vに達した後はセル電圧を0Vに保ったまま行った。電流値が20μAを下回った時点で、充電を終了した。放電は、電圧が1.5Vに達するまで、0.1Cの定電流で行った。ここで、電流値に関して、1Cの値は、珪素酸化物の放電容量を1500mAh/gとして計算した。たとえば、電極の活物質重量をM(mg)としたときの0.1Cの電流値Iは、I=1500mAh/g×M×10-3×0.1として計算される。各試料について、充放電を100回行ったときの100回目の放電容量(充放電100回目の放電容量)を測定した。
2.試験結果
 表1~表3に、用いた炭素被覆酸化珪素粉末の安息角、および被覆炭素濃度、ならびに充放電100回目の放電容量を示す。表1は、粉末A~Eのそれぞれに、被覆炭素濃度10%で炭素を被覆した粉末(比較例1、および実施例1-1~4-1)についての結果を示す。表2は、粉末A~Eのそれぞれに、被覆炭素濃度7%で炭素を被覆した粉末(比較例2、および実施例1-2~4-2)についての結果を示す。表3は、粉末A~Eのそれぞれに、被覆炭素濃度5%で炭素を被覆した粉末(比較例3、および実施例1-3~4-3)についての結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例、および実施例の炭素被覆酸化珪素粉末(以下、「試料」という。)は、いずれも、体積メディアン径D50が、約4μmであり、全体として、モル比で、Si:O=1:1の平均組成を有していた。
 比較例1~3の試料は、分級機を用いた上述の処理(以下、「角とり処理」という)を行わなかった粉末Aを用いたものである。比較例1~3の試料の安息角は、いずれも、55°であり、本発明として規定する角度の範囲外であった。一方、角とり処理を行った粉末B~Eを用いた試料(実施例1-1~4-1、実施例1-2~4-2、実施例1-3~4-3)の安息角は、40~50°であり、いずれも、本発明として規定する角度の範囲内であった。
 角とり処理で分級および混合の繰り返し回数が多い試料(炭素被覆後)ほど、安息角は小さかった。粉末B~Eを用いた試料は、それぞれ、被覆炭素濃度によらず、同じ安息角(それぞれ、50°、48°、46°、および40°)を有していた。
 表1~表3において、充放電100回目の放電容量は、比較例1の測定値を100とした値を記している。表2、および表3では、表1において同じ粉末A~Eを用いた試料による放電容量を100としたときの増減値(%)を、括弧内に示している。表1~表3から明らかなように、同じ被覆炭素濃度の試料で比較すると、安息角が小さくなるほど、充放電100回目の放電容量は大きくなる。
 また、被覆炭素濃度が小さくなるほど、安息角の減少に対して充放電100回目の放電容量が向上する割合が、高くなる。従来は、充放電100回目の放電容量を高くするために、たとえば、被覆炭素濃度を10質量%以上とする必要があった。表1~表3に示す結果から、本発明によれば、より少ない被覆炭素濃度(たとえば、7質量%以下)で、従来被覆炭素濃度を10質量%とした場合と同等以上の充放電100回目の放電容量が得られる、すなわち、サイクル特性が向上することがわかる。
 従来の負極材用粉末を用いる場合、被覆炭素濃度を高くして、炭素被膜を厚くすることにより、負極材を構成する粒子の角部で炭素被膜が破壊されるのが抑制されるものと考えられる。一方、本発明によれば、負極材を構成する粒子は、角部が少ないので、炭素被膜を厚くしなくても、すなわち、被覆炭素濃度を高くしなくても、角部での炭素被膜の破壊が生じ難いものと考えられる。
2:負極、 2c:作用極

Claims (2)

  1.  リチウムイオン二次電池の負極材用粉末であって、
     炭素被膜を有する酸化珪素粉末を含み、
     当該負極材用粉末全体として、モル比で、Si:O=1:x(0.5≦x≦1.5)の平均組成を有し、
     体積メディアン径D50が、0.5μm≦D50≦10μmの関係を満たし、
     安息角が、40~50°であることを特徴とする、リチウムイオン二次電池の負極材用粉末。
  2.  当該負極材用粉末において前記炭素被膜を構成する炭素の割合が、0.5~7.0質量%であることを特徴とする、請求項1に記載の、リチウムイオン二次電池の負極材用粉末。
PCT/JP2014/002666 2013-07-10 2014-05-21 リチウムイオン二次電池の負極材用粉末 WO2015004834A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526139A JP5996802B2 (ja) 2013-07-10 2014-05-21 リチウムイオン二次電池の負極材用粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-144418 2013-07-10
JP2013144418 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015004834A1 true WO2015004834A1 (ja) 2015-01-15

Family

ID=52279548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002666 WO2015004834A1 (ja) 2013-07-10 2014-05-21 リチウムイオン二次電池の負極材用粉末

Country Status (2)

Country Link
JP (1) JP5996802B2 (ja)
WO (1) WO2015004834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3965193A4 (en) * 2020-04-24 2022-08-03 Ningde Amperex Technology Limited NEGATIVE ELECTRODE MATERIAL, POLE-BASED MATERIAL, ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272153A (ja) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd リチウム二次電池
WO2010071166A1 (ja) * 2008-12-19 2010-06-24 Necトーキン株式会社 非水電解液二次電池用負極、それを用いた非水電解液二次電池、および非水電解液二次電池用負極の製造方法
JP2010140885A (ja) * 2008-11-14 2010-06-24 Sony Corp 二次電池および負極
JP2011100745A (ja) * 2011-01-26 2011-05-19 Gs Yuasa Corp 非水電解質二次電池
WO2012036127A1 (ja) * 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 非水二次電池
JP2012533864A (ja) * 2009-07-23 2012-12-27 ジーエス カルテックス コーポレイション リチウム二次電池用負極活物質、その製造方法及びそれを含むリチウム二次電池
JP2013095647A (ja) * 2011-11-02 2013-05-20 Taiyo Yuden Co Ltd リチウムチタン複合酸化物、その製造方法、それを用いた電池用電極およびリチウムイオン二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272153A (ja) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd リチウム二次電池
JP2010140885A (ja) * 2008-11-14 2010-06-24 Sony Corp 二次電池および負極
WO2010071166A1 (ja) * 2008-12-19 2010-06-24 Necトーキン株式会社 非水電解液二次電池用負極、それを用いた非水電解液二次電池、および非水電解液二次電池用負極の製造方法
JP2012533864A (ja) * 2009-07-23 2012-12-27 ジーエス カルテックス コーポレイション リチウム二次電池用負極活物質、その製造方法及びそれを含むリチウム二次電池
WO2012036127A1 (ja) * 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 非水二次電池
JP2011100745A (ja) * 2011-01-26 2011-05-19 Gs Yuasa Corp 非水電解質二次電池
JP2013095647A (ja) * 2011-11-02 2013-05-20 Taiyo Yuden Co Ltd リチウムチタン複合酸化物、その製造方法、それを用いた電池用電極およびリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3965193A4 (en) * 2020-04-24 2022-08-03 Ningde Amperex Technology Limited NEGATIVE ELECTRODE MATERIAL, POLE-BASED MATERIAL, ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
JPWO2015004834A1 (ja) 2017-03-02
JP5996802B2 (ja) 2016-09-21

Similar Documents

Publication Publication Date Title
JP6380608B2 (ja) リチウム複合化合物粒子粉末の製造方法、リチウム複合化合物粒子粉末を非水電解質二次電池に用いる方法
KR101746187B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
JP5879761B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR101461220B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
JP5147170B2 (ja) リチウム二次電池
JP5731276B2 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP6667579B2 (ja) リチウム電池のカソードに用いるためのリン酸マンガン鉄リチウム系粒子、これを含有するリン酸マンガン鉄リチウム系粉末材料、およびその粉末材料を製造する方法
JP5610178B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
US20190379044A1 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
US10566612B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2017169129A1 (ja) 非水電解質二次電池
KR20100093034A (ko) 비수전해액 이차 전지용 Li-Ni계 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JP5478693B2 (ja) 二次電池用正極活物質及びその製造方法
KR20180059736A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20100111717A (ko) 비수전해질 이차전지
JP2015201388A (ja) 非水系二次電池用正極活物質及びその製造方法
WO2016027081A1 (en) Electroactive materials for metal-ion batteries
JP5997087B2 (ja) リチウム二次電池用正極材料の製造方法
JP2008156163A (ja) スピネル型リチウムマンガン酸化物及びその製造方法
JP6844602B2 (ja) 電極
JP2013171839A (ja) リチウム二次電池用電極、その製造方法及びそれを利用したリチウム二次電池
JP5996802B2 (ja) リチウムイオン二次電池の負極材用粉末
JP5741969B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
KR101409973B1 (ko) 1차 입자의 꼭지각의 크기가 조절된 리튬 망간 복합 산화물, 및 이의 제조 방법
JP2020009754A (ja) 電池の負極における使用のための活物質粉末及びそのような活物質粉末を含む電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822542

Country of ref document: EP

Kind code of ref document: A1