WO2014208787A1 - 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법 - Google Patents

건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법 Download PDF

Info

Publication number
WO2014208787A1
WO2014208787A1 PCT/KR2013/005656 KR2013005656W WO2014208787A1 WO 2014208787 A1 WO2014208787 A1 WO 2014208787A1 KR 2013005656 W KR2013005656 W KR 2013005656W WO 2014208787 A1 WO2014208787 A1 WO 2014208787A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pump
hydraulic
temperature
hydraulic oil
flow rate
Prior art date
Application number
PCT/KR2013/005656
Other languages
English (en)
French (fr)
Inventor
김진욱
이상희
신흥주
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to KR1020157035272A priority Critical patent/KR20160019895A/ko
Priority to PCT/KR2013/005656 priority patent/WO2014208787A1/ko
Priority to CN201380077842.0A priority patent/CN105339562A/zh
Priority to US14/899,875 priority patent/US20160145835A1/en
Priority to EP13887963.0A priority patent/EP3015609A4/en
Priority to CA2915498A priority patent/CA2915498A1/en
Publication of WO2014208787A1 publication Critical patent/WO2014208787A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41572Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6343Electronic controllers using input signals representing a temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/66Temperature control methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle

Definitions

  • the present invention relates to a control valve control apparatus and a control method of a construction machine, a hydraulic pump discharge flow rate control method, and more specifically, to the spool switching speed of the directional valve and the discharge of the hydraulic pump in accordance with the operating oil temperature in the winter below zero It relates to a control valve control apparatus and a control method of a construction machine for controlling the flow rate, and a hydraulic pump discharge flow rate control method.
  • the hydraulic oil for operating the hydraulic actuator of construction machinery can be used within the range of 90 °C to minus 20 °C, the air temperature is different for each region, construction machinery is used in the sub-zero working environment in winter, summer It is used in the working environment of about 50 °C.
  • the direction switching valve does not operate at the pilot signal pressure desired by the driver due to the viscosity of the hydraulic oil and the shrinkage of the gap between the components.
  • the directional valve is exposed to sub-zero temperatures, when the hydraulic actuator is gradually operated during a warm-up operation, when the warmed-up hydraulic fluid is supplied, the spool of the directional valve is thermally expanded to change direction. Stick phenomenon occurs in the valve.
  • a notch is formed as a passage for supplying hydraulic oil of the hydraulic pump to the hydraulic actuator on the spool of the directional valve.
  • the notch section is not opened completely, so it forms a micro passage. Therefore, the high temperature hydraulic oil passes through the notch section, and heat is generated. .
  • the direction switching valve spool is switched by the pilot signal pressure applied during operation of the operation lever (RCV)
  • the pilot signal pressure is detected by a pressure sensor provided in the flow path between the operation lever and the direction switching valve, and the preset operation is performed.
  • An electric signal is applied to the electromagnetic proportional pressure reducing valve PPRV of the hydraulic pump to control the discharge flow rate of the hydraulic pump so as to correspond to the flow rate relative to the pilot signal pressure corresponding to the operation amount of the lever.
  • the pilot signal pressure according to the operation lever operation amount is delayed due to the pressure loss while being transmitted to the spool of the direction switching valve. That is, since the difference between the pilot signal pressure detected by the pressure sensor and the pilot signal pressure measured at the spool inlet becomes larger than the image temperature condition, it takes more time to reach the steady state.
  • the required flow rate of the hydraulic pump is determined by an electrical signal applied to the electromagnetic proportional pressure reducing valve corresponding to the pilot signal pressure detected by the pressure sensor, regardless of the hydraulic oil temperature. .
  • the pressure loss is increased more than the image temperature condition, the hydraulic oil pressure discharged from the hydraulic pump is rapidly increased, or it may cause an abnormal phenomenon such as shaking of the work equipment.
  • the present invention is to solve the above-mentioned problems, the control valve control device and control of construction machinery to be able to eliminate the spool stick phenomenon by quickly switching the spool of the directional control valve when the hydraulic oil temperature is below the set temperature in the winter below zero It is an object to provide a method.
  • Another object of the present invention is to provide a hydraulic pump discharge flow rate control method of a construction machine for delaying the discharge flow rate of a hydraulic pump by a pilot signal pressure delay when the hydraulic oil temperature is lower than a set temperature during the winter and winter.
  • variable displacement hydraulic pump
  • a control valve installed in a flow path between the hydraulic pump and the hydraulic actuator and controlling the start, stop, and direction change of the hydraulic actuator during switching;
  • a temperature sensor detecting a hydraulic oil temperature of the hydraulic oil tank connected to the hydraulic pump
  • a control signal corresponding to the operation amount of the operating lever is applied to the control valve, and the hydraulic oil temperature detected by the signal of the temperature sensor is preset.
  • a controller for increasing and adjusting the operation signal according to the operation amount of the operation lever to a predetermined ratio to correspond to the detected operating oil temperature when the temperature is lower than the temperature, and then applying the adjusted control signal to the control valve Provides a control valve control device for construction machinery.
  • a variable displacement hydraulic pump A hydraulic actuator driven by the hydraulic oil supplied from the hydraulic pump;
  • a control valve installed in a flow path between the hydraulic pump and the hydraulic actuator and controlling the start, stop, and direction change of the hydraulic actuator during switching;
  • An operation lever for outputting an operation signal corresponding to the operation amount;
  • a temperature sensor for detecting the temperature of the hydraulic oil of the hydraulic oil tank:
  • the operation signal according to the operation amount of the operating lever is increased by a predetermined ratio corresponding to the detected hydraulic oil temperature, and then adjusted by the control valve. It provides a control valve control method for a construction machine comprising the; applying a control signal.
  • a variable displacement hydraulic pump A hydraulic actuator driven by the hydraulic oil supplied from the hydraulic pump; A hydraulic operation lever for outputting an operation signal corresponding to the operation amount; A control valve installed in a flow path between the hydraulic pump and the hydraulic actuator and controlling the start, stop, and direction change of the hydraulic actuator during switching; A temperature sensor for detecting a temperature of the hydraulic oil of the hydraulic oil tank;
  • an electronic proportional pressure reducing valve for controlling the hydraulic pump discharge flow rate by a secondary pressure generated corresponding to the applied electrical signal:
  • the hydraulic pump discharge flow rate decreases as the detected hydraulic oil temperature belonging to any hydraulic oil upper limit temperature and lower limit temperature approaches the lower limit temperature.
  • a variable displacement hydraulic pump A hydraulic actuator driven by the hydraulic oil supplied from the hydraulic pump; An electronic operation lever for outputting an electrical signal in proportion to the operation amount; A control valve installed in a flow path between the hydraulic pump and the hydraulic actuator and controlling the start, stop, and direction change of the hydraulic actuator during switching; A temperature sensor for detecting a temperature of the hydraulic oil of the hydraulic oil tank;
  • an electronic proportional pressure reducing valve for controlling the hydraulic pump discharge flow rate by a secondary pressure generated corresponding to the applied electrical signal:
  • the hydraulic pump discharge flow rate decreases as the detected hydraulic oil temperature belonging to any hydraulic oil upper limit temperature and lower limit temperature approaches the lower limit temperature.
  • a shuttle valve for selecting a relatively high pressure
  • a pressure sensor for detecting the pilot signal pressure output from the shuttle valve and transmits a detection signal to the controller It features.
  • An electromagnetic proportional pressure reducing valve that generates a secondary pressure corresponding to the electrical signal applied from the controller and applies the secondary pressure to a regulator for controlling the discharge flow rate of the hydraulic pump;
  • an electromagnetic proportional valve configured to apply a pilot signal pressure to the control valve in proportion to an electrical signal output from the controller in proportion to an operation amount of the manipulation lever.
  • a moving average line of pilot signal pressure applied to the control valve is used as an effective input, and the discharge flow rate of the hydraulic pump is delayed by varying the average parameter according to the calculated gain value.
  • the polynomial polynomial for the electrical signal applied to the electromagnetic proportional pressure reducing valve corresponding to the pilot signal pressure applied to the control valve is set as [Equation 1] below, and the coefficient is changed according to the calculated gain value to change the hydraulic pump. It is characterized by delaying the discharge flow rate.
  • the exponential function for the electrical signal applied to the electromagnetic proportional pressure reducing valve corresponding to the pilot signal pressure applied to the control valve is set as [Equation 2] below, and the coefficient is changed according to the calculated gain value to change the hydraulic pump. It is characterized by delaying the discharge flow rate.
  • the moving average line of the electrical signal corresponding to the manipulation amount of the electronic control lever is used as an effective input, and the discharge flow rate of the hydraulic pump is delayed by varying the average parameter according to the calculated gain value.
  • the polynomial polynomial for the electrical signal applied to the electronic proportional pressure reducing valve is set as [Equation 1] below to correspond to the operation amount of the electronic control lever, and the coefficient is changed according to the calculated gain value to change the hydraulic pump discharge flow rate. It is characterized by delaying.
  • the exponential function for the electric signal applied to the electromagnetic proportional pressure reducing valve is set as [Equation 2] below to correspond to the operation amount of the electronic control lever, and the coefficient is changed according to the calculated gain value to change the hydraulic pump discharge flow rate. It is characterized by delaying.
  • the present invention having the above-described configuration, when the hydraulic oil temperature is below the set temperature in the sub-zero winter, by quickly switching the spool of the direction switching valve to eliminate the spool stick phenomenon due to personal accidents or collisions with objects around the work equipment malfunction The occurrence of safety accidents can be reduced.
  • the discharge flow rate of the hydraulic pump is reduced by the delay of the pilot signal pressure, thereby reducing the pressure loss and the load pressure, thereby preventing the abnormal phenomenon such as the shaking of the working device.
  • FIG. 1 is a hydraulic circuit diagram of a control valve control apparatus for a construction machine according to a preferred embodiment of the present invention
  • FIG. 2 is a control algorithm of a control valve control method of a construction machine according to a preferred embodiment of the present invention
  • FIG. 3 is a graph showing a spool switching pressure relation of a control valve versus a stroke of an operating lever in a control valve control apparatus for a construction machine according to an exemplary embodiment of the present invention
  • FIG. 4 is a hydraulic circuit diagram of a control device used in the hydraulic pump discharge flow rate control method for a construction machine according to an embodiment of the present invention
  • FIG 5 is another hydraulic circuit diagram of the control device used in the hydraulic pump discharge flow rate control method of the construction machine according to the preferred embodiment of the present invention.
  • FIG. 6 is a control algorithm of the hydraulic pump discharge flow rate control apparatus of the construction machine shown in FIG.
  • FIG. 1 is a hydraulic circuit diagram of a control valve control apparatus for a construction machine according to a preferred embodiment of the present invention
  • Figure 2 is a control algorithm of a control valve control method for a construction machine according to a preferred embodiment of the present invention
  • Figure 3 In the control valve control apparatus of a construction machine according to a preferred embodiment of the invention, a graph showing the relationship between the spool switching pressure of the control valve relative to the stroke of the operating lever
  • Figure 4 is a hydraulic pump discharge of the construction machine according to a preferred embodiment of the present invention
  • 5 is a hydraulic circuit diagram of a control device used in the flow rate control method
  • FIG. 5 is another hydraulic circuit diagram of the control device used in the hydraulic pump discharge flow rate control method for a construction machine according to a preferred embodiment of the present invention
  • Figure 7 is a control valve hydraulic pump discharge oil of the construction machine shown in Figure 5 A control algorithm for the quantity control method.
  • hydraulic pump 1 a variable displacement hydraulic pump 1 (hereinafter referred to as "hydraulic pump") connected to the engine;
  • a hydraulic actuator (not shown) driven by the hydraulic oil supplied from the hydraulic pump (1);
  • a control valve (2) installed in the flow path between the hydraulic pump (1) and the hydraulic actuator and controlling the starting, stopping, and direction change of the hydraulic actuator at the time of switching;
  • a shuttle valve 7 for selecting a relatively high pressure and a pilot signal pressure output from the shuttle valve 7 are detected to detect a detection signal.
  • the pressure sensor 8 which transmits to (6) can be provided.
  • An electromagnetic proportional pressure reducing valve 10 generating a secondary pressure corresponding to the electrical signal applied from the controller 6 and applying the secondary pressure to the regulator 9 for controlling the discharge flow rate of the hydraulic pump 1. );
  • An electromagnetic proportional valve 11 for applying a pilot signal pressure proportional to an electrical signal output from the controller 6 to the control valve 2 in proportion to the manipulation amount of the manipulation lever 3 may be provided.
  • It may be an electronic control lever for outputting an electrical signal in proportion to the manipulated amount.
  • It may be a hydraulic operation lever for outputting a pilot signal pressure corresponding to the operation amount.
  • Variable displacement hydraulic pump 1 (hereinafter referred to as "hydraulic pump”); A hydraulic actuator driven by the hydraulic oil supplied from the hydraulic pump 1; A control valve (2) installed in the flow path between the hydraulic pump (1) and the hydraulic actuator and controlling the starting, stopping, and direction change of the hydraulic actuator at the time of switching; An operation lever 3 for outputting an operation signal corresponding to the operation amount;
  • a temperature sensor (5) for detecting the temperature of the hydraulic oil of the hydraulic oil tank (4):
  • the operation signal according to the amount of operation of the operating lever 3 is increased to a predetermined ratio to correspond to the detected hydraulic oil temperature and then adjusted. And applying the adjusted control signal to the control valve 2 (S400, S600).
  • the controller 6 when operating the operation lever 3 to operate the work device, the controller 6 detects the electric signal or the pilot signal pressure output in accordance with the operation amount.
  • the temperature of the hydraulic oil in the hydraulic oil tank 4 is measured by the temperature sensor 5, and the detection signal is transmitted to the controller 6.
  • control valve 2 spool is switched by the pilot signal pressure applied from the pilot pump 12 through the electromagnetic proportional valve 11 by the operation lever 3 (S700), and the pilot pump
  • the regulator 9 is operated by the pilot signal pressure applied from the electromagnetic proportional pressure reducing valve 10 from 12 to control the discharge flow rate of the hydraulic pump 1.
  • the hydraulic oil discharged from the hydraulic pump 1 is supplied to the hydraulic actuator via the control valve 2 to operate the working device (S800), the hydraulic oil discharged from the hydraulic actuator via the control valve (2) the hydraulic oil tank Return to (4).
  • the operation signal applied to the electromagnetic proportional valve 11 in accordance with the operation amount of the operation lever (3) adjusts by increasing the predetermined ratio to correspond to the detected hydraulic oil temperature.
  • the pilot signal pressure corresponding to the operation amount is formed high at a predetermined ratio (P2) and applied to the control valve 2. do. Therefore, even when the operation lever 3 is finely operated by the same stroke S, the pilot signal pressure applied to the control valve 2 becomes high, so that the notch section formed on the spool of the control valve 2 can pass quickly. It becomes possible.
  • the operating signal according to the operating amount of the operating lever (3) is adjusted to correspond to the detected hydraulic oil temperature and applied to the control valve (2) to quickly switch the spool, By preventing the spool stick phenomenon due to thermal expansion in the notch section of the spool, it is possible to prevent the malfunction of the work equipment.
  • Variable displacement hydraulic pumps 13 and 13a (hereinafter referred to as "hydraulic pumps") connected to an engine or the like;
  • a hydraulic actuator (not shown) driven by hydraulic oil supplied from the hydraulic pumps 13 and 13a;
  • a hydraulic operation lever 14 for outputting an operation signal corresponding to the operation amount;
  • a control valve (20, 20a) installed in the flow path between the hydraulic pump (13, 13a) and the hydraulic actuator, and controls the start, stop and direction change of the hydraulic actuator at the time of switching;
  • a temperature sensor 16 for detecting a hydraulic oil temperature of the hydraulic oil tank 15;
  • Electromagnetic proportional pressure reducing valves (17, 17a) (PPRV) for controlling the discharge flow rates of the hydraulic pumps (13, 13a) by the secondary pressure generated corresponding to the applied electrical signal;
  • a hydraulic pump discharge flow rate control method for a construction machine comprising a; controller 18 for inputting a detection signal of the operating oil temperature by the temperature sensor 16, and applying an electrical signal to the electromagnetic proportional pressure reducing valve (17, 17a)
  • the electronic proportional pressure reducing valve (S) reduces an electrical signal corresponding to the pilot signal pressure applied to the control valves 20 and 20a. 17 and 17a) (S40); And
  • the hydraulic pump ( 13, 13a) calculating a gain value for reducing the discharge flow rate to increase, and applying an electrical signal to the electromagnetic proportional pressure reducing valves 17 and 17a corresponding to the calculated gain value (S50 and S60); do.
  • the pilot signal pressure applied to the control valves 20 and 20a is measured by the pressure sensor 19 so as to correspond to the operation amount of the hydraulic control lever 14, thereby detecting the detection signal.
  • the controller 18 To the controller 18.
  • the temperature sensor 16 measures the hydraulic oil temperature in the hydraulic oil tank 15, and transmits a detection signal to the controller 18.
  • the electrical signal corresponding to the pilot signal pressure applied to the control valve (20, 20a) is It is applied to the electromagnetic proportional pressure reducing valves 17 and 17a. Accordingly, the electromagnetic proportional pressure reducing valves 17 and 17a generate secondary pressures corresponding to the applied electrical signals, thereby controlling the generated secondary pressures to control the swash plate tilt angles of the hydraulic pumps 13 and 13a (not shown). ), The discharge flow rates of the hydraulic pumps 13 and 13a can be controlled.
  • the detected hydraulic oil temperature belonging to any hydraulic oil upper limit temperature and the lower limit temperature is the lower limit temperature.
  • it calculates a gain value for reducing the discharge flow rates of the hydraulic pumps 13 and 13a, and applies an electrical signal to the electromagnetic proportional pressure reducing valves 17 and 17a corresponding to the calculated gain value.
  • the moving average line of the pilot signal pressure applied to the control valve 20 is used as an effective input, and the discharge flow rate of the hydraulic pumps 13 and 13a is delayed by varying the average parameter according to the calculated gain value. It is done.
  • the polynomial polynomial for the electrical signals applied to the electromagnetic proportional pressure reducing valves 17 and 17a is set to [Equation 1] below to correspond to the pilot signal pressure applied to the control valve 20, and to the calculated gain value. It is characterized in that to change the coefficient according to delay the discharge flow rate of the hydraulic pump (13, 13a).
  • Equation 2 The exponential function for the electrical signal applied to the electromagnetic proportional pressure reducing valves 17 and 17a corresponding to the pilot signal pressure applied to the control valve 20 is defined by Equation 2 below. It is characterized by delaying the discharge flow rate of the hydraulic pump (13, 13) by changing the coefficient accordingly.
  • Variable displacement hydraulic pumps 13 and 13a (hereinafter referred to as "hydraulic pumps”); A hydraulic actuator (not shown) driven by hydraulic oil supplied from the hydraulic pumps 13 and 13a; An electronic operation lever 22 outputting an electrical signal in proportion to the operation amount; A control valve (20,20a) installed in the flow path between the hydraulic pump (13) and the hydraulic actuator and controlling the start, stop, and direction change of the hydraulic actuator during switching; A temperature sensor 16 for detecting the temperature of the hydraulic oil in the hydraulic oil tank 15; Electromagnetic proportional pressure reducing valves (17, 17a) for controlling the discharge flow rates of the hydraulic pumps (13, 13a) by the secondary pressure generated corresponding to the applied electrical signal; An electromagnetic proportional pressure reducing valve 21 for applying a secondary pressure generated in correspondence with an applied electrical signal to the control valves 20 and 20a; A hydraulic pump discharge flow rate control method for a construction machine comprising a; controller 18 for inputting a detection signal of the operating oil temperature by the temperature sensor 16, and applying an electrical signal to the electromagnetic proportional pressure reducing valve (17, 17
  • the hydraulic pump ( 13, 13a) calculating the gain value for reducing the discharge flow rate to increase, and applying an electrical signal to the electromagnetic proportional pressure reducing valves 17 and 17a corresponding to the calculated gain value (S50 and S60A); do.
  • the hydraulic pump ( 13, 13a) When the hydraulic oil temperature detected by the signal of the temperature sensor 16 is lower than a predetermined hydraulic oil upper limit temperature, the detected hydraulic oil temperature belonging to any hydraulic oil upper limit temperature and the lower limit temperature is closer to the lower limit temperature, the hydraulic pump ( 13, 13a)
  • the control method except for the step (S60A) of calculating the gain value for reducing the discharge flow rate increases to apply an electrical signal to the electromagnetic proportional pressure reducing valve (17, 17a) corresponding to the calculated gain value 4 and 6 are the same as the hydraulic pump discharge flow rate control method of the construction machine shown in the description thereof will be omitted.
  • the present invention having the above-described configuration, when the operating oil temperature is below the set temperature in the sub-zero winter, it is possible to reduce the spool stick phenomenon by reducing the spool stick phenomenon by increasing the spool switching speed of the directional valve valve.
  • the pressure loss and the load pressure can be reduced by reducing the discharge flow rate of the hydraulic pump by the delay of the pilot signal pressure due to the increase in the hydraulic fluid viscosity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

영하의 동절기에 작동유 온도에 따라 방향절환밸브의 스풀 절환속도 및 유압펌프의 토출유량을 제어하기 위한 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법을 개시한다. 본 발명에 따른 건설기계의 제어밸브 제어장치에 있어서, 가변용량형 유압펌프; 상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터; 상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브; 조작량에 대응되게 조작신호를 출력하는 조작레버; 상기 유압펌프에 연결되는 작동유탱크의 작동유 온도를 검출하는 온도센서; 상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 높은 경우 상기 조작레버의 조작량에 대응하는 제어신호를 상기 제어밸브에 인가하고, 상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 낮은 경우 상기 조작레버의 조작량에 따른 조작신호를 검출된 작동유 온도에 대응되게 소정비율로 증대시켜 조정한 후, 상기 제어밸브에 조정된 제어신호를 인가하는 컨트롤러;를 구비하는 것을 특징으로 하는 건설기계의 제어밸브 제어장치를 제공한다.

Description

건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법
본 발명은 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법에 관한 것으로, 보다 구체적으로 설명하면, 영하의 동절기에 작동유 온도에 따라 방향절환밸브의 스풀 절환속도 및 유압펌프의 토출유량을 제어하기 위한 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법에 관한 것이다.
일반적으로, 건설기계의 유압액츄에이터를 동작시키는 작동유는 영상 90℃에서 영하 20℃ 범위내에서 사용할 수 있고, 각 지역별로 대기온도가 상이하며, 건설기계는 동절기에 영하의 작업환경에서 사용되며, 하절기에는 영상 50℃정도의 작업환경에서 사용되고 있다.
특히, 영하의 동절기에는 작동유의 점도 및 각 콤퍼넌트의 틈새 수축 등으로 인해 방향절환밸브가 운전자가 원하는 파일럿신호압에서 동작하지않는다. 일예로서 방향절환밸브가 영하의 온도에 노출된 상태에서, 웜업(warm-up)동작 중에 유압액츄에이터를 서서히 작동시킬 경우, 웜업된 고온의 작동유가 공급되는 경우 방향절환밸브의 스풀이 열팽창되어 방향절환밸브 내에서 스틱현상이 발생하게 된다.
이때, 붐 다운, 아암 인 또는 선회동작 중에 정지시킬 경우, 스풀 스틱에 의해 스풀이 중립으로 복귀되지않고, 붐 다운, 아암 인 동작이 계속되거나 선회장치가 정지되지않고 계속해서 선회되는 현상이 발생된다.
특히, 영하의 동절기에 웜업 동작시 작업장치를 급격히 동작시키지않고, 서서히 미세조작하면서 작동유 온도를 상승시키게 된다. 상기 방향절환밸브의 스풀에 유압펌프의 작동유를 유압액츄에이터에 공급하기 위한 통로로서 노치(notch)가 형성된다. 이때 방향절환밸브를 서서히 절환시킬 경우 노치구간이 완전히 개방되지않고 미소통로를 형성하게 되므로, 고온의 작동유가 노치구간을 통과하면서 발열이 발생되며, 발열로 인해 스풀의 노치구간의 직경이 급격히 팽창된다.
이로 인해, 스풀의 스틱현상이 발생할 요인이 커지므로 안전사고 발생될 확률이 높아지게 된다. 따라서 동절기의 영하 온도조건에서는 스풀의 노치구간을 빨리 절환시켜 노치구간을 완전하게 개방시킴에 따라 발열 요인을 줄여 스틱현상을 없애는 것이 요구되고 있다.
한편, 조작레버(RCV) 조작시 인가되는 파일럿신호압에 의해 방향절환밸브 스풀을 절환시킬 경우, 조작레버와 방향절환밸브 사이의 유로에 설치된 압력센서에 의해 파일럿신호압을 검출하여, 미리설정된 조작레버의 조작량에 대응되는 파일럿신호압 대비 유량에 대응하도록, 유압펌프의 전자비례감압밸브(PPRV)에 전기적신호를 인가시켜 유압펌프의 토출유량을 제어하게 된다.
이때 동절기의 영하 온도조건에서는 작동유 온도가 낮아져 점도가 높아지게 되므로, 조작레버 조작량에 따른 파일럿신호압이 방향절환밸브의 스풀에 전달되는 동안 압력손실로 인해 지연되어진다. 즉 압력센서에 의해 검출되는 파일럿신호압과 스풀 입구에서 계측되는 파일럿신호압의 차이가 영상 온도조건보다 커지게 되므로, 정상상태까지 도달하는 데 더 많은 시간이 소요된다.
따라서, 스풀 개구면적이 지연 되면서 증가하는 반면에, 유압펌프의 요구유량은 작동유 온도와 상관없이, 압력센서에 의해 검출된 파일럿신호압에 대응하여 전자비례감압밸브에 인가되는 전기적신호에 의해 정해진다. 이로 인해 영상 온도조건보다 압력손실이 증가되며, 유압펌프로부터 토출되는 작동유 압력이 급격하게 증가되거나, 작업장치 떨림 등의 이상현상을 초래할 수 있게 된다.
따라서, 본 발명은 전술한 문제점을 해결하고자 하는 것으로, 영하의 동절기에 작동유 온도가 설정온도 이하일 경우 방향절환밸브의 스풀을 빠르게 절환시켜 스풀 스틱현상을 없앨수 있도록 한 건설기계의 제어밸브 제어장치 및 제어방법을 제공하는 것을 목적으로 한다.
또한, 영하의 동절기에 작동유 온도가 설정온도 이하일 경우 파일럿신호압 지연만큼 유압펌프의 토출유량을 지연시키기 위한 건설기계의 유압펌프 토출유량 제어방법을 제공하는 것을 목적으로 한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 일실시예에 따르면, 가변용량형 유압펌프;
상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터;
상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브;
조작량에 대응되게 조작신호를 출력하는 조작레버;
상기 유압펌프에 연결되는 작동유탱크의 작동유 온도를 검출하는 온도센서; 및
상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 높은 경우 상기 조작레버의 조작량에 대응하는 제어신호를 상기 제어밸브에 인가하고, 상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 낮은 경우 상기 조작레버의 조작량에 따른 조작신호를 검출된 작동유 온도에 대응되게 소정비율로 증대시켜 조정한 후, 상기 제어밸브에 조정된 제어신호를 인가하는 컨트롤러;를 구비하는 것을 특징으로 하는 건설기계의 제어밸브 제어장치를 제공한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 일실시예에 따르면, 가변용량형 유압펌프; 상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터; 상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브; 조작량에 대응되게 조작신호를 출력하는 조작레버; 작동유탱크의 작동유 온도를 검출하는 온도센서;를 포함하는 건설기계의 제어밸브 제어방법에 있어서:
상기 조작레버의 조작량에 대응하는 조작신호를 검출하는 단계;
상기 온도센서에 의해 검출되는 작동유 온도와 미리설정된 온도 크기를 비교하는 단계;
상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 높은 경우, 상기 조작레버의 조작량에 대응하는 제어신호를 상기 제어밸브에 인가하는 단계; 및
상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 낮은 경우, 상기 조작레버의 조작량에 따른 조작신호를 검출된 작동유 온도에 대응되게 소정비율로 증대시켜 조정한 후, 상기 제어밸브에 조정된 제어신호를 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계의 제어밸브 제어방법을 제공한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 일실시예에 따르면, 가변용량형 유압펌프; 상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터; 조작량에 대응되게 조작신호를 출력하는 유압식 조작레버; 상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브; 작동유탱크의 작동유 온도를 검출하는 온도센서; 인가되는 전기적신호에 대응되게 생성하는 2차압력에 의해 상기 유압펌프 토출유량을 제어하는 전자비례감압밸브;를 포함하는 건설기계의 유압펌프 토출유량 제어방법에 있어서:
상기 조작레버의 조작량에 대응되게 상기 제어밸브에 인가되는 파일럿신호압을 검출하는 단계;
상기 온도센서에 의해 검출되는 작동유 온도와 미리설정된 작동유 상한온도 크기를 비교하는 단계;
상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우, 상기 제어밸브에 인가되는 파일럿신호압에 대응하는 전기적신호를 상기 전자비례감압밸브에 인가하는 단계; 및
상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우, 임의의 작동유 상한온도와 하한온도 사이에 속하는 상기 검출된 작동유 온도가 하한온도에 근접될수록 상기 유압펌프 토출유량을 감소시키기 위한 게인값이 커지도록 연산하여, 연산된 게인값에 대응되게 상기 전자비례감압밸브에 전기적신호를 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법을 제공한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 일실시예에 따르면, 가변용량형 유압펌프; 상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터; 조작량에 비례하여 전기적신호를 출력하는 전자식 조작레버; 상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브; 작동유탱크의 작동유 온도를 검출하는 온도센서; 인가되는 전기적신호에 대응되게 생성하는 2차압력에 의해 상기 유압펌프 토출유량을 제어하는 전자비례감압밸브;를 포함하는 건설기계의 유압펌프 토출유량 제어방법에 있어서:
상기 조작레버의 조작량에 비례하여 출력되는 전기적신호를 검출하는 단계;
상기 온도센서에 의해 검출되는 작동유 온도와 미리설정된 작동유 상한온도 크기를 비교하는 단계;
상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우, 상기 조작레버의 조작량에 비례하는 전기적신호를 상기 전자비례감압밸브에 인가하는 단계; 및
상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우, 임의의 작동유 상한온도와 하한온도 사이에 속하는 상기 검출된 작동유 온도가 하한온도에 근접될수록 상기 유압펌프 토출유량을 감소시키기 위한 게인값이 커지도록 연산하여, 연산된 게인값에 대응되게 상기 전자비례감압밸브에 전기적신호를 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법을 특징으로 한다.
상기 제어밸브의 양단에 입력되는 파일럿신호압 중, 상대적으로 높은 압력을 선택하는 셔틀밸브와, 상기 셔틀밸브로부터 출력되는 파일럿신호압을 검출하여 검출신호를 상기 컨트롤러에 전송하는 압력센서를 구비하는 것을 특징으로 한다.
상기 컨트롤러로부터 인가되는 전기적신호에 대응하는 2차압력을 생성하고, 상기 유압펌프의 토출유량을 제어하는 레귤레이터에 상기 2차압력을 인가하는 전자비례감압밸브;
상기 조작레버의 조작량에 비례하여 상기 컨트롤러로부터 출력되는 전기적신호에 비례하는 파일럿신호압을 상기 제어밸브에 인가하는 전자비례밸브를 구비하는 것을 특징으로 한다.
상기 조작레버는,
조작량에 비례하여 전기적신호를 출력하는 전자식 조작레버인 것을 특징으로 한다.
상기 조작레버는,
조작량에 대응되게 파일럿신호압을 출력하는 유압식 조작레버인 것을 특징으로를 특징으로 한다.
상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
상기 제어밸브에 인가되는 파일럿신호압의 이동 평균선을 유효한 입력으로 사용하되, 상기 연산된 게인값에 따라 평균모수를 달리하여 상기 유압펌프의 토출유량을 지연시키는 것을 특징으로 한다.
상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
상기 제어밸브에 인가되는 파일럿신호압에 대응되게 상기 전자비례감압밸브에 인가되는 전기적신호에 대한 다차 다항식을 아래 [수식 1]으로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프 토출유량을 지연시키는 것을 특징으로 한다.
[수식 1]
y = a * Pi²+ b * Pi + c
여기에서, y는 전자비례감압밸브에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다).
상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
상기 제어밸브에 인가되는 파일럿신호압에 대응되게 상기 전자비례감압밸브에 인가되는 전기적신호에 대한 지수 함수를 아래 [수식 2]로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프 토출유량을 지연시키는 것을 특징으로 한다.
[수식 2]
y = a * e(b*x) + c
여기에서, y는 전자비례감압밸브에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다).
상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
상기 전자식 조작레버의 조작량에 대응하는 전기적신호의 이동 평균선을 유효한 입력으로 사용하되, 상기 연산된 게인값에 따라 평균모수를 달리하여 상기 유압펌프의 토출유량을 지연시키는 것을 특징으로 한다.
상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
상기 전자식 조작레버의 조작량에 대응되게 상기 전자비례감압밸브에 인가되는 전기적신호에 대한 다차 다항식을 아래 [수식 1]으로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프 토출유량을 지연시키는 것을 특징으로 한다.
[수식 1]
y = a * Pi²+ b * Pi + c
여기에서, y는 전자비례감압밸브에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다).
상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
상기 전자식 조작레버의 조작량에 대응되게 상기 전자비례감압밸브에 인가되는 전기적신호에 대한 지수 함수를 아래 [수식 2]로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프 토출유량을 지연시키는 것을 특징으로 한다.
[수식 2]
y = a * e(b*x) + c
여기에서, y는 전자비례감압밸브에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다).
전술한 구성을 갖는 본 발명에 따르면, 영하의 동절기에 작동유 온도가 설정온도 이하일 경우, 방향절환밸브의 스풀을 빠르게 절환시켜 스풀 스틱현상을 없애 작업장치 오동작으로 인한 인명사고 또는 주변의 물체와 충돌으로 인한 안전사고 발생을 줄일 수 있다. 또한 작동유 점도 증가로 인해 파일럿신호압 지연만큼 유압펌프의 토출유량을 감소시킴에 따라 압력손실 및 부하압력을 줄이고, 작업장치의 떨림 등의 이상현상을 방지할 수 있는 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 건설기계의 제어밸브 제어장치의 유압회로도,
도 2는 본 발명의 바람직한 실시예에 따른 건설기계의 제어밸브 제어방법의 제어 알고리즘,
도 3은 본 발명의 바람직한 실시예에 따른 건설기계의 제어밸브 제어장치에서, 조작레버의 스트로크 대비 제어밸브의 스풀 절환압력 관계를 나타내는 그래프,
도 4는 본 발명의 바람직한 실시예에 따른 건설기계의 유압펌프 토출유량 제어방법에 이용되는 제어장치의 유압회로도,
도 5는 본 발명의 바람직한 실시예에 따른 건설기계의 유압펌프 토출유량 제어방법에 이용되는 제어장치의 다른 유압회로도,
도 6은 도 4에 도시된 건설기계의 유압펌프 토출유량 제어장치의 제어 알고리즘,
도 7은 도 5에 도시된 건설기계의 제어밸브 유압펌프 토출유량 제어장치의 제어 알고리즘이다.
〈도면의 주요 부분에 대한 참조 부호의 설명〉
1; 유압펌프
2; 제어밸브
3; 조작레버
4; 작동유탱크
5; 온도센서
6; 컨트롤러
7; 셔틀밸브
8; 압력센서
9; 레귤레이터
10; 전자비례감압밸브
11; 전자비례밸브
12; 파일럿펌프
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 따른 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법을 상세히 설명하기로 한다.
도 1은 본 발명의 바람직한 실시예에 따른 건설기계의 제어밸브 제어장치의 유압회로도이고, 도 2는 본 발명의 바람직한 실시예에 따른 건설기계의 제어밸브 제어방법의 제어 알고리즘이며, 도 3은 본 발명의 바람직한 실시예에 따른 건설기계의 제어밸브 제어장치에서, 조작레버의 스트로크 대비 제어밸브의 스풀 절환압력 관계를 나타내는 그래프이며, 도 4는 본 발명의 바람직한 실시예에 따른 건설기계의 유압펌프 토출유량 제어방법에 이용되는 제어장치의 유압회로도이며, 도 5는 본 발명의 바람직한 실시예에 따른 건설기계의 유압펌프 토출유량 제어방법에 이용되는 제어장치의 다른 유압회로도이며, 도 6은 도 4에 도시된 건설기계의 유압펌프 토출유량 제어방법의 제어 알고리즘이며, 도 7은 도 5에 도시된 건설기계의 제어밸브 유압펌프 토출유량 제어방법의 제어 알고리즘이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 건설기계의 제어밸브 제어장치는, 엔진 등에 연결되는 가변용량형 유압펌프(1)(이하 "유압펌프" 라고 함);
상기 유압펌프(1)로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터(미도시됨);
상기 유압펌프(1)와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브(2);
조작량에 대응되게 조작신호를 출력하는 조작레버(3);
상기 유압펌프(1)에 연결되는 작동유탱크(4)의 작동유 온도를 검출하는 온도센서(5); 및
상기 온도센서(5)의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 높은 경우 상기 조작레버(3)의 조작량에 대응하는 제어신호를 상기 제어밸브(2)에 인가하고, 상기 온도센서(5)의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 낮은 경우 상기 조작레버(3)의 조작량에 따른 조작신호를 검출된 작동유 온도에 대응되게 소정비율로 증대시켜 조정한 후, 상기 제어밸브(2)에 조정된 제어신호를 인가하는 컨트롤러(6);를 구비한다.
상기 제어밸브(2)의 양단에 입력되는 파일럿신호압 중, 상대적으로 높은 압력을 선택하는 셔틀밸브(7)와, 상기 셔틀밸브(7)로부터 출력되는 파일럿신호압을 검출하여 검출신호를 상기 컨트롤러(6)에 전송하는 압력센서(8)를 구비할 수 있다.
상기 컨트롤러(6)로부터 인가되는 전기적신호에 대응하는 2차압력을 생성하고, 상기 유압펌프(1)의 토출유량을 제어하는 레귤레이터(9)에 상기 2차압력을 인가하는 전자비례감압밸브(10);
상기 조작레버(3)의 조작량에 비례하여 상기 컨트롤러(6)로부터 출력되는 전기적신호에 비례하는 파일럿신호압을 상기 제어밸브(2)에 인가하는 전자비례밸브(11)를 구비할 수 있다.
상기 조작레버(3)는,
조작량에 비례하여 전기적신호를 출력하는 전자식 조작레버일 수 있다.
상기 조작레버(3)는,
조작량에 대응되게 파일럿신호압을 출력하는 유압식 조작레버일 수 있다.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 건설기계의 제어밸브 제어방법은,
가변용량형 유압펌프(1)(이하 "유압펌프" 라고 함); 상기 유압펌프(1)로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터; 상기 유압펌프(1)와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브(2); 조작량에 대응되게 조작신호를 출력하는 조작레버(3); 작동유탱크(4)의 작동유 온도를 검출하는 온도센서(5);를 포함하는 건설기계의 제어밸브 제어방법에 있어서:
상기 조작레버(3)의 조작량에 대응하는 조작신호를 검출하는 단계(S100);
상기 온도센서(5)에 의해 검출되는 작동유 온도와 미리설정된 온도 크기를 비교하는 단계(S300);
상기 온도센서(5)의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 높은 경우, 상기 조작레버(3)의 조작량에 대응하는 제어신호를 상기 제어밸브(2)에 인가하는 단계(S400,S500); 및
상기 온도센서(5)의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 낮은 경우, 상기 조작레버(3)의 조작량에 따른 조작신호를 검출된 작동유 온도에 대응되게 소정비율로 증대시켜 조정한 후, 상기 제어밸브(2)에 조정된 제어신호를 인가하는 단계(S400,S600);를 포함한다.
전술한 구성에 의하면, S100에서와 같이, 작업장치를 동작시키기 위해 조작레버(3)를 조작할 경우 조작량에 따라 출력되는 전기적신호 또는 파일럿신호압을 컨트롤러(6)에서 검출하게 된다.
S200에서와 같이, 상기 온도센서(5)에 의해 작동유탱크(4) 내의 작동유 온도를 계측하여 검출신호를 컨트롤러(6)에 전송한다.
S300에서와 같이, 상기 온도센서(5)에 의해 검출된 작동유탱크(4)의 작동유온도와 미리설정된 작동유 온도의 크기를 비교한다.
S400에서와 같이, 상기 온도센서(5)에 의해 검출된 작동유 온도와 미리설정된 작동유 온도를 비교판단한 후, 검출된 작동유 온도가 미리설정된 작동유 온도보다 높은 경우 "S500"으로 진행하고, 검출된 작동유 온도가 미리설정된 작동유 온도보다 낮은 경우 "S600"으로 진행한다.
S500에서와 같이, 상기 온도센서(5)에 의해 검출된 작동유 온도가 미리설정된 작동유 온도보다 높은 경우, 상기 컨트롤러(6)로부터 상기 조작레버(3)의 조작량에 대응되게 미리설정된 제어신호를 상기 전자비례밸브(11)에 인가한다. 상기 파일럿펌프(12)로부터 토출되는 작동유는 상기 전자비례밸브(11)에 인가되는 전기적신호에 비례하도록 전자비례밸브(11)를 경유하여 제어밸브(2)에 파일럿신호압으로 인가된다. 즉 도 3의 그래프선도 S500에서와 같이, 조작레버(3)를 스트로크(S)만큼 조작할 경우, 조작량에 대응하는 파일럿신호압(P1)을 제어밸브(2)에 인가할 수 있다.
또한, 상기 컨트롤러(6)로부터 전자비례감압밸브(10)에 전기적신호가 인가되므로 전기적신호에 대응되게 2차압력을 생성하고, 생성된 2차압력은 상기 유압펌프(1)의 토출유량을 제어하는 레귤레이터(9)에 인가된다. 따라서 상기 레귤레이터(9) 작동에 의해 유압펌프(1)의 사판경전각을 제어하므로 유압펌프(1)의 토출유량을 제어할 수 있다.
전술한 바와 같이, 상기 조작레버(3) 조작에 의해 파일럿펌프(12)로부터 전자비례밸브(11)를 통해 인가되는 파일럿신호압에 의해 제어밸브(2) 스풀을 절환시키고(S700), 파일럿펌프(12)로부터 전자비례감압밸브(10)를 통해 인가되는 파일럿신호압에 의해 레귤레이터(9)를 작동시켜 유압펌프(1)의 토출유량을 제어한다.
따라서 유압펌프(1)로부터 토출되는 작동유는 제어밸브(2)를 경유하여 유압액츄에이터에 공급되므로 작업장치를 작동시키고(S800), 유압액츄에이터로부터 배출되는 작동유는 제어밸브(2)를 경유하여 작동유탱크(4)로 귀환된다.
S600에서와 같이, 상기 온도센서(5)의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 낮은 경우, 상기 조작레버(3)의 조작량에 따라 상기 전자비례밸브(11)에 인가되는 조작신호를, 검출된 작동유 온도에 대응되게 소정비율로 증대시켜 조정한다. 도 3의 그래프선도 S600에서와 같이, 조작레버(3)를 스트로크(S)만큼 조작할 경우에도, 조작량에 대응하는 파일럿신호압은 소정비율로 높게 형성되어(P2) 제어밸브(2)에 인가된다. 따라서 상기 조작레버(3)를 동일한 스트로크(S)만큼 미세조작할 경우에도 제어밸브(2)에 인가되는 파일럿신호압이 높게 되므로, 제어밸브(2)의 스풀에 형성되는 노치구간을 빨리 통과할 수 있게 된다.
이로 인해 영하의 동절기에 작동유 온도가 설정온도보다 낮은 경우, 조작레버(3) 조작량에 따른 조작신호를 검출된 작동유 온도에 대응되게 높게 조정하여 제어밸브(2)에 인가시켜 스풀을 빨리 절환시키므로, 스풀의 노치구간에서 열팽창에 의한 스플 스틱현상을 방지함에 따라 작업장치의 오동작을 방지할 수 있다.
도 4 및 도 6을 참조하면, 본 발명의 일 실시예에 따른 건설기계의 유압펌프 토출유량 제어방법은,
엔진 등에 연결되는 가변용량형 유압펌프(13,13a)(이하 "유압펌프" 라고 함); 상기 유압펌프(13,13a)로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터(미도시됨); 조작량에 대응되게 조작신호를 출력하는 유압식 조작레버(14); 상기 유압펌프(13,13a)와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브(20,20a); 작동유탱크(15)의 작동유 온도를 검출하는 온도센서(16); 인가되는 전기적신호에 대응되게 생성하는 2차압력에 의해 상기 유압펌프(13,13a) 토출유량을 제어하는 전자비례감압밸브(17,17a)(PPRV); 상기 온도센서(16)에 의한 작동유 온도의 검출신호가 입력되고, 상기 전자비례감압밸브(17,17a)에 전기적신호를 인가하는 컨트롤러(18);를 포함하는 건설기계의 유압펌프 토출유량 제어방법에 있어서:
상기 조작레버(14)의 조작량에 대응되게 상기 제어밸브(20,20a)에 인가되는 파일럿신호압을 압력센서(19)에 의해 검출하는 단계(S10);
상기 온도센서(16)에 의해 작동유탱크(15) 내의 작동유 온도를 계측하여 검출신호를 컨트롤러(18)에 전송하는 단계(S20);
상기 온도센서(16)에 의해 검출되는 작동유 온도와 미리설정된 작동유 상한온도 크기를 비교하는 단계(S30);
상기 온도센서(16)의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우, 상기 제어밸브(20,20a)에 인가되는 파일럿신호압에 대응하는 전기적신호를 상기 전자비례감압밸브(17,17a)에 인가하는 단계(S40); 및
상기 온도센서(16)의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우, 임의의 작동유 상한온도와 하한온도 사이에 속하는 상기 검출된 작동유 온도가 하한온도에 근접될수록 상기 유압펌프(13,13a) 토출유량을 감소시키기 위한 게인값이 커지도록 연산하여, 연산된 게인값에 대응되게 상기 전자비례감압밸브(17,17a)에 전기적신호를 인가하는 단계(S50,S60);를 포함한다.
전술한 구성에 의하면, S10에서와 같이, 상기 유압식 조작레버(14)의 조작량에 대응되게 상기 제어밸브(20,20a)에 인가되는 파일럿신호압을 압력센서(19)에 의해 계측하여, 검출신호를 컨트롤러(18)에 전송한다.
S20에서와 같이, 상기 온도센서(16)에 의해 작동유탱크(15) 내의 작동유 온도를 계측하여, 검출신호를 컨트롤러(18)에 전송한다.
S30에서와 같이, 상기 온도센서(16)에 의해 검출되는 작동유 온도와 미리설정된 작동유 상한온도 크기를 비교 판단한다. 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우 "S40"으로 진행하고, 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우 "S50"으로 진행한다.
S40에서와 같이, 상기 온도센서(16)의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우, 상기 제어밸브(20,20a)에 인가되는 파일럿신호압에 대응하는 전기적신호를 상기 전자비례감압밸브(17,17a)에 인가한다. 따라서 전자비례감압밸브(17,17a)는 인가되는 전기적신호에 대응되는 2차 압력을 생성하여, 생성된 2차 압력을 유압펌프(13,13a)의 사판경전각을 제어하는 레귤레이터(미도시됨)에 인가시킴에 따라, 유압펌프(13,13a)의 토출유량을 제어할 수 있다.
S50,S60에서와 같이, 상기 온도센서(16)의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우, 임의의 작동유 상한온도와 하한온도 사이에 속하는 상기 검출된 작동유 온도가 하한온도에 근접될수록 상기 유압펌프(13,13a) 토출유량을 감소시키기 위한 게인값이 커지도록 연산하여, 연산된 게인값에 대응되게 상기 전자비례감압밸브(17,17a)에 전기적신호를 인가한다.
상기 연산된 게인값에 의해 상기 유압펌프(13,13a)의 토출유량을 제어하는 방법으로,
상기 제어밸브(20)에 인가되는 파일럿신호압의 이동 평균선을 유효한 입력으로 사용하되, 상기 연산된 게인값에 따라 평균모수를 달리하여 상기 유압펌프(13,13a)의 토출유량을 지연시키는 것을 특징으로 한다.
상기 연산된 게인값에 의해 상기 유압펌프(13,13a)의 토출유량을 제어하는 방법으로,
상기 제어밸브(20)에 인가되는 파일럿신호압에 대응되게 상기 전자비례감압밸브(17,17a)에 인가되는 전기적신호에 대한 다차 다항식을 아래 [수식 1]으로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프(13,13a) 토출유량을 지연시키는 것을 특징으로 한다.
[수식 1]
y = a * Pi²+ b * Pi + c
여기에서, y는 전자비례감압밸브(17,17a)에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다).
상기 연산된 게인값에 의해 상기 유압펌프(13,13a)의 토출유량을 제어하는 방법으로,
상기 제어밸브(20)에 인가되는 파일럿신호압에 대응되게 상기 전자비례감압밸브(17,17a)에 인가되는 전기적신호에 대한 지수 함수를 아래 [수식 2]로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프(13,13) 토출유량을 지연시키는 것을 특징으로 한다.
[수식 2]
y = a * e(b*x) + c
여기에서, y는 전자비례감압밸브(17,17a)에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다).
도 5 및 도 7을 참조하면, 본 발명의 일 실시예에 따른 건설기계의 유압펌프 토출유량 제어방법은,
가변용량형 유압펌프(13,13a)(이하 "유압펌프" 라고 함); 상기 유압펌프(13,13a)로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터(미도시됨); 조작량에 비례하여 전기적신호를 출력하는 전자식 조작레버(22); 상기 유압펌프(13)와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브(20,20a); 작동유탱크(15) 내의 작동유 온도를 검출하는 온도센서(16); 인가되는 전기적신호에 대응되게 생성하는 2차압력에 의해 상기 유압펌프(13,13a) 토출유량을 제어하는 전자비례감압밸브(17,17a); 인가되는 전기적신호에 대응되게 생성하는 2차압력을 제어밸브(20,20a)에 인가하는 전자비례감압밸브(21); 상기 온도센서(16)에 의한 작동유 온도의 검출신호가 입력되고, 상기 전자비례감압밸브(17,17a)에 전기적신호를 인가하는 컨트롤러(18);를 포함하는 건설기계의 유압펌프 토출유량 제어방법에 있어서:
상기 조작레버(22)의 조작량에 비례하여 출력되는 전기적신호를 검출하는 단계(S10);
상기 온도센서(16)에 의해 작동유탱크(15) 내의 작동유온도를 계측하여, 검출신호를 컨트롤러(18)에 전송하는 단계(S20);
상기 온도센서(16)에 의해 검출되는 작동유 온도와 미리설정된 작동유 상한온도 크기를 비교하는 단계(S30);
상기 온도센서(16)의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우, 상기 조작레버(22)의 조작량에 비례하는 전기적신호를 상기 전자비례감압밸브(17,17a)에 인가하는 단계(S40A); 및
상기 온도센서(16)의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우, 임의의 작동유 상한온도와 하한온도 사이에 속하는 상기 검출된 작동유 온도가 하한온도에 근접될수록 상기 유압펌프(13,13a) 토출유량을 감소시키기 위한 게인값이 커지도록 연산하여, 연산된 게인값에 대응되게 상기 전자비례감압밸브(17,17a)에 전기적신호를 인가하는 단계(S50,S60A);를 포함한다.
이때, 상기 온도센서(16)의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우, 상기 전자식 조작레버(22)의 조작량에 비례하는 전기적신호를 상기 전자비례감압밸브(17,17a)에 인가시키는 단계(S40A)와,
상기 온도센서(16)의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우, 임의의 작동유 상한온도와 하한온도 사이에 속하는 상기 검출된 작동유 온도가 하한온도에 근접될수록 상기 유압펌프(13,13a) 토출유량을 감소시키기 위한 게인값이 커지도록 연산하여, 연산된 게인값에 대응되게 상기 전자비례감압밸브(17,17a)에 전기적신호를 인가시키는 단계(S60A)를 제외한 제어방법은, 도 4 및 도 6에 도시된 건설기계의 유압펌프 토출유량 제어방법과 동일하므로 이들의 상세한 설명은 생략한다.
여기에서, 상술한 본 발명에서는 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야에서 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경할 수 있음을 이해할 수 있을 것이다.
전술한 구성을 갖는 본 발명에 따른면, 영하의 동절기에 작동유 온도가 설정온도 이하일 경우 방향절환밸브의 스풀 절환속도를 높여 스풀 스틱현상을 없애 작업장치 오동작을 줄일 수 있다. 또한 작동유 점도 증가로 인해 파일럿신호압 지연만큼 유압펌프의 토출유량을 감소시킴에 따라 압력손실 및 부하압력을 줄일 수 있다.

Claims (14)

  1. 가변용량형 유압펌프;
    상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터;
    상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브;
    조작량에 대응되게 조작신호를 출력하는 조작레버;
    상기 유압펌프에 연결되는 작동유탱크의 작동유 온도를 검출하는 온도센서; 및
    상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 높은 경우 상기 조작레버의 조작량에 대응하는 제어신호를 상기 제어밸브에 인가하고, 상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 낮은 경우 상기 조작레버의 조작량에 따른 조작신호를 검출된 작동유 온도에 대응되게 소정비율로 증대시켜 조정한 후, 상기 제어밸브에 조정된 제어신호를 인가하는 컨트롤러;를 구비하는 것을 특징으로 하는 건설기계의 제어밸브 제어장치.
  2. 제1항에 있어서, 상기 제어밸브의 양단에 입력되는 파일럿신호압 중, 상대적으로 높은 압력을 선택하는 셔틀밸브와, 상기 셔틀밸브로부터 출력되는 파일럿신호압을 검출하여 검출신호를 상기 컨트롤러에 전송하는 압력센서를 구비하는 것을 특징으로 하는 건설기계의 제어밸브 제어장치.
  3. 제1항에 있어서, 상기 컨트롤러로부터 인가되는 전기적신호에 대응하는 2차압력을 생성하고, 상기 유압펌프의 토출유량을 제어하는 레귤레이터에 상기 2차압력을 인가하는 전자비례감압밸브;
    상기 조작레버의 조작량에 비례하여 상기 컨트롤러로부터 출력되는 전기적신호에 비례하는 파일럿신호압을 상기 제어밸브에 인가하는 전자비례밸브를 구비하는 것을 특징으로 하는 건설기계의 제어밸브 제어장치.
  4. 제1항에 있어서, 상기 조작레버는,
    조작량에 비례하여 전기적신호를 출력하는 전자식 조작레버인 것을 특징으로 하는 건설기계의 제어밸브 제어장치.
  5. 제1항에 있어서, 상기 조작레버는,
    조작량에 대응되게 파일럿신호압을 출력하는 유압식 조작레버인 것을 특징으로 하는 건설기계의 제어밸브 제어장치.
  6. 가변용량형 유압펌프; 상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터; 상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브; 조작량에 대응되게 조작신호를 출력하는 조작레버; 작동유탱크의 작동유 온도를 검출하는 온도센서;를 포함하는 건설기계의 제어밸브 제어방법에 있어서:
    상기 조작레버의 조작량에 대응하는 조작신호를 검출하는 단계;
    상기 온도센서에 의해 검출되는 작동유 온도와 미리설정된 온도 크기를 비교하는 단계;
    상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 높은 경우, 상기 조작레버의 조작량에 대응하는 제어신호를 상기 제어밸브에 인가하는 단계; 및
    상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 온도보다 낮은 경우, 상기 조작레버의 조작량에 따른 조작신호를 검출된 작동유 온도에 대응되게 소정비율로 증대시켜 조정한 후, 상기 제어밸브에 조정된 제어신호를 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계의 제어밸브 제어방법.
  7. 가변용량형 유압펌프; 상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터; 조작량에 대응되게 조작신호를 출력하는 유압식 조작레버; 상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브; 작동유탱크의 작동유 온도를 검출하는 온도센서; 인가되는 전기적신호에 대응되게 생성하는 2차압력에 의해 상기 유압펌프 토출유량을 제어하는 전자비례감압밸브;를 포함하는 건설기계의 유압펌프 토출유량 제어방법에 있어서:
    상기 조작레버의 조작량에 대응되게 상기 제어밸브에 인가되는 파일럿신호압을 검출하는 단계;
    상기 온도센서에 의해 검출되는 작동유 온도와 미리설정된 작동유 상한온도 크기를 비교하는 단계;
    상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우, 상기 제어밸브에 인가되는 파일럿신호압에 대응하는 전기적신호를 상기 전자비례감압밸브에 인가하는 단계; 및
    상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우, 임의의 작동유 상한온도와 하한온도 사이에 속하는 상기 검출된 작동유 온도가 하한온도에 근접될수록 상기 유압펌프 토출유량을 감소시키기 위한 게인값이 커지도록 연산하여, 연산된 게인값에 대응되게 상기 전자비례감압밸브에 전기적신호를 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법.
  8. 가변용량형 유압펌프; 상기 유압펌프로부터 공급되는 작동유에 의해 구동하는 유압액츄에이터; 조작량에 비례하여 전기적신호를 출력하는 전자식 조작레버; 상기 유압펌프와 유압액츄에이터 사이의 유로에 설치되고, 절환시 상기 유압액츄에이터의 기동, 정지 및 방향전환을 제어하는 제어밸브; 작동유탱크의 작동유 온도를 검출하는 온도센서; 인가되는 전기적신호에 대응되게 생성하는 2차압력에 의해 상기 유압펌프 토출유량을 제어하는 전자비례감압밸브;를 포함하는 건설기계의 유압펌프 토출유량 제어방법에 있어서:
    상기 조작레버의 조작량에 비례하여 출력되는 전기적신호를 검출하는 단계;
    상기 온도센서에 의해 검출되는 작동유 온도와 미리설정된 작동유 상한온도 크기를 비교하는 단계;
    상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 높은 경우, 상기 조작레버의 조작량에 비례하는 전기적신호를 상기 전자비례감압밸브에 인가하는 단계; 및
    상기 온도센서의 신호에 의해 검출된 작동유 온도가 미리설정된 작동유 상한온도보다 낮은 경우, 임의의 작동유 상한온도와 하한온도 사이에 속하는 상기 검출된 작동유 온도가 하한온도에 근접될수록 상기 유압펌프 토출유량을 감소시키기 위한 게인값이 커지도록 연산하여, 연산된 게인값에 대응되게 상기 전자비례감압밸브에 전기적신호를 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법.
  9. 제7항에 있어서, 상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
    상기 제어밸브에 인가되는 파일럿신호압의 이동 평균선을 유효한 입력으로 사용하되, 상기 연산된 게인값에 따라 평균모수를 달리하여 상기 유압펌프의 토출유량을 지연시키는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법.
  10. 제7항에 있어서, 상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
    상기 제어밸브에 인가되는 파일럿신호압에 대응되게 상기 전자비례감압밸브에 인가되는 전기적신호에 대한 다차 다항식을 아래 [수식 1]으로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프 토출유량을 지연시키는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법.
    [수식 1]
    y = a * Pi²+ b * Pi + c
    여기에서, y는 전자비례감압밸브에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다)
  11. 제7항에 있어서, 상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
    상기 제어밸브에 인가되는 파일럿신호압에 대응되게 상기 전자비례감압밸브에 인가되는 전기적신호에 대한 지수 함수를 아래 [수식 2]로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프 토출유량을 지연시키는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법.
    [수식 2]
    y = a * e(b*x) + c
    여기에서, y는 전자비례감압밸브에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다)
  12. 제8항에 있어서, 상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
    상기 전자식 조작레버의 조작량에 대응하는 전기적신호의 이동 평균선을 유효한 입력으로 사용하되, 상기 연산된 게인값에 따라 평균모수를 달리하여 상기 유압펌프의 토출유량을 지연시키는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법.
  13. 제8항에 있어서, 상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
    상기 전자식 조작레버의 조작량에 대응되게 상기 전자비례감압밸브에 인가되는 전기적신호에 대한 다차 다항식을 아래 [수식 1]으로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프 토출유량을 지연시키는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법.
    [수식 1]
    y = a * Pi²+ b * Pi + c
    여기에서, y는 전자비례감압밸브에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다)
  14. 제8항에 있어서, 상기 연산된 게인값에 의해 상기 유압펌프의 토출유량을 제어하는 방법으로,
    상기 전자식 조작레버의 조작량에 대응되게 상기 전자비례감압밸브에 인가되는 전기적신호에 대한 지수 함수를 아래 [수식 2]로 정해놓고, 상기 연산된 게인값에 따라 계수를 변경하여 상기 유압펌프 토출유량을 지연시키는 것을 특징으로 하는 건설기계의 유압펌프 토출유량 제어방법.
    [수식 2]
    y = a * e(b*x) + c
    여기에서, y는 전자비례감압밸브에 인가되는 전기적신호 출력값, a = (1/gain) * A, b = (1/gain) * B, c = (1/gain) * C(이때 A,B,C는 상수 이다)
PCT/KR2013/005656 2013-06-26 2013-06-26 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법 WO2014208787A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157035272A KR20160019895A (ko) 2013-06-26 2013-06-26 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법
PCT/KR2013/005656 WO2014208787A1 (ko) 2013-06-26 2013-06-26 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법
CN201380077842.0A CN105339562A (zh) 2013-06-26 2013-06-26 用于控制工程机械的控制阀的设备及其控制方法以及用于控制液压泵的排放流量的方法
US14/899,875 US20160145835A1 (en) 2013-06-26 2013-06-26 Device for controlling control valve of construction machine, method for controlling same, and method for controlling discharge flow rate of hydraulic pump
EP13887963.0A EP3015609A4 (en) 2013-06-26 2013-06-26 Device for controlling control valve of construction machine, method for controlling same, and method for controlling discharge flow rate of hydraulic pump
CA2915498A CA2915498A1 (en) 2013-06-26 2013-06-26 Device for controlling control valve of construction machine, method for controlling same, and method for controlling discharge flow rate of hydraulic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/005656 WO2014208787A1 (ko) 2013-06-26 2013-06-26 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법

Publications (1)

Publication Number Publication Date
WO2014208787A1 true WO2014208787A1 (ko) 2014-12-31

Family

ID=52142104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005656 WO2014208787A1 (ko) 2013-06-26 2013-06-26 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법

Country Status (6)

Country Link
US (1) US20160145835A1 (ko)
EP (1) EP3015609A4 (ko)
KR (1) KR20160019895A (ko)
CN (1) CN105339562A (ko)
CA (1) CA2915498A1 (ko)
WO (1) WO2014208787A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154186A1 (ja) 2016-03-10 2017-09-14 日立建機株式会社 建設機械
WO2017171021A1 (ja) * 2016-03-31 2017-10-05 株式会社タダノ 油圧システム及び非常操作方法
JP6640039B2 (ja) * 2016-06-22 2020-02-05 住友重機械工業株式会社 ショベル
KR20180037369A (ko) 2016-10-04 2018-04-12 두산인프라코어 주식회사 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2018105789A1 (ko) * 2016-12-09 2018-06-14 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 유압 제어 시스템
US11105347B2 (en) * 2017-07-20 2021-08-31 Eaton Intelligent Power Limited Load-dependent hydraulic fluid flow control system
CN110998034B (zh) * 2017-07-27 2022-04-29 住友建机株式会社 挖土机
US10633827B2 (en) * 2017-10-16 2020-04-28 Deere & Company Temperature responsive hydraulic derate
EP3791025B1 (en) * 2018-05-11 2022-07-06 Clark Equipment Company Hydraulic drive control
JP7133376B2 (ja) * 2018-07-12 2022-09-08 株式会社小松製作所 作業車両
JP7324655B2 (ja) * 2019-08-23 2023-08-10 川崎重工業株式会社 建設機械の油圧システム
US12000416B2 (en) * 2020-03-27 2024-06-04 Hitachi Construction Machinery Co., Ltd. Work machine
CN112482485A (zh) * 2020-11-10 2021-03-12 徐州徐工挖掘机械有限公司 执行机构轨迹控制方法、装置、控制器以及存储介质
CN113357231B (zh) * 2021-07-13 2024-01-23 徐州徐工挖掘机械有限公司 一种液压挖掘机自动快速暖机***与使用方法
CN114483712B (zh) * 2022-02-04 2023-04-07 浙江大学 一种液压缸微内泄漏检测试验台及其检测方法
CN116400584B (zh) * 2023-06-05 2023-08-11 中国空气动力研究与发展中心高速空气动力研究所 大载荷电液位置伺服***快速精确控制***应用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008533B1 (ko) * 1991-11-30 1995-07-31 삼성중공업주식회사 유압펌프의 토출유량 제어장치
JP2003247504A (ja) * 2002-02-27 2003-09-05 Hitachi Constr Mach Co Ltd 作業機械の油圧制御装置
KR101032731B1 (ko) * 2009-06-02 2011-05-06 볼보 컨스트럭션 이큅먼트 에이비 해머장치를 구비한 굴삭기용 유압시스템
KR20110054894A (ko) * 2009-11-18 2011-05-25 볼보 컨스트럭션 이큅먼트 에이비 건설장비의 작동유 냉각시스템
KR20120026199A (ko) * 2010-09-09 2012-03-19 볼보 컨스트럭션 이큅먼트 에이비 고지대 또는 한냉 지역에서 엔진시동을 제어하는 건설기계용 유량제어장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644335B1 (en) * 1993-03-23 2002-09-04 Hitachi Construction Machinery Co., Ltd. Hydraulic drive for hydraulic work machine
US5564274A (en) * 1995-12-13 1996-10-15 Caterpillar Inc. Cold oil protection circuit for a hydraulic system
US5743089A (en) * 1996-07-25 1998-04-28 Kabushiki Kaisha Kobe Seiko Sho Hydraulic control system
US7096772B2 (en) * 2004-08-30 2006-08-29 Caterpillar S.A.R.L. System and method for controlling hydraulic fluid flow
US8403098B2 (en) * 2005-02-28 2013-03-26 Caterpillar Inc. Work machine hydraulics control system
ATE546671T1 (de) * 2007-06-25 2012-03-15 Komatsu Mfg Co Ltd Hydraulische vorrichtung und bearbeitungsmaschine
KR100915207B1 (ko) * 2007-10-16 2009-09-02 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 중장비용 유압회로
US20110011356A1 (en) * 2008-03-25 2011-01-20 Komatsu Ltd. Fan Drive Controlling Device and Construction Machine
US8234860B2 (en) * 2008-08-29 2012-08-07 Caterpillar Inc. Machine control system having hydraulic warmup procedure
JP5600807B2 (ja) * 2010-09-02 2014-10-01 ボルボ コンストラクション イクイップメント アーベー 建設機械用油圧回路
CN101974926A (zh) * 2010-09-29 2011-02-16 三一重机有限公司 一种用于挖掘机的自动控制液压油温的回油***
US8555843B2 (en) * 2011-02-24 2013-10-15 Deere & Company Charge bypass system for engine start
CN202755395U (zh) * 2012-09-07 2013-02-27 三一重机有限公司 一种挖掘机液压油温度控制装置及挖掘机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008533B1 (ko) * 1991-11-30 1995-07-31 삼성중공업주식회사 유압펌프의 토출유량 제어장치
JP2003247504A (ja) * 2002-02-27 2003-09-05 Hitachi Constr Mach Co Ltd 作業機械の油圧制御装置
KR101032731B1 (ko) * 2009-06-02 2011-05-06 볼보 컨스트럭션 이큅먼트 에이비 해머장치를 구비한 굴삭기용 유압시스템
KR20110054894A (ko) * 2009-11-18 2011-05-25 볼보 컨스트럭션 이큅먼트 에이비 건설장비의 작동유 냉각시스템
KR20120026199A (ko) * 2010-09-09 2012-03-19 볼보 컨스트럭션 이큅먼트 에이비 고지대 또는 한냉 지역에서 엔진시동을 제어하는 건설기계용 유량제어장치

Also Published As

Publication number Publication date
KR20160019895A (ko) 2016-02-22
EP3015609A1 (en) 2016-05-04
CN105339562A (zh) 2016-02-17
EP3015609A4 (en) 2017-03-01
CA2915498A1 (en) 2014-12-31
US20160145835A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2014208787A1 (ko) 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법
WO2014208828A1 (ko) 플로팅기능을 갖는 건설기계용 유압회로 및 플로팅기능 제어방법
WO2016104832A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2014129676A1 (ko) 보호장치가 구비된 건설기계용 유압시스템
WO2013051741A1 (ko) 건설기계용 우선 제어시스템
WO2012070703A1 (ko) 건설기계용 유량 제어밸브
WO2016072535A1 (ko) 건설기계용 주행직진장치 및 그 제어방법
WO2014123253A1 (en) Swing control system for construction machines
WO2012169676A1 (ko) 건설기계용 유압시스템
WO2016043365A1 (ko) 건설기계용 유압회로
WO2014069702A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2015102120A1 (ko) 유압제어장치 및 이를 구비한 건설기계
WO2012002589A1 (ko) 건설기계의 유압펌프 제어장치
WO2014112668A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2014098284A1 (ko) 플로팅 기능이 구비된 건설기계
WO2016175352A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2015152434A1 (ko) 건설기계용 작업장치 합류 유량 제어장치 및 그 제어방법
WO2017018559A1 (ko) 건설기계용 요소수의 냉각, 히팅장치 및 그 제어방법
WO2014081053A1 (ko) 건설기계의 우선 기능 제어장치 및 그 제어방법
WO2017094985A1 (ko) 건설기계의 유압 제어 장치 및 유압 제어 방법
WO2015160003A1 (ko) 건설기계용 주행 제어장치 및 그 제어방법
WO2010041841A2 (ko) 용량가변형 압축기의 용량제어밸브
WO2016204309A1 (ko) 건설기계용 아암 재생장치 및 제어방법
WO2019117375A1 (en) Hydraulic machine
WO2016200123A1 (ko) 건설기계의 제어장치 및 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077842.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035272

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2915498

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14899875

Country of ref document: US

Ref document number: 2013887963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE