WO2014205884A1 - 一种基于零点分析的时差式超声波流量计测量方法 - Google Patents

一种基于零点分析的时差式超声波流量计测量方法 Download PDF

Info

Publication number
WO2014205884A1
WO2014205884A1 PCT/CN2013/080114 CN2013080114W WO2014205884A1 WO 2014205884 A1 WO2014205884 A1 WO 2014205884A1 CN 2013080114 W CN2013080114 W CN 2013080114W WO 2014205884 A1 WO2014205884 A1 WO 2014205884A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
zero
point
signal
time
Prior art date
Application number
PCT/CN2013/080114
Other languages
English (en)
French (fr)
Inventor
朱浩
徐方明
闫丽
韩宇琦
Original Assignee
国家电网公司
国网电力科学研究院
南京南瑞集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网电力科学研究院, 南京南瑞集团公司 filed Critical 国家电网公司
Publication of WO2014205884A1 publication Critical patent/WO2014205884A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Definitions

  • the invention relates to an ultrasonic flowmeter measuring method, in particular to a time difference type ultrasonic flowmeter measuring method based on zero point analysis. Background technique
  • the ultrasonic flowmeter has no moving parts and can realize non-contact high-precision measurement. It has the advantages of wide measuring range, no pressure loss, good traceability, and insensitivity to cost variation. It can be used to measure various types of round pipes, square culverts, open channels, etc. The measurement of the flow of liquid or gas in the section, especially in the measurement of medium and large pipe diameters has obvious advantages.
  • the time difference method ultrasonic flowmeter has the advantages of simple measurement method and high measurement accuracy, and has been receiving much attention.
  • the principle of the time difference method ultrasonic flowmeter is to calculate the flow rate based on the difference between the downstream propagation time of the ultrasonic signal and the countercurrent propagation time, thereby calculating the flow rate.
  • the time difference type ultrasonic flowmeter adopts a threshold comparison method to obtain the propagation time of the forward and backward ultrasonic waves in the fluid.
  • the working principle of the time difference method ultrasonic flowmeter is shown in Figure 1.
  • This is a flow measurement diagram of a pressurized pipeline.
  • the "CPU” controls the entire measurement process, and the “transmitting circuit” is used to transmit a pulse drive signal to the transducer.
  • the transceiver conversion circuit “controls whether each transducer operates in a transmitting state or a receiving state, and the "filtering amplifying circuit” filters out noise in the received waveform and adjusts the amplitude of the waveform, and then sends it to the "threshold comparison circuit” for determining the ultrasonic propagation time.
  • the other way is to "A/D conversion” to digitally quantize the waveform and provide it to the CPU for further processing.
  • Ultrasonic transducers A and B are a pair of transducers in the same acoustic path, one of which acts as a transmitting transducer and the other as a receiving transducer. As shown, when the ultrasonic waves flow downstream from the transducer A The time elapsed until the transducer B receives is the downstream propagation time Tu, which is the countercurrent propagation time Td when the ultrasonic countercurrent is sent from the transducer B to the transducer A.
  • the ultrasonic signal propagates in the fluid, and the propagation speed is faster than that of the countercurrent when the flow is downstream.
  • the corresponding downstream propagation time Tu is shorter than the countercurrent propagation time Td, so that there is a difference (instant difference) between the propagation time of the acoustic wave signal in the forward flow direction.
  • the time difference method ultrasonic flowmeter measures the linear relationship between the fluid flow rate and the time difference. As long as the forward flow time is accurately measured, the instantaneous flow rate can be obtained:
  • Equation 1 the key to the time difference ultrasonic flowmeter is how to obtain accurate forward flow propagation time.
  • the abscissa axis is time t
  • the ordinate axis is the ultrasonic receiving signal amplitude V.
  • the forward countercurrent propagation time T is pulsed from the transmitting transducer. The time elapsed from the time the signal is received until the receiver receives the signal for the first time to cut the threshold level.
  • the threshold voltage will drift with the receiving signal cutting time point for the first time, which will result in inaccurate propagation time measurement, thus affecting the dynamic measurement accuracy of the time difference ultrasonic flowmeter.
  • the thresholds may be cut with the ultrasonic receiving signal for the first time at , b, c, etc., resulting in different propagation times.
  • the object of the present invention is to find a new method to solve the deficiencies of the prior art. Summary of the invention
  • the present invention aims to provide a time difference type ultrasonic flowmeter measuring method based on zero point analysis, which can detect zero point in the case of weak signal, large fluctuation and strong interference. Accurately measure the forward flow time of the ultrasonic signal in the fluid, greatly improve the measurement accuracy of the time difference method ultrasonic flowmeter, and completely solve the problems caused by the existing threshold comparison method.
  • the method for measuring a time difference type ultrasonic flowmeter based on zero point analysis is characterized in that: according to the receiving transducer of the time difference type ultrasonic flowmeter, when receiving the ultrasonic signal, Will generate and output an electrical signal y(t) across its electrodes, ie
  • r(t) is the modulation function for time t, f.
  • is the initial phase, and the initial phase ⁇ is set to zero.
  • the image is found according to the co S (2 f Q t) function image to find the first zero point ultrasonic signal arrival time point in the ultrasonic receiving signal;
  • Pulse drive signal data acquisition After the pulse drive signal is issued, A/D conversion of the time difference type ultrasonic flowmeter is started to perform data acquisition, Collect the number of data i, the data collected at the moment, where i is a natural number;
  • step (3) Select at least 3 adjacent zero crossings and judge whether it is the zero crossing of the ultrasonic signal. After the zero crossing analysis of the above step (2), select at least three zero crossing points z q — i, z q , z q+ 1 , where q is a natural number, and l ⁇ q ⁇ il;
  • ⁇ and ⁇ 2 are the error rates of the positive and negative half waves of the ultrasonic signal caused by the transducer
  • the next adjacent point is selected to continue the ultrasonic zero point analysis condition judgment, and if all the zero crossing points do not satisfy the ultrasonic zero point analysis rule condition, return to step (1); (4) Select the first zero-crossing point in the ultrasonic receiving signal to determine the arrival time of the ultrasonic signal, and calculate the forward-current propagation time; according to the above step (4), select Z Q , 3 ⁇ 4, 2 2 as the adjacent three ultrasonic signals.
  • Z Q is the first ultrasonic zero-crossing time point for starting data acquisition by A/D conversion in the ultrasonic receiving signal; then, the forward-current propagation time T,
  • T g is the time from the pulse drive signal to the start of A / D conversion for data acquisition, ! It is the time between the start of the A/D conversion data acquisition and the occurrence of the first ultrasonic zero-crossing time point Z Q .
  • is the angle between the flow velocity and the ultrasonic propagation path
  • the ultrasonic signal zero point analysis method of the present invention the ultrasonic signal zero point is not affected by the external environment, even if the signal waveform is too weak or the amplitude of the signal waveform appears large fluctuation, it does not affect Zero point detection; If a strong interference signal occurs, it is directly filtered without affecting the condition of the zero point analysis method, and does not affect the detection of the zero point. In the case of weak signal, large fluctuation and strong interference, it can be detected. Zero point, accurately measure the forward flow propagation time of the ultrasonic signal in the fluid, greatly improve the measurement accuracy of the time difference method ultrasonic flowmeter, and completely solve the problems caused by the existing threshold comparison method.
  • FIG. 1 is a schematic diagram of a measurement principle of a conventional time difference type ultrasonic flowmeter
  • FIG. 2 is a schematic diagram of a pulse wave received by a receiving transducer of a conventional time difference type ultrasonic flowmeter
  • FIG. 3 is a schematic diagram of ultrasonic waves received by a receiving transducer of the time difference type ultrasonic flowmeter of the present invention
  • FIG. 4 is a zero point analysis of the present invention. Flow chart of the method. Detailed ways
  • the invention mainly measures the forward flow propagation time T accurately, and provides a measurement method of the time difference type ultrasonic flowmeter based on the zero point analysis, wherein the ultrasonic signal propagates in the fluid, and the propagation speed is faster when the flow is downstream than when the flow is reversed. Its downstream propagation time T u is shorter than the countercurrent propagation time T d , so that there is a difference (instant difference) in the propagation time of the acoustic wave signal in the forward flow direction.
  • the time difference method ultrasonic flowmeter measures the linear relationship between the fluid flow rate and the time difference. As long as the forward flow time is accurately measured, the instantaneous flow rate can be obtained:
  • is the angle between the flow velocity and the ultrasonic propagation path. If the pipe area is S, the pipe can be obtained.
  • Equation 1 the key to the time difference ultrasonic flowmeter is how to get accurate forward flow propagation time.
  • the environmental noise mainly affects the part of the modulation signal r(t). There is no effect on the C0S (2 f Q t) part, so the zero point is not affected by the modulation signal r(t), ie it is not affected by the amplitude fluctuation of the signal y(t).
  • the first zero point of COS (27if Q t) is used as a sign to judge the arrival of the received ultrasonic signal, which can solve the problem of misjudgement of the arrival time due to environmental noise, so that the forward flow propagation can be accurately measured. Time, overcoming the shortcomings of the threshold comparison method.
  • the measuring method of the time difference type ultrasonic flowmeter based on zero point analysis of the embodiment has the following steps:
  • the A/D conversion of the time difference type ultrasonic flowmeter is started to perform data acquisition, and the number of data i is collected, and the acquired data time point Zi , where i is a natural number, and i is the data to be analyzed in the received signal. The number.
  • the adjacent three zero-crossing points z q — z q , z q+ B can satisfy the following conditions, that is, the ultrasonic zero-crossing rule condition, then the three points are ultrasonic signals.
  • the ultrasonic zero-crossing rule condition is as follows:
  • Ultrasonic signal half-wavelength* ( 1 ) ⁇ Z q half-wavelength between 1 and £1 ⁇ ultrasonic signal half-wavelength* ( 1+5:) ;
  • 5 1 and 5 2 are the error rate of the positive and negative half waves of the ultrasonic signal caused by the transducer; the method of analyzing the waveform according to the above conditions to obtain the zero point of the ultrasonic signal is the zero point analysis method, and the zero point analysis method is satisfied for the first time.
  • the first zero point of the condition is the ultrasonic signal arrival time point Z Q; when the above ultrasonic zero-crossing rule condition is not met, the next adjacent point is selected to continue the ultrasonic zero-crossing rule condition determination, if all the zero-crossing points do not satisfy the ultrasonic wave
  • the zero-law condition returns to step (1); this method no longer relies on threshold comparison, and the "threshold comparison circuit" in Figure 1 can be completely removed.
  • the ultrasonic signal and all its zero points can be identified from the signal data containing noise.
  • Z Q , and 2 2 are selected as adjacent zero-crossing points, and Z Q is the first zero-crossing time point for starting data transmission in the ultrasonic receiving signal to start A/D conversion, and the ultrasonic zero-crossing rule condition is judged.
  • Z 2 , 3 ⁇ 4 according to the zero point analysis method, it is found that 3 ⁇ 4 is also the ultrasonic signal zero point, and so on Z 4 is also the ultrasonic signal zero point, if necessary, can continue to analyze according to this, until all the zero points of the ultrasonic signal are found; if it has passed into step (4);
  • L is the ultrasonic wavelength
  • Z Q , , Z 2 are selected as the adjacent three ultrasonic signal zero-crossing points, wherein Z Q is the start A/D conversion in the ultrasonic receiving signal.
  • the first ultrasonic zero-crossing time point of data acquisition, T G is the time from the pulse driving signal to the start of "A/D conversion”! It is the time from the start of "A/D conversion” to the occurrence of the first zero point Z Q , measured! After that, the forward flow propagation time T can be obtained, that is,
  • the ultrasonic signal When actually receiving the ultrasonic signal, it should be at zero point 2. When you reach the time, you can open the "A/D conversion" for data acquisition. If you open too early or too late, you may miss the valid waveform. Generally, you can control it by ⁇ to make the zero point. 2. Try to be in the middle of the entire waveform data. This must be at zero 2. Before introducing an unrelated noise signal (signal region corresponding to T z ), and not simply obtaining the value of y to zero, the arrival time of the zero point Z 0 needs to be analyzed separately, and the characteristics of the noise waveform and the ultrasonic signal waveform need to be separately analyzed. In the present embodiment, the above steps (1) - (3) are used to determine which are the noise zeros and which are the zero points of the ultrasonic signals, thereby further accurately determining the forward flow propagation time value.
  • is the angle between the flow velocity and the ultrasonic propagation path
  • the S pipe area of the present invention through the ultrasonic signal zero point analysis method the ultrasonic signal zero point is not affected by the external environment, even if the signal waveform is too weak or the signal waveform amplitude appears large fluctuations, does not affect the detection of the zero point;
  • the interference signal because it does not meet the conditions of the zero point analysis method, is directly filtered, and does not affect the detection of the zero point. In the case of weak signal, large fluctuation and strong interference, the zero point can be detected, and the ultrasonic signal is accurately measured.
  • the forward flow propagation time in the fluid greatly improves the measurement accuracy of the time difference method ultrasonic flowmeter, and completely solves the problems caused by the existing threshold comparison method.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种基于零点分析的时差式超声波流量计的测量方法,是通过零点分析法准确确定顺逆流传播时间的方法,包括:(1)发出脉冲驱动信号后,启动A/D转换进行数据采集;(2)寻找零点值;(3)至少选择3个相邻过零点,并判断是否为超声波信号过零点;(4)选取超声波接收信号中的第一个过零点来确定超声信号到达时刻,计算出顺逆流传播时间;(5)通过顺逆流传播时间计算所测断面的瞬时流量。该方法的超声波信号零点不受外部环境的影响,即使在信号较弱、波动较大以及干扰强烈的情况下,均能检测到零点,准确测量出超声波信号在流体中的顺逆流传播时间,极大地提高了时差法超声波流量计的计量精度。

Description

一种基于零点分析的时差式超声波流量计测量方法 技术领域
本发明涉及的是超声波流量计测量方法, 特别是涉及一种基于零点分析的 时差式超声波流量计测量方法。 背景技术
超声波流量计无可动部件, 可以实现非接触高精度测量, 具有量程宽、 无 压损、 溯源性好、 成本对口径变动不敏感等优点, 可用于测量圆管、 方涵、 明 渠等各种断面中液体或气体流量的测量, 尤其在中大管径流量测量方面具有明 显优势。
超声波流量计发展至今, 在众多种测量方法中, 时差法超声波流量计具有 测量方式简单和计量精度高等优点, 一直备受关注。 时差法超声波流量计其原 理是根据超声波信号顺流传播时间和逆流传播时间之差来计算流速, 从而计算 出流量。
目前, 时差式超声波流量计都是采用基于阈值比较方式来获得流体中顺逆 流超声波传播时间。 时差法超声波流量计工作原理如图 1 所示, 这是一个有压 管道的流量测量示意图, 其中" CPU"控制整个测量过程, "发射电路"用于向换能 器发射脉冲驱动信号,"信号收发转换电路"控制各换能器工作在发射状态还是接 收状态, "滤波放大电路"滤除接收波形中噪声并调整波形幅值大小,之后一路送 给"阈值比较电路 "用于确定超声传播时间,另一路送给 "A/D转换"对波形进行数 字量化并提供给 CPU作进一步处理。
超声波换能器 A和 B为同一声路中的一对换能器, 当其中一个用作发射换 能器时, 另一个则作为接收换能器。 如图所示, 当超声波顺流从换能器 A发出 到换能器 B收到所经历的时间则为顺流传播时间 Tu, 当超声波逆流从换能器 B 发出到换能器 A收到所经历的时间则为逆流传播时间 Td。
超声波信号在流体中传播, 顺流时传播速度较逆流时传播速度快, 相应的 其顺流传播时间 Tu就较逆流传播时间 Td短, 从而顺逆流方向声波信号传播时 间存在差值 (即时差)。 时差法超声波流量计就是根据流体流速与时差存在线性 关系原理进行测量的, 只要准确测定顺逆流时间, 就可求出瞬时流速:
Figure imgf000004_0001
其中 α为流速与超声波传播路径的夹角,如果所测断面面积为 S ,进而可以 求出该断面的瞬时流:
Q = V x S
从公式 1 中可看出, 时差式超声波流量计的关键是如何得到准确的顺逆流 传播时间。
在图 2(a)中, 横坐标轴为时间 t, 纵坐标轴为超声波接收信号幅值 V, 在通 常所用的阈值比较法中, 顺逆流传播时间 T是从向发射换能器发出脉冲驱动信 号时起, 到接收换能器所接收信号首次切割阈值电平时止, 所经历的时间。
而目前在实际测量过程中, 由于复杂的外界环境会影响接收到的超声波信 号, 会使超声波接收信号幅值发生波动, 轻的会使传播时间的测量产生误差, 严重的可能测不到传播时间, 如果出现较大的干扰, 还会使测量出现错误; 其 具体容易出现的以下 3种情况:
① 如果噪声干扰强烈, 噪声幅值大于阈值, 传播计数将被提前终止, 得到 错误的传播时间, 如图 2(b)所示; ② 如果超声波接收信号变的过弱, 最大幅值处在阈值以下时, 传播计数将 会溢出, 无法测得准确的传播时间, 如图 2(c)所示;
③ 如果超声波接收信号有波动, 阈值电压首次与接收信号切割时刻点会发 生漂移, 导致传播时间测量不准确, 从而影响时差式超声波流量计的动 态计量精度。 如图 2(d)所示, 因信号波动, 阈值均有可能在 、 b、 c等处 首次与超声波接收信号切割, 得到不同的传播时间。
本发明的目的就是要找到一种新的方法, 解决现有技术上不足。 发明内容
为克服现有技术上的不足, 本发明目的是在于提供一种基于零点分析的时 差式超声波流量计测量方法, 在信号较弱、 波动较大以及干扰强烈的情况下, 都能检测到零点, 准确测量出超声波信号在流体中的顺逆流传播时间, 极大地 提高了时差法超声波流量计的计量精度, 彻底解决现有阈值比较法带来的问题。 为实现上述目的, 本发明的技术方案如下: 基于零点分析的时差式超声波流量计的测量方法, 其特征在于, 其方法为: 根据时差式超声波流量计的接收换能器接收到超声波信号时, 就会在其电极两 端产生并输出电信号 y(t), 即
其中, r(t)为关于时间 t的调制函数, f。为换能器固有谐振频率, φ为初始相 位, 设初始相位 φ为零, 其根据 coS(2 fQt)函数图像寻找超声波接收信号中的第 一个零点超声信号到达时刻点;
( 1 ) 脉冲驱动信号数据采集; 发出脉冲驱动信号后,启动时差式超声波流量计的 A/D转换进行数据采集, 采集数据个数 i, 所采集的数据时刻点 其中, i为自然数;
(2) 寻找零点值; 将采集的 i个数据进行零点分析, 判断 ^是否为过零点, 若 满足过零法 则条件之一, 则判断为过零点; 反之, 则否, 返回步骤 (1) 进行继续采集; 所述过零法则条件如下:
① 当前点幅值等于 0;
② 当前点幅值小于 0但下一个点幅值大于 0;
③ 当前点幅值大于 0但下一个点幅值小于 0;
(3) 至少选择 3个相邻过零点, 并判断是否为超声波信号过零点; 通过上述步骤(2) 的过零分析后, 至少选取三个过零点 zq— i、 zq、 zq+1, 其中, q为自然数, 且 l≤q≤i-l;
当 Zq— Zq、 Zq + 1同时满足超声波零点分析法条件时,则 Zq— Zq、 Zq + 1 判断为超声波信号过零点, 上述超声波零点分析法条件如下:
A. 超声波信号半波长 * (1- ) < zq1£1间半波长≤超声波信号半波 长 * (1+δ ;
Β. 超声波信号半波长 *(1-δ2) < Zq与 Zq + 1间半波长≤超声波信号半波 长 * (1+δ2) ;
C. Zq— i与 Zq间半波极性≠ Zq与 Zq + 1间半波极性;
其中, ^和 δ2是换能器导致的超声波信号正负半波的误差率;
当不满足上述超声波零点分析法则条件, 则选取下一相邻点继续超声波零点 分析法条件判断, 若所有过零点均未满足超声波零点分析法则条件, 则返回步 骤 (1) ; (4)选取超声波接收信号中的第一个过零点来确定超声信号到达时刻, 计 算顺逆流传播时间; 根据上述步骤 (4), 选取 ZQ、 ¾、 22为相邻的 3个超声波信号过零点, 其 中, ZQ为超声波接收信号中启动 A/D转换进行数据采集的第一个超声波过零时 刻点; 则顺逆流传播时间 T,
其中, Tg是从发出脉冲驱动信号到启动 A/D转换进行数据采集前的时间, ! 是从启动 A/D转换进行数据采集后到出现第一个超声波过零时刻点 ZQ间的时 间。
(5) 然后通过精确测量的顺逆流传播时间计算断面的瞬时流量; 时差式超声波流量计根据公式 1计算瞬时流速 V:
V = 1
Figure imgf000007_0001
其中 α为流速与超声波传播路径的夹角,
进而可以计算出断面的瞬时流量 Q:
Q = V x S 其中, S为所测断面面积 本发明通过超声波信号零点分析法, 超声波信号零点不受外部环境的影响, 即使信号波形过弱或信号波形幅值出现大的波动, 也不影响零点的检测; 如果 出现的强干扰信号, 由于不满足零点分析法的条件, 被直接过滤, 也不影响零 点的检测, 在信号较弱、 波动较大以及干扰强烈的情况下, 都能检测到零点, 准确测量出超声波信号在流体中的顺逆流传播时间, 极大地提高了时差法超声 波流量计的计量精度, 彻底解决现有阈值比较法带来的问题。 附图说明
图 1是现有时差式超声波流量计的测量原理示意图;
图 2是现有时差式超声波流量计的接收换能器接收的脉冲波示意图; 图 3是本发明的时差式超声波流量计的接收换能器接收的超声波示意图; 图 4为本发明的零点分析方法的流程图。 具体实施方式
为使本发明实现的技术手段、 创作特征、 达成目的与功效易于明白了解,
Figure imgf000008_0001
, 进一步阐述本发明
本发明主要是准确测量顺逆流传播时间 T,其提供的一种基于零点分析的时 差式超声波流量计的测量方法, 超声波信号在流体中传播,顺流时传播速度较逆 流时传播速度快, 相应的其顺流传播时间 Tu就较逆流传播时间 Td短, 从而顺逆 流方向声波信号传播时间存在差值 (即时差)。 时差法超声波流量计就是根据流 体流速与时差存在线性关系原理进行测量的, 只要准确测定顺逆流时间, 就可 求出瞬时流速:
V 1
Figure imgf000008_0002
其中 α为流速与超声波传播路径的夹角, 如果管道面积为 S,进而可以求出管道
Figure imgf000008_0003
Q = V x S
从公式 1 中可看出, 时差式超声波流量计的关键是如何得到准确的顺逆流 传播时间
因此, 本实施例通过研究, 当接收换能器接收到超声波信号时, 就会在其 电极两端产生并输出电信号 y(t), 即 其中, r(t)为关于时间 t的调制函数, fQ为换能器固有谐振频率, φ为初始相 位, 为了讨论方便, 设初始相位 φ为零。 当 t=(2k+l)/4fQ (k为整数) 时, y的值 为零, 该时刻点称为零点, 超声波在流体中传播时, 环境噪声主要影响调制信 号 r(t)部分, 对 C0S(2 fQt)部分没有影响, 因此零点不受调制信号 r(t)的影响, 即 不受信号 y(t)的幅值波动影响。
根据这一特性, 把 COS(27ifQt)的第一个零点作为判断接收超声信号到达的标 志, 可以很好的解决由于环境噪声而导致到达时刻错判的问题, 从而能准确测 量顺逆流传播时间, 克服了阈值比较法的不足。
参见图 4, 本实施例的基于零点分析的时差式超声波流量计的测量方法, 其 方法步骤如下:
( 1 ) 脉冲驱动信号数据采集;
发出脉冲驱动信号后,启动时差式超声波流量计的 A/D转换进行数据采集, 采集数据个数 i, 所采集的数据时刻点 Zi ,其中, i为自然数, 而且 i为接收信号 中待分析数据的编号。
实际接收超声波信号时, 应在第一个过零点 z。达到时提前启动 "A/D转换" 进行数据采集。
(2) 寻找零点值; 将采集的 i个数据进行零点分析, 判断 是否为过零点, 若 满足过零 法则条件之一, 则判断为过零点; 反之, 则否,返回步骤 (1 ) 进行继续采集; 由于信号经 "A/D转换"量化不能完全代表原始信号,因而凡是满足以下任一 情况即过零法则的数据点都认为是零点: ② 当前点幅值小于 0但下一个点幅值大于 0;
③ 当前点幅值大于 0但下一个点幅值小于 0 。
(3) 至少选择 3个相邻过零点, 并判断是否为超声波信号过零点; 使用时, 至少有 3个相邻的过零点来判断是否为超声波信号;
通过上述步骤(2) 的过零分析后, 至少选取三个过零点 zq— i、 zq、 zq+1, 其中, q为自然数, 且 l≤q≤i _ l ; 超声波信号与噪声相比具有固定波长和频率, 根据这一特点, 相邻 3个过 零点 zq— zq、 zq+ B果能同时满足以下条件即超声波过零法则条件, 则这 3 个点都是超声波信号零点, 这段信号应为超声波信号; 上述超声波过零法则条 件如下:
A. 超声波信号半波长 * ( 1 ) < Zq1£1间半波长≤超声波信号 半波长 * ( 1+5:) ;
B. 超声波信号半波长 * ( ΐ-δ2) < Zq与 Zq + J 半波长≤超声波信号 半波长 * ( 1+δ2) ;
C. Zq_,与 Zq!间半波极性≠ Zq与 Zq + 1间半波极性;
其中, 51和52是换能器导致的超声波信号正负半波的误差率; 按照以上条件对 波形进行分析以获得超声波信号零点的方法即为零点分析法, 首次满足零点分 析法 3个条件的第 1个零点即为超声信号到达时刻点 ZQ; 当不满足上述超声波 过零法则条件, 则选取下一相邻点继续超声波过零法则条件判断, 若所有过零 点均未满足超声波过零法则条件, 则返回步骤(1 ); 此方法不再依赖阈值比较, 图 1中"阈值比较电路 "完全可以去掉。按照此方法可以把超声波信号及其所有零 点从包含噪声的信号数据中鉴别出来。 本实施例选取 ZQ、 、 22为相邻过零点, ZQ为超声波接收信号中启动 A/D 转换进行数据采集的第一个过零时刻点, 进行上述超声波过零法则条件判断。 在流体中由于某种复杂的环境干扰, 可能出现类似于一个或多个超声波信号整 波长的干扰, 只用 3 个相邻点可能无法判断就是超声波信号的零点, 还需要在 ZQ、 、 Z2的基础上继续分析是否存在 ¾或 、 Z5等零点, 这些零点都必须满 足零点分析法的 3个条件, 只有依次同时出现以上几个零点时才认为 ZQ是超声 信号到达时刻点 (如图 3所示)。
假设 Z。与 间距用 H。表示( = 。)、 与 Z2间距用 表示(HFZZ-Z , 如图 3所示, H。=L/2, =1 2, 与 Z2间正半波与 与 Z2间负半波极性不同, 满足零点分析法的 3个条件, 因此 ZQ、 、 22都是超声波信号零点, 而2。为第 一个零点。 如果继续对 、 Z2、 ¾按零点分析法进行分析, 发现 ¾也是超声波 信号零点, 以此类推 Z4也是超声波信号零点,如果需要可以一直按此分析下去, 直到找出超声波信号的所有零点; 若已通过进入步骤 (4) ;
(4)选取超声波接收信号中的第一个过零点来确定超声信号到达时刻, 计 算顺逆流传播时间;
根据上述步骤 (4) , 在图 3中, L为超声波波长, 选取 ZQ、 、 Z2为相邻 的 3个超声波信号过零点, 其中, ZQ为超声波接收信号中启动 A/D转换进行数 据采集的第一个超声波过零时刻点, TG是从发出脉冲驱动信号到启动 "A/D转换" 前的时间, ! 是从启动 "A/D转换"后到出现第一个零点 ZQ间的时间, 测得! 后 就可获得顺逆流传播时间 T, 即
τ = Tg + τζ
实际接收超声波信号时, 应在零点 2。达到时提前打开 "A/D转换"进行数据 采集, 过早或过晚打开都有可能错过有效波形, 一般通过 ^来控制, 使得零点 2。尽量处在整个波形数据的中间位置。 这必然在零点 2。前引入无关的噪声信号 (Tz所对应信号区域),而无法简单使 y的值为零的方式来获得零点 Z0的到达时 刻, 需要分别对噪声波形和超声波信号波形的特征进行分析, 而本实施例通过 上述步骤 (1 ) - (3) 以确定了哪些是噪声零点, 哪些是超声波信号的零点, 从 而进一步精确确定了顺逆流传播时间值。
(5) 然后通过精确测量的顺逆流传播时间计算管道的瞬时流量; 时差式超声波流量计根据公式 1计算瞬时流速 V:
Figure imgf000012_0001
其中 α为流速与超声波传播路径的夹角,
Q = V x S
其中, S管道面积 本发明通过超声波信号零点分析法, 超声波信号零点不受外部环境的影响, 即使信号波形过弱或信号波形幅值出现大的波动, 也不影响零点的检测; 如果 出现的强干扰信号, 由于不满足零点分析法的条件, 被直接过滤, 也不影响零 点的检测, 在信号较弱、 波动较大以及干扰强烈的情况下, 都能检测到零点, 准确测量出超声波信号在流体中的顺逆流传播时间, 极大地提高了时差法超声 波流量计的计量精度, 彻底解决现有阈值比较法带来的问题。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

WO 2014/205884 权 利 要 求 书 PCT/CN2013/080114
1. 一种基于零点分析的时差式超声波流量计的测量方法, 其特征在于, 其 方法为:
(1) 脉冲驱动信号数据采集; 发出脉冲驱动信号后,启动时差式超声波流量计的 A/D转换进行数据采集, 采集数据个数 i, 所采集的数据时刻点 其中, i为自然数;
(2) 寻找零点值; 将采集的 i个数据进行零点分析, 判断 ^是否为过零点, 若 满足过零法 则条件之一, 则判断为过零点; 反之, 则否,返回步骤 (1) 进行继续采集;
(3) 至少选择 3个相邻过零点, 并判断是否为超声波信号过零点; 通过上述步骤(2) 的过零分析后, 至少选取三个过零点 zq— i、 zq、 zq+1, 其中, q为自然数, 且 l≤q≤i-l; 当 Zq— Zq、 Zq + 1同时满足超声波零点分析法条件时,则 Zq— Zq、 Zq + 1 判断为超声波信号过零点, 上述超声波零点分析法条件如下:
A. 超声波信号半波长 * (1- ) < Zq 1£1间半波长≤超声波信号半波 长 * (1+δ ;
Β. 超声波信号半波长 *(1-δ2) < Zq与 Zq + 1间半波长≤超声波信号半波 长 * (1+δ2) ;
C. Zq— i与 Zq间半波极性≠ Zq与 Zq + 1间半波极性;
其中, ^和 δ2是换能器导致的超声波信号正负半波的误差率;
当不满足上述超声波零点分析法则条件, 则选取下一相邻点继续超声波零点 分析法条件判断, 若所有过零点均未满足超声波零点分析法则条件, 则返回步 骤 (1) ;
(4)选取超声波接收信号中的第一个过零点来确定超声信号到达时刻, 计 算顺逆流传播时间; 根据上述步骤 (4) ,选取 ZQ、 、 22为相邻的 3个超声波信号过零点, 其 中, ZQ为超声波接收信号中启动 A/D转换进行数据采集的第一个超声波过零时 刻点; 则顺逆流传播时间 T,
其中, Tg是从发出脉冲驱动信号到启动 A/D转换进行数据采集前的时间, ! 是从启动 A/D转换进行数据采集后到出现第一个超声波过零时刻点 ZQ间的时 间;
(5) 然后通过顺逆流传播时间计算所测断面的瞬时流量。
2. 根据权利要求 1所述的测量方法, 其特征在于, 所述过零法则条件如下:
① 当前点幅值等于 0;
② 当前点幅值小于 0但下一个点幅值大于 0;
③ 当前点幅值大于 0但下一个点幅值小于 0。
3. 根据权利要求 1所述的测量方法, 其特征在于, 所述步骤(5 ) 中, 计算 断面的瞬时流量的步骤为: 首先根据下列公式一计算瞬时流速 V:
Figure imgf000014_0001
其中 α为流速与超声波传播路径的夹角,
PCT/CN2013/080114 2013-06-25 2013-07-25 一种基于零点分析的时差式超声波流量计测量方法 WO2014205884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310256511.5 2013-06-25
CN201310256511.5A CN103344288B (zh) 2013-06-25 2013-06-25 一种基于零点分析的时差式超声波流量计测量方法

Publications (1)

Publication Number Publication Date
WO2014205884A1 true WO2014205884A1 (zh) 2014-12-31

Family

ID=49279104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080114 WO2014205884A1 (zh) 2013-06-25 2013-07-25 一种基于零点分析的时差式超声波流量计测量方法

Country Status (2)

Country Link
CN (1) CN103344288B (zh)
WO (1) WO2014205884A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630174B (zh) * 2013-12-07 2016-04-13 重庆前卫科技集团有限公司 一种超声波流量计的流量测量方法
CN106643930B (zh) * 2015-08-10 2019-03-19 杭州思筑智能设备有限公司 一种改进的超声波流量计
CN105628115B (zh) * 2015-12-30 2018-11-02 浙江大学 一种应用于时差式超声波流量计的脉冲噪声滤除方法
CN106932037B (zh) * 2015-12-30 2019-04-02 浙江大学 一种时差式超声波流量计接收信号波峰序列位置判定方法
CN105716674B (zh) * 2016-04-20 2020-06-23 成都千嘉科技有限公司 超声波流量计的超声发送时间校正方法、***及流量计
CN106643931B (zh) * 2016-09-23 2019-03-01 三川智慧科技股份有限公司 一种超声波流量计量方法及装置
CN106643937A (zh) * 2016-12-28 2017-05-10 重庆多邦科技股份有限公司 一种基于超声波流量计的流量测量方法及装置
CN106643939B (zh) * 2017-02-20 2019-05-17 重庆川仪自动化股份有限公司 用于超声波流量计计算超声波传播时间的方法
CN106643940B (zh) * 2017-02-20 2019-05-17 重庆川仪自动化股份有限公司 基于回波能量计算超声波流量计传播时间的方法
CN106768109B (zh) * 2017-02-21 2019-02-01 合肥工业大学 基于回波上升段峰值拟合和基于回波能量点定位的气体超声波流量计信号处理方法
CN108195939A (zh) * 2018-01-29 2018-06-22 吉林大学 基于过零检测法的单丝取向度测量装置及测量方法
CN110890926A (zh) * 2018-09-11 2020-03-17 航天信息股份有限公司 一种解码方法及装置
CN109931996B (zh) * 2019-02-26 2020-07-17 天津大学 一种准确测量气体超声流量计信号传播时间的方法
FR3097968B1 (fr) * 2019-06-28 2021-06-18 Sagemcom Energy & Telecom Sas Procédé de mesure de la vitesse d’un fluide
CN111323101B (zh) * 2020-03-24 2022-01-04 成都千嘉科技有限公司 超声波表自适应的自动标定方法
CN111486911B (zh) * 2020-05-31 2021-11-26 合肥工业大学 一种基于stm32的低功耗气体超声波流量计***
CN112304376B (zh) * 2020-10-27 2021-09-28 浙江大学 基于数据融合的超声波流量计流量测量方法
CN112665666B (zh) * 2020-12-18 2023-06-30 苏州东剑智能科技有限公司 一种流体计量表的计量方法
CN113008337A (zh) * 2021-03-04 2021-06-22 宁波水表(集团)股份有限公司 一种减小超声水表流道结垢引起测量误差的方法以及***
CN113124948B (zh) * 2021-05-20 2022-08-30 中国计量大学 一种基于fpga与互相关法的高精度时差测量方法
CN114370931B (zh) * 2022-01-10 2024-05-03 江苏无线电厂有限公司 一种快速计算超声波换能器频率的方法
CN114923531B (zh) * 2022-07-21 2022-10-11 成都千嘉科技股份有限公司 门限值自适应调整方法及超声波计量装置自适应计量方法
CN117949055B (zh) * 2024-03-26 2024-05-31 青岛清万水技术有限公司 一种用于计算流体流量测量仪表声道参数的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258214A (ja) * 1999-03-12 2000-09-22 Toho Gas Co Ltd 超音波流量計
JP2010145213A (ja) * 2008-12-18 2010-07-01 Panasonic Corp 流速または流量計測装置
CN101813528A (zh) * 2010-04-30 2010-08-25 重庆理工大学 一种利用超声波技术精密测量温度的方法及测量仪
CN101886939A (zh) * 2010-06-10 2010-11-17 宁波大学 一种时差法超声流量计静态漂移抑制模型及抑制方法
CN102297712A (zh) * 2011-07-12 2011-12-28 北京理工大学 一种超声回波传播时间测量方法
CN102636252A (zh) * 2012-04-10 2012-08-15 吉林大学 一种超声波到达精确时刻检测的方法及装置
CN102667418A (zh) * 2009-12-16 2012-09-12 松下电器产业株式会社 流量测量装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3616324B2 (ja) * 2000-11-27 2005-02-02 東京計装株式会社 伝播時間差方式による超音波流量計
JP3716274B2 (ja) * 2002-11-26 2005-11-16 松下電器産業株式会社 超音波流量計および超音波による流量計測方法
WO2009078161A1 (ja) * 2007-12-19 2009-06-25 Panasonic Corporation 流量計測装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258214A (ja) * 1999-03-12 2000-09-22 Toho Gas Co Ltd 超音波流量計
JP2010145213A (ja) * 2008-12-18 2010-07-01 Panasonic Corp 流速または流量計測装置
CN102667418A (zh) * 2009-12-16 2012-09-12 松下电器产业株式会社 流量测量装置
CN101813528A (zh) * 2010-04-30 2010-08-25 重庆理工大学 一种利用超声波技术精密测量温度的方法及测量仪
CN101886939A (zh) * 2010-06-10 2010-11-17 宁波大学 一种时差法超声流量计静态漂移抑制模型及抑制方法
CN102297712A (zh) * 2011-07-12 2011-12-28 北京理工大学 一种超声回波传播时间测量方法
CN102636252A (zh) * 2012-04-10 2012-08-15 吉林大学 一种超声波到达精确时刻检测的方法及装置

Also Published As

Publication number Publication date
CN103344288B (zh) 2015-10-07
CN103344288A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
WO2014205884A1 (zh) 一种基于零点分析的时差式超声波流量计测量方法
CN103630174B (zh) 一种超声波流量计的流量测量方法
JP4953001B2 (ja) 流量計測装置、流量測定方法およびコンピュータプログラム
CN107860430B (zh) 一种基于时差法的超声波气体流量计时间差测量方法
CN104501889B (zh) 基于互相关时差法超声波流量的检测方法
CN102297712A (zh) 一种超声回波传播时间测量方法
CN106643939A (zh) 用于超声波流量计计算超声波传播时间的方法
JP2011145289A (ja) 流量計測装置
JP2007187506A (ja) 超音波流量計
CN112304376B (zh) 基于数据融合的超声波流量计流量测量方法
CN103389153A (zh) 一种利用二次反射波测量超声波渡越时间的电路
CN203069223U (zh) 用于超声波流量计的相位编码同步时差检测装置
KR101764870B1 (ko) 초음파 유량계의 신호처리시스템
CN102967334A (zh) 利用对信号包络线处理测量流体流量的***及方法
CN102023038A (zh) 一种管道流量的超声波测量方法
Li et al. A novel differential time-of-flight algorithm for high-precision ultrasonic gas flow measurement
US20140202258A1 (en) Ultrasonic measurement device and a method for operating the same
RU2471153C2 (ru) Способ и система измерения суммарного расхода текучей среды и ультразвуковой расходомер
TWI790714B (zh) 超音波流量計之聲波訊號的特徵時間參考波判斷方法
JP7175365B1 (ja) 超音波流量計の音響信号の特性時間基準波の判断方法
CN106052779A (zh) 基于超声波干涉法的流体流量检测技术
CN202885878U (zh) 利用对信号包络线处理测量流体流量的***
CN111220816B (zh) 采用跳频信号的时差式超声波流速测量方法
JP2007064988A (ja) 流量計測装置
CN111337092B (zh) 选取参考信号的方法、计算方法及相位差式超声波流量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887665

Country of ref document: EP

Kind code of ref document: A1