WO2014206348A1 - 一种fbmc***中同步信号的发送方法和装置 - Google Patents

一种fbmc***中同步信号的发送方法和装置 Download PDF

Info

Publication number
WO2014206348A1
WO2014206348A1 PCT/CN2014/081001 CN2014081001W WO2014206348A1 WO 2014206348 A1 WO2014206348 A1 WO 2014206348A1 CN 2014081001 W CN2014081001 W CN 2014081001W WO 2014206348 A1 WO2014206348 A1 WO 2014206348A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
synchronization
frequency resource
time
resource location
Prior art date
Application number
PCT/CN2014/081001
Other languages
English (en)
French (fr)
Inventor
陈磊
任广梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14817870.0A priority Critical patent/EP2999183B1/en
Publication of WO2014206348A1 publication Critical patent/WO2014206348A1/zh
Priority to US14/962,856 priority patent/US9906394B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26416Filtering per subcarrier, e.g. filterbank multicarrier [FBMC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for transmitting a synchronization signal in an FBMC system.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology is currently the most widely used multi-carrier modulation technology.
  • the Filter Bank Multicarrier (FBMC) technology has become an alternative to OFDM technology because of its excellent out-of-band rejection and high spectral efficiency.
  • Multi-carrier modulation techniques are susceptible to Carrier Frequency Offset (CFO) and time offset. Specifically, frequency offset and time offset cause inter-symbol interference, which leads to deterioration of FBMC system performance. Therefore, when designing an FBMC system, a reliable and accurate synchronization signal must be designed.
  • CFO Carrier Frequency Offset
  • time offset causes inter-symbol interference, which leads to deterioration of FBMC system performance. Therefore, when designing an FBMC system, a reliable and accurate synchronization signal must be designed.
  • the synchronization signal transmission method commonly used in FBMC systems is based on data-assisted synchronization signal transmission methods, including training sequences based on repeated structures.
  • the training sequence based on the repetition structure means that the transmitting end continuously transmits at least two identical training sequences (i.e., synchronization signals), and the receiving end to the frequency offset estimation value, thereby achieving frequency synchronization.
  • the synchronization signal transmission method is characterized in that: a certain protection symbol is reserved before and after the synchronization signal, and no data symbol is transmitted on the protection symbol to avoid interference of the data symbol on the synchronization symbol.
  • the transmitting end needs to send at least two identical synchronization signals, and the protection symbols need to be set before and after the synchronization signal, resulting in a large synchronization signal overhead.
  • the spectrum efficiency is low; and a complex algorithm is required at the receiving end for frequency synchronization.
  • Embodiments of the present invention provide a method and apparatus for transmitting a synchronization signal in an FBMC system to reduce synchronization signal overhead and improve spectral efficiency.
  • a method for transmitting a synchronization signal in an FBMC system including: determining a location of a transmission time-frequency resource of a synchronization symbol; Determining a time-frequency resource location that may interfere with the synchronization symbol; transmitting the synchronization symbol at a transmission time-frequency resource location of the synchronization symbol, and generating a time-frequency interference between the synchronization symbol and the synchronization symbol
  • the protection symbol is sent at the resource location.
  • the transmission time-frequency resource location of the synchronization symbol is located on at least one multi-carrier symbol of a start position or an end position of a continuous signal transmission.
  • the determining may generate a time-frequency resource location that interferes with the synchronization symbol, including:
  • And multiplexer converter of the synchronization symbol responds to a time-frequency resource location within a preset range as a time-frequency resource location that generates mutual interference with the synchronization symbol according to a multiplexer response .
  • the time-frequency resource position that may interfere with the synchronization symbol is located at a position where the synchronization symbol is located At least one multicarrier symbol following the carrier symbol;
  • the time-frequency resource position that may interfere with the synchronization symbol is located at the synchronization symbol. At least one multicarrier symbol preceding the multicarrier symbol.
  • the determining a time-frequency resource location of the synchronization symbol includes:
  • Determining a frequency domain interference range of the synchronization symbol according to the multiplexer response determining a transmission time-frequency resource position of the synchronization symbol according to the frequency domain interference range, wherein any two of the synchronization symbols on the same multi-carrier symbol The interval between the locations of the transmitted time-frequency resources is greater than or equal to the frequency domain interference range.
  • the method further includes: determining a value of the synchronization symbol; wherein a value of the synchronization symbol on the same multi-carrier symbol is symmetric about a center frequency of the synchronization signal .
  • a sixth possible implementation The value of the synchronization symbol on the same multi-carrier symbol is a real number.
  • the method further includes: determining a value of the protection symbol; wherein a value of the protection symbol has an interference amount to the synchronization symbol of zero.
  • the value of the protection symbol is zero.
  • the determining the value of the protection symbol includes:
  • the value of the guard symbol is determined based on a multiplexer response, a transmitted time-frequency resource location of the synchronization symbol, and a time-frequency resource location that causes mutual interference with the synchronization symbol.
  • a synchronization signal sending apparatus including:
  • a first determining unit configured to determine a transmission time-frequency resource location of the synchronization symbol
  • a second determining unit configured to determine a time-frequency resource location that may interfere with the synchronization symbol
  • a sending unit configured to send the synchronization symbol at a transmission time-frequency resource location of the synchronization symbol; and send a protection symbol at a time-frequency resource location where the synchronization symbol and the synchronization symbol generate mutual interference.
  • the transmission time-frequency resource location of the synchronization symbol is located on at least one multi-carrier symbol of a start position or an end position of one continuous signal transmission.
  • the second determining unit is specifically configured to: perform the synchronization according to a multiplexer response
  • the symbolic multiplexer is responsive to a time-frequency resource location within a predetermined range as a time-frequency resource location that would interfere with the synchronization symbol.
  • the time-frequency resource position that may interfere with the synchronization symbol is located at a position where the synchronization symbol is located At least one multicarrier symbol following the carrier symbol;
  • the transmission time frequency resource location of the synchronization symbol is located in one continuous signal transmission
  • the time-frequency resource position that may interfere with the synchronization symbol is located on at least one multi-carrier symbol preceding the multi-carrier symbol where the synchronization symbol is located.
  • the first determining unit is specifically configured to:
  • the apparatus further includes: a third determining unit, configured to determine a value of the synchronization symbol; where a value of the synchronization symbol on the same multi-carrier symbol Regarding the center frequency of the sync signal is symmetrical.
  • the synchronization symbol on the same multi-carrier symbol takes a real value.
  • the device further includes: a fourth determining unit, configured to determine a value of the protection symbol; where the value of the protection symbol is to the synchronization symbol The amount of interference is zero.
  • the value of the guard symbol is zero.
  • the fourth determining unit is specifically configured to: according to a multiplexer response, a transmission time frequency of the synchronization symbol The resource location and the time-frequency resource location that may interfere with the synchronization symbol, determine the value of the protection symbol.
  • the method and device for transmitting a synchronization signal in the FBMC system provided by the embodiment of the present invention, by determining the location of the transmission time-frequency resource of the synchronization symbol, and generating the time-frequency resource location of the mutual interference with the synchronization symbol, transmitting the time-frequency resource in the synchronization symbol Sending a synchronization symbol at a position, and transmitting a guard symbol at a time-frequency resource position that interferes with the synchronization symbol, thereby realizing synchronization of the FBMC system by using a synchronization signal, thereby reducing synchronization signal overhead and improving spectrum effectiveness.
  • FIG. 1 is a schematic flowchart of a method for sending a synchronization signal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a continuous signal transmission in an FBMC system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a multi-carrier signal including a synchronization signal according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another method for sending a synchronization signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of placing a synchronization symbol according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another synchronization symbol placed according to an embodiment of the present invention
  • FIG. 7(a) is a schematic diagram of a synchronization signal according to an embodiment of the present invention
  • FIG. 7(b) is another embodiment of the present invention.
  • FIG. 7(c) is a schematic diagram of another synchronization signal according to an embodiment of the present invention
  • FIG. 7(d) is a schematic diagram of another synchronization signal according to an embodiment of the present invention
  • FIG. 8(b) is a schematic diagram of another synchronization signal according to an embodiment of the present invention
  • FIG. 8(c) is another schematic diagram of an embodiment of the present invention
  • FIG. 7(a) is a schematic diagram of a synchronization signal according to an embodiment of the present invention
  • FIG. 7(b) is another embodiment of the present invention.
  • FIG. 7(c) is
  • FIG. 8 is a schematic diagram of another synchronization signal according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a synchronization signal sending apparatus according to an embodiment of the present invention.
  • a schematic structural diagram of another synchronization signal sending apparatus provided by an embodiment of the invention
  • FIG. 11 is a schematic structural diagram of another synchronization signal sending apparatus according to an embodiment of the present invention.
  • a method for transmitting a synchronization signal in an FBMC system includes:
  • the sender of the synchronization signal in the FBMC system provided by the embodiment of the present invention is provided.
  • the method can be used in the Orthogonal Frequency Division Multiplexing I Offset Quadrature Amplitude Modulation (OFDM/OQAM) scheme.
  • the FBMC system includes a transmitting end and a receiving end, and both ends of the transmitting and receiving may be a base station, an access point (AP) or a user equipment.
  • the transmitting end transmits a multi-carrier signal to the receiving end, and the multi-carrier signal is carried on the time-frequency resource position marked by "subcarrier" and "multi-carrier symbol".
  • a sync symbol is a symbol for synchronization located at a time-frequency resource location.
  • the sync signal consists of sync symbols located at multiple time-frequency resource locations.
  • the protection symbol refers to a symbol located around the time-frequency resource location where the synchronization symbol is located, and is used to protect the synchronization symbol from interference.
  • Multi-carrier signals include data symbols, synchronization symbols, guard symbols, pilot symbols, etc. Since the data symbols are mostly occupied, the embodiment of the present invention will be outside the synchronization symbol and the protection symbol for the sake of simplicity and convenience in description. The symbols are collectively referred to as data symbols.
  • Time-frequency resource location of the transmitting end marking the transmission time-frequency resource location determined by the sub-carrier m and the multi-carrier symbol n as the transmitting time-frequency resource location
  • Receive time-frequency resource location Time-frequency resource location of the receiving end; mark the received time-frequency resource location determined by the sub-carrier w and the multi-carrier symbol n as the received time-frequency resource location
  • the location of the transmitted time-frequency resource corresponds to the location of the received time-frequency resource.
  • w is used to indicate the number of the subcarrier, and "the number indicating the multicarrier symbol, then the subcarrier w and the multicarrier symbol "the determined transmission time-frequency resource location corresponds to the received time-frequency resource location.
  • Receive symbol Receive the received symbol at the resource location
  • Receive Time-Frequency Resource Location Received received symbol generated by the transmitted symbol at the location of the transmitted time-frequency resource
  • Interference quantity Received symbol generated by the transmitted symbol at the position of the transmission time-frequency resource other than the transmission time-frequency resource position O , « ) received by the time-frequency resource position O , «).
  • Transmission time slot In a wireless communication system, the minimum time unit of (data) signal transmission is usually called: frame, subframe, pulse sequence ⁇ 'J (Burst) or time slot (Slot) ) Wait.
  • the minimum time unit for (data) signal transmission is called a subframe.
  • the minimum time units for (data) signal transmission are collectively referred to as transmission time slots, and the transmission time slots may include downlink transmission time slots and uplink transmission time slots.
  • the transmitting end performs unified encoding and modulation processing on the data in one transmission time slot; the receiving end performs unified demodulation and decoding on the data in one transmission time slot.
  • signal transmission may be continuous or discontinuous.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the transmission of signals can be discontinuous.
  • Different continuous signal transmissions are discontinuous in time.
  • Figure 2 is a schematic diagram of a continuous signal transmission in a FBMC system.
  • One continuous signal transmission includes: front tailing, the main part of the transmitted signal, and rear tailing. Among them, the front tailing and the trailing tailing are lower in power, but cannot be simple. Discard, otherwise signal transmission quality and out-of-band leakage will deteriorate.
  • determining the transmission time-frequency resource location of the synchronization symbol is specifically: determining a multi-carrier symbol where the transmission time-frequency resource location of the synchronization symbol is located and a sub-carrier in which the synchronization symbol is located.
  • the transmit time-frequency resource location of the synchronization symbol is located on at least one multi-carrier symbol within the transmission slot or between adjacent transmission slots.
  • a guard symbol for protecting the synchronization symbol may be set on at least one multi-carrier symbol on two adjacent sides of the multi-carrier symbol where the synchronization symbol is located.
  • the transmit time-frequency resource location of the synchronization symbol is located on at least one multi-carrier symbol of a start position or an end position of one continuous transmission.
  • the guard symbol can be set only after the multi-carrier symbol in which the synchronization symbol is located; when the transmission time-frequency resource position of the synchronization symbol is located on at least one multi-carrier symbol at the end position of one continuous transmission, since the synchronization symbol is transmitted after the trailing tail There is also no interference of the data symbols with the sync symbols, so the guard symbols can be set only before the multi-carrier symbols in which the sync symbols are located.
  • the determining a time-frequency resource location of the synchronization symbol includes:
  • the multiplexer response is exemplarily described below:
  • the effects of the multiplexer (Transmultiplexer) at both ends of the transceiver cause different levels of interference between the symbols at different time-frequency resource locations.
  • a transmitted symbol on a transmit time-frequency resource location interferes with a useful received symbol at other received time-frequency resource locations around its corresponding received time-frequency resource location.
  • the transmitting end transmits a symbol at the time-frequency resource position (0, 0) of the transmitting end, and does not transmit the symbol at other transmitting time-frequency resource locations. Then, at the receiving end, the time-frequency resource position (0, 0) is transmitted.
  • the amount of interference generated by the transmitted symbol 1 at other received time-frequency resource locations around the received time-frequency resource location (0, 0) is called the multiplexer response, or is called the impulse response and filtering of the transceiver transmission system.
  • the group interference coefficient and the like are collectively referred to as a multiplexer response in the embodiment of the present invention. It should be noted that, in general, after the multiplexer at both ends of the transceiver is determined, the multiplexer response is determined.
  • Table 1 shows an example of a typical FBMC system multiplexer response, where the row represents the number of subcarriers, the column represents the number of the multicarrier symbol; the elements in the table are called multiplexer responses, Indicates the response of the transmitted symbol transmitting the time-frequency resource location (0, 0) to the received time-frequency resource location around the received time-frequency resource location (0, 0). For example, if the transmission symbol of the time-frequency resource location (0, 0) is the response of the transmission time-frequency resource location (0, 0) to the received time-frequency resource location is a mn , the reception generated at the received time-frequency resource location The symbol is heard. If unprocessed, the received symbol ⁇ will interfere with the useful received symbols corresponding to the transmitted symbols of the transmitted time-frequency resource locations, where w and « are not zero at the same time.
  • j in the elements in Table 1 Represents an imaginary unit.
  • symbols on adjacent sub-carriers interfere with each other, and there is substantially no mutual interference between symbols on at least two sub-carriers; on the same sub-carrier, different multi-carrier symbols
  • the mutual interference between the symbols on the above can reach multiple multi-carrier symbols.
  • the present embodiment refers to the non-negligible range of the multiplexer response as the interference range of the multiplex converter, and the interference range of the multiplexer includes: a frequency domain interference range and a time domain interference range.
  • the interference range of the multiplexer shown in Table 1 is in the range of 3 x7 centered on the center position, specifically: Frequency domain (center) centered on the time-frequency resource position (0, 0) Carrier direction) A total of three time-frequency resource locations, and a total of seven time-frequency resource locations in the time domain (multi-carrier symbol direction).
  • the multi-carrier symbol needs to be described, the optional This is achieved by placing the synchronization symbols according to the interference range of the multiplexer in the frequency domain.
  • the interval of the synchronization symbols can be determined in other ways, for example, one synchronization symbol is placed every one or several subcarriers.
  • the 102 determining a time-frequency resource location that may interfere with the synchronization symbol; wherein, in the FBMC system, the data symbol is generally a pure real number or a pure imaginary number, and the interference in the received symbol corresponding to the data symbol The amount is generally concentrated on the imaginary part or the real part of the data symbol. Therefore, after the channel is equalized by the received symbol, the inter-symbol interference can be eliminated by the operation of the real imaginary part separation, and the process of eliminating the interference is called data processing. process.
  • the synchronization process and the data processing process are quite different. During the synchronization process, receiving The channel information cannot be obtained at the end, and channel equalization cannot be performed. Therefore, the inter-symbol interference cannot be eliminated by the operation of the real imaginary part separation. Therefore, it is necessary to avoid interference with the synchronization symbol at the transmitting end, that is, it is necessary to determine the time-frequency resource position that would interfere with the synchronization symbol.
  • the step 102 may include: according to the multiplexer response, the multiplexer of the synchronization symbol is responsive to a time-frequency resource location within a preset range as mutual generation with the synchronization symbol The location of the time-frequency resource of the interference.
  • the preset range may be a threshold
  • the multiplexer response of the sync symbol may include: the multiplexer response of the sync symbol is less than or equal to the threshold, the width The value can be: zero or a small value (can be ignored).
  • This threshold can be set based on experience or actual needs.
  • the guard symbols are transmitted at time-frequency resource locations where the sync symbols and the sync symbols generate mutual interference to avoid interference of the data symbols with the sync symbols.
  • the method may further include: determining a value of the synchronization symbol.
  • the value of each synchronization symbol may be a real or imaginary number randomly generated by the transmitting end.
  • the value of the synchronization symbol on the same multi-carrier symbol Regarding the center frequency of the sync signal is symmetrical.
  • the value of the synchronization symbol on the same multi-carrier symbol is a real number.
  • the method may further include: determining a value of the protection symbol.
  • setting a guard symbol around the synchronization symbol can prevent the data symbol from interfering with the synchronization symbol.
  • the value of the protection symbol has a interference amount to zero.
  • the protection symbol has a value of zero.
  • the value of the guard symbol is determined based on a multiplexer response, a transmitted time-frequency resource location of the synchronization symbol, and a time-frequency resource location that causes mutual interference with the synchronization symbol.
  • the value of the protection symbol may be zero or may be based on multiplexing.
  • a converter response, a transmission time-frequency resource location of the synchronization symbol, and a time-frequency resource location that would interfere with the synchronization symbol, and a characteristic that the value of the protection symbol has zero interference with the synchronization symbol For the non-zero value, refer to the relevant part of the first embodiment below.
  • the step 103 may specifically include: determining a mapping interval of the synchronization symbol in the frequency domain, and placing the synchronization symbol according to the mapping interval and the value of the synchronization symbol.
  • the mapping interval can be set according to the experience or the needs of the actual use process. Specifically, because the interference interval is larger, the interference between adjacent synchronization symbols is smaller, and the synchronization of the FBMC system is more accurate, but the larger the mapping interval, the more the synchronization signal overhead, or the synchronization symbol in the synchronization signal. The number is relatively small, resulting in inaccurate synchronization; therefore, the mapping interval of the synchronization symbols in the frequency domain can be determined according to the trade-off between synchronization precision and overhead. Further, the time-frequency resource positions that cause mutual interference with the synchronization symbols differ according to the mapping intervals of the synchronization symbols in the frequency domain.
  • a method for transmitting a synchronization signal in an FBMC system by determining a location of a time-frequency resource of a synchronization symbol, and a time-frequency resource location that may interfere with a synchronization symbol, at a time-frequency resource location of the synchronization symbol.
  • the synchronization symbol is transmitted, and the protection symbol is transmitted at a time-frequency resource position that interferes with the synchronization symbol, thereby realizing synchronization of the FBMC system by using one synchronization signal, thereby reducing synchronization signal overhead and improving spectrum efficiency.
  • the above method is exemplified by several specific embodiments.
  • FIG. 3 it is a schematic diagram of a multi-carrier signal including a synchronization signal, wherein the abscissa indicates the number of the multi-carrier symbol, and the ordinate indicates the number of the sub-carrier; each square represents a time-frequency resource position: the slash mark The square indicates that the symbol at the location of the time-frequency resource is a synchronization symbol; the blank square indicates that the time-frequency resource location transmits the protection symbol; the square of the gray marker indicates that the symbol at the location of the time-frequency resource is a data symbol.
  • the time-frequency resource location where the synchronization signal is located occupies M-2 subcarriers (the subcarrier number is 1 ⁇ ⁇ -2 ), and the number of the multicarrier symbols where the synchronization symbol is located is n Q .
  • a method for transmitting a synchronization signal in an FBMC system includes: 401: Determine a time domain position of the synchronization symbol (multi-carrier symbol "o";
  • protection symbols are set on both sides of the synchronization symbol.
  • a synchronization symbol penetrate is placed on all subcarriers of the symbol “ 0 ” of the synchronization symbol, or a synchronization symbol penetrate is placed every one or several subcarriers. Or determining the interval of the synchronization symbols and the like according to the interference range of the multiplexer in the frequency domain.
  • Example 1 Referring to Figure 3, the synchronization symbol is placed on all subcarriers.
  • the method for determining the mapping interval of the synchronization symbol in the frequency domain is not limited.
  • the spacing between adjacent two synchronization symbols may not be equal.
  • the value of the synchronization symbol on the time-frequency resource position O, « 0 ) may be a random number.
  • this embodiment uses the synchronization on the same multi-carrier symbol.
  • the value of the symbol is symmetric about the center frequency of the synchronization signal, and the value of the synchronization symbol on the same hypothetical time-frequency resource position 0, « 0 ), where lm ⁇ M-2, can be expressed as follows:
  • the range of the guard symbols on both sides adjacent to the time domain position of the synchronization symbol should be larger than the time domain interference range of the multiplexer; for example, in FIG. 3, the guard symbol subcarriers are two.
  • the side includes Ng subcarriers as protection symbols, where Ng is more The time domain interference range of the multiplexer.
  • the guard symbol range in the frequency domain is determined according to the frequency domain interference range of the multiplexer; for example, the subcarrier 0 and the subcarrier are protected symbols in FIG.
  • step 403 and step 404 may be reversed.
  • the value of the guard symbol at the location of the time-frequency resource is heard.”
  • the characteristic that the interference to the sync symbol is zero is satisfied.
  • the time-frequency resource location where the synchronization symbol is located is Oo, n 0
  • the time-frequency resource location where the protection symbol that interferes with the synchronization symbol on the time-frequency resource location Oo, n 0 ) is O, n
  • the position set of all guard symbols at the position ⁇ , « Q ) that produces interference with the sync symbol is ⁇ réelle ⁇
  • the multiplexer response size is the time-frequency resource position O, «) and the set ⁇ of the guard symbol. It is determined by step 404 that the multiplexer response size is determined by the multiplexer response table shown in Table 1. Then, the time-frequency resource position ⁇ , the protection symbol on the «) value israp can be obtained by solving the following equation,
  • the value ofquaint is zero, or a value that conforms to a certain regularity.
  • Example 1 the value of c ⁇ is zero. Referring to Figures 3 and 5, the protection symbols shown in the figure are all zero.
  • the value of tribe is a non-zero value that conforms to a certain rule.
  • Table 2 for the location of the synchronization symbol and the protection symbol at the time-frequency two-dimensional resource location, in the time-frequency two-dimensional resource grid 3 X
  • the time-frequency resource position (o, « 0 ) and the time-frequency resource position Oo+2, wo) within the range of 5 are respectively transmitted with the synchronization symbols ⁇ and . +2 , mecanic. , the remaining time-frequency resource locations send protection symbols.
  • the time-frequency two-dimensional resource grid 3 X 5 ranges specifically: three frequency-frequency resource locations in the frequency domain (sub-carrier direction), and five time-frequency resource locations in the time domain (multi-carrier symbol direction) The scope.
  • the value of the protection symbol at each time-frequency resource location is as shown in Table 3.
  • the value of c ⁇ nieth is a non-zero value or a zero value that conforms to a certain rule.
  • the synchronization symbol ⁇ ) transmitted by the transmitting end satisfies the property about the center frequency of the synchronization signal, that is, m G ⁇ l,2,.... /2-l ⁇ , M is an even number, or we ⁇ 1,2,.... ( ⁇ /-1)/2-1 ⁇ , is an odd number.
  • the receiving end receives the synchronization signal r(i+r) transmitted by the transmitting end at the ith time at the time of the i+r, where r is the delay time.
  • frequency synchronization can be achieved by the following frequency offset estimation algorithm:
  • the distance from the two sample points has a great influence on the frequency offset estimation effect.
  • the frequency offset estimated from the near-closed sample points is more susceptible to interference and noise, so the weight coefficient is used.
  • the frequency offset result estimated by the closer sample points has a smaller weight coefficient, and the farther deviation result has a larger weight coefficient. This makes the averaged result more accurate.
  • the data symbols are transmitted on the time-frequency location resource according to the multiplexer response with zero or near zero, ie not as a guard symbol.
  • the multiplexer response is described as an example in Table 1. As shown in Table 1, when the multi-carrier symbol is separated from the transmitted symbol 1 on the subcarrier where the transmission symbol 1 of the time-frequency resource location 00 is located Response at the location of the frequency resource ( 0.0002 ) It is close to zero, so data symbols can be sent at these two time-frequency resource locations. See Figure 6 for details.
  • this embodiment reduces the overhead of the synchronization signal.
  • the synchronization signal in the embodiment is located at the beginning or end of the continuous signal transmission, and the protection symbols are provided on both sides of the synchronization symbol in the synchronization signal, but the protection symbol
  • the location of the time-frequency resource is asymmetric.
  • the sync signal is at the end of a continuous signal transmission
  • FIG. 7(a) which is a synchronization signal based on an example 2 of the embodiment
  • FIG. 7(b) is a synchronization signal based on the second embodiment.
  • the sync signal is at the beginning of a continuous signal transmission
  • FIG. 7(d) is a synchronization signal based on the second embodiment.
  • the synchronization signal of the first embodiment is compared with the synchronization signal determined by the first embodiment, or the synchronization signal of the second embodiment can reduce the synchronization signal compared with the synchronization signal determined by the second embodiment. Overhead.
  • the synchronization signal in this embodiment is located at the start position or the end position of one continuous signal transmission, and only one side of the synchronization symbol in the synchronization signal has a guard symbol.
  • the sync signal is at the end of a continuous signal transmission
  • FIG. 8(a) which is a synchronization signal based on an example 2 of the embodiment
  • FIG. 8(b) is a synchronization signal based on the second embodiment.
  • the sync signal is at the beginning of a continuous signal transmission
  • FIG. 8(d) is a synchronization signal based on the second embodiment.
  • a method for transmitting a synchronization signal in an FBMC system by determining a location of a time-frequency resource of a synchronization symbol, and a time-frequency resource location that may interfere with a synchronization symbol, at a time-frequency resource location of the synchronization symbol.
  • the synchronization symbol is transmitted, and the protection symbol is transmitted at a time-frequency resource position that interferes with the synchronization symbol, thereby realizing synchronization of the FBMC system by using one synchronization signal, thereby reducing synchronization signal overhead and improving spectrum efficiency.
  • a synchronization signal sending apparatus 90 may be applied to an FBMC system for performing a method for transmitting a synchronization signal shown in FIG. 1.
  • the apparatus 90 may include:
  • a first determining unit 901 configured to determine a transmission time-frequency resource location and a value of the synchronization symbol, where the second determining unit 902 is configured to determine a time-frequency resource location that may interfere with the synchronization symbol;
  • the sending unit 903 is configured to send the synchronization symbol at a time-frequency resource location of the synchronization symbol, and send a protection symbol at a time-frequency resource location where the synchronization symbol and the synchronization symbol generate mutual interference.
  • the transmission time-frequency resource location of the synchronization symbol is located on at least one multi-carrier symbol of a start position or an end position of one continuous signal transmission.
  • the second determining unit 902 is specifically configured to: according to the multiplexer response, the multiplexer of the synchronization symbol responds to a time-frequency resource location within a preset range as a conference And the synchronization symbol generates a time-frequency resource location that interferes with each other.
  • the transmission time-frequency resource location of the synchronization symbol is located on at least one multi-carrier symbol of a start position of one continuous signal transmission, the time-frequency resource position that may interfere with the synchronization symbol is located in synchronization. At least one multi-carrier symbol following the multi-carrier symbol on which the symbol is located;
  • the time-frequency resource position that may interfere with the synchronization symbol is located at the synchronization symbol. At least one multicarrier symbol preceding the multicarrier symbol.
  • the first determining unit 901 is specifically configured to: Determining a frequency domain interference range of the synchronization symbol according to the multiplexer response; determining a transmission time-frequency resource position of the synchronization symbol according to the frequency domain interference range, wherein any two of the synchronization symbols on the same multi-carrier symbol The interval between the locations of the transmitted time-frequency resources is greater than or equal to the frequency domain interference range.
  • the device 90 further includes:
  • the third determining unit 904 is configured to determine a value of the synchronization symbol, where a value of the synchronization symbol on the same multi-carrier symbol is symmetric with respect to a center frequency of the synchronization signal.
  • the value of the synchronization symbol on the same multi-carrier symbol is a real number.
  • the device 90 further includes:
  • the fourth determining unit 905 is configured to determine a value of the protection symbol, where a value of the protection symbol is zero for the synchronization symbol.
  • the protection symbol has a value of zero.
  • the fourth determining unit 905 is specifically configured to generate a time-frequency resource that interferes with each other according to the multiplexer response, the transmit time-frequency resource location of the synchronization symbol, and the synchronization symbol. Position, determining the value of the protection symbol.
  • the apparatus for transmitting a synchronization signal in the FBMC system determines the location of the time-frequency resource of the synchronization symbol by detecting the location of the time-frequency resource of the synchronization symbol, and the location of the time-frequency resource that may interfere with the synchronization symbol, at the time-frequency resource location of the synchronization symbol.
  • the synchronization symbol is transmitted, and the protection symbol is transmitted at a time-frequency resource position that interferes with the synchronization symbol, thereby realizing synchronization of the FBMC system by using one synchronization signal, thereby reducing synchronization signal overhead and improving spectrum efficiency.
  • a synchronization signal sending apparatus 90 may be applied to an FBMC system for performing a method for transmitting a synchronization signal shown in FIG. 1.
  • the apparatus 90 may include: a memory. 1101, a processor 1102, a transmitter 1103, wherein
  • the memory 1101 is configured to store a set of codes, and the code is used to control the processor 1102 to perform the following actions:
  • the transmitter 1103 is configured to send the synchronization signal at a transmit time-frequency resource location of the synchronization symbol, and generate a time-frequency resource location that interferes with the synchronization symbol. Send a protection symbol.
  • the transmission time-frequency resource location of the synchronization symbol is located on at least one multi-carrier symbol of a start position or an end position of one continuous signal transmission.
  • the processor 1102 is specifically configured to: use, according to the multiplexer response, the multiplexer of the synchronization symbol to respond to a time-frequency resource location within a preset range as a conference
  • the synchronization symbols generate time-frequency resource locations that interfere with each other.
  • the transmission time-frequency resource location of the synchronization symbol is located on at least one multi-carrier symbol of a start position of one continuous signal transmission, the time-frequency resource position that may interfere with the synchronization symbol is located in synchronization. At least one multi-carrier symbol following the multi-carrier symbol on which the symbol is located;
  • the time-frequency resource position that may interfere with the synchronization symbol is located at the synchronization symbol. At least one multicarrier symbol preceding the multicarrier symbol.
  • the processor 1102 is specifically configured to:
  • Determining a frequency domain interference range of the synchronization symbol according to the multiplexer response determining a transmission time-frequency resource position of the synchronization symbol according to the frequency domain interference range, wherein any two of the synchronization symbols on the same multi-carrier symbol The interval between the locations of the transmitted time-frequency resources is greater than or equal to the frequency domain interference range.
  • the processor 1102 is further configured to determine a value of the synchronization symbol; wherein a value of the synchronization symbol on the same multi-carrier symbol is symmetric with respect to a center frequency of the synchronization signal.
  • the value of the synchronization symbol on the same multi-carrier symbol is a real number.
  • the processor 1102 is further configured to determine a value of the protection symbol, where the value of the protection symbol has zero interference amount to the synchronization symbol.
  • the protection symbol has a value of zero.
  • the processor 1102 is specifically configured to determine, according to the multiplexer response, the transmit time-frequency resource location of the synchronization symbol, and the time-frequency resource location that generates interference with the synchronization symbol. The value of the protection symbol.
  • the apparatus for transmitting a synchronization signal in the FBMC system determines the location of the time-frequency resource of the synchronization symbol by detecting the location of the time-frequency resource of the synchronization symbol, and the location of the time-frequency resource that may interfere with the synchronization symbol, at the time-frequency resource location of the synchronization symbol. Transmitting a synchronization symbol, and transmitting a protection symbol at a time-frequency resource location that would interfere with the synchronization symbol, thereby realizing Synchronization of the FBMC system is achieved using a synchronization signal, which reduces synchronization signal overhead and improves spectral efficiency.
  • the disclosed apparatus and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division. In actual implementation, there may be another division manner, for example, multiple units or components may be combined or Some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional units are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform some of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种FBMC***中同步信号的发送方法和装置,涉及通信领域,用以减小同步信号开销,提高频谱效率。本发明实施例提供的方法包括:确定同步符号的发送时频资源位置;确定会和同步符号产生相互干扰的时频资源位置;在同步符号的发送时频资源位置上发送同步符号,并在会和同步符号产生相互干扰的时频资源位置发送保护符号。

Description

一种 FBMC***中同步信号的发送方法和装置 技术领域
本发明涉及通信领域, 尤其涉及一种 FBMC ***中同步信号的发 送方法和装置。
背景技术
正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称 OFDM)技术是目前使用最广泛的一种多载波调制技术。 滤波器组多载 波 (Filter Bank Multicarrier, 简称 FBMC ) 技术以其带外抑制效果好、 频谱效率高的优点成为 OFDM技术的一种替代技术。
多载波调制技术均易受载波频率偏移 (Carrier Frequency Offset, 简称 CFO ) 和时间偏移的影响, 具体的, 频率偏移和时间偏移会造成 符号间干扰加剧, 从而导致 FBMC ***性能恶化。 因此在设计 FBMC ***时, 必须设计可靠、 精确的同步信号。
FBMC ***中常用的同步信号发送方法是基于数据辅助的同步信 号发送方法, 包括基于重复结构的训练序列。基于重复结构的训练序列 是指发射端连续发送至少两个相同的训练序列 (即同步信号), 接收端 到频偏估计值, 从而达到频率同步。 该同步信号发送方法的特点是: 在 同步信号的前后均预留一定的保护符号,在保护符号上不发送数据符号, 以避免数据符号对同步符号的干扰。
在上述同步信号的设计过程中, 发明人发现现有技术中至少存在 如下问题: 发射端需要发送至少两个相同的同步信号, 且同步信号前后 均需要设置保护符号, 导致同步信号开销较大, 频谱效率低; 且在接收 端需要复杂的算法进行频率同步。
发明内容
本发明的实施例提供一种 FBMC ***中同步信号的发送方法和装 置, 用以减小同步信号开销, 提高频谱效率。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 提供一种 FBMC***中同步信号的发送方法, 包括: 确定同步符号的发送时频资源位置; 确定会和所述同步符号产生相互干扰的时频资源位置; 在所述同步符号的发送时频资源位置上发送所述同步符号,并在所 述会和所述同步符号产生相互干扰的时频资源位置上发送保护符号。
结合第一方面,在第一种可能的实现方式中, 所述同步符号的发送 时频资源位置位于一次连续信号传输的开始位置或者结束位置的至少 一个多载波符号上。
结合第一方面或者第一方面的第一种可能的实现方式,在第二种可 能的实现方式中,所述确定会和所述同步符号产生相互干扰的时频资源 位置, 包括:
根据多路复用转换器响应,将所述同步符号的多路复用转换器响应 在预设范围之内的时频资源位置作为所述会和所述同步符号产生相互 干扰的时频资源位置。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式 中,
当所述同步符号的发送时频资源位置位于一次连续信号传输的开 始位置的至少一个多载波符号上时,所述会和所述同步符号产生相互干 扰的时频资源位置位于同步符号所在的多载波符号之后的至少一个多 载波符号上;
或者,当所述同步符号的发送时频资源位置位于一次连续信号传输 的结束位置的至少一个多载波符号上时,所述会和所述同步符号产生相 互干扰的时频资源位置位于同步符号所在的多载波符号之前的至少一 个多载波符号上。
结合第一方面,在第四种可能的实现方式中, 所述确定同步符号的 发送时频资源位置, 包括:
根据多路复用转换器响应确定同步符号的频域干扰范围; 根据所述频域干扰范围确定同步符号的发送时频资源位置,其中同 一个多载波符号上的任意两个所述同步符号的发送时频资源位置之间 的间隔大于或等于所述频域干扰范围。
结合第一方面, 在第五种可能的实现方式中, 所述方法还包括: 确 定所述同步符号的取值;其中同一个多载波符号上的同步符号的取值关 于同步信号的中心频率对称。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式 中, 同一个多载波符号上的同步符号的取值为实数。
结合第一方面, 在第七种可能的实现方式中, 所述方法还包括: 确 定所述保护符号的取值;其中所述保护符号的取值对所述同步符号的干 扰量为零。
结合第一方面的第七种可能的实现方式,在第八种可能的实现方式 中, 保护符号的取值为零。
结合第一方面的第七种可能的实现方式,在第九种可能的实现方式 中, 所述确定所述保护符号的取值, 包括:
根据多路复用转换器响应、所述同步符号的发送时频资源位置和所 述会和所述同步符号产生相互干扰的时频资源位置,确定所述保护符号 的取值。
第二方面, 提供一种同步信号发送装置, 包括:
第一确定单元, 用于确定同步符号的发送时频资源位置; 第二确定单元,用于确定会和所述同步符号产生相互干扰的时频资 源位置;
发送单元,用于在所述同步符号的发送时频资源位置上发送所述同 步符号;并在所述会和所述同步符号产生相互干扰的时频资源位置上发 送保护符号。
结合第二方面,在第一种可能的实现方式中, 所述同步符号的发送 时频资源位置位于一次连续信号传输的开始位置或者结束位置的至少 一个多载波符号上。
结合第二方面或者第二方面的第一种可能的实现方式,在第二种可 能的实现方式中, 所述第二确定单元具体用于,根据多路复用转换器响 应,将所述同步符号的多路复用转换器响应在预设范围之内的时频资源 位置作为会和所述同步符号产生相互干扰的时频资源位置。
结合第二方面的第一种可能的实现方式,在第三种可能的实现方式 中,
当所述同步符号的发送时频资源位置位于一次连续信号传输的开 始位置的至少一个多载波符号上时,所述会和所述同步符号产生相互干 扰的时频资源位置位于同步符号所在的多载波符号之后的至少一个多 载波符号上;
或者,当所述同步符号的发送时频资源位置位于一次连续信号传输 的结束位置的至少一个多载波符号上时,所述会和所述同步符号产生相 互干扰的时频资源位置位于同步符号所在的多载波符号之前的至少一 个多载波符号上。
结合第二方面,在第四种可能的实现方式中, 所述第一确定单元具 体用于,
根据多路复用转换器响应确定同步符号的频域干扰范围;
根据所述频域干扰范围确定同步符号的发送时频资源位置,其中同 一个多载波符号上的任意两个所述同步符号的发送时频资源位置之间 的间隔大于或等于所述频域干扰范围。
结合第二方面, 在第五种可能的实现方式中, 所述装置还包括: 第三确定单元, 用于确定所述同步符号的取值; 其中同一个多载波 符号上的同步符号的取值关于同步信号的中心频率对称。
结合第二方面的第五种可能的实现方式,在第六种可能的实现方式 中, 同一个多载波符号上的同步符号的取值为实数。
结合第二方面, 在第七种可能的实现方式中, 所述装置还包括: 第四确定单元, 用于确定所述保护符号的取值; 其中所述保护符号 的取值对所述同步符号的干扰量为零。
结合第二方面的第七种可能的实现方式,在第八种可能的实现方式 中, 保护符号的取值为零。
结合第二方面的第七种可能的实现方式,在第九种可能的实现方式 中, 所述第四确定单元具体用于, 根据多路复用转换器响应、 所述同步 符号的发送时频资源位置和所述会和所述同步符号产生相互干扰的时 频资源位置, 确定所述保护符号的取值。
本发明实施例提供的 FBMC ***中同步信号的发送方法和装置, 通过确定同步符号的发送时频资源位置,以及会和同步符号产生相互干 扰的时频资源位置, 在同步符号的发送时频资源位置上发送同步符号, 并在会和所述同步符号产生相互干扰的时频资源位置上发送保护符号, 实现了使用一个同步信号实现 FBMC ***的同步, 从而减小了同步信 号开销, 提高了频谱效率。
附图说明
图 1 为本发明实施例提供的一种同步信号的发送方法的流程示意 图;
图 2为本发明实施例提供的一种 FBMC ***中一次连续信号传输 示意图;
图 3 为本发明实施例提供的一种包含同步信号的多载波信号的示 意图;
图 4 为本发明实施例提供的另一种同步信号的发送方法的流程示 意图;
图 5为本发明实施例提供的一种放置同步符号的示意图;
图 6为本发明实施例提供的另一种放置同步符号的示意图; 图 7 (a) 为本发明实施例提供的一种同步信号的示意图; 图 7 (b) 为本发明实施例提供的另一种同步信号的示意图; 图 7 (c) 为本发明实施例提供的另一种同步信号的示意图; 图 7 (d) 为本发明实施例提供的另一种同步信号的示意图; 图 8 (a) 为本发明实施例提供的另一种同步信号的示意图; 图 8 (b) 为本发明实施例提供的另一种同步信号的示意图; 图 8 (c) 为本发明实施例提供的另一种同步信号的示意图; 图 8 (d) 为本发明实施例提供的另一种同步信号的示意图; 图 9为本发明实施例提供的一种同步信号发送装置的结构示意图; 图 10为本发明实施例提供的另一种同步信号发送装置的结构示意 图;
图 11为本发明实施例提供的另一种同步信号发送装置的结构示意 图。
具体实施方式
下面结合附图对本发明实施例提供的一种 FBMC ***中同步信号 的发送方法和装置进行举例说明。
一方面, 参见图 1, 为本发明实施例提供的一种 FBMC***中同步 信号的发送方法, 包括:
101: 确定同步符号的发送时频资源位置;
示例性的, 本发明实施例提供的 FBMC***中同步信号的发送方 法可以用于实现 FBMC 技术的正交频分复用 /偏置正交幅度调制 ( Orthogonal Frequency Division Multiplexing I Offset Quadrature Amplitude Modulation, 简称 OFDM/OQAM ) 方案中。 FBMC***包括 发射端和接收端, 收发两端可以均为基站、 接入点 (Access Point, 简 称 AP ) 或者用户设备等。
发射端向接收端发送多载波信号, 多载波信号承载在用 "子载波" 和 "多载波符号" 标记的时频资源位置上。 同步符号是指位于一个时频 资源位置上的用于同步的符号。 同步信号由位于多个时频资源位置上的 同步符号组成。 保护符号是指位于同步符号所在的时频资源位置周围, 用于保护同步符号不受干扰的符号。
下面对本发明实施例中的一些概念进行说明:
1 )数据符号: 多载波信号包括数据符号、 同步符号、 保护符号、 导 频符号等, 由于数据符号占大多数, 为了描述上的简洁和方便, 本发明 实施例将同步符号和保护符号之外的符号统称为数据符号。
2 ) 发送时频资源位置: 发射端的时频资源位置; 将子载波 m 和多 载波符号 n所确定的发送时频资源位置标记为发送时频资源位置
接收时频资源位置: 接收端的时频资源位置; 将子载波 w和多载波 符号 n所确定的接收时频资源位置标记为接收时频资源位置
其中, 发送时频资源位置与接收时频资源位置——对应。 具体的, 用 w表示子载波的编号, 《表示多载波符号的编号, 则子载波 w和多载 波符号《所确定的发送时频资源位置与接收时频资源位置相对应。
3 ) 发送符号: 发送资源位置上所发送的符号;
接收符号: 接收资源位置上所接收的符号;
有用接收符号: 接收时频资源位置 接收的由发送时频资源位置 上的发送符号产生的接收符号;
干扰量: 接收时频资源位置 O ,«)接收的由除发送时频资源位置 O ,« ) 之外的其他发送时频资源位置上的发送符号产生的接收符号。
4 ) 传输时隙: 在无线通信***中, (数据) 信号传输的最小时间 单位通常被称为: 帧 (Frame ) 、 子帧 ( Subframe ) 、 脉冲序歹' J ( Burst ) 或者时隙 (Slot ) 等。 例如, 在长期演进 (Long Term Evolution , LTE) ***中, (数据) 信号传输的最小时间单位被称为子帧。 本发明实施例 将 (数据) 信号传输的最小时间单位统称为传输时隙, 传输时隙可以包 括下行传输时隙和上行传输时隙。
发射端在一个传输时隙内, 对数据进行统一编码、 调制等处理; 接 收端在一个传输时隙内, 对数据进行统一解调、 译码等处理。
5 ) —次连续信号传输: 若干个连续的传输时隙; 其中, 将若干个 连续的下行传输时隙称为一次下行连续信号传输;将若干个连续的上行 传输时隙称为一次上行连续信号传输。
在无线通信***中,信号传输可以是连续的也可以是不连续的, 例 如, 在频分双工 ( Frequency Division Duplexing, 简称 FDD ) ***中, 下行信号的传输是连续的; 在时分双工 ( Time Division Duplexing, 简 称 TDD ) ***中, 信号的传输可以为不连续的。 不同的连续信号传输 之间在时间上是不连续的。 对于 FBMC ***, 由于滤波器的作用, 一 次连续信号传输的开始位置和结束位置上分别会产生一个拖尾,这段拖 尾降低了信号的传输速率, 对于信号传输来说是一种开销。 图 2 为 FBMC***中一次连续信号传输示意图, 一次连续信号传输包括: 前拖 尾, 传输信号的主要部分, 后拖尾, 其中, 前拖尾和后拖尾虽然功率较 低, 但不能简单的丟弃, 否则信号传输质量和带外泄漏将恶化。
进一步地,确定同步符号的发送时频资源位置具体为: 确定同步符 号的发送时频资源位置所在的多载波符号和其所在的子载波。
可选的,所述同步符号的发送时频资源位置位于传输时隙之内或相 邻传输时隙之间的至少一个多载波符号上。 示例性的, 此情况下, 可以 在同步符号所在的多载波符号相邻两边的至少一个多载波符号上设置 保护该同步符号的保护符号。
可选的,所述同步符号的发送时频资源位置位于一次连续传输的开 始位置或者结束位置的至少一个多载波符号上。
示例性的,当同步符号的发送时频资源位置位于一次连续传输的开 始位置的至少一个多载波符号上时,由于同步符号之前传输的是前拖尾, 不存在数据符号对同步符号的干扰,因此可以只在同步符号所在的多载 波符号之后设置保护符号;当同步符号的发送时频资源位置位于一次连 续传输的结束位置的至少一个多载波符号上,由于同步符号之后传输的 是后拖尾,也不存在数据符号对同步符号的干扰, 因此可以只在同步符 号所在的多载波符号之前设置保护符号。 可选的, 所述确定同步符号的发送时频资源位置, 包括:
根据多路复用转换器响应确定同步符号的频域干扰范围;
根据所述频域干扰范围确定同步符号的发送时频资源位置,其中同 一个多载波符号上的任意两个所述同步符号的发送时频资源位置之间 的间隔大于或等于所述频域干扰范围。
示例性的, 下面示例性地介绍多路复用转换器响应:
收发两端的多路复用转换器( Transmultiplexer )的影响使得不同时 频资源位置上的符号之间会产生不同程度的干扰。一个发送时频资源位 置上的发送符号会对与其相对应的接收时频资源位置周围的其他接收 时频资源位置上的有用接收符号产生干扰。假定发射端在发送时频资源 位置(0 , 0 )处的发送符号为 1 ,在其他发送时频资源位置不发送符号, 那么, 将在接收端, 发送时频资源位置(0 , 0 )的发送符号 1在接收时 频资源位置( 0 , 0 )周围的其他接收时频资源位置上产生的干扰量大小, 称为多路复用转换器响应, 或者称为收发传输***的脉冲响应、滤波器 组干扰系数等,在本发明的实施例中,将其统称为多路复用转换器响应。 需要说明的是, 一般情况下, 收发两端的多路复用转换器确定后, 多路 复用转换器响应即确定。
表 1为一种典型的 FBMC***多路复用转换器响应的示例,其中, 行代表子载波的编号, 列代表多载波符号的编号; 表中的元素叫作多路 复用转换器响应, 表示发送时频资源位置(0 , 0 )的发送符号对接收时 频资源位置(0 , 0 )周围的接收时频资源位置的响应。 例如, 假设发送 时频资源位置 (0 , 0 ) 的发送符号为 发送时频资源位置 (0 , 0 )对 接收时频资源位置 的响应为 amn , 则 在接收时频资源位置 上产生的接收符号为 „ 。 如果不加处理, 该接收符号 ^ 将对发送 时频资源位置 的发送符号对应的有用接收符号产生干扰,其中, w、 «不同时为零。 另外, 表 1 中元素中的 j代表虚数单位。
表 1
多载波符号 -4 -3 -2 -1 0 1 2 3 4 子载波
-2 0 0.0006 -0.0001 0 0 0 -0.0001 0.0006 0
-1 0.0054 j.0429 -0.1250 -j.2058 0.2393 j.2058 -0.1250 -j.0429 0.0054 0 0 -0.0668 0.0002 0.5644 1 0.5644 0.0002 -0.0668 0
1 0.0054 -j.0429 -0.1250 j.2058 0.2393 -j.2058 -0.1250 j.0429 0.0054
2 0 0.0006 -0.0001 0 0 0 -0.0001 0.0006 0 从表 1 中可以看出, 在频域方向 (子载波方向) 上, 与子载波 0 相距 2个子载波 (子载波 ± 2 ) 或者大于 2个子载波的时频资源位置的 响应非常小, 可以忽略; 在时域方向 (多载波符号方向)上, 与多载波 符号 0相距 4个或者大于 4个多载波符号上的时频资源位置的响应非常 小, 可以忽略, 并且在子载波 0上, 与多载波符号 0相距 2个多载波符 号上的时频资源位置的响应非常小, 可以忽略。
综上所述, 在相同多载波符号上, 相邻子载波上的符号之间会相 互干扰,相距至少两个子载波上的符号之间基本无相互干扰; 在相同子 载波上,不同多载波符号上的符号之间的相互干扰可达到多个多载波符 号。
本实施例将多路复用转换器响应不可忽略的范围称为多路复用转 换器的干扰范围, 多路复用转换器的干扰范围包括: 频域干扰范围和时 域干扰范围。 例如,表 1中所示的多路复用转换器的干扰范围是以中心 位置为中心的 3 x7 范围内, 具体为: 以时频资源位置(0 , 0)为中心的、 频域 (子载波方向) 上共 3个时频资源位置, 时域 (多载波符号方向) 上共 7个时频资源位置所构成的范围。
由上可知, 当同一个多载波符号上的任意两个同步符号的发送时 频资源位置之间的间隔大于或等于频域干扰范围时,该多载波符号上任 需要说明的是, 该可选的实现方式是按照多路复用转换器在频域 上的干扰范围放置同步符号,当然还可以按照其他方式确定同步符号的 间隔等, 例如, 每隔一个或几个子载波放置一个同步符号。
102: 确定会和所述同步符号产生相互干扰的时频资源位置; 示例性的, 在 FBMC ***中, 由于数据符号一般为纯实数或纯虚 数,而与该数据符号对应的接收符号中的干扰量一般集中在该数据符号 不用的虚部或实部上, 因此在对接收符号进行信道均衡之后, 通过实虚 部分离的操作就可以消除符号间干扰,将该消除干扰的过程称为数据处 理过程。 同步过程和数据处理过程有较大的不同。 在同步过程中, 接收 端一般无法获得信道信息, 导致无法进行信道均衡, 所以无法通过实虚 部分离的操作来消除符号间干扰。 因此, 需要在发射端避免产生对同步 符号的干扰, 即需要确定会和同步符号产生相互干扰的时频资源位置。
进一步地, 步骤 102可以包括: 根据多路复用转换器响应, 将所述 同步符号的多路复用转换器响应在预设范围之内的时频资源位置作为 会和所述同步符号产生相互干扰的时频资源位置。
示例性的,预设范围可以为一个阔值, 同步符号的多路复用转换器 响应在预设范围内可以包括:同步符号的多路复用转换器响应小于或者 等于该阔值, 该阔值可以为: 零值或者一个很小的值(可以忽略) 。 当 同步符号的多路复用转换器响应小于或者等于该阔值时,则可以认为在 该响应所在的时频资源位置上发送的数据符号不会对同步符号产生干 扰。 该阔值可以根据经验或者实际需要进行设定。
103 : 在所述同步符号的发送时频资源位置上发送所述同步符号, 并在所述会和所述同步符号产生相互干扰的时频资源位置上发送保护 符号。
示例性的, 在会和同步符号产生相互干扰的时频资源位置上发送 保护符号, 用以避免数据符号对同步符号的干扰。
进一步地, 所述方法还可以包括: 确定所述同步符号的取值。
示例性的,每个同步符号的取值可以为发射端随机生成的一个实数 或者虚数, 为了降低接收端频率同步算法的复杂度, 可选的, 同一个多 载波符号上的同步符号的取值关于同步信号的中心频率对称。进一步可 选的, 同一个多载波符号上的同步符号的取值为实数。 其中降低接收端 频率同步算法的复杂度的方法可以参见下述具体实施例部分。
进一步地, 所述方法还可以包括: 确定所述保护符号的取值。
示例性的,在同步符号周围设置保护符号可以避免数据符号对同步 符号的干扰, 具体的, 所述保护符号的取值对所述同步符号的干扰量为 零。 可选的, 保护符号的取值为零。 根据多路复用转换器响应、所述同步符号的发送时频资源位置和所 述会和所述同步符号产生相互干扰的时频资源位置,确定所述保护符号 的取值。
示例性的, 保护符号的取值可以为零, 也可以为根据多路复用转 换器响应、同步符号的发送时频资源位置和会和所述同步符号产生相互 干扰的时频资源位置,以及保护符号的取值对所述同步符号的干扰量为 零的特性, 所设置的非零的取值, 具体可以参见下述实施例一的相关部 分。
进一步地, 该步骤 103 可以具体包括: 确定同步符号在频域上的 映射间隔,根据映射间隔和同步符号的取值放置所述同步符号。其中映 射间隔可以根据经验或者实际使用过程的需要进行设定。具体的, 由于 在干扰范围内, 映射间隔越大, 相邻同步符号之间的干扰越小, FBMC ***同步越精确, 但是映射间隔越大, 同步信号的开销会增多, 或者同 步信号中同步符号的个数相对少, 导致同步不准确; 因此可以根据同步 精度和开销的权衡确定同步符号在频域上的映射间隔。 进一步地,会和 同步符号产生相互干扰的时频资源位置根据同步符号在频域上的映射 间隔不同而不同。
本发明实施例提供的 FBMC ***中同步信号的发送方法, 通过确 定同步符号的发送时频资源位置,以及会和同步符号产生相互干扰的时 频资源位置, 在同步符号的发送时频资源位置上发送同步符号, 并在会 和所述同步符号产生相互干扰的时频资源位置上发送保护符号,实现了 使用一个同步信号实现 F B M C***的同步,从而减小了同步信号开销, 提高了频谱效率。 下面通过几个具体的实施例对上述方法进行举例说明。
实施例一
参见图 3 , 为一包含同步信号的多载波信号的示意图, 其中, 横坐 标表示多载波符号的编号, 纵坐标表示子载波的编号; 每个方格代表一 个时频资源位置:斜线标记的方格表示该时频资源位置上的符号为同步 符号; 空白方格表示该时频资源位置发送保护符号; 灰色标记的方格表 示该时频资源位置上的符号为数据符号。同步信号所在的时频资源位置 共占 M-2个子载波 (子载波编号为 1 ~Λ -2 ) , 同步符号所在的多载波 符号的编号为 nQ
参见图 4 ,为本发明实施例提供的一种 FBMC***中同步信号的发 送方法, 包括: 401: 确定同步符号的时域位置 (多载波符号《o ) ;
示例性的, 本实施例中同步符号两侧均设置保护符号。
402: 确定同步符号在频域上的映射间隔;
示例性的, 在同步符号所在符号 《0上的所有子载波上放置同步符 号 „。, 或者每隔一个或几个子载波放置一个同步符号 „。, 或者按照 多路复用转换器在频域上的干扰范围确定同步符号的间隔等。
例 1, 参见图 3, 在所有子载波上放置同步符号 „。。 从步骤 402 确定的同步符号开始的频域子载波位置放置同步符号^„ , 并满足 d =b 。
例 2, 参见图 5, 每隔一个子载波放置一个同步符号。 从步骤 402 确定的同步符号开始的频域子载波位置,每隔一个子载波放置同步符号 „。, 并满足 = „。。
例 3, 假设多路复用转换器在频域上的干扰范围为 N/, 每隔 N/个 子载波放置一个同步符号 „。, 并满足 = „。。 例如可以每隔 2个子 载波放置一个同步符号 „。 , 并满足 = b 。。
需要说明的是, 本发明实施例对确定同步符号在频域上的映射间 隔的方法不进行限定, 例如相邻两个同步符号之间的间距可以不相等。
403: 确定时频资源位置 O, «0)上的同步符号的取值;
示例性的, 时频资源位置 O ,« 0 )上的同步符号的取值可以为一个随 机数, 为了降低接收端频率同步算法的复杂度, 本实施例以, 同一个多 载波符号上的同步符号的取值关于同步信号的中心频率对称,且同一个 假设时频资源位置 0,«0)上的同步符号的取值为 , 其中, l m <M-2, 那么, 可表示如下:
η。 —- — , (^{1'¾-' /2-lj), M为偶数
- - — , {1,2,···,„ - Μ为奇数
404: 确定保护符号的时频资源位置;
具体的, 在时域上, 与同步符号的时域位置相邻的两侧的保护符 号的范围应大于多路复用转换器的时域干扰范围; 例如, 图 3中, 保护 符号子载波 两侧各包含 Ng个子载波上为保护符号, 其中, Ng为多 路复用转换器的时域干扰范围。在频域上,根据多路复用转换器的频域 干扰范围, 确定频域上的保护符号范围; 例如, 图 3中子载波 0和子载 波 上为保护符号。
需要说明的是, 在具体实现过程中, 步骤 403 和步骤 404 的执行 顺序可以颠倒。
405: 确定保护符号的取值;
示例性的,记时频资源位置 上的保护符号的取值为 „。 "满 足其对同步符号的干扰量为零的特性。
记同步符号所在时频资源位置为 Oo, n0) , 对时频资源位置 Oo, n0) 上的同步符号产生干扰的保护符号所在的时频资源位置为 O, n) , 对时 频资源位置 Οο, «Q)上的同步符号产生干扰的所有保护符号的位置集合 为 Ω„^ , 时频资源位置 Ο, «)上的保护符号在时频资源位置 OQ, «Q)产生 的多路复用转换器响应大小为 其中保护符号的时频资源位置 O , «)和集合 Ω„。 由步骤 404 确定, 多路复用转换器响应大小 由表 1 所示的多路复用转换器响应表确定。 那么, 时频资源位置 Ο, «)上的保 护符号取值为 „可通过求解如下方程得到,
示例性的, „的取值为零, 或者为符合一定规律的数值。
例 1 , c ^的取值为均为零。 参见图 3和图 5 , 图中所示的保护符号 均为零值。
例 2 , „的取值为符合一定规律的非零值数值。 举例说明, 参见 表 2为在时频二维资源位置上同步符号和保护符号所在位置示意图,在 时频二维资源格 3 X 5的范围内的时频资源位置( o, «0)和时频资源位置 Oo+2, wo)上分别发送同步符号 ^和 。 +2,„。, 其余时频资源位置发送保 护符号。 其中, 时频二维资源格 3 X 5的范围具体为: 频域 (子载波方 向)上共 3个时频资源位置, 时域(多载波符号方向)上共 5个时频资 源位置所构成的范围。
表 2
Figure imgf000014_0001
Figure imgf000015_0001
为了使得同步符号所受保护符号的干扰量为零, 每个时频资源位 置上的保护符号取值如表 3所示。 从表 3 中可以看出, ―„= +3,„, 其 中, 《=«Q-1,«Q, «Q+1。 即, 保护符号的取值以 4个子载波为周期重复。
表 3
Figure imgf000015_0003
例 3, c„的取值为符合一定规律的非零值数值或零值。举例说明, 每个时频资源位置上的保护符号取值如表 4所示。 从该表中可以看出, ― 其中, "=«Q-1, «Q, «Q+1。 即, 保护符号的取以 2个子载波为 周期重复。每个时频资源位置上的保护符号取值如表 5所示。从该表中 可以看出,
Figure imgf000015_0002
其中, "="0-1,"0,"0+1。 即, 保护符号的取值以 4个子载波为周期重复。
表 4
Figure imgf000015_0004
Figure imgf000016_0001
406: 根据同步符号的时频资源位置和取值、 保护符号的时频资源 位置和取值, 发送同步符号和保护符号。
下面说明利用上述方法发送同步信号, 可以降低接收端频率同步 算法的复杂度:
在上述发送同步信号的方法中, 由于同步符号 为实数, 且关于 中心子载波对称, 因此发射端发送的同步符号 ί)满足关于同步信号的 中心频率对称的性质, 即:
Figure imgf000016_0002
m G {l,2,.... /2-l}, M为偶 数, 或者 w e {1,2,.... (Λ/-1)/2-1}, 为奇数。
假设接收端在第 i+ r时刻接收到发射端在第 ί 时刻发送的同步信 号 r(i+ r), 其中 r为延迟时间。 将接收端获取关于时刻 i+ r对称的接 收符号分别表示为 和 其中, x+[w]= r[(i+ τ)+ιη], x.[m]= r[(t+ r)-m]0 那么, 在接收端, 频率同步可通过如下频偏估计算法实现:
/2-1
为偶数)
m二 1 4πηι x_[m]
(M— 1)/2— 1
w.
-z ] (Af为奇数)
m二 1 Απτη i x [m]
m
其中, wm =^^表示线性权重系数, ζ(·)为取变量角度的操作运算
1
符。 和 两个釆样点的距离对频偏估计效果有较大的影响, 一 般来说, 离得较近的釆样点估计出的频偏更容易受干扰和噪声的影响, 因此通过权重系数使距离较近的釆样点所估计出的频偏结果具有较小的 权重系数,而离得较远的釆样, 所估计的频偏结果具有较大的权重系数。 从而使平均后的结果更加准确。
实施例二
本实施例基于实施例一, 为了描述简洁, 此处仅描述与实施例一 不同的地方:
根据多路复用转换器响应为零或者接近零的时频位置资源上发送 数据符号, 即不作为保护符号。 以多路复用转换器响应为表 1为例进行 说明,由表 1可知,在时频资源位置 00的发送符号 1所在的子载波上, 与该发送符号 1相距两个多载波符号的时频资源位置上的响应( 0.0002 ) 接近零, 因此可以在此两个时频资源位置上发送数据符号, 具体可参见 图 6。
与实施例一相比, 本实施例降低了同步信号的开销。
实施例三
与实施例一和实施例二的不同之处在于, 本实施例中的同步信号 位于一次连续信号传输的开始位置或结束位置,在同步信号中的同步符 号的两侧有保护符号, 但是保护符号所在的时频资源位置不对称。
1 ) 同步信号位于一次连续信号传输的结束位置
参见图 7 (a) 为基于实施例一例 2中的同步信号, 参见图 7 (b) 为基于实施例二的同步信号。
2) 同步信号位于一次连续信号传输的开始位置
参见图 7 (c) 为基于实施例一的同步信号, 参见图 7 ( d) 为基于 实施例二的同步信号。
本实施例基于实施例一的同步信号与实施例一确定的同步信号相 比, 或者, 本实施例基于实施例二的同步信号与实施例二确定的同步信 号相比, 均可以降低同步信号的开销。
实施例四
与实施例一和实施例二的不同之处在于, 本实施例中的同步信号 位于一次连续信号传输的开始位置或结束位置,只在同步信号中的同步 符号的一侧有保护符号。
下面分两种情况对该实施例进行说明:
1 ) 同步信号位于一次连续信号传输的结束位置
参见图 8 (a) 为基于实施例一例 2中的同步信号, 参见图 8 (b) 为基于实施例二的同步信号。
该情况下, 仅在同步符号的之前有保护符号。
2) 同步信号位于一次连续信号传输的开始位置
参见图 8 (c) 为基于实施例一的同步信号, 参见图 8 ( d) 为基于 实施例二的同步信号。
该情况下, 仅在同步符号的之后有保护符号。 本实施例的 1 ) 与实施例三的 1 ) 相比, 或者, 本实施例的 2 ) 与 实施例三的 2 ) 相比, 均可以降低同步信号的开销。
本发明实施例提供的 FBMC ***中同步信号的发送方法, 通过确 定同步符号的发送时频资源位置,以及会和同步符号产生相互干扰的时 频资源位置, 在同步符号的发送时频资源位置上发送同步符号, 并在会 和所述同步符号产生相互干扰的时频资源位置上发送保护符号,实现了 使用一个同步信号实现 F B M C***的同步,从而减小了同步信号开销, 提高了频谱效率。 一方面, 参见图 9 , 为本发明实施例提供的一种同步信号发送装置 90 , 可以应用于 FBMC ***中, 用以执行图 1 所示的同步信号的发送 方法, 该装置 90可以包括:
第一确定单元 901 , 用于确定同步符号的发送时频资源位置和取值; 第二确定单元 902 , 用于确定会和所述同步符号产生相互干扰的时 频资源位置;
发送单元 903 , 用于在所述同步符号的时频资源位置发送所述同步 符号,并在所述会和所述同步符号产生相互干扰的时频资源位置上发送 保护符号。
进一步地,所述同步符号的发送时频资源位置位于一次连续信号传 输的开始位置或者结束位置的至少一个多载波符号上。
可选的, 所述第二确定单元 902具体用于,根据多路复用转换器响 应,将所述同步符号的多路复用转换器响应在预设范围之内的时频资源 位置作为会和所述同步符号产生相互干扰的时频资源位置。
可选的,当所述同步符号的发送时频资源位置位于一次连续信号传 输的开始位置的至少一个多载波符号上时,所述会和所述同步符号产生 相互干扰的时频资源位置位于同步符号所在的多载波符号之后的至少 一个多载波符号上;
或者,当所述同步符号的发送时频资源位置位于一次连续信号传输 的结束位置的至少一个多载波符号上时,所述会和所述同步符号产生相 互干扰的时频资源位置位于同步符号所在的多载波符号之前的至少一 个多载波符号上。
可选的, 所述第一确定单元 901具体用于, 根据多路复用转换器响应确定同步符号的频域干扰范围; 根据所述频域干扰范围确定同步符号的发送时频资源位置,其中同 一个多载波符号上的任意两个所述同步符号的发送时频资源位置之间 的间隔大于或等于所述频域干扰范围。
进一步地, 参见图 10 , 所述装置 90还包括:
第三确定单元 904 , 用于确定所述同步符号的取值; 其中同一个多 载波符号上的同步符号的取值关于同步信号的中心频率对称。
可选的, 同一个多载波符号上的同步符号的取值为实数。
进一步地, 参见图 10 , 所述装置 90还包括:
第四确定单元 905 , 用于确定所述保护符号的取值; 其中所述保护 符号的取值对所述同步符号的干扰量为零。
可选的, 保护符号的取值为零。
可选的, 所述第四确定单元 905具体用于,根据多路复用转换器响 应、所述同步符号的发送时频资源位置和所述会和所述同步符号产生相 互干扰的时频资源位置, 确定所述保护符号的取值。
本发明实施例提供的 FBMC ***中同步信号的发送装置, 通过确 定同步符号的发送时频资源位置,以及会和同步符号产生相互干扰的时 频资源位置, 在同步符号的发送时频资源位置上发送同步符号, 并在会 和所述同步符号产生相互干扰的时频资源位置上发送保护符号,实现了 使用一个同步信号实现 F B M C***的同步,从而减小了同步信号开销, 提高了频谱效率。 一方面, 参见图 11 , 为本发明实施例提供的一种同步信号发送装 置 90 , 可以应用于 FBMC***中, 用以执行图 1所示的同步信号的发 送方法,该装置 90可以包括:存储器 1101、处理器 1102 ,发送器 1103 , 其中,
存储器 1101 , 用于存储一组代码, 该代码用于控制处理器 1102执 行^口下动作:
确定同步符号的发送时频资源位置;
确定会和所述同步符号产生相互干扰的时频资源位置;
发送器 1103 , 用于在所述同步符号的发送时频资源位置发送所述 同步信号,并在所述会和所述同步符号产生相互干扰的时频资源位置上 发送保护符号。
进一步地,所述同步符号的发送时频资源位置位于一次连续信号传 输的开始位置或者结束位置的至少一个多载波符号上。
可选的, 所述处理器 1102具体用于, 根据多路复用转换器响应, 将所述同步符号的多路复用转换器响应在预设范围之内的时频资源位 置作为会和所述同步符号产生相互干扰的时频资源位置。
可选的,当所述同步符号的发送时频资源位置位于一次连续信号传 输的开始位置的至少一个多载波符号上时,所述会和所述同步符号产生 相互干扰的时频资源位置位于同步符号所在的多载波符号之后的至少 一个多载波符号上;
或者,当所述同步符号的发送时频资源位置位于一次连续信号传输 的结束位置的至少一个多载波符号上时,所述会和所述同步符号产生相 互干扰的时频资源位置位于同步符号所在的多载波符号之前的至少一 个多载波符号上。
可选的, 所述处理器 1102具体用于,
根据多路复用转换器响应确定同步符号的频域干扰范围; 根据所述频域干扰范围确定同步符号的发送时频资源位置,其中同 一个多载波符号上的任意两个所述同步符号的发送时频资源位置之间 的间隔大于或等于所述频域干扰范围。
处理器 1102还用于确定所述同步符号的取值; 其中同一个多载波 符号上的同步符号的取值关于同步信号的中心频率对称。
可选的, 同一个多载波符号上的同步符号的取值为实数。
处理器 1102还用于确定所述保护符号的取值; 其中所述保护符号 的取值对所述同步符号的干扰量为零。
可选的, 保护符号的取值为零。
可选的, 处理器 1102具体用于, 根据多路复用转换器响应、 所述 同步符号的发送时频资源位置和所述会和所述同步符号产生相互干扰 的时频资源位置, 确定所述保护符号的取值。
本发明实施例提供的 FBMC ***中同步信号的发送装置, 通过确 定同步符号的发送时频资源位置,以及会和同步符号产生相互干扰的时 频资源位置, 在同步符号的发送时频资源位置上发送同步符号, 并在会 和所述同步符号产生相互干扰的时频资源位置上发送保护符号,实现了 使用一个同步信号实现 F B M C***的同步,从而减小了同步信号开销, 提高了频谱效率。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述的***, 装置和单元的具体工作过程, 可以参考前述方法实施 例中的对应过程, 在此不再赘述。 在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际 实现时可以有另外的划分方式,例如多个单元或组件可以结合或一些特 征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信 连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开 的,作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于 一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选 择其中的部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理 单元中, 也可以是各个单元单独物理包括,也可以两个或两个以上单元 集成在一个单元中。上述集成的单元既可以釆用硬件的形式实现, 也可 以釆用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个 计算机可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的部分步骤。 而前述 的存储介质包括: U盘、 移动硬盘、 只读存储器(Read-Only Memory, 简称 ROM )、随机存取存储器( Random Access Memory, 简称 RAM )、 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案 进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替 换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和 范围。

Claims

权 利 要求 书
1、 一种 FBMC***中同步信号的发送方法, 其特征在于, 包括: 确定同步符号的发送时频资源位置;
确定会和所述同步符号产生相互干扰的时频资源位置;
在所述同步符号的发送时频资源位置上发送所述同步符号, 并在所 述会和所述同步符号产生相互干扰的时频资源位置上发送保护符号。
2、 根据权利要求 1所述的方法, 其特征在于,
所述同步符号的发送时频资源位置位于一次连续信号传输的开始位 置或者结束位置的至少一个多载波符号上。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述确定会和所 述同步符号产生相互干扰的时频资源位置, 包括:
根据多路复用转换器响应, 将所述同步符号的多路复用转换器响应在 预设范围之内的时频资源位置作为会和所述同步符号产生相互干扰的时 频资源位置。
4、 根据权利要求 2所述的方法, 其特征在于,
当所述同步符号的发送时频资源位置位于一次连续信号传输的开始 位置的至少一个多载波符号上时, 所述会和所述同步符号产生相互干扰 的时频资源位置位于同步符号所在的多载波符号之后的至少一个多载波 符号上;
或者, 当所述同步符号的发送时频资源位置位于一次连续信号传输 的结束位置的至少一个多载波符号上时, 所述会和所述同步符号产生相 互干扰的时频资源位置位于同步符号所在的多载波符号之前的至少一个 多载波符号上。
5、 根据权利要求 1所述的方法, 其特征在于, 所述确定同步符号的 发送时频资源位置, 包括:
根据多路复用转换器响应确定同步符号的频域干扰范围;
根据所述频域干扰范围确定同步符号的发送时频资源位置, 其中同 一个多载波符号上的任意两个所述同步符号的发送时频资源位置之间的 间隔大于或等于所述频域干扰范围。
6、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 确 定所述同步符号的取值; 其中同一个多载波符号上的同步符号的取值关 于同步信号的中心频率对称。
7、 根据权利要求 6所述的方法, 其特征在于, 同一个多载波符号上 的同步符号的取值为实数。
8、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 确 定所述保护符号的取值; 其中所述保护符号的取值对所述同步符号的干 扰量为零。
9、根据权利要求 8所述的方法,其特征在于,保护符号的取值为零。
10、 根据权利要求 8 所述的方法, 其特征在于, 所述确定所述保护 符号的取值, 包括:
根据多路复用转换器响应、 所述同步符号的发送时频资源位置和所 述会和所述同步符号产生相互干扰的时频资源位置, 确定所述保护符号 的取值。
11、 一种 FBMC***中同步信号发送装置, 其特征在于, 包括: 第一确定单元, 用于确定同步符号的发送时频资源位置;
第二确定单元, 用于确定会和所述同步符号产生相互干扰的时频资 源位置;
发送单元, 用于在所述同步符号的发送时频资源位置上发送所述同 步符号; 并在所述会和所述同步符号产生相互干扰的时频资源位置上发 送保护符号。
12、 根据权利要求 11所述的装置, 其特征在于,
所述同步符号的发送时频资源位置位于一次连续信号传输的开始位 置或者结束位置的至少一个多载波符号上。
13、 根据权利要求 11 或 12所述的装置, 其特征在于, 所述第二确 定单元具体用于, 根据多路复用转换器响应, 将所述同步符号的多路复 用转换器响应在预设范围之内的时频资源位置作为会和所述同步符号产 生相互干扰的时频资源位置。
14、 根据权利要求 12所述的装置, 其特征在于,
当所述同步符号的发送时频资源位置位于一次连续信号传输的开始 位置的至少一个多载波符号上时, 所述会和所述同步符号产生相互干扰 的时频资源位置位于同步符号所在的多载波符号之后的至少一个多载波 符号上;
或者, 当所述同步符号的发送时频资源位置位于一次连续信号传输 的结束位置的至少一个多载波符号上时, 所述会和所述同步符号产生相 互干扰的时频资源位置位于同步符号所在的多载波符号之前的至少一个 多载波符号上。
15、 根据权利要求 11所述的装置, 其特征在于, 所述第一确定单元 具体用于,
根据多路复用转换器响应确定同步符号的频域干扰范围;
根据所述频域干扰范围确定同步符号的发送时频资源位置, 其中同 一个多载波符号上的任意两个所述同步符号的发送时频资源位置之间的 间隔大于或等于所述频域干扰范围。
16、 根据权利要求 1 1所述的装置, 其特征在于, 所述装置还包括: 第三确定单元, 用于确定所述同步符号的取值; 其中同一个多载波 符号上的同步符号的取值关于同步信号的中心频率对称。
17、 根据权利要求 16所述的装置, 其特征在于, 同一个多载波符号 上的同步符号的取值为实数。
18、 根据权利要求 1 1所述的装置, 其特征在于, 所述装置还包括: 第四确定单元, 用于确定所述保护符号的取值; 其中所述保护符号 的取值对所述同步符号的干扰量为零。
19、 根据权利要求 18所述的装置, 其特征在于, 保护符号的取值为
20、 根据权利要求 18所述的装置, 其特征在于, 所述第四确定单元具体用 于, 根据多路复用转换器响应、 所述同步符号的发送时频资源位置和所述 会和所述同步符号产生相互干扰的时频资源位置, 确定所述保护符号的取 值。
PCT/CN2014/081001 2013-06-27 2014-06-27 一种fbmc***中同步信号的发送方法和装置 WO2014206348A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14817870.0A EP2999183B1 (en) 2013-06-27 2014-06-27 Synchronizing signal transmitting method and device in fbmc system
US14/962,856 US9906394B2 (en) 2013-06-27 2015-12-08 Method and apparatus for sending synchronization signal in FBMC system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310271847.9 2013-06-27
CN201310271847.9A CN104253680B (zh) 2013-06-27 2013-06-27 一种fbmc***中同步信号的发送方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/962,856 Continuation US9906394B2 (en) 2013-06-27 2015-12-08 Method and apparatus for sending synchronization signal in FBMC system

Publications (1)

Publication Number Publication Date
WO2014206348A1 true WO2014206348A1 (zh) 2014-12-31

Family

ID=52141108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081001 WO2014206348A1 (zh) 2013-06-27 2014-06-27 一种fbmc***中同步信号的发送方法和装置

Country Status (4)

Country Link
US (1) US9906394B2 (zh)
EP (1) EP2999183B1 (zh)
CN (1) CN104253680B (zh)
WO (1) WO2014206348A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108650205A (zh) * 2018-04-10 2018-10-12 东南大学 适用于fbmc传输的并行数据处理方法及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102275054B1 (ko) * 2014-06-18 2021-07-09 삼성전자주식회사 Fbmc 시스템에서 심볼을 송수신하는 기법
CN105847209B (zh) * 2015-01-16 2020-09-29 北京三星通信技术研究有限公司 基于滤波器组多载波调制的通信方法和装置
KR102299663B1 (ko) * 2015-02-24 2021-09-08 삼성전자 주식회사 이동 통신 시스템에서 동기화 방법 및 장치
WO2016197324A1 (zh) * 2015-06-09 2016-12-15 华为技术有限公司 一种信号处理方法、装置及***
CN106572043B (zh) * 2015-10-09 2019-12-20 普天信息技术有限公司 一种传输消息的方法和***
CN106230761B (zh) * 2016-07-22 2019-05-14 中南大学 一种基于零自相关码的fbmc***的同步方法
CN106301572B (zh) * 2016-08-08 2019-08-23 上海交通大学 用于光fbmc传输***的低开支信道估计方法及应用***
WO2018053801A1 (zh) 2016-09-23 2018-03-29 华为技术有限公司 一种资源映射方法、发送端以及接收端
CN110741697B (zh) 2017-03-15 2024-04-26 Oppo广东移动通信有限公司 用于传输同步信号的方法和设备
CN109474984B (zh) * 2017-09-07 2021-06-04 展讯通信(上海)有限公司 主同步信号检测方法及装置、用户终端及可读存储介质
CN108809880B (zh) * 2018-04-23 2020-11-20 东南大学 一种低复杂度的mimo-fbmc***数据收发方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315808A (zh) * 2000-03-27 2001-10-03 ***电信科学技术研究院 一种码分多址数字移动通信***的小区初始搜索方法
CN101860497A (zh) * 2010-05-24 2010-10-13 北京科技大学 一种利用改进球译码算法实现fbmc***的均衡的方法
CN102497348A (zh) * 2011-12-18 2012-06-13 浙江大学 一种提高滤波器组多载波***抗时域干扰能力的方法
US20120243625A1 (en) * 2011-03-25 2012-09-27 Vincent Berg Treatment process of a multicarrier signal with filter banks for synchronisation by preamble

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876842B2 (en) * 2006-04-14 2011-01-25 Panasonic Corporation Multicarrier transmission method, multicarrier modulation signal transmission apparatus, multicarrier modulation signal reception apparatus, multicarrier modulation signal transmission method, and pilot signal generation method
CN103368889B (zh) * 2012-03-29 2016-06-29 上海贝尔股份有限公司 滤波器组多载波信号发射及信道估计的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315808A (zh) * 2000-03-27 2001-10-03 ***电信科学技术研究院 一种码分多址数字移动通信***的小区初始搜索方法
CN101860497A (zh) * 2010-05-24 2010-10-13 北京科技大学 一种利用改进球译码算法实现fbmc***的均衡的方法
US20120243625A1 (en) * 2011-03-25 2012-09-27 Vincent Berg Treatment process of a multicarrier signal with filter banks for synchronisation by preamble
CN102497348A (zh) * 2011-12-18 2012-06-13 浙江大学 一种提高滤波器组多载波***抗时域干扰能力的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2999183A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108650205A (zh) * 2018-04-10 2018-10-12 东南大学 适用于fbmc传输的并行数据处理方法及装置
CN108650205B (zh) * 2018-04-10 2020-10-02 东南大学 适用于fbmc传输的并行数据处理方法及装置

Also Published As

Publication number Publication date
EP2999183A1 (en) 2016-03-23
US20160094377A1 (en) 2016-03-31
US9906394B2 (en) 2018-02-27
EP2999183B1 (en) 2017-11-15
EP2999183A4 (en) 2016-05-18
CN104253680A (zh) 2014-12-31
CN104253680B (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2014206348A1 (zh) 一种fbmc***中同步信号的发送方法和装置
WO2018199162A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018199243A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018199074A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018143405A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018143402A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
KR101282817B1 (ko) 무선 통신 시스템의 레퍼런스 신호 및 데이터에 대한 효율적 멀티플렉싱
AU2011221690B2 (en) Aperiodic transmission method and apparatus for sounding reference signal in wireless communication system
CN107306238B (zh) 载波调制信号的接收、发送方法及相应接收机与发射机
EP3245771B1 (en) Apparatus and method of providing a flexible guard interval for block single carrier transmission
WO2018116788A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2023011680A (ja) シングルキャリア周波数分割多元接続(sc-fdma)およびofdmaを用いた柔軟性のある参照信号送信のための方法
WO2018123468A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
EP1855433A2 (en) Radio transmission method, radio reception method, radio transmission apparatus and radio reception apparatus
JP2013509830A (ja) ワイヤレス通信システムにおいて基準信号とデータを多重化する方法および装置
WO2018059330A1 (zh) 数据传输方法及通信设备
JP2016517653A (ja) 無線通信システムで端末間の直接通信を用いた信号受信方法
KR101498297B1 (ko) 무선 통신 시스템에서 데이터 전송 방법
EP2957081A1 (en) Zero insertion for isi free ofdm reception
EP2633660A1 (en) Method and arrangement in wireless communications system
JP2009164754A (ja) 無線通信システムにおける信号多重方法および送信局
KR20150064595A (ko) 가변 가능한 보호 구간을 이용한 데이터 송수신 방법 및 그 장치
CN103516654B (zh) 频偏估计方法及***
WO2015192359A1 (zh) 数据发送、接收方法、装置及设备
TWI482445B (zh) 用於在多天線ofdm系統中選取循環延遲的方法和系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817870

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014817870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014817870

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE