WO2014199728A1 - Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device - Google Patents

Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device Download PDF

Info

Publication number
WO2014199728A1
WO2014199728A1 PCT/JP2014/061303 JP2014061303W WO2014199728A1 WO 2014199728 A1 WO2014199728 A1 WO 2014199728A1 JP 2014061303 W JP2014061303 W JP 2014061303W WO 2014199728 A1 WO2014199728 A1 WO 2014199728A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
semiconductor device
resin composition
thermosetting resin
lead frame
Prior art date
Application number
PCT/JP2014/061303
Other languages
French (fr)
Japanese (ja)
Inventor
佑一 深道
一浩 福家
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52022030&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014199728(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2014520092A priority Critical patent/JP5825650B2/en
Priority to KR1020157029989A priority patent/KR20160019407A/en
Priority to CN201480021767.0A priority patent/CN105122484A/en
Publication of WO2014199728A1 publication Critical patent/WO2014199728A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention provides, for example, an epoxy resin composition for an optical semiconductor reflector, which is a material for forming a reflector (reflecting part) that reflects light emitted from an optical semiconductor element, a thermosetting resin composition for an optical semiconductor device, and the like.
  • the present invention relates to an optical semiconductor device lead frame, a sealed optical semiconductor element, and an optical semiconductor device.
  • an optical semiconductor device in which an optical semiconductor element is mounted has an optical semiconductor element 3 on a metal lead frame composed of a first plate portion 1 and a second plate portion 2, for example, as shown in FIG.
  • a light reflecting reflector 4 made of a resin material is formed so as to be mounted and to surround the optical semiconductor element 3 so as to fill the space between the first plate portion 1 and the second plate portion 2. It takes the composition that it is.
  • the optical semiconductor element 3 mounted in the recess 5 formed as the inner peripheral surface of the metal lead frame and the reflector 4 is resin-sealed using a transparent resin such as a silicone resin containing a phosphor as necessary. By doing so, the sealing resin layer 6 is formed.
  • 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3, which are provided as necessary.
  • the reflector 4 is manufactured by using, for example, transfer molding or the like, using a thermosetting resin typified by an epoxy resin or the like.
  • a thermosetting resin typified by an epoxy resin or the like.
  • titanium oxide is blended in the thermosetting resin as a white pigment, and light emitted from the optical semiconductor element 3 is reflected (see Patent Document 1).
  • the present invention has been made in view of such circumstances, and has a thermosetting resin composition for an optical semiconductor device excellent in not only high initial light reflectivity but also long-term light resistance, and an optical semiconductor device obtained using the same.
  • An object of the present invention is to provide a lead frame, a sealed optical semiconductor element, and an optical semiconductor device.
  • the first gist of the present invention is a thermosetting resin composition for optical semiconductor devices containing the following (A) to (C).
  • the present invention provides an epoxy resin composition for an optical semiconductor reflector having a degree of decrease in light reflectance ( ⁇ 2- ⁇ 1) in the range of ⁇ 5 to 0, which is measured by the following measurement method (x). It is a summary.
  • (X) Light having a wavelength of 600 nm at room temperature (25 ° C.) using a test piece having a thickness of 1 mm prepared under predetermined curing conditions (conditions: 175 ° C. ⁇ molding for 2 minutes + 175 ° C. ⁇ 3 hours curing) The reflectance ( ⁇ 1) was measured and the test piece was heated on a hot plate at 110 ° C. and irradiated with light having a wavelength of 436 nm at an intensity of 1 W / cm 2 for 15 minutes, and then at room temperature (25 ° C.). The light reflectance ( ⁇ 2) at a wavelength of 600 nm is measured.
  • the present invention is a plate-shaped lead frame for an optical semiconductor device for mounting an optical semiconductor element only on one surface in the thickness direction, and includes a plurality of plate portions arranged with a gap therebetween, and A lead frame for an optical semiconductor device in which a gap is formed by filling the gap with the thermosetting resin composition for an optical semiconductor device according to the first aspect and curing it is a second aspect.
  • the present invention is a three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region, wherein a reflector is formed in a state surrounding at least a part of the optical semiconductor element mounting region,
  • a third aspect of the present invention is an optical semiconductor device lead frame in which the reflector is formed using the thermosetting resin composition for an optical semiconductor device of the first aspect.
  • a plate portion having an element mounting area for mounting an optical semiconductor element on one side thereof is arranged with a gap therebetween, and the optical semiconductor element is mounted at a predetermined position of the element mounting area.
  • An optical semiconductor device, wherein the gap is filled with the thermosetting resin composition for optical semiconductor devices according to the first aspect and a reflector formed by curing is formed.
  • the present invention also provides an optical semiconductor element at a predetermined position of a lead frame for an optical semiconductor device, which includes an optical semiconductor element mounting region, and in which a reflector is formed so as to surround at least a part of the optical semiconductor element.
  • An optical semiconductor device in which the reflector is formed using the thermosetting resin composition for optical semiconductor devices according to the first aspect is a fifth aspect.
  • a reflector made of the thermosetting resin composition for an optical semiconductor device according to the first aspect is formed on a side surface of an optical semiconductor element in which a plurality of connection electrodes are formed on the back surface.
  • a sealed optical semiconductor element in which a light emitting surface or a light receiving surface at the top of the element is covered with a sealing layer is a sixth gist.
  • the seventh aspect of the present invention is an optical semiconductor device in which the sealed optical semiconductor element of the sixth aspect is mounted via a connection electrode at a predetermined position of a printed circuit board.
  • thermosetting resin composition for optical semiconductor devices that is excellent in long-term light resistance in addition to high initial light reflectance.
  • a white pigment having a band gap (forbidden band) in the range of 3.3 to 5.5 eV is used, for example, light emitted from the optical semiconductor element is within the band gap.
  • the absorption of light and the coloring of the white pigment itself are also suppressed, so that a high light reflectance is maintained.
  • a curable resin composition can be obtained.
  • the present invention provides a thermosetting resin for an optical semiconductor device containing the thermosetting resin (A), a white pigment (B) having a specific band gap (forbidden band), and an inorganic filler (C). It is an adhesive resin composition. For this reason, not only high initial light reflectivity but also excellent long-term light resistance is provided. Therefore, a highly reliable optical semiconductor device can be obtained in an optical semiconductor device in which a reflector is formed using the thermosetting resin composition for an optical semiconductor device.
  • FIG. 3 is a cross-sectional view taken along the line XX ′ of FIG. 2 schematically showing another configuration of the optical semiconductor device. It is sectional drawing which shows typically the structure of a sealing type optical semiconductor element.
  • thermosetting resin composition for optical semiconductor devices of the present invention (hereinafter also referred to as “thermosetting resin composition”) is, for example, as described above, the optical semiconductor device shown in FIG. And the optical semiconductor device shown in FIG. 3 and the encapsulated optical semiconductor element shown in FIG. 4 as a material for forming the reflectors 4, 11, and 15, comprising a thermosetting resin (component A) and a specific white color It is obtained using a pigment (component B) and an inorganic filler (component C), and is usually in the form of a liquid, a sheet, a powder, or a tablet obtained by compressing the powder, and the reflectors 4, 11 15 is used for forming material.
  • thermosetting resin composition for optical semiconductor devices of the present invention
  • thermosetting resin examples include epoxy resins and silicone resins. These may be used alone or in combination.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, monoglycidyl isocyanurate, di Nitrogen-containing ring epoxy resins such as glycidyl isocyanurate, triglycidyl isocyanurate, hydantoin epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, aliphatic epoxy resin, silicone modified epoxy resin, glycidyl ether type Polyamines and epichlorohydres such as epoxy resins, diglycidyl ethers such as alkyl-substituted bisphenols, diaminodiphenylmethane and isocyanuric acid Glycidylamine type epoxy resin obtained by reaction with ethylene, linear aliphatic and alicyclic epoxy resins obtained by oxidizing olefinic bonds with peracids such as
  • epoxy resins may be used alone or in combination of two or more.
  • an alicyclic epoxy resin or an isocyanuric ring structure such as triglycidyl isocyanurate alone or in combination from the viewpoint of excellent transparency and discoloration resistance.
  • diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable.
  • glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which an aromatic ring is hydrogenated.
  • the epoxy resin may be solid or liquid at normal temperature, but in general, the epoxy resin used preferably has an average epoxy equivalent of 90 to 1,000. From the viewpoint of convenience, a softening point of 50 to 160 ° C. is preferable. That is, if the epoxy equivalent is too small, the cured product of the thermosetting resin composition may become brittle. Moreover, it is because the glass transition temperature (Tg) of a thermosetting resin composition hardened
  • Tg glass transition temperature
  • a curing agent When using the epoxy resin as the thermosetting resin (component A), a curing agent is usually used.
  • the curing agent include an acid anhydride curing agent and an isocyanuric acid derivative curing agent. These may be used alone or in combination of two or more. Among these, it is preferable to use an acid anhydride curing agent from the viewpoint of heat resistance and light resistance.
  • acid anhydride curing agent examples include phthalic anhydride, maleic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride.
  • an oligomer having an acid anhydride as a terminal group of a saturated fatty chain skeleton, an unsaturated fatty chain skeleton, or a silicone skeleton or a side chain thereof alone or in combination of two or more thereof, and the above acid anhydride can be used together.
  • these acid anhydride curing agents phthalic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-Methyltetrahydrophthalic anhydride is preferably used.
  • the acid anhydride curing agent is preferably a colorless or light yellow acid anhydride curing agent.
  • Examples of the isocyanuric acid derivative-based curing agent include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5, Examples thereof include 5-tris (3-carboxypropyl) isocyanurate and 1,3-bis (2-carboxyethyl) isocyanurate. These may be used alone or in combination of two or more. Furthermore, as the isocyanuric acid derivative-based curing agent, a colorless or light yellow curing agent is preferable.
  • the mixing ratio of the epoxy resin and the curing agent is such that the active group (an acid anhydride group or carboxyl group) capable of reacting with the epoxy group in the curing agent is 0 with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferably set to be 4 to 1.4 equivalents, more preferably 0.6 to 1.2 equivalents. That is, if there are too few active groups, the curing rate of the thermosetting resin composition will be slow and the glass transition temperature (Tg) of the cured product will tend to be low. If there are too many active groups, the moisture resistance will be low. This is because there is a tendency to decrease.
  • the active group an acid anhydride group or carboxyl group
  • epoxy resin curing agents than the above-mentioned acid anhydride curing agent and isocyanuric acid derivative curing agent, for example, phenol curing agent, amine curing agent, and acid Curing agents such as those obtained by partially esterifying an anhydride-based curing agent with alcohol can be used alone or in combination of two or more.
  • blending ratio should just follow the mixing
  • the silicone resin contains at least a catalyst, and specifically contains a catalyst and a silicone resin.
  • the catalyst is, for example, a curing catalyst that accelerates the reaction of the silicone resin to cure the silicone resin, and preferably hydrosilylation that accelerates the hydrosilylation reaction of the silicone resin to be described later and cures the silicone resin by hydrosilylation. It is a catalyst.
  • the catalyst contains a transition metal, and examples of the transition metal include white metal elements such as platinum, palladium and rhodium, preferably platinum.
  • the catalyst when the catalyst contains platinum, for example, platinum black, platinum chloride, inorganic platinum such as chloroplatinic acid, for example, platinum-olefin complex, platinum-carbonyl complex, platinum-acetyl
  • platinum complexes such as acetate, and preferably platinum complexes. More specifically, examples of the platinum complex include a platinum-vinylsiloxane complex, a platinum-tetramethyldivinyldisiloxane complex, a platinum-carbonylcyclovinylmethylsiloxane complex, a platinum-divinyltetramethyldisiloxane complex, and a platinum-cyclovinyl.
  • the said catalyst has the aspect mixed with the silicone resin mentioned later, and the aspect contained in a silicone resin as a component which comprises a silicone resin.
  • the content (concentration) of the transition metal in the catalyst is preferably 0.1 to 500 ppm, more preferably 0.15 to 100 ppm, and still more preferably 0.2 to 50 ppm, based on the weight of the whole silicone resin. Particularly preferred is 0.3 to 10 ppm.
  • the above-mentioned silicone resin is a curable silicone resin that is cured by a reaction accelerated by a catalyst, and examples thereof include a thermosetting silicone resin such as a one-step curable silicone resin and a two-step curable silicone resin.
  • the above-mentioned two-stage curable silicone resin has a two-stage reaction mechanism, and heats B-staged (semi-cured) by the first-stage reaction and C-stage (completely cured) by the second-stage reaction. It is a curable silicone resin.
  • the B stage is a state between the A stage in which the thermosetting silicone resin is soluble in the solvent and the fully cured C stage, and the curing and gelation progresses slightly, Although it swells but does not completely dissolve, it softens by heating but does not melt.
  • the one-step curable silicone resin has a one-step reaction mechanism and is a thermosetting silicone resin that is completely cured by the first-step reaction.
  • the one-step curable silicone resin include addition reaction curable polyorganopolysiloxane disclosed in JP2012-124428A.
  • the addition reaction curable polyorganopolysiloxane contains, for example, an ethylenically unsaturated hydrocarbon group-containing silicon compound and a hydrosilyl group-containing silicon compound.
  • Examples of the ethylenically unsaturated hydrocarbon group-containing silicon compound include vinyl group-containing polyorganosiloxane having two or more vinyl groups in the molecule, preferably vinyl polydimethylsiloxane at both ends.
  • hydrosilyl group-containing silicon compound examples include, for example, a hydrosilyl group-containing polyorganosiloxane having two or more hydrosilyl groups in the molecule, preferably both-end hydrosilyl polydimethylsiloxane, both-end trimethylsilyl-blocked methylhydrosiloxane-dimethylsiloxane copolymer, etc. Can be given.
  • Examples of the two-stage curable silicone resin include a condensation reaction / addition reaction curable silicone resin having two reaction systems of a condensation reaction and an addition reaction.
  • Such condensation reaction / addition reaction curable silicone resin contains a catalyst, for example, silanol-terminated polysiloxane, alkenyl group-containing trialkoxysilane, organohydrogenpolysiloxane, condensation catalyst and hydrosilylation catalyst.
  • a first condensation reaction / addition reaction curable silicone resin For example, the second condensation containing a silanol-terminated polysiloxane, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an organohydrogenpolysiloxane, a condensation catalyst, and a hydrosilylation catalyst Reaction / addition reaction curable silicone resin, For example, a third condensation reaction / addition reaction curable silicone resin containing a silanol type silicone oil at both ends, an alkenyl group-containing dialkoxyalkylsilane, an organohydrogenpolysiloxane, a condensation catalyst and a hydrosilylation catalyst, For example, a fourth condensation reaction containing an organopolysiloxane having at least two alkenylsilyl groups in one molecule, an organopolysiloxane having at least two hydrosilyl groups in one molecule, a hydrosilylation catalyst
  • the condensation reaction / addition reaction curable silicone resin is preferably the second condensation reaction / addition reaction curable silicone resin, and specifically described in detail in JP-A No. 2010-265436.
  • the second condensation reaction / addition reaction curable silicone resin for example, first, an ethylenically unsaturated hydrocarbon group-containing silicon compound and an ethylenically unsaturated hydrocarbon group which are condensation raw materials are used. It can be prepared by adding the silicon compound and the condensation catalyst all at once, then adding the organohydrogenpolysiloxane as an addition raw material, and then adding a hydrosilylation catalyst (addition catalyst).
  • ⁇ B Specific white pigment>
  • a white pigment having a band gap (forbidden band) of 3.3 to 5.5 eV is used.
  • This band gap refers to an energy difference between the upper end of the valence band and the lower end of the conduction band in the band structure of the crystal, and is a value inherent to each simple substance, compound, and their crystal system.
  • the white pigment (B component) having a band gap in the specific range include diamond (band gap 5.5 eV, refractive index 2.4) and the like as a single substance, and oxides include oxidation Zinc (band gap 3.3 eV, refractive index 2.0), zirconium oxide (ZrO 2 ) (band gap 4 to 5 eV, refractive index 2.1), cerium oxide (band gap 3.4 eV, refractive index 2.2) , Tin oxide (I) (band gap 3.8 eV, refractive index 2.0), nickel oxide (band gap 4 eV, refractive index 2.2), aluminum oxide (band gap 5 eV, refractive index 1.8), etc. It is done.
  • oxides include oxidation Zinc (band gap 3.3 eV, refractive index 2.0), zirconium oxide (ZrO 2 ) (band gap 4 to 5 eV, refractive index 2.1), cerium oxide (band gap 3.4 eV, refractive index 2.2) , Tin oxide
  • gallium nitride (band gap 3.4 eV, refractive index 2.4), silicon nitride (band gap 5 eV, refractive index 2.0), boron nitride (hexagonal crystal) (band gap 5 eV, refractive index).
  • examples of the sulfide include zinc sulfide (Wurtz) (band gap 3.9 eV, refractive index 2.4). From the viewpoint of not only long-term light resistance but also initial light reflectance, those having a refractive index of 2.0 to 3.0 are preferable.
  • zinc oxide and zirconium oxide are preferably used from the viewpoint of low coloring, chemical stability, safety, availability including price, and productivity, and zirconium oxide, particularly monoclinic crystal.
  • Zirconium oxide is preferably used.
  • the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution analyzer, for example. From the viewpoint of light reflectance, it is preferable that the content of Fe 2 O 3 is 0.01% by mass or less among the impurities contained in the white pigment.
  • the blending ratio of the specific white pigment (component B) is preferably 3 to 50% by volume, more preferably 5 to 30% by volume, based on the entire thermosetting resin composition. That is, when the content ratio of the B component is too small, there is a tendency that sufficient light reflectivity, particularly excellent initial light reflectivity, cannot be obtained. This is because when the content ratio of the component B is too large, there may be a difficulty in producing a thermosetting resin composition by kneading or the like due to remarkable thickening.
  • Inorganic filler examples include silica glass powder, talc, silica powder such as fused silica powder and crystalline silica powder, alumina powder, aluminum nitride powder, and silicon nitride powder. Etc. Among them, it is preferable to use a fused silica powder from the viewpoint of reducing the linear expansion coefficient, and it is particularly preferable to use a fused spherical silica powder from the viewpoints of high filling property and high fluidity.
  • the inorganic filler (C component) excludes the specific white pigment (B component).
  • the average particle size of the inorganic filler (component C) is preferably 5 to 100 ⁇ m, particularly preferably 10 to 80 ⁇ m.
  • the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution meter similarly to the above-mentioned.
  • the total content ratio of the specific white pigment (B component) and the inorganic filler (C component) is 10 to 10% of the entire thermosetting resin composition. It is preferable to set so that it may become 90 volume%. More preferred is 60 to 90% by volume, and particularly preferred is 65 to 85% by volume. That is, if the total content is too small, there is a tendency for problems such as warpage to occur during molding. In addition, if the total content is too large, when kneading the compounding components, a great load is applied to the kneader, and the kneading tends to be impossible. As a result, the thermosetting resin composition that is a molding material It tends to be difficult to fabricate.
  • thermosetting resin composition of the present invention can contain a curing accelerator, a release agent, and a silane compound, if necessary, in addition to the components A to C. Furthermore, various additives such as a modifier (plasticizer), an antioxidant, a flame retardant, a defoaming agent, a leveling agent, and an ultraviolet absorber can be appropriately blended.
  • the curing accelerator can be used when the thermosetting resin (component A) is an epoxy resin.
  • the curing accelerator include 1,8-diazabicyclo [5.4.0] undecene-7, Tertiary amines such as triethylenediamine, tri-2,4,6-dimethylaminomethylphenol, N, N-dimethylbenzylamine, N, N-dimethylaminobenzene, N, N-dimethylaminocyclohexane, 2-ethyl- Imidazoles such as 4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetrafluoroborate, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, methyltributylphosphonium Phosphorus compounds such as methylphosphonate, tetrapheny
  • curing accelerators it is preferable to use tertiary amines, imidazoles, and phosphorus compounds. Among them, it is particularly preferable to use a phosphorus compound in order to obtain a cured product with little coloring.
  • the content of the curing accelerator is preferably set to 0.001 to 8% by weight, more preferably 0.01 to 5% by weight with respect to the thermosetting resin (component A). That is, if the content of the curing accelerator is too small, a sufficient curing acceleration effect may not be obtained, and if the content of the curing accelerator is too large, the resulting cured product tends to be discolored. Because.
  • release agents are used as the release agent. Among them, it is preferable to use a release agent having an ether bond.
  • a release agent having a structural formula represented by the following general formula (1) Agent for example, a release agent having a structural formula represented by the following general formula (1) Agent.
  • Rm and Rn are a hydrogen atom or a monovalent alkyl group, and both may be the same or different. Further, k is a positive number from 1 to 100, and x is a positive number from 1 to 100. ]
  • Rm and Rn are hydrogen atoms or monovalent alkyl groups, preferably k is a positive number from 10 to 50, and x is a positive number from 3 to 30. More preferably, Rm and Rn are hydrogen atoms, k is a positive number of 28 to 48, and x is a positive number of 5 to 20. That is, when the value of the number of repetitions k is too small, the releasability is lowered, and when the value of the number of repetitions x is too small, the dispersibility is lowered, so that stable strength and releasability tend not to be obtained. Be looked at.
  • the content of the release agent is preferably set in the range of 0.001 to 3% by weight, more preferably in the range of 0.01 to 2% by weight of the entire thermosetting resin composition. That is, if the content of the release agent is too little or too much, the strength of the cured product tends to be insufficient or the release property tends to be lowered.
  • silane compound examples include a silane coupling agent and silane.
  • silane coupling agent examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethylethoxysilane.
  • silane examples include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethylsilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and dezyltrimethoxy.
  • silane examples include silane, trifluoropropyltrimethoxysilane, hexamethyldisilazane, and siloxane containing a hydrolyzable group. These may be used alone or in combination of two or more.
  • modifier examples include silicones and alcohols.
  • antioxidant examples include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.
  • the flame retardant examples include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.
  • antifoaming agent examples include conventionally known antifoaming agents such as silicone.
  • thermosetting resin composition of the present invention can be produced, for example, as follows. That is, the above-mentioned components A to C, further a curing accelerator and a release agent, and various additives used as necessary are appropriately blended and then melt-mixed using a kneader or the like, and then cooled.
  • a powdery thermosetting resin composition can be produced by solidifying and pulverizing.
  • the cured product obtained by subjecting the obtained thermosetting resin composition to, for example, transfer molding or injection molding preferably has a light reflectance of 80% or more at a wavelength of 450 to 800 nm. More preferably, it is 90% or more. The upper limit is usually 100%. Specifically, the light reflectance at a wavelength of 450 nm of the cured product is preferably 85 to 98%.
  • the light reflectance is measured as follows, for example. That is, a cured product of a thermosetting resin composition having a thickness of 1 mm is prepared by predetermined curing conditions, for example, by molding at 175 ° C. ⁇ 2 minutes, and post-curing at 175 ° C.
  • the light reflectance of the cured product at a wavelength within the above range can be measured by using a spectrophotometer (for example, a spectrophotometer V-670 manufactured by JASCO Corporation) at a wavelength within the above range.
  • a spectrophotometer for example, a spectrophotometer V-670 manufactured by JASCO Corporation
  • thermosetting resin composition of the present invention is manufactured as follows, for example. That is, a metal lead frame is placed in a mold of a transfer molding machine, and a reflector is formed by transfer molding using the thermosetting resin composition. In this manner, a metal lead frame for an optical semiconductor device in which an annular reflector is formed so as to surround the periphery of the optical semiconductor element mounting region is manufactured. Next, an optical semiconductor element is mounted in the optical semiconductor element mounting region on the metal lead frame inside the reflector, and the optical semiconductor element and the metal lead frame are electrically connected using a bonding wire. And the sealing resin layer is formed by resin-sealing the inner area
  • the three-dimensional (cup type) optical semiconductor device shown in FIG. 1 is manufactured.
  • the optical semiconductor element 3 is mounted on the second plate portion 2 of the metal lead frame composed of the first plate portion 1 and the second plate portion 2, and the optical semiconductor device
  • the reflector 4 for light reflection which consists of a thermosetting resin composition of this invention is formed so that the circumference
  • a transparent sealing resin layer 6 for sealing the optical semiconductor element 3 is formed in the recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4.
  • the sealing resin layer 6 contains a phosphor as necessary.
  • 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3.
  • various substrates may be used in place of the metal lead frame shown in FIG.
  • the various substrates include organic substrates, inorganic substrates, and flexible printed substrates.
  • the reflector may be formed by injection molding.
  • an optical semiconductor device shown in FIGS. 2 and 3 cross-sectional view taken along the line XX ′ in FIG. 2 using a plate-like lead frame for an optical semiconductor device is provided.
  • the optical semiconductor elements 3 are respectively mounted at predetermined positions on one surface in the thickness direction of the metal lead frames 10 arranged at intervals, and the gap between the metal lead frames 10 is in accordance with the present invention.
  • the light reflection reflector 11 made of a thermosetting resin composition is formed.
  • a plurality of reflectors 11 are formed by filling the gap between the metal lead frames 10 with the thermosetting resin composition of the present invention and curing.
  • reference numeral 12 denotes a bonding wire for electrically connecting the optical semiconductor element 3 and the metal lead frame 10.
  • the metal lead frame 10 is placed in a mold of a transfer molding machine, and the gap between the metal lead frames 10 arranged at intervals and the optical semiconductor of the metal lead frame 10 are formed by transfer molding.
  • the reflectors 11 are respectively formed by filling the concave portions formed on the surface opposite to the element 3 mounting surface with a thermosetting resin composition and curing.
  • the optical semiconductor element 3 and the metal lead frame 10 are electrically connected using the bonding wire 12. In this manner, the optical semiconductor device shown in FIGS. 2 and 3 is manufactured.
  • FIG. 4 shows a sealed optical semiconductor element using the thermosetting resin composition of the present invention as a reflector forming material. That is, in the sealed optical semiconductor element, a light reflecting reflector 15 made of the thermosetting resin composition of the present invention is formed on the entire side surface of the optical semiconductor element 3, and the upper part of the optical semiconductor element 3 (light emission). The surface or the light receiving surface is covered with a sealing layer 16.
  • 17 is a connection electrode (bump).
  • the sealing layer 16 is formed of an epoxy resin, a silicone resin, or an inorganic material such as glass or ceramics. The sealing layer 16 may contain a phosphor or is not blended with a phosphor. It may be a thing.
  • Such a sealed optical semiconductor element can be manufactured, for example, as follows. That is, a flip chip type optical semiconductor (light emitting) element 3 (for example, a blue LED chip) is provided on an adhesive surface such as a dicing tape, and connection electrodes (bumps) 17 provided on the surface opposite to the light emitting surface are provided. Arranged at a fixed interval in a state of being embedded in the tape surface. Next, the entire side surface and further the light emitting surface of the optical semiconductor element 3 are embedded with the thermosetting resin composition of the present invention using a compression molding machine, a transfer molding machine, or an injection molding machine.
  • a flip chip type optical semiconductor (light emitting) element 3 for example, a blue LED chip
  • connection electrodes (bumps) 17 provided on the surface opposite to the light emitting surface are provided. Arranged at a fixed interval in a state of being embedded in the tape surface.
  • the entire side surface and further the light emitting surface of the optical semiconductor element 3 are embedded with the thermosetting resin composition of the present invention using a
  • thermosetting reaction of the thermosetting resin composition is completed, and the entire side surface of the optical semiconductor element 3 is made of the thermosetting resin composition of the present invention.
  • the reflector 15 is formed.
  • the light emitting surface is exposed by grinding and removing the reflector 15 formed on the light emitting surface, and a sealing material such as a silicone resin is surrounded by a dam material on the exposed light emitting surface.
  • the sealing layer 16 is formed by casting in a state or by sticking a sheet-like sealing material to the light emitting surface.
  • the center line between the optical semiconductor elements 3 is diced by using a blade dicer to separate each element.
  • the dicing tape is extended and stretched to reduce stickiness, and the sealed optical semiconductor elements 3 on which the reflectors 15 on the dicing tape are formed are completely separated and separated into individual pieces, as shown in FIG.
  • the sealed optical semiconductor element 3 can be manufactured.
  • connection electrode 17 of the optical semiconductor element 3 is provided at a predetermined position where a circuit of a printed circuit board is formed.
  • thermosetting resin composition each component shown below was prepared prior to preparation of the thermosetting resin composition.
  • Zinc oxide (band gap: 3.3 eV, refractive index: 2.0, average particle size: 2.9 ⁇ m) (manufactured by Hux Itec Corp., zinc oxide, 1 type)
  • Zinc oxide (band gap: 3.3 eV, refractive index: 2.0, average particle size: 2.9 ⁇ m) (manufactured by Hux Itec Corp., zinc oxide, 1 type)
  • Zirconium oxide (band gap 4-5 eV, refractive index 2.1, average particle size 4.3 ⁇ m, Fe 2 O 3 content 0.001 mass%, monoclinic crystal) (manufactured by Daiichi Rare Element Chemical Industries, SG oxidation) zirconium)
  • Rutile-type titanium oxide (band gap: 3.0 eV, refractive index: 2.7, single particle size: 0.2 ⁇ m) (Ishihara Sangyo Co., Ltd., CR-97)
  • Examples 1 to 15, Comparative Example 1 The components shown in Table 1 to Table 3 below are blended in the proportions shown in the same table, melt kneaded (temperature 100 to 130 ° C.) with a kneader, aged, cooled to room temperature (25 ° C.) and pulverized. Thereby, the target powdery thermosetting resin composition was produced.
  • thermosetting resin compositions of Examples and Comparative Examples thus obtained, various evaluations [initial light reflectance, long-term light resistance] were measured according to the following methods. The results are shown in Tables 1 to 3 below.
  • a spectrophotometer V-670 manufactured by JASCO Corporation was used as described above. With respect to Examples 11 to 13 and 15, in the degree of decrease in the light reflectivity, values exceeding 0 were measured and calculated. However, the above values are measurement errors and are substantially 0 or less. In the table, “0” is described.
  • the product obtained by blending a specific white pigment obtained excellent results not only for high initial light reflectance but also for long-term light resistance.
  • the comparative example 1 product using the titanium oxide whose band gap is out of the specific range and having a small value obtained the same high measurement result as the example product with respect to the initial light reflectivity.
  • the result was inferior in light resistance.
  • an optical semiconductor (light-emitting) device having the configuration shown in FIG. 1 was manufactured using a tablet-like thermosetting resin composition obtained by tableting the powders of the above-mentioned examples. That is, a metal lead frame having a plurality of pairs of a first plate portion 1 and a second plate portion 2 made of copper (silver plating) is placed in a mold of a transfer molding machine, and the thermosetting resin By performing transfer molding using the composition (condition: molding at 175 ° C. ⁇ 2 minutes + curing at 175 ° C. ⁇ 3 hours), the reflector 4 shown in FIG. 1 was formed at a predetermined position of the metal lead frame.
  • an optical semiconductor (light emitting) element (size: 0.5 mm ⁇ 0.5 mm) 3 is mounted, and the optical semiconductor element 3 and the metal lead frame are electrically connected by bonding wires 7 and 8.
  • a unit including the reflector 4, the metal lead frame, and the optical semiconductor element 3 was manufactured.
  • a recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4 is filled with a silicone resin (manufactured by Shin-Etsu Silicone Co., Ltd., KER-2500), and the optical semiconductor element 3 is resin-sealed (molded).
  • a transparent sealing resin layer 6 was formed, and each reflector was separated into pieces by dicing to produce the optical semiconductor (light emitting) device shown in FIG.
  • the obtained optical semiconductor (light emitting) device was provided with the reflector 4 excellent in long-term light resistance with a high initial light reflectance, and a good one with high reliability was obtained.
  • the optical semiconductor device shown in FIGS. 2 and 3 and the sealed optical semiconductor element shown in FIG. 4 were produced according to the above-described manufacturing method.
  • the obtained optical semiconductor device a good one having high reliability was obtained as described above.
  • an optical semiconductor device is fabricated by mounting the obtained sealed optical semiconductor element through a connection electrode of the sealed optical semiconductor element at a predetermined position where the circuit of the printed circuit board is formed. did.
  • a good one having high reliability was obtained as described above.
  • thermosetting resin composition for an optical semiconductor device of the present invention is useful as a reflector forming material that reflects light emitted from an optical semiconductor element incorporated in the optical semiconductor device.

Abstract

The present invention is an optical semiconductor device which is provided with: a metal lead frame that is composed of a first plate part (1) and a second plate part (2); and a reflector (4) that is formed so as to surround an optical semiconductor element (3) that is mounted on the metal lead frame. The material forming the reflector (4) is composed of a thermosetting resin composition for optical semiconductor devices, which contains (A) a thermosetting resin , (B) a white pigment having a bandgap of 3.3-5.5 eV and (C) an inorganic filler. Consequently, an optical semiconductor device of the present invention has not only high initial light reflectance, but also excellent long-term light resistance.

Description

光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置Epoxy resin composition for optical semiconductor reflector, thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, encapsulated optical semiconductor element, and optical semiconductor device
 本発明は、例えば、光半導体素子から発する光を反射させる、リフレクタ(反射部)の形成材料となる光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置に関するものである。 The present invention provides, for example, an epoxy resin composition for an optical semiconductor reflector, which is a material for forming a reflector (reflecting part) that reflects light emitted from an optical semiconductor element, a thermosetting resin composition for an optical semiconductor device, and the like. The present invention relates to an optical semiconductor device lead frame, a sealed optical semiconductor element, and an optical semiconductor device.
 従来、光半導体素子を搭載してなる光半導体装置は、例えば、図1に示すように、第1のプレート部1と第2のプレート部2とからなる金属リードフレーム上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、さらに第1のプレート部1と第2のプレート部2の間を埋めるように、樹脂材料からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面として形成される凹部5に搭載された光半導体素子3を、必要に応じて蛍光体を含有するシリコーン樹脂等の透明樹脂を用いて樹脂封止することにより封止樹脂層6が形成されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーであり、必要に応じて設けられるものである。 Conventionally, an optical semiconductor device in which an optical semiconductor element is mounted has an optical semiconductor element 3 on a metal lead frame composed of a first plate portion 1 and a second plate portion 2, for example, as shown in FIG. A light reflecting reflector 4 made of a resin material is formed so as to be mounted and to surround the optical semiconductor element 3 so as to fill the space between the first plate portion 1 and the second plate portion 2. It takes the composition that it is. Then, the optical semiconductor element 3 mounted in the recess 5 formed as the inner peripheral surface of the metal lead frame and the reflector 4 is resin-sealed using a transparent resin such as a silicone resin containing a phosphor as necessary. By doing so, the sealing resin layer 6 is formed. In FIG. 1, 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3, which are provided as necessary.
 このような光半導体装置では、近年、上記リフレクタ4を、エポキシ樹脂等に代表される熱硬化性樹脂を用いて、例えば、トランスファー成形等により成形し製造している。そして、上記熱硬化性樹脂には、従来から白色顔料として酸化チタンを配合し、上記光半導体素子3から発する光を反射させている(特許文献1参照)。 In such an optical semiconductor device, in recent years, the reflector 4 is manufactured by using, for example, transfer molding or the like, using a thermosetting resin typified by an epoxy resin or the like. Conventionally, titanium oxide is blended in the thermosetting resin as a white pigment, and light emitted from the optical semiconductor element 3 is reflected (see Patent Document 1).
特開2011-258845号公報JP2011-258845A
 しかしながら、上記のように白色顔料として酸化チタンを用いてリフレクタを形成した場合、初期の光反射率に関しては問題無く高い光反射率を実現しているが、経時的使用によりその光反射率が低下してしまうという問題があった。このように、長期にわたり高い光反射率を発揮する、すなわち長期にわたる耐光性という点においては未だ充分ではなく、この長期耐光性に関してさらなる向上が強く要望されている。 However, when a reflector is formed using titanium oxide as a white pigment as described above, a high light reflectance is realized without any problem with respect to the initial light reflectance, but the light reflectance decreases with time. There was a problem of doing. As described above, high light reflectance is exhibited over a long period of time, that is, it is not yet sufficient in terms of long-term light resistance, and further improvement regarding the long-term light resistance is strongly demanded.
 本発明は、このような事情に鑑みなされたもので、高い初期光反射率のみならず、長期耐光性に優れた光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置の提供をその目的とする。 The present invention has been made in view of such circumstances, and has a thermosetting resin composition for an optical semiconductor device excellent in not only high initial light reflectivity but also long-term light resistance, and an optical semiconductor device obtained using the same. An object of the present invention is to provide a lead frame, a sealed optical semiconductor element, and an optical semiconductor device.
 上記目的を達成するために、本発明は、下記の(A)~(C)を含有する光半導体装置用熱硬化性樹脂組成物を第1の要旨とする。
(A)熱硬化性樹脂。
(B)バンドギャップ(禁制帯)が3.3~5.5eVである白色顔料。
(C)無機質充填剤。
In order to achieve the above object, the first gist of the present invention is a thermosetting resin composition for optical semiconductor devices containing the following (A) to (C).
(A) Thermosetting resin.
(B) A white pigment having a band gap (forbidden band) of 3.3 to 5.5 eV.
(C) Inorganic filler.
 一方で、本発明は、下記の測定方法(x)にて測定されてなる、光反射率の低下度(α2-α1)が-5~0の範囲である光半導体リフレクタ用エポキシ樹脂組成物を要旨とするものである。
(x)所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にして作製してなる厚み1mmの試験片を用い、室温(25℃)下での波長600nmの光反射率(α1)を測定するとともに、その試験片を110℃のホットプレートで加熱した状態で、波長436nmの光を1W/cm2の強さで15分間照射した後、室温(25℃)下での波長600nmの光反射率(α2)を測定する。
On the other hand, the present invention provides an epoxy resin composition for an optical semiconductor reflector having a degree of decrease in light reflectance (α2-α1) in the range of −5 to 0, which is measured by the following measurement method (x). It is a summary.
(X) Light having a wavelength of 600 nm at room temperature (25 ° C.) using a test piece having a thickness of 1 mm prepared under predetermined curing conditions (conditions: 175 ° C. × molding for 2 minutes + 175 ° C. × 3 hours curing) The reflectance (α1) was measured and the test piece was heated on a hot plate at 110 ° C. and irradiated with light having a wavelength of 436 nm at an intensity of 1 W / cm 2 for 15 minutes, and then at room temperature (25 ° C.). The light reflectance (α2) at a wavelength of 600 nm is measured.
 そして、本発明は、厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置用リードフレームを第2の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置用リードフレームを第3の要旨とする。 The present invention is a plate-shaped lead frame for an optical semiconductor device for mounting an optical semiconductor element only on one surface in the thickness direction, and includes a plurality of plate portions arranged with a gap therebetween, and A lead frame for an optical semiconductor device in which a gap is formed by filling the gap with the thermosetting resin composition for an optical semiconductor device according to the first aspect and curing it is a second aspect. Further, the present invention is a three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region, wherein a reflector is formed in a state surrounding at least a part of the optical semiconductor element mounting region, A third aspect of the present invention is an optical semiconductor device lead frame in which the reflector is formed using the thermosetting resin composition for an optical semiconductor device of the first aspect.
 さらに、本発明は、その片面に光半導体素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置を第4の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置を第5の要旨とする。 Further, according to the present invention, a plate portion having an element mounting area for mounting an optical semiconductor element on one side thereof is arranged with a gap therebetween, and the optical semiconductor element is mounted at a predetermined position of the element mounting area. An optical semiconductor device, wherein the gap is filled with the thermosetting resin composition for optical semiconductor devices according to the first aspect and a reflector formed by curing is formed. The gist. The present invention also provides an optical semiconductor element at a predetermined position of a lead frame for an optical semiconductor device, which includes an optical semiconductor element mounting region, and in which a reflector is formed so as to surround at least a part of the optical semiconductor element. An optical semiconductor device in which the reflector is formed using the thermosetting resin composition for optical semiconductor devices according to the first aspect is a fifth aspect.
 そして、本発明は、裏面に複数の接続用電極が形成されてなる光半導体素子の側面に上記第1の要旨の光半導体装置用熱硬化性樹脂組成物からなるリフレクタが形成され、上記光半導体素子上部の発光面あるいは受光面が封止層にて被覆されてなる封止型光半導体素子を第6の要旨とする。また、本発明は、配線回路基板の所定位置に、上記第6の要旨の封止型光半導体素子が、その接続用電極を介して搭載されてなる光半導体装置を第7の要旨とする。 According to the present invention, a reflector made of the thermosetting resin composition for an optical semiconductor device according to the first aspect is formed on a side surface of an optical semiconductor element in which a plurality of connection electrodes are formed on the back surface. A sealed optical semiconductor element in which a light emitting surface or a light receiving surface at the top of the element is covered with a sealing layer is a sixth gist. The seventh aspect of the present invention is an optical semiconductor device in which the sealed optical semiconductor element of the sixth aspect is mounted via a connection electrode at a predetermined position of a printed circuit board.
 本発明者らは、高い初期光反射率に加えて、長期耐光性に優れた光半導体装置用熱硬化性樹脂組成物を得るべく鋭意検討を重ねた。その研究の過程で、従来とは異なる視点から白色顔料を特定することを想起し、物性の一つであるバンドギャップに着目し、この物性に基づき、更なる研究を重ねた。その結果、白色顔料として、バンドギャップ(禁制帯)が3.3~5.5eVの範囲内のものを用いると、上記バンドギャップの範囲内であることにより、例えば、光半導体素子から発せられる光の吸収が抑制され、また白色顔料自体の着色も抑制されて、高い光反射率を維持することとなり、結果、高い初期光反射率のみならず、長期耐光性に優れたリフレクタ形成材料となりうる熱硬化性樹脂組成物が得られることを見出した。 The inventors of the present invention have made extensive studies to obtain a thermosetting resin composition for optical semiconductor devices that is excellent in long-term light resistance in addition to high initial light reflectance. In the course of that research, we recalled the identification of white pigments from a different point of view, focusing on the band gap, which is one of the physical properties, and further research based on this physical property. As a result, when a white pigment having a band gap (forbidden band) in the range of 3.3 to 5.5 eV is used, for example, light emitted from the optical semiconductor element is within the band gap. The absorption of light and the coloring of the white pigment itself are also suppressed, so that a high light reflectance is maintained. As a result, not only a high initial light reflectance but also a heat that can be a reflector forming material excellent in long-term light resistance. It has been found that a curable resin composition can be obtained.
 このように、本発明は、前記熱硬化性樹脂(A)と、特定のバンドギャップ(禁制帯)を有する白色顔料(B)と、無機質充填剤(C)を含有する光半導体装置用熱硬化性樹脂組成物である。このため、高い初期光反射率のみならず、優れた長期耐光性をも備えるようになる。したがって、上記光半導体装置用熱硬化性樹脂組成物を用いてリフレクタを形成してなる光半導体装置では、信頼性の高い光半導体装置が得られる。 As described above, the present invention provides a thermosetting resin for an optical semiconductor device containing the thermosetting resin (A), a white pigment (B) having a specific band gap (forbidden band), and an inorganic filler (C). It is an adhesive resin composition. For this reason, not only high initial light reflectivity but also excellent long-term light resistance is provided. Therefore, a highly reliable optical semiconductor device can be obtained in an optical semiconductor device in which a reflector is formed using the thermosetting resin composition for an optical semiconductor device.
 そして、上記白色顔料(B)と無機質充填剤(C)の合計含有割合が特定範囲であり、かつ白色顔料(B)の含有割合が特定範囲であると、より一層優れた長期耐光性を備えるようになる。 And when the total content rate of the said white pigment (B) and an inorganic filler (C) is a specific range, and the content rate of a white pigment (B) is a specific range, it is equipped with much more excellent long-term light resistance. It becomes like this.
光半導体装置の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of an optical semiconductor device typically. 光半導体装置の他の構成を模式的に示す平面図である。It is a top view which shows typically the other structure of an optical semiconductor device. 上記光半導体装置の他の構成を模式的に示す図2のX-X′矢視断面図である。FIG. 3 is a cross-sectional view taken along the line XX ′ of FIG. 2 schematically showing another configuration of the optical semiconductor device. 封止型光半導体素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of a sealing type optical semiconductor element.
 本発明の光半導体装置用熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」ともいう)は、例えば、先に述べたように、図1に示す光半導体装置あるいは後述の図2および図3に示す光半導体装置、図4に示す封止型光半導体素子の、リフレクタ4,11,15形成材料として用いられるものであって、熱硬化性樹脂(A成分)と、特定の白色顔料(B成分)と、無機質充填剤(C成分)とを用いて得られるものであり、通常、液状、あるいはシート状、粉末状、もしくはその粉末を打錠したタブレット状にしてリフレクタ4,11,15形成材料に供される。 The thermosetting resin composition for optical semiconductor devices of the present invention (hereinafter also referred to as “thermosetting resin composition”) is, for example, as described above, the optical semiconductor device shown in FIG. And the optical semiconductor device shown in FIG. 3 and the encapsulated optical semiconductor element shown in FIG. 4 as a material for forming the reflectors 4, 11, and 15, comprising a thermosetting resin (component A) and a specific white color It is obtained using a pigment (component B) and an inorganic filler (component C), and is usually in the form of a liquid, a sheet, a powder, or a tablet obtained by compressing the powder, and the reflectors 4, 11 15 is used for forming material.
〈A:熱硬化性樹脂〉
 上記熱硬化性樹脂(A成分)としては、例えば、エポキシ樹脂、シリコーン樹脂等があげられる。これらは単独でもしくは併せて用いられる。
<A: Thermosetting resin>
Examples of the thermosetting resin (component A) include epoxy resins and silicone resins. These may be used alone or in combination.
 上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、モノグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、脂肪族系エポキシ樹脂、シリコーン変性エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタンおよびイソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族および脂環式エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらエポキシ樹脂の中でも、透明性および耐変色性に優れるという点から、脂環式エポキシ樹脂や、トリグリシジルイソシアヌレート等のイソシアヌル環構造を有するものを単独でもしくは併せて用いることが好ましい。同様の理由から、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸、メチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。また、芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステル等もあげられる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, monoglycidyl isocyanurate, di Nitrogen-containing ring epoxy resins such as glycidyl isocyanurate, triglycidyl isocyanurate, hydantoin epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, aliphatic epoxy resin, silicone modified epoxy resin, glycidyl ether type Polyamines and epichlorohydres such as epoxy resins, diglycidyl ethers such as alkyl-substituted bisphenols, diaminodiphenylmethane and isocyanuric acid Glycidylamine type epoxy resin obtained by reaction with ethylene, linear aliphatic and alicyclic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, biphenyl which is the mainstream of low water absorption cured type Type epoxy resin, dicyclo ring type epoxy resin, naphthalene type epoxy resin and the like. These may be used alone or in combination of two or more. Among these epoxy resins, it is preferable to use an alicyclic epoxy resin or an isocyanuric ring structure such as triglycidyl isocyanurate alone or in combination from the viewpoint of excellent transparency and discoloration resistance. For the same reason, diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable. Also included are glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which an aromatic ring is hydrogenated.
 上記エポキシ樹脂としては、常温で固形であっても液状であってもよいが、一般に、使用するエポキシ樹脂の平均エポキシ当量が90~1000のものが好ましく、また、固形の場合には、取り扱い性の利便性の観点から、軟化点が50~160℃のものが好ましい。すなわち、エポキシ当量が小さすぎると、熱硬化性樹脂組成物硬化物が脆くなる場合がある。また、エポキシ当量が大きすぎると、熱硬化性樹脂組成物硬化物のガラス転移温度(Tg)が低くなる傾向がみられるからである。 The epoxy resin may be solid or liquid at normal temperature, but in general, the epoxy resin used preferably has an average epoxy equivalent of 90 to 1,000. From the viewpoint of convenience, a softening point of 50 to 160 ° C. is preferable. That is, if the epoxy equivalent is too small, the cured product of the thermosetting resin composition may become brittle. Moreover, it is because the glass transition temperature (Tg) of a thermosetting resin composition hardened | cured material tends to become low when an epoxy equivalent is too large.
 熱硬化性樹脂(A成分)として上記エポキシ樹脂を用いる際には、通常、硬化剤が用いられる。上記硬化剤としては、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体系硬化剤等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらのなかでも、耐熱性および耐光性の観点から、酸無水物系硬化剤を用いることが好ましい。 When using the epoxy resin as the thermosetting resin (component A), a curing agent is usually used. Examples of the curing agent include an acid anhydride curing agent and an isocyanuric acid derivative curing agent. These may be used alone or in combination of two or more. Among these, it is preferable to use an acid anhydride curing agent from the viewpoint of heat resistance and light resistance.
 上記酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、およびその核水素化物、ヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、シクロヘキサン-1,2,3-トリカルボン酸-2,3-無水物、およびその位置異性体、シクロヘキサン-1,2,3,4-テトラカルボン酸-3,4-無水物、およびその位置異性体、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等があげられる。これらは単独でもしくは2種以上併せて用いることができる。また、飽和脂肪鎖骨格、不飽和脂肪鎖骨格、またはシリコーン骨格の末端基、ないし、側鎖としてこれら酸無水物を有するオリゴマーも単独で、もしくは2種以上併せて、および、上記酸無水物と併せて用いることができる。これら酸無水物系硬化剤の中でも、無水フタル酸、ヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸を用いることが好ましい。さらに、酸無水物系硬化剤としては、無色ないし淡黄色の酸無水物系硬化剤が好ましい。また、上記酸無水物の加水分解物であるカルボン酸を併用してもよい。 Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride. And its nuclear hydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride Methyl nadic acid anhydride, cyclohexane-1,2,3-tricarboxylic acid-2,3-anhydride, and its positional isomer, cyclohexane-1,2,3,4-tetracarboxylic acid-3,4-anhydride , And its positional isomers, nadic anhydride, glutaric anhydride, dimethyl glutaric anhydride, diethyl glutaric anhydride Methylhexahydrophthalic anhydride, and methyl tetrahydrophthalic anhydride and the like. These may be used alone or in combination of two or more. In addition, an oligomer having an acid anhydride as a terminal group of a saturated fatty chain skeleton, an unsaturated fatty chain skeleton, or a silicone skeleton or a side chain thereof alone or in combination of two or more thereof, and the above acid anhydride They can be used together. Among these acid anhydride curing agents, phthalic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-Methyltetrahydrophthalic anhydride is preferably used. Further, the acid anhydride curing agent is preferably a colorless or light yellow acid anhydride curing agent. Moreover, you may use together the carboxylic acid which is a hydrolyzate of the said acid anhydride.
 また、上記イソシアヌル酸誘導体系硬化剤としては、例えば、1,3,5-トリス(1-カルボキシメチル)イソシアヌレート、1,3,5-トリス(2-カルボキシエチル)イソシアヌレート、1,3,5-トリス(3-カルボキシプロピル)イソシアヌレート、1,3-ビス(2-カルボキシエチル)イソシアヌレート等があげられる。これらは単独でもしくは2種以上併せて用いることができる。さらに、イソシアヌル酸誘導体系硬化剤としては、無色ないし淡黄色の硬化剤が好ましい。 Examples of the isocyanuric acid derivative-based curing agent include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5, Examples thereof include 5-tris (3-carboxypropyl) isocyanurate and 1,3-bis (2-carboxyethyl) isocyanurate. These may be used alone or in combination of two or more. Furthermore, as the isocyanuric acid derivative-based curing agent, a colorless or light yellow curing agent is preferable.
 ここで、上記エポキシ樹脂と上記硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、硬化剤中におけるエポキシ基と反応可能な活性基(酸無水基あるいはカルボキシル基)が0.4~1.4当量となるよう設定することが好ましく、より好ましくは0.6~1.2当量である。すなわち、活性基が少なすぎると、熱硬化性樹脂組成物の硬化速度が遅くなるとともに、その硬化物のガラス転移温度(Tg)が低くなる傾向がみられ、活性基が多すぎると耐湿性が低下する傾向がみられるからである。 Here, the mixing ratio of the epoxy resin and the curing agent is such that the active group (an acid anhydride group or carboxyl group) capable of reacting with the epoxy group in the curing agent is 0 with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferably set to be 4 to 1.4 equivalents, more preferably 0.6 to 1.2 equivalents. That is, if there are too few active groups, the curing rate of the thermosetting resin composition will be slow and the glass transition temperature (Tg) of the cured product will tend to be low. If there are too many active groups, the moisture resistance will be low. This is because there is a tendency to decrease.
 また、その目的および用途に応じて、上述の上記酸無水物系硬化剤およびイソシアヌル酸誘導体系硬化剤以外の他のエポキシ樹脂用硬化剤、例えば、フェノール系硬化剤、アミン系硬化剤、上記酸無水物系硬化剤をアルコールで部分エステル化したもの等の硬化剤を、単独でもしくは2種以上併せて用いることができる。なお、これら硬化剤を用いる場合においても、その配合割合は、上述のエポキシ樹脂と硬化剤との配合割合(当量比)に準じればよい。 Depending on the purpose and application, other epoxy resin curing agents than the above-mentioned acid anhydride curing agent and isocyanuric acid derivative curing agent, for example, phenol curing agent, amine curing agent, and acid Curing agents such as those obtained by partially esterifying an anhydride-based curing agent with alcohol can be used alone or in combination of two or more. In addition, also when using these hardening | curing agents, the mixing | blending ratio should just follow the mixing | blending ratio (equivalent ratio) of the above-mentioned epoxy resin and hardening | curing agent.
 つぎに、上記熱硬化性樹脂(A成分)として上記シリコーン樹脂を用いる場合について述べる。上記シリコーン樹脂としては、少なくとも触媒を含有し、具体的には、触媒およびシリコーン樹脂を含有する。上記触媒は、例えば、シリコーン樹脂の反応を促進させてシリコーン樹脂を硬化させる硬化触媒であって、好ましくは、後述するシリコーン樹脂のヒドロシリル化反応を促進させてシリコーン樹脂をヒドロシリル付加により硬化させるヒドロシリル化触媒である。そして、上記触媒は、遷移金属を含有し、上記遷移金属としては、例えば、白金、パラジウム、ロジウム等の白金属元素、好ましくは、白金があげられる。具体的には、触媒としては、触媒が白金を含有する場合には、例えば、白金黒、塩化白金、塩化白金酸等の無機白金、例えば、白金-オレフィン錯体、白金-カルボニル錯体、白金-アセチルアセテート等の白金錯体等があげられ、好ましくは、白金錯体があげられる。より具体的には、白金錯体としては、例えば、白金-ビニルシロキサン錯体、白金-テトラメチルジビニルジシロキサン錯体、白金-カルボニルシクロビニルメチルシロキサン錯体、白金-ジビニルテトラメチルジシロキサン錯体、白金-シクロビニルメチルシロキサン錯体、白金-オクタナル/オクタノール錯体等があげられる。なお、上記触媒は、後述のシリコーン樹脂と区別して配合される態様や、シリコーン樹脂を構成する成分としてシリコーン樹脂に含有される態様がある。 Next, the case where the silicone resin is used as the thermosetting resin (component A) will be described. The silicone resin contains at least a catalyst, and specifically contains a catalyst and a silicone resin. The catalyst is, for example, a curing catalyst that accelerates the reaction of the silicone resin to cure the silicone resin, and preferably hydrosilylation that accelerates the hydrosilylation reaction of the silicone resin to be described later and cures the silicone resin by hydrosilylation. It is a catalyst. The catalyst contains a transition metal, and examples of the transition metal include white metal elements such as platinum, palladium and rhodium, preferably platinum. Specifically, as the catalyst, when the catalyst contains platinum, for example, platinum black, platinum chloride, inorganic platinum such as chloroplatinic acid, for example, platinum-olefin complex, platinum-carbonyl complex, platinum-acetyl Examples include platinum complexes such as acetate, and preferably platinum complexes. More specifically, examples of the platinum complex include a platinum-vinylsiloxane complex, a platinum-tetramethyldivinyldisiloxane complex, a platinum-carbonylcyclovinylmethylsiloxane complex, a platinum-divinyltetramethyldisiloxane complex, and a platinum-cyclovinyl. Examples thereof include a methylsiloxane complex and a platinum-octal / octanol complex. In addition, the said catalyst has the aspect mixed with the silicone resin mentioned later, and the aspect contained in a silicone resin as a component which comprises a silicone resin.
 上記触媒中の遷移金属の含有割合(濃度)は、シリコーン樹脂全体に対して、質量基準で、好ましくは0.1~500ppm、より好ましくは0.15~100ppm、さらに好ましくは0.2~50ppm、特に好ましくは0.3~10ppmである。 The content (concentration) of the transition metal in the catalyst is preferably 0.1 to 500 ppm, more preferably 0.15 to 100 ppm, and still more preferably 0.2 to 50 ppm, based on the weight of the whole silicone resin. Particularly preferred is 0.3 to 10 ppm.
 上記シリコーン樹脂は、触媒によって反応が促進されて硬化する硬化性シリコーン樹脂であって、例えば、1段階硬化型シリコーン樹脂、2段階硬化型シリコーン樹脂等の熱硬化性シリコーン樹脂等があげられる。 The above-mentioned silicone resin is a curable silicone resin that is cured by a reaction accelerated by a catalyst, and examples thereof include a thermosetting silicone resin such as a one-step curable silicone resin and a two-step curable silicone resin.
 上記2段階硬化型シリコーン樹脂は、2段階の反応機構を有しており、1段階目の反応でBステージ化(半硬化)し、2段階目の反応でCステージ化(完全硬化)する熱硬化性シリコーン樹脂である。なお、上記Bステージとは、熱硬化性シリコーン樹脂が、溶剤に可溶なAステージと、完全硬化したCステージとの間の状態であって、硬化およびゲル化がわずかに進行し、溶剤に膨潤するが完全に溶解せず、加熱によって軟化するが溶融しない状態である。 The above-mentioned two-stage curable silicone resin has a two-stage reaction mechanism, and heats B-staged (semi-cured) by the first-stage reaction and C-stage (completely cured) by the second-stage reaction. It is a curable silicone resin. The B stage is a state between the A stage in which the thermosetting silicone resin is soluble in the solvent and the fully cured C stage, and the curing and gelation progresses slightly, Although it swells but does not completely dissolve, it softens by heating but does not melt.
 上記1段階硬化型シリコーン樹脂は、1段階の反応機構を有しており、1段階目の反応で完全硬化する熱硬化性シリコーン樹脂である。上記1段階硬化型シリコーン樹脂としては、例えば、特開2012-124428号公報に開示される付加反応硬化型ポリオルガノポリシロキサンがあげられる。具体的には、付加反応硬化型ポリオルガノポリシロキサンは、例えば、エチレン系不飽和炭化水素基含有ケイ素化合物およびヒドロシリル基含有ケイ素化合物を含有する。 The one-step curable silicone resin has a one-step reaction mechanism and is a thermosetting silicone resin that is completely cured by the first-step reaction. Examples of the one-step curable silicone resin include addition reaction curable polyorganopolysiloxane disclosed in JP2012-124428A. Specifically, the addition reaction curable polyorganopolysiloxane contains, for example, an ethylenically unsaturated hydrocarbon group-containing silicon compound and a hydrosilyl group-containing silicon compound.
 上記エチレン系不飽和炭化水素基含有ケイ素化合物として、例えば、分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサン、好ましくは、両末端ビニルポリジメチルシロキサンがあげられる。 Examples of the ethylenically unsaturated hydrocarbon group-containing silicon compound include vinyl group-containing polyorganosiloxane having two or more vinyl groups in the molecule, preferably vinyl polydimethylsiloxane at both ends.
 上記ヒドロシリル基含有ケイ素化合物として、例えば、分子内に2個以上のヒドロシリル基を有するヒドロシリル基含有ポリオルガノシロキサン、好ましくは、両末端ヒドロシリルポリジメチルシロキサン、両末端トリメチルシリル封鎖メチルヒドロシロキサン-ジメチルシロキサンコポリマー等があげられる。 Examples of the hydrosilyl group-containing silicon compound include, for example, a hydrosilyl group-containing polyorganosiloxane having two or more hydrosilyl groups in the molecule, preferably both-end hydrosilyl polydimethylsiloxane, both-end trimethylsilyl-blocked methylhydrosiloxane-dimethylsiloxane copolymer, etc. Can be given.
 上記2段階硬化型シリコーン樹脂としては、例えば、縮合反応と付加反応との2つの反応系を有する縮合反応・付加反応硬化型シリコーン樹脂等があげられる。このような縮合反応・付加反応硬化型シリコーン樹脂は、触媒を含有しており、例えば、シラノール両末端ポリシロキサン、アルケニル基含有トリアルコキシシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第1の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、シラノール基両末端ポリシロキサン、エチレン系不飽和炭化水素基含有ケイ素化合物、エチレン系不飽和炭化水素基含有ケイ素化合物、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第2の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、両末端シラノール型シリコーンオイル、アルケニル基含有ジアルコキシアルキルシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第3の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、1分子中に少なくとも2個のアルケニルシリル基を有するオルガノポリシロキサン、1分子中に少なくとも2個のヒドロシリル基を有するオルガノポリシロキサン、ヒドロシリル化触媒および硬化遅延剤を含有する第4の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのヒドロシリル基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化触媒およびヒドロシリル化抑制剤を含有する第5の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのシラノール基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化抑制剤、および、ヒドロシリル化触媒を含有する第6の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ケイ素化合物、および、ホウ素化合物またはアルミニウム化合物を含有する第7の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ポリアルミノシロキサンおよびシランカップリング剤を含有する第8の縮合反応・付加反応硬化型シリコーン樹脂等があげられる。
 これら縮合反応・付加反応硬化型シリコーン樹脂は、単独でもしくは2種以上併せて用いられる。
Examples of the two-stage curable silicone resin include a condensation reaction / addition reaction curable silicone resin having two reaction systems of a condensation reaction and an addition reaction. Such condensation reaction / addition reaction curable silicone resin contains a catalyst, for example, silanol-terminated polysiloxane, alkenyl group-containing trialkoxysilane, organohydrogenpolysiloxane, condensation catalyst and hydrosilylation catalyst. A first condensation reaction / addition reaction curable silicone resin,
For example, the second condensation containing a silanol-terminated polysiloxane, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an organohydrogenpolysiloxane, a condensation catalyst, and a hydrosilylation catalyst Reaction / addition reaction curable silicone resin,
For example, a third condensation reaction / addition reaction curable silicone resin containing a silanol type silicone oil at both ends, an alkenyl group-containing dialkoxyalkylsilane, an organohydrogenpolysiloxane, a condensation catalyst and a hydrosilylation catalyst,
For example, a fourth condensation reaction containing an organopolysiloxane having at least two alkenylsilyl groups in one molecule, an organopolysiloxane having at least two hydrosilyl groups in one molecule, a hydrosilylation catalyst and a cure retarder・ Addition reaction curable silicone resin,
For example, a first organopolysiloxane having at least two ethylenically unsaturated hydrocarbon groups and at least two hydrosilyl groups in one molecule, no ethylenically unsaturated hydrocarbon groups, and at least two hydrosilyl groups A fifth condensation reaction / addition reaction curable silicone resin containing a second organopolysiloxane in the molecule, a hydrosilylation catalyst and a hydrosilylation inhibitor;
For example, a first organopolysiloxane having at least two ethylenically unsaturated hydrocarbon groups and at least two silanol groups in one molecule, no ethylenically unsaturated hydrocarbon group, and at least two hydrosilyl groups A sixth condensation reaction / addition reaction curable silicone resin containing a second organopolysiloxane in the molecule, a hydrosilylation inhibitor, and a hydrosilylation catalyst;
For example, a seventh condensation reaction / addition reaction curable silicone resin containing a silicon compound and a boron compound or an aluminum compound,
For example, an eighth condensation reaction / addition reaction curable silicone resin containing polyaluminosiloxane and a silane coupling agent can be used.
These condensation reaction / addition reaction curable silicone resins may be used alone or in combination of two or more.
 上記縮合反応・付加反応硬化型シリコーン樹脂として、好ましくは、上記第2の縮合反応・付加反応硬化型シリコーン樹脂があげられ、具体的には、特開2010-265436号公報等に詳細に記載されており、例えば、シラノール基両末端ポリジメチルシロキサン、ビニルトリメトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、ジメチルポリシロキサン-co-メチルハイドロジェンポリシロキサン、水酸化テトラメチルアンモニウムおよび白金-カルボニル錯体を含有する。具体的には、上記第2の縮合反応・付加反応硬化型シリコーン樹脂を調製するには、例えば、まず、縮合原料であるエチレン系不飽和炭化水素基含有ケイ素化合物およびエチレン系不飽和炭化水素基含有ケイ素化合物と、縮合触媒とを一度に加え、ついで、付加原料であるオルガノハイドロジェンポリシロキサンを加え、その後、ヒドロシリル化触媒(付加触媒)を加えることにより調製することができる。 The condensation reaction / addition reaction curable silicone resin is preferably the second condensation reaction / addition reaction curable silicone resin, and specifically described in detail in JP-A No. 2010-265436. For example, polydimethylsiloxane having both ends of silanol groups, vinyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, dimethylpolysiloxane-co-methylhydrogenpolysiloxane, tetramethylammonium hydroxide and platinum- Contains a carbonyl complex. Specifically, in order to prepare the second condensation reaction / addition reaction curable silicone resin, for example, first, an ethylenically unsaturated hydrocarbon group-containing silicon compound and an ethylenically unsaturated hydrocarbon group which are condensation raw materials are used. It can be prepared by adding the silicon compound and the condensation catalyst all at once, then adding the organohydrogenpolysiloxane as an addition raw material, and then adding a hydrosilylation catalyst (addition catalyst).
〈B:特定の白色顔料〉
 上記A成分とともに用いられる特定の白色顔料(B成分)としては、バンドギャップ(禁制帯)が3.3~5.5eVである白色顔料が用いられる。このバンドギャップとは、その結晶のバンド構造における価電子帯の上端から、伝導帯の下端までの間のエネルギー差をいい、各単体、化合物およびそれらの結晶系に固有の値である。上記特定範囲のバンドギャップを有する白色顔料(B成分)としては、具体的には、単体では、ダイヤモンド(バンドギャップ5.5eV、屈折率2.4)等があげられ、酸化物としては、酸化亜鉛(バンドギャップ3.3eV、屈折率2.0)、酸化ジルコニウム(ZrO2)(バンドギャップ4~5eV、屈折率2.1)、酸化セリウム(バンドギャップ3.4eV、屈折率2.2)、酸化スズ(I)(バンドギャップ3.8eV、屈折率2.0)、酸化ニッケル(バンドギャップ4eV、屈折率2.2)、酸化アルミニウム(バンドギャップ5eV、屈折率1.8)等があげられる。また、窒化物としては、窒化ガリウム(バンドギャップ3.4eV、屈折率2.4)、窒化ケイ素(バンドギャップ5eV、屈折率2.0)、窒化ホウ素(六方晶)(バンドギャップ5eV、屈折率1.8)等があげられる。さらに、硫化物としては、硫化亜鉛(ウルツ)(バンドギャップ3.9eV、屈折率2.4)等があげられる。そして、長期耐光性のみならず初期光反射率の観点から、屈折率が2.0~3.0のものが好ましい。さらに、着色が少なく、化学的安定性、安全性、価格を含む入手容易性、および生産性の観点から、酸化亜鉛、酸化ジルコニウム(ZrO2)が好ましく用いられ、酸化ジルコニウム、特に単斜晶の酸化ジルコニウムが好ましく用いられる。さらに、その中でも、流動性という観点から、平均粒径が0.01~50μmのものを用いることが好ましく、0.01~30μmのものを用いることがより好ましい。なお、上記平均粒径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。また、光反射率の観点から、白色顔料に含まれる不純物の中でもFe23の含有量が0.01質量%以下であることが好ましい。
<B: Specific white pigment>
As the specific white pigment (component B) used together with the component A, a white pigment having a band gap (forbidden band) of 3.3 to 5.5 eV is used. This band gap refers to an energy difference between the upper end of the valence band and the lower end of the conduction band in the band structure of the crystal, and is a value inherent to each simple substance, compound, and their crystal system. Specific examples of the white pigment (B component) having a band gap in the specific range include diamond (band gap 5.5 eV, refractive index 2.4) and the like as a single substance, and oxides include oxidation Zinc (band gap 3.3 eV, refractive index 2.0), zirconium oxide (ZrO 2 ) (band gap 4 to 5 eV, refractive index 2.1), cerium oxide (band gap 3.4 eV, refractive index 2.2) , Tin oxide (I) (band gap 3.8 eV, refractive index 2.0), nickel oxide (band gap 4 eV, refractive index 2.2), aluminum oxide (band gap 5 eV, refractive index 1.8), etc. It is done. Further, as nitrides, gallium nitride (band gap 3.4 eV, refractive index 2.4), silicon nitride (band gap 5 eV, refractive index 2.0), boron nitride (hexagonal crystal) (band gap 5 eV, refractive index). 1.8). Furthermore, examples of the sulfide include zinc sulfide (Wurtz) (band gap 3.9 eV, refractive index 2.4). From the viewpoint of not only long-term light resistance but also initial light reflectance, those having a refractive index of 2.0 to 3.0 are preferable. Furthermore, zinc oxide and zirconium oxide (ZrO 2 ) are preferably used from the viewpoint of low coloring, chemical stability, safety, availability including price, and productivity, and zirconium oxide, particularly monoclinic crystal. Zirconium oxide is preferably used. Among them, from the viewpoint of fluidity, those having an average particle diameter of 0.01 to 50 μm are preferable, and those having an average particle diameter of 0.01 to 30 μm are more preferable. In addition, the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution analyzer, for example. From the viewpoint of light reflectance, it is preferable that the content of Fe 2 O 3 is 0.01% by mass or less among the impurities contained in the white pigment.
 上記特定の白色顔料(B成分)の配合割合は、熱硬化性樹脂組成物全体に対して、好ましくは3~50体積%であり、より好ましくは5~30体積%である。すなわち、B成分の含有割合が少なすぎると、充分な光反射性、特に優れた初期光反射率が得られ難くなる傾向がみられる。B成分の含有割合が多すぎると、著しい増粘により混練等での熱硬化性樹脂組成物の作製に関して困難が生じる可能性がみられるからである。 The blending ratio of the specific white pigment (component B) is preferably 3 to 50% by volume, more preferably 5 to 30% by volume, based on the entire thermosetting resin composition. That is, when the content ratio of the B component is too small, there is a tendency that sufficient light reflectivity, particularly excellent initial light reflectivity, cannot be obtained. This is because when the content ratio of the component B is too large, there may be a difficulty in producing a thermosetting resin composition by kneading or the like due to remarkable thickening.
〈C:無機質充填剤〉
 上記A~B成分にとともに用いられる無機質充填剤(C成分)としては、例えば、石英ガラス粉末、タルク、溶融シリカ粉末や結晶性シリカ粉末等のシリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化ケイ素粉末等があげられる。中でも、線膨張係数の低減等の観点から、溶融シリカ粉末を用いることが好ましく、特に高充填性および高流動性という観点から、溶融球状シリカ粉末を用いることが好ましい。なお、無機質充填剤(C成分)は、上記特定の白色顔料(B成分)を除く。上記無機質充填剤(C成分)の粒径およびその分布に関しては、上記特定の白色顔料(B成分)の粒径およびその分布との組み合わせを、熱硬化性樹脂組成物をトランスファー成形等により成形する際のバリ等が最も低減するように配慮することが好ましい。具体的には、無機質充填剤(C成分)の平均粒径は、5~100μmであることが好ましく、特に好ましくは10~80μmである。なお、上記平均粒径は、前述と同様、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。
<C: Inorganic filler>
Examples of the inorganic filler (component C) used together with the components A to B include silica glass powder, talc, silica powder such as fused silica powder and crystalline silica powder, alumina powder, aluminum nitride powder, and silicon nitride powder. Etc. Among them, it is preferable to use a fused silica powder from the viewpoint of reducing the linear expansion coefficient, and it is particularly preferable to use a fused spherical silica powder from the viewpoints of high filling property and high fluidity. The inorganic filler (C component) excludes the specific white pigment (B component). Regarding the particle size of the inorganic filler (component C) and its distribution, a combination of the particle size of the specific white pigment (component B) and its distribution is formed by transfer molding or the like of the thermosetting resin composition. It is preferable to consider so that the burr at the time is reduced most. Specifically, the average particle size of the inorganic filler (component C) is preferably 5 to 100 μm, particularly preferably 10 to 80 μm. In addition, the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution meter similarly to the above-mentioned.
 そして、上記無機質充填剤(C成分)の含有割合においては、上記特定の白色顔料(B成分)と無機質充填剤(C成分)の合計の含有割合が、熱硬化性樹脂組成物全体の10~90体積%となるように設定することが好ましい。より好ましくは60~90体積%であり、特に好ましくは65~85体積%である。すなわち、上記合計の含有割合が少なすぎると、成形時に反りが発生する等の問題が生じる傾向がみられる。また、合計の含有割合が多すぎると、配合成分を混練する際、混練機に多大な負荷がかかり、混練が不可能となる傾向がみられ、結果、成形材料である熱硬化性樹脂組成物を作製することが困難となる傾向がみられる。 In the content ratio of the inorganic filler (C component), the total content ratio of the specific white pigment (B component) and the inorganic filler (C component) is 10 to 10% of the entire thermosetting resin composition. It is preferable to set so that it may become 90 volume%. More preferred is 60 to 90% by volume, and particularly preferred is 65 to 85% by volume. That is, if the total content is too small, there is a tendency for problems such as warpage to occur during molding. In addition, if the total content is too large, when kneading the compounding components, a great load is applied to the kneader, and the kneading tends to be impossible. As a result, the thermosetting resin composition that is a molding material It tends to be difficult to fabricate.
 さらに、上記特定の白色顔料(B成分)と無機質充填剤(C成分)の混合割合は、初期光反射率の観点から、体積比で、(C成分)/(B成分)=1~36であることが好ましく、特に好ましくは2~30である。すなわち、B成分とC成分の混合割合が、上記範囲を外れ、体積比が小さすぎると、熱硬化性樹脂組成物の溶融粘度が上昇して混練が困難になる傾向がみられ、体積比が大きすぎると、熱硬化性樹脂組成物の初期光反射率が低下する傾向がみられる。 Further, the mixing ratio of the specific white pigment (B component) and the inorganic filler (C component) is (C component) / (B component) = 1 to 36 in terms of volume ratio from the viewpoint of initial light reflectance. It is preferably some, particularly preferably 2 to 30. That is, if the mixing ratio of the B component and the C component is out of the above range and the volume ratio is too small, the melt viscosity of the thermosetting resin composition tends to increase and kneading tends to be difficult, and the volume ratio is If it is too large, the initial light reflectance of the thermosetting resin composition tends to decrease.
〈他の添加剤〉
 そして、本発明の熱硬化性樹脂組成物には、上記A~C成分以外に、必要に応じて、硬化促進剤、離型剤、シラン化合物を配合することができる。さらには、変性剤(可塑剤)、酸化防止剤、難燃剤、脱泡剤、レベリング剤、紫外線吸収剤等の各種添加剤を適宜配合することができる。
<Other additives>
The thermosetting resin composition of the present invention can contain a curing accelerator, a release agent, and a silane compound, if necessary, in addition to the components A to C. Furthermore, various additives such as a modifier (plasticizer), an antioxidant, a flame retardant, a defoaming agent, a leveling agent, and an ultraviolet absorber can be appropriately blended.
 上記硬化促進剤は、上記熱硬化性樹脂(A成分)がエポキシ樹脂の場合に用いることができ、硬化促進剤としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン、トリ-2,4,6-ジメチルアミノメチルフェノール、N,N-ジメチルベンジルアミン、N,N-ジメチルアミノベンゼン、N,N-ジメチルアミノシクロヘキサン等の3級アミン類、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフルオロボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、メチルトリブチルホスホニウムジメチルホスホエート、テトラフェニルホスホニウム-o,o-ジエチルホスホロジチオエート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート等のリン化合物、トリエチレンジアンモニウム・オクチルカルボキシレート等の4級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられる。これらは単独でもしくは2種以上併せて用いられる。これら硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。その中でも、着色が少ない硬化物を得るためには、リン化合物を用いることが特に好ましい。 The curing accelerator can be used when the thermosetting resin (component A) is an epoxy resin. Examples of the curing accelerator include 1,8-diazabicyclo [5.4.0] undecene-7, Tertiary amines such as triethylenediamine, tri-2,4,6-dimethylaminomethylphenol, N, N-dimethylbenzylamine, N, N-dimethylaminobenzene, N, N-dimethylaminocyclohexane, 2-ethyl- Imidazoles such as 4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetrafluoroborate, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, methyltributylphosphonium Phosphorus compounds such as methylphosphonate, tetraphenylphosphonium-o, o-diethyl phosphorodithioate, tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate, 4 such as triethylenediammonium octylcarboxylate Examples include quaternary ammonium salts, organometallic salts, and derivatives thereof. These may be used alone or in combination of two or more. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds. Among them, it is particularly preferable to use a phosphorus compound in order to obtain a cured product with little coloring.
 上記硬化促進剤の含有量は、上記熱硬化性樹脂(A成分)に対して0.001~8重量%に設定することが好ましく、より好ましくは0.01~5重量%である。すなわち、硬化促進剤の含有量が少なすぎると、充分な硬化促進効果を得られない場合があり、また硬化促進剤の含有量が多すぎると、得られる硬化物に変色が生じる傾向がみられるからである。 The content of the curing accelerator is preferably set to 0.001 to 8% by weight, more preferably 0.01 to 5% by weight with respect to the thermosetting resin (component A). That is, if the content of the curing accelerator is too small, a sufficient curing acceleration effect may not be obtained, and if the content of the curing accelerator is too large, the resulting cured product tends to be discolored. Because.
 上記離型剤としては、各種離型剤が用いられるが、中でもエーテル結合を有する離型剤を用いることが好ましく、例えば、下記の一般式(1)で表される構造式を備えた離型剤があげられる。 Various release agents are used as the release agent. Among them, it is preferable to use a release agent having an ether bond. For example, a release agent having a structural formula represented by the following general formula (1) Agent.
 CH3・(CH3)k・CH2O(CHRm・CHRn・O)x・H ・・・(1)
[式(1)中、Rm,Rnは水素原子または一価のアルキル基であり、両者は互いに同じであっても異なっていてもよい。また、kは1~100の正数であり、xは1~100の正数である。]
CH 3 · (CH 3 ) k · CH 2 O (CHRm · CHRn · O) x · H (1)
[In Formula (1), Rm and Rn are a hydrogen atom or a monovalent alkyl group, and both may be the same or different. Further, k is a positive number from 1 to 100, and x is a positive number from 1 to 100. ]
 上記式(1)において、Rm,Rnは水素原子または一価のアルキル基であり、好ましくはkは10~50の正数、xは3~30の正数である。より好ましくはRmおよびRnは水素原子であり、kは28~48の正数、xは5~20の正数である。すなわち、繰り返し数kの値が小さすぎると、離型性が低下し、また繰り返し数xの値が小さすぎると、分散性が低下するため、安定した強度と離型性が得られなくなる傾向がみられる。一方、繰り返し数kの値が大きすぎると、融点が高くなるため混練が困難となり、熱硬化性樹脂組成物の製造工程において困難を生じる傾向がみられ、繰り返し数xの値が大きすぎると、離型性が低下する傾向がみられるからである。 In the above formula (1), Rm and Rn are hydrogen atoms or monovalent alkyl groups, preferably k is a positive number from 10 to 50, and x is a positive number from 3 to 30. More preferably, Rm and Rn are hydrogen atoms, k is a positive number of 28 to 48, and x is a positive number of 5 to 20. That is, when the value of the number of repetitions k is too small, the releasability is lowered, and when the value of the number of repetitions x is too small, the dispersibility is lowered, so that stable strength and releasability tend not to be obtained. Be looked at. On the other hand, if the value of the number of repetitions k is too large, kneading becomes difficult because the melting point becomes high, and there is a tendency to cause difficulty in the production process of the thermosetting resin composition. This is because the mold release property tends to be lowered.
 上記離型剤の含有量は、熱硬化性樹脂組成物全体の0.001~3重量%の範囲に設定することが好ましく、0.01~2重量%の範囲に設定することがより好ましい。すなわち、離型剤の含有量が少なすぎたり、多すぎたりすると、硬化体の強度不足を招いたり、離型性の低下を引き起こす傾向がみられるからである。 The content of the release agent is preferably set in the range of 0.001 to 3% by weight, more preferably in the range of 0.01 to 2% by weight of the entire thermosetting resin composition. That is, if the content of the release agent is too little or too much, the strength of the cured product tends to be insufficient or the release property tends to be lowered.
 上記シラン化合物としは、シランカップリング剤やシランがあげられる。上記シランカップリング剤としては、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等があげられる。また、上記シランとしては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエチルシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デジルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、加水分解性基を含むシロキサン等があげられる。これらは単独でもしくは2種以上併せて用いられる。 Examples of the silane compound include a silane coupling agent and silane. Examples of the silane coupling agent include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethylethoxysilane. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like. Examples of the silane include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethylsilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and dezyltrimethoxy. Examples thereof include silane, trifluoropropyltrimethoxysilane, hexamethyldisilazane, and siloxane containing a hydrolyzable group. These may be used alone or in combination of two or more.
 上記変性剤(可塑剤)としては、例えば、シリコーン類、アルコール類等があげられる。 Examples of the modifier (plasticizer) include silicones and alcohols.
 上記酸化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等があげられる。 Examples of the antioxidant include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.
 上記難燃剤としては、例えば、水酸化マグネシウム等の金属水酸化物、臭素系難燃剤、窒素系難燃剤、リン系難燃剤等があげられ、さらに三酸化アンチモン等の難燃助剤を用いることもできる。 Examples of the flame retardant include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.
 上記消泡剤としては、例えば、シリコーン系等の従来公知の消泡剤があげられる。 Examples of the antifoaming agent include conventionally known antifoaming agents such as silicone.
〈熱硬化性樹脂組成物〉
 本発明の熱硬化性樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A~C成分、さらには硬化促進剤および離型剤、ならびに必要に応じて用いられる各種添加剤を適宜配合した後、混練機等を用いて溶融混合し、ついで、これを冷却し固化して粉砕することにより粉末状の熱硬化性樹脂組成物を製造することができる。
<Thermosetting resin composition>
The thermosetting resin composition of the present invention can be produced, for example, as follows. That is, the above-mentioned components A to C, further a curing accelerator and a release agent, and various additives used as necessary are appropriately blended and then melt-mixed using a kneader or the like, and then cooled. A powdery thermosetting resin composition can be produced by solidifying and pulverizing.
 そして、上記得られた熱硬化性樹脂組成物を、例えば、トランスファー成形または射出成形することで得られる硬化物としては、その光反射率が、波長450~800nmにおいて80%以上であることが好ましく、より好ましくは90%以上である。なお、上限は、通常100%である。具体的には、上記硬化物の波長450nmにおける光反射率が85~98%であることが好ましい。上記光反射率は、例えば、つぎのようにして測定される。すなわち、厚み1mmの熱硬化性樹脂組成物の硬化物を、所定の硬化条件、例えば、175℃×2分間の成形後、175℃×3時間の後硬化にて作製し、室温(25±10℃)にて上記範囲内の波長での上記硬化物の光反射率を分光光度計(例えば、日本分光社製の分光光度計V-670)を用いることにより測定することができる。 The cured product obtained by subjecting the obtained thermosetting resin composition to, for example, transfer molding or injection molding, preferably has a light reflectance of 80% or more at a wavelength of 450 to 800 nm. More preferably, it is 90% or more. The upper limit is usually 100%. Specifically, the light reflectance at a wavelength of 450 nm of the cured product is preferably 85 to 98%. The light reflectance is measured as follows, for example. That is, a cured product of a thermosetting resin composition having a thickness of 1 mm is prepared by predetermined curing conditions, for example, by molding at 175 ° C. × 2 minutes, and post-curing at 175 ° C. × 3 hours, and at room temperature (25 ± 10 The light reflectance of the cured product at a wavelength within the above range can be measured by using a spectrophotometer (for example, a spectrophotometer V-670 manufactured by JASCO Corporation) at a wavelength within the above range.
 本発明の熱硬化性樹脂組成物を用いてなる光半導体装置は、例えば、つぎのようにして製造される。すなわち、金属リードフレームをトランスファー成形機の金型内に設置して上記熱硬化性樹脂組成物を用いてトランスファー成形によりリフレクタを形成する。このようにして、光半導体素子搭載領域の周囲を囲うように環状のリフレクタが形成されてなる光半導体装置用の金属リードフレームを作製する。ついで、上記リフレクタの内部の、金属リードフレーム上の光半導体素子搭載領域に光半導体素子を搭載し、光半導体素子と金属リードフレームとをボンディングワイヤーを用いて電気的に接続する。そして、上記光半導体素子を含むリフレクタの内側領域を、シリコーン樹脂等を用いて樹脂封止することにより封止樹脂層が形成される。このようにして、例えば、図1に示す立体状(カップ型)の光半導体装置が作製される。この光半導体装置は、前述のとおり、第1のプレート部1と第2のプレート部2とからなる金属リードフレームの第2のプレート部2上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5には、光半導体素子3を封止する透明性を有する封止樹脂層6が形成されている。この封止樹脂層6には必要に応じて蛍光体が含有されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーである。 An optical semiconductor device using the thermosetting resin composition of the present invention is manufactured as follows, for example. That is, a metal lead frame is placed in a mold of a transfer molding machine, and a reflector is formed by transfer molding using the thermosetting resin composition. In this manner, a metal lead frame for an optical semiconductor device in which an annular reflector is formed so as to surround the periphery of the optical semiconductor element mounting region is manufactured. Next, an optical semiconductor element is mounted in the optical semiconductor element mounting region on the metal lead frame inside the reflector, and the optical semiconductor element and the metal lead frame are electrically connected using a bonding wire. And the sealing resin layer is formed by resin-sealing the inner area | region of the reflector containing the said optical semiconductor element using a silicone resin etc. FIG. In this way, for example, the three-dimensional (cup type) optical semiconductor device shown in FIG. 1 is manufactured. In this optical semiconductor device, as described above, the optical semiconductor element 3 is mounted on the second plate portion 2 of the metal lead frame composed of the first plate portion 1 and the second plate portion 2, and the optical semiconductor device The reflector 4 for light reflection which consists of a thermosetting resin composition of this invention is formed so that the circumference | surroundings of 3 may be enclosed. In the recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4, a transparent sealing resin layer 6 for sealing the optical semiconductor element 3 is formed. The sealing resin layer 6 contains a phosphor as necessary. In FIG. 1, 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3.
 なお、本発明において、上記図1の金属リードフレームに代えて各種基板を用いてもよい。上記各種基板としては、例えば、有機基板、無機基板、フレキシブルプリント基板等があげられる。また、上記トランスファー成形に変えて、射出成形によりリフレクタを形成してもよい。 In the present invention, various substrates may be used in place of the metal lead frame shown in FIG. Examples of the various substrates include organic substrates, inorganic substrates, and flexible printed substrates. Further, instead of the transfer molding, the reflector may be formed by injection molding.
 また、上記構成と異なる光半導体装置として、板状の光半導体装置用リードフレームを用いた、例えば、図2および図3(図2のX-X′矢視断面図)に示す光半導体装置があげられる。すなわち、この光半導体装置は、互いに間隔を設けて配置された金属リードフレーム10の厚み方向の片面の所定位置に光半導体素子3がそれぞれ搭載され、上記金属リードフレーム10間の隙間に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ11が形成されているという構成をとる。また、図3に示すように、金属リードフレーム10の隙間に本発明の熱硬化性樹脂組成物を充填し硬化してなるリフレクタ11が複数箇所形成されている。なお、図2および図3において、12は、上記光半導体素子3と金属リードフレーム10とを電気的に接続するボンディングワイヤーである。このような光半導体装置は、上記金属リードフレーム10をトランスファー成形機の金型内に設置してトランスファー成形により、間隔を設けて配置された金属リードフレーム10の隙間および金属リードフレーム10の光半導体素子3搭載面とは反対面に形成された凹部に、熱硬化性樹脂組成物を充填し、硬化させることによりリフレクタ11をそれぞれ形成する。ついで、上記金属リードフレーム10の所定位置となる光半導体素子搭載領域に光半導体素子3を搭載した後、光半導体素子3と金属リードフレーム10とをボンディングワイヤー12を用いて電気的に接続する。このようにして、図2および図3に示す光半導体装置が作製される。 Further, as an optical semiconductor device different from the above configuration, for example, an optical semiconductor device shown in FIGS. 2 and 3 (cross-sectional view taken along the line XX ′ in FIG. 2) using a plate-like lead frame for an optical semiconductor device is provided. can give. That is, in this optical semiconductor device, the optical semiconductor elements 3 are respectively mounted at predetermined positions on one surface in the thickness direction of the metal lead frames 10 arranged at intervals, and the gap between the metal lead frames 10 is in accordance with the present invention. The light reflection reflector 11 made of a thermosetting resin composition is formed. Also, as shown in FIG. 3, a plurality of reflectors 11 are formed by filling the gap between the metal lead frames 10 with the thermosetting resin composition of the present invention and curing. 2 and 3, reference numeral 12 denotes a bonding wire for electrically connecting the optical semiconductor element 3 and the metal lead frame 10. In such an optical semiconductor device, the metal lead frame 10 is placed in a mold of a transfer molding machine, and the gap between the metal lead frames 10 arranged at intervals and the optical semiconductor of the metal lead frame 10 are formed by transfer molding. The reflectors 11 are respectively formed by filling the concave portions formed on the surface opposite to the element 3 mounting surface with a thermosetting resin composition and curing. Next, after the optical semiconductor element 3 is mounted in the optical semiconductor element mounting region at a predetermined position of the metal lead frame 10, the optical semiconductor element 3 and the metal lead frame 10 are electrically connected using the bonding wire 12. In this manner, the optical semiconductor device shown in FIGS. 2 and 3 is manufactured.
〈封止型光半導体素子〉
 さらに、本発明の熱硬化性樹脂組成物をリフレクタ形成材料として用いた封止型光半導体素子を、図4に示す。すなわち、この封止型光半導体素子は、光半導体素子3の側面全面に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ15が形成され、さらに上記光半導体素子3の上部(発光面あるいは受光面)が封止層16にて被覆されているという構成をとる。図において、17は接続用電極(バンプ)である。また、上記封止層16はエポキシ樹脂やシリコーン樹脂、あるいはガラスやセラミックス等の無機材料によって形成され、上記封止層16には蛍光体が含有されていてもよいし蛍光体が配合されていないものであってもよい。
<Encapsulated optical semiconductor element>
Furthermore, FIG. 4 shows a sealed optical semiconductor element using the thermosetting resin composition of the present invention as a reflector forming material. That is, in the sealed optical semiconductor element, a light reflecting reflector 15 made of the thermosetting resin composition of the present invention is formed on the entire side surface of the optical semiconductor element 3, and the upper part of the optical semiconductor element 3 (light emission). The surface or the light receiving surface is covered with a sealing layer 16. In the figure, 17 is a connection electrode (bump). The sealing layer 16 is formed of an epoxy resin, a silicone resin, or an inorganic material such as glass or ceramics. The sealing layer 16 may contain a phosphor or is not blended with a phosphor. It may be a thing.
 このような封止型光半導体素子は、例えば、つぎのようにして製造することができる。すなわち、ダイシングテープ等の粘着面上にフリップチップタイプの光半導体(発光)素子3(例えば、青色LEDチップ等)を、その発光面とは反対面に設けられた接続用電極(バンプ)17を上記テープ面に埋め込んだ状態で一定の間隔を設けて配置する。ついで、圧縮成形機,トランスファー成形機,または射出成形機を用いて上記光半導体素子3の側面全面、さらには発光面を本発明の熱硬化性樹脂組成物を用いて包埋する。そして、乾燥機等により後加熱を行なうことにより、上記熱硬化性樹脂組成物の熱硬化反応を完了させて光半導体素子3の側面全面に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ15を形成する。つぎに、発光面上に形成されたリフレクタ15を研削して除去することにより発光面を露呈させ、この露呈した発光面上にシリコーン樹脂等の封止材を、周囲をダム材にて囲った状態で注型する、あるいはシート状の封止材を発光面に貼付して封止層16を形成する。つぎに、互いに光半導体素子3間の中央線をブレードダイサーを用いてダイシングすることにより個々の素子に個片化させる。そして、ダイシングテープを拡張延伸して粘着性を低減させ、ダイシングテープ上のリフレクタ15が形成された封止型の光半導体素子3同士を完全に分離,個片化させることにより、図4に示す封止型の光半導体素子3を製造することができる。 Such a sealed optical semiconductor element can be manufactured, for example, as follows. That is, a flip chip type optical semiconductor (light emitting) element 3 (for example, a blue LED chip) is provided on an adhesive surface such as a dicing tape, and connection electrodes (bumps) 17 provided on the surface opposite to the light emitting surface are provided. Arranged at a fixed interval in a state of being embedded in the tape surface. Next, the entire side surface and further the light emitting surface of the optical semiconductor element 3 are embedded with the thermosetting resin composition of the present invention using a compression molding machine, a transfer molding machine, or an injection molding machine. Then, by performing post-heating with a dryer or the like, the thermosetting reaction of the thermosetting resin composition is completed, and the entire side surface of the optical semiconductor element 3 is made of the thermosetting resin composition of the present invention. The reflector 15 is formed. Next, the light emitting surface is exposed by grinding and removing the reflector 15 formed on the light emitting surface, and a sealing material such as a silicone resin is surrounded by a dam material on the exposed light emitting surface. The sealing layer 16 is formed by casting in a state or by sticking a sheet-like sealing material to the light emitting surface. Next, the center line between the optical semiconductor elements 3 is diced by using a blade dicer to separate each element. Then, the dicing tape is extended and stretched to reduce stickiness, and the sealed optical semiconductor elements 3 on which the reflectors 15 on the dicing tape are formed are completely separated and separated into individual pieces, as shown in FIG. The sealed optical semiconductor element 3 can be manufactured.
 このようにして得られる封止型の光半導体素子3を用いた構成の光半導体装置としては、例えば、配線回路基板の回路が形成された所定位置に、上記光半導体素子3の接続用電極17を介して搭載してなる構成を備えた光半導体装置があげられる。 As an optical semiconductor device having a configuration using the sealed optical semiconductor element 3 thus obtained, for example, the connection electrode 17 of the optical semiconductor element 3 is provided at a predetermined position where a circuit of a printed circuit board is formed. An optical semiconductor device having a configuration in which the optical semiconductor device is mounted via the above.
 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.
 まず、熱硬化性樹脂組成物の作製に先立って下記に示す各成分を準備した。 First, each component shown below was prepared prior to preparation of the thermosetting resin composition.
[エポキシ樹脂]
 トリグリシジルイソシアヌレート(エポキシ当量100)
[Epoxy resin]
Triglycidyl isocyanurate (epoxy equivalent 100)
[硬化性成分]
 4-メチルヘキサヒドロ無水フタル酸(酸無水物当量168)
[Curable component]
4-Methylhexahydrophthalic anhydride (acid anhydride equivalent 168)
[白色顔料b1]
 酸化亜鉛(バンドギャップ3.3eV、屈折率2.0、平均粒径2.9μm)(ハクスイテック社製、酸化亜鉛1種)
[白色顔料b2]
 酸化ジルコニウム(バンドギャップ4~5eV、屈折率2.1、平均粒径4.3μm、Fe23含有量0.001質量%、単斜晶)(第一稀元素化学工業社製、SG酸化ジルコニウム)
[白色顔料b′]
 ルチル型酸化チタン(バンドギャップ3.0eV、屈折率2.7、単一粒子径0.2μm)(石原産業社製、CR-97)
[White pigment b1]
Zinc oxide (band gap: 3.3 eV, refractive index: 2.0, average particle size: 2.9 μm) (manufactured by Hux Itec Corp., zinc oxide, 1 type)
[White pigment b2]
Zirconium oxide (band gap 4-5 eV, refractive index 2.1, average particle size 4.3 μm, Fe 2 O 3 content 0.001 mass%, monoclinic crystal) (manufactured by Daiichi Rare Element Chemical Industries, SG oxidation) zirconium)
[White pigment b ']
Rutile-type titanium oxide (band gap: 3.0 eV, refractive index: 2.7, single particle size: 0.2 μm) (Ishihara Sangyo Co., Ltd., CR-97)
[無機質充填剤]
 溶融球状シリカ粉末(平均粒径20μm)
[Inorganic filler]
Fused spherical silica powder (average particle size 20μm)
[硬化促進剤]
 テトラ-n-ブチルホスホニウムブロマイド
[Curing accelerator]
Tetra-n-butylphosphonium bromide
[離型剤]
 C(炭素数)>14、エトキシ化アルコール/エチレンホモポリマー(丸菱油化工業社製、UNT750)
[カップリング剤]
 3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、KBM-403)
[Release agent]
C (carbon number)> 14, ethoxylated alcohol / ethylene homopolymer (manufactured by Maruhishi Oil Chemical Co., Ltd., UNT750)
[Coupling agent]
3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-403)
[実施例1~15、比較例1]
 後記の表1~表3に示す各成分を同表に示す割合で配合し、ニーダーで溶融混練(温度100~130℃)を行ない、熟成した後、室温(25℃)まで冷却して粉砕することにより目的とする粉末状の熱硬化性樹脂組成物を作製した。
[Examples 1 to 15, Comparative Example 1]
The components shown in Table 1 to Table 3 below are blended in the proportions shown in the same table, melt kneaded (temperature 100 to 130 ° C.) with a kneader, aged, cooled to room temperature (25 ° C.) and pulverized. Thereby, the target powdery thermosetting resin composition was produced.
 このようにして得られた実施例および比較例の熱硬化性樹脂組成物を用い、下記の方法に従って各種評価[初期光反射率、長期耐光性]の測定を行なった。その結果を後記の表1~表3に示す。 Using the thermosetting resin compositions of Examples and Comparative Examples thus obtained, various evaluations [initial light reflectance, long-term light resistance] were measured according to the following methods. The results are shown in Tables 1 to 3 below.
[初期光反射率]
 上記各熱硬化性樹脂組成物を用い、厚み1mmの試験片を所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にて作製し、この試験片(硬化物)を用いて、室温(25℃)での光反射率を測定した。なお、測定装置として日本分光社製の分光光度計V-670を使用して、波長450nmの光反射率を室温(25℃)にて測定した。
[Initial light reflectance]
Using each of the thermosetting resin compositions described above, a test piece having a thickness of 1 mm was prepared under predetermined curing conditions (conditions: molding at 175 ° C. × 2 minutes + 175 ° C. × 3 hours curing), and this test piece (cured product) Was used to measure the light reflectivity at room temperature (25 ° C.). A spectrophotometer V-670 manufactured by JASCO Corporation was used as a measuring apparatus, and the light reflectance at a wavelength of 450 nm was measured at room temperature (25 ° C.).
[長期耐光性]
 上記と同様にして作製した各試験片を用い、波長600nmの光反射率を室温(25℃)にて測定した。その後、その試験片を110℃のホットプレートで加熱した状態で、436nmの光を1W/cm2の強さで15分間照射した後に、上記と同様にして波長600nmの光反射率を測定した(加速試験)。そして、上記加速試験前後での光反射率の低下度(加熱・光照射後の光反射率-加熱・光照射前の光反射率)を算出した。なお、測定には、上記と同様、日本分光社製の分光光度計V-670を使用した。上記光反射率の低下度において、実施例11~13,15に関しては、0を超えた値が測定・算出されたが、上記値は測定誤差であり、実質的には0以下になることから表中には「0」と記載した。
[Long light resistance]
Using each test piece produced in the same manner as described above, the light reflectance at a wavelength of 600 nm was measured at room temperature (25 ° C.). Then, after the test piece was heated on a hot plate at 110 ° C. and irradiated with 436 nm light at an intensity of 1 W / cm 2 for 15 minutes, the light reflectance at a wavelength of 600 nm was measured in the same manner as described above ( Accelerated test). Then, the degree of decrease in light reflectance before and after the acceleration test (light reflectance after heating / light irradiation−light reflectance before heating / light irradiation) was calculated. For the measurement, a spectrophotometer V-670 manufactured by JASCO Corporation was used as described above. With respect to Examples 11 to 13 and 15, in the degree of decrease in the light reflectivity, values exceeding 0 were measured and calculated. However, the above values are measurement errors and are substantially 0 or less. In the table, “0” is described.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記結果から、特定の白色顔料を配合してなる実施例品は、高い初期光反射率のみならず、長期耐光性に関しても優れた結果が得られた。 From the above results, the product obtained by blending a specific white pigment obtained excellent results not only for high initial light reflectance but also for long-term light resistance.
 これに対して、バンドギャップが特定範囲を外れ小さい値である酸化チタンを用いた比較例1品は、初期光反射率に関しては実施例品と同程度の高い測定結果が得られたが、長期耐光性に劣る結果となった。 On the other hand, the comparative example 1 product using the titanium oxide whose band gap is out of the specific range and having a small value obtained the same high measurement result as the example product with respect to the initial light reflectivity. The result was inferior in light resistance.
[光半導体(発光)装置の作製]
 つぎに、上記実施例品である粉末を打錠したタブレット状の熱硬化性樹脂組成物を用いて、図1に示す構成の光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製の複数の対となった第1のプレート部1と第2のプレート部2を有する金属リードフレームをトランスファー成形機の金型内に設置し、上記熱硬化性樹脂組成物を用いてトランスファー成形(条件:175℃×2分間の成形+175℃×3時間キュア)を行なうことにより、図1に示す、金属リードフレームの所定位置にリフレクタ4を形成した。ついで、光半導体(発光)素子(大きさ:0.5mm×0.5mm)3を搭載し、この光半導体素子3と上記金属リードフレームをボンディングワイヤー7,8にて電気的に接続することにより、リフレクタ4と、金属リードフレームと、光半導体素子3とを備えたユニットを製造した。
[Production of optical semiconductor (light emitting) device]
Next, an optical semiconductor (light-emitting) device having the configuration shown in FIG. 1 was manufactured using a tablet-like thermosetting resin composition obtained by tableting the powders of the above-mentioned examples. That is, a metal lead frame having a plurality of pairs of a first plate portion 1 and a second plate portion 2 made of copper (silver plating) is placed in a mold of a transfer molding machine, and the thermosetting resin By performing transfer molding using the composition (condition: molding at 175 ° C. × 2 minutes + curing at 175 ° C. × 3 hours), the reflector 4 shown in FIG. 1 was formed at a predetermined position of the metal lead frame. Next, an optical semiconductor (light emitting) element (size: 0.5 mm × 0.5 mm) 3 is mounted, and the optical semiconductor element 3 and the metal lead frame are electrically connected by bonding wires 7 and 8. A unit including the reflector 4, the metal lead frame, and the optical semiconductor element 3 was manufactured.
 つぎに、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5に、シリコーン樹脂(信越シリコーン社製、KER-2500)を充填して上記光半導体素子3を樹脂封止(成形条件:150℃×4時間)することにより透明な封止樹脂層6を形成し、リフレクタごとにダイシングにより個片化し、図1に示す光半導体(発光)装置を作製した。得られた光半導体(発光)装置は、高い初期光反射率とともに、長期耐光性に優れたリフレクタ4を備えており、高信頼性を備えた良好なものが得られた。 Next, a recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4 is filled with a silicone resin (manufactured by Shin-Etsu Silicone Co., Ltd., KER-2500), and the optical semiconductor element 3 is resin-sealed (molded). (Condition: 150 ° C. × 4 hours), a transparent sealing resin layer 6 was formed, and each reflector was separated into pieces by dicing to produce the optical semiconductor (light emitting) device shown in FIG. The obtained optical semiconductor (light emitting) device was provided with the reflector 4 excellent in long-term light resistance with a high initial light reflectance, and a good one with high reliability was obtained.
 また、前述の図2および図3に示す光半導体装置、および、図4に示す封止型光半導体素子におけるリフレクタ11,15形成材料として、上記実施例品である粉末を打錠したタブレット状の熱硬化性樹脂組成物を用い、前述の製造方法に従って、図2および図3に示す光半導体装置、および、図4に示す封止型光半導体素子を作製した。得られた光半導体装置は、上記と同様、高信頼性を備えた良好なものが得られた。一方、上記得られた封止型光半導体素子を、配線回路基板の回路が形成された所定位置に、上記封止型光半導体素子の接続用電極を介して搭載することにより光半導体装置を作製した。得られた光半導体装置は、上記と同様、高信頼性を備えた良好なものが得られた。 Further, as the material for forming the reflectors 11 and 15 in the optical semiconductor device shown in FIG. 2 and FIG. 3 and the sealed optical semiconductor element shown in FIG. Using the thermosetting resin composition, the optical semiconductor device shown in FIGS. 2 and 3 and the sealed optical semiconductor element shown in FIG. 4 were produced according to the above-described manufacturing method. As for the obtained optical semiconductor device, a good one having high reliability was obtained as described above. On the other hand, an optical semiconductor device is fabricated by mounting the obtained sealed optical semiconductor element through a connection electrode of the sealed optical semiconductor element at a predetermined position where the circuit of the printed circuit board is formed. did. As for the obtained optical semiconductor device, a good one having high reliability was obtained as described above.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の光半導体装置用熱硬化性樹脂組成物は、光半導体装置に内蔵された光半導体素子から発する光を反射させるリフレクタの形成材料として有用である。 The thermosetting resin composition for an optical semiconductor device of the present invention is useful as a reflector forming material that reflects light emitted from an optical semiconductor element incorporated in the optical semiconductor device.
 1 第1のプレート部
 2 第2のプレート部
 3 光半導体素子
 4,11,15 リフレクタ
 5 凹部
 6,封止樹脂層
 7,8,12 ボンディングワイヤー
 10 金属リードフレーム
 16 封止層
DESCRIPTION OF SYMBOLS 1 1st plate part 2 2nd plate part 3 Optical semiconductor element 4, 11, 15 Reflector 5 Recessed part 6, Sealing resin layer 7, 8, 12 Bonding wire 10 Metal lead frame 16 Sealing layer

Claims (15)

  1.  下記の測定方法(x)にて測定されてなる、光反射率の低下度(α2-α1)が-5~0の範囲であることを特徴とする光半導体リフレクタ用エポキシ樹脂組成物。
    (x)所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にして作製してなる厚み1mmの試験片を用い、室温(25℃)下での波長600nmの光反射率(α1)を測定するとともに、その試験片を110℃のホットプレートで加熱した状態で、波長436nmの光を1W/cm2の強さで15分間照射した後、室温(25℃)下での波長600nmの光反射率(α2)を測定する。
    An epoxy resin composition for an optical semiconductor reflector, wherein the degree of decrease in light reflectance (α2-α1) is in the range of -5 to 0, as measured by the following measurement method (x).
    (X) Light having a wavelength of 600 nm at room temperature (25 ° C.) using a test piece having a thickness of 1 mm prepared under predetermined curing conditions (conditions: 175 ° C. × molding for 2 minutes + 175 ° C. × 3 hours curing) The reflectance (α1) was measured and the test piece was heated on a hot plate at 110 ° C. and irradiated with light having a wavelength of 436 nm at an intensity of 1 W / cm 2 for 15 minutes, and then at room temperature (25 ° C.). The light reflectance (α2) at a wavelength of 600 nm is measured.
  2.  下記の(A)~(C)を含有することを特徴とする光半導体装置用熱硬化性樹脂組成物。
    (A)熱硬化性樹脂。
    (B)バンドギャップ(禁制帯)が3.3~5.5eVである白色顔料。
    (C)無機質充填剤。
    A thermosetting resin composition for optical semiconductor devices, comprising the following (A) to (C):
    (A) Thermosetting resin.
    (B) A white pigment having a band gap (forbidden band) of 3.3 to 5.5 eV.
    (C) Inorganic filler.
  3.  上記(B)の屈折率が2.0~3.0である請求項2記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for an optical semiconductor device according to claim 2, wherein the refractive index of (B) is 2.0 to 3.0.
  4.  上記(B)が、酸化亜鉛、酸化ジルコニウムおよび硫化亜鉛からなる群から選ばれた少なくとも一つである請求項2または3記載の光半導体装置用熱硬化性樹脂組成物。 4. The thermosetting resin composition for an optical semiconductor device according to claim 2, wherein (B) is at least one selected from the group consisting of zinc oxide, zirconium oxide and zinc sulfide.
  5.  上記(B)が、酸化ジルコニウムである請求項2または3記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for optical semiconductor devices according to claim 2 or 3, wherein (B) is zirconium oxide.
  6.  上記(B)および(C)の合計の含有割合が、熱硬化性樹脂組成物全体の10~90体積%であり、かつ(B)の含有割合が熱硬化性樹脂組成物全体の3~50体積%である請求項2~5のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物。 The total content of (B) and (C) is 10 to 90% by volume of the entire thermosetting resin composition, and the content of (B) is 3 to 50% of the entire thermosetting resin composition. The thermosetting resin composition for optical semiconductor devices according to any one of claims 2 to 5, which is in volume%.
  7.  厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、請求項2~6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなることを特徴とする光半導体装置用リードフレーム。 A plate-shaped lead frame for an optical semiconductor device for mounting an optical semiconductor element only on one side in the thickness direction, comprising a plurality of plate portions arranged with a gap between each other, and in the gap, A lead frame for an optical semiconductor device, comprising a reflector formed by filling and curing with the thermosetting resin composition for an optical semiconductor device according to any one of 1 to 6.
  8.  光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、請求項2~6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなることを特徴とする光半導体装置用リードフレーム。 A three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region, wherein a reflector is formed in a state where at least a part of the optical semiconductor element mounting region surrounds the periphery of the element mounting region. 7. A lead frame for an optical semiconductor device, characterized by being formed using the thermosetting resin composition for an optical semiconductor device according to any one of 2 to 6.
  9.  上記リフレクタが、リードフレームの片面にのみ形成されている請求項8記載の光半導体装置用リードフレーム。 The lead frame for an optical semiconductor device according to claim 8, wherein the reflector is formed only on one side of the lead frame.
  10.  上記リフレクタがトランスファー成形または射出成形により光半導体装置用リードフレームに形成されてなる請求項7~9のいずれか一項に記載の光半導体装置用リードフレーム。 10. The lead frame for an optical semiconductor device according to claim 7, wherein the reflector is formed on the lead frame for an optical semiconductor device by transfer molding or injection molding.
  11.  その片面に光半導体素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記隙間に、請求項2~6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなることを特徴とする光半導体装置。 An optical semiconductor device in which plate portions each having an element mounting region for mounting an optical semiconductor element on one side thereof are arranged with a gap therebetween, and an optical semiconductor element is mounted at a predetermined position of the element mounting region. A light is formed by filling the gap with the thermosetting resin composition for an optical semiconductor device according to any one of claims 2 to 6 and curing it. Semiconductor device.
  12.  光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記リフレクタが、請求項2~6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなることを特徴とする光半導体装置。 Light in which an optical semiconductor element is mounted at a predetermined position of a lead frame for an optical semiconductor device, which includes an optical semiconductor element mounting area, and in which a reflector is formed with at least a part of the optical semiconductor element surrounding the periphery of the element mounting area A semiconductor device, wherein the reflector is formed using the thermosetting resin composition for an optical semiconductor device according to any one of claims 2 to 6.
  13.  リフレクタで囲まれた光半導体素子を含む領域をシリコーン樹脂にて樹脂封止されてなる請求項12記載の光半導体装置。 13. The optical semiconductor device according to claim 12, wherein a region including the optical semiconductor element surrounded by the reflector is sealed with a silicone resin.
  14.  裏面に複数の接続用電極が形成されてなる光半導体素子の側面に請求項2~6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物からなるリフレクタが形成され、上記光半導体素子上部の発光面あるいは受光面が封止層にて被覆されてなることを特徴とする封止型光半導体素子。 A reflector made of the thermosetting resin composition for an optical semiconductor device according to any one of claims 2 to 6 is formed on a side surface of the optical semiconductor element having a plurality of connection electrodes formed on the back surface, and the light A sealed optical semiconductor element, wherein a light emitting surface or a light receiving surface above a semiconductor element is covered with a sealing layer.
  15.  配線回路基板の所定位置に、請求項14記載の封止型光半導体素子が、その接続用電極を介して搭載されてなる光半導体装置。 An optical semiconductor device in which the sealed optical semiconductor element according to claim 14 is mounted via a connection electrode at a predetermined position on a printed circuit board.
PCT/JP2014/061303 2013-06-13 2014-04-22 Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device WO2014199728A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014520092A JP5825650B2 (en) 2013-06-13 2014-04-22 Epoxy resin composition for optical semiconductor reflector, thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, encapsulated optical semiconductor element, and optical semiconductor device
KR1020157029989A KR20160019407A (en) 2013-06-13 2014-04-22 Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device
CN201480021767.0A CN105122484A (en) 2013-06-13 2014-04-22 Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-124772 2013-06-13
JP2013124772 2013-06-13
JP2013251256 2013-12-04
JP2013-251256 2013-12-04

Publications (1)

Publication Number Publication Date
WO2014199728A1 true WO2014199728A1 (en) 2014-12-18

Family

ID=52022030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061303 WO2014199728A1 (en) 2013-06-13 2014-04-22 Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device

Country Status (5)

Country Link
JP (1) JP5825650B2 (en)
KR (1) KR20160019407A (en)
CN (1) CN105122484A (en)
TW (1) TW201446873A (en)
WO (1) WO2014199728A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063194A (en) * 2015-09-24 2017-03-30 日東電工株式会社 Thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device arranged by use thereof, optical semiconductor device, and optical semiconductor element
WO2017051838A1 (en) * 2015-09-24 2017-03-30 日東電工株式会社 Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element
WO2021233728A1 (en) 2020-05-19 2021-11-25 Byk-Chemie Gmbh Thermoset polymer powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047740A (en) * 2008-07-22 2010-03-04 Hitachi Chem Co Ltd Thermosetting resin composition, substrate for loading photosemiconductor element using the same, method for producing the substrate, and photosemiconductor device
JP2012222315A (en) * 2011-04-14 2012-11-12 Nitto Denko Corp Reflection resin sheet, light emitting diode device, and manufacturing method of the same
JP2013040343A (en) * 2012-10-23 2013-02-28 Hitachi Chemical Co Ltd Method for manufacturing reflector, and led device
JP2013091809A (en) * 2007-07-05 2013-05-16 Hitachi Chemical Co Ltd Thermosetting resin composition for light reflection, and substrate for loading optical semiconductor element and optical semiconductor device using the resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623322B2 (en) * 2007-12-26 2011-02-02 信越化学工業株式会社 White thermosetting silicone resin composition for forming optical semiconductor case, optical semiconductor case and molding method thereof
JP5721969B2 (en) 2010-06-11 2015-05-20 日東電工株式会社 Epoxy resin composition for reflector of optical semiconductor device, lead frame for optical semiconductor device obtained using the same, and optical semiconductor device
JP2012175030A (en) * 2011-02-24 2012-09-10 Nitto Denko Corp Resin composition for optical semiconductor element housing package and optical semiconductor light-emitting device obtained by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091809A (en) * 2007-07-05 2013-05-16 Hitachi Chemical Co Ltd Thermosetting resin composition for light reflection, and substrate for loading optical semiconductor element and optical semiconductor device using the resin composition
JP2010047740A (en) * 2008-07-22 2010-03-04 Hitachi Chem Co Ltd Thermosetting resin composition, substrate for loading photosemiconductor element using the same, method for producing the substrate, and photosemiconductor device
JP2012222315A (en) * 2011-04-14 2012-11-12 Nitto Denko Corp Reflection resin sheet, light emitting diode device, and manufacturing method of the same
JP2013040343A (en) * 2012-10-23 2013-02-28 Hitachi Chemical Co Ltd Method for manufacturing reflector, and led device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063194A (en) * 2015-09-24 2017-03-30 日東電工株式会社 Thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device arranged by use thereof, optical semiconductor device, and optical semiconductor element
WO2017051838A1 (en) * 2015-09-24 2017-03-30 日東電工株式会社 Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element
WO2021233728A1 (en) 2020-05-19 2021-11-25 Byk-Chemie Gmbh Thermoset polymer powder

Also Published As

Publication number Publication date
KR20160019407A (en) 2016-02-19
JP5825650B2 (en) 2015-12-02
CN105122484A (en) 2015-12-02
TW201446873A (en) 2014-12-16
JPWO2014199728A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
KR101746890B1 (en) Curable epoxy resin composition
JP5976806B2 (en) Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device, encapsulated optical semiconductor element and optical semiconductor device obtained using the same
JP2012175030A (en) Resin composition for optical semiconductor element housing package and optical semiconductor light-emitting device obtained by using the same
JP2011060819A (en) Resin composition for optical semiconductor element housing package, and optical semiconductor light emitting device obtained using the same
JP5721969B2 (en) Epoxy resin composition for reflector of optical semiconductor device, lead frame for optical semiconductor device obtained using the same, and optical semiconductor device
JP2008045088A (en) Thermosetting composition for optical semiconductor, sealant for optical semiconductor element, die bond material for optical semiconductor element, underfill material for optical semiconductor element and optical semiconductor device
WO2015083576A1 (en) Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device
JP2008056857A (en) Thermosetting composition for optical semiconductor, sealant for optical semiconductor element, die bond material for optical semiconductor element, underfill material for optical semiconductor element and optical semiconductor device
JP2013155344A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element using the same and method for producing the same, and optical semiconductor device
JP5825650B2 (en) Epoxy resin composition for optical semiconductor reflector, thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, encapsulated optical semiconductor element, and optical semiconductor device
JP2008053529A (en) Sealant for optical semiconductor element, and optical semiconductor device
WO2015083532A1 (en) Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, sealed semiconductor element, and optical semiconductor device
JP2008202036A (en) Thermosetting composition for optical semiconductor, sealant for optical semiconductor device, die bond material for optical semiconductor device, underfill material for optical semiconductor device, and optical semiconductor device
JP2008120850A (en) Thermosetting composition for optical semiconductor, die bond material for optical semiconductor element, underfill material for optical semiconductor element, sealing agent for optical semiconductor element and optical semiconductor device
WO2015083629A1 (en) Thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained using said composition, and optical semiconductor device
KR101405532B1 (en) Epoxy resin composition, And Photosemiconductor device having the same
JP6883185B2 (en) Thermosetting resin composition for opto-semiconductor devices and lead frames for opto-semiconductor devices, opto-semiconductor devices, opto-semiconductor devices obtained using the same.
JP6322929B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
WO2017051838A1 (en) Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element
JP2008222741A (en) Epoxy resin composition for sealing photosemiconductor element and photosemiconductor device by using the same
JP5977794B2 (en) Curable epoxy resin composition
JP2015000885A (en) Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, and optical semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021767.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014520092

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157029989

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810475

Country of ref document: EP

Kind code of ref document: A1