WO2014208785A1 - 터치 패널용 패드 및 제조 방법 - Google Patents

터치 패널용 패드 및 제조 방법 Download PDF

Info

Publication number
WO2014208785A1
WO2014208785A1 PCT/KR2013/005626 KR2013005626W WO2014208785A1 WO 2014208785 A1 WO2014208785 A1 WO 2014208785A1 KR 2013005626 W KR2013005626 W KR 2013005626W WO 2014208785 A1 WO2014208785 A1 WO 2014208785A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
pad
pattern
touch
conductive layer
Prior art date
Application number
PCT/KR2013/005626
Other languages
English (en)
French (fr)
Inventor
박준영
정주현
송영진
배상모
이성림
김진주
Original Assignee
주식회사 티모스
주식회사 티메이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티모스, 주식회사 티메이 filed Critical 주식회사 티모스
Priority to CN201380003932.5A priority Critical patent/CN104508607A/zh
Priority to PCT/KR2013/005626 priority patent/WO2014208785A1/ko
Publication of WO2014208785A1 publication Critical patent/WO2014208785A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a method of manufacturing a touch panel, and more particularly, to a touch panel pad and a manufacturing method using a metal having a translucent property.
  • the touch panel is an input device that can be easily used by anyone by touching a button with a finger to interactively and intuitively operate a computer.
  • the touch panel is integrated with a display, the touch panel is used as a touch screen.
  • the input device to perform.
  • a resistive method, a capacitive method, an infrared method, an ultrasonic method, and the like are used according to a method of sensing a touch, and in the future, the use of a capacitive method that is advantageous for durability and light and simple characteristics will be increased.
  • Such a capacitive touch panel particularly a touch screen, has an indium tin oxide (ITO) made of a transparent conductor on a transparent insulator film such as polyethylene terephthalate (PET) or glass, and an edge of the ITO.
  • ITO indium tin oxide
  • PET polyethylene terephthalate
  • a pad made of lead wire such as silver paste is laminated up and down by adding an adhesive layer or an insulator layer.
  • ITO films are known to be transparent up to about 92% (single layer) but have a relatively high resistance and are very fragile. Relatively high proportions of films are damaged during production and require expensive and time consuming test steps.
  • ITO film has very few suppliers capable of manufacturing the film, which causes logistic problems for users of the film.
  • TCO transparent conducting oxide
  • the manufacturing method of the touch panel pad using the metal mesh method according to the prior art simultaneously forms the transparent electrode pattern and the wiring electrode pattern as one metal layer layer.
  • the transparent electrode portion When the transparent electrode portion is formed in a mesh form, the surface area of the metal 10 becomes very small, so that the surface resistance value and the circuit resistance value increase.
  • the metal 10 should be coated with a thickness of 1000 A ° or more, which inevitably increases the opacity of the metal 10 and causes a problem that the circuit visibility of the window portion is lowered.
  • the circuit width In order to improve the circuit visibility of the window portion, the circuit width must be formed narrower, and the circuit width must be implemented to 5 ⁇ m or less.
  • the transparent electrode pattern and the wiring electrode pattern are simultaneously formed with one metal layer layer, when the circuit width of the window portion is narrowed to improve circuit visibility, the circuit resistance value is increased and the circuit width is increased. If not narrowed, the circuit visibility becomes low.
  • the conventional metal mesh method has a problem in that it is difficult to simultaneously satisfy two requirements for reducing circuit resistance while improving circuit visibility in the transparent electrode pattern and the wiring electrode pattern.
  • an object of the present invention is to provide a method for manufacturing a pad for a touch panel using a two-layer structure of a metal having a translucent property and a metal for low resistance wiring.
  • An object of the present invention is to provide a touch panel pad for forming a wiring electrode pattern of a touch panel with a metal coating layer and a lower layer of a semi-transparent conductive layer, and forming a semi-transparent electrode pattern with a fine metal mesh structure of the semi-transparent conductive layer. There is this.
  • a method for manufacturing a touch panel pad comprises a laminated structure including a metal coating layer on the upper surface of the semi-transparent conductive layer and the semi-transparent conductive layer of a conductive material of a semi-transparent material on the upper surface of the insulator.
  • the touch pattern portion corresponding to the window area (the area where the screen is displayed) of the touch panel in the stacked structure is connected to the translucent electrode patterns of the plurality of electrostatic electrodes and the wiring electrode pattern representing the bus electrode connected to the edge region of the translucent electrode pattern.
  • the touch panel pad according to the embodiment of the present invention is a touch pattern region corresponding to a window region (a region where a screen is displayed) of the touch panel, and includes a plurality of electrostatic layers including a semi-transparent conductive layer of a conductive material of a translucent material on the upper surface of the insulator. Translucent electrode pattern of the electrode; And a wiring electrode pattern connected to an edge region of each electrostatic electrode and formed of a translucent conductive layer on an upper surface of the insulator as a lead wire pattern region of the bus electrode and a metal coating layer thereon.
  • the present invention can improve the circuit visibility by configuring the window area (the area on which the screen is displayed) of the touch panel with a metal having translucent characteristics, thereby solving the circuit visibility problem of the metal mesh method.
  • the metal circuit of the edge region excluding the window region of the touch panel is made of low-resistance metal, thereby having low resistance and easy signal transmission.
  • the present invention has the effect of reducing the process of depositing ITO, cost reduction and easy quality control.
  • the present invention has the effect that a selective application of 5-300 ⁇ m is possible without reducing the circuit width to 5 ⁇ m or less according to the visible characteristics of the translucent metal.
  • FIG. 1 is a view illustrating a manufacturing method of a pad for a touch panel in which a wiring electrode pattern and a transparent electrode pattern are formed using a metal mesh method according to the related art.
  • FIGS. 2A and 2B are views illustrating a method of manufacturing a pad for a touch panel in which a wiring electrode pattern and a transparent electrode pattern are formed using a metal mesh method according to an exemplary embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a form in which a top pattern and a bottom pattern are laminated in a capacitive touch panel according to an exemplary embodiment of the present invention.
  • FIGS. 4A and 4B are views illustrating a method of manufacturing a pad for a touch panel in which a wiring electrode pattern and a transparent electrode pattern are formed using a metal mesh method according to another exemplary embodiment of the present invention.
  • FIGS. 2A and 2B are views illustrating a method of manufacturing a pad for a touch panel in which a wire electrode pattern and a transparent electrode pattern are formed using a metal mesh method according to an embodiment of the present invention
  • FIG. 3 is a blackout according to an embodiment of the present invention. The top pattern and the bottom pattern of the capacitive touch panel are illustrated together.
  • the low-resistance metal coating layer on the upper surface of the translucent conductive layer 120 ( 130) (a1 and (a2) of Figure 2a).
  • the semi-transparent conductive layer 120 is a term distinguished from transparent conductive oxide having high transmittance such as ITO and ZnO, but has a color, but the opposite side of the light transmitting direction has the property of transmitting light. Conductive material.
  • the translucent conductive layer 120 serves to improve circuit visibility than when an opaque metal is used in forming a circuit.
  • the optical insulator 110 represents an insulator without or under coating if necessary, the insulator is formed of an organic insulator or an inorganic insulator of a transparent material, the organic insulator is a polyimide or polyethylene terephthalate (PET) ), Polycarbonate (PC), and the inorganic insulator is made of glass.
  • the organic insulator is a polyimide or polyethylene terephthalate (PET) ), Polycarbonate (PC), and the inorganic insulator is made of glass.
  • the above-described undercoating is a coating for treating the presence or absence of ITO after the ITO pattern, that is, the optical treatment is performed on the ITO base layer so that the presence or absence of ITO is not detected by the eye during capacitive ITO film production.
  • the undercoat may in some cases raising such SiO 2, TiO 2 Ceo 2, Nb 2 O 5 as a dry method (vapor deposition), there is also a case that a chemical treatment by a wet method.
  • the semi-transparent conductive layer 120 is a carbon nanotube (CNT), graphene (Graphene), chromium (Cr), an alloy of nickel (Ni) and chromium (Cr), nickel (Ni) and gold (
  • a conductive material of a semi-transparent material such as an alloy of Au), Ag Nano Wire (AGNW).
  • Metals such as nickel, chromium, gold and the like may be laminated by a deposition process or coated in a wet manner.
  • the low resistance metal coating layer 130 is made of metal such as silver (Ag), copper (Cu), gold (Au), aluminum (Al), palladium (Pd), platinum (Pt), zinc (Zn), tin (Sn), and the like. Represents a low resistance metal material having a sheet resistance of 0.1-150 Ohm ( ⁇ ).
  • the low-resistance metal coating layer 130 is a conductive material having a color, but the opposite side of the light transmission direction has a characteristic that is not visible through the light transmission.
  • the semi-transparent electrode pattern 121 made of the translucent conductive layer 120 and the wiring electrode pattern 131 made of the low resistance metal coating layer 130 are formed (FIG. (B1), (b2) and (b3) of 2a).
  • the semi-transparent electrode pattern 121 is a metal circuit of a portion corresponding to the window area (the area where the screen is displayed) of the touch panel, and represents the user's touch pattern area.
  • the wiring electrode pattern 131 is connected to one end of the translucent electrode pattern 121 representing the window region of the touch panel and is a metal circuit of the edge region of the touch panel except for the window region, and the semitransparent electrode pattern 121 and the printed circuit.
  • the bus electrode is connected to the substrate to sense and control a user's touch pattern.
  • the low-resistance metal coating layer 130 and the semi-transparent conductive layer 120 of the portion not corresponding to the translucent electrode pattern 121 and the wiring electrode pattern 131 are simultaneously formed using the first mask 140.
  • the process of primary photolithography is performed by the low resistance metal coating layer 130 and the semi-transparent conductive layer 120.
  • Secondary metal etching process That is, the process of primary photolithography performs dry film laminating, primary exposure, primary development, metal etching (metal having translucent property and metal having low resistance property), and peeling process.
  • the semi-transparent electrode pattern 121 and the wiring electrode pattern 131 subjected to the first photolithography process are formed of the upper layer as the low resistance metal coating layer 130 and the lower layer as the semitransparent conductive layer 120.
  • the semi-transparent electrode pattern 121 includes a plurality of second linear electrode portions intersecting with the plurality of first linear electrode portions 122 and the plurality of first linear electrode portions 122. Through 124 to form a fine pattern mesh structure.
  • the mesh structure of the fine pattern directly removes the low resistance metal coating layer 130 and the semi-transparent conductive layer 120 simultaneously.
  • There may be various embodiments such as patterning the structure or depositing a low resistance metal coating layer on the upper surface of the translucent conductive layer 120 and forming the mesh structure using a laser etching method. Can be.
  • the low-resistance metal coating layer 130 of the portion corresponding to the window area (the area where the screen is displayed) of the touch panel is removed using the second mask 141. It is a secondary metal etching process of the coating layer 130, (c1), (c2) and (c3) of Figure 2b).
  • the secondary photolithography may be performed by dry film laminating, secondary exposure, secondary development, metal etching (metal having low resistance characteristics), or peeling process.
  • the wiring electrode pattern 131 including the upper layer (low resistance metal coating layer 130) and the lower layer (translucent conductive layer 120) and the semi-transparent electrode pattern 121 including the translucent conductive layer 120 are formed on the optical insulating layer. Pads for touch panels are formed.
  • the top pattern of the sensing unit Receive and Rx and the bottom of the driving unit may be used. Bottom) pattern is laminated using an optical clear adhesive (OCA) to complete the final touch panel pad as shown in FIG. 3.
  • OCA optical clear adhesive
  • the sensing units (Receive, Rx) is a pattern for detecting whether the touch panel touches and the touch position as a change in the voltage value
  • the driver is a pattern to which the driving voltage of the touch panel is applied.
  • FIG. 3 illustrates a state in which a top pattern and a bottom pattern are laminated using OCA.
  • the top pattern and the bottom pattern may include the wiring electrode pattern 131 of the translucent conductive layer 120 and the low resistance metal coating layer 130.
  • the translucent electrode pattern 121 is formed in a one-layer structure of the translucent conductive layer 120 which is a fine pattern of the metal mesh structure.
  • the portion corresponding to the window area (the area where the screen is displayed) of the touch panel has a property of having excellent translucent metallurgy circuit visibility.
  • a circuit width of 5 ⁇ m or less should be implemented to improve visibility of the window part. In this way, when the circuit width of the window portion is narrowed, visibility may be improved, but the surface resistance value and the circuit resistance value become too high.
  • a portion corresponding to the window area (the area where the screen is displayed) of the touch panel is formed of a semi-transparent conductive layer 120, and has a circuit width of 5-300 ⁇ m thicker than a conventional circuit construction method using a transparent electrode.
  • the circuit resistance value can be made low.
  • the wiring electrode pattern 131 uses a semi-transparent conductive layer 120 for signal transmission, a low resistance metal is additionally formed and used as a trace for wiring.
  • the existing metal mesh method forms a touch pattern region and a wiring electrode region at the same time only with metal, without using TCO (ITO, ZnO and other transparent oxide electrodes), so that the visibility and the circuit suitable for each function of the touch pattern region and the wiring electrode region are appropriate. There was a problem that it is difficult to implement a resistance value.
  • the present invention has the effect of increasing the visibility by implementing the window region of the touch panel as the translucent conductive layer 120 and lowering the circuit resistance value by implementing the wiring electrode region as the low resistance metal coating layer 130.
  • the pad for a touch panel of the present invention is a face-up layer in which an optical insulator 110, a translucent conductive layer 120, and a low resistance metal coating layer 130 are sequentially stacked. Has a structure.
  • the pad for a touch panel according to the present invention may include a face-down layer structure and an optical insulator in which the low resistance metal coating layer 130, the semi-transparent conductive layer 120, and the optical insulator 110 are sequentially stacked.
  • the sensing unit or the driving unit in which the semi-transparent conductive layer 120 and the low-resistance metal coating layer 130 are sequentially stacked the low-resistance metal coating layer 130, the semi-transparent conductive layer 120, and the optical insulator 110.
  • the touch panel pad of the present invention may be applied to a layer structure that implements a sensing unit or a driving unit of the translucent conductive layer 120 and the low resistance metal coating layer 130 under the cover glass.
  • the positions of the sensing unit and the driving unit may vary.
  • FIGS. 4A and 4B are views illustrating a method of manufacturing a pad for a touch panel in which a wiring electrode pattern and a transparent electrode pattern are formed using a metal mesh method according to another exemplary embodiment of the present invention.
  • FIG. 4A illustrates a side layer structure of a pad for a touch panel according to another embodiment of the present invention
  • FIG. 4B illustrates a plan view of the pad for a touch panel according to another embodiment of the present invention.
  • the bottom pattern which is the X-axis electrode pattern according to another embodiment of the present invention, uses the wiring electrode pattern 131 as the semi-transparent conductive layer 120 and the low resistance metal coating layer 130.
  • the semi-transparent electrode pattern 121 is formed in a single layer structure of the semi-transparent conductive layer 120 which is a fine pattern of the metal mesh structure.
  • the method of manufacturing the bottom pattern, which is the X-axis electrode pattern is the same as that described with reference to FIGS. 2A and 2B, and thus a detailed description thereof will be omitted.
  • the top pattern which is the Y-axis electrode pattern of another embodiment of the present invention, after the insulating layer 200 is formed on the connecting portions 121a between the X-axis electrodes 120 by one of printing, deposition, and coating methods.
  • the connection portion 210a of the Y-axis electrode 210 is formed on the insulating layer 200.
  • the insulating layer 200 prevents the connection portion 121a of the X-axis electrode 120 and the connection portion 210a of the Y-axis electrode 210 from being electrically contacted.
  • the top pattern which is a Y-axis electrode pattern, is a conductive conductive layer of a fine pattern metal mesh structure.
  • the top pattern of the metal circuit corresponding to the window area of the touch panel (the area where the screen is displayed) and the window area of the touch panel are To form a metal circuit of the edge region except.
  • one conductive conductive layer of the top pattern represents one of a low resistance metal coating layer 130 of an opaque conductive material, a transparent electrode such as ITO, and a translucent conductive layer 120.
  • the translucent electrode pattern 121 forms a plurality of X-axis electrostatic electrodes, which are driving units (Transfer, Tx) to which the driving voltage of the touch panel is applied, and the conductive conductive layer changes the touch value and the touch position by changing the voltage value.
  • the pad for the touch panel forms an insulating layer 200 on the connecting portion 121a between the respective X-axis electrostatic electrodes, and then laminates the connecting portion 210a between the respective Y-axis electrostatic electrodes on the insulating layer 200.
  • the method of forming the metal mesh structure of one conductive conductive layer is well known in the art and will not be described in detail.
  • the method of electrically connecting the Y-axis electrode 210 may be variously configured by a known technique such as a method of forming a conductive bridge, and thus a detailed description thereof will be omitted.
  • the present invention can improve the circuit visibility by configuring the window area (the area on which the screen is displayed) of the touch panel with a metal having translucent characteristics, thereby solving the circuit visibility problem of the metal mesh method.
  • a low resistance metal is composed of a metal circuit in the edge region except for the window region of the touch panel, thereby having low resistance and easy signal transmission.
  • the present invention has the effect of reducing the process of depositing ITO, cost reduction and easy quality control.
  • the present invention has the effect that a selective application of 5-300 ⁇ m is possible without reducing the circuit width to 5 ⁇ m or less according to the visible characteristics of the translucent metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

터치 패널용 패드의 제조 방법은 절연체의 상면에 반투명한 재질의 전도성 물질인 반투명 도전층과 반투명 도전층의 상면에 금속 코팅층을 포함한 적층 구조체를 형성하는 단계; 적층 구조체에서 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 터치 패턴 부분으로 복수개의 정전전극의 반투명전극 패턴과, 반투명전극 패턴의 가장 자리 영역과 연결되어 버스 전극을 나타내는 배선전극 패턴을 제외한 영역의 반투명 도전층과 금속 코팅층을 선택적으로 제거하여 복수개의 정전전극의 터치 패턴과 버스 전극의 리드선 패턴을 형성하는 단계; 및 반투명전극 패턴 상에 형성된 금속 코팅층을 선택적으로 제거하는 단계를 포함한다.

Description

터치 패널용 패드 및 제조 방법
본 발명은 터치 패널의 제조 방법에 관한 것으로서, 특히 반투명 특성을 갖는 메탈을 이용한 터치 패널용 패드 및 제조 방법에 관한 것이다.
일반적으로 터치 패널은 버튼을 손가락으로 접촉하여 컴퓨터 등을 대화적, 직감적으로 조작함으로써 누구나 쉽게 사용할 수 있는 입력 장치인데, 이를 디스플레이와 함께 집적한 경우 터치스크린으로 사용되며 손가락을 스크린에 접촉하여 입력을 수행하는 입력 장치이다.
이와 같은 터치 패널은 접촉을 감지하는 방식에 따라 저항막 방식과 정전용량 방식, 적외선 방식, 초음파 방식 등이 사용되고 있고, 향후 내구성 및 경박 단소한 특성에 유리한 정전용량방식의 사용이 증가될 것이다.
이와 같은 정전용량 방식의 터치 패널, 특히 터치 스크린은 그 구조가 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET)나 유리 등의 투명한 절연체 필름 상에 투광 도전체로 이루어진 ITO(Indium Tin Oxide)와, ITO의 테두리에 실버 페이스트 등의 리드선으로 이루어진 패드를 접착제층이나 절연체층을 부가하여 상하로 적층하여 구성된다.
ITO 필름은 약 92%(단일 층)까지 투명하지만 비교적 높은 저항을 가지며 매우 깨지기 쉬운 것으로 알려져 있다. 비교적 높은 비율의 필름들이 생산 중 손상되어 비싸고 시간 소모적인 테스트 단계를 필요로 한다.
또한, ITO 필름은 필름을 제조할 수 있는 공급자가 극히 소수여서 필름의 사용자들에게 물류상 문제를 초래한다.
이러한 문제점들을 극복하여 터치 스크린을 생산하기 위하여 새로운 재료 및 방법에 대한 필요가 존재한다.
이와 같은 투명 전도성 산화물(Transparent Conducting Oxide, TCO)와 같은 투명한 재질의 전도성 물질을 이용하지 않고 메탈(Metal)만으로 투명전극 패턴과 배선전극 패턴을 동시에 형성하는 메탈 메쉬(Metal Mesh) 공법이 있다.
도 1에 도시된 바와 같이, 종래 기술에 따른 메탈 메쉬 공법을 이용한 터치 패널용 패드의 제조 공법은 투명전극 패턴과 배선전극 패턴을 하나의 메탈 레이어층으로 동시에 형성한다.
투명전극 부위를 메쉬 형태로 형성하는 경우, 메탈(10)의 표면적이 매우 적어지기 때문에 면 저항값과 회로 저항값이 높아진다. 이와 같은 문제점을 해결하기 위해 메탈(10)을 1000 A°이상의 두께로 코팅하여야 하며, 이는 메탈(10)의 불투명성이 높아질 수 밖에 없고 원도우 부분의 회로 시인성이 낮아지는 문제점이 발생한다.
원도우 부분의 회로 시인성 개선을 위해서는 회로폭을 더욱 좁게 형성해야 하며, 회로폭을 5㎛ 이하로 구현해야 한다.
종래의 터치 패널용 패드의 제조 공법은 하나의 메탈 레이어층으로 투명전극 패턴과 배선전극 패턴을 동시에 형성하기 때문에 회로 시인성을 개선하기 위해 윈도우 부분의 회로폭을 좁히는 경우 회로 저항값이 높아지고, 회로폭을 좁히지 않으면 회로 시인성이 낮아지게 된다.
따라서, 종래의 메탈 메쉬 공법은 투명전극 패턴과 배선전극 패턴에서 회로 시인성을 좋게 하면서 회로 저항값을 낮게 하는 두 가지 요건을 동시에 만족하기 어려운 문제점이 있었다.
이와 같은 문제점을 해결하기 위하여, 본 발명은 반투명 특성을 갖는 메탈과 저저항의 배선용 메탈의 2 레이어 구조를 이용한 터치 패널용 패드의 제조 방법을 제공하는데 그 목적이 있다.
본 발명은 터치 패널의 배선전극 패턴을 상부층을 금속 코팅층과 하부층을 반투명 도전층으로 형성하고, 반투명전극 패턴을 반투명 도전층의 미세 패턴의 메탈 메쉬 구조로 형성하는 터치 패널용 패드를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위하여, 본 발명의 실시예에 따른 터치 패널용 패드의 제조 방법은 절연체의 상면에 반투명한 재질의 전도성 물질인 반투명 도전층과 반투명 도전층의 상면에 금속 코팅층을 포함한 적층 구조체를 형성하는 단계; 적층 구조체에서 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 터치 패턴 부분으로 복수개의 정전전극의 반투명전극 패턴과, 반투명전극 패턴의 가장 자리 영역과 연결되어 버스 전극을 나타내는 배선전극 패턴을 제외한 영역의 반투명 도전층과 금속 코팅층을 선택적으로 제거하여 복수개의 정전전극의 터치 패턴과 버스 전극의 리드선 패턴을 형성하는 단계; 및 반투명전극 패턴 상에 형성된 금속 코팅층을 선택적으로 제거하는 단계를 포함한다.
본 발명의 실시예에 따른 터치 패널용 패드는 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 터치 패턴 영역으로서 절연체의 상면에 반투명한 재질의 전도성 물질인 반투명 도전층으로 이루어지는 복수개의 정전전극의 반투명전극 패턴; 및 각각의 정전전극의 가장 자리 영역과 연결되어 버스 전극의 리드선 패턴 영역으로서 절연체의 상면에 반투명 도전층과 그 위에 금속 코팅층으로 이루어진 배선전극 패턴을 포함한다.
본 발명은 터치 패널의 원도우 영역(화면이 표시되는 영역)을 반투명 특성을 갖는 메탈로 구성하여 회로 시인성을 높일 수 있어 메탈 메쉬 공법의 회로 시인성 문제를 해결하는 효과가 있다.
본 발명은 터치 패널의 원도우 영역을 제외한 가장 자리 영역의 금속 회로를 저저항 메탈로 구성하여 낮은 저항과 신호 전송이 용이한 효과가 있다.
본 발명은 ITO를 증착하는 공정 축소와, 원가 절감 및 품질 관리가 용이한 효과가 있다.
본 발명은 반투명 메탈의 가시적 특성에 따라 회로폭을 5㎛ 이하로 줄이지 않고 5-300 ㎛의 선택적 적용이 가능한 효과가 있다.
도 1은 종래 기술에 따른 메탈 메쉬 공법을 이용한 배선전극 패턴과 투명전극 패턴이 형성된 터치 패널용 패드의 제조 방법을 나타낸 도면이다.
도 2a 및 도 2b는 본 발명의 실시예에 따른 메탈 메쉬 공법을 이용한 배선전극 패턴과 투명전극 패턴이 형성된 터치 패널용 패드의 제조 방법을 나타낸 도면이다.
도 3은 본 발명의 실시예에 따른 정전용량 방식 터치 패널에서의 탑(Top) 패턴과 바텀(Bot) 패턴을 합지한 형태를 나타낸 도면이다.
도 4a 및 도 4b는 본 발명의 다른 실시예에 따른 메탈 메쉬 공법을 이용한 배선전극 패턴과 투명전극 패턴이 형성된 터치 패널용 패드의 제조 방법을 나타낸 도면이다.
* 도면의 주요부분에 대한 부호의 설명 *
110: 광학 절연체
120: 반투명 도전층
121: 반투명전극 패턴
121a: X축 전극 사이의 연결부
130: 저저항 금속 코팅층
131: 배선전극 패턴
140: 첫 번째 마스크
141: 두 번째 마스크
200: 절연층
210: Y축 전극
210a: Y축 전극 사이의 연결부
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 2a 및 도 2b는 본 발명의 실시예에 따른 메탈 메쉬 공법을 이용한 배선전극 패턴과 투명전극 패턴이 형성된 터치 패널용 패드의 제조 방법을 나타낸 도면이고, 도 3은 본 발명의 실시예에 따른 정전용량 방식 터치 패널에서의 탑(Top) 패턴과 바텀(Bot) 패턴을 합지한 형태를 나타낸 도면이다.
도 2a의 (a1), (b1), (b2)와, 도 2b의 (c1), (c2), (d1)은 터치 패널용 패드의 측면에서의 층 구조를 나타낸 것이다.
도 2b의 (a2), (b3)와, 도 2b의 (c3), (d2)은 터치 패널용 패드의 위에서 본 평면 구조를 나타낸 것이다.
본 발명의 실시예에 따른 터치 패널용 패드의 제조 방법은 광학 절연체(110)의 상면에 반투명 도전층(120)을 코팅 또는 증착한 후, 반투명 도전층(120)의 상면에 저저항 금속 코팅층(130)을 증착한다(도 2a의 (a1) 및 (a2)). 여기서, 반투명 도전층(120)은 ITO, ZnO 등의 높은 투과도를 가지는 투명 도전성(Transparent Conductive Oxide)과 구분되는 용어로 색상을 가지고 있지만 빛을 투과하는 방향의 반대쪽이 빛을 투과하여 보이는 특성을 가지고 있는 전도성 물질을 나타낸다.
따라서, 반투명 도전층(120)은 회로 형성시 불투명 메탈을 사용하였을 때보다 회로 시인성을 개선하는 역할을 한다.
여기서, 광학 절연체(110)는 언더 코팅이 없거나 필요시 언더 코팅한 절연체를 나타낸 것으로, 절연체는 투명한 재질의 유기 절연체 또는 무기 절연체로 형성되고, 유기 절연체는 폴리이미드 또는 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET), 폴리카보네이트(PC)를 포함하며 무기 절연체는 유리로 이루어진다.
전술한 언더 코팅은 ITO 패턴후 ITO 유무가 확인되지 않도록 처리하는 코팅으로, 즉 정전 용량 ITO 필름 제작시 ITO가 존재하는 부분과 존재하지 않는 부분이 눈에서 감지하지 못하도록 ITO 하지층에 광학 처리를 하는 것을 의미한다. 즉, 언더 코팅은 건식 방식(증착)으로 SiO2,TiO2 Ceo2, Nb2O5 등을 올리는 경우도 있고, 습식 방식으로 약품 처리를 하는 경우도 있다.
다만, 시인성 기준이 약한 대형 사이즈의 스마트 기기인 스마트패드, 스마트 TV에는 언더 코팅층 없이 적용이 가능하다.
여기서, 반투명 도전층(120)은 탄소나노튜브(Carbon Nano Tube, CNT), 그라핀(Graphene), 크롬(Cr), 니켈(Ni)과 크롬(Cr)의 합금, 니켈(Ni)과 금(Au)의 합금, AGNW(Ag Nano Wire)과 같은 반투명한 재질의 전도성 물질을 나타낸다. 니켈, 크롬, 금 등의 메탈은 증착 공정으로 적층되거나 습식 방식으로 코팅될 수 있다.
저저항 금속 코팅층(130)은 은(Ag), 구리(Cu), 금(Au), 알루미늄(Al), 팔라듐(Pd), 백금(Pt), 아연(Zn), 주석(Sn) 등의 금속 중 0.1-150옴(Ω)의 면저항을 갖는 저저항의 금속 물질을 나타낸다.
저저항 금속 코팅층(130)은 색상을 가지고 있지만 빛을 투과하는 방향의 반대쪽이 빛을 투과하여 보이지 않는 특성을 가지고 있는 전도성 물질을 나타낸다.
다음으로, 1차 포토리소그래피(Photolithography)의 공정에 의해 반투명 도전층(120)으로 이루어지는 반투명전극 패턴(121)과 저저항 금속 코팅층(130)으로 이루어지는 배선전극 패턴(131)을 형성하게 된다(도 2a의 (b1), (b2) 및 (b3)).
반투명전극 패턴(121)은 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 부분의 금속 회로로서 사용자의 터치 패턴 영역을 나타낸다.
배선전극 패턴(131)은 터치 패널의 원도우 영역을 나타내는 반투명전극 패턴(121)의 일측 끝단과 연결되고 원도우 영역을 제외한 터치 패널의 가장 자리 영역의 금속 회로이며, 반투명전극 패턴(121)과 인쇄회로기판과 연결시켜 사용자의 터치 패턴을 감지, 제어하는 버스 전극을 나타낸다.
다시 상세하게 설명하면, 첫 번째 마스크(140)를 이용하여 반투명전극 패턴(121)과 배선전극 패턴(131)에 해당하지 않는 부분의 저저항 금속 코팅층(130)과 반투명 도전층(120)을 동시에 제거하여 반투명전극 패턴(121)과 반투명전극 패턴(121)과 연결된 배선전극 패턴(131)을 형성한다(1차 포토리소그래피의 공정은 저저항 금속 코팅층(130)과 반투명 도전층(120)의 1차 메탈 에칭 공정임). 즉, 1차 포토리소그래피의 공정은 드라이필름 라미네이팅, 1차 노광, 1차 현상, 메탈 에칭(반투명 특성을 갖는 메탈과 저저항 특성을 갖는 메탈), 박리 공정을 수행한다.
1차 포토리소그래피의 공정을 수행한 반투명전극 패턴(121)과 배선전극 패턴(131)은 상부층을 저저항 금속 코팅층(130)으로, 하부층을 반투명 도전층(120)으로 이루어져 있다.
1차 포토리소그래피의 공정시(Wet 공정) 반투명전극 패턴(121)은 복수의 제1 선형 전극부들(122)과 복수의 제1 선형 전극부들(122)과 상호 교차하는 복수의 제2 선형 전극부들(124)을 통해 미세 패턴의 메쉬 구조를 형성한다.
미세 패턴의 메쉬 구조는 1차 포토리소그래피의 공정(Wet 공정)을 수행하여 반투명전극 패턴(121)을 형성하는 경우, 저저항 금속 코팅층(130)과 반투명 도전층(120)을 동시에 제거하여 직접 메쉬 구조로 패터닝하거나 반투명 도전층(120)의 상면에 저저항 메탈 코팅층을 증착한 후 레이저 에칭 방법을 이용하여 메쉬 구조로 형성하는 등 다양한 실시예(그라비아 옵셋 인쇄, 리버스 인쇄, Nano Imprinting 등)가 있을 수 있다.
다음으로, 두 번째 마스크(141)를 이용하여 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 부분의 저저항 금속 코팅층(130)을 제거한다(2차 포토리소그래피의 공정은 저저항 금속 코팅층(130)의 2차 메탈 에칭 공정이고, 도 2b의 (c1), (c2) 및 (c3)).
즉, 2차 포토리소그래피의 공정은 드라이필름 라미네이팅, 2차 노광, 2차 현상, 메탈 에칭(저저항 특성을 갖는 메탈), 박리 공정을 수행한다.
이러한 공정에 의해 광학 절연층 위에 상부층(저저항 금속 코팅층(130))과 하부층(반투명 도전층(120))을 포함한 배선전극 패턴(131)과 반투명 도전층(120)을 포함한 반투명전극 패턴(121)이 형성된 터치 패널용 패드가 제조된다.
이렇게 제조된 터치 패널용 패드는 2차 포토리소스그래피의 공정을 완료하면, 도 2b의 (d1) 및 (d2)와 같이, 센싱부(Receive, Rx)의 탑(Top) 패턴과 구동부의 바텀(Bottom) 패턴을 접착제층(Optical Clear Adhesive, OCA)을 이용하여 합지하여 도 3과 같이 최종 터치 패널용 패드를 완성한다. 여기서, 센싱부(Receive, Rx)는 터치 패널의 터치 여부 및 터치 위치를 전압값의 변화로 감지하는 패턴이고, 구동부는 터치 패널의 구동 전압이 인가되는 패턴이다.
즉, 도 3은 탑(Top) 패턴과 바텀(Bottom) 패턴을 OCA를 이용하여 합지한 상태이다.
도 2b의 (d1) 및 (d2)에 도시된 바와 같이, 탑(Top) 패턴과 바텀(Bottom) 패턴은 배선전극 패턴(131)을 반투명 도전층(120)과 저저항 금속 코팅층(130)의 2 레이어 구조로, 반투명전극 패턴(121)을 메탈 메쉬 구조의 미세 패턴인 반투명 도전층(120)의 1 레이어 구조로 형성한다.
터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 부분은 반투명 특성을 갖는 메탈로 회로 시인성이 매우 뛰어난 특성이 있다.
터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 부분을 투명 전극 패턴을 사용하는 경우, 원도우 부분의 시인성 개선을 위해 5㎛ 이하의 회로폭으로 구현해야 한다. 이렇게 원도우 부분의 회로폭을 좁히는 경우 시인성을 개선될 수 있으나 면저항값, 회로 저항값이 너무 높아지는 문제점이 발생한다.
본 발명은 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 부분을 반투명 도전층(120)으로 형성하여 기존의 투명 전극을 이용한 회로 구성 방법보다 5-300㎛의 두께의 회로폭으로 형성할 수 있어 회로 저항값을 낮게 할 수 있다.
배선전극 패턴(131)은 반투명 도전층(120)을 신호 전송용으로 사용하기에 저항이 매우 높은 이유로 저저항의 메탈을 추가로 형성하여 배선용 트레이스(Trace)로 사용한다.
기존의 메탈 메쉬 공법은 TCO(ITO, ZnO 외 투명 산화 전극)을 이용하지 않고 메탈만으로 터치 패턴 영역과 배선전극 영역을 동시에 형성하므로 터치 패턴 영역과 배선전극 영역의 각각의 기능에 맞추어 적합한 시인성과 회로 저항값을 구현하기 어려운 문제점이 있었다.
본 발명은 터치 패널의 윈도우 영역을 반투명 도전층(120)으로 구현하여 시인성을 높이고 배선전극 영역을 저저항 금속 코팅층(130)으로 구현하여 회로 저항값을 낮추는 효과가 있다.
도 2a 및 도 2b에 도시된 바와 같이, 본 발명의 터치 패널용 패드는 광학 절연체(110), 반투명 도전층(120), 저저항 금속 코팅층(130)의 순차적으로 적층한 Face-Up 방식의 층 구조를 가진다.
그러나 이에 한정하지 않고, 본 발명의 터치 패널용 패드는 저저항 금속 코팅층(130), 반투명 도전층(120), 광학 절연체(110)를 순차적으로 적층한 Face-Down 방식의 층 구조와 광학 절연체(110), 반투명 도전층(120), 저저항 금속 코팅층(130)을 순차적으로 적층한 센싱부 또는 구동부를 저저항 금속 코팅층(130), 반투명 도전층(120), 광학 절연체(110)를 순차적으로 적층한 센싱부 또는 구동부를 접착제층을 사이에 두고 적층한 Oppositeness 방식의 층 구조에도 적용할 수 있다.
또한, 본 발명의 터치 패널용 패드는 커버 글라스의 하부에 반투명 도전층(120)과 저저항 금속 코팅층(130)의 센싱부 또는 구동부를 구현하는 층 구조에도 적용이 가능하다. 이러한 다양한 층 구조에 따라 센싱부과 구동부의 위치가 달라질 수 있다.
도 4a 및 도 4b는 본 발명의 다른 실시예에 따른 메탈 메쉬 공법을 이용한 배선전극 패턴과 투명전극 패턴이 형성된 터치 패널용 패드의 제조 방법을 나타낸 도면이다.
도 4a는 본 발명의 다른 실시예에 따른 터치 패널용 패드의 측면 층 구조를 나타낸 것이고, 도 4b는 본 발명의 다른 실시예에 따른 터치 패널용 패드의 위에서 본 평면 구조를 나타낸 것이다.
본 발명의 다른 실시예의 X축 전극 패턴인 바텀(Bottom) 패턴은 전술한 도 2b에 도시된 바와 같이, 배선전극 패턴(131)을 반투명 도전층(120)과 저저항 금속 코팅층(130)의 2 레이어 구조로, 반투명전극 패턴(121)을 메탈 메쉬 구조의 미세 패턴인 반투명 도전층(120)의 1 레이어 구조로 형성한다. 여기서, X축 전극 패턴인 바텀(Bottom) 패턴의 제조 방법은 전술한 도 2a 및 도 2b에 설명한 것과 동일하므로 상세한 설명을 생략한다.
본 발명의 다른 실시예의 Y축 전극 패턴인 탑(Top) 패턴은 X축 전극(120) 사이의 연결부(121a)들 위에 절연층(200)을 인쇄, 증착 및 코팅 중 하나의 방식으로 형성한 후 절연층(200) 위에 Y축 전극(210)의 연결부(210a)가 형성된다. 여기서, 절연층(200)은 X축 전극(120)의 연결부(121a)와 Y축 전극(210)의 연결부(210a)가 전기적으로 접촉되지 않도록 한다.
Y축 전극 패턴인 탑(Top) 패턴은 미세 패턴의 메탈 메쉬 구조의 하나의 전도성 도전층으로 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 부분의 금속 회로와 터치 패널의 원도우 영역을 제외한 가장 자리 영역의 금속 회로를 형성한다. 여기서, 탑 패턴의 하나의 전도성 도전층은 불투명 전도성 재질의 저저항 금속 코팅층(130), ITO와 같은 투명전극, 반투명 도전층(120) 중 하나의 전도성 물질을 나타낸다.
다시 말해, 반투명전극 패턴(121)은 터치 패널의 구동 전압이 인가되는 구동부(Transfer, Tx)인 복수개의 X축 정전전극을 형성하고, 전도성 도전층은 터치 여부 및 터치 위치를 전압값의 변화로 감지하는 센싱부(Receive, Rx)인 복수개의 제2 정전전극을 형성한다.
터치 패널용 패드는 각각의 X축 정전전극 사이의 연결부(121a) 위에 절연층(200)을 형성한 후, 절연층(200)의 위에 각각의 Y축 정전전극 사이의 연결부(210a)를 적층하여 완성한다.
전술한 바와 같이, 하나의 전도성 도전층을 메탈 메쉬 구조를 형성하는 방법은 공지된 기술로 상세한 설명을 생략한다.
또한, Y축 전극(210)을 전기적으로 연결시키는 방법은 전도성 브릿지를 형성하는 방식등 공지된 기술로 다양하게 구성할 수 있으므로 상세한 설명을 생략한다.
이상에서 설명한 본 발명의 실시예는 장치 및/또는 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하기 위한 프로그램, 그 프로그램이 기록된 기록 매체 등을 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 터치 패널의 원도우 영역(화면이 표시되는 영역)을 반투명 특성을 갖는 메탈로 구성하여 회로 시인성을 높일 수 있어 메탈 메쉬 공법의 회로 시인성 문제를 해결하는 효과가 있다.
본 발명은 터치 패널의 원도우 영역을 제외한 가장 자리 영역의 금속 회로를 저저항 메탈로 구성하여 낮은 저항과 신호 전송이 용이한 효과가 있다.
본 발명은 ITO를 증착하는 공정 축소와, 원가 절감 및 품질 관리가 용이한 효과가 있다.
본 발명은 반투명 메탈의 가시적 특성에 따라 회로폭을 5㎛ 이하로 줄이지 않고 5-300 ㎛의 선택적 적용이 가능한 효과가 있다.

Claims (13)

  1. 절연체의 상면에 반투명한 재질의 전도성 물질인 반투명 도전층과 상기 반투명 도전층의 상면에 금속 코팅층을 포함한 적층 구조체를 형성하는 단계;
    상기 적층 구조체에서 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 터치 패턴 부분으로 복수개의 정전전극의 반투명전극 패턴과, 상기 반투명전극 패턴의 가장 자리 영역과 연결되어 버스 전극을 나타내는 배선전극 패턴을 제외한 영역의 상기 반투명 도전층과 금속 코팅층을 선택적으로 제거하여 상기 복수개의 정전전극의 터치 패턴과 상기 버스 전극의 리드선 패턴을 형성하는 단계; 및
    상기 반투명전극 패턴 상에 형성된 상기 금속 코팅층을 선택적으로 제거하는 단계
    를 포함하는 터치 패널용 패드의 제조 방법.
  2. 제1항에 있어서,
    상기 반투명 도전층과 금속 코팅층을 선택적으로 제거하는 단계는,
    상기 반투명전극 패턴은 복수의 제1 선형 전극부들과 상기 복수의 제1 선형 전극부들과 상호 교차하는 복수의 제2 선형 전극부들 통해 미세 패턴의 메쉬 구조로 형성하는 단계
    를 포함하는 터치 패널용 패드의 제조 방법.
  3. 제1항에 있어서,
    상기 반투명 도전층은 탄소나노튜브(Carbon Nano Tube, CNT), 그라핀(Graphene), 크롬(Cr), 니켈(Ni)과 크롬(Cr)의 합금, 니켈(Ni)과 금(Au)의 합금 중 하나이거나 색상이 있으면서 빛을 투과하는 방향의 반대쪽이 빛을 투과하여 보이는 전도성 물질인 터치 패널용 패드의 제조 방법.
  4. 제1항에 있어서,
    상기 배선전극 패턴은 상기 절연체의 상면에 상기 반투명 도전층이 적층되고 상기 반투명 도전층의 상면에 상기 금속 코팅층이 적층되며, 상기 반투명전극 패턴은 상기 절연체의 상면에 미세 패턴의 메탈 메쉬 구조로 이루어진 상기 반투명 도전층이 적층되어 터치 패널용 패드를 형성하는 단계;
    상기 터치 패널용 패드를 이용하여 터치 여부 및 터치 위치를 전압값의 변화로 감지하는 센싱부(Receive, Rx)를 형성하고 상기 터치 패널용 패드를 이용하여 터치 패널의 구동 전압이 인가되는 구동부(Transfer, Tx)를 형성하는 단계; 및
    상기 센싱부와 상기 구동부를 접착제층을 이용하여 합지하여 최종 터치 패널용 패드를 제조하는 단계
    를 포함하는 터치 패널용 패드의 제조 방법.
  5. 제1항에 있어서,
    상기 반투명전극 패턴으로 이루어진 터치 패널의 구동 전압이 인가되는 구동부(Transfer, Tx)인 복수개의 제1 정전전극을 제조하는 단계;
    전도성 물질인 전도성 도전층으로 이루어진 터치 여부 및 터치 위치를 전압값의 변화로 감지하는 센싱부(Receive, Rx)인 복수개의 제2 정전전극을 제조하는 단계; 및
    상기 각각의 제1 정전전극 사이의 연결부 위에 절연층을 형성한 후, 상기 절연층의 위에 상기 각각의 제2 정전전극 사이의 연결부를 적층하는 단계
    를 포함하는 터치 패널용 패드의 제조 방법.
  6. 제5항에 있어서,
    상기 복수개의 제2 정전전극을 제조하는 단계는,
    상기 전도성 도전층은 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 터치 영역의 제1 금속 회로와 상기 제1 금속 회로의 가장 자리 영역과 연결되어 버스 전극을 나타내는 제2 금속 회로를 하나의 층에 미세 패턴의 메탈 메쉬 구조로 형성하는 터치 패널용 패드의 제조 방법.
  7. 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 터치 패턴 영역으로서 절연체의 상면에 반투명한 재질의 전도성 물질인 반투명 도전층으로 이루어지는 복수개의 정전전극의 반투명전극 패턴; 및
    상기 각각의 정전전극의 가장 자리 영역과 연결되어 버스 전극의 리드선 패턴 영역으로서 상기 절연체의 상면에 상기 반투명 도전층과 그 위에 금속 코팅층으로 이루어진 배선전극 패턴
    을 포함하는 터치 패널용 패드.
  8. 제7항에 있어서,
    상기 반투명전극 패턴의 반투명 도전층은 복수의 제1 선형 전극부들과 상기 복수의 제1 선형 전극부들과 상호 교차하는 복수의 제2 선형 전극부들을 통해 미세 패턴의 메쉬 구조를 형성하는 터치 패널용 패드.
  9. 제7항에 있어서,
    상기 반투명 도전층은 탄소나노튜브(Carbon Nano Tube, CNT), 그라핀(Graphene), 크롬(Cr), 니켈(Ni)과 크롬(Cr)의 합금, 니켈(Ni)과 금(Au)의 합금 중 하나이거나 색상이 있으면서 빛을 투과하는 방향의 반대쪽이 빛을 투과하여 보이는 전도성 물질인 터치 패널용 패드.
  10. 제7항에 있어서,
    상기 반투명전극 패턴과 상기 배선전극 패턴을 구비한 패드를 이용하여 터치 여부 및 터치 위치를 전압값의 변화로 감지하는 센싱부(Receive, Rx)를 형성하고, 상기 패드를 이용하여 터치 패널의 구동 전압이 인가되는 구동부(Transfer, Tx)를 형성하고, 접착제층을 이용하여 상기 센싱부와 상기 구동부를 합지하는 터치 패널용 패드.
  11. 제7항에 있어서,
    상기 반투명전극 패턴으로 형성된 터치 패널의 구동 전압이 인가되는 구동부(Transfer, Tx)를 나타내는 복수개의 제1 정전전극; 및
    전도성 물질인 전도성 도전층으로 형성된 터치 여부 및 터치 위치를 전압값의 변화로 감지하는 센싱부(Receive, Rx)를 나타내는 복수개의 제2 정전전극을 포함하며,
    상기 각각의 제1 정전전극 사이의 연결부 위에 절연층을 형성한 후, 상기 절연층의 위에 상기 각각의 제2 정전전극 사이의 연결부를 적층하는 터치 패널용 패드.
  12. 제11항에 있어서,
    상기 전도성 도전층은 터치 패널의 원도우 영역(화면이 표시되는 영역)에 해당하는 터치 영역의 제1 금속 회로와 상기 제1 금속 회로의 가장 자리 영역과 연결되어 버스 전극을 나타내는 제2 금속 회로를 하나의 층에 미세 패턴의 메탈 메쉬 구조로 형성하는 터치 패널용 패드.
  13. 제12항에 있어서,
    상기 전도성 도전층은 불투명 전도성 재질의 상기 금속 코팅층, 투명전극, 상기 반투명 도전층 중 하나의 전도성 물질인 터치 패널용 패드.
PCT/KR2013/005626 2013-06-26 2013-06-26 터치 패널용 패드 및 제조 방법 WO2014208785A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003932.5A CN104508607A (zh) 2013-06-26 2013-06-26 触摸板用面板及制造方法
PCT/KR2013/005626 WO2014208785A1 (ko) 2013-06-26 2013-06-26 터치 패널용 패드 및 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/005626 WO2014208785A1 (ko) 2013-06-26 2013-06-26 터치 패널용 패드 및 제조 방법

Publications (1)

Publication Number Publication Date
WO2014208785A1 true WO2014208785A1 (ko) 2014-12-31

Family

ID=52142102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005626 WO2014208785A1 (ko) 2013-06-26 2013-06-26 터치 패널용 패드 및 제조 방법

Country Status (2)

Country Link
CN (1) CN104508607A (ko)
WO (1) WO2014208785A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344498B1 (ja) * 2017-03-31 2018-06-20 Smk株式会社 タッチパネルおよび配線エリア形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649913B1 (ko) * 2005-06-27 2006-11-27 아이티엠 주식회사 패터닝에 의하여 저항을 조절하는 도전성 기판 구조물 및그 제조 방법
JP2008044332A (ja) * 2006-08-16 2008-02-28 Yasuo Namita シート材料及び該シートを使用した製品
US20110205168A1 (en) * 2010-02-22 2011-08-25 Samsung Mobile Display Co., Ltd. Touch screen panel and fabricating method thereof
JP2012088836A (ja) * 2010-10-18 2012-05-10 Toppan Printing Co Ltd タッチパネル基板及びその製造方法
KR20130011267A (ko) * 2011-07-21 2013-01-30 희성전자 주식회사 터치 스크린 패널 및 그 전극 형성방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649913B1 (ko) * 2005-06-27 2006-11-27 아이티엠 주식회사 패터닝에 의하여 저항을 조절하는 도전성 기판 구조물 및그 제조 방법
JP2008044332A (ja) * 2006-08-16 2008-02-28 Yasuo Namita シート材料及び該シートを使用した製品
US20110205168A1 (en) * 2010-02-22 2011-08-25 Samsung Mobile Display Co., Ltd. Touch screen panel and fabricating method thereof
JP2012088836A (ja) * 2010-10-18 2012-05-10 Toppan Printing Co Ltd タッチパネル基板及びその製造方法
KR20130011267A (ko) * 2011-07-21 2013-01-30 희성전자 주식회사 터치 스크린 패널 및 그 전극 형성방법

Also Published As

Publication number Publication date
CN104508607A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2010095798A1 (ko) 정전용량 방식의 터치스크린 패널의 제조방법
CN203350852U (zh) 静电电容耦合方式触摸面板
WO2012099394A2 (en) Touch panel and method for manufacturing the same
WO2011149199A2 (ko) 금속박막을 이용한 터치패널 및 그 제조방법
US20100053114A1 (en) Touch panel apparatus and method for manufacturing the same
WO2010095797A1 (ko) 정전용량 방식의 터치스크린 패널
WO2012015284A2 (en) Touch panel
CN105830004B (zh) 触控屏幕面板及图像显示设备
WO2013100450A1 (ko) 단일 금속박막 터치패널의 전극패턴 구조
WO2013162241A1 (en) Touch panel and method of manufacturing the same
CN106126001A (zh) 触控面板及其制造方法
WO2010038957A2 (ko) 터치패널의 제조방법 및 이에 의해 제조되는 터치패널
WO2014189204A1 (ko) 투명 전극 패턴 적층체 및 이를 구비한 터치 스크린 패널
WO2017111540A1 (ko) 터치스크린 센서
WO2012177032A2 (ko) 정전용량 터치 패널의 제조 방법 및 이에 의해 제조되는 터치 패널
WO2014178545A1 (ko) 터치 패널 및 제조 방법
KR20130128036A (ko) 터치 패널용 패드 및 제조 방법
WO2015069048A1 (ko) 한 장의 필름을 이용한 터치 센서를 구현하는 터치 패널 및 제조 방법
WO2016093517A1 (ko) 터치 스크린 패널 및 이를 구비하는 화상표시장치
WO2013077578A1 (ko) 터치패널센서
WO2012047013A2 (ko) 정전용량방식 터치 패널 소자 및 이의 제조방법
WO2012008704A2 (ko) 정전용량 터치 센서 및 이를 포함하는 윈도우 패널 일체형의 정전용량 터치 패널
WO2015002394A1 (ko) 터치 패널 및 그 제조 방법
WO2014178546A1 (ko) 터치 패널 및 이의 제조 방법
WO2014208785A1 (ko) 터치 패널용 패드 및 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/03/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13887784

Country of ref document: EP

Kind code of ref document: A1