WO2014208255A1 - Film mirror and method for producing film mirror - Google Patents

Film mirror and method for producing film mirror Download PDF

Info

Publication number
WO2014208255A1
WO2014208255A1 PCT/JP2014/064142 JP2014064142W WO2014208255A1 WO 2014208255 A1 WO2014208255 A1 WO 2014208255A1 JP 2014064142 W JP2014064142 W JP 2014064142W WO 2014208255 A1 WO2014208255 A1 WO 2014208255A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silver
group
resin
corrosion inhibitor
Prior art date
Application number
PCT/JP2014/064142
Other languages
French (fr)
Japanese (ja)
Inventor
譲 富永
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014208255A1 publication Critical patent/WO2014208255A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/40Preventing corrosion; Protecting against dirt or contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror and a method for manufacturing the film mirror.
  • glass mirrors have been used for sunlight reflecting devices because they are exposed to ultraviolet rays, heat, wind and rain, and dust from sunlight.
  • a glass mirror when a glass mirror is used, there are problems that it is damaged during transportation and that a high strength is required for the mount on which the mirror is installed, resulting in an increase in construction costs.
  • the use of a lightweight film mirror in which a metal reflective layer is formed on a resin support has been studied, and various developments have been made.
  • a film mirror uses a resin material for a support, its durability is not sufficient compared to a glass mirror. For this reason, the film mirror is required to improve durability and light resistance.
  • a “silver corrosion inhibitor” that prevents corrosion of silver in the binder as an adhesive layer is provided.
  • a configuration using what is included is disclosed (for example, see Patent Document 1).
  • the adhesive layer is formed using a curable resin composition containing glycol dimercaptoacetate as a silver corrosion inhibitor in a polyester resin binder.
  • the silver reflection layer has problems such as a decrease in reflection performance due to silver oxidation with time, and a decrease in adhesion with an adjacent resin layer, and improvement is required.
  • a resin layer adjacent to the silver reflective layer is formed using a curable resin composition containing a silver corrosion inhibitor in a binder as in Patent Document 1, it contacts the silver reflective layer. It has been found that the amount of the silver anticorrosion layer is not sufficient and the desired anticorrosion effect cannot be obtained. Therefore, when the concentration of the silver corrosion prevention layer was improved, the curing of the curable resin composition did not proceed sufficiently due to the presence of the corrosion inhibitor, and the adhesion between adjacent resin layers tended to be inferior. It was.
  • the problems of the present invention made in consideration of the above-mentioned problems of the prior art are that the reflection performance of the reflection layer containing silver and the adhesion between the reflection layer containing silver and the resin layer provided adjacent to the reflection layer are long. It is providing the film mirror excellent in durability maintained over a period. Moreover, the further subject of this invention is providing the simple manufacturing method of the said film mirror excellent in the said durability.
  • the present inventor can solve the above problems by attaching a silver corrosion prevention layer to the surface of the reflective layer containing silver and the vicinity thereof without using a binder.
  • the present invention was completed. That is, the configuration of the present invention is as follows.
  • a support, a resin intermediate layer, a reflective layer containing silver, and a resin protective layer are provided in this order.
  • the surface of the resin intermediate layer on the reflective layer side, on the reflective layer side of the resin intermediate layer A film mirror having a silver corrosion inhibitor on at least one of the surface layer, the surface of the reflective layer on the resin intermediate layer side, and the surface layer of the reflective layer on the resin intermediate layer side.
  • ⁇ 3> The film mirror according to ⁇ 1> or ⁇ 2>, wherein the corrosion inhibitor includes one or more compounds selected from compounds including a triazole structure.
  • ⁇ 4> The film mirror according to any one of ⁇ 1> to ⁇ 3>, which is used for collecting sunlight.
  • ⁇ 5> The step of forming the resin intermediate layer on the support, and the surface of the resin intermediate layer and the surface layer by contacting the surface of the resin intermediate layer with a solution obtained by dissolving or dispersing the silver corrosion inhibitor in a solvent.
  • a step of applying a silver corrosion inhibitor to at least one, a step of forming a reflective layer containing silver on the resin intermediate layer provided with the silver corrosion inhibitor, and resin protection on the surface of the formed reflective layer The method for producing a film mirror according to any one of ⁇ 1> to ⁇ 4>, comprising a step of forming a layer.
  • ⁇ 6> The method for producing a film mirror according to ⁇ 5>, wherein the step of forming the reflective layer includes a step of bringing the plating solution into contact with the resin intermediate layer and forming a layer containing silver by a plating method.
  • a step of forming a reflective layer containing silver on the resin protective layer, and a solution obtained by dissolving or dispersing a silver corrosion inhibitor in a solvent is brought into contact with the surface of the reflective layer to contain at least silver.
  • a step of applying a silver corrosion inhibitor to at least one of the reflective layer surface and the surface layer, a step of forming a resin intermediate layer on the surface of the reflective layer provided with the silver corrosion inhibitor, and the formed resin intermediate layer A method for producing a film mirror according to any one of ⁇ 1> to ⁇ 4>, comprising a step of forming a support on the substrate. ⁇ 8> Contact of a solution obtained by dissolving or dispersing a silver corrosion inhibitor in a solvent is performed by applying this solution to the resin intermediate layer, or by immersing this solution in the resin intermediate layer. ⁇ 5 The method for producing a film mirror according to any one of> to ⁇ 7>.
  • the reflection performance of the reflective layer containing silver, and the adhesion between the reflective layer containing silver and the resin layer provided adjacent thereto are maintained for a long period of time, and have excellent durability.
  • a simple manufacturing method of a film mirror and a film mirror excellent in durability can be provided.
  • the film mirror of the present invention includes a support, a resin intermediate layer, a silver-containing reflective layer (hereinafter, appropriately referred to as “silver reflective layer”), and a resin protective layer in this order.
  • a silver corrosion inhibitor is present at the interface between the silver reflective layer and the silver reflective layer, on at least one of the surface and surface layer of the resin intermediate layer on the silver reflective layer side, and the surface and surface layer of the silver reflective layer on the resin intermediate layer side. That is, the silver corrosion inhibitor includes a surface of the resin intermediate layer on the silver reflective layer side, a surface layer of the resin intermediate layer on the silver reflective layer side, a surface of the silver reflective layer on the resin intermediate layer side, and a resin intermediate layer side of the silver reflective layer Of at least one of the surface layers.
  • the silver corrosion inhibitor may contain a slight amount of solvent, but usually, the silver corrosion inhibitor is in a form in direct contact with the silver reflective layer, and the concentration of the silver corrosion inhibitor in contact with the silver reflective layer is high. Therefore, compared with the case where the silver corrosion inhibitor is dispersed and applied in the binder, the corrosion preventing effect of the silver reflection layer is high and the effect is maintained over a long period of time.
  • the adjacent resin intermediate layer is formed as a single film, there is no concern about the decrease in curability caused by the silver corrosion inhibitor, and the adhesiveness between the formed resin intermediate layer and the silver reflective layer is excellent. It will be.
  • the protective function of the silver reflective layer is high, and since it is maintained for a long period of time, the reflectivity is reduced due to silver oxidation, and the adhesion between the silver reflective layer and the resin intermediate layer is reduced due to silver oxidation. All are considered to be suppressed for a long period of time and excellent in durability.
  • the suitable embodiment of the film mirror of this invention and its manufacturing method is demonstrated in detail.
  • FIG. 1 is a schematic sectional view showing an embodiment of the film mirror of the present invention.
  • the film mirror 10 includes a support 12, a plating undercoat polymer layer 14 (hereinafter, appropriately referred to as “polymer layer 14”) that is a resin intermediate layer, a silver reflection layer 16 as a metal reflection layer, and a resin protective layer 18.
  • the corrosion inhibitor 20 is provided on at least one of the surface and the surface layer of the polymer layer 14 on the silver reflective layer 16 side and the surface and the surface layer of the silver reflective layer 16 on the polymer layer 14 side.
  • the film mirror 10 is manufactured by forming the polymer layer 14, the silver reflection layer 16, and the resin protective layer 20 in this order on the support 12.
  • the type of the support 12 is not particularly limited as long as it can reduce the weight of the film mirror 10 and can support the silver reflection layer 16 and the resin protective layer 18.
  • the support body 12 is selected according to the mode and purpose in which the film mirror 10 is installed, and may have flexibility, or may have rigidity.
  • the material of the support 12 is preferably a support using a resin made of polyester, polyimide, thermosetting polyphenylene ether, polyamide, polyaramid, liquid crystal polymer, etc. from the viewpoint of weight reduction. These resins can be molded into an arbitrary shape such as a film and used as the support 12. Further, a glass epoxy base material or the like may be used.
  • the support 12 may have a single layer structure made of a base material such as the resin exemplified above, or may have a multilayer structure formed by laminating a plurality of types.
  • the resin include phenol resin, epoxy resin, polyimide resin, BT resin, PPE resin, tetrafluoroethylene resin, liquid crystal resin, polyester resin, PEN, aramid resin, polyamide resin, polyethersulfone, triacetyl cellulose, polyvinyl chloride, Polyvinylidene chloride, polyethylene, polypropylene, polystyrene, polybutadiene, polyacetylene, and the like are suitable, and a resin that can be formed into a film can be used.
  • Particularly suitable support 12 includes a polyester resin film or a polyimide resin film.
  • an aluminum substrate, a SUS substrate, or the like can be used as the support 12.
  • the shape of the support 12 is a planar shape, but the shape is not particularly limited to the form of FIG. 1, and is required as a film substrate in various film mirrors such as a diffusion surface, a concave surface, and a convex surface. Any shape is acceptable.
  • the thickness of the support 12 is preferably about 10 to 5 mm. When the thickness is in this range, the handling during production is good, and it can be easily formed into an arbitrary shape.
  • the thickness of the support 12 is more preferably 20 to 1 mm, still more preferably 25 to 500 ⁇ m.
  • the support 12 may be subjected to a surface treatment for the purpose of improving the adhesion with the polymer layer 14 provided on the support 12 or suppressing the mixing of impurities.
  • Surface treatment includes UV irradiation, ozone treatment, plasma treatment, corona treatment, flame treatment, and other surface activation treatments, and hydrazine, N-methylpyrrolidone, sodium hydroxide solution, alkaline solution such as potassium hydroxide solution.
  • Treatment with a solution or treatment with an acidic solution such as sulfuric acid, hydrochloric acid or nitric acid can be mentioned.
  • Examples of the treatment to remove and clean the surface of the support 12 include treatment with an organic solvent such as methanol, ethanol, toluene, ethyl acetate, and acetone, and washing with water to remove attached dust. These surface treatments may be performed in combination of a plurality of types.
  • a support 12 having a surface roughness (Ra) of 50 nm or less, and more preferably Ra of 20 nm or less. More preferably, the average roughness (Ra) is 5 nm or less.
  • the film mirror 10 of this embodiment has a resin intermediate layer on the support 12 for the purpose of improving the adhesion between the support 12 and the silver reflective layer 16.
  • the resin intermediate layer include an easy-adhesion layer 28 for facilitating adhesion of metal, a polymer layer 14 useful for forming the silver reflection layer 16 by a plating method, and the like. Also, it may be composed of two or more layers.
  • the film mirror 10 according to the first embodiment includes a polymer layer 14.
  • the polymer layer 14 which is one embodiment of the resin intermediate layer will be described.
  • the polymer layer 14 has at least a plating undercoat polymer.
  • the polymer layer 14 may include reduced metal particles.
  • Examples of the method for forming the polymer layer 14 include a method for forming the polymer layer 14 including the metal precursor on the support 12 by a method such as coating using a composition including the metal precursor and the plating undercoat polymer. It is done. Alternatively, a layer is formed on the support 12 using the polymer layer forming composition, and then the composition containing the metal precursor is brought into contact with the layer provided on the support 12 by a method such as immersion. A method of forming the “polymer layer 14 including a metal precursor” and then reducing the metal precursor included in the “polymer layer 14 including a metal precursor” may be mentioned.
  • the polymer layer 14 containing the reduced metal particles is formed.
  • the content (total amount) of the metal particles contained in the polymer layer 14 is obtained by dissolving the metal particles in the plating undercoat polymer by immersing the resin base material having the polymer layer 14 in concentrated sulfuric acid or the like.
  • the liquid can be measured by elemental analysis using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) (ICP-1000IV, manufactured by Shimadzu Corporation).
  • ICP-AES Inductively Coupled Plasma Atomic Emission Spectrometer
  • a silver corrosion inhibitor 20 is applied to the polymer layer 14 as described later.
  • the plating undercoat polymer used for forming the polymer layer 14 will be described.
  • the plating undercoat polymer used to form the polymer layer 14 has at least a polymerizable group and a functional group that interacts with the metal precursor (hereinafter, referred to as “interactive group” as appropriate).
  • an acrylic polymer, polyether, acrylamide, polyamide, polyimide, acrylic polymer, polyester, and the like are preferable, and an acrylic polymer is more preferable.
  • the plating undercoat polymer may contain a constitutional unit other than a constitutional unit containing a polymerizable group and an interaction group depending on the purpose.
  • the composition for forming a polymer layer has excellent solubility in water or an organic solvent and is uniform.
  • a plating undercoat layer can be formed.
  • the “polymer layer forming composition” is a composition for forming the polymer layer 14 including a plating undercoat polymer.
  • an acrylic polymer having an acidic group and a polymerizable group as an interactive group in the side chain can be mentioned.
  • a polymerizable group, an interactive group, and characteristics of the plating undercoat polymer will be described in detail.
  • the polymerizable group of the plating undercoat polymer is chemically bonded between the polymers or between the polymer and the base layer (the support 12 or the easy-adhesion layer 28 or the undercoat layer provided on the support 12) by applying energy. Any functional group can be used.
  • the polymerizable group include a radical polymerizable group and a cationic polymerizable group. Of these, a radical polymerizable group is preferable from the viewpoint of reactivity.
  • radical polymerizable group examples include methacryloyl group, acryloyl group, itaconic acid ester group, crotonic acid ester group, isocrotonic acid ester group, maleic acid ester group, styryl group, vinyl group, acrylamide group and methacrylamide group. It is done. Of these, a methacryloyl group, an acryloyl group, a vinyl group, a styryl group, an acrylamide group, and a methacrylamide group are preferable.
  • a methacryloyl group, an acryloyl group, an acrylamide group, and a methacrylamide group are preferable from the viewpoint of radical polymerization reactivity and synthetic versatility, and an acrylamide group and a methacrylamide group are more preferable from the viewpoint of alkali resistance.
  • various polymerizable groups such as a (meth) acryl group such as a (meth) acrylate group or a (meth) acrylamide group, a vinyl ester group of a carboxylic acid, a vinyl ether group, and an allyl ether group Is preferred.
  • the interaction group of the plating undercoat polymer is a functional group that interacts with the metal precursor (for example, a coordination group, a metal ion adsorbing group, etc.), and can form an electrostatic interaction with the metal precursor.
  • a functional group, or a nitrogen-containing functional group, a sulfur-containing functional group, an oxygen-containing functional group or the like that can form a coordination with a metal precursor can be used.
  • Nitrogen-containing functional groups such as pyrazole group, group containing alkylamine structure, cyano group, cyanate group (R—O—CN); ether group, hydroxyl group, phenolic hydroxyl group, carboxyl group, carbonate group, carbonyl group, ester group, Oxygen-containing functional groups such as groups containing N-oxide structures, groups containing S-oxide structures, groups containing N-hydroxy structures; thiophene groups, thiol groups, thiourea groups, sulfoxide groups, sulfonic acid groups, sulfonic acid ester structures Sulfur-containing functional groups such as groups containing phosphine groups; Phosphorus-containing functional groups
  • the plating undercoat polymer support 12 (in the case where the easy-adhesion layer 28 is formed on the support 12, easy adhesion)
  • carboxylic acid group, sulfonic acid group, phosphoric acid group, and boronic acid group can be mentioned, among them, having moderate acidity (not decomposing other functional groups), other functionalities
  • Carboxylic acid groups are particularly preferred from the viewpoint that there are few concerns that affect the group, excellent compatibility with the plating layer, and easy availability of raw materials.
  • An ionic polar group such as a carboxylic acid group can be introduced into the plating undercoat polymer by copolymerizing a radical polymerizable compound having an acidic group.
  • the polymer having an interactive group comprising a radical polymerizable group and a non-dissociable functional group is described in paragraphs [0106] to [0112] of JP-A-2009-007540.
  • Polymers can be used.
  • polymers described in paragraphs [0065] to [0070] of JP-A-2006-135271 can be used.
  • Examples of the polymer having a radical polymerizable group, an interactive group composed of a non-dissociative functional group, and an interactive group composed of an ionic polar group include paragraphs [0010] to [0010] of JP 2010-248464 A. [0128] Polymers described in paragraphs [0030] to [0108] of JP 2010-84196 A and US Patent Application Publication No. 2010-080964 may be used.
  • the metal precursor described later may be applied after the polymer layer 14 is formed, or may be contained in the polymer layer forming composition from the beginning.
  • the content of the metal precursor is preferably 0.5 to 100% by mass and more preferably 1 to 50% by mass with respect to the total amount of the composition.
  • the composition for forming a polymer layer preferably contains a radical polymerization initiator such as a photopolymerization initiator and a thermal polymerization initiator in order to increase sensitivity to energy application.
  • the radical polymerization initiator is not particularly limited, and generally known ones are used. However, when energy is applied, the plating undercoat polymer can generate active sites that interact with the support 12 and the easy-adhesion layer 28, that is, when a polymer having a polymerization initiation site in the polymer skeleton described above is used. These radical polymerization initiators may not be added.
  • the amount of the radical polymerization initiator to be contained in the polymer layer forming composition is selected according to the configuration of the polymer layer forming composition. In general, the amount of the radical polymerization initiator is preferably about 0.05 to 30% by mass, and preferably about 0.1 to 10.0% by mass in the polymer layer forming composition. More preferred.
  • the polymer layer 14 can be formed by applying a composition for forming a polymer layer on the support 12 or the easy-adhesion layer 28 formed on the surface of the support 12 and applying energy.
  • a composition for forming a polymer layer on the support 12 or the easy-adhesion layer 28 formed on the surface of the support 12 and applying energy.
  • an easy adhesion treatment such as applying energy to the surface of the support 12 in advance.
  • the method for providing the polymer layer 14 on the support 12 is not particularly limited. The method for immersing the support 12 in the composition for forming a polymer layer or the method for applying the composition for forming a polymer layer on the support 12. Etc. From the viewpoint of easily controlling the thickness of the polymer layer 14 to be obtained, a method of coating the polymer layer forming composition on the support 12 is preferable.
  • the coating amount of the polymer layer forming composition is preferably 0.05 to 10 g / m 2 in terms of solid content, particularly 0.3 to 5 g / m 2 from the viewpoint of sufficient interaction formation with the metal precursor described later. m 2 is preferred.
  • the coating solution of the polymer layer forming composition applied to the support 12 or the like is preferably dried at 20 to 60 ° C. for 1 second to 2 hours, and then dried at a temperature exceeding 60 ° C. for 1 second to 2 hours. More preferably, after drying at ⁇ 60 ° C. for 1 second to 20 minutes, drying at a temperature exceeding 60 ° C. for 1 second to 20 minutes.
  • the composition for forming a polymer layer is formed by bringing the polymer in the energy application region into contact with the support 12 or the easy-adhesion layer 28 provided on the support 12 and then applying energy. Alternatively, an interaction is formed between the polymerizable group of the polymer and the support 12 or the easy-adhesion layer 28 provided on the support 12. And the polymer layer 14 fixed on the support body 12 (or on the support body 12 through the easily bonding layer 28) is formed. Thereby, the support body 12 and the polymer layer 14 adhere
  • Examples of the energy application method include heating and exposure.
  • As an energy application method by exposure specifically, light irradiation by a UV lamp, visible light, or the like is possible.
  • Examples of the light source used for exposure include a mercury lamp, a metal halide lamp, a xenon lamp, and a chemical lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • the exposure power is preferably in the range of 10 to 8000 mJ / cm 2 from the viewpoint of facilitating the polymerization, suppressing the decomposition of the polymer, or forming a good interaction of the polymer, A range of 100 to 3000 mJ / cm 2 is more preferable. Note that exposure may be performed in an atmosphere in which substitution with an inert gas such as nitrogen, helium, or carbon dioxide is performed, and the oxygen concentration is suppressed to 600 ppm or less, preferably 400 ppm or less.
  • an inert gas such as nitrogen, helium, or carbon dioxide
  • Energy application by heating can be performed by, for example, a general heat heat roller, laminator, hot stamp, electric heating plate, thermal head, laser, blower dryer, oven, hot plate, infrared dryer, heating drum, or the like.
  • the temperature is preferably in the range of 20 to 200 ° C., in order to facilitate the polymerization or to suppress thermal denaturation of the support, and in the range of 40 to 120 ° C. It is more preferable that
  • the film thickness of the polymer layer 14 is not particularly limited, but is preferably 0.05 to 10 ⁇ m, more preferably 0.3 to 5 ⁇ m from the viewpoint of adhesion to the support 12 and the like. Further, the surface roughness (Ra) of the polymer layer 14 obtained by the above method is preferably 20 nm or less, and more preferably 10 nm or less, from the viewpoint of reflection performance.
  • the polymer layer 14 preferably includes reduced metal particles.
  • the reduced metal particles contained in the polymer layer 14 are obtained by applying a metal precursor to the polymer layer 14 and reducing the metal precursor to make the metal precursor reduced metal particles. When the metal precursor is applied to the polymer layer 14, the metal precursor adheres to the interactive group by interaction.
  • the amount of reduced metal particles contained in the polymer layer 14 is preferably 0.01 to 5 g / m 2 , and more preferably 0.05 to 1 g / m 2 .
  • a metal precursor will not be specifically limited if it functions as an electrode by changing to a metal by a reduction reaction. Moreover, as a metal precursor, what functions as an electrode of plating in formation of a metal reflective layer is mentioned preferably. Therefore, what functions as an electrode by reducing a metal precursor to a metal is preferable. Specifically, metal ions such as Au, Pt, Pd, Ag, Cu, Ni, Al, Fe, and Co are used as the metal precursor. When the metal ion which is a metal precursor is contained in the composition for forming a polymer layer, after forming a layer on the support 12, it becomes zero-valent metal particles by a reduction reaction.
  • the metal ion which is a metal precursor is contained in the composition for polymer layer formation as a metal salt.
  • the metal ion Ag ion, Cu ion, and Pd ion are preferable in terms of the type and number of functional groups capable of coordination, and catalytic ability.
  • the Ag ions those obtained by dissociating the silver compounds shown below can be suitably used.
  • the silver compound examples include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, silver chloranilate, silver salicylate, silver diethyldithiocarbamate, Examples thereof include silver diethyldithiocarbamate and silver p-toluenesulfonate.
  • silver nitrate is preferable from the viewpoint of water solubility.
  • Cu ions those obtained by dissociating the following copper compounds can be suitably used.
  • copper compounds include copper nitrate, copper acetate, copper sulfate, copper cyanide, copper thiocyanate, copper chloride, copper bromide, copper chromate, copper chloranilate, copper salicylate, copper diethyldithiocarbamate, diethyldithiol.
  • copper carbamate and copper p-toluenesulfonate examples include copper carbamate and copper p-toluenesulfonate.
  • copper sulfate is preferable from the viewpoint of water solubility.
  • the metal precursor is preferably applied to the polymer layer 14 as a dispersion or solution (metal precursor liquid).
  • the particle diameter of the metal precursor in the dispersion or solution is preferably 1 to 200 nm, more preferably 1 to 100 nm, and still more preferably 1 to 60 nm.
  • the particle size of the reduced metal particles can be controlled to a desired size.
  • the particle diameter means an average primary particle diameter (volume conversion), and is measured by reading from an image of SEM (S-5200, manufactured by Hitachi High-Tech Manufacturing & Service Co., Ltd.).
  • Metal ions that are metal precursors applied to the polymer layer 14 are reduced by a metal activation liquid (reducing liquid).
  • the metal activation liquid is composed of a reducing agent that can reduce a metal precursor (mainly metal ions) to a zero-valent metal and a pH adjuster for activating the reducing agent.
  • concentration of the reducing agent with respect to the entire metal activation liquid is preferably 0.05 to 50% by mass, and more preferably 0.1 to 30% by mass.
  • boron-based reducing agents such as sodium borohydride and dimethylamine borane
  • reducing agents such as formaldehyde and hypophosphorous acid
  • reduction with an aqueous alkaline solution containing formaldehyde is preferred.
  • the concentration of the pH adjusting agent with respect to the entire metal activation liquid is preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass.
  • As the pH adjuster acetic acid, hydrochloric acid, sulfuric acid, nitric acid, sodium hydrogen carbonate, aqueous ammonia, sodium hydroxide, potassium hydroxide and the like can be used.
  • the temperature during the reduction is preferably 10 to 100 ° C, more preferably 20 to 70 ° C. These concentrations and temperatures are preferably in this range from the viewpoints of the particle diameter of the metal precursor, the surface roughness of the polymer layer 14, the conductivity (surface resistance value), and the deterioration of the reducing solution during reduction.
  • the particle diameter of the reduced metal particles contained in the polymer layer 14 is preferably 1 to 200 nm, more preferably 1 to 100 nm, and further preferably 1 to 60 nm from the viewpoint of reflection performance. By being in this range, the reflectance after plating becomes good.
  • the particle size is measured by reading from an SEM (S-5200 manufactured by Hitachi High-Tech Manufacturing & Service) image.
  • the surface resistance value of the polymer layer 14 containing the reduced metal particles is preferably 0.001 ⁇ / ⁇ or more and 100 ⁇ / ⁇ or less, and more preferably 0.03 ⁇ / ⁇ or more and 50 ⁇ / ⁇ or less. Within this range, the plated surface is formed uniformly and smoothly and the reflectance is good. Further, the surface roughness (Ra) of the polymer layer 14 containing the reduced metal particles is preferably 20 nm or less, and more preferably 10 nm or less, from the viewpoint of reflection performance.
  • the polymer layer 14 containing the metal particles thus obtained is suitably used when the silver reflecting layer 16 described in detail below is formed by a plating method that is a wet method.
  • the silver reflective layer 16 formed by plating using the polymer layer 14 is excellent in adhesion to the resin substrate and surface smoothness.
  • the corrosion inhibitor 20 is a state in which the silver corrosion inhibitor 20 is dissolved directly in the polymer layer 14 (preferably, a polymer layer containing reduced metal particles) or dissolved in a suitable solvent. It is given by making it contact with.
  • a mode in which the silver corrosion inhibitor 20 is applied is shown in FIGS. 2 and 3 show another example of the first embodiment.
  • the silver corrosion inhibitor 20 may adhere over the entire surface of the polymer layer 14.
  • the silver corrosion inhibitor 20 may adhere to at least a part of the surface of the polymer layer 14 in an island shape.
  • the mirror film of this embodiment is in another example of the first mode shown in FIG. In No. 24, the silver corrosion inhibitor 20 is applied to the surface layer of the plating undercoat polymer layer 14, that is, from the surface of the plating undercoat polymer layer 14 to a region having a depth of about 200 nm.
  • the silver corrosion inhibitor 20 may be distributed in an island shape on at least a part of the interface between the polymer layer 14 and the silver reflective layer 16.
  • voids open cells are formed in the polymer layer 14 due to permeation of the plating catalyst or the plating solution.
  • the silver corrosion inhibitor 20 may be scattered not only on the surface and the surface layer of the polymer layer 14 but also in deeper portions in the polymer layer 14.
  • the silver corrosion inhibitor 20 may be attached to at least one of the surface of the polymer layer 14 and the surface layer, and the silver corrosion inhibitor 20 may further exist in a deeper portion of the polymer layer 14. 1 to 3, when the silver reflective layer 16 is formed by plating, the silver reflective layer 16 and the silver corrosion inhibitor 20 come into contact with each other. For this reason, corrosion of the silver reflective layer 16 is effectively suppressed.
  • the silver reflection layer 16 has a micro gap.
  • the silver corrosion inhibitor 20 adhered to the surface of the polymer layer 14 may not only contact the surface of the silver reflective layer 16 but also penetrate and adhere to the surface layer of the silver reflective layer 16 (16A: see FIG. 6). sell.
  • the silver corrosion inhibitor 20 is in contact with the silver constituting the silver reflective layer 16, so that the silver corrosion of the silver reflective layer 16 is effectively prevented.
  • the silver corrosion inhibitor 20 is preferably present in an amount that satisfies the adhesion amount described below. Even if the surface of the resin intermediate layer 14 or the silver reflective layer 16 is uneven, if the silver corrosion inhibitor 20 is given a sufficient amount for preventing corrosion, for example, the silver corrosive recesses on the surface of the silver reflective layer 16 are corroded. The aspect which the inhibitor 20 adheres may be sufficient, and the aspect which the silver corrosion inhibitor 20 adheres to a convex part conversely may be sufficient. Moreover, when the silver corrosion inhibitor 20 is arrange
  • “corrosion” refers to a phenomenon in which silver is chemically or electrochemically eroded or deteriorated by an environmental material surrounding it (see JIS Z0103-2004).
  • the silver corrosion inhibitor 20 is disposed in a part of the surface of the polymer layer 14 as the resin intermediate layer and inside the polymer layer 14 .
  • the component (for example, silver) constituting the silver reflecting layer 16 and the silver corrosion inhibitor 20 may be mixed and present. That is, when the reduced silver particles and the silver corrosion inhibitor 20 are mixed in the polymer layer 14 and the silver reflective layer 16 is formed by plating with the reduced silver particles as a starting point, in the polymer layer 14, It is also possible to include a state in which granular silver is included and a corrosion inhibitor is included in a gap between the granular silvers.
  • the “surface layer” is a region close to the surface from the surface on the polymer layer 14 side as the resin intermediate layer of the silver reflective layer 16 to a position of 50 nm in the depth direction, or on the silver reflective layer 16 side of the polymer layer 14. It means a region close to the surface from the surface to the position of 200 nm in the depth direction.
  • the silver corrosion inhibitor 20 is included in the surface layer of the silver reflective layer 16, the silver corrosion inhibitor 20 is on the polymer layer 14 side of the silver reflective layer 16 from the viewpoint of hardly affecting the reflection characteristics of the silver reflective layer 16. It is preferable to exist only in a region from the surface to a position in the depth direction of 30 nm.
  • the content of the silver corrosion inhibitor 20 is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of silver contained in the silver reflection layer 16. Especially, from a viewpoint that the adhesiveness of the polymer layer 14 and the silver reflective layer 16 and the light resistance of the film mirror 10 become more favorable, it is 0.03 with respect to 100 mass parts of silver contained in the silver reflective layer 16.
  • the range is preferably from 0.8 to 0.8 parts by mass, and more preferably from 0.05 to 0.6 parts by mass.
  • the content of the silver corrosion inhibitor 20 means the total amount of the silver corrosion inhibitor 20 contained in the entire film mirror 10.
  • the silver corrosion inhibitor 20 when the silver corrosion inhibitor 20 is present only on the surface of the silver reflective layer 16 and when the silver corrosion inhibitor 20 is present only on the surface layer 16A of the silver reflective layer 16, the silver corrosion inhibitor 20 present on the surface or each surface layer. It is sufficient that the amount (attachment amount) is within the above range. When the silver corrosion inhibitor 20 is present on both the surface and the surface layer, the total amount of the silver corrosion inhibitor 20 on the surface and the amount of the silver corrosion inhibitor 20 in the surface layer of the silver reflection layer 16 is in the above range. If it is in.
  • the amount of the silver corrosion inhibitor 20 is measured by elution of the surface and surface corrosion inhibitors with an acid solution of 25% hydrochloric acid or the like and measuring the absorbance of the UV-Vis absorption spectrum, or by surface element analysis such as XPS. It can be measured by the method used. Whether the silver corrosion inhibitor 20 exists up to the depth of the polymer layer 14 or the silver reflection layer 16 is obtained by obliquely cutting with SAICAS (registered trademark, manufactured by Daipura Wintes Co., Ltd.), It is measured by analyzing the cut section by the TOF-SIMS method (time-of-flight secondary ion mass spectrometry).
  • SAICAS registered trademark, manufactured by Daipura Wintes Co., Ltd.
  • the silver corrosion inhibitor 20 is applied after the formation of the polymer layer 14 that is a resin intermediate layer, so that the silver corrosion inhibitor 20 is present on at least one of the surface and the surface layer of the polymer layer 14 and is in contact with the silver reflective layer 16 at a high density. It will be.
  • the binder resin added with the silver corrosion inhibitor 20 is used as the resin intermediate layer, the effects of the present invention cannot be achieved. Specifically, when the silver corrosion inhibitor 20 is added before the resin intermediate layer is formed (that is, in the coating liquid for forming the polymer layer) and then the energy is applied to form the polymer layer 14, the silver corrosion prevention The agent 20 is uniformly dispersed throughout the resin intermediate layer. For this reason, the quantity of the silver corrosion inhibitor 20 which contacts the adjacent silver reflection layer 16 decreases. Therefore, a sufficient corrosion prevention effect cannot be obtained.
  • the kind in particular of the silver corrosion inhibitor 20 is not restrict
  • examples of the silver corrosion inhibitor having an adsorptive group for silver include amines and derivatives thereof, Compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, compounds having an indazole ring, copper chelate compounds, thioureas, mercapto It is desirable to select from at least one of a group-containing compound, a thioether (a compound having a sul
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, o-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, N, N-dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate , Diisopropylammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohex
  • Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy3'5'-di-tert-butylphenyl) benzotriazole, 2-
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or mixtures thereof.
  • Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethy
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • mercaptoacetic acid thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto
  • thioethers examples include didodecyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, ditridecyl 3,3′-thiobispropionate, and bis [3- (dodecylthio) propionic acid] 2.
  • naphthalene compounds examples include thionalide.
  • a more specific example of the silver corrosion inhibitor 20 includes compounds represented by the following formulas (D) to (J).
  • R 41 to R 45 each independently represents a hydrogen atom or a substituent.
  • substituents include a halogen atom (eg, fluorine atom, chlorine atom), an alkyl group (eg, methyl group, ethyl group, isopropyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl).
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • aralkyl group eg, benzyl group, 2-phenethyl group, etc.
  • aryl group eg, phenyl group, naphthyl group, p-tolyl group, p) -Chlorophenyl group etc.
  • alkoxy group eg methoxy group, ethoxy group, isopropoxy group, butoxy group etc.
  • aryloxy group eg phenoxy group etc.
  • acylamino group eg acetylamino group, propionylamino group etc.
  • Alkylthio group for example, methylthio group, ethylthio group, butylthio group
  • arylthio group eg, phenylthio group, etc.
  • sulfonylamino group eg, methanesul
  • Q represents a nitrogen atom or CR 46.
  • R 46 represents a hydrogen atom or a substituent.
  • the substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
  • R 46 is preferably a hydrogen atom.
  • R 51 to R 53 each independently represents a hydrogen atom or a substituent.
  • the substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
  • R 51 to R 53 are independently selected from the group consisting of a hydrogen atom, an alkyl group, an amino group, and a mercapto group, in that light resistance is more excellent.
  • R 61 to R 63 each independently represents a hydrogen atom or a substituent.
  • the substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
  • R 61 to R 63 are each independently preferably selected from the group consisting of a hydrogen atom, an alkyl group, an amino group, and a mercapto group from the viewpoint that light resistance is more excellent.
  • R 71 to R 72 each independently represents a hydrogen atom or a substituent.
  • the substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
  • R 71 to R 72 are each independently preferably selected from the group consisting of a hydrogen atom, an alkyl group, an amino group, a mercapto group, and an alkyl sulfide group from the viewpoint of more excellent light resistance.
  • R 81 to R 84 each independently represents a hydrogen atom or a substituent.
  • the substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
  • R 81 to R 84 are independently selected from the group consisting of a hydrogen atom and an alkyl group from the viewpoint of more excellent light resistance.
  • A represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms.
  • La represents an alkylene group, —S—, —CO—, —O—, or a combination thereof (for example, —alkylene group—S-alkylene group—, —COO-alkylene group).
  • n represents an integer of 2 to 4.
  • R 101 and R 102 each independently represent a hydrogen atom or a substituent.
  • the substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
  • R 101 is preferably selected from the group consisting of hydrogen atom and alkyl group.
  • R 102 is preferably selected from the group consisting of a hydrogen atom, a mercapto group, an amino group, and an alkyl group.
  • Lb represents an alkylene group.
  • m represents an integer of 1 to 5
  • l represents an integer of 0 to 4
  • the method for applying the silver corrosion inhibitor 20 is not particularly limited, but the silver corrosion inhibitor 20 may be brought into direct contact with the polymer layer 14, or a solution dissolved or dispersed in an appropriate solvent may be brought into contact with the polymer layer 14. Good.
  • the silver corrosion inhibitor 20 adheres to the surface of the polymer layer 14 or penetrates into the surface layer of the polymer layer 14 and adheres to the interaction group of the plating undercoat polymer. (Adsorption).
  • the silver corrosion inhibitor 20 has an adsorptive group for silver, the silver corrosion inhibitor 20 comes into close contact with the silver reflective layer 16 formed by plating through the adsorptive group.
  • a contact condition will not be restrict
  • the contact is preferably performed at 10 ° C. to 50 ° C. for 0.2 minutes to 60 minutes.
  • the type of the solvent used for dissolving and dispersing the silver corrosion inhibitor 20 is not particularly limited, but a solvent that can dissolve the silver corrosion inhibitor 20 is preferable.
  • the solvent solvent or dispersion medium
  • examples of the solvent include alcohol solvents such as water, methanol, ethanol, propanol, ethylene glycol, glycerin and propylene glycol monomethyl ether, acids such as acetic acid, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone.
  • Amide solvents such as formamide, dimethylacetamide and N-methylpyrrolidone, nitrile solvents such as acetonitrile and propionitrile, ester solvents such as methyl acetate and ethyl acetate, carbonate solvents such as dimethyl carbonate and diethyl carbonate, benzene Aromatic hydrocarbon solvents such as toluene and xylene, and other solvents such as ether solvents, glycol solvents, amine solvents, thiol solvents, and halogen solvents. Further, the content of the silver corrosion inhibitor 20 when the silver corrosion inhibitor 20 is dissolved and dispersed in the solvent is not particularly limited.
  • the silver corrosion inhibitor 20 with respect to 100 parts by mass of the solvent. Is preferably 0.0001 to 5 parts by mass, and more preferably 0.01 to 1 part by mass.
  • the resin support body 12 which has the polymer layer 14 to which the silver corrosion inhibitor 20 was given as needed. You may implement the process of wash
  • the type of solvent used for cleaning is not particularly limited, and is selected according to the type of silver corrosion inhibitor 20 used. For example, the solvent used for melt
  • the method of washing with a solvent is not particularly limited, and a method of applying a solvent on the support 12 with the polymer layer 14 provided with the silver corrosion inhibitor 20 or a support 12 with the polymer layer 14 provided with the silver corrosion inhibitor 20 is used.
  • the method of immersing in a solvent is mentioned.
  • the washing conditions are not particularly limited, but it is preferable to contact with a solvent at 10 to 50 ° C. for 0.1 to 5 minutes from the viewpoint that the excess silver corrosion inhibitor 20 can be removed more efficiently.
  • the silver reflection layer 16 is a layer provided on the polymer layer 14 and has a function of reflecting incident light. Silver or an alloy containing silver can increase the reflectance in the visible light region of the film mirror 10 and reduce the dependency of the reflectance on the incident angle.
  • the visible light region means a wavelength region of 400 to 700 nm.
  • the incident angle means an angle with respect to a line perpendicular to the film surface.
  • the silver content in the silver reflecting layer 16 is preferably 90 atomic% to 99.8 atomic% in the total of silver and other metals (100 atomic%). Further, the content of other metals is preferably 0.2 atomic% to 10 atomic% from the viewpoint of durability.
  • the silver reflection layer 16 may contain other metals other than silver to the extent that the reflection characteristics of the silver reflection layer 16 are not affected, from the viewpoint of improving durability. Gold, copper, nickel, iron, palladium, etc. are mentioned.
  • the silver corrosion inhibitor 20 may be contained in at least one of the surface of the silver reflective layer 16 on the polymer layer 14 side and the surface layer 16A of the silver reflective layer.
  • a conventionally known method can be used as the electroplating method.
  • the metal particles contained in the polymer layer 14 have a function as an electrode, by performing electroplating on the polymer layer 14, the silver reflective layer 16 having excellent adhesion to the resin support.
  • metal compounds used for plating include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver methanesulfonate, silver ammonia, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, and chloranil.
  • silver compounds such as silver oxide, silver salicylate, silver diethyldithiocarbamate, silver diethyldithiocarbamate, and silver p-toluenesulfonate.
  • silver methanesulfonate is preferable from the viewpoint of environmental impact and smoothness.
  • the film thickness of the silver reflecting layer 16 obtained by the electroplating method can be controlled by adjusting the metal concentration or the current density contained in the plating bath. By adding a base metal layer having an appropriate thickness, it is possible to improve reflectance and reduce pinholes by smoothing the surface.
  • the silver reflective layer 16 may be formed by performing dry plating such as vacuum deposition using the polymer layer 14 containing the reduced metal particles. According to this method, since the surface of the polymer layer 14 is covered with a metal, it is possible to form the silver reflective layer 16 that has better adhesion than ordinary vapor deposition or the like and is strong against heat.
  • the silver reflective layer 16 may be treated with a strong acid or a strong alkali in order to improve the reflection performance and durability of the silver reflective layer 16. Further, an inorganic film or a metal oxide film may be formed on the metal surface.
  • the thickness of the silver reflective layer 16 is not particularly limited, but is preferably 50 to 500 nm, more preferably 80 to 300 nm from the viewpoint of reflectivity.
  • the method for forming the silver reflective layer 16 is not particularly limited, and either a wet method or a dry method can be employed.
  • the wet method include a known method as a so-called metal plating method (electroless plating or electroplating).
  • the dry method include a vacuum deposition method, a sputtering method, and an ion plating method.
  • the content (total amount) of silver contained in the silver reflective layer 16 is determined by immersing the silver reflective layer 16 in concentrated sulfuric acid or the like to dissolve the silver in the silver reflective layer 16, and then dissolving the obtained solution with ICP-AES ( It can be measured by elemental analysis using an inductively coupled plasma emission spectrometer (ICP-1000IV, manufactured by Shimadzu Corporation).
  • the resin protective layer 18 is a layer disposed on the silver reflection layer 16 and is provided on the surface of the silver reflection layer 16 on the incident light side.
  • the resin protective layer 18 prevents the silver reflecting layer 16, the support 12, the polymer layer 14, or the like from being deteriorated or damaged by sunlight, rainwater, dust, or the like, and stabilizes the specularity.
  • the resin material used for forming the resin protective layer 18 is a resin that can form a film or layer, and the strength or durability of the formed film or layer, air and moisture blocking properties, and further this resin In addition to the adhesion between the protective layer 18 and the adjacent layer (for example, the silver reflection layer 16 or the surface coating layer), a resin having excellent transparency is preferable.
  • As the resin protective layer 18, a resin having high transparency with respect to light having a wavelength required by the film mirror 10 is particularly preferable.
  • cellulose ester resins for example, cellulose ester resins, polyester resins, polycarbonate resins, polyarylate resins, polysulfone (including polyether sulfone) resins, polyethylene terephthalate, polyester resins such as polyethylene naphthalate, polyethylene, Polypropylene, cellulose diacetate resin, cellulose triacetate resin, cellulose acetate propionate resin, cellulose acetate butyrate resin, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl alcohol resin, ethylene vinyl acetate resin, and ethylene acrylate copolymer, polycarbonate , Norbornene resin, polymethylpentene resin, polyamide, fluorine resin, polymethyl methacrylate, acrylic resin , Olefin resin, polyurethane resin, and silicone resin.
  • polyester resins such as polyethylene naphthalate, polyethylene, Polypropylene, cellulose diacetate resin, cellulose triacetate resin, cellulose acetate propionate resin, cellulose
  • the resin contained in the resin protective layer 18 includes acrylic resin, polyvinyl butyral, ethylene vinyl acetate resin, and ethylene acrylate ester.
  • One or more resins selected from copolymers are preferred.
  • the resin protective layer 18 preferably further contains a crosslinking agent.
  • a crosslinking agent By containing a crosslinking agent, a crosslinked structure is formed in the resin protective layer 18. Thereby, while the intensity
  • a crosslinking agent it can select according to correlation with resin which comprises the resin protective layer 18.
  • the crosslinking agent include a carbodiimide compound, an isocyanate compound, an epoxy compound, an oxetane compound, a melamine compound, a bisvinylsulfone compound, and the like.
  • the resin protective layer 18 contains additives such as an ultraviolet absorber, a photopolymerization initiator, an antistatic agent, a coating aid (leveling agent), an antioxidant, and an antifoaming agent. May be.
  • a composition for forming the resin protective layer 18 (hereinafter referred to as “protective image forming composition” as appropriate) is dissolved in a solvent and coated on the silver reflective layer 16, and then the solvent is reduced to reduce the resin protective layer.
  • a method of forming the resin protective layer 18 by heating to a temperature at which the resin contained in the protective layer forming composition melts, and casting on the silver reflective layer 16.
  • the protective layer forming composition is formed into a film in advance, and the obtained film is bonded to the silver reflective layer 16 via an adhesive, or the silver reflective layer 16 is formed by a method such as thermal lamination.
  • the solid content concentration of the protective layer-forming coating solution composition is preferably in the range of 1 to 30% by mass.
  • the method of curing the resin film applied to the surface of the silver reflective layer 16 is not particularly limited, and a method corresponding to the resin material used for forming the resin protective layer 18 such as heating or UV irradiation can be appropriately selected. That's fine.
  • the film thickness of the resin protective layer 18 is preferably in the range of 3 to 30 ⁇ m from the viewpoint of achieving the necessary protective function and durability and suppressing the reduction in light reflectivity, and in the range of 5 to 10 ⁇ m. It is more preferable that
  • the resin protective layer 18 is preferably substantially free of the silver corrosion inhibitor 20.
  • the resin protective layer 18 is formed of a curable resin composition, if the silver corrosion inhibitor 20 is included, curing may be hindered.
  • substantially not contained means that the content of the silver corrosion inhibitor 20 is 0.02 mass% or less with respect to the total amount of the resin protective layer 18 and is 0.01 mass% or less. It is preferable.
  • the resin protective layer 18 may contain an ultraviolet absorber.
  • the ultraviolet absorber By including the ultraviolet absorber, the light resistance of the film mirror 10 is further improved.
  • the type of the ultraviolet absorber is not particularly limited, but examples of the organic system include benzophenone system, benzotriazole system, phenyl salicylate system, triazine system, benzoate system, etc., and inorganic systems include titanium oxide, zinc oxide, cerium oxide, Examples include iron oxide.
  • a polymeric ultraviolet absorber having a molecular weight of 1000 or more.
  • the molecular weight is 1000 or more and 3000 or less.
  • the film mirror 10 may further have a surface coating layer on the resin protective layer 18.
  • the weather resistance and scratch resistance of the film mirror 10 are further improved.
  • the surface coating layer may be a soft layer having a hardness of 100 N / mm 2 or less and an elastic recovery rate of 60% or more, or may be a so-called hard coat layer having a hard surface. .
  • the thickness in the case of forming a soft surface coating layer is not particularly limited, but is 1 to 50 ⁇ m because the scratch resistance of the film mirror 10 becomes better and the maintenance ratio of the haze value and the reflectance becomes higher. It is preferably 3 to 30 ⁇ m. Further, the thickness in the case of forming a hard surface coating layer is preferably from 0.1 to 50 ⁇ m, more preferably from 0.1 to 10 ⁇ m, from the viewpoint of antifouling properties and scratch resistance.
  • the use of the film mirror 10 is not particularly limited, it can be preferably used for the purpose of collecting sunlight (for collecting sunlight) because of its excellent durability. That is, it can be suitably used as a solar member such as a solar cell or solar thermal power generation.
  • the film mirror 26 of the present embodiment includes a support 12, an easy adhesion layer 28 that is a resin intermediate layer, a silver corrosion inhibitor 20, a silver reflection layer 16, and a resin protective layer 18. In this order.
  • the film mirror 26 has the same configuration as the film mirror 10 except that the film mirror 10 shown in FIG. 1 includes an easy-adhesion layer 28 instead of the polymer layer 14 as a resin intermediate layer.
  • the easily bonding layer 28 is formed on the support body 12, and the silver corrosion inhibitor 20 is provided to this easily bonding layer 28.
  • the silver reflection layer 16 may be formed by a plating method or a vapor phase method, and the resin protective layer 18 may be formed on the surface thereof.
  • the silver reflective layer 16 is formed on the resin protective layer 18, the silver corrosion inhibitor 20 is contacted, and then the support 14 is pasted via the easy-adhesion layer 28. May be.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the aspect manufactured with the manufacturing method different from 1st embodiment among the said manufacturing methods is explained in full detail.
  • the resin protective layer 18 is formed.
  • the aspect of the resin protective layer 18 is as described in the first embodiment.
  • the silver reflective layer 16 is formed on the surface of the resin protective layer 18.
  • the manufacturing method of the silver reflective layer 16 in this embodiment is not specifically limited, Either a wet method or a dry method may be employ
  • the wet method include an electroplating method.
  • Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method.
  • the silver reflective layer 16 is the same as that described in the first embodiment, and the preferred embodiment is also the same.
  • the surface of the silver reflection layer 16 and / or the surface layer of the silver reflection layer 16 is prevented by bringing a silver corrosion inhibitor 20 into contact therewith.
  • Agent 20 is applied.
  • the silver corrosion inhibitor 20 may be provided over the entire surface of the silver reflecting layer 16 as in the film mirror 26 shown in FIG. 4, but as another example, as in the film mirror 30 shown in FIG.
  • the silver corrosion inhibitor 20 may be in an island shape on a part of the surface of the silver reflective layer 16.
  • the silver reflection layer 16 has many fine voids regardless of the formation method. For this reason, like the film mirror 32 shown in FIG.
  • the silver corrosion inhibitor 20 is directly or directly dissolved or dissolved or dispersed in the appropriate solvent and brought into contact with the silver reflective layer 16A to prevent silver corrosion.
  • the agent 20 may be included, but such a state may be used.
  • a component (for example, silver) constituting the silver reflective layer 16 and the silver corrosion inhibitor 20 are mixed and present in the surface 16A of the silver reflective layer shown in FIG.
  • the mixed state is not particularly limited, and examples thereof include an aspect in which the silver reflection layer surface layer 16A is included in a state where granular silver is filled, and the silver corrosion inhibitor 20 is included in the granular silver gap.
  • the silver reflective layer surface layer 16A means a region from the surface on the easy adhesion layer 28 side of the silver reflective layer 16 to a position in the depth direction of 50 nm.
  • the silver corrosion inhibitor 20 is included in the surface 16A of the silver reflection layer, the silver corrosion inhibitor 20 is a surface of the silver reflection layer 16 on the easy adhesion layer 28 side in that the surface reflection characteristics of the silver reflection layer 16 are more excellent. It is preferable to exist only in a region from the top to a position in the depth direction of 30 nm. As described above, the presence of the silver corrosion inhibitor 20 not only on the surface of the silver reflective layer 16 but also on the surface 16A of the silver reflective layer prevents the silver reflective layer 16 from being corroded more effectively.
  • the silver reflective layer 16 to which the silver corrosion inhibitor 20 was provided as needed after giving the silver corrosion inhibitor 20 to the silver reflective layer 16, before the process of forming the easily bonding layer 28 which is a resin intermediate
  • the cleaning step may be performed by the method described above. Thereafter, the laminate having the resin protective layer 18, the silver reflection layer 16, and the silver corrosion inhibitor 20 is adhered to the support 12 via an easy adhesion layer (primer layer) 28, which is a resin intermediate layer. Film mirrors 26, 30, and 32 as shown in FIG. 6 are obtained.
  • an easy-adhesion layer 28 is provided to improve the adhesion between the support 12 and the silver reflection layer 16.
  • This easy-adhesion layer 28 may be provided as a lower layer of the polymer layer 14 described above to improve the adhesion between the support 12 and the polymer layer 14.
  • the easy-adhesion layer 28 is the same resin as the resin constituting the support 12 or a resin having an affinity for the resin constituting the support 12 from the viewpoint of adhesion to the adjacent support 12. It is preferable that it contains.
  • the resin contained in the easy-adhesion layer 28 may be, for example, a thermosetting resin, a thermoplastic resin, or a mixture thereof.
  • the thermosetting resin include epoxy resin, phenol resin, polyimide resin, polyester resin, bismaleimide resin, polyolefin resin, isocyanate resin, and the like.
  • thermoplastic resin examples include phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, and the like.
  • the thermoplastic resin and the thermosetting resin may be used alone or in combination of two or more. The combined use of two or more kinds of resins is performed for the purpose of expressing a more excellent effect by compensating for each defect.
  • an easy adhesion layer 28 is provided between the polymer layer 14 and the support 12, the mutual adhesion between the polymer layer 14 and the polymer compound having a polymerizable group contained in the polymer layer 14 described above is performed. It is preferable to contain an active species that generates an active site that can act.
  • Such an easy adhesion layer 28 is preferably, for example, a polymerization initiation layer containing a radical polymerization initiator or a polymerization initiation layer made of a resin having a functional group capable of initiating polymerization.
  • the easy-adhesion layer 28 is made of a layer containing a polymer compound and a radical polymerization initiator, a layer containing a polymerizable compound and a radical polymerization initiator, or a resin having a functional group capable of initiating polymerization.
  • a resin having a functional group capable of initiating polymerization include polyimides having a polymerization initiating site described in paragraphs [0018] to [0078] of JP-A-2005-307140 in the skeleton.
  • a compound having a polymerizable double bond specifically, an acrylate compound or a methacrylate compound may be used in order to promote crosslinking in the layer. It is preferable to use a functional one.
  • a compound having a polymerizable double bond a part of a thermosetting resin or a thermoplastic resin such as an epoxy resin, a phenol resin, a polyimide resin, a polyolefin resin, a fluorine resin, etc.
  • a (meth) acrylated resin using acrylic acid or the like may be used.
  • the thickness of the easy-adhesion layer 28 is preferably in the range of 0.1 to 10 ⁇ m, and more preferably in the range of 0.2 to 5 ⁇ m.
  • the silver reflective layer 16 having the silver corrosion inhibitor 20 on the surface of the easy adhesion layer 28 side and the support 12 are brought into close contact with each other via the easy adhesion layer 28, so that the film mirror 32 is formed. can get.
  • a well-known means can be employ
  • the surface coating layer described above may be further formed on the surface of the resin protective layer 18.
  • the surface of the silver reflecting layer 16 and the surface of the silver reflecting layer 16A, and the surface of the resin intermediate layer adjacent to the silver reflecting layer 16 and / or the surface layer are highly concentrated. Therefore, the oxidation of the silver reflection layer 16 is suppressed, and excellent reflection performance and adhesion between the resin intermediate layer and the silver reflection layer 16 are maintained over a long period of time.
  • Example 1 Formation of Plating Undercoat Polymer Layer (Resin Intermediate Layer) A polyethylene terephthalate (PET) film (manufactured by TOYOBO, Cosmo Shine A4300) was prepared as the support 12. -Preparation of coating solution for plating undercoat polymer layer formation- In a mixed solution of acrylic polymer 1 (7 parts by mass), 1-methoxy-2-propanol (74 parts by mass), and water (19 parts by mass) having the following structure, a photopolymerization initiator (Esacure KTO-46, manufactured by Lamberdy) ) (0.35 parts by mass) was added and stirred to prepare a coating solution containing a plating undercoat polymer (acrylic polymer 1).
  • a photopolymerization initiator Esacure KTO-46, manufactured by Lamberdy
  • the obtained coating solution containing the plating undercoat polymer was applied to the surface of the support 12 by a bar coating method so that the film thickness after drying was about 0.55 ⁇ m, dried at 25 ° C. for 10 minutes, and continued. And dried at 80 ° C. for 5 minutes. Thereafter, UV exposure was performed at 1000 mJ / cm 2 at a wavelength of 254 nm using a UV irradiation apparatus (UV lamp: metal halide lamp manufactured by GS Yuasa Co., Ltd.), and a polymer layer 14 was formed on the support 12.
  • the support 12 on which the polymer layer 14 was formed was immersed in a 1% by mass aqueous sodium hydrogen carbonate solution for 5 minutes, and then washed by pouring with pure water for 1 minute to remove unreacted polymer.
  • the support 12 provided with silver ions on the polymer layer 14 was immersed in the prepared reducing solution at 25 ° C. for 10 minutes, and then washed by pouring with pure water for 1 minute to reduce silver ions.
  • the amount of silver contained in the polymer layer 14 was measured by elemental analysis using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) (ICP-1000IV, manufactured by Shimadzu Corporation) by the method described above.
  • Silver Corrosion Inhibitor 3-mercapto-1,2,4-triazole was used as silver corrosion inhibitor 20, and a 0.3 mass% aqueous solution of this 3-mercapto-1,2,4-triazole (silver corrosion inhibitor) Solution) was prepared.
  • the “support 12 with the polymer layer 14 provided with reduced silver” obtained in the above step was immersed in the prepared silver corrosion inhibitor solution at 25 ° C. for 3 minutes and then immersed in pure water for 1 minute.
  • the silver corrosion inhibitor 20 was applied to the polymer layer 14 by washing with a sink.
  • the adhesion amount of the silver corrosion inhibitor 20 on the polymer layer 14 after washing was calculated by a method using 25% HCl.
  • the support 12 with the polymer layer 14 provided with the silver corrosion inhibitor 20 is immersed in 25% HCl to elute the silver corrosion inhibitor 20, and UV-3100 (trade name: Shimadzu Corporation)
  • the adhesion amount of the silver corrosion inhibitor 20 was calculated by measuring the UV absorption spectrum using
  • a silver reflective layer 16 was formed on the polymer layer 14. After the silver reflective layer 16 is formed, the total amount of silver contained in the silver reflective layer 16 and the polymer layer 14 is determined using an ICP-AES (inductively coupled plasma emission spectrometer) (ICP-1000IV, manufactured by Shimadzu Corporation). Measured by elemental analysis. The amount of silver contained in the silver reflecting layer 16 was calculated by subtracting the amount of silver in the polymer layer 14 from the total amount of silver measured. Table 1 below shows the values calculated from the measured adhesion amount of the silver corrosion inhibitor 20 to the content ratio (parts by mass) of the silver corrosion inhibitor 20 with respect to 100 parts by mass of silver contained in the silver reflection layer 16.
  • ICP-AES inductively coupled plasma emission spectrometer
  • Resin Protective Layer As a resin protective layer forming coating solution for forming the resin protective layer 18, acrylic resin (Dianar BR-102, manufactured by Mitsubishi Rayon Co., Ltd.) (21 parts by mass), benzotriazole ultraviolet absorption Agent (Sumisorb 250, manufactured by Sumitomo Chemical Co., Ltd.) (4 parts by mass), cyclohexanone (5 parts by mass), methyl ethyl ketone (70 parts by mass), fluorosurfactant (Megafac F-780F, solid content: 30% by mass, A mixed solution of DIC Corporation (0.04 parts by mass) was prepared.
  • the obtained coating liquid for forming a protective resin layer was applied on the silver reflective layer 16 by a bar coating method so that the film thickness after drying was 10 ⁇ m, and dried at 130 ° C. for 1 minute. Thereby, the resin protective layer 18 was formed on the silver reflective layer 16.
  • a fluorine-based UV curable resin (Defenser FH-700, solid content: 91% by mass, manufactured by DIC Corporation) (22 parts by mass)
  • Cyclohexanone (5 parts by mass), methyl ethyl ketone (72 parts by mass)
  • fluorosurfactant (Megafac F-780F, solid content: 30% by mass, manufactured by DIC Corporation) (0.04 parts by mass)
  • a solution was prepared.
  • the obtained coating solution for forming a surface coating layer was applied on the resin protective layer 18 by a bar coating method so as to have a dry film thickness of 15 ⁇ m, and dried at 130 ° C. for 1 minute.
  • UV exposure was performed at 500 mJ / cm 2 at a wavelength of 254 nm using a UV irradiation apparatus (GS Yuasa Co., Ltd., UV lamp: metal halide lamp). Thereby, a surface coating layer was formed on the resin protective layer 18. Thus, the film mirror 10 was formed.
  • Adhesiveness evaluation was performed using the support body 12 (state which remove
  • Light resistance evaluation was performed using the support body 12 (state which remove
  • the obtained film mirror 10 was placed in a xenon lamp light resistance tester (manufactured by ATLAS, Ci5000, power: 180 W, Black Panel Temperature: 83 ° C.) and left standing for 500 hours.
  • the decrease in reflectance (reflectance before standing (%)-reflectance after standing (%) was evaluated.
  • the reflectance was measured using an ultraviolet-visible near-infrared spectrophotometer UV-3100 (manufactured by Shimadzu Corporation).
  • Light resistance was evaluated according to the following criteria. Practically, it is preferably A to C. “A”: Less than 3% of reflectance decrease “B”: Less than 3% to less than 5% “C”: Less than 5% to less than 10% “D”: Lower reflectance 10% or more
  • Example 2> As the silver corrosion inhibitor solution used for applying the silver corrosion inhibitor 20, a solution in which the concentration of 3-mercapto-1,2,4-triazole was changed from 0.3% by mass to 0.1% by mass was used. Except for the above, a film mirror of Example 2 was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
  • Example 3> A film mirror of Example 3 was prepared and carried out in the same manner as in Example 1 except that benzotriazole was used instead of 3-mercapto-1,2,4-triazole as the silver corrosion inhibitor 20. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1 below.
  • Example 4> Formation of Silver Reflective Layer by Vapor Deposition
  • a UV absorber-containing PMMA film manufactured by Sumitomo Chemical Co., Ltd., S001G is used as the resin protective layer 18, and this is used as a vapor deposition substrate to form a vacuum vapor deposition method (vacuum degree 5 ⁇ 10 ⁇ 2 Pa, film formation
  • the silver reflective layer 16 having a thickness of 100 nm was formed on the resin protective layer 18 at a speed of 40 m / min. 2.
  • Silver Corrosion Inhibitor 3-mercapto-1,2,4-triazole was used as silver corrosion inhibitor 20, and a 0.3 mass% aqueous solution of this 3-mercapto-1,2,4-triazole (silver corrosion inhibitor) Solution) was prepared.
  • the PMMA film (resin protective layer 18) formed with the silver reflective layer 16 obtained in the above step is immersed in the prepared silver corrosion inhibitor solution at 25 ° C. for 3 minutes, and then poured in pure water for 1 minute. Washed with Thereby, the silver corrosion inhibitor 20 was provided to the surface of the silver reflective layer 16 on the side where the support 12 is formed. 3.
  • the obtained adhesive solution was applied to a polyethylene terephthalate (PET) film (manufactured by TOYOBO, Cosmo Shine A4300) as the support 12 by a bar coating method so that the film thickness after drying was about 10 ⁇ m. For 2 minutes, followed by drying at 80 ° C. for 10 minutes. As a result, an easy adhesion layer (resin intermediate layer) 28 containing an adhesive was formed on the support 12.
  • the easy-adhesion layer 28 side of the support 12 and the silver reflection layer 16 provided with the silver corrosion inhibitor 20 on the surface were superposed and bonded together by a laminator.
  • the laminating speed was 0.1 m / min, and the laminating pressure was 0.5 MPa.
  • the easy-adhesion layer 28 is cured by heating at 60 ° C. for 12 hours, and the support 12, the easy-adhesion layer 28, the silver corrosion inhibitor 20, the silver reflection layer 16, and the resin protective layer 18 are provided in this order.
  • the film mirror 32 of Example 4 was obtained.
  • the film mirror 32 of Example 4 is configured as shown in FIG.
  • the obtained film mirror 32 was evaluated in the same manner as in Example 1. The results are shown in Table 1 below. * In Table 1 below, “parts by mass” of the adhesion amount of the silver corrosion inhibitor represents the content ratio of the silver corrosion inhibitor 20 to 100 parts by mass of silver contained in the silver reflection layer 16.
  • the film mirrors of Examples 1 to 4 have good adhesion between the support 12 and the silver reflective layer 16 and excellent light resistance over a long period of time. Moreover, even when the silver corrosion inhibitor 20 is applied to the surface of the polymer layer 14, which is a resin intermediate layer, or when it is applied to the surface of the silver reflective layer 16, there is a good effect. On the other hand, even if the same silver corrosion inhibitor 20 is used as in Comparative Example 1, when it is used by being dispersed together with a resin in the polymer layer 14, a practically preferable evaluation can be obtained for adhesion and light resistance. There wasn't. This is presumably because the concentration of the silver corrosion inhibitor 20 per unit area is large but the concentration in contact with the silver reflective layer 16 is low.

Abstract

Provided are: a film mirror which has excellent light resistance and exhibits good adhesion between a silver reflective layer and a resin supporting body; and a method for producing the film mirror. This film mirror comprises a supporting body, a resin intermediate layer, a silver-containing reflective layer and a resin protective layer in this order, and contains a silver corrosion inhibitor in the superficial layer and the silver-containing reflective layer-side surface of the resin intermediate layer and/or in the superficial layer and the resin intermediate layer-side surface of the silver-containing reflective layer at the interface between the resin intermediate layer and the silver-containing reflective layer.

Description

フィルムミラー及びフィルムミラーの製造方法Film mirror and method of manufacturing film mirror
 本発明は、フィルムミラー及びフィルムミラーの製造方法に関する。 The present invention relates to a film mirror and a method for manufacturing the film mirror.
 太陽光の反射装置には、太陽光による紫外線や熱、風雨、砂塵等に晒されるため、従来、ガラス製ミラーが用いられてきた。
 しかしながら、ガラス製ミラーを用いる場合、輸送時に破損する問題や、ミラーを設置する架台に高い強度が要求されるため建設費がかさむといった問題があった。
 このような問題を解決するために、近年では、樹脂支持体上に金属反射層を形成してなる軽量なフィルムミラーの使用が検討され、種々の開発がなされている。
 一般に、フィルムミラーは、支持体に樹脂材料を用いているため、ガラス製のミラーに比較し、耐久性が十分ではない。このため、フィルムミラーは、耐久性や耐光性を向上させることが求められている。
Conventionally, glass mirrors have been used for sunlight reflecting devices because they are exposed to ultraviolet rays, heat, wind and rain, and dust from sunlight.
However, when a glass mirror is used, there are problems that it is damaged during transportation and that a high strength is required for the mount on which the mirror is installed, resulting in an increase in construction costs.
In order to solve such problems, in recent years, the use of a lightweight film mirror in which a metal reflective layer is formed on a resin support has been studied, and various developments have been made.
In general, since a film mirror uses a resin material for a support, its durability is not sufficient compared to a glass mirror. For this reason, the film mirror is required to improve durability and light resistance.
 例えば、樹脂基材上に、接着層、銀反射層、及び、上部隣接層がこの順に設けられたフィルムミラーにおいて、接着層としてバインダー中に銀の腐食を防止する「銀の腐食防止剤」が含まれるものを用いている構成が開示され(例えば、特許文献1参照。)ている。特許文献1の実施例においては、接着層を、ポリエステル系樹脂バインダー中に銀の腐食防止剤としてグリコールジメルカプトアセテートを含む硬化性樹脂組成物を使用して形成する旨の記載がある。 For example, in a film mirror in which an adhesive layer, a silver reflective layer, and an upper adjacent layer are provided in this order on a resin base material, a “silver corrosion inhibitor” that prevents corrosion of silver in the binder as an adhesive layer is provided. A configuration using what is included is disclosed (for example, see Patent Document 1). In the Example of Patent Document 1, there is a description that the adhesive layer is formed using a curable resin composition containing glycol dimercaptoacetate as a silver corrosion inhibitor in a polyester resin binder.
国際公開第2011/077982号明細書International Publication No. 2011/077982 Specification
 近年、砂漠などの厳しい環境下でも長期間にわたって使用できる太陽光集光用のフィルムミラーに対する要望が増えており、耐光性をより向上させることが求められている。なかでも、銀反射層は、経時による銀の酸化に起因して反射性能が低下したり、隣接した樹脂層との密着性が低下したりするなどの問題があり、改善が求められている。
 本発明者の検討の結果、特許文献1のごとき、銀の腐食防止剤をバインダー中に含む硬化性樹脂組成物を用いて銀反射層に隣接する樹脂層を形成した場合、銀反射層に接する銀の腐食防止層の量が十分ではなく、所望の腐食防止効果が得られないことが判明した。そこで、銀の腐食防止層の濃度を向上させたところ、腐食防止剤の存在に起因して硬化性樹脂組成物の硬化が十分に進行せず、隣接する樹脂層の密着性に劣る傾向があった。
In recent years, there has been an increasing demand for a film mirror for concentrating sunlight that can be used for a long period of time even in harsh environments such as deserts, and there is a demand for further improving light resistance. Among these, the silver reflection layer has problems such as a decrease in reflection performance due to silver oxidation with time, and a decrease in adhesion with an adjacent resin layer, and improvement is required.
As a result of the inventor's investigation, when a resin layer adjacent to the silver reflective layer is formed using a curable resin composition containing a silver corrosion inhibitor in a binder as in Patent Document 1, it contacts the silver reflective layer. It has been found that the amount of the silver anticorrosion layer is not sufficient and the desired anticorrosion effect cannot be obtained. Therefore, when the concentration of the silver corrosion prevention layer was improved, the curing of the curable resin composition did not proceed sufficiently due to the presence of the corrosion inhibitor, and the adhesion between adjacent resin layers tended to be inferior. It was.
 上記従来技術の問題点を考慮してなされた本発明の課題は、銀を含有する反射層の反射性能、及び銀を含有する反射層と隣接して設けられた樹脂層との密着性が長期間に亘り維持される、耐久性に優れたフィルムミラーを提供することにある。また、本発明のさらなる課題は、上記耐久性に優れたフィルムミラーの簡易な製造方法を提供することにある。 The problems of the present invention made in consideration of the above-mentioned problems of the prior art are that the reflection performance of the reflection layer containing silver and the adhesion between the reflection layer containing silver and the resin layer provided adjacent to the reflection layer are long. It is providing the film mirror excellent in durability maintained over a period. Moreover, the further subject of this invention is providing the simple manufacturing method of the said film mirror excellent in the said durability.
 本発明者は、上記課題を達成すべく鋭意研究した結果、銀を含有する反射層の表面及びその近傍に、バインダーを用いることなく、銀腐食防止層を付着させることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明の構成は以下に示すとおりである。
As a result of earnest research to achieve the above problems, the present inventor can solve the above problems by attaching a silver corrosion prevention layer to the surface of the reflective layer containing silver and the vicinity thereof without using a binder. The present invention was completed.
That is, the configuration of the present invention is as follows.
<1> 支持体と、樹脂中間層と、銀を含有する反射層と、樹脂保護層と、をこの順に有し、樹脂中間層の前記反射層側の表面、樹脂中間層の反射層側の表層、反射層の樹脂中間層側の表面、及び反射層の樹脂中間層側の表層の少なくともいずれかに銀腐食防止剤を有するフィルムミラー。
<2> 銀腐食防止剤は、反射層に含まれる銀100質量部に対して0.01~5質量部の範囲で含まれる、<1>に記載のフィルムミラー。
<1> A support, a resin intermediate layer, a reflective layer containing silver, and a resin protective layer are provided in this order. The surface of the resin intermediate layer on the reflective layer side, on the reflective layer side of the resin intermediate layer A film mirror having a silver corrosion inhibitor on at least one of the surface layer, the surface of the reflective layer on the resin intermediate layer side, and the surface layer of the reflective layer on the resin intermediate layer side.
<2> The film mirror according to <1>, wherein the silver corrosion inhibitor is contained in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of silver contained in the reflective layer.
<3> 前記腐食防止剤が、トリアゾール構造を含む化合物から選択される1種以上の化合物を含む、<1>又は<2>に記載のフィルムミラー。
<4> 太陽光集光用である、<1>~<3>のいずれかに記載のフィルムミラー。
<3> The film mirror according to <1> or <2>, wherein the corrosion inhibitor includes one or more compounds selected from compounds including a triazole structure.
<4> The film mirror according to any one of <1> to <3>, which is used for collecting sunlight.
<5> 支持体上に、樹脂中間層を形成する工程と、樹脂中間層表面に、銀腐食防止剤を溶剤に溶解又は分散させた液を接触させることで、樹脂中間層表面及び表層のうち少なくともいずれかに銀腐食防止剤を付与する工程と、銀腐食防止剤が付与された樹脂中間層上に、銀を含有する反射層を形成する工程と、形成された反射層の表面に樹脂保護層を形成する工程と、を含む、<1>~<4>のいずれかに記載のフィルムミラーの製造方法。
<6> 反射層を形成する工程が、めっき液を樹脂中間層に接触させて、めっき法により銀を含有する層を形成する工程を含む、<5>に記載のフィルムミラーの製造方法。
<7> 樹脂保護層上に、銀を含有する反射層を形成する工程と、反射層の表面に、銀腐食防止剤を溶剤に溶解又は分散させた液を接触させることで、少なくとも銀を含有する反射層表面及び表層のうち少なくともいずれかに銀腐食防止剤を付与する工程と、銀腐食防止剤が付与された反射層の表面に樹脂中間層を形成する工程と、形成された樹脂中間層上に支持体を形成する工程と、を含む、<1>~<4>のいずれかに記載のフィルムミラーの製造方法。
<8> 銀腐食防止剤を溶剤に溶解又は分散させた液の接触が、樹脂中間層にこの液を塗布することにより、又は、樹脂中間層にこの液を浸漬することにより行われる、<5>~<7>のいずれか1項に記載のフィルムミラーの製造方法。
<5> The step of forming the resin intermediate layer on the support, and the surface of the resin intermediate layer and the surface layer by contacting the surface of the resin intermediate layer with a solution obtained by dissolving or dispersing the silver corrosion inhibitor in a solvent. A step of applying a silver corrosion inhibitor to at least one, a step of forming a reflective layer containing silver on the resin intermediate layer provided with the silver corrosion inhibitor, and resin protection on the surface of the formed reflective layer The method for producing a film mirror according to any one of <1> to <4>, comprising a step of forming a layer.
<6> The method for producing a film mirror according to <5>, wherein the step of forming the reflective layer includes a step of bringing the plating solution into contact with the resin intermediate layer and forming a layer containing silver by a plating method.
<7> A step of forming a reflective layer containing silver on the resin protective layer, and a solution obtained by dissolving or dispersing a silver corrosion inhibitor in a solvent is brought into contact with the surface of the reflective layer to contain at least silver. A step of applying a silver corrosion inhibitor to at least one of the reflective layer surface and the surface layer, a step of forming a resin intermediate layer on the surface of the reflective layer provided with the silver corrosion inhibitor, and the formed resin intermediate layer A method for producing a film mirror according to any one of <1> to <4>, comprising a step of forming a support on the substrate.
<8> Contact of a solution obtained by dissolving or dispersing a silver corrosion inhibitor in a solvent is performed by applying this solution to the resin intermediate layer, or by immersing this solution in the resin intermediate layer. <5 The method for producing a film mirror according to any one of> to <7>.
 本発明によれば、銀を含有する反射層の反射性能、及び銀を含有する反射層と隣接して設けられた樹脂層との密着性が長期間に亘り維持される、耐久性に優れたフィルムミラー及び、耐久性に優れたフィルムミラーの簡易な製造方法を提供することができる。 According to the present invention, the reflection performance of the reflective layer containing silver, and the adhesion between the reflective layer containing silver and the resin layer provided adjacent thereto are maintained for a long period of time, and have excellent durability. A simple manufacturing method of a film mirror and a film mirror excellent in durability can be provided.
樹脂中間層としてめっき下塗りポリマー層を有する本発明のフィルムミラーの第一の実施形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of 1st embodiment of the film mirror of this invention which has a plating undercoat polymer layer as a resin intermediate | middle layer. 樹脂中間層としてめっき下塗りポリマー層を有する本発明のフィルムミラーの第一の実施形態の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of 1st embodiment of the film mirror of this invention which has a plating undercoat polymer layer as a resin intermediate | middle layer. 樹脂中間層としてめっき下塗りポリマー層を有する本発明のフィルムミラーの第一の実施形態の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of 1st embodiment of the film mirror of this invention which has a plating undercoat polymer layer as a resin intermediate | middle layer. 樹脂中間層として易接着層を有する本発明のフィルムミラーの第二の実施形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of 2nd embodiment of the film mirror of this invention which has an easily bonding layer as a resin intermediate | middle layer. 樹脂中間層として易接着層を有する本発明のフィルムミラーの第二の実施形態の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of 2nd embodiment of the film mirror of this invention which has an easily bonding layer as a resin intermediate | middle layer. 樹脂中間層として易接着層を有する本発明のフィルムミラーの第二の実施形態の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of 2nd embodiment of the film mirror of this invention which has an easily bonding layer as a resin intermediate | middle layer.
 本発明のフィルムミラーは、支持体と、樹脂中間層と、銀を含有する反射層(以下、適宜「銀反射層」と称する)と、樹脂保護層と、をこの順に有し、樹脂中間層と銀反射層との界面において、樹脂中間層の銀反射層側の表面及び表層、銀反射層の樹脂中間層側の表面及び表層の少なくともいずれかに銀腐食防止剤を有する。すなわち、銀腐食防止剤は、樹脂中間層の銀反射層側の表面、樹脂中間層の銀反射層側の表層、銀反射層の樹脂中間層側の表面、及び銀反射層の樹脂中間層側の表層のうち少なくともいずれかに含まれる。
 本実施形態によれば、銀腐食防止剤は、わずかな溶媒を含む場合もあるが、通常は、銀反射層に直接接触する形態となり、銀反射層と接触する銀腐食防止剤の濃度が高いために、銀腐食防止剤がバインダーに分散されて付与される場合と比較して、銀反射層の腐食防止効果が高く、且つ、長期間に亘りその効果が維持される。また、隣接する樹脂中間層は、単独で成膜形成されるために、銀腐食防止剤に起因する硬化性低下の懸念がなく、形成された樹脂中間層と銀反射層との密着性に優れたものとなる。このため、銀反射層の保護機能が高く、長期間維持されるために銀の酸化に起因する反射率の低下、銀の酸化に起因する銀反射層と樹脂中間層との密着性の低下のいずれもが、長期間に亘って抑制され、耐久性に優れるものと考えている。
 以下に、本発明のフィルムミラー及びその製造方法の好適な実施態様について詳細に説明する。
The film mirror of the present invention includes a support, a resin intermediate layer, a silver-containing reflective layer (hereinafter, appropriately referred to as “silver reflective layer”), and a resin protective layer in this order. At the interface between the silver reflective layer and the silver reflective layer, a silver corrosion inhibitor is present on at least one of the surface and surface layer of the resin intermediate layer on the silver reflective layer side, and the surface and surface layer of the silver reflective layer on the resin intermediate layer side. That is, the silver corrosion inhibitor includes a surface of the resin intermediate layer on the silver reflective layer side, a surface layer of the resin intermediate layer on the silver reflective layer side, a surface of the silver reflective layer on the resin intermediate layer side, and a resin intermediate layer side of the silver reflective layer Of at least one of the surface layers.
According to the present embodiment, the silver corrosion inhibitor may contain a slight amount of solvent, but usually, the silver corrosion inhibitor is in a form in direct contact with the silver reflective layer, and the concentration of the silver corrosion inhibitor in contact with the silver reflective layer is high. Therefore, compared with the case where the silver corrosion inhibitor is dispersed and applied in the binder, the corrosion preventing effect of the silver reflection layer is high and the effect is maintained over a long period of time. In addition, since the adjacent resin intermediate layer is formed as a single film, there is no concern about the decrease in curability caused by the silver corrosion inhibitor, and the adhesiveness between the formed resin intermediate layer and the silver reflective layer is excellent. It will be. For this reason, the protective function of the silver reflective layer is high, and since it is maintained for a long period of time, the reflectivity is reduced due to silver oxidation, and the adhesion between the silver reflective layer and the resin intermediate layer is reduced due to silver oxidation. All are considered to be suppressed for a long period of time and excellent in durability.
Below, the suitable embodiment of the film mirror of this invention and its manufacturing method is demonstrated in detail.
<第一の実施形態>
 以下に、本発明のフィルムミラーの第一の実施形態について図面を参照して説明する。図1は、本発明のフィルムミラーの一実施形態を示す概略断面図である。
 フィルムミラー10は、支持体12と、樹脂中間層であるめっき下塗りポリマー層14(以下、適宜「ポリマー層14」と称する)と、金属反射層としての銀反射層16と、樹脂保護層18とをこの順で有し、ポリマー層14の銀反射層16側の表面及び表層、銀反射層16のポリマー層14側の表面及び表層の少なくともいずれかに腐食防止剤20を有する。
 本実施形態では、太陽光などの光は、樹脂保護層18側から入射されて、銀反射層16表面上で反射する。なお、支持体12と銀反射層16とは、ポリマー層14を介して密着している。
 以下に、フィルムミラー10を構成する各層について、その製造方法とともに詳述する。
 第一の実施形態では、支持体12上に、ポリマー層14、銀反射層16、及び樹脂保護層20をこの順に形成してフィルムミラー10を製造する。
<First embodiment>
Below, 1st embodiment of the film mirror of this invention is described with reference to drawings. FIG. 1 is a schematic sectional view showing an embodiment of the film mirror of the present invention.
The film mirror 10 includes a support 12, a plating undercoat polymer layer 14 (hereinafter, appropriately referred to as “polymer layer 14”) that is a resin intermediate layer, a silver reflection layer 16 as a metal reflection layer, and a resin protective layer 18. In this order, the corrosion inhibitor 20 is provided on at least one of the surface and the surface layer of the polymer layer 14 on the silver reflective layer 16 side and the surface and the surface layer of the silver reflective layer 16 on the polymer layer 14 side.
In the present embodiment, light such as sunlight is incident from the resin protective layer 18 side and reflected on the surface of the silver reflective layer 16. The support 12 and the silver reflecting layer 16 are in close contact with each other through the polymer layer 14.
Below, each layer which comprises the film mirror 10 is explained in full detail with the manufacturing method.
In the first embodiment, the film mirror 10 is manufactured by forming the polymer layer 14, the silver reflection layer 16, and the resin protective layer 20 in this order on the support 12.
[支持体]
 支持体12は、フィルムミラー10を軽量にすることができ、銀反射層16や樹脂保護層18などを支持しうる基材であればその種類は特に制限されない。なお、支持体12は、フィルムミラー10が設置される態様や目的に応じて選択され、可撓性を有するものであってもよく、剛性を有するものであってもよい。
 支持体12の材料としては、軽量化の観点で、ポリエステル、ポリイミド、熱硬化型ポリフェニレンエーテル、ポリアミド、ポリアラミド、液晶ポリマー等からなる樹脂を用いた支持体が好ましく挙げられる。これらの樹脂をフィルム状など任意の形状に成形して、支持体12として用いることができる。また、ガラスエポキシ基材などを用いてもよい。
 支持体12は、上記例示した樹脂などの基材からなる単層構造であっても、複数種を積層してなる多層構造であってもよい。
 樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BT樹脂、PPE樹脂、テトラフルオロエチレン樹脂、液晶樹脂、ポリエステル樹脂、PEN、アラミド樹脂、ポリアミド樹脂、ポリエーテルスルホン、トリアセチルセルロース、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリブタジエン、ポリアセチレン等が好適であり、フィルム状に成形できる樹脂を使用することができる。
 特に好適な支持体12としては、ポリエステル樹脂のフィルム又はポリイミド樹脂のフィルムが挙げられる。
 また、樹脂以外にも、アルミ基板やSUS基板なども、支持体12として使用することができる。
[Support]
The type of the support 12 is not particularly limited as long as it can reduce the weight of the film mirror 10 and can support the silver reflection layer 16 and the resin protective layer 18. In addition, the support body 12 is selected according to the mode and purpose in which the film mirror 10 is installed, and may have flexibility, or may have rigidity.
The material of the support 12 is preferably a support using a resin made of polyester, polyimide, thermosetting polyphenylene ether, polyamide, polyaramid, liquid crystal polymer, etc. from the viewpoint of weight reduction. These resins can be molded into an arbitrary shape such as a film and used as the support 12. Further, a glass epoxy base material or the like may be used.
The support 12 may have a single layer structure made of a base material such as the resin exemplified above, or may have a multilayer structure formed by laminating a plurality of types.
Examples of the resin include phenol resin, epoxy resin, polyimide resin, BT resin, PPE resin, tetrafluoroethylene resin, liquid crystal resin, polyester resin, PEN, aramid resin, polyamide resin, polyethersulfone, triacetyl cellulose, polyvinyl chloride, Polyvinylidene chloride, polyethylene, polypropylene, polystyrene, polybutadiene, polyacetylene, and the like are suitable, and a resin that can be formed into a film can be used.
Particularly suitable support 12 includes a polyester resin film or a polyimide resin film.
In addition to the resin, an aluminum substrate, a SUS substrate, or the like can be used as the support 12.
 図1では、支持体12の形状は平面状であるが、その形状は図1の形態に特に限定されず、例えば、拡散面、凹面、凸面等、各種のフィルムミラーにおいてフィルム基材として求められる形状であればよい。
 支持体12の厚みとしては、10~5mm程度が好ましい。厚みがこの範囲において、生産時のハンドリングが良好であり、容易に任意の形状に成形が可能である。支持体12の厚みは、より好ましくは、20~1mmであり、更に好ましくは25~500μmである。
In FIG. 1, the shape of the support 12 is a planar shape, but the shape is not particularly limited to the form of FIG. 1, and is required as a film substrate in various film mirrors such as a diffusion surface, a concave surface, and a convex surface. Any shape is acceptable.
The thickness of the support 12 is preferably about 10 to 5 mm. When the thickness is in this range, the handling during production is good, and it can be easily formed into an arbitrary shape. The thickness of the support 12 is more preferably 20 to 1 mm, still more preferably 25 to 500 μm.
 支持体12は、この支持体12上に設けられるポリマー層14との密着性を向上することや、不純物の混入を抑制すること等を目的として、表面処理を施してもよい。
 表面処理としては、UV照射、オゾン処理、プラズマ処理、コロナ処理、火炎処理などの表面を分解活性化させる処理や、ヒドラジン、N-メチルピロリドン、水酸化ナトリウム溶液、水酸化カリウム溶液のようなアルカリ性溶液での処理、あるいは、硫酸、塩酸、硝酸のような酸性溶液での処理などが挙げられる。
 また、支持体12表面の汚れを落として清浄にする処理としては、メタノール、エタノール、トルエン、酢酸エチル、アセトン等の有機溶剤による処理や、付着したゴミを落とすための水洗等が挙げられる。
 これらの表面処理は複数種を組み合わせて行ってもよい。
The support 12 may be subjected to a surface treatment for the purpose of improving the adhesion with the polymer layer 14 provided on the support 12 or suppressing the mixing of impurities.
Surface treatment includes UV irradiation, ozone treatment, plasma treatment, corona treatment, flame treatment, and other surface activation treatments, and hydrazine, N-methylpyrrolidone, sodium hydroxide solution, alkaline solution such as potassium hydroxide solution. Treatment with a solution or treatment with an acidic solution such as sulfuric acid, hydrochloric acid or nitric acid can be mentioned.
Examples of the treatment to remove and clean the surface of the support 12 include treatment with an organic solvent such as methanol, ethanol, toluene, ethyl acetate, and acetone, and washing with water to remove attached dust.
These surface treatments may be performed in combination of a plurality of types.
 フィルムミラー10の反射能を向上させる目的から、支持体12の表面粗さ(Ra)が50nm以下であるものを用いることが好ましく、Raが20nm以下であることがより好ましい。更に好ましくは、平均粗さ(Ra)が、5nm以下であることである。 For the purpose of improving the reflectivity of the film mirror 10, it is preferable to use a support 12 having a surface roughness (Ra) of 50 nm or less, and more preferably Ra of 20 nm or less. More preferably, the average roughness (Ra) is 5 nm or less.
<樹脂中間層>
 本実施形態のフィルムミラー10は、支持体12上に、この支持体12と銀反射層16との密着性を向上させる目的で、樹脂中間層を有する。
 樹脂中間層としては、金属を接着しやすくするための易接着層28や、銀反射層16をめっき法により形成する場合に有用なポリマー層14などが挙げられ、これらは単層構成であっても2層以上の複数層から構成されるものであってもよい。第一の実施形態に係るフィルムミラー10は、ポリマー層14を備える。以下、樹脂中間層の一態様であるポリマー層14について説明する。
<Resin intermediate layer>
The film mirror 10 of this embodiment has a resin intermediate layer on the support 12 for the purpose of improving the adhesion between the support 12 and the silver reflective layer 16.
Examples of the resin intermediate layer include an easy-adhesion layer 28 for facilitating adhesion of metal, a polymer layer 14 useful for forming the silver reflection layer 16 by a plating method, and the like. Also, it may be composed of two or more layers. The film mirror 10 according to the first embodiment includes a polymer layer 14. Hereinafter, the polymer layer 14 which is one embodiment of the resin intermediate layer will be described.
〔めっき下塗りポリマー層〕
 ポリマー層14は、めっき下塗りポリマーを少なくとも有する。ポリマー層14は、還元された金属粒子を含んでも良い。
 ポリマー層14を形成する方法としては、金属前駆体とめっき下塗りポリマーとを含む組成物を用いて、支持体12上に塗布等の方法により金属前駆体を含むポリマー層14を形成する方法が挙げられる。
 あるいは、ポリマー層形成用組成物を用いて支持体12上に層を形成し、その後、支持体12上に設けたこの層に浸漬等の方法によって金属前駆体を含む組成物を接触させることにより「金属前駆体を含むポリマー層14」を形成し、次いで、この「金属前駆体を含むポリマー層14」が有する金属前駆体を還元する方法が挙げられる。このようにして、還元された金属粒子を含むポリマー層14を形成する。
 ポリマー層14に含まれる金属粒子の含有量(総量)は、このポリマー層14を有する樹脂基材を濃硫酸等へ浸漬することにより、めっき下塗りポリマー中の金属粒子を溶解後、得られた溶解液をICP-AES(誘導結合プラズマ発光分光分析装置)(島津製作所製、ICP-1000IV)を用いて元素分析することにより測定できる。
 ポリマー層14の形成後に、後述するように、このポリマー層14に銀腐食防止剤20を付与する。
[Plating undercoat polymer layer]
The polymer layer 14 has at least a plating undercoat polymer. The polymer layer 14 may include reduced metal particles.
Examples of the method for forming the polymer layer 14 include a method for forming the polymer layer 14 including the metal precursor on the support 12 by a method such as coating using a composition including the metal precursor and the plating undercoat polymer. It is done.
Alternatively, a layer is formed on the support 12 using the polymer layer forming composition, and then the composition containing the metal precursor is brought into contact with the layer provided on the support 12 by a method such as immersion. A method of forming the “polymer layer 14 including a metal precursor” and then reducing the metal precursor included in the “polymer layer 14 including a metal precursor” may be mentioned. Thus, the polymer layer 14 containing the reduced metal particles is formed.
The content (total amount) of the metal particles contained in the polymer layer 14 is obtained by dissolving the metal particles in the plating undercoat polymer by immersing the resin base material having the polymer layer 14 in concentrated sulfuric acid or the like. The liquid can be measured by elemental analysis using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) (ICP-1000IV, manufactured by Shimadzu Corporation).
After the formation of the polymer layer 14, a silver corrosion inhibitor 20 is applied to the polymer layer 14 as described later.
(めっき下塗りポリマー)
 ポリマー層14を形成するために用いられるめっき下塗りポリマーについて説明する。
 ポリマー層14を形成するために用いられるめっき下塗りポリマーは、重合性基、及び金属前駆体と相互作用する官能基(以後、適宜「相互作用性基」と称する。)を少なくとも有する。
 めっき下塗りポリマーの主骨格としては、アクリルポリマー、ポリエーテル、アクリルアミド、ポリアミド、ポリイミド、アクリルポリマー、ポリエステル等が好ましく、アクリルポリマーであることがより好ましい。
 めっき下塗りポリマーは、目的に応じて、重合性基を含む構成単位、及び相互作用性基を含む構成単位以外の構成単位を含んでいてもよい。重合性基を含む構成単位、及び相互作用性基を含む構成単位以外の構成単位を含むことによって、ポリマー層形成用組成物としたときに、水又は有機溶剤への溶解性に優れ、均一なめっき下塗り層を形成することができる。「ポリマー層形成用組成物」とは、めっき下塗りポリマーを含み、ポリマー層14を形成するための組成物である。
(Plating undercoat polymer)
The plating undercoat polymer used for forming the polymer layer 14 will be described.
The plating undercoat polymer used to form the polymer layer 14 has at least a polymerizable group and a functional group that interacts with the metal precursor (hereinafter, referred to as “interactive group” as appropriate).
As the main skeleton of the plating undercoat polymer, an acrylic polymer, polyether, acrylamide, polyamide, polyimide, acrylic polymer, polyester, and the like are preferable, and an acrylic polymer is more preferable.
The plating undercoat polymer may contain a constitutional unit other than a constitutional unit containing a polymerizable group and an interaction group depending on the purpose. By including a structural unit other than a structural unit containing a polymerizable group and a structural unit containing an interactive group, the composition for forming a polymer layer has excellent solubility in water or an organic solvent and is uniform. A plating undercoat layer can be formed. The “polymer layer forming composition” is a composition for forming the polymer layer 14 including a plating undercoat polymer.
 めっき下塗りポリマーの好ましい態様として、相互作用性基としての酸性基と重合性基とを側鎖に有するアクリルポリマーが挙げられる。
 以下、めっき下塗りポリマーに含まれる重合性基、相互作用性基、及びその特性等について詳述する。
As a preferable embodiment of the plating undercoat polymer, an acrylic polymer having an acidic group and a polymerizable group as an interactive group in the side chain can be mentioned.
Hereinafter, a polymerizable group, an interactive group, and characteristics of the plating undercoat polymer will be described in detail.
-重合性基-
 めっき下塗りポリマーが有する重合性基は、エネルギー付与により、ポリマー同士、又は、ポリマーと下地層(支持体12若しくは支持体12上に設けられた易接着層28又は下塗り層)との間で化学結合を形成し得る官能基であればよい。重合性基としては、例えば、ラジカル重合性基、カチオン重合性基等が挙げられる。なかでも、反応性の観点から、ラジカル重合性基が好ましい。
 ラジカル重合性基としては、例えば、メタクリロイル基、アクリロイル基、イタコン酸エステル基、クロトン酸エステル基、イソクロトン酸エステル基、マレイン酸エステル基、スチリル基、ビニル基、アクリルアミド基、メタクリルアミド基等が挙げられる。なかでも、メタクリロイル基、アクリロイル基、ビニル基、スチリル基、アクリルアミド基、及びメタクリルアミド基が好ましい。中でも、ラジカル重合反応性、及び合成汎用性の点から、メタクリロイル基、アクリロイル基、アクリルアミド基、及びメタクリルアミド基が好ましく、耐アルカリ性の観点からアクリルアミド基、及びメタクリルアミド基が更に好ましい。
 アクリルポリマーに導入される重合性基としては、(メタ)アクリレート基又は(メタ)アクリルアミド基等の(メタ)アクリル基、カルボン酸のビニルエステル基、ビニルエーテル基、アリルエーテル基等の各種重合性基が好ましい。
-Polymerizable group-
The polymerizable group of the plating undercoat polymer is chemically bonded between the polymers or between the polymer and the base layer (the support 12 or the easy-adhesion layer 28 or the undercoat layer provided on the support 12) by applying energy. Any functional group can be used. Examples of the polymerizable group include a radical polymerizable group and a cationic polymerizable group. Of these, a radical polymerizable group is preferable from the viewpoint of reactivity.
Examples of the radical polymerizable group include methacryloyl group, acryloyl group, itaconic acid ester group, crotonic acid ester group, isocrotonic acid ester group, maleic acid ester group, styryl group, vinyl group, acrylamide group and methacrylamide group. It is done. Of these, a methacryloyl group, an acryloyl group, a vinyl group, a styryl group, an acrylamide group, and a methacrylamide group are preferable. Among these, a methacryloyl group, an acryloyl group, an acrylamide group, and a methacrylamide group are preferable from the viewpoint of radical polymerization reactivity and synthetic versatility, and an acrylamide group and a methacrylamide group are more preferable from the viewpoint of alkali resistance.
As the polymerizable group introduced into the acrylic polymer, various polymerizable groups such as a (meth) acryl group such as a (meth) acrylate group or a (meth) acrylamide group, a vinyl ester group of a carboxylic acid, a vinyl ether group, and an allyl ether group Is preferred.
-相互作用性基-
 めっき下塗りポリマーが有する相互作用性基は、金属前駆体と相互作用する官能基(例えば、配位性基、金属イオン吸着性基等)であり、金属前駆体と静電相互作用を形成可能な官能基、あるいは、金属前駆体と配位形成可能な含窒素官能基、含硫黄官能基、含酸素官能基等を使用することができる。
 相互作用性基としてより具体的には、アミノ基、アミド基、イミド基、ウレア基、トリアゾール環、イミダゾール基、ピリジン基、ピリミジン基、ピラジン基、トリアジン基、ピペリジン基、ピペラジン基、ピロリジン基、ピラゾール基、アルキルアミン構造を含む基、シアノ基、シアネート基(R-O-CN)等の含窒素官能基;エーテル基、水酸基、フェノール性水酸基、カルボキシル基、カーボネート基、カルボニル基、エステル基、N-オキシド構造を含む基、S-オキシド構造を含む基、N-ヒドロキシ構造を含む基等の含酸素官能基;チオフェン基、チオール基、チオウレア基、スルホキシド基、スルホン酸基、スルホン酸エステル構造を含む基等の含硫黄官能基;ホスフォート基、ホスフォロアミド基、ホスフィン基、リン酸エステル構造を含む基等の含リン官能基;塩素、臭素等のハロゲン原子を含む基等が挙げられ、塩構造をとり得る官能基においては、それらの塩も使用することができる。
 相互作用性基としては、非解離性官能基であっても、イオン性極性基であってもよく、これらが同時に含まれていてもよい。なかでも、相互作用性基としては、イオン性極性基が好ましい。
-Interactive groups-
The interaction group of the plating undercoat polymer is a functional group that interacts with the metal precursor (for example, a coordination group, a metal ion adsorbing group, etc.), and can form an electrostatic interaction with the metal precursor. A functional group, or a nitrogen-containing functional group, a sulfur-containing functional group, an oxygen-containing functional group or the like that can form a coordination with a metal precursor can be used.
More specifically as an interactive group, amino group, amide group, imide group, urea group, triazole ring, imidazole group, pyridine group, pyrimidine group, pyrazine group, triazine group, piperidine group, piperazine group, pyrrolidine group, Nitrogen-containing functional groups such as pyrazole group, group containing alkylamine structure, cyano group, cyanate group (R—O—CN); ether group, hydroxyl group, phenolic hydroxyl group, carboxyl group, carbonate group, carbonyl group, ester group, Oxygen-containing functional groups such as groups containing N-oxide structures, groups containing S-oxide structures, groups containing N-hydroxy structures; thiophene groups, thiol groups, thiourea groups, sulfoxide groups, sulfonic acid groups, sulfonic acid ester structures Sulfur-containing functional groups such as groups containing phosphine groups; Phosphorus-containing functional groups such as those containing ester structure; chlorine, such as group containing a halogen atom such as bromine and the like, in a functional group capable of having a salt structure can also be used the salts thereof.
The interactive group may be a non-dissociative functional group or an ionic polar group, and these may be contained simultaneously. Especially, as an interactive group, an ionic polar group is preferable.
 イオン性極性基からなる相互作用性基としては、上記相互作用性基の中でも、めっき下塗りポリマーの支持体12(支持体12上に上記易接着層28が形成されている場合には、易接着層28)に対する密着性の観点から、カルボン酸基、スルホン酸基、リン酸基、及びボロン酸基が挙げられ、中でも適度な酸性(他の官能基を分解しない)を有する点、他の官能基に影響を与える懸念が少ない点、めっき層との親和性に優れる点、及び原料が入手容易であるという点から、カルボン酸基が特に好ましい。 As the interactive group composed of an ionic polar group, among the above-mentioned interactive groups, the plating undercoat polymer support 12 (in the case where the easy-adhesion layer 28 is formed on the support 12, easy adhesion) From the viewpoint of adhesion to the layer 28), carboxylic acid group, sulfonic acid group, phosphoric acid group, and boronic acid group can be mentioned, among them, having moderate acidity (not decomposing other functional groups), other functionalities Carboxylic acid groups are particularly preferred from the viewpoint that there are few concerns that affect the group, excellent compatibility with the plating layer, and easy availability of raw materials.
 カルボン酸基等のイオン性極性基は、酸性基を有するラジカル重合性化合物を共重合させることにより、めっき下塗りポリマーに導入することができる。
 めっき下塗りポリマーの好適な構成については、ラジカル重合性基と非解離性官能基からなる相互作用性基を有するポリマーとして、特開2009-007540号公報の段落[0106]~[0112]に記載のポリマー等が使用できる。また、ラジカル重合性基とイオン性極性基からなる相互作用性基とを有するポリマーとしては、特開2006-135271号公報の段落[0065]~[0070]に記載のポリマー等が使用できる。ラジカル重合性基と、非解離性官能基からなる相互作用性基と、イオン性極性基からなる相互作用性基とを有するポリマーとしては、特開2010-248464号公報の段落[0010]~[0128]、特開2010-84196号公報、及び米国特許出願公開2010-080964号明細書の段落[0030]~[0108]に記載のポリマー等が使用できる。
An ionic polar group such as a carboxylic acid group can be introduced into the plating undercoat polymer by copolymerizing a radical polymerizable compound having an acidic group.
With regard to the preferred constitution of the plating undercoat polymer, the polymer having an interactive group comprising a radical polymerizable group and a non-dissociable functional group is described in paragraphs [0106] to [0112] of JP-A-2009-007540. Polymers can be used. As the polymer having a radical polymerizable group and an interactive group composed of an ionic polar group, polymers described in paragraphs [0065] to [0070] of JP-A-2006-135271 can be used. Examples of the polymer having a radical polymerizable group, an interactive group composed of a non-dissociative functional group, and an interactive group composed of an ionic polar group include paragraphs [0010] to [0010] of JP 2010-248464 A. [0128] Polymers described in paragraphs [0030] to [0108] of JP 2010-84196 A and US Patent Application Publication No. 2010-080964 may be used.
 なお、後述する金属前駆体は、ポリマー層14形成後に付与してもよく、また、ポリマー層形成用組成物に当初から含有させてもよい。ポリマー層形成用組成物に金属前駆体を含有させる場合の金属前駆体の含有量としては、組成物全量に対して、0.5~100質量%が好ましく、1~50質量%がより好ましい。 In addition, the metal precursor described later may be applied after the polymer layer 14 is formed, or may be contained in the polymer layer forming composition from the beginning. When the metal precursor is contained in the polymer layer forming composition, the content of the metal precursor is preferably 0.5 to 100% by mass and more preferably 1 to 50% by mass with respect to the total amount of the composition.
 ポリマー層形成用組成物は、エネルギー付与に対する感度を高めるために、光重合開始剤、熱重合開始剤等のラジカル重合開始剤を含有することが好ましい。ラジカル重合開始剤としては、特に限定されず、一般に公知のものが使用される。
 但し、エネルギー付与により、めっき下塗りポリマーが支持体12や易接着層28と相互作用する活性点を生成し得る場合、即ち、上述したポリマー骨格中に重合開始部位を有するポリマーを用いるような場合には、これらのラジカル重合開始剤を添加しなくてもよい。
The composition for forming a polymer layer preferably contains a radical polymerization initiator such as a photopolymerization initiator and a thermal polymerization initiator in order to increase sensitivity to energy application. The radical polymerization initiator is not particularly limited, and generally known ones are used.
However, when energy is applied, the plating undercoat polymer can generate active sites that interact with the support 12 and the easy-adhesion layer 28, that is, when a polymer having a polymerization initiation site in the polymer skeleton described above is used. These radical polymerization initiators may not be added.
 ポリマー層形成用組成物に含有させるラジカル重合開始剤の量は、このポリマー層形成用組成物の構成に応じて選択される。一般的には、ラジカル重合開始剤の量は、ポリマー層形成用組成物中に、0.05~30質量%程度であることが好ましく、0.1~10.0質量%程度であることがより好ましい。 The amount of the radical polymerization initiator to be contained in the polymer layer forming composition is selected according to the configuration of the polymer layer forming composition. In general, the amount of the radical polymerization initiator is preferably about 0.05 to 30% by mass, and preferably about 0.1 to 10.0% by mass in the polymer layer forming composition. More preferred.
 ポリマー層14は、ポリマー層形成用組成物を支持体12上、或いは該支持体12表面に形成された易接着層28上に塗布し、エネルギーを付与することにより形成することができる。
 支持体12上に、ポリマー層14を直接設ける場合には、予め支持体12の表面にエネルギーを付与する等の易接着処理を施しておくことが好ましい。
 支持体12上にポリマー層14を設ける方法は特に限定されず、ポリマー層形成用組成物中に支持体12を浸漬する方法や、このポリマー層形成用組成物を支持体12上に塗布する方法などが挙げられる。得られるポリマー層14の厚みを制御しやすい点から、ポリマー層形成用組成物を支持体12上に塗布する方法が好ましい。
The polymer layer 14 can be formed by applying a composition for forming a polymer layer on the support 12 or the easy-adhesion layer 28 formed on the surface of the support 12 and applying energy.
When the polymer layer 14 is directly provided on the support 12, it is preferable to perform an easy adhesion treatment such as applying energy to the surface of the support 12 in advance.
The method for providing the polymer layer 14 on the support 12 is not particularly limited. The method for immersing the support 12 in the composition for forming a polymer layer or the method for applying the composition for forming a polymer layer on the support 12. Etc. From the viewpoint of easily controlling the thickness of the polymer layer 14 to be obtained, a method of coating the polymer layer forming composition on the support 12 is preferable.
 ポリマー層形成用組成物の塗布量は、後述する金属前駆体との充分な相互作用形成性の観点から、固形分換算で0.05~10g/mが好ましく、特に0.3~5g/mが好ましい。
 支持体12等へ塗布したポリマー層形成用組成物の塗布液は、20~60℃で1秒から2時間乾燥した後、60℃を超える温度で1秒~2時間乾燥することが好ましく、20~60℃で1秒~20分乾燥した後、60℃を超える温度で1秒~20分乾燥することがより好ましい。
The coating amount of the polymer layer forming composition is preferably 0.05 to 10 g / m 2 in terms of solid content, particularly 0.3 to 5 g / m 2 from the viewpoint of sufficient interaction formation with the metal precursor described later. m 2 is preferred.
The coating solution of the polymer layer forming composition applied to the support 12 or the like is preferably dried at 20 to 60 ° C. for 1 second to 2 hours, and then dried at a temperature exceeding 60 ° C. for 1 second to 2 hours. More preferably, after drying at ˜60 ° C. for 1 second to 20 minutes, drying at a temperature exceeding 60 ° C. for 1 second to 20 minutes.
 ポリマー層形成用組成物は、支持体12、あるいは、支持体12上に設けられた易接着層28と接触させた後、エネルギーを付与することで、エネルギー付与領域においてポリマーが有する重合性基同士、あるいは、ポリマーが有する重合性基と、支持体12あるいは支持体12上に設けられた易接着層28との間に相互作用が形成される。そして、支持体12上に(あるいは、易接着層28を介して支持体12上に)固定化されたポリマー層14が形成される。これにより、支持体12とポリマー層14とが強固に密着する。 The composition for forming a polymer layer is formed by bringing the polymer in the energy application region into contact with the support 12 or the easy-adhesion layer 28 provided on the support 12 and then applying energy. Alternatively, an interaction is formed between the polymerizable group of the polymer and the support 12 or the easy-adhesion layer 28 provided on the support 12. And the polymer layer 14 fixed on the support body 12 (or on the support body 12 through the easily bonding layer 28) is formed. Thereby, the support body 12 and the polymer layer 14 adhere | attach firmly.
 エネルギー付与方法としては、例えば、加熱や露光が挙げられる。
 露光によるエネルギー付与方法としては、具体的には、UVランプ、可視光線等による光照射が可能である。露光で使用する光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線等がある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。
 露光パワーは、重合を容易に進行させるため、ポリマーの分解を抑制するため、あるいは、ポリマーが良好な相互作用を形成するため、といった観点から10~8000mJ/cmの範囲であることが好ましく、100~3000mJ/cmの範囲であることがより好ましい。
 なお、露光は、窒素、ヘリウム、二酸化炭素等の不活性ガスによる置換を行ない、酸素濃度を600ppm以下、好ましくは400ppm以下に抑制した雰囲気中で行なってもよい。
Examples of the energy application method include heating and exposure.
As an energy application method by exposure, specifically, light irradiation by a UV lamp, visible light, or the like is possible. Examples of the light source used for exposure include a mercury lamp, a metal halide lamp, a xenon lamp, and a chemical lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
The exposure power is preferably in the range of 10 to 8000 mJ / cm 2 from the viewpoint of facilitating the polymerization, suppressing the decomposition of the polymer, or forming a good interaction of the polymer, A range of 100 to 3000 mJ / cm 2 is more preferable.
Note that exposure may be performed in an atmosphere in which substitution with an inert gas such as nitrogen, helium, or carbon dioxide is performed, and the oxygen concentration is suppressed to 600 ppm or less, preferably 400 ppm or less.
 加熱によるエネルギー付与は、例えば、一般の熱ヒートローラー、ラミネーター、ホットスタンプ、電熱板、サーマルヘッド、レーザー、送風乾燥機、オーブン、ホットプレート、赤外線乾燥機、加熱ドラム等により行なうことができる。
 加熱によりエネルギー付与を行なう場合、その温度は、重合を容易に進行させるため、あるいは、支持体の熱変性を抑制するため、20~200℃の範囲であることが好ましく、40~120℃の範囲であることがより好ましい。
Energy application by heating can be performed by, for example, a general heat heat roller, laminator, hot stamp, electric heating plate, thermal head, laser, blower dryer, oven, hot plate, infrared dryer, heating drum, or the like.
When energy is applied by heating, the temperature is preferably in the range of 20 to 200 ° C., in order to facilitate the polymerization or to suppress thermal denaturation of the support, and in the range of 40 to 120 ° C. It is more preferable that
 エネルギー付与後は、適宜、未反応のポリマーを除去する工程を更に設けてもよい。
 ポリマー層14の膜厚は、特に限定されないが、支持体12等との密着性の観点から、0.05~10μmであることが好ましく、0.3~5μmであることがより好ましい。
 また、上記方法により得られるポリマー層14の表面粗さ(Ra)は、反射性能の観点から、20nm以下であることが好ましく、10nm以下であることがより好ましい。
After energy application, a step of removing unreacted polymer may be further provided as appropriate.
The film thickness of the polymer layer 14 is not particularly limited, but is preferably 0.05 to 10 μm, more preferably 0.3 to 5 μm from the viewpoint of adhesion to the support 12 and the like.
Further, the surface roughness (Ra) of the polymer layer 14 obtained by the above method is preferably 20 nm or less, and more preferably 10 nm or less, from the viewpoint of reflection performance.
(金属前駆体)
 ポリマー層14は、還元された金属粒子を含むことが好ましい。ポリマー層14に含まれる還元された金属粒子は、ポリマー層14に、金属前駆体を付与し、この金属前駆体を還元して、金属前駆体を還元された金属粒子とすることによって得られる。金属前駆体をポリマー層14に付与すると、上記相互作用性基に、金属前駆体が相互作用により付着する。ポリマー層14に含まれる還元された金属粒子の量は、0.01~5g/mであることが好ましく、0.05~1g/mであることがより好ましい。
(Metal precursor)
The polymer layer 14 preferably includes reduced metal particles. The reduced metal particles contained in the polymer layer 14 are obtained by applying a metal precursor to the polymer layer 14 and reducing the metal precursor to make the metal precursor reduced metal particles. When the metal precursor is applied to the polymer layer 14, the metal precursor adheres to the interactive group by interaction. The amount of reduced metal particles contained in the polymer layer 14 is preferably 0.01 to 5 g / m 2 , and more preferably 0.05 to 1 g / m 2 .
 金属前駆体は、還元反応により金属に変化させることで電極として機能するものであれば、特に限定されない。また、金属前駆体としては、金属反射層の形成において、めっきの電極として機能するものが好ましく挙げられる。そのため、金属前駆体は、金属に還元させることで電極として機能するものが好ましい。
 具体的には、金属前駆体としては、Au、Pt、Pd、Ag、Cu、Ni、Al、Fe、Coなどの金属イオンが用いられる。金属前駆体である金属イオンは、ポリマー層形成用組成物に含まれている場合、支持体12上に層を形成した後、還元反応によって0価の金属粒子となる。
 金属前駆体である金属イオンは、金属塩としてポリマー層形成用組成物に含まれることが好ましい。
 金属イオンとしては、配位可能な官能基の種類、数、及び触媒能の点で、Agイオン、Cuイオン、Pdイオンが好ましい。
 Agイオンとしては、以下に示す銀化合物が解離したものを好適に用いることができる。銀化合物の具体例としては、硝酸銀、酢酸銀、硫酸銀、炭酸銀、シアン化銀、チオシアン酸銀、塩化銀、臭化銀、クロム酸銀、クロラニル酸銀、サリチル酸銀、ジエチルジチオカルバミン酸銀、ジエチルジチオカルバミド酸銀、p-トルエンスルホン酸銀が挙げられる。この中でも、水溶性の観点から硝酸銀が好ましい。
 Cuイオンとしては、以下に示す銅化合物が解離したものを好適に用いることができる。銅化合物の具体例としては、硝酸銅、酢酸銅、硫酸銅、シアン化銅、チオシアン酸銅、塩化銅、臭化銅、クロム酸銅、クロラニル酸銅、サリチル酸銅、ジエチルジチオカルバミン酸銅、ジエチルジチオカルバミド酸銅、p-トルエンスルホン酸銅が挙げられる。この中でも、水溶性の観点から硫酸銅が好ましい。
A metal precursor will not be specifically limited if it functions as an electrode by changing to a metal by a reduction reaction. Moreover, as a metal precursor, what functions as an electrode of plating in formation of a metal reflective layer is mentioned preferably. Therefore, what functions as an electrode by reducing a metal precursor to a metal is preferable.
Specifically, metal ions such as Au, Pt, Pd, Ag, Cu, Ni, Al, Fe, and Co are used as the metal precursor. When the metal ion which is a metal precursor is contained in the composition for forming a polymer layer, after forming a layer on the support 12, it becomes zero-valent metal particles by a reduction reaction.
It is preferable that the metal ion which is a metal precursor is contained in the composition for polymer layer formation as a metal salt.
As the metal ion, Ag ion, Cu ion, and Pd ion are preferable in terms of the type and number of functional groups capable of coordination, and catalytic ability.
As the Ag ions, those obtained by dissociating the silver compounds shown below can be suitably used. Specific examples of the silver compound include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, silver chloranilate, silver salicylate, silver diethyldithiocarbamate, Examples thereof include silver diethyldithiocarbamate and silver p-toluenesulfonate. Among these, silver nitrate is preferable from the viewpoint of water solubility.
As Cu ions, those obtained by dissociating the following copper compounds can be suitably used. Specific examples of copper compounds include copper nitrate, copper acetate, copper sulfate, copper cyanide, copper thiocyanate, copper chloride, copper bromide, copper chromate, copper chloranilate, copper salicylate, copper diethyldithiocarbamate, diethyldithiol. Examples thereof include copper carbamate and copper p-toluenesulfonate. Among these, copper sulfate is preferable from the viewpoint of water solubility.
 金属前駆体は、分散液又は溶液(金属前駆体液)として、ポリマー層14に付与されることが好ましい。
 分散液または溶液中の金属前駆体の粒子径は、1~200nmが好ましく、1~100nmがより好ましく、1~60nmであることが更に好ましい。金属前駆体をこの粒子径とすることで、還元された金属粒子の粒子径を所望の大きさに制御することができる。
 なお、ここで粒子径とは、平均1次粒子径(体積換算)を意味し、SEM(S-5200、(株)日立ハイテクマニファクチャ&サービス製)の画像から読み取ることで測定される。
The metal precursor is preferably applied to the polymer layer 14 as a dispersion or solution (metal precursor liquid).
The particle diameter of the metal precursor in the dispersion or solution is preferably 1 to 200 nm, more preferably 1 to 100 nm, and still more preferably 1 to 60 nm. By setting the particle size of the metal precursor, the particle size of the reduced metal particles can be controlled to a desired size.
Here, the particle diameter means an average primary particle diameter (volume conversion), and is measured by reading from an image of SEM (S-5200, manufactured by Hitachi High-Tech Manufacturing & Service Co., Ltd.).
 ポリマー層14に付与した金属前駆体である金属イオンは、金属活性化液(還元液)により還元する。金属活性化液は、金属前駆体(主に金属イオン)を0価金属に還元できる還元剤と、該還元剤を活性化するためのpH調製剤からなる。
 金属活性化液全体に対する還元剤の濃度は、0.05~50質量%であることが好ましく、0.1~30質量%であることがより好ましい。
 還元剤としては、水素化ホウ素ナトリウム、ジメチルアミンボランのようなホウ素系還元剤、ホルムアルデヒド、次亜リン酸等の還元剤を用いることが可能である。特に、ホルムアルデヒドを含有するアルカリ水溶液で還元することが好ましい。
Metal ions that are metal precursors applied to the polymer layer 14 are reduced by a metal activation liquid (reducing liquid). The metal activation liquid is composed of a reducing agent that can reduce a metal precursor (mainly metal ions) to a zero-valent metal and a pH adjuster for activating the reducing agent.
The concentration of the reducing agent with respect to the entire metal activation liquid is preferably 0.05 to 50% by mass, and more preferably 0.1 to 30% by mass.
As the reducing agent, boron-based reducing agents such as sodium borohydride and dimethylamine borane, and reducing agents such as formaldehyde and hypophosphorous acid can be used. In particular, reduction with an aqueous alkaline solution containing formaldehyde is preferred.
 金属活性化液全体に対するpH調整剤の濃度は、0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。
 pH調整剤としては、酢酸、塩酸、硫酸、硝酸、炭酸水素ナトリウム、アンモニア水、水酸化ナトリウム、水酸化カリウム等を使用することが可能である。
 還元時の温度は、10~100℃が好ましく、20~70℃が更に好ましい。
 これら濃度や温度は、還元の際の、金属前駆体の粒子径、ポリマー層14の表面粗さ、導電性(表面抵抗値)、還元液の劣化の観点から、この範囲であることが好ましい。
The concentration of the pH adjusting agent with respect to the entire metal activation liquid is preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass.
As the pH adjuster, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, sodium hydrogen carbonate, aqueous ammonia, sodium hydroxide, potassium hydroxide and the like can be used.
The temperature during the reduction is preferably 10 to 100 ° C, more preferably 20 to 70 ° C.
These concentrations and temperatures are preferably in this range from the viewpoints of the particle diameter of the metal precursor, the surface roughness of the polymer layer 14, the conductivity (surface resistance value), and the deterioration of the reducing solution during reduction.
 ポリマー層14に含まれる還元された金属粒子の粒子径は、反射性能の観点から、1~200nmが好ましく、1~100nmがより好ましく、1~60nmであることが更に好ましい。この範囲内にあることで、めっき後の反射率が良好となる。
 粒子径は、SEM(日立ハイテクマニファクチャ&サービス社製 S-5200)画像から読み取ることで測定される。
The particle diameter of the reduced metal particles contained in the polymer layer 14 is preferably 1 to 200 nm, more preferably 1 to 100 nm, and further preferably 1 to 60 nm from the viewpoint of reflection performance. By being in this range, the reflectance after plating becomes good.
The particle size is measured by reading from an SEM (S-5200 manufactured by Hitachi High-Tech Manufacturing & Service) image.
 還元された金属粒子を含むポリマー層14の表面抵抗値は、0.001Ω/□以上100Ω/□以下であることが好ましく、0.03Ω/□以上50Ω/□以下であることがより好ましい。この範囲内であると、均一及び平滑にめっき面が形成され反射率が良好となる。
 また、還元された金属粒子を含むポリマー層14の表面粗さ(Ra)は、反射性能の観点から、20nm以下が好ましく、10nm以下がより好ましい。
 このようにして得られた金属粒子を含むポリマー層14は、以下に詳述する銀反射層16を湿式法であるめっき法により形成する際に好適に用いられる。ポリマー層14を用いてめっき法により形成された銀反射層16は、樹脂基板との密着性及び表面平滑性に優れる。
The surface resistance value of the polymer layer 14 containing the reduced metal particles is preferably 0.001Ω / □ or more and 100Ω / □ or less, and more preferably 0.03Ω / □ or more and 50Ω / □ or less. Within this range, the plated surface is formed uniformly and smoothly and the reflectance is good.
Further, the surface roughness (Ra) of the polymer layer 14 containing the reduced metal particles is preferably 20 nm or less, and more preferably 10 nm or less, from the viewpoint of reflection performance.
The polymer layer 14 containing the metal particles thus obtained is suitably used when the silver reflecting layer 16 described in detail below is formed by a plating method that is a wet method. The silver reflective layer 16 formed by plating using the polymer layer 14 is excellent in adhesion to the resin substrate and surface smoothness.
[銀腐食防止剤]
 本実施形態では、腐食防止剤20は、ポリマー層14(好ましくは、還元された金属粒子を含むポリマー層)に銀腐食防止剤20を直接、又はこれを適切な溶剤中に溶解分散させた状態で接触させることで付与される。
 銀腐食防止剤20の付与された態様を図1~図3に示す。図2及び図3は、第一の実施形態の別の例を示す。
 図1に示すように、銀腐食防止剤20は、ポリマー層14表面の全面に亘って付着してもよい。
 図2に示すように、銀腐食防止剤20は、ポリマー層14の表面の少なくとも一部に島状に付着してもよい。
 また、めっき下塗りポリマー層14は層中に空隙を有するため、銀腐食防止剤20を接触させた場合、図3に示す第1の態様の別の例にあるように、本実施形態のミラーフィルム24では、銀腐食防止剤20は、めっき下塗りポリマー層14の表層、即ち、めっき下塗りポリマー層14の表面より200nm程度の深さの領域に至るまで付与されて存在する。この態様においては、図3に示すように、銀腐食防止剤20は、ポリマー層14と銀反射層16との界面の少なくとも一部に島状に分布していてもよい。 図3に示す形態では、ポリマー層14は、めっき触媒やめっき液の浸透に因って空隙(連続気泡)が形成される。このため、銀腐食防止剤20がポリマー層14の表面及び表層のみならず、このポリマー層14中のさらなる深部にも点在する場合がある。しかし、銀腐食防止剤20は、ポリマー層14の表面及び表層の少なくともいずれかに付着していればよく、ポリマー層14のより深部に銀腐食防止剤20がさらに存在していてもかまわない。
 図1~図3のいずれの態様においても、めっき法により銀反射層16が形成されると、銀反射層16と銀腐食防止剤20とが接触する。このため、銀反射層16の腐食が効果的に抑制される。
 銀反射層16は、ミクロには空隙を有する。このため、ポリマー層14表面に付着した銀腐食防止剤20は、銀反射層16表面に接触するのみならず、銀反射層16表層(16A:図6参照)に浸透して付着する場合もありうる。いずれの場合においても、銀腐食防止剤20が銀反射層16を構成する銀と接触することで、銀反射層16の銀の腐食が効果的に防止される。
[Silver corrosion inhibitor]
In the present embodiment, the corrosion inhibitor 20 is a state in which the silver corrosion inhibitor 20 is dissolved directly in the polymer layer 14 (preferably, a polymer layer containing reduced metal particles) or dissolved in a suitable solvent. It is given by making it contact with.
A mode in which the silver corrosion inhibitor 20 is applied is shown in FIGS. 2 and 3 show another example of the first embodiment.
As shown in FIG. 1, the silver corrosion inhibitor 20 may adhere over the entire surface of the polymer layer 14.
As shown in FIG. 2, the silver corrosion inhibitor 20 may adhere to at least a part of the surface of the polymer layer 14 in an island shape.
Moreover, since the plating undercoat polymer layer 14 has voids in the layer, when the silver corrosion inhibitor 20 is brought into contact, the mirror film of this embodiment is in another example of the first mode shown in FIG. In No. 24, the silver corrosion inhibitor 20 is applied to the surface layer of the plating undercoat polymer layer 14, that is, from the surface of the plating undercoat polymer layer 14 to a region having a depth of about 200 nm. In this embodiment, as shown in FIG. 3, the silver corrosion inhibitor 20 may be distributed in an island shape on at least a part of the interface between the polymer layer 14 and the silver reflective layer 16. In the form shown in FIG. 3, voids (open cells) are formed in the polymer layer 14 due to permeation of the plating catalyst or the plating solution. For this reason, the silver corrosion inhibitor 20 may be scattered not only on the surface and the surface layer of the polymer layer 14 but also in deeper portions in the polymer layer 14. However, the silver corrosion inhibitor 20 may be attached to at least one of the surface of the polymer layer 14 and the surface layer, and the silver corrosion inhibitor 20 may further exist in a deeper portion of the polymer layer 14.
1 to 3, when the silver reflective layer 16 is formed by plating, the silver reflective layer 16 and the silver corrosion inhibitor 20 come into contact with each other. For this reason, corrosion of the silver reflective layer 16 is effectively suppressed.
The silver reflection layer 16 has a micro gap. For this reason, the silver corrosion inhibitor 20 adhered to the surface of the polymer layer 14 may not only contact the surface of the silver reflective layer 16 but also penetrate and adhere to the surface layer of the silver reflective layer 16 (16A: see FIG. 6). sell. In any case, the silver corrosion inhibitor 20 is in contact with the silver constituting the silver reflective layer 16, so that the silver corrosion of the silver reflective layer 16 is effectively prevented.
 図1~図3のいずれの態様においても、銀腐食防止剤20は、後述する付着量を満たす量で存在することが好ましい。
 樹脂中間層14や銀反射層16表面に凹凸がある場合でも、銀腐食防止剤20が腐食防止に十分な量を付与されていれば、例えば、銀反射層16表面の凹凸の凹部に銀腐食防止剤20が付着する態様であってもよく、逆に、凸部に銀腐食防止剤20が付着する態様であってもよい。また、銀腐食防止剤20が層状に配置される場合は、いわゆる単分子層であってもよい。
 ここで、「腐食」とは、銀がそれをとり囲む環境物質によって、化学的若しくは電気化学的に浸食されるか、又は、材質的に劣化する現象をいう(JIS Z0103-2004参照)。
In any of the embodiments shown in FIGS. 1 to 3, the silver corrosion inhibitor 20 is preferably present in an amount that satisfies the adhesion amount described below.
Even if the surface of the resin intermediate layer 14 or the silver reflective layer 16 is uneven, if the silver corrosion inhibitor 20 is given a sufficient amount for preventing corrosion, for example, the silver corrosive recesses on the surface of the silver reflective layer 16 are corroded. The aspect which the inhibitor 20 adheres may be sufficient, and the aspect which the silver corrosion inhibitor 20 adheres to a convex part conversely may be sufficient. Moreover, when the silver corrosion inhibitor 20 is arrange | positioned at layered form, what is called a monomolecular layer may be sufficient.
Here, “corrosion” refers to a phenomenon in which silver is chemically or electrochemically eroded or deteriorated by an environmental material surrounding it (see JIS Z0103-2004).
 図1においては、樹脂中間層としてのポリマー層14の表面の一部と、ポリマー層14の内部に銀腐食防止剤20が配置された態様を記載した。しかし、詳細には、ポリマー層14の同一の領域中に、銀反射層16を構成する成分(例えば、銀)と、銀腐食防止剤20とが混合して存在している場合もある。即ち、ポリマー層14中に、還元された銀粒子と銀腐食防止剤20とが混在し、還元された銀粒子を基点としてめっきにより銀反射層16が形成された場合、ポリマー層14中では、粒状の銀が充填した状態で含まれ、その粒状の銀間の隙間に腐食防止剤が含まれるという態様もとりうる。
 「表層」とは、銀反射層16の樹脂中間層としてのポリマー層14側の表面上から深さ方向で50nmの位置までの表面に近い領域、或いは、ポリマー層14の銀反射層16側の表面上から深さ方向200nmの位置までの表面に近い領域を意味する。
 銀反射層16の表層に銀腐食防止剤20が含まれる場合、銀反射層16の反射特性に影響を与え難いという観点からは、銀腐食防止剤20が銀反射層16のポリマー層14側の表面上から深さ方向30nmの位置までの領域のみに存在することが好ましい。
In FIG. 1, the aspect in which the silver corrosion inhibitor 20 is disposed in a part of the surface of the polymer layer 14 as the resin intermediate layer and inside the polymer layer 14 is described. However, in detail, in the same region of the polymer layer 14, the component (for example, silver) constituting the silver reflecting layer 16 and the silver corrosion inhibitor 20 may be mixed and present. That is, when the reduced silver particles and the silver corrosion inhibitor 20 are mixed in the polymer layer 14 and the silver reflective layer 16 is formed by plating with the reduced silver particles as a starting point, in the polymer layer 14, It is also possible to include a state in which granular silver is included and a corrosion inhibitor is included in a gap between the granular silvers.
The “surface layer” is a region close to the surface from the surface on the polymer layer 14 side as the resin intermediate layer of the silver reflective layer 16 to a position of 50 nm in the depth direction, or on the silver reflective layer 16 side of the polymer layer 14. It means a region close to the surface from the surface to the position of 200 nm in the depth direction.
In the case where the silver corrosion inhibitor 20 is included in the surface layer of the silver reflective layer 16, the silver corrosion inhibitor 20 is on the polymer layer 14 side of the silver reflective layer 16 from the viewpoint of hardly affecting the reflection characteristics of the silver reflective layer 16. It is preferable to exist only in a region from the surface to a position in the depth direction of 30 nm.
 銀腐食防止剤20の含有量は、銀反射層16に含まれる銀100質量部に対して0.01~5質量部の範囲であることが好ましい。なかでも、ポリマー層14と銀反射層16との密着性及びフィルムミラー10の耐光性がより良好になるという観点からは、銀反射層16に含まれる銀100質量部に対して、0.03~0.8質量部の範囲であることが好ましく、0.05~0.6質量部の範囲であることがより好ましい。ここで、銀腐食防止剤20の含有量とは、フィルムミラー10全体に含まれる銀腐食防止剤20の合計量を意味する。
 例えば、銀腐食防止剤20を銀反射層16の表面のみに有する場合及び銀腐食防止剤20を銀反射層16の表層16Aのみに有する場合は、表面又は表層それぞれに存在する銀腐食防止剤20の量(付着量)が上記範囲内であればよい。また、表面及び表層のいずれにも銀腐食防止剤20を有する場合は、表面上の銀腐食防止剤20の量及び銀反射層16表層中の銀腐食防止剤20の量の合計量が上記範囲内であればよい。
 銀腐食防止剤20の量の測定方法は、25%塩酸の酸溶液などで表面及び表層の腐食防止剤を溶出してUV-Vis吸収スペクトルの吸光度によって測定する方法や、XPSなど表面元素解析を行う方法で測定することができる。
 銀腐食防止剤20が、ポリマー層14、銀反射層16のいずれの深さまで存在するかについては、SAICAS(登録商標、ダイプラ・ウィンテス(株)製)で斜め切削した後、得られた層の切削断面を、TOF-SIMS法(飛行時間型二次イオン質量分析法)にて解析することで、測定される。
The content of the silver corrosion inhibitor 20 is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of silver contained in the silver reflection layer 16. Especially, from a viewpoint that the adhesiveness of the polymer layer 14 and the silver reflective layer 16 and the light resistance of the film mirror 10 become more favorable, it is 0.03 with respect to 100 mass parts of silver contained in the silver reflective layer 16. The range is preferably from 0.8 to 0.8 parts by mass, and more preferably from 0.05 to 0.6 parts by mass. Here, the content of the silver corrosion inhibitor 20 means the total amount of the silver corrosion inhibitor 20 contained in the entire film mirror 10.
For example, when the silver corrosion inhibitor 20 is present only on the surface of the silver reflective layer 16 and when the silver corrosion inhibitor 20 is present only on the surface layer 16A of the silver reflective layer 16, the silver corrosion inhibitor 20 present on the surface or each surface layer. It is sufficient that the amount (attachment amount) is within the above range. When the silver corrosion inhibitor 20 is present on both the surface and the surface layer, the total amount of the silver corrosion inhibitor 20 on the surface and the amount of the silver corrosion inhibitor 20 in the surface layer of the silver reflection layer 16 is in the above range. If it is in.
The amount of the silver corrosion inhibitor 20 is measured by elution of the surface and surface corrosion inhibitors with an acid solution of 25% hydrochloric acid or the like and measuring the absorbance of the UV-Vis absorption spectrum, or by surface element analysis such as XPS. It can be measured by the method used.
Whether the silver corrosion inhibitor 20 exists up to the depth of the polymer layer 14 or the silver reflection layer 16 is obtained by obliquely cutting with SAICAS (registered trademark, manufactured by Daipura Wintes Co., Ltd.), It is measured by analyzing the cut section by the TOF-SIMS method (time-of-flight secondary ion mass spectrometry).
 銀腐食防止剤20は、樹脂中間層であるポリマー層14の形成後に付与されることで、このポリマー層14の表面及び表層の少なくともいずれかに存在し、銀反射層16と高密度で接触することになる。他方、従来技術のように、バインダー樹脂中に銀腐食防止剤20を添加したものを樹脂中間層として用いた場合、本発明の効果を奏し得ない。具体的には、樹脂中間層の形成前(即ち、ポリマー層形成用塗布液中)に銀腐食防止剤20を添加し、その後、エネルギーを付与してポリマー層14を形成した場合、銀腐食防止剤20が樹脂中間層全域に亘り均一に分散される。このため、隣接する銀反射層16と接触する銀腐食防止剤20の量が少なくなる。したがって、腐食防止効果が十分に得られない。 The silver corrosion inhibitor 20 is applied after the formation of the polymer layer 14 that is a resin intermediate layer, so that the silver corrosion inhibitor 20 is present on at least one of the surface and the surface layer of the polymer layer 14 and is in contact with the silver reflective layer 16 at a high density. It will be. On the other hand, as in the prior art, when the binder resin added with the silver corrosion inhibitor 20 is used as the resin intermediate layer, the effects of the present invention cannot be achieved. Specifically, when the silver corrosion inhibitor 20 is added before the resin intermediate layer is formed (that is, in the coating liquid for forming the polymer layer) and then the energy is applied to form the polymer layer 14, the silver corrosion prevention The agent 20 is uniformly dispersed throughout the resin intermediate layer. For this reason, the quantity of the silver corrosion inhibitor 20 which contacts the adjacent silver reflection layer 16 decreases. Therefore, a sufficient corrosion prevention effect cannot be obtained.
 銀腐食防止剤20の種類は特に制限されず、銀の腐食を抑制できる化合物であればよい。なかでも、銀に対する吸着性基を有することが好ましい。
 銀に対する吸着性基(例えば、アミノ基、複素環基などの窒素含有基、メルカプト基、S=C<などの硫黄含有基)を有する銀腐食防止剤としては、例えば、アミン類及びその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等のトリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、チオエーテル類(スルフィド結合を有する化合物)、ナフタレン系の化合物のうち、少なくとも一種又はこれらの混合物から選ばれることが望ましい。ベンゾトリアゾール等の化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、銀腐食防止剤20としてシリコーン変性樹脂を用いることも可能である。シリコーン変性樹脂として特に限定されない。
The kind in particular of the silver corrosion inhibitor 20 is not restrict | limited, What is necessary is just a compound which can suppress silver corrosion. Among them, it is preferable to have an adsorptive group for silver.
Examples of the silver corrosion inhibitor having an adsorptive group for silver (for example, a nitrogen-containing group such as an amino group or a heterocyclic group, a mercapto group, a sulfur-containing group such as S = C <), include amines and derivatives thereof, Compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, compounds having an indazole ring, copper chelate compounds, thioureas, mercapto It is desirable to select from at least one of a group-containing compound, a thioether (a compound having a sulfide bond), and a naphthalene-based compound, or a mixture thereof. In compounds such as benzotriazole, the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin as the silver corrosion inhibitor 20. It does not specifically limit as a silicone modified resin.
 アミン類及びその誘導体としては、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、o-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、又はこれらの混合物が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, o-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, N, N-dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate , Diisopropylammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.
 ピロール環を有する化合物としては、N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール、N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、又はこれらの混合物が挙げられる。 Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ3’5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては株式会社ADEKAのLA31)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(分子量447.6;市販品の例としてはチバ・スペシャリティ・ケミカルズ株式会社のチヌビン234)などが挙げられる。又は、これらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy3'5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) benzotriazole 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1- Methyl-1-phenylethyl) phenol (molecular weight 447.6; an example of a commercial product is Tinuvin from Ciba Specialty Chemicals Co., Ltd. 34), and the like. Or a mixture thereof may be mentioned.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、又はこれらの混合物が挙げられる。 Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or mixtures thereof.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、又はこれらの混合物が挙げられる。 Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、又はこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、又はこれらの混合物が挙げられる。 Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
 チオ尿素類としては、チオ尿素、グアニルチオ尿素等、又はこれらの混合物が挙げられる。 Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2-エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等、又はこれらの混合物が挙げられる。 As a compound having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto can be used by adding the above-described materials. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
 チオエーテル類としては、3,3’-チオジプロピオン酸ジドデシル、3,3’-チオジプロピオン酸ジステアリル、3,3’-チオビスプロピオン酸ジトリデシル、ビス[3-(ドデシルチオ)プロピオン酸]2,2-ビス[[3-(ドデシルチオ)-1-オキソプロピルオキシ]メチル]-1,3-プロパンジイル、テトラキス-(7-メルカプト-2,5-ジチアヘプチル)メタン、4,4’-ジアミノジフェニルジスルフィド、ジフェニルジスルフィド等、又はこれらの混合物が挙げられる。 Examples of thioethers include didodecyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, ditridecyl 3,3′-thiobispropionate, and bis [3- (dodecylthio) propionic acid] 2. , 2-bis [[3- (dodecylthio) -1-oxopropyloxy] methyl] -1,3-propanediyl, tetrakis- (7-mercapto-2,5-dithiaheptyl) methane, 4,4′-diaminodiphenyl Examples thereof include disulfide, diphenyl disulfide, and the like, or a mixture thereof.
 ナフタレン系の化合物としては、チオナリド等が挙げられる。 Examples of naphthalene compounds include thionalide.
 なお、銀腐食防止剤20のより具体的な例としては、以下の式(D)~式(J)で表される化合物が挙げられる。 A more specific example of the silver corrosion inhibitor 20 includes compounds represented by the following formulas (D) to (J).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(D)中、R41~R45は、それぞれ独立に、水素原子又は置換基を表す。
 置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子等)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t-ブチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アラルキル基(例えば、ベンジル基、2-フェネチル基等)、アリール基(例えば、フェニル基、ナフチル基、p-トリル基、p-クロロフェニル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等)、アリールオキシ基(例えば、フェノキシ基等)、アシルアミノ基(例えば、アセチルアミノ基、プロピオニルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、ブチルチオ基等)、アリールチオ基(例えば、フェニルチオ基等)、スルホニルアミノ基(例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基等)、ウレイド基(例えば、3-メチルウレイド基、3,3-ジメチルウレイド基、1,3-ジメチルウレイド基等)、スルファモイルアミノ基(例えば、ジメチルスルファモイルアミノ基等)、カルバモイル基(例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基等)、スルファモイル基(例えば、エチルスルファモイル基、ジメチルスルファモイル基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、スルホニル基(例えば、メタンスルホニル基、ブタンスルホニル基、フェニルスルホニル基等)、アシル基(例えばアセチル基、プロパノイル基、ブチロイル基等)、アミノ基(メチルアミノ基、エチルアミノ基、ジメチルアミノ基等)、ヒドロキシ基、ニトロ基、ニトロソ基、アミンオキシド基(例えば、ピリジン-オキシド基)、イミド基(例えば、フタルイミド基等)、ジスルフィド基(例えば、ベンゼンジスルフィド基、ベンゾチアゾリル-2-ジスルフィド基等)、カルボキシル基、シアノ基、メルカプト基、スルホ基、ヘテロ環基(例えば、ピロール基、ピロリジル基、ピラゾリル基、イミダゾリル基、ピリジル基、ベンズイミダゾリル基、ベンズチアゾリル基、ベンズオキサゾリル基等)、又はこれらを組み合わせた基が挙げられる。これらの置換基はさらに置換されてもよい。
 なかでも、耐光性がより優れる点で、R41~R45は、それぞれ独立に、水素原子、アルキル基、アミノ基、及びメルカプト基からなる群から選ばれることが好ましい。
In formula (D), R 41 to R 45 each independently represents a hydrogen atom or a substituent.
Examples of the substituent include a halogen atom (eg, fluorine atom, chlorine atom), an alkyl group (eg, methyl group, ethyl group, isopropyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl). Group), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), aralkyl group (eg, benzyl group, 2-phenethyl group, etc.), aryl group (eg, phenyl group, naphthyl group, p-tolyl group, p) -Chlorophenyl group etc.), alkoxy group (eg methoxy group, ethoxy group, isopropoxy group, butoxy group etc.), aryloxy group (eg phenoxy group etc.), acylamino group (eg acetylamino group, propionylamino group etc.) ), Alkylthio group (for example, methylthio group, ethylthio group, butylthio group) Etc.), arylthio group (eg, phenylthio group, etc.), sulfonylamino group (eg, methanesulfonylamino group, benzenesulfonylamino group, etc.), ureido group (eg, 3-methylureido group, 3,3-dimethylureido group, 1,3-dimethylureido group etc.), sulfamoylamino group (eg dimethylsulfamoylamino group etc.), carbamoyl group (eg methylcarbamoyl group, ethylcarbamoyl group, dimethylcarbamoyl group etc.), sulfamoyl group (eg , Ethylsulfamoyl group, dimethylsulfamoyl group etc.), alkoxycarbonyl group (eg methoxycarbonyl group, ethoxycarbonyl group etc.), aryloxycarbonyl group (eg phenoxycarbonyl group etc.), sulfonyl group (eg methane Sulfonyl , Butanesulfonyl group, phenylsulfonyl group etc.), acyl group (eg acetyl group, propanoyl group, butyroyl group etc.), amino group (methylamino group, ethylamino group, dimethylamino group etc.), hydroxy group, nitro group, nitroso Group, amine oxide group (eg pyridine-oxide group), imide group (eg phthalimide group etc.), disulfide group (eg benzene disulfide group, benzothiazolyl-2-disulfide group etc.), carboxyl group, cyano group, mercapto group , A sulfo group, a heterocyclic group (for example, a pyrrole group, a pyrrolidyl group, a pyrazolyl group, an imidazolyl group, a pyridyl group, a benzimidazolyl group, a benzthiazolyl group, a benzoxazolyl group), or a combination thereof. These substituents may be further substituted.
In particular, R 41 to R 45 are preferably independently selected from the group consisting of a hydrogen atom, an alkyl group, an amino group, and a mercapto group, from the viewpoint of more excellent light resistance.
 式(D)中、Qは、窒素原子又はCR46を表す。R46は、水素原子又は置換基を表す。置換基としては、式(D)のR41~R45で表される置換基と同義である。
 なかでも、R46は、水素原子が好ましい。
Wherein (D), Q represents a nitrogen atom or CR 46. R 46 represents a hydrogen atom or a substituent. The substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
Among these, R 46 is preferably a hydrogen atom.
 式(E)中、R51~R53は、それぞれ独立に、水素原子又は置換基を表す。置換基としては、式(D)のR41~R45で表される置換基と同義である。
 なかでも、耐光性がより優れる点、R51~R53は、それぞれ独立に、水素原子、アルキル基、アミノ基、及びメルカプト基からなる群から選ばれることが好ましい。
In formula (E), R 51 to R 53 each independently represents a hydrogen atom or a substituent. The substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
Among these, it is preferable that R 51 to R 53 are independently selected from the group consisting of a hydrogen atom, an alkyl group, an amino group, and a mercapto group, in that light resistance is more excellent.
 式(F)中、R61~R63は、それぞれ独立に、水素原子又は置換基を表す。置換基としては、式(D)のR41~R45で表される置換基と同義である。
 なかでも、耐光性がより優れる点で、R61~R63は、それぞれ独立に、水素原子、アルキル基、アミノ基、及びメルカプト基からなる群から選ばれることが好ましい。
In the formula (F), R 61 to R 63 each independently represents a hydrogen atom or a substituent. The substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
In particular, R 61 to R 63 are each independently preferably selected from the group consisting of a hydrogen atom, an alkyl group, an amino group, and a mercapto group from the viewpoint that light resistance is more excellent.
 式(G)中、R71~R72は、それぞれ独立に、水素原子又は置換基を表す。置換基としては、式(D)のR41~R45で表される置換基と同義である。
 なかでも、耐光性がより優れる点で、R71~R72は、それぞれ独立に、水素原子、アルキル基、アミノ基、メルカプト基、及びアルキルスルフィド基からなる群から選ばれることが好ましい。
In formula (G), R 71 to R 72 each independently represents a hydrogen atom or a substituent. The substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
In particular, R 71 to R 72 are each independently preferably selected from the group consisting of a hydrogen atom, an alkyl group, an amino group, a mercapto group, and an alkyl sulfide group from the viewpoint of more excellent light resistance.
 式(H)中、R81~R84は、それぞれ独立に、水素原子又は置換基を表す。置換基としては、式(D)のR41~R45で表される置換基と同義である。
 なかでも、耐光性がより優れる点で、R81~R84は、それぞれ独立に、水素原子及びアルキル基からなる群から選ばれることが好ましい。
In the formula (H), R 81 to R 84 each independently represents a hydrogen atom or a substituent. The substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
Among these, it is preferable that R 81 to R 84 are independently selected from the group consisting of a hydrogen atom and an alkyl group from the viewpoint of more excellent light resistance.
 式(I)中、Aは、炭素数1~3の脂肪族炭化水素基を表す。
 Laは、アルキレン基、-S-、-CO-、-O-、又は、これらを組み合わせた基(例えば、-アルキレン基-S-アルキレン基-、-COO-アルキレン基)を表す。
 nは、2~4の整数を表す。
In the formula (I), A represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms.
La represents an alkylene group, —S—, —CO—, —O—, or a combination thereof (for example, —alkylene group—S-alkylene group—, —COO-alkylene group).
n represents an integer of 2 to 4.
 式(J)中、R101及びR102は、それぞれ独立に、水素原子又は置換基を表す。置換基としては、式(D)のR41~R45で表される置換基と同義である。
 なかでも、耐光性がより優れる点で、R101は、水素原子及びアルキル基からなる群から選ばれることが好ましい。R102は、水素原子、メルカプト基、アミノ基、及びアルキル基からなる群から選ばれることが好ましい。
 Lbは、アルキレン基を表す。
 mは1~5の整数を表し、lは0~4の整数を表し、mとlはm+l=5の関係を満たす。
In formula (J), R 101 and R 102 each independently represent a hydrogen atom or a substituent. The substituent is synonymous with the substituent represented by R 41 to R 45 in the formula (D).
Among them, in terms of light resistance more excellent, R 101 is preferably selected from the group consisting of hydrogen atom and alkyl group. R 102 is preferably selected from the group consisting of a hydrogen atom, a mercapto group, an amino group, and an alkyl group.
Lb represents an alkylene group.
m represents an integer of 1 to 5, l represents an integer of 0 to 4, and m and l satisfy the relationship of m + 1 = 5.
 銀腐食防止剤20の付与方法は特に制限されないが、銀腐食防止剤20を直接ポリマー層14に接触させてもよく、適切な溶剤に溶解又は分散させた液をポリマー層14に接触させてもよい。
 ポリマー層14に銀腐食防止剤20を接触させることで、銀腐食防止剤20がポリマー層14の表面に付着したり、ポリマー層14の表層に浸透してめっき下塗りポリマーが有する相互作用基に付着(吸着)したりする。特に、銀腐食防止剤20が銀に対する吸着性基を有する場合、吸着性基を介してめっきにより形成される銀反射層16と密に接触することになる。
 接触条件は、上述した銀腐食防止剤20の付着量となる条件であれば特に制限されない。なかでも、生産性の点から、10℃~50℃の条件下で、0.2分間~60分間接触させることが好ましい。
The method for applying the silver corrosion inhibitor 20 is not particularly limited, but the silver corrosion inhibitor 20 may be brought into direct contact with the polymer layer 14, or a solution dissolved or dispersed in an appropriate solvent may be brought into contact with the polymer layer 14. Good.
By bringing the silver corrosion inhibitor 20 into contact with the polymer layer 14, the silver corrosion inhibitor 20 adheres to the surface of the polymer layer 14 or penetrates into the surface layer of the polymer layer 14 and adheres to the interaction group of the plating undercoat polymer. (Adsorption). In particular, when the silver corrosion inhibitor 20 has an adsorptive group for silver, the silver corrosion inhibitor 20 comes into close contact with the silver reflective layer 16 formed by plating through the adsorptive group.
A contact condition will not be restrict | limited especially if it is the conditions used as the adhesion amount of the silver corrosion inhibitor 20 mentioned above. Of these, from the viewpoint of productivity, the contact is preferably performed at 10 ° C. to 50 ° C. for 0.2 minutes to 60 minutes.
 なお、銀腐食防止剤20の溶解及び分散に使用される溶媒の種類は特に制限されないが、銀腐食防止剤20を溶解しうる溶媒であることが好ましい。
 溶剤(溶媒又は分散媒)としては、例えば、水、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、プロピレングリコールモノメチルエーテルなどのアルコール系溶媒、酢酸などの酸、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒、アセトニトリル、プロピオニトリルなどのニトリル系溶媒、酢酸メチル、酢酸エチルなどのエステル系溶媒、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、この他にも、エーテル系溶媒、グリコール系溶媒、アミン系溶媒、チオール系溶媒、ハロゲン系溶媒などが挙げられる。
 また、銀腐食防止剤20を溶剤に中に溶解及び分散させる場合の銀腐食防止剤20の含有量は特に制限されない。なかでも、溶液又は分散液を接触させることで、ポリマー層14や銀反射層16に効率よく銀腐食防止剤20を付与できるという観点からは、溶剤100質量部に対して、銀腐食防止剤20の含有量が0.0001~5質量部であることが好ましく、0.01~1質量部であることがより好ましい。
The type of the solvent used for dissolving and dispersing the silver corrosion inhibitor 20 is not particularly limited, but a solvent that can dissolve the silver corrosion inhibitor 20 is preferable.
Examples of the solvent (solvent or dispersion medium) include alcohol solvents such as water, methanol, ethanol, propanol, ethylene glycol, glycerin and propylene glycol monomethyl ether, acids such as acetic acid, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone. Amide solvents such as formamide, dimethylacetamide and N-methylpyrrolidone, nitrile solvents such as acetonitrile and propionitrile, ester solvents such as methyl acetate and ethyl acetate, carbonate solvents such as dimethyl carbonate and diethyl carbonate, benzene Aromatic hydrocarbon solvents such as toluene and xylene, and other solvents such as ether solvents, glycol solvents, amine solvents, thiol solvents, and halogen solvents.
Further, the content of the silver corrosion inhibitor 20 when the silver corrosion inhibitor 20 is dissolved and dispersed in the solvent is not particularly limited. Among these, from the viewpoint that the silver corrosion inhibitor 20 can be efficiently applied to the polymer layer 14 and the silver reflection layer 16 by bringing the solution or dispersion into contact, the silver corrosion inhibitor 20 with respect to 100 parts by mass of the solvent. Is preferably 0.0001 to 5 parts by mass, and more preferably 0.01 to 1 part by mass.
 なお、銀腐食防止剤20をポリマー層14に付与した後、銀反射層16を形成する工程に先だって、必要に応じて、銀腐食防止剤20を付与したポリマー層14を有する樹脂製支持体12を溶媒で洗浄する工程を実施してもよい。この工程を実施することにより、余分な銀腐食防止剤20を除去することができ、ポリマー層14と、該ポリマー層14上に形成される銀反射層16との密着性がより向上する。
 洗浄に使用される溶媒の種類は特に制限されず、使用される銀腐食防止剤20の種類に応じて選択される。例えば、上述した銀腐食防止剤20の溶解及び分散に使用される溶媒が挙げられる。なかでも、水、アルコール類(メタノール、エタノール、イソプロパノールなど)、ケトン類(MEK、アセトンなど)、シクロヘキサノン又はその混合溶媒がより好ましい。
In addition, after giving the silver corrosion inhibitor 20 to the polymer layer 14, before the process of forming the silver reflection layer 16, the resin support body 12 which has the polymer layer 14 to which the silver corrosion inhibitor 20 was given as needed. You may implement the process of wash | cleaning with a solvent. By carrying out this step, the excess silver corrosion inhibitor 20 can be removed, and the adhesion between the polymer layer 14 and the silver reflective layer 16 formed on the polymer layer 14 is further improved.
The type of solvent used for cleaning is not particularly limited, and is selected according to the type of silver corrosion inhibitor 20 used. For example, the solvent used for melt | dissolution and dispersion | distribution of the silver corrosion inhibitor 20 mentioned above is mentioned. Of these, water, alcohols (such as methanol, ethanol, isopropanol), ketones (such as MEK and acetone), cyclohexanone or a mixed solvent thereof are more preferable.
 溶媒で洗浄する方法は特に制限されず、銀腐食防止剤20を付与したポリマー層14付き支持体12上に溶媒を塗布する方法や、銀腐食防止剤20を付与したポリマー層14付き支持体12を溶媒中に浸漬する方法が挙げられる。
 洗浄条件は特に制限されないが、余分な銀腐食防止剤20をより効率よく除去できる点で、10~50℃の溶媒と0.1~5分間接触させることが好ましい。
The method of washing with a solvent is not particularly limited, and a method of applying a solvent on the support 12 with the polymer layer 14 provided with the silver corrosion inhibitor 20 or a support 12 with the polymer layer 14 provided with the silver corrosion inhibitor 20 is used. The method of immersing in a solvent is mentioned.
The washing conditions are not particularly limited, but it is preferable to contact with a solvent at 10 to 50 ° C. for 0.1 to 5 minutes from the viewpoint that the excess silver corrosion inhibitor 20 can be removed more efficiently.
[銀反射層]
 銀反射層16は、ポリマー層14上に設けられる層であり、入射される光を反射する機能を有する。銀、又は銀を含む合金は、フィルムミラー10の可視光領域での反射率を高め、入射角による反射率の依存性を低減できる。可視光領域とは、400~700nmの波長領域を意味する。ここで、入射角とは膜面に対して垂直な線に対する角度を意味する。
 銀反射層16における銀の含有量は、銀と他の金属との合計(100原子%)中、90原子%~99.8原子%が好ましい。また、他の金属の含有量は、耐久性の点から0.2原子%~10原子%が好ましい。
 銀反射層16には、耐久性が向上する点から、銀反射層16の反射特性に影響がない程度に銀以外の他の金属が含まれていてもよく、他の金属としては、例えば、金、銅、ニッケル、鉄、パラジウムなどが挙げられる。
 なお、銀反射層16のポリマー層14側の表面及び銀反射層表層16Aの少なくともいずれかにも銀腐食防止剤20が含まれていてもよい。
 以下、ポリマー層14上に銀反射層16を電気めっき法により形成する場合について、説明する。
 電気めっき法としては、従来公知の方法を用いることができる。
 本発明においては、ポリマー層14に含まれる金属粒子が電極としての機能を有するため、ポリマー層14に対して電気めっきを行なうことにより、樹脂製支持体との密着性に優れた銀反射層16を形成することができる。
 めっきに用いられる金属化合物としては、例えば、硝酸銀、酢酸銀、硫酸銀、炭酸銀、メタンスルホン酸銀、アンモニア銀、シアン化銀、チオシアン酸銀、塩化銀、臭化銀、クロム酸銀、クロラニル酸銀、サリチル酸銀、ジエチルジチオカルバミン酸銀、ジエチルジチオカルバミド酸銀、p-トルエンスルホン酸銀等の銀化合物が挙げられる。これらの中でも、環境影響や平滑性の観点から、メタンスルホン酸銀が好ましい。
[Silver reflection layer]
The silver reflection layer 16 is a layer provided on the polymer layer 14 and has a function of reflecting incident light. Silver or an alloy containing silver can increase the reflectance in the visible light region of the film mirror 10 and reduce the dependency of the reflectance on the incident angle. The visible light region means a wavelength region of 400 to 700 nm. Here, the incident angle means an angle with respect to a line perpendicular to the film surface.
The silver content in the silver reflecting layer 16 is preferably 90 atomic% to 99.8 atomic% in the total of silver and other metals (100 atomic%). Further, the content of other metals is preferably 0.2 atomic% to 10 atomic% from the viewpoint of durability.
The silver reflection layer 16 may contain other metals other than silver to the extent that the reflection characteristics of the silver reflection layer 16 are not affected, from the viewpoint of improving durability. Gold, copper, nickel, iron, palladium, etc. are mentioned.
In addition, the silver corrosion inhibitor 20 may be contained in at least one of the surface of the silver reflective layer 16 on the polymer layer 14 side and the surface layer 16A of the silver reflective layer.
Hereinafter, the case where the silver reflection layer 16 is formed on the polymer layer 14 by electroplating will be described.
A conventionally known method can be used as the electroplating method.
In the present invention, since the metal particles contained in the polymer layer 14 have a function as an electrode, by performing electroplating on the polymer layer 14, the silver reflective layer 16 having excellent adhesion to the resin support. Can be formed.
Examples of metal compounds used for plating include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver methanesulfonate, silver ammonia, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, and chloranil. Examples thereof include silver compounds such as silver oxide, silver salicylate, silver diethyldithiocarbamate, silver diethyldithiocarbamate, and silver p-toluenesulfonate. Among these, silver methanesulfonate is preferable from the viewpoint of environmental impact and smoothness.
 なお、ポリマー層14と銀反射層16との間には、例えば、銅、ニッケル、クロム、鉄等の他の金属を含有する金属層を下地金属層として有していてもよい。
 また、電気めっき法により得られる銀反射層16の膜厚は、めっき浴中に含まれる金属濃度、又は、電流密度を調整することで制御することができる。適切な厚みの下地金属層を入れることで、表面平滑化による反射率向上やピンホール低減が可能となる。
In addition, between the polymer layer 14 and the silver reflection layer 16, you may have a metal layer containing other metals, such as copper, nickel, chromium, iron, as a base metal layer, for example.
Moreover, the film thickness of the silver reflecting layer 16 obtained by the electroplating method can be controlled by adjusting the metal concentration or the current density contained in the plating bath. By adding a base metal layer having an appropriate thickness, it is possible to improve reflectance and reduce pinholes by smoothing the surface.
 また、還元された金属粒子を含むポリマー層14を利用して真空蒸着等の乾式めっきを行なうことにより、銀反射層16を形成してもよい。この方法によれば、ポリマー層14の表面が金属で覆われているため、通常の蒸着等よりも密着性がよく、かつ、熱に対しても強い銀反射層16を形成することができる。 Alternatively, the silver reflective layer 16 may be formed by performing dry plating such as vacuum deposition using the polymer layer 14 containing the reduced metal particles. According to this method, since the surface of the polymer layer 14 is covered with a metal, it is possible to form the silver reflective layer 16 that has better adhesion than ordinary vapor deposition or the like and is strong against heat.
 電気めっきの後、銀反射層16の反射性能や耐久性を向上させるために、銀反射層16を強酸や強アルカリ等で処理してもよい。また、金属表面に、無機皮膜や金属酸化皮膜を形成してもよい。 After the electroplating, the silver reflective layer 16 may be treated with a strong acid or a strong alkali in order to improve the reflection performance and durability of the silver reflective layer 16. Further, an inorganic film or a metal oxide film may be formed on the metal surface.
 銀反射層16の厚さは特に限定されないが、反射率の観点から、50~500nmが好ましく、80~300nmがより好ましい。 The thickness of the silver reflective layer 16 is not particularly limited, but is preferably 50 to 500 nm, more preferably 80 to 300 nm from the viewpoint of reflectivity.
 銀反射層16の形成方法は特に限定されず、湿式法及び乾式法のいずれも採用することができる。
 湿式法としては、例えば、いわゆる金属めっき法(無電解めっき、又は、電気めっき)として公知の方法が挙げられる。
 また、乾式法としては、例えば、真空蒸着法、スパッタ法、イオンプレーティング法などが挙げられる。
 銀反射層16に含まれる銀の含有量(総量)は、銀反射層16を濃硫酸等へ浸漬することにより、銀反射層16中の銀を溶解後、得られた溶液をICP-AES(誘導結合プラズマ発光分光分析装置)(島津製作所製、ICP-1000IV)を用いて元素分析することにより測定できる。
The method for forming the silver reflective layer 16 is not particularly limited, and either a wet method or a dry method can be employed.
Examples of the wet method include a known method as a so-called metal plating method (electroless plating or electroplating).
Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method.
The content (total amount) of silver contained in the silver reflective layer 16 is determined by immersing the silver reflective layer 16 in concentrated sulfuric acid or the like to dissolve the silver in the silver reflective layer 16, and then dissolving the obtained solution with ICP-AES ( It can be measured by elemental analysis using an inductively coupled plasma emission spectrometer (ICP-1000IV, manufactured by Shimadzu Corporation).
<樹脂保護層>
 樹脂保護層18は、銀反射層16上に配置される層であり、銀反射層16の入射光側の表面上に設けられる。樹脂保護層18は、太陽光、雨水、砂塵等によって銀反射層16、支持体12、あるいは、ポリマー層14などが劣化または破損するのを防止し、鏡面性の安定化を図る。
〔樹脂〕
 樹脂保護層18の形成に用いられる樹脂材料としては、フィルム又は層を形成しうる樹脂であって、形成されたフィルム又は層の強度、耐久性、空気や水分の遮断性、さらには、この樹脂保護層18と隣接する層(例えば、銀反射層16や表面被覆層等)との密着性に加え、透明性に優れる樹脂が好ましい。樹脂保護層18としては、特に、フィルムミラー10が必要とする波長の光に対する高い透過性を有する樹脂が好ましい。
<Resin protective layer>
The resin protective layer 18 is a layer disposed on the silver reflection layer 16 and is provided on the surface of the silver reflection layer 16 on the incident light side. The resin protective layer 18 prevents the silver reflecting layer 16, the support 12, the polymer layer 14, or the like from being deteriorated or damaged by sunlight, rainwater, dust, or the like, and stabilizes the specularity.
〔resin〕
The resin material used for forming the resin protective layer 18 is a resin that can form a film or layer, and the strength or durability of the formed film or layer, air and moisture blocking properties, and further this resin In addition to the adhesion between the protective layer 18 and the adjacent layer (for example, the silver reflection layer 16 or the surface coating layer), a resin having excellent transparency is preferable. As the resin protective layer 18, a resin having high transparency with respect to light having a wavelength required by the film mirror 10 is particularly preferable.
 具体的には、例えば、セルロースエステル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリスルフォン(ポリエーテルスルフォンも含む)系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、セルロースジアセテート樹脂、セルローストリアセテート樹脂、セルロースアセテートプロピオネート樹脂、セルロースアセテートブチレート樹脂、ポリビニルアルコール、ポリビニルブチラール、エチレンビニルアルコール樹脂、エチレン酢酸ビニル樹脂、及びエチレンアクリル酸エステル共重合体、ポリカーボネート、ノルボルネン系樹脂、ポリメチルペンテン樹脂、ポリアミド、フッ素系樹脂、ポリメチルメタクリレート、アクリル樹脂、オレフィン系樹脂、ポリウレタン樹脂、シリコーン樹脂等を挙げることができる。
 これらのなかでも、樹脂保護層18と銀反射層16との密着性の観点から、樹脂保護層18に含有される樹脂としては、アクリル樹脂、ポリビニルブチラール、エチレン酢酸ビニル樹脂、及びエチレンアクリル酸エステル共重合体から選ばれる1種以上の樹脂が好ましい。
Specifically, for example, cellulose ester resins, polyester resins, polycarbonate resins, polyarylate resins, polysulfone (including polyether sulfone) resins, polyethylene terephthalate, polyester resins such as polyethylene naphthalate, polyethylene, Polypropylene, cellulose diacetate resin, cellulose triacetate resin, cellulose acetate propionate resin, cellulose acetate butyrate resin, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl alcohol resin, ethylene vinyl acetate resin, and ethylene acrylate copolymer, polycarbonate , Norbornene resin, polymethylpentene resin, polyamide, fluorine resin, polymethyl methacrylate, acrylic resin , Olefin resin, polyurethane resin, and silicone resin.
Among these, from the viewpoint of adhesion between the resin protective layer 18 and the silver reflective layer 16, the resin contained in the resin protective layer 18 includes acrylic resin, polyvinyl butyral, ethylene vinyl acetate resin, and ethylene acrylate ester. One or more resins selected from copolymers are preferred.
〔架橋剤〕
 樹脂保護層18は、架橋剤を更に含有することが好ましい。架橋剤を含有することで、樹脂保護層18中に架橋構造が形成される。これにより、樹脂保護層18の強度がより向上するとともに、隣接する銀反射層16との密着性がより向上するなどの利点を有することになる。
 架橋剤としては、樹脂保護層18を構成する樹脂との相関により選択することができる。架橋剤としては、例えば、カルボジイミド化合物、イソシアネート化合物、エポキシ化合物、オキセタン化合物、メラミン化合物、ビスビニルスルオン化合物などが挙げられ、効果の観点からは、カルボジイミド化合物、イソシアネート化合物、及びエポキシ化合物からなる群より選ばれ少なくとも1種の架橋剤が好ましい。
 樹脂保護層18には、各成分に加え、例えば、紫外線吸収剤、光重合開始剤、帯電防止剤、塗布助剤(レベリング剤)、酸化防止剤、消泡剤等の添加剤が含有されていてもよい。
[Crosslinking agent]
The resin protective layer 18 preferably further contains a crosslinking agent. By containing a crosslinking agent, a crosslinked structure is formed in the resin protective layer 18. Thereby, while the intensity | strength of the resin protective layer 18 improves more, it has the advantage that the adhesiveness with the adjacent silver reflection layer 16 improves more.
As a crosslinking agent, it can select according to correlation with resin which comprises the resin protective layer 18. FIG. Examples of the crosslinking agent include a carbodiimide compound, an isocyanate compound, an epoxy compound, an oxetane compound, a melamine compound, a bisvinylsulfone compound, and the like. From the viewpoint of the effect, from the group consisting of a carbodiimide compound, an isocyanate compound, and an epoxy compound. At least one crosslinking agent selected is preferred.
In addition to the components, the resin protective layer 18 contains additives such as an ultraviolet absorber, a photopolymerization initiator, an antistatic agent, a coating aid (leveling agent), an antioxidant, and an antifoaming agent. May be.
 樹脂保護層18の形成方法としては、特に制限はなく、例えば、以下の方法が挙げられる。
 この樹脂保護層18を形成するための組成物(以下、適宜「保護像形成用組成物」と称する)を溶剤に溶解させ、銀反射層16上に塗布した後、溶剤を減じて樹脂保護層18を形成する方法。
 また、保護層形成用組成物に含まれる樹脂が溶融する温度まで加熱して、銀反射層16上にキャストして樹脂保護層18を形成する方法。
 あるいは、保護層形成用組成物を用いて予めフィルム状に成形し、得られたフィルムを、接着剤を介して銀反射層16に貼り合わせるか、或いは、熱ラミネート等の方法で銀反射層16に融着させるなどの方法により樹脂保護層18を形成する方法。
There is no restriction | limiting in particular as a formation method of the resin protective layer 18, For example, the following method is mentioned.
A composition for forming the resin protective layer 18 (hereinafter referred to as “protective image forming composition” as appropriate) is dissolved in a solvent and coated on the silver reflective layer 16, and then the solvent is reduced to reduce the resin protective layer. A method of forming 18.
Also, a method of forming the resin protective layer 18 by heating to a temperature at which the resin contained in the protective layer forming composition melts, and casting on the silver reflective layer 16.
Alternatively, the protective layer forming composition is formed into a film in advance, and the obtained film is bonded to the silver reflective layer 16 via an adhesive, or the silver reflective layer 16 is formed by a method such as thermal lamination. A method of forming the resin protective layer 18 by a method such as fusing.
 密着性に優れた樹脂保護層18を均一に形成するという観点からは、保護層形成用塗布液組成物の固形分濃度は、1~30質量%の範囲であることが好ましい。
 銀反射層16の表面に塗布した樹脂の膜を硬化させる方法は、特に限定されず、加熱やUV照射等、樹脂保護層18を形成するために用いた樹脂材料に応じた方法を適宜選択すればよい。
From the viewpoint of uniformly forming the resin protective layer 18 having excellent adhesion, the solid content concentration of the protective layer-forming coating solution composition is preferably in the range of 1 to 30% by mass.
The method of curing the resin film applied to the surface of the silver reflective layer 16 is not particularly limited, and a method corresponding to the resin material used for forming the resin protective layer 18 such as heating or UV irradiation can be appropriately selected. That's fine.
 樹脂保護層18の膜厚は、必要な保護機能と耐久性とを達成し、且つ、光反射能低減を抑制するといった観点から、3~30μmの範囲であることが好ましく、5~10μmの範囲であることがより好ましい。 The film thickness of the resin protective layer 18 is preferably in the range of 3 to 30 μm from the viewpoint of achieving the necessary protective function and durability and suppressing the reduction in light reflectivity, and in the range of 5 to 10 μm. It is more preferable that
 樹脂保護層18には、銀腐食防止剤20が実質的に含まれないことが好ましい。特に、樹脂保護層18が硬化性樹脂組成物により形成される場合、銀腐食防止剤20が含まれると硬化が阻害されるおそれがある。
 なお、実質的に含まれないとは、樹脂保護層18全量に対して、銀腐食防止剤20の含有量が0.02質量%以下であることを意図し、0.01質量%以下であることが好ましい。
The resin protective layer 18 is preferably substantially free of the silver corrosion inhibitor 20. In particular, when the resin protective layer 18 is formed of a curable resin composition, if the silver corrosion inhibitor 20 is included, curing may be hindered.
Note that “substantially not contained” means that the content of the silver corrosion inhibitor 20 is 0.02 mass% or less with respect to the total amount of the resin protective layer 18 and is 0.01 mass% or less. It is preferable.
 樹脂保護層18には、紫外線吸収剤が含まれていてもよい。紫外線吸収剤が含まれることにより、フィルムミラー10の耐光性がより向上する。
 紫外線吸収剤の種類は特に制限されないが、有機系として、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ベンゾエート系などが挙げられ、また無機系として、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄などが挙げられる。なお、紫外線吸収剤を多量に含有させた際にブリードアウトしてしまうという問題を低減するためには、分子量の1000以上の高分子の紫外線吸収剤を用いることが好ましい。好ましくは、分子量1000以上、3000以下である。
The resin protective layer 18 may contain an ultraviolet absorber. By including the ultraviolet absorber, the light resistance of the film mirror 10 is further improved.
The type of the ultraviolet absorber is not particularly limited, but examples of the organic system include benzophenone system, benzotriazole system, phenyl salicylate system, triazine system, benzoate system, etc., and inorganic systems include titanium oxide, zinc oxide, cerium oxide, Examples include iron oxide. In order to reduce the problem of bleeding out when a large amount of ultraviolet absorber is contained, it is preferable to use a polymeric ultraviolet absorber having a molecular weight of 1000 or more. Preferably, the molecular weight is 1000 or more and 3000 or less.
<表面被覆層>
 フィルムミラー10は、樹脂保護層18上に、さらに表面被覆層を有していてもよい。表面被覆層を有することで、フィルムミラー10の耐候性及び耐傷性がより向上する。表面被覆層は、樹脂保護層18表面に存在することで、フィルムミラー10表面の物理的或いは化学的な損傷を防止しうるものであれば、公知の樹脂層などを任意に使用しうる。
 表面被覆層は、硬さが100N/mm以下であり、かつ、弾性回復率が60%以上である軟質な層であってもよく、表面が硬質な、所謂ハードコート層であってもよい。
 軟質な表面被覆層を形成する場合の厚さは特に限定されないが、フィルムミラー10の耐傷性がより良好となり、ヘイズ値及び反射率の維持率もより高くなる理由から、1~50μmであることが好ましく、3~30μmであることがより好ましい。
 また、硬質な表面被覆層を形成する場合の厚さは、防汚性及び耐傷性の観点から、0.1~50μmが好ましく、より好ましくは0.1~10μmである。
<Surface coating layer>
The film mirror 10 may further have a surface coating layer on the resin protective layer 18. By having the surface coating layer, the weather resistance and scratch resistance of the film mirror 10 are further improved. As long as the surface coating layer is present on the surface of the resin protective layer 18 and can prevent physical or chemical damage to the surface of the film mirror 10, a known resin layer or the like can be arbitrarily used.
The surface coating layer may be a soft layer having a hardness of 100 N / mm 2 or less and an elastic recovery rate of 60% or more, or may be a so-called hard coat layer having a hard surface. .
The thickness in the case of forming a soft surface coating layer is not particularly limited, but is 1 to 50 μm because the scratch resistance of the film mirror 10 becomes better and the maintenance ratio of the haze value and the reflectance becomes higher. It is preferably 3 to 30 μm.
Further, the thickness in the case of forming a hard surface coating layer is preferably from 0.1 to 50 μm, more preferably from 0.1 to 10 μm, from the viewpoint of antifouling properties and scratch resistance.
[フィルムミラー]
 フィルムミラー10の用途は特に限定されないが、耐久性に優れることから、太陽光を集光する目的(太陽光集光用)において、好ましく使用できる。即ち、太陽電池や太陽熱発電などの太陽光用部材として好適に使用できる。
[Film mirror]
Although the use of the film mirror 10 is not particularly limited, it can be preferably used for the purpose of collecting sunlight (for collecting sunlight) because of its excellent durability. That is, it can be suitably used as a solar member such as a solar cell or solar thermal power generation.
<第二の実施形態>
 以下に、本発明のフィルムミラーの第二の実施形態について図面を参照して説明する。図4に、本発明のフィルムミラーの第二の実施形態の断面図を示す。
 図4に示すように、本実施形態のフィルムミラー26は、支持体12と、樹脂中間層である易接着層28と、銀腐食防止剤20と、銀反射層16と、樹脂保護層18とをこの順で有する。
 フィルムミラー26は、図1に示すフィルムミラー10において、樹脂中間層としてポリマー層14に代えて易接着層28を備える点を除いて、フィルムミラー10と同様の構成を有するものである。
 第二の実施形態における製造方法には特に制限はなく、第一の実施形態と同様に、支持体12上に易接着層28を形成し、この易接着層28に銀腐食防止剤20を付与した後、めっき法又は気相法にて銀反射層16を形成し、その表面に樹脂保護層18を形成してもよい。また、以下に詳述するように、まず、樹脂保護層18上に、銀反射層16を形成し、銀腐食防止剤20を接触させ、その後、易接着層28を介して支持体14を貼付してもよい。
 第二の実施形態では、第一の実施形態と同一の構成要素には同一の参照符号を付し、その説明を省略する。
 第二の実施形態においては、上記製造方法のうち、第一の実施形態とは異なる製造方法により製造する態様について詳述する。
 本実施形態の製造方法の一例では、まず、樹脂保護層18を形成する。樹脂保護層18の態様は第一の実施形態にて説明したとおりである。
 その後、樹脂保護層18表面に銀反射層16を形成する。本実施形態における銀反射層16の製造方法は特に限定されず、湿式法又は乾式法のいずれを採用してもよい。
 湿式法としては、例えば、電気めっき法が挙げられる。
 乾式法としては、例えば、真空蒸着法、スパッタ法、イオンプレーティング法等が挙げられる。
 銀反射層16は第一の実施形態にて説明したものと同様であり、好ましい態様も同じである。
<Second Embodiment>
Below, 2nd embodiment of the film mirror of this invention is described with reference to drawings. In FIG. 4, sectional drawing of 2nd embodiment of the film mirror of this invention is shown.
As shown in FIG. 4, the film mirror 26 of the present embodiment includes a support 12, an easy adhesion layer 28 that is a resin intermediate layer, a silver corrosion inhibitor 20, a silver reflection layer 16, and a resin protective layer 18. In this order.
The film mirror 26 has the same configuration as the film mirror 10 except that the film mirror 10 shown in FIG. 1 includes an easy-adhesion layer 28 instead of the polymer layer 14 as a resin intermediate layer.
There is no restriction | limiting in particular in the manufacturing method in 2nd embodiment, Like 1st embodiment, the easily bonding layer 28 is formed on the support body 12, and the silver corrosion inhibitor 20 is provided to this easily bonding layer 28. After that, the silver reflection layer 16 may be formed by a plating method or a vapor phase method, and the resin protective layer 18 may be formed on the surface thereof. Further, as described in detail below, first, the silver reflective layer 16 is formed on the resin protective layer 18, the silver corrosion inhibitor 20 is contacted, and then the support 14 is pasted via the easy-adhesion layer 28. May be.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In 2nd embodiment, the aspect manufactured with the manufacturing method different from 1st embodiment among the said manufacturing methods is explained in full detail.
In an example of the manufacturing method of this embodiment, first, the resin protective layer 18 is formed. The aspect of the resin protective layer 18 is as described in the first embodiment.
Thereafter, the silver reflective layer 16 is formed on the surface of the resin protective layer 18. The manufacturing method of the silver reflective layer 16 in this embodiment is not specifically limited, Either a wet method or a dry method may be employ | adopted.
Examples of the wet method include an electroplating method.
Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method.
The silver reflective layer 16 is the same as that described in the first embodiment, and the preferred embodiment is also the same.
 銀反射層16が形成された後、その表面に銀腐食防止剤20を接触させ、銀反射層16の表面及び銀反射層16の表層(銀反射層表層16A)の少なくともいずれかに銀腐食防止剤20が付与される。
 銀腐食防止剤20は、図4に示すフィルムミラー26のように、銀反射層16の表面全域に亘って有していてもよいが、別の例として、図5に示すフィルムミラー30のように、銀反射層16の表面の一部に銀腐食防止剤20が島状に付着した態様であってもよい。
 また、銀反射層16は、その形成方法に係わらず、微細な空隙を多数有する。このため、図6に示すフィルムミラー32のように、銀腐食防止剤20を直接、或いは、既述の適切な溶剤に溶解又は分散させて接触させることにより、銀反射層表層16Aに銀腐食防止剤20が含まれる状態となりうるが、このような状態であってもよい。より具体的には、図6に示す銀反射層表層16Aには、銀反射層16を構成する成分(例えば、銀)と、銀腐食防止剤20とが混合して存在する。混合状態は特に制限されず、例えば、銀反射層表層16A中に粒状の銀が充填した状態で含まれ、その粒状の銀の隙間に銀腐食防止剤20が含まれる態様が挙げられる。
 銀反射層表層16Aとは、銀反射層16の易接着層28側の表面上から深さ方向50nmの位置までの領域を意味する。なお、銀反射層表層16Aに銀腐食防止剤20が含まれる場合、銀反射層16の表面反射特性がより優れる点で、銀腐食防止剤20は銀反射層16の易接着層28側の表面上から深さ方向30nmの位置までの領域のみに存在することが好ましい。
 既述のように、銀反射層16の表面のみならず、銀反射層表層16Aに銀腐食防止剤20が存在することで、銀反射層16の腐食がより効果的に防止される。
After the silver reflection layer 16 is formed, the surface of the silver reflection layer 16 and / or the surface layer of the silver reflection layer 16 (silver reflection layer surface layer 16A) is prevented by bringing a silver corrosion inhibitor 20 into contact therewith. Agent 20 is applied.
The silver corrosion inhibitor 20 may be provided over the entire surface of the silver reflecting layer 16 as in the film mirror 26 shown in FIG. 4, but as another example, as in the film mirror 30 shown in FIG. In addition, the silver corrosion inhibitor 20 may be in an island shape on a part of the surface of the silver reflective layer 16.
Moreover, the silver reflection layer 16 has many fine voids regardless of the formation method. For this reason, like the film mirror 32 shown in FIG. 6, the silver corrosion inhibitor 20 is directly or directly dissolved or dissolved or dispersed in the appropriate solvent and brought into contact with the silver reflective layer 16A to prevent silver corrosion. The agent 20 may be included, but such a state may be used. More specifically, a component (for example, silver) constituting the silver reflective layer 16 and the silver corrosion inhibitor 20 are mixed and present in the surface 16A of the silver reflective layer shown in FIG. The mixed state is not particularly limited, and examples thereof include an aspect in which the silver reflection layer surface layer 16A is included in a state where granular silver is filled, and the silver corrosion inhibitor 20 is included in the granular silver gap.
The silver reflective layer surface layer 16A means a region from the surface on the easy adhesion layer 28 side of the silver reflective layer 16 to a position in the depth direction of 50 nm. When the silver corrosion inhibitor 20 is included in the surface 16A of the silver reflection layer, the silver corrosion inhibitor 20 is a surface of the silver reflection layer 16 on the easy adhesion layer 28 side in that the surface reflection characteristics of the silver reflection layer 16 are more excellent. It is preferable to exist only in a region from the top to a position in the depth direction of 30 nm.
As described above, the presence of the silver corrosion inhibitor 20 not only on the surface of the silver reflective layer 16 but also on the surface 16A of the silver reflective layer prevents the silver reflective layer 16 from being corroded more effectively.
 なお、銀腐食防止剤20を銀反射層16に付与した後、樹脂中間層である易接着層28を形成する工程に先だって、必要に応じて、銀腐食防止剤20を付与した銀反射層16を有する樹脂保護層18を溶媒で洗浄する工程を実施してもよい。この工程を実施することにより、余分な銀腐食防止剤20を除去することができ、銀反射層16と、該銀反射層16上に形成される易接着層28との密着性がより向上する。洗浄工程は既述の方法で行えばよい。
 その後、樹脂保護層18、銀反射層16、及び銀腐食防止剤20を有する積層体は、樹脂中間層である易接着層(プライマー層)28を介して支持体12に接着され、図4~図6に示されるようなフィルムミラー26、30、32が得られる。
In addition, after giving the silver corrosion inhibitor 20 to the silver reflective layer 16, before the process of forming the easily bonding layer 28 which is a resin intermediate | middle layer, the silver reflective layer 16 to which the silver corrosion inhibitor 20 was provided as needed. You may implement the process of wash | cleaning the resin protective layer 18 which has this with a solvent. By carrying out this step, the excess silver corrosion inhibitor 20 can be removed, and the adhesion between the silver reflective layer 16 and the easy-adhesion layer 28 formed on the silver reflective layer 16 is further improved. . The cleaning step may be performed by the method described above.
Thereafter, the laminate having the resin protective layer 18, the silver reflection layer 16, and the silver corrosion inhibitor 20 is adhered to the support 12 via an easy adhesion layer (primer layer) 28, which is a resin intermediate layer. Film mirrors 26, 30, and 32 as shown in FIG. 6 are obtained.
〔易接着層〕
 本実施形態においては、支持体12と銀反射層16との接着性を向上させるために易接着層28を設ける。この易接着層28は、既述のポリマー層14の下層として設け、支持体12とポリマー層14との接着性を向上させてもよい。
[Easily adhesive layer]
In the present embodiment, an easy-adhesion layer 28 is provided to improve the adhesion between the support 12 and the silver reflection layer 16. This easy-adhesion layer 28 may be provided as a lower layer of the polymer layer 14 described above to improve the adhesion between the support 12 and the polymer layer 14.
 本実施形態において、易接着層28は、隣接する支持体12との密着性の観点から、支持体12を構成する樹脂と同じ樹脂、或いは、支持体12を構成する樹脂と親和性を有する樹脂を含んでいることが好ましい。
 易接着層28に含まれる樹脂は、例えば、熱硬化性樹脂でも熱可塑性樹脂でもまたそれらの混合物でもよい。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン系樹脂、イソシアネート系樹脂等が挙げられる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリエーテルイミド等が挙げられる。
 熱可塑性樹脂と熱硬化性樹脂とは、それぞれ単独で用いてもよいし、2種以上併用してもよい。2種以上の樹脂の併用は、それぞれの欠点が補うことでより優れた効果を発現させる目的で行われる。
In the present embodiment, the easy-adhesion layer 28 is the same resin as the resin constituting the support 12 or a resin having an affinity for the resin constituting the support 12 from the viewpoint of adhesion to the adjacent support 12. It is preferable that it contains.
The resin contained in the easy-adhesion layer 28 may be, for example, a thermosetting resin, a thermoplastic resin, or a mixture thereof. Examples of the thermosetting resin include epoxy resin, phenol resin, polyimide resin, polyester resin, bismaleimide resin, polyolefin resin, isocyanate resin, and the like. Examples of the thermoplastic resin include phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, and the like.
The thermoplastic resin and the thermosetting resin may be used alone or in combination of two or more. The combined use of two or more kinds of resins is performed for the purpose of expressing a more excellent effect by compensating for each defect.
 易接着層28を、ポリマー層14と支持体12との間に設ける場合には、既述のポリマー層14に含まれる相互作用性基及び重合性基を有する高分子化合物との間で、相互作用し得る活性点を発生する活性種を含有することが好ましい。このような易接着層28は、例えば、ラジカル重合開始剤を含有する重合開始層や、重合開始可能な官能基を有する樹脂からなる重合開始層であることが好ましい。より具体的には、易接着層28は、高分子化合物とラジカル重合開始剤とを含む層や、重合性化合物とラジカル重合開始剤とを含む層、又は重合開始可能な官能基を有する樹脂からなる層が好ましい。
 重合開始可能な官能基を有する樹脂からなる層としては例えば、特開2005-307140号公報の段落[0018]~[0078]に記載の重合開始部位を骨格中に有するポリイミドが挙げられる。
In the case where the easy adhesion layer 28 is provided between the polymer layer 14 and the support 12, the mutual adhesion between the polymer layer 14 and the polymer compound having a polymerizable group contained in the polymer layer 14 described above is performed. It is preferable to contain an active species that generates an active site that can act. Such an easy adhesion layer 28 is preferably, for example, a polymerization initiation layer containing a radical polymerization initiator or a polymerization initiation layer made of a resin having a functional group capable of initiating polymerization. More specifically, the easy-adhesion layer 28 is made of a layer containing a polymer compound and a radical polymerization initiator, a layer containing a polymerizable compound and a radical polymerization initiator, or a resin having a functional group capable of initiating polymerization. Is preferred.
Examples of the layer made of a resin having a functional group capable of initiating polymerization include polyimides having a polymerization initiating site described in paragraphs [0018] to [0078] of JP-A-2005-307140 in the skeleton.
 さらに、易接着層28を形成する際に、層内での架橋を進めるために重合性の二重結合を有する化合物、具体的には、アクリレート化合物、メタクリレート化合物を用いてもよく、特に、多官能のものを用いることが好ましい。その他、重合性の二重結合を有する化合物として、熱硬化性樹脂、又は熱可塑性樹脂、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリオレフィン樹脂、フッ素樹脂等に対し、その一部を、メタクリル酸やアクリル酸等を用いて、(メタ)アクリル化させた樹脂を用いてもよい。 Further, when forming the easy-adhesion layer 28, a compound having a polymerizable double bond, specifically, an acrylate compound or a methacrylate compound may be used in order to promote crosslinking in the layer. It is preferable to use a functional one. In addition, as a compound having a polymerizable double bond, a part of a thermosetting resin or a thermoplastic resin such as an epoxy resin, a phenol resin, a polyimide resin, a polyolefin resin, a fluorine resin, etc. Alternatively, a (meth) acrylated resin using acrylic acid or the like may be used.
 易接着層28には、本発明の効果を損なわない限りにおいて、必要に応じて、接着性付与剤、シランカップリング剤、酸化防止剤、紫外線吸収剤等の各種添加剤を1種又は2種以上添加してもよい。
 易接着層28の厚みは、一般に、0.1~10μmの範囲であることが好ましく、0.2~5μmの範囲であることがより好ましい。
 図6に示す本実施形態では、易接着層28を介して、易接着層28側の表面に銀腐食防止剤20を有する銀反射層16と、支持体12とが密着されてフィルムミラー32が得られる。密着方法は公知の手段を採用できる。
 また、第二の実施形態においても、樹脂保護層18表面には、さらに既述の表面被覆層などを形成してもよい。
As long as the effect of the present invention is not impaired, one or two kinds of various additives such as an adhesion-imparting agent, a silane coupling agent, an antioxidant, and an ultraviolet absorber are added to the easy adhesion layer 28 as necessary. You may add more.
In general, the thickness of the easy-adhesion layer 28 is preferably in the range of 0.1 to 10 μm, and more preferably in the range of 0.2 to 5 μm.
In the present embodiment shown in FIG. 6, the silver reflective layer 16 having the silver corrosion inhibitor 20 on the surface of the easy adhesion layer 28 side and the support 12 are brought into close contact with each other via the easy adhesion layer 28, so that the film mirror 32 is formed. can get. A well-known means can be employ | adopted for the contact | adherence method.
In the second embodiment, the surface coating layer described above may be further formed on the surface of the resin protective layer 18.
 第一の実施形態及び第二の実施形態のいずれにおいても、銀反射層16の表面及び銀反射層表層16A、銀反射層16に隣接する樹脂中間層の表面及び表層の少なくともいずれかに高濃度の銀腐食防止剤20を有することから、銀反射層16の酸化が抑制され、長期間に亘り優れた反射性能及び樹脂中間層と銀反射層16との密着性が維持される。 In both the first embodiment and the second embodiment, the surface of the silver reflecting layer 16 and the surface of the silver reflecting layer 16A, and the surface of the resin intermediate layer adjacent to the silver reflecting layer 16 and / or the surface layer are highly concentrated. Therefore, the oxidation of the silver reflection layer 16 is suppressed, and excellent reflection performance and adhesion between the resin intermediate layer and the silver reflection layer 16 are maintained over a long period of time.
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
<実施例1>
1.めっき下塗りポリマー層(樹脂中間層)の形成
 支持体12として、ポリエチレンテレフタレート(PET)フィルム(TOYOBO社製、コスモシャインA4300)を準備した。
-めっき下塗りポリマー層形成用塗布液の調製-
 下記構造のアクリルポリマー1(7質量部)、1-メトキシ-2プロパノール(74質量部)、及び水(19質量部)の混合溶液に、光重合開始剤(エサキュアKTO-46、ランベルディー社製)(0.35質量部)を添加し、攪拌することにより、めっき下塗りポリマー(アクリルポリマー1)を含む塗布液を調製した。
 得られためっき下塗りポリマーを含む塗布液を、上記支持体12表面に、乾燥後の膜厚が約0.55μmとなるように、バーコート法により塗布し、25℃で10分間乾燥し、続けて80℃で5分間乾燥した。その後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において1000mJ/cmで紫外線露光を行い、支持体12上にポリマー層14を形成した。
 ポリマー層14が形成された支持体12を、1質量%の炭酸水素ナトリウム水溶液に5分間浸漬させた後、さらに純水で1分間掛け流しにより洗浄して、未反応のポリマーを除去した。 
<Example 1>
1. Formation of Plating Undercoat Polymer Layer (Resin Intermediate Layer) A polyethylene terephthalate (PET) film (manufactured by TOYOBO, Cosmo Shine A4300) was prepared as the support 12.
-Preparation of coating solution for plating undercoat polymer layer formation-
In a mixed solution of acrylic polymer 1 (7 parts by mass), 1-methoxy-2-propanol (74 parts by mass), and water (19 parts by mass) having the following structure, a photopolymerization initiator (Esacure KTO-46, manufactured by Lamberdy) ) (0.35 parts by mass) was added and stirred to prepare a coating solution containing a plating undercoat polymer (acrylic polymer 1).
The obtained coating solution containing the plating undercoat polymer was applied to the surface of the support 12 by a bar coating method so that the film thickness after drying was about 0.55 μm, dried at 25 ° C. for 10 minutes, and continued. And dried at 80 ° C. for 5 minutes. Thereafter, UV exposure was performed at 1000 mJ / cm 2 at a wavelength of 254 nm using a UV irradiation apparatus (UV lamp: metal halide lamp manufactured by GS Yuasa Co., Ltd.), and a polymer layer 14 was formed on the support 12.
The support 12 on which the polymer layer 14 was formed was immersed in a 1% by mass aqueous sodium hydrogen carbonate solution for 5 minutes, and then washed by pouring with pure water for 1 minute to remove unreacted polymer.
Figure JPOXMLDOC01-appb-C000002
  (アクリルポリマー1)
Figure JPOXMLDOC01-appb-C000002
(Acrylic polymer 1)
-めっき下塗りポリマー層への銀イオンの付与-
 銀を含む溶液として、硝酸銀の1質量%水溶液(硝酸銀溶液)を調製した。上記工程で得られた「ポリマー層14が形成された支持体12」を、調製した硝酸銀溶液に25℃で5分間浸漬させた後、純水で1分間掛け流しにより洗浄して、ポリマー層14へ銀イオンを付与した。
-銀イオンの還元-
 還元液として、ホルムアルデヒドを0.25質量%及び水酸化ナトリウムを0.14質量%含む水溶液を調製した。ポリマー層14に銀イオンが付与された支持体12を、調製した還元液に25℃で10分間浸漬させた後、純水で1分間掛け流しにより洗浄して、銀イオンの還元を行った。
 ポリマー層14中に含まれる銀量を、既述の方法でICP-AES(誘導結合プラズマ発光分光分析装置)(島津製作所製、ICP-1000IV)を用いた元素分析により測定した。
-Addition of silver ions to the undercoat polymer layer-
As a solution containing silver, a 1% by mass aqueous solution of silver nitrate (silver nitrate solution) was prepared. The “support 12 on which the polymer layer 14 is formed” obtained in the above step was immersed in the prepared silver nitrate solution at 25 ° C. for 5 minutes, and then washed by pouring with pure water for 1 minute to obtain the polymer layer 14. Silver ions were added.
-Reduction of silver ions-
As a reducing solution, an aqueous solution containing 0.25% by mass of formaldehyde and 0.14% by mass of sodium hydroxide was prepared. The support 12 provided with silver ions on the polymer layer 14 was immersed in the prepared reducing solution at 25 ° C. for 10 minutes, and then washed by pouring with pure water for 1 minute to reduce silver ions.
The amount of silver contained in the polymer layer 14 was measured by elemental analysis using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) (ICP-1000IV, manufactured by Shimadzu Corporation) by the method described above.
2.銀腐食防止剤の付与
 銀腐食防止剤20として3-メルカプト-1,2,4-トリアゾールを用い、この3-メルカプト-1,2,4-トリアゾールの0.3質量%水溶液(銀腐食防止剤溶液)を調製した。上記工程で得られた「還元された銀が付与されたポリマー層14付きの支持体12」を、調製した銀腐食防止剤溶液に25℃で3分間浸漬させた後、純水で1分間掛け流しにより洗浄して、ポリマー層14へ銀腐食防止剤20を付与した。
 洗浄後のポリマー層14における銀腐食防止剤20の付着量を、25%HClを用いた方法により算出した。より具体的には、「銀腐食防止剤20が付与されたポリマー層14付き支持体12」を25%HClに浸漬して銀腐食防止剤20を溶出し、UV-3100(商品名:島津製作所社)を用いてUV吸収スペクトルを測定することにより、銀腐食防止剤20の付着量を算出した。
2. Application of Silver Corrosion Inhibitor 3-mercapto-1,2,4-triazole was used as silver corrosion inhibitor 20, and a 0.3 mass% aqueous solution of this 3-mercapto-1,2,4-triazole (silver corrosion inhibitor) Solution) was prepared. The “support 12 with the polymer layer 14 provided with reduced silver” obtained in the above step was immersed in the prepared silver corrosion inhibitor solution at 25 ° C. for 3 minutes and then immersed in pure water for 1 minute. The silver corrosion inhibitor 20 was applied to the polymer layer 14 by washing with a sink.
The adhesion amount of the silver corrosion inhibitor 20 on the polymer layer 14 after washing was calculated by a method using 25% HCl. More specifically, “the support 12 with the polymer layer 14 provided with the silver corrosion inhibitor 20” is immersed in 25% HCl to elute the silver corrosion inhibitor 20, and UV-3100 (trade name: Shimadzu Corporation) The adhesion amount of the silver corrosion inhibitor 20 was calculated by measuring the UV absorption spectrum using
3.電気めっきによる銀反射層の形成
 電気めっき液として、ダインシルバーブライトPL50(主成分 メタンスルホン酸銀、大和化成社製)を用い、8M水酸化カリウムによりpH7.8に調整した。「銀腐食防止剤20が付与されたポリマー層14付き支持体12」を、電気めっき液に浸漬し、0.5A/dm、にて20秒間めっきした。
 電気めっき後処理として、めっき後の支持体12を、ダインシルバーACC(主成分 メタンスルホン酸、大和化成社製)の10質量%水溶液に90秒間浸漬させた後、数回洗浄した。このようにして、ポリマー層14上に銀反射層16を形成した。
 銀反射層16を形成した後、この銀反射層16及びポリマー層14中に含まれる銀の総量を、ICP-AES(誘導結合プラズマ発光分光分析装置)(島津製作所製、ICP-1000IV)を用いた元素分析により測定した。測定した銀の総量から、ポリマー層14中の銀の量を差し引くことで、銀反射層16中に含まれる銀量を算出した。
 銀反射層16に含まれる銀100質量部に対する銀腐食防止剤20の含有比率(質量部)を、測定した銀腐食防止剤20の付着量から算出した値を下記表1に示した。
3. Formation of Silver Reflective Layer by Electroplating As an electroplating solution, Dyne Silver Bright PL50 (main component silver methanesulfonate, manufactured by Daiwa Kasei Co., Ltd.) was used, and the pH was adjusted to 7.8 with 8M potassium hydroxide. The “support 12 with the polymer layer 14 provided with the silver corrosion inhibitor 20” was immersed in an electroplating solution and plated at 0.5 A / dm 2 for 20 seconds.
As electroplating post-treatment, the support 12 after plating was immersed for 90 seconds in a 10% by mass aqueous solution of Dyne Silver ACC (main component methanesulfonic acid, manufactured by Daiwa Kasei Co., Ltd.) and then washed several times. In this way, a silver reflective layer 16 was formed on the polymer layer 14.
After the silver reflective layer 16 is formed, the total amount of silver contained in the silver reflective layer 16 and the polymer layer 14 is determined using an ICP-AES (inductively coupled plasma emission spectrometer) (ICP-1000IV, manufactured by Shimadzu Corporation). Measured by elemental analysis. The amount of silver contained in the silver reflecting layer 16 was calculated by subtracting the amount of silver in the polymer layer 14 from the total amount of silver measured.
Table 1 below shows the values calculated from the measured adhesion amount of the silver corrosion inhibitor 20 to the content ratio (parts by mass) of the silver corrosion inhibitor 20 with respect to 100 parts by mass of silver contained in the silver reflection layer 16.
4.樹脂保護層の形成
 樹脂保護層18を形成するための樹脂保護層形成用塗布液として、アクリル樹脂(ダイヤナールBR-102、三菱レーヨン(株)製)(21質量部)、ベンゾトリアゾール系紫外線吸収剤(Sumisorb250、住友化学(株)製)(4質量部)、シクロヘキサノン(5質量部)、メチルエチルケトン(70質量部)、フッ素系界面活性剤(メガファックF-780F、固形分:30質量%、DIC(株)製)(0.04質量部)の混合溶液を調製した。
 得られた樹脂保護層形成用塗布液を、上記銀反射層16上に、乾燥後の膜厚が10μmとなるようにバーコート法により塗布し、130℃で1分間乾燥した。これにより、銀反射層16上に樹脂保護層18を形成した。
4). Formation of Resin Protective Layer As a resin protective layer forming coating solution for forming the resin protective layer 18, acrylic resin (Dianar BR-102, manufactured by Mitsubishi Rayon Co., Ltd.) (21 parts by mass), benzotriazole ultraviolet absorption Agent (Sumisorb 250, manufactured by Sumitomo Chemical Co., Ltd.) (4 parts by mass), cyclohexanone (5 parts by mass), methyl ethyl ketone (70 parts by mass), fluorosurfactant (Megafac F-780F, solid content: 30% by mass, A mixed solution of DIC Corporation (0.04 parts by mass) was prepared.
The obtained coating liquid for forming a protective resin layer was applied on the silver reflective layer 16 by a bar coating method so that the film thickness after drying was 10 μm, and dried at 130 ° C. for 1 minute. Thereby, the resin protective layer 18 was formed on the silver reflective layer 16.
5.表面被覆層の形成
 表面被覆層を形成するための表面被覆層形成用塗布液として、フッ素系UV硬化樹脂(ディフェンサFH-700、固形分:91質量%、DIC(株)製)(22質量部)、シクロヘキサノン(5質量部)、メチルエチルケトン(72質量部)、フッ素系界面活性剤(メガファックF-780F、固形分:30質量%、DIC(株)製)(0.04質量部)の混合溶液を調製した。
 得られた表面被覆層形成用塗布液を、上記樹脂保護層18の上に、乾燥膜厚が15μmとなるようにバーコート法により塗布し、130℃で1分間乾燥した。その後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cmで紫外線露光を行った。これにより、樹脂保護層18上に表面被覆層を形成した。このようにして、フィルムミラー10を形成した。
5. Formation of surface coating layer As a coating solution for forming a surface coating layer, a fluorine-based UV curable resin (Defenser FH-700, solid content: 91% by mass, manufactured by DIC Corporation) (22 parts by mass) ), Cyclohexanone (5 parts by mass), methyl ethyl ketone (72 parts by mass), fluorosurfactant (Megafac F-780F, solid content: 30% by mass, manufactured by DIC Corporation) (0.04 parts by mass) A solution was prepared.
The obtained coating solution for forming a surface coating layer was applied on the resin protective layer 18 by a bar coating method so as to have a dry film thickness of 15 μm, and dried at 130 ° C. for 1 minute. Thereafter, UV exposure was performed at 500 mJ / cm 2 at a wavelength of 254 nm using a UV irradiation apparatus (GS Yuasa Co., Ltd., UV lamp: metal halide lamp). Thereby, a surface coating layer was formed on the resin protective layer 18. Thus, the film mirror 10 was formed.
(腐食防止剤の分布解析)
 ポリマー層14を備えたフィルムミラー10をSAICAS(商品名:ダイプラ・ウィンテス社製)で斜め切削した後、得られたポリマー層14の斜め切削断面をTOF-SIMS法にて解析した。その結果、銀腐食防止剤20がポリマー層14及び銀反射層16の表層(ポリマー層14との界面近傍)に存在することを確認した。
(Distribution analysis of corrosion inhibitors)
After the film mirror 10 provided with the polymer layer 14 was obliquely cut with SAICAS (trade name: manufactured by Daipura Wintes Co., Ltd.), the oblique cut section of the obtained polymer layer 14 was analyzed by the TOF-SIMS method. As a result, it was confirmed that the silver corrosion inhibitor 20 was present on the surface layer of the polymer layer 14 and the silver reflective layer 16 (near the interface with the polymer layer 14).
(密着性評価)
 ポリマー層14、銀反射層16及び樹脂保護層18を形成した支持体12(フィルムミラー10から表面被覆層を除いた状態)を用いて、密着性評価を行った。樹脂保護層18に対して、1mm間隔で縦横各11本ずつの支持体12に達する切り傷をカッターで碁盤目状につけた。この樹脂保護層18の上に粘着テープ(JIS K5400に準拠したセロテープ(登録商標))を貼って、このセロテープを引きはがした。その後の樹脂保護層18及び銀反射層16の支持体12への付着状態を目視によって観察し、以下の基準に従って評価した。実用上、A又はBであることが必要である。
「A」:剥がれなし
「B」:1~74マス剥がれる場合
「C」:75マス以上剥がれる場合
(Adhesion evaluation)
Adhesiveness evaluation was performed using the support body 12 (state which remove | excluded the surface coating layer from the film mirror 10) in which the polymer layer 14, the silver reflection layer 16, and the resin protective layer 18 were formed. With respect to the resin protective layer 18, cuts that reached 11 support bodies 12 in the vertical and horizontal directions at intervals of 1 mm were made in a grid pattern with a cutter. An adhesive tape (Cellotape (registered trademark) in accordance with JIS K5400) was pasted on the resin protective layer 18, and the cellotape was peeled off. The subsequent adhesion state of the resin protective layer 18 and the silver reflective layer 16 to the support 12 was observed with the naked eye and evaluated according to the following criteria. In practice, it is necessary to be A or B.
“A”: No peeling “B”: When peeling 1 to 74 squares “C”: When peeling 75 squares or more
(耐光性評価)
 ポリマー層14、銀反射層16及び樹脂保護層18を形成した支持体12(フィルムミラー10から表面被覆層を除いた状態)を用いて、耐光性評価を行った。得られたフィルムミラー10を、キセノンランプ耐光性試験機(ATLAS社製、Ci5000、パワー:180W、Black Panel Temperature:83℃)内に配置して、500時間放置した後、このフィルムミラー10の反射率の低下(放置前の反射率(%)-放置後の反射率(%))を評価した。なお、反射率は、紫外可視近赤外分光光度計UV-3100(島津製作所社製)を用いて測定した。
 以下の基準に従って耐光性を評価した。実用上、A~Cであることが好ましい。
「A」:反射率の低下が3%未満
「B」:反射率の低下が3%以上5%未満
「C」:反射率の低下が5%以上10%未満
「D」:反射率の低下が10%以上
(Light resistance evaluation)
Light resistance evaluation was performed using the support body 12 (state which remove | excluded the surface coating layer from the film mirror 10) in which the polymer layer 14, the silver reflection layer 16, and the resin protective layer 18 were formed. The obtained film mirror 10 was placed in a xenon lamp light resistance tester (manufactured by ATLAS, Ci5000, power: 180 W, Black Panel Temperature: 83 ° C.) and left standing for 500 hours. The decrease in reflectance (reflectance before standing (%)-reflectance after standing (%)) was evaluated. The reflectance was measured using an ultraviolet-visible near-infrared spectrophotometer UV-3100 (manufactured by Shimadzu Corporation).
Light resistance was evaluated according to the following criteria. Practically, it is preferably A to C.
“A”: Less than 3% of reflectance decrease “B”: Less than 3% to less than 5% “C”: Less than 5% to less than 10% “D”: Lower reflectance 10% or more
<実施例2>
 銀腐食防止剤20の付与時に用いた銀腐食防止剤溶液について、3-メルカプト-1,2,4-トリアゾールの濃度を、0.3質量%から0.1質量%に変えたものを用いた以外は、実施例1と同様にして、実施例2のフィルムミラーを作製し、実施例1と同様に評価を行った。結果を下記表1に示す。
<実施例3>
 銀腐食防止剤20として、3-メルカプト-1,2,4-トリアゾールに変えて、ベンゾトリアゾールを用いたこと以外は、実施例1と同様にして、実施例3のフィルムミラーを作製し、実施例1と同様に評価を行った。結果を下記表1に示す。
<Example 2>
As the silver corrosion inhibitor solution used for applying the silver corrosion inhibitor 20, a solution in which the concentration of 3-mercapto-1,2,4-triazole was changed from 0.3% by mass to 0.1% by mass was used. Except for the above, a film mirror of Example 2 was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
<Example 3>
A film mirror of Example 3 was prepared and carried out in the same manner as in Example 1 except that benzotriazole was used instead of 3-mercapto-1,2,4-triazole as the silver corrosion inhibitor 20. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1 below.
<比較例1>
 実施例1で用いためっき下塗りポリマーを含む塗布液に代えて、このめっき下塗りポリマーを含む塗布液に3-メルカプト-1,2,4-トリアゾールを3質量%添加した塗布液を用いてポリマー層14を形成し、かつ、実施例1で行った銀腐食防止剤20の付与を行わなかった以外は、実施例1と同様にして、比較例1のフィルムミラーを作製し、実施例1と同様に評価を行った。結果を下記表1に示す。
<Comparative Example 1>
Instead of the coating solution containing the plating undercoat polymer used in Example 1, a polymer layer using a coating solution obtained by adding 3% by mass of 3-mercapto-1,2,4-triazole to the coating solution containing the plating undercoat polymer 14 and the film mirror of Comparative Example 1 was produced in the same manner as in Example 1 except that the silver corrosion inhibitor 20 applied in Example 1 was not applied. Was evaluated. The results are shown in Table 1 below.
<実施例4>
1.蒸着による銀反射層の形成
 樹脂保護層18としてUV吸収剤含有PMMAフィルム(住友化学社製、S001G)を用い、これを蒸着基板として、真空蒸着法(真空度5×10-2Pa、成膜速度40m/分)により、この樹脂保護層18上に厚さ100nmの銀反射層16を形成した。
2.銀腐食防止剤の付与
 銀腐食防止剤20として3-メルカプト-1,2,4-トリアゾールを用い、この3-メルカプト-1,2,4-トリアゾールの0.3質量%水溶液(銀腐食防止剤溶液)を調製した。上記工程で得られた、銀反射層16が形成されたPMMAフィルム(樹脂保護層18)を、調製した銀腐食防止剤溶液に25℃で3分間浸漬させた後、純水で1分間掛け流しにより洗浄した。これにより、銀反射層16の支持体12を形成する側の表面へ銀腐食防止剤20を付与した。
3.支持体との貼りあわせ
 酢酸エチルに、接着剤としてLIS―825(東洋インキ社製)を44質量%及びLCR-901(東洋インキ社製)を4.4質量%溶解させて、接着剤溶液を調製した。
<Example 4>
1. Formation of Silver Reflective Layer by Vapor Deposition A UV absorber-containing PMMA film (manufactured by Sumitomo Chemical Co., Ltd., S001G) is used as the resin protective layer 18, and this is used as a vapor deposition substrate to form a vacuum vapor deposition method (vacuum degree 5 × 10 −2 Pa, film formation The silver reflective layer 16 having a thickness of 100 nm was formed on the resin protective layer 18 at a speed of 40 m / min.
2. Application of Silver Corrosion Inhibitor 3-mercapto-1,2,4-triazole was used as silver corrosion inhibitor 20, and a 0.3 mass% aqueous solution of this 3-mercapto-1,2,4-triazole (silver corrosion inhibitor) Solution) was prepared. The PMMA film (resin protective layer 18) formed with the silver reflective layer 16 obtained in the above step is immersed in the prepared silver corrosion inhibitor solution at 25 ° C. for 3 minutes, and then poured in pure water for 1 minute. Washed with Thereby, the silver corrosion inhibitor 20 was provided to the surface of the silver reflective layer 16 on the side where the support 12 is formed.
3. Bonding with support In 44% by mass of LIS-825 (manufactured by Toyo Ink Co., Ltd.) and 4.4% by mass of LCR-901 (manufactured by Toyo Ink Co., Ltd.) as an adhesive were dissolved in ethyl acetate. Prepared.
 得られた接着剤溶液を、支持体12であるポリエチレンテレフタレート(PET)フィルム(TOYOBO社製、コスモシャインA4300)に、乾燥後の膜厚が約10μmとなるようにバーコート法により塗布し、室温で2分乾燥し、続けて80℃で10分間乾燥した。これにより、接着剤を含む易接着層(樹脂中間層)28を支持体12上に形成した。
 この支持体12の易接着層28側と、表面に銀腐食防止剤20を付与した銀反射層16とを重ね合わせて、ラミネーターにより貼り合わせた。ラミネート速度は0.1m/min、ラミネート圧力は0.5MPaとした。その後、60℃で12時間後加熱することで易接着層28を硬化させ、支持体12、易接着層28、銀腐食防止剤20、銀反射層16及び樹脂保護層18をこの順に有する、実施例4のフィルムミラー32を得た。実施例4のフィルムミラー32は、図6に示すように構成されている。得られたフィルムミラー32を実施例1と同様にして評価した。結果を下記表1に示す。
*下記表1中、銀腐食防止剤の付着量における「質量部」は、銀反射層16に含まれる銀100質量部に対する銀腐食防止剤20の含有比率を表す。
The obtained adhesive solution was applied to a polyethylene terephthalate (PET) film (manufactured by TOYOBO, Cosmo Shine A4300) as the support 12 by a bar coating method so that the film thickness after drying was about 10 μm. For 2 minutes, followed by drying at 80 ° C. for 10 minutes. As a result, an easy adhesion layer (resin intermediate layer) 28 containing an adhesive was formed on the support 12.
The easy-adhesion layer 28 side of the support 12 and the silver reflection layer 16 provided with the silver corrosion inhibitor 20 on the surface were superposed and bonded together by a laminator. The laminating speed was 0.1 m / min, and the laminating pressure was 0.5 MPa. Thereafter, the easy-adhesion layer 28 is cured by heating at 60 ° C. for 12 hours, and the support 12, the easy-adhesion layer 28, the silver corrosion inhibitor 20, the silver reflection layer 16, and the resin protective layer 18 are provided in this order. The film mirror 32 of Example 4 was obtained. The film mirror 32 of Example 4 is configured as shown in FIG. The obtained film mirror 32 was evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
* In Table 1 below, “parts by mass” of the adhesion amount of the silver corrosion inhibitor represents the content ratio of the silver corrosion inhibitor 20 to 100 parts by mass of silver contained in the silver reflection layer 16.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例1~4のフィルムミラーは、支持体12と銀反射層16との密着性が良好であり、且つ、長期間に亘り優れた耐光性を示すことがわかる。また、銀腐食防止剤20は、樹脂中間層であるポリマー層14表面に付与した場合でも、銀反射層16の表面に付与した場合においても、良好な効果を奏する。
 他方、比較例1のように、同じ銀腐食防止剤20を用いても、ポリマー層14中に樹脂と共に分散させて用いた場合には、密着性及び耐光性について、実用上好ましい評価が得られなかった。これは、単位面積当たりの銀腐食防止剤20の含有量は多いものの、銀反射層16に接する濃度が低くなるためであると推測される。
As shown in Table 1, it can be seen that the film mirrors of Examples 1 to 4 have good adhesion between the support 12 and the silver reflective layer 16 and excellent light resistance over a long period of time. Moreover, even when the silver corrosion inhibitor 20 is applied to the surface of the polymer layer 14, which is a resin intermediate layer, or when it is applied to the surface of the silver reflective layer 16, there is a good effect.
On the other hand, even if the same silver corrosion inhibitor 20 is used as in Comparative Example 1, when it is used by being dispersed together with a resin in the polymer layer 14, a practically preferable evaluation can be obtained for adhesion and light resistance. There wasn't. This is presumably because the concentration of the silver corrosion inhibitor 20 per unit area is large but the concentration in contact with the silver reflective layer 16 is low.
 10、22、24  フィルムミラー(第一の実施形態)
 12  支持体(樹脂製支持体)
 14  めっき下塗りポリマー層(樹脂中間層)
 16  銀反射層
 16A  銀反射層表層
 18  樹脂保護層
 20  銀腐食防止剤
 26、30、32  フィルムミラー(第二の実施形態)
 28  易接着層(樹脂中間層)
10, 22, 24 Film mirror (first embodiment)
12 Support (resin support)
14 Plating undercoat polymer layer (resin intermediate layer)
16 Silver reflective layer 16A Silver reflective layer surface layer 18 Resin protective layer 20 Silver corrosion inhibitor 26, 30, 32 Film mirror (second embodiment)
28 Easy adhesion layer (resin intermediate layer)

Claims (8)

  1.  支持体と、樹脂中間層と、銀を含有する反射層と、樹脂保護層と、をこの順に有し、
     前記樹脂中間層の前記反射層側の表面、前記樹脂中間層の前記反射層側の表層、前記反射層の前記樹脂中間層側の表面、及び前記反射層の前記樹脂中間層側の表層のうち少なくともいずれかに銀腐食防止剤を有するフィルムミラー。
    Having a support, a resin intermediate layer, a reflective layer containing silver, and a resin protective layer in this order;
    Of the surface of the resin intermediate layer on the reflective layer side, the surface layer of the resin intermediate layer on the reflective layer side, the surface of the reflective layer on the resin intermediate layer side, and the surface layer of the reflective layer on the resin intermediate layer side A film mirror having a silver corrosion inhibitor in at least one of them.
  2.  前記銀腐食防止剤は、前記反射層に含まれる銀100質量部に対して0.01~5質量部の範囲で含まれる、請求項1に記載のフィルムミラー。
    The film mirror according to claim 1, wherein the silver corrosion inhibitor is contained in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of silver contained in the reflective layer.
  3.  前記銀腐食防止剤が、トリアゾール環を含む化合物から選択される1種以上の化合物を含む、請求項1又は請求項2に記載のフィルムミラー。
    The film mirror of Claim 1 or Claim 2 in which the said silver corrosion inhibitor contains 1 or more types of compounds selected from the compound containing a triazole ring.
  4.  太陽光集光用である、請求項1~請求項3のいずれか1項に記載のフィルムミラー。
    The film mirror according to any one of claims 1 to 3, which is used for collecting sunlight.
  5.  支持体上に、樹脂中間層を形成する工程と、
     前記樹脂中間層表面に、銀腐食防止剤を溶剤に溶解又は分散させた液を接触させることで、前記樹脂中間層の表面及び表層のうち少なくともいずれかに銀腐食防止剤を付与する工程と、
     前記銀腐食防止剤を付与した前記樹脂中間層上に、銀を含有する反射層を形成する工程と、
     形成された前記反射層の表面に樹脂保護層を形成する工程と、
     を含む、フィルムミラーの製造方法。
    Forming a resin intermediate layer on the support;
    A step of applying a silver corrosion inhibitor to at least one of the surface and the surface layer of the resin intermediate layer by contacting the resin intermediate layer surface with a solution obtained by dissolving or dispersing a silver corrosion inhibitor in a solvent; and
    Forming a reflective layer containing silver on the resin intermediate layer provided with the silver corrosion inhibitor;
    Forming a resin protective layer on the surface of the formed reflective layer;
    A method for producing a film mirror, comprising:
  6.  前記反射層を形成する工程が、めっき液を前記樹脂中間層に接触させて、めっき法により銀を含有する層を形成する工程を含む、請求項5に記載のフィルムミラーの製造方法。
    The method for producing a film mirror according to claim 5, wherein the step of forming the reflective layer includes a step of bringing a plating solution into contact with the resin intermediate layer and forming a layer containing silver by a plating method.
  7.  樹脂保護層上に、銀を含有する反射層を形成する工程と、
     前記反射層の表面に、銀腐食防止剤を溶剤に溶解又は分散させた液を接触させることで、前記銀を含有する反射層の表面及び表層のうち少なくともいずれかに銀腐食防止剤を付与する工程と、
     前記銀腐食防止剤が付与された前記反射層の表面に樹脂中間層を形成する工程と、
     形成された樹脂中間層上に支持体を形成する工程と、
     を含む、フィルムミラーの製造方法。
    Forming a reflective layer containing silver on the resin protective layer;
    A silver corrosion inhibitor is applied to at least one of the surface of the reflective layer containing silver and the surface layer by bringing the surface of the reflective layer into contact with a solution obtained by dissolving or dispersing a silver corrosion inhibitor in a solvent. Process,
    Forming a resin intermediate layer on the surface of the reflective layer provided with the silver corrosion inhibitor;
    Forming a support on the formed resin intermediate layer;
    A method for producing a film mirror, comprising:
  8.  前記銀腐食防止剤を溶剤に溶解又は分散させた液の接触が、
     前記樹脂中間層に前記液を塗布することにより、又は、前記樹脂中間層を前記液に浸漬することにより、行われる請求項5~請求項7のいずれか1項に記載のフィルムミラーの製造方法。
    Contact of a solution obtained by dissolving or dispersing the silver corrosion inhibitor in a solvent,
    The method for producing a film mirror according to any one of claims 5 to 7, wherein the method is performed by applying the liquid to the resin intermediate layer or immersing the resin intermediate layer in the liquid. .
PCT/JP2014/064142 2013-06-24 2014-05-28 Film mirror and method for producing film mirror WO2014208255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013132065A JP2015007672A (en) 2013-06-24 2013-06-24 Film mirror and method for producing film mirror
JP2013-132065 2013-06-24

Publications (1)

Publication Number Publication Date
WO2014208255A1 true WO2014208255A1 (en) 2014-12-31

Family

ID=52141607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064142 WO2014208255A1 (en) 2013-06-24 2014-05-28 Film mirror and method for producing film mirror

Country Status (2)

Country Link
JP (1) JP2015007672A (en)
WO (1) WO2014208255A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032809A1 (en) * 2015-08-25 2017-03-02 Alanod Gmbh & Co. Kg Reflective composite material having a varnished aluminum carrier having a silver reflection layer and method for production thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394437B2 (en) * 2015-02-27 2018-09-26 三菱マテリアル株式会社 Sputtering target
WO2017033740A1 (en) * 2015-08-26 2017-03-02 住友金属鉱山株式会社 Conductive substrate
TWI777271B (en) * 2019-11-19 2022-09-11 日商柯尼卡美能達股份有限公司 Electronic components, anti-vulcanization agents and sealing materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096320A1 (en) * 2010-02-05 2011-08-11 コニカミノルタオプト株式会社 Film mirror, film mirror for solar thermal power generation, and reflection device for solar photovoltaic power generation
JP2012181301A (en) * 2011-03-01 2012-09-20 Konica Minolta Advanced Layers Inc Method for manufacturing film mirror, film mirror, and reflection device for solar heat power generation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612937B2 (en) * 2001-02-09 2009-11-03 Alliance For Sustainable Energy, Llc Advanced ultraviolet-resistant silver mirrors for use in solar reflectors
EP2518536B1 (en) * 2009-12-21 2016-05-04 Konica Minolta Advanced Layers, Inc. Film mirror, process for production of same, and reflection device for solar power generation purposes comprising same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096320A1 (en) * 2010-02-05 2011-08-11 コニカミノルタオプト株式会社 Film mirror, film mirror for solar thermal power generation, and reflection device for solar photovoltaic power generation
JP2012181301A (en) * 2011-03-01 2012-09-20 Konica Minolta Advanced Layers Inc Method for manufacturing film mirror, film mirror, and reflection device for solar heat power generation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032809A1 (en) * 2015-08-25 2017-03-02 Alanod Gmbh & Co. Kg Reflective composite material having a varnished aluminum carrier having a silver reflection layer and method for production thereof
CN107924004A (en) * 2015-08-25 2018-04-17 阿兰诺德股份有限两合公司 The reflectivity composite material and its manufacture method of aluminium substrate and argentum reflecting layer with japanning
US20180239067A1 (en) * 2015-08-25 2018-08-23 Alanod Gmbh & Co. Kg Reflective composite material having a varnished aluminium carrier having a silver reflection layer and method for production thereof
US11822104B2 (en) 2015-08-25 2023-11-21 Alanod Gmbh & Co. Kg Reflective composite material having a varnished aluminum carrier having a silver reflection layer and method for production thereof

Also Published As

Publication number Publication date
JP2015007672A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US20150369974A1 (en) Film mirror for solar radiation collection and method for producing same
JP5960073B2 (en) Mirror film, method for producing the same, and mirror film for solar power generator or solar power generator
WO2014208255A1 (en) Film mirror and method for producing film mirror
US20160170192A1 (en) Composite film and film mirror for solar light reflection
US20130011666A1 (en) Film mirror for solar heat power generation, method of manufacturing film mirror for solar hear generation, and reflection device for solar heat power generation
JP2011128501A (en) Film mirror, method of manufacturing film mirror and mirror for condensing sunlight
JP2011158751A (en) Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same
JP2016137666A (en) Light reflection film, and light reflector and light reflection device using the same
JP5833036B2 (en) Mirror film, method for producing the same, and reflecting mirror using the same
JP2014199363A (en) Film mirror
US20150198753A1 (en) Film mirror
JP5794232B2 (en) Film mirror for solar power generation, manufacturing method thereof, and reflector for solar power generation
JP6016695B2 (en) Film mirror
JP2014199319A (en) Method for manufacturing film mirror for collecting sunlight, and film mirror for collecting sunlight
WO2014122991A1 (en) Reflecting mirror for solar light collection
JP2014160129A (en) Method for producing film mirror
JP2014194465A (en) Film mirror and manufacturing method therefor
WO2014155861A1 (en) Film mirror and solar reflector using same
JP2016161657A (en) Sunlight reflection film mirror, manufacturing method therefor, and solar thermal power generation reflector
JP6029486B2 (en) Reflector for collecting sunlight
JP2014194469A (en) Solar light collecting film mirror, manufacturing method therefor, and solar light reflector
JP2014191094A (en) Sunlight-collecting film mirror
WO2014156475A1 (en) Film mirror
JP2015190033A (en) Laminate, method for manufacturing the same, reflector, mirror film, antibacterial coat, conductive film and thermal conductor
JP2014191230A (en) Solar light collecting film mirror

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818374

Country of ref document: EP

Kind code of ref document: A1