WO2014199660A1 - エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板 - Google Patents

エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板 Download PDF

Info

Publication number
WO2014199660A1
WO2014199660A1 PCT/JP2014/054138 JP2014054138W WO2014199660A1 WO 2014199660 A1 WO2014199660 A1 WO 2014199660A1 JP 2014054138 W JP2014054138 W JP 2014054138W WO 2014199660 A1 WO2014199660 A1 WO 2014199660A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
epoxy resin
epoxy
mass
structural formula
Prior art date
Application number
PCT/JP2014/054138
Other languages
English (en)
French (fr)
Inventor
泰 佐藤
歩 高橋
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020157031325A priority Critical patent/KR102163493B1/ko
Priority to CN201480033971.4A priority patent/CN105308091B/zh
Priority to JP2014531437A priority patent/JP5637419B1/ja
Priority to US14/897,363 priority patent/US10435382B2/en
Publication of WO2014199660A1 publication Critical patent/WO2014199660A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • C07D303/30Ethers of oxirane-containing polyhydroxy compounds in which all hydroxyl radicals are etherified with oxirane-containing hydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/92Naphthofurans; Hydrogenated naphthofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation

Definitions

  • the present invention relates to an epoxy compound having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product, an epoxy resin containing the epoxy compound, a curable composition and a cured product thereof, a semiconductor sealing material, and a printed wiring board.
  • Epoxy resins are used in adhesives, molding materials, paints, and other materials, and the resulting cured products have excellent heat resistance and moisture resistance. Widely used in the electrical and electronic fields.
  • power semiconductors represented by in-vehicle power modules
  • in-vehicle power modules are important technologies that hold the key to energy saving in electrical and electronic equipment.
  • Si silicon
  • SiC silicon carbide
  • the advantage of the SiC semiconductor is that it can be operated under higher temperature conditions. Therefore, the semiconductor encapsulant is required to have higher heat resistance than ever before.
  • high flame retardancy without using halogen-based flame retardants, low viscosity and excellent flowability, and high filler filling performance are important performance requirements for semiconductor encapsulant resins. Therefore, a resin material having all of these performances is required.
  • G represents a glycidyl group.
  • the epoxy resin containing the epoxy compound represented by these is known (refer patent document 1). Such an epoxy resin has a feature of excellent heat resistance in a cured product, but is not sufficiently flame retardant and has a high melt viscosity.
  • the problem to be solved by the present invention is an epoxy compound having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product, an epoxy resin containing the epoxy compound, a curable composition and its cured product, and a semiconductor sealing material And providing a printed wiring board.
  • an epoxy compound obtained by polyglycidyl etherification of a reaction product of a compound having a quinone skeleton and a compound having a phenolic hydroxyl group does not involve a methylene group. It has a low molecular weight and high epoxy group concentration structure in which aromatic nuclei are bonded to each other, and since the reactivity of the epoxy group is high, it has a low melt viscosity and excellent heat resistance and flame retardancy in a cured product. As a result, the present invention has been completed.
  • R 1 and R 2 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, Is an integer from 0 to 3, and n is an integer from 0 to 4.
  • K is an integer of 1 to 3
  • m is 1 or 2
  • Ar is the following structural formula (Ar1) or (Ar2)
  • G represents a glycidyl group
  • p and r are each 1 or 2.
  • R 3 and R 4 are each an alkyl group having 1 to 4 carbon atoms, and 1 carbon atom. Is an alkoxy group, an aryl group, or an aralkyl group of ⁇ 4, and R 4 in formula (Ar2) may be bonded to any one of two aromatic nuclei, q is an integer of 0 to 4, s Is an integer of 0 to 6.
  • q or s is 2 or more, a plurality of R 3 or R 4 may be the same or different. It is a structural site represented by When k or m is 2 or more, the plurality of Ars may be the same or different.
  • It is a structural site represented by ] It has the molecular structure represented by these.
  • the present invention further relates to an epoxy resin containing the epoxy compound.
  • the present invention further provides a phenol intermediate by reacting a compound (Q) having a quinone structure in the molecular structure with a compound (P) having a phenolic hydroxyl group in the molecular structure, and then the obtained phenol intermediate.
  • the present invention relates to a method for producing an epoxy resin, characterized by reacting phenoxy and epihalohydrin.
  • the present invention further relates to an epoxy resin produced by the production method.
  • the present invention further relates to a curable composition containing the epoxy compound or epoxy resin and a curing agent as essential components.
  • the present invention further relates to a cured product obtained by curing reaction of the curable composition.
  • the present invention further relates to a semiconductor sealing material containing an inorganic filler in addition to the curable composition.
  • the present invention further relates to a printed wiring board obtained by impregnating a reinforced composition with an organic solvent and varnishing a resin composition, impregnating a reinforcing base material, and stacking a copper foil and heat-pressing it.
  • an epoxy compound having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product an epoxy resin containing the epoxy compound, a curable composition and its cured product, a semiconductor sealing material, and a printed wiring board are provided.
  • FIG. 1 is a GPC chart of the phenol intermediate (1) obtained in Example 1.
  • FIG. FIG. 2 is a 13C-NMR chart of the phenol intermediate (1) obtained in Example 1.
  • FIG. 3 is an MS spectrum of the phenol intermediate (1) obtained in Example 1.
  • 4 is a GPC chart of the epoxy resin (1) obtained in Example 1.
  • FIG. 5 is a GPC chart of the phenol intermediate (2) obtained in Example 2.
  • 6 is a 13C-NMR chart of the phenol intermediate (2) obtained in Example 2.
  • FIG. 7 is an MS spectrum of the phenol intermediate (2) obtained in Example 2.
  • FIG. 8 is a GPC chart of the epoxy resin (2) obtained in Example 2.
  • FIG. 9 is a 13C-NMR chart of the epoxy resin (2) obtained in Example 2.
  • FIG. 10 is an MS spectrum of the epoxy resin (2) obtained in Example 2.
  • FIG. 11 is a GPC chart of the phenol intermediate (3) obtained in Example 3.
  • FIG. 12 is a GPC chart of the epoxy resin (3) obtained in Example 3.
  • FIG. 13 is a GPC chart of the phenol intermediate (4) obtained in Example 4.
  • FIG. 14 is an MS spectrum of the phenol intermediate (4) obtained in Example 4.
  • FIG. 15 is a GPC chart of the epoxy resin (4) obtained in Example 4.
  • FIG. 16 is a GPC chart of the phenol intermediate (5) obtained in Example 5.
  • FIG. 17 is a 13C-NMR chart of the phenol intermediate (5) obtained in Example 5.
  • 18 is an MS spectrum of the phenol intermediate (5) obtained in Example 5.
  • FIG. FIG. 19 is a GPC chart of the epoxy resin (5) obtained in Example 5.
  • FIG. 20 is a 13C-NMR chart of the epoxy resin (5) obtained in Example 5.
  • FIG. 21 is an MS spectrum of the epoxy resin (5) obtained in Example 5.
  • 22 is a GPC chart of the phenol intermediate (6) obtained in Example 6.
  • FIG. 23 is an MS spectrum of the phenol intermediate (6) obtained in Example 6.
  • FIG. 24 is a GPC chart of the epoxy resin (6) obtained in Example 6.
  • FIG. 25 is an MS spectrum of the epoxy resin (6) obtained in Example 6.
  • the epoxy compound of the present invention has the following general formula (I)
  • R 1 and R 2 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, Is an integer from 0 to 3, and n is an integer from 0 to 4.
  • K is an integer of 1 to 3
  • m is 1 or 2
  • Ar is the following structural formula (Ar1) or (Ar2)
  • G represents a glycidyl group
  • p and r are each 1 or 2.
  • R 3 and R 4 are each an alkyl group having 1 to 4 carbon atoms, and 1 carbon atom. Is an alkoxy group, an aryl group, or an aralkyl group of ⁇ 4, and R 4 in formula (Ar2) may be bonded to any one of two aromatic nuclei, q is an integer of 0 to 4, s Is an integer of 0 to 6.
  • q or s is 2 or more, a plurality of R 3 or R 4 may be the same or different. It is a structural site represented by When k or m is 2 or more, the plurality of Ars may be the same or different.
  • It is a structural site represented by ] It has the molecular structure represented by these.
  • the epoxy compound of the present invention represented by the general formula (I) has a structure in which aromatic nuclei are bonded to each other without a methylene chain, the molecular weight is low, and the aromatic ring and epoxy group concentrations are high.
  • a compound having a low molecular weight and a high epoxy group concentration has a low melt viscosity, but has a high flammable epoxy group concentration, and a large number of epoxy groups are close to each other. There is a tendency to be inferior.
  • the epoxy compound of the present invention has a biphenyl skeleton or a terphenyl skeleton, and in the structural formula (x1) or (x2), the two epoxy groups located at the para position of the aromatic nucleus are excellent in reactivity. Therefore, it is a compound having a low molecular weight and a low melt viscosity, but also has excellent heat resistance and flame retardancy in a cured product.
  • k is an integer of 1 to 3, and m is 1 or 2.
  • a compound corresponding to the case where the value of k or m is 1 (hereinafter abbreviated as “binuclear compound (x1)”) is low in molecular weight and low in viscosity, and has excellent heat resistance and flame retardancy in a cured product. Has excellent characteristics.
  • a compound corresponding to a value of k or m of 2 (hereinafter abbreviated as “trinuclear compound (x2)”) or a compound corresponding to a value of k of 3 (hereinafter “tetranuclear compound”).
  • Compound (x3) ”) has a feature that the rigidity of the molecular skeleton is higher and the aromatic ring concentration is higher, and thus the heat resistance and flame retardancy of the cured product are more excellent.
  • the compound represented by the general formula (I) includes, for example, a compound (Q) having a quinone structure in the molecular structure and a compound (P) having a phenolic hydroxyl group in the molecular structure without a catalyst or an acid catalyst.
  • examples thereof include those produced by a method of reacting in the temperature range of 40 to 180 ° C. under conditions to obtain a phenol intermediate, and reacting the obtained phenol intermediate with epihalohydrin to glycidyl etherification.
  • any component can be selectively produced depending on the reaction conditions, or it can be produced as an epoxy resin that is a mixture of a plurality of types of epoxy compounds. Moreover, you may isolate and use only arbitrary components from the epoxy resin which is a mixture.
  • the compound (Q) having a quinone structure in the molecular structure is, for example, the following structural formula (Q1) or (Q2)
  • R 1 and R 2 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group; Is an integer from 0 to 3, and n is an integer from 0 to 4.
  • the plurality of R 1 or R 2 may be the same or different from each other.
  • Specific examples include parabenzoquinone, 2-methylbenzoquinone, 2,3,5-trimethyl-benzoquinone, naphthoquinone, and the like. These may be used alone or in combination of two or more.
  • the compound (P) having a phenolic hydroxyl group in the molecular structure is, for example, the following structural formula (P1) or (P2)
  • R 3 and R 4 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and q Is an integer from 0 to 4, and s is an integer from 0 to 6.
  • q or s is 2 or more, the plurality of R 3 or R 4 may be the same or different from each other.
  • P and r are 1 or 2, respectively.
  • phenol, orthocresol, metacresol, paracresol 2,6-dimethylphenol, 2,5-dimethylphenol, 2,4-dimethylphenol, 3,5- Dimethylphenol, 2,3,4-trimethylphenol, 2,3,5-trimethylphenol, 2,3,6-trimethylphenol, 2,4,5-trimethylphenol, 3,4,5-trimethylphenol, 4- Isopropylphenol, 4-tert-butylphenol, 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 2-methoxy-4-methylphenol, 2-tert-butyl-4-methoxyphenol, 2,6-dimethoxyphenol 3,5-dimethoxyphenol, 2-eth Siphenol, 3-ethoxyphenol, 4-ethoxyphenol, 2-phenylphenol, 3-phenylphenol, 4-phenylphenol, 4-benzylphenol, 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4 -Dihydroxybenzene, 1-naphthol, 2-naphthol, 1,4-
  • the reaction between the compound (Q) having a quinone structure in the molecular structure and the compound (P) having a phenolic hydroxyl group in the molecular structure proceeds under non-catalytic conditions because of its high reactivity.
  • the acid catalyst used here include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid, boron trifluoride, anhydrous aluminum chloride, and zinc chloride. And Lewis acid.
  • these acid catalysts When these acid catalysts are used, they should be used in an amount of 5.0% by mass or less based on the total mass of the compound (Q) having the quinone structure and the compound (P) having a phenolic hydroxyl group in the molecular structure. Is preferred.
  • the reaction is preferably performed under solvent-free conditions, but may be performed in an organic solvent as necessary.
  • organic solvent used here include methyl cellosolve, isopropyl alcohol, ethyl cellosolve, toluene, xylene, and methyl isobutyl ketone.
  • the organic solvent is used for 100 parts by mass in total of the compound (Q) having a quinone structure and the compound (P) having a phenolic hydroxyl group in the molecular structure. It is preferable to use at a ratio that is in the range of 50 to 200 parts by mass.
  • a phenol intermediate After completion of the reaction between the compound (Q) having a quinone structure in the molecular structure and the compound (P) having a phenolic hydroxyl group in the molecular structure, a phenol intermediate can be obtained by drying under reduced pressure.
  • the reaction between the phenol intermediate and the epihalohydrin is carried out, for example, by using both in a ratio of epihalohydrin in the range of 2 to 10 mol to 1 mol of phenolic hydroxyl group in the phenol intermediate and 0 to 1 mol of phenolic hydroxyl group. And a method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding 9 to 2.0 mol of basic catalyst all at once or in divided portions.
  • the basic catalyst used here may be solid or an aqueous solution thereof. When an aqueous solution is used, water and epihalohydrin are continuously added from the reaction mixture under reduced pressure or atmospheric pressure. A method may be employed in which the water is removed by distilling and separating, and the epihalohydrin is continuously returned to the reaction mixture.
  • the epihalohydrin used is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin, and the like. Of these, epichlorohydrin is preferred because it is easily available industrially.
  • the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides.
  • alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity of the epoxy resin synthesis reaction, and specific examples include sodium hydroxide and potassium hydroxide.
  • These basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass or in the form of a solid.
  • the reaction between the phenol intermediate and epihalohydrin can increase the reaction rate by using an organic solvent in combination.
  • the organic solvent used here is not particularly limited, and examples thereof include ketone solvents such as acetone and methyl ethyl ketone, alcohol solvents such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol and tertiary butanol, methyl
  • ketone solvents such as acetone and methyl ethyl ketone
  • alcohol solvents such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol and tertiary butanol, methyl
  • cellosolve solvents such as cellosolve and ethyl cellosolve
  • ether solvents such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane
  • aprotic polar solvents such as acetonitrile, dimethyl sulfoxide and di
  • the reaction mixture is washed with water, and unreacted epihalohydrin and the organic solvent to be used in combination are distilled off by distillation under heating and reduced pressure.
  • the obtained epoxy resin is again dissolved in an organic solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, and alkali metal water such as sodium hydroxide and potassium hydroxide.
  • Further reaction can be carried out by adding an aqueous solution of oxide.
  • a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present for the purpose of improving the reaction rate.
  • the amount used is preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the produced salt is removed by filtration, washing with water, etc., and the solvent such as toluene and methyl isobutyl ketone is distilled off under heating and reduced pressure to obtain the desired epoxy compound or epoxy resin of the present invention. it can.
  • the melt viscosity is low, and the effect of the present invention that the cured product is excellent in heat resistance and flame retardancy is achieved. It is.
  • the more preferable thing of the epoxy compound which has a structure represented with the said general formula (I) is explained in full detail.
  • G represents a glycidyl group
  • k is an integer of 1 to 3
  • m is 1 or 2
  • Ar is the following structural formula (Ar1) or (Ar2)
  • G represents a glycidyl group
  • p and r are each 1 or 2.
  • R 3 and R 4 are each an alkyl group having 1 to 4 carbon atoms, and 1 carbon atom. Is an alkoxy group, an aryl group, or an aralkyl group of ⁇ 4, and R 4 in formula (Ar2) may be bonded to any one of two aromatic nuclei, q is an integer of 0 to 4, s Is an integer of 0 to 6.
  • q or s is 2 or more, a plurality of R 3 or R 4 may be the same or different. It is a structural site represented by When k or m is 2 or more, the plurality of Ars may be the same or different.
  • the epoxy compound represented by either of these is mentioned.
  • epoxy compound represented by the structural formula (I-1) is more specifically represented by the following structural formulas (1) to (7).
  • G is a glycidyl group
  • k is an integer of 1 to 3.
  • R 5 is any one of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, and an aralkyl group, and u is an integer of 1 to 4. When u is 2 or more, the plurality of R 5 may be the same or different.
  • the epoxy compound represented by either of these is mentioned. Each will be described in detail below.
  • the epoxy compound represented by general formula (I) has a characteristic that is particularly excellent in the balance between the melt viscosity and the heat resistance and flame retardancy in the cured product.
  • the trinuclear compound (x2) is preferably used as an epoxy resin, and the content of the binuclear compound (x1) in the epoxy resin is in the range of 10 to 50% in terms of area ratio in GPC measurement. More preferably, the content of the trinuclear compound (x2) is in the range of 10 to 50% in terms of area ratio in GPC measurement.
  • tetranuclear compound (x3 ′) represented by the formula:
  • the tetranuclear compound (x3) and the tetranuclear compound (x3 ′) in the epoxy resin The total content is preferably in the range of 2 to 20% in terms of area ratio in GPC measurement.
  • the content of the binuclear compound (x1), the trinuclear compound (x2), the tetranuclear compound (x3), and the tetranuclear compound (x3 ′) in the epoxy resin Is the ratio of the peak area of each component to the total peak area of the epoxy resin, calculated from GPC measurement data under the following conditions.
  • the epoxy compound represented by the structural formula (1) includes, for example, parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure and phenol as a compound (P) having a phenolic hydroxyl group in the molecular structure.
  • parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure
  • phenol as a compound (P) having a phenolic hydroxyl group in the molecular structure.
  • the reaction ratio of parabenzoquinone and phenol can easily adjust the content of the binuclear compound (x1) and the trinuclear compound (x2) in the obtained epoxy resin to the preferred range described above. Therefore, it is preferable that the ratio of phenol is in the range of 0.1 to 10.0 moles with respect to 1 mole of parabenzoquinone.
  • the compounds represented by the structural formula (1) include, for example, the following structural formulas (1-1) to (1-9)
  • the epoxy compound represented by general formula (I) has particularly low melt viscosity and excellent heat resistance and flame retardancy in a cured product.
  • the binuclear compound (x1) having a k value of 1 in the structural formula (2) and the structural formula (2 ) Is preferably used as an epoxy resin containing a trinuclear compound (x2) having a k value of 2, and the content of the binuclear compound (x1) in the epoxy resin is an area ratio in GPC measurement. More preferably, it is in the range of 2 to 50%, and the content of the trinuclear compound (x2) is in the range of 10 to 90% in terms of area ratio in GPC measurement.
  • the content of the binuclear compound (x1) in the epoxy resin is in the range of 2 to 25% as an area ratio in GPC measurement, and the content of the trinuclear compound (x2) is in GPC measurement.
  • the area ratio is particularly preferably 25 to 90%.
  • tetranuclear compound (x3 ′) represented by the formula:
  • the tetranuclear compound (x3) and the tetranuclear compound (x3 ′) in the epoxy resin The total content is preferably in the range of 2 to 20% in terms of area ratio in GPC measurement.
  • the epoxy compound represented by the structural formula (2) includes, for example, parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure and cresol as a compound (P) having a phenolic hydroxyl group in the molecular structure.
  • parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure
  • cresol as a compound (P) having a phenolic hydroxyl group in the molecular structure.
  • the reaction ratio of parabenzoquinone and cresol can easily adjust the content of the binuclear compound (x1) and the trinuclear compound (x2) in the obtained epoxy resin to the preferred range described above. Therefore, it is preferable that cresol is in a range of 0.1 to 10.0 mol with respect to 1 mol of parabenzoquinone.
  • the cresol used here may be any of ortho-cresol, meta-cresol, and para-cresol, and a plurality of types may be used in combination. Among them, orthocresol is preferable because an epoxy resin having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product can be obtained.
  • the compounds represented by the structural formula (2) include, for example, the following structural formulas (2-1) to (2-31).
  • the epoxy compound represented by general formula (I) has particularly low melt viscosity and excellent heat resistance and flame retardancy in a cured product.
  • the binuclear compound (x1) having a k value of 1 in the structural formula (3) and the structural formula (3 ) Is preferably used as an epoxy resin containing a trinuclear compound (x2) having a k value of 2, and the content of the binuclear compound (x1) in the epoxy resin is an area ratio in GPC measurement. More preferably, it is in the range of 2 to 50%, and the content of the trinuclear compound (x2) is in the range of 10 to 95% in terms of area ratio in GPC measurement.
  • the content of the binuclear compound (x1) in the epoxy resin is in the range of 2 to 25% as an area ratio in GPC measurement, and the content of the trinuclear compound (x2) is in GPC measurement.
  • An area ratio of 50 to 95% is particularly preferable.
  • tetranuclear compound (x3 ′) represented by the formula:
  • the tetranuclear compound (x3) and the tetranuclear compound (x3 ′) in the epoxy resin The total content is preferably in the range of 0.5 to 10% in terms of area ratio in GPC measurement.
  • the epoxy compound represented by the structural formula (3) includes, for example, parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure and dimethyl as a compound (P) having a phenolic hydroxyl group in the molecular structure. It can be produced by the method described above using phenol. At this time, the reaction ratio of parabenzoquinone and dimethylphenol can be adjusted so that the content of the binuclear compound (x1) and the trinuclear compound (x2) in the obtained epoxy resin is within the preferred range described above. For ease of use, it is preferable that the amount of dimethylphenol is in the range of 0.1 to 10.0 moles with respect to 1 mole of parabenzoquinone.
  • the dimethylphenol used here may be any positional isomer such as 2,6-dimethylphenol, 2,5-dimethylphenol, 2,4-dimethylphenol, 3,5-dimethylphenol.
  • 2,6-dimethylphenol is preferable because an epoxy resin having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product can be obtained.
  • the compounds represented by the structural formula (3) include, for example, the following structural formulas (3-1) to (3-3).
  • parabenzoquinone is used as the compound (Q) having a quinone structure in the molecular structure
  • dihydroxybenzene is used as the compound (P) having a phenolic hydroxyl group in the molecular structure. It can be manufactured by a method.
  • the reaction ratio of parabenzoquinone and dihydroxybenzene is an epoxy resin having a low melt viscosity and more excellent heat resistance and flame retardancy in the cured product
  • dihydroxybenzene is 0.1 per mol of parabenzoquinone. The ratio is preferably in the range of ⁇ 10.0 mol.
  • the dihydroxybenzene used here may be any positional isomer such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene.
  • 1,3-dihydroxybenzene is preferable because an epoxy resin having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product can be obtained.
  • the compounds represented by the structural formula (4) are, for example, the following structural formulas (4-1) to (4-3).
  • the epoxy resin containing the epoxy compound represented by the structural formula (4) may further contain an epoxy compound other than these.
  • the other epoxy compounds include the following structural formulas (1-10) to (1-12) and (4′-1) to (4′-5).
  • the content ratio of each component in the epoxy resin is low in melt viscosity, and heat resistance and difficulty in the cured product. Since the epoxy resin is excellent in flammability, the total of the binuclear compound (x1) having a k value of 1 in the structural formula (4) and the compound represented by the structural formula (1-10) A trinuclear compound (x2) having a content ratio in the range of 5 to 40% as an area ratio in GPC measurement and having a value of k of 2 in the structural formula (4), represented by the structural formula (1-11) And the total content of the compound represented by the structural formula (4′-1) or (4′-2) is preferably in the range of 10 to 60%.
  • parabenzoquinone is used as the compound (Q) having a quinone structure in the molecular structure
  • naphthol is used as the compound (P) having a phenolic hydroxyl group in the molecular structure.
  • the reaction ratio between parabenzoquinone and naphthol is an epoxy resin having a low melt viscosity and further excellent heat resistance and flame retardancy in the cured product. Therefore, naphthol is 0.1 to 10 per 1 mol of parabenzoquinone. The ratio is preferably in the range of 0.0 mol.
  • a binuclear compound (x1) having a k value of 1 in the structural formula (5) because it is particularly excellent in heat resistance and flame retardancy in a cured product.
  • a trinuclear compound (x2) having a k value of 2 in the structural formula (5) is preferably used, and the inclusion of the binuclear compound (x1) in the epoxy resin More preferably, the rate is in the range of 5 to 60% in terms of the area ratio in GPC measurement, and the content of the trinuclear compound (x2) is in the range of 5 to 50% in terms of the area ratio in GPC measurement.
  • the compounds represented by the structural formula (5) include, for example, the following structural formulas (5-1) to (5-10).
  • the epoxy compound represented by general formula (I) has a feature that is particularly excellent in heat resistance and flame retardancy in a cured product.
  • the binuclear compound (x1) having a k value of 1 in the structural formula (6) and the structural formula (6) ) Is preferably used as an epoxy resin containing a trinuclear compound (x2) having a k value of 2, and the content of the binuclear compound (x1) in the epoxy resin is an area ratio in GPC measurement. More preferably, it is in the range of 5 to 60%, and the content of the trinuclear compound (x2) is in the range of 5 to 50% in terms of area ratio in GPC measurement.
  • the epoxy compound represented by any one of the structural formula (6) includes, for example, a compound (P) having a quinone structure in the molecular structure as parabenzoquinone and a compound having a phenolic hydroxyl group in the molecular structure (P ) And dihydroxynaphthalene, and can be produced by the method described above.
  • a compound (P) having a quinone structure in the molecular structure as parabenzoquinone and a compound having a phenolic hydroxyl group in the molecular structure (P ) And dihydroxynaphthalene
  • dihydroxynaphthalene is 0.1 per mol of parabenzoquinone.
  • the ratio is preferably in the range of ⁇ 10.0 mol.
  • the dihydroxynaphthalene used here may be any positional isomer such as 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like. good. Among them, 2,7-dihydroxynaphthalene is preferable because an epoxy resin having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product can be obtained.
  • the compounds represented by the structural formula (6) include, for example, the following structural formulas (6-1) to (6-30).
  • the epoxy compound represented by the formula for example, uses parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure, and phenylphenol as the compound (P) having a phenolic hydroxyl group in the molecular structure. It can be manufactured by a method.
  • the reaction ratio of parabenzoquinone and phenylphenol is an epoxy resin having a low melt viscosity and further excellent heat resistance and flame retardancy in the cured product, 0.1 mol of phenylphenol per mol of parabenzoquinone.
  • the ratio is preferably in the range of ⁇ 10.0 mol.
  • the compounds represented by the structural formula (7) are, for example, the following structural formulas (7-1) to (7-12)
  • epoxy compound represented by the structural formula (I-2) is more specifically represented by the following structural formulas (8) to (11).
  • G is a glycidyl group
  • q is an integer of 0 to 4
  • r is 1 or 2.
  • R 5 is any one of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, and an aralkyl group
  • u is an integer of 1 to 4.
  • u is 2 or more, the plurality of R 5 may be the same or different.
  • the epoxy compound represented by either of these is mentioned. Each will be described in detail below.
  • the epoxy compound represented by the formula is, for example, 2,4,6-trimethyl-parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure, and the compound (P) having a phenolic hydroxyl group in the molecular structure Can be produced by the above-mentioned method using phenol, cresol, dimethylphenol or the like. At this time, the reaction ratio between 2,4,6-trimethyl-parabenzoquinone and the compound (P) having a phenolic hydroxyl group in the molecular structure is low in melt viscosity, and is further improved in heat resistance and flame retardancy in the cured product.
  • the compound (P) having a phenolic hydroxyl group in the molecular structure is in the range of 0.1 to 10.0 moles per mole of 2,4,6-trimethyl-parabenzoquinone. A ratio is preferred.
  • the compounds represented by the structural formula (8) are, for example, the following structural formulas (8-1) to (8-9).
  • the epoxy compound represented by the formula is, for example, 2,4,6-trimethyl-parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure, and the compound (P) having a phenolic hydroxyl group in the molecular structure Can be produced by the above-mentioned method using dihydroxybenzene as At this time, since the reaction ratio of 2,4,6-trimethyl-parabenzoquinone and dihydroxybenzene is an epoxy resin having a low melt viscosity and further excellent heat resistance and flame retardancy in the cured product, 2,4,6 -The ratio of dihydroxybenzene in the range of 0.1 to 10.0 moles per mole of trimethyl-parabenzoquinone is preferred.
  • the compound represented by the structural formula (9) is, for example, the following structural formula (9-1)
  • the epoxy compound represented by the formula is, for example, 2,4,6-trimethyl-parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure, and the compound (P) having a phenolic hydroxyl group in the molecular structure Can be produced by the above-described method using dihydroxynaphthalene or naphthol. At this time, the reaction ratio between 2,4,6-trimethyl-parabenzoquinone and the compound (P) having a phenolic hydroxyl group in the molecular structure is low in melt viscosity, and more excellent in heat resistance and flame retardancy in the cured product.
  • the ratio of the compound (P) having a phenolic hydroxyl group in the molecular structure in the range of 0.1 to 10.0 moles with respect to 1 mole of 2,4,6-trimethyl-parabenzoquinone. Preferably there is.
  • the compounds represented by the structural formula (10) include, for example, the following structural formulas (10-1) to (10-12)
  • the epoxy compound represented by the formula is, for example, 2,4,6-trimethyl-parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure, and the compound (P) having a phenolic hydroxyl group in the molecular structure Can be produced by the method described above using a phenylphenol compound.
  • the reaction ratio of 2,4,6-trimethyl-parabenzoquinone and the phenylphenol compound is an epoxy resin having a low melt viscosity and further excellent heat resistance and flame retardancy in the cured product.
  • the ratio is preferably in the range of 0.1 to 10.0 mol of phenylphenol compound in the molecular structure with respect to 1 mol of 6-trimethyl-parabenzoquinone.
  • the compounds represented by the structural formula (11) include, for example, the following structural formulas (11-1) to (11-3)
  • epoxy compound represented by the structural formula (I-3) is more specifically represented by the following structural formulas (12) to (16).
  • G represents a glycidyl group
  • q represents an integer of 0 to 4
  • m represents 1 or 2.
  • R 5 is any one of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, and an aralkyl group
  • u is an integer of 1 to 4.
  • the plurality of R 5 may be the same or different.
  • the epoxy compound represented by either of these is mentioned. Each will be described in detail below.
  • the epoxy compound represented by, for example, includes naphthoquinone as the compound (Q) having a quinone structure in the molecular structure, and phenol, cresol, dimethylphenol and the like as the compound (P) having a phenolic hydroxyl group in the molecular structure. And can be produced by the method described above. At this time, since the reaction ratio of naphthoquinone and the compound (P) having a phenolic hydroxyl group in the molecular structure is an epoxy resin having a low melt viscosity and further excellent heat resistance and flame retardancy in the cured product, naphthoquinone.
  • the amount of the compound (P) having a phenolic hydroxyl group in the molecular structure is preferably in the range of 0.1 to 10.0 moles relative to 1 mole.
  • the compounds represented by the structural formula (12) include, for example, the following structural formulas (12-1) to (12-9)
  • the compound represented by the structural formula (13) is, for example, the following structural formula (13-1)
  • the epoxy compound represented by these is mentioned.
  • the epoxy compound represented by the formula for example, uses naphthoquinone as the compound (Q) having a quinone structure in the molecular structure, and naphthol as the compound (P) having a phenolic hydroxyl group in the molecular structure. Can be manufactured.
  • the reaction ratio of naphthoquinone and naphthol is an epoxy resin having a low melt viscosity and further excellent heat resistance and flame retardancy in the cured product. Therefore, naphthol is 0.1 to 10.0 mol relative to 1 mol of naphthoquinone. It is preferable that the ratio be in the range.
  • the compounds represented by the structural formula (14) include, for example, the following structural formulas (14-1) to (14-4)
  • the epoxy compound represented by the formula is particularly excellent in heat resistance and flame retardancy in a cured product.
  • the epoxy compound represented by the structural formula (15) includes, for example, naphthoquinone as the compound (Q) having a quinone structure in the molecular structure and dihydroxynaphthalene as the compound (P) having a phenolic hydroxyl group in the molecular structure. Can be produced by the method described above.
  • dihydroxynaphthalene is 0.1 to 10 per 1 mol of naphthoquinone.
  • the ratio is preferably in the range of 0.0 mol.
  • the dihydroxynaphthalene used here may be any positional isomer such as 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like. good. Among them, 2,7-dihydroxynaphthalene is preferable because an epoxy resin having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product can be obtained.
  • the compounds represented by the structural formula (15) include, for example, the following structural formulas (15-1) to (15-8)
  • the epoxy resin containing the epoxy compound represented by the structural formula (15) may further contain an epoxy compound other than these. Especially, since it is excellent in the flame retardance in hardened
  • the dinaphthofuran compound represented by these is such that the content ratio of the binuclear compound (x1) in which m is 1 in the structural formula (15) is 2 to 60% in terms of area ratio in GPC measurement.
  • the content of the dinaphthofuran compound is in the range of 1 to 60%.
  • the epoxy compound represented by the formula for example, naphthoquinone is used as the compound (Q) having a quinone structure in the molecular structure, and a phenylphenol compound is used as the compound (P) having a phenolic hydroxyl group in the molecular structure. It can be manufactured by a method. At this time, the reaction ratio between naphthoquinone and phenylphenol compound is such that the melt viscosity is low and the epoxy resin is more excellent in heat resistance and flame retardancy in the cured product. The ratio is preferably in the range of 10.0 mol.
  • the compounds represented by the structural formula (16) include, for example, the following structural formulas (16-1) to (16-7)
  • the epoxy compound represented by any one of the structural formulas (1) to (3) is preferable in that it has a low melt viscosity and an excellent balance between heat resistance and flame retardancy in the cured product.
  • the epoxy compound represented by the structural formula (1) is more preferable because the melt viscosity is particularly low.
  • the epoxy compound represented by the structural formula (6) or (15) is preferable from the viewpoint of particularly excellent heat resistance and flame retardancy in the cured product, and the structural formula (15-1) is particularly preferable from the viewpoint of excellent flame retardancy. Or an epoxy compound represented by (15-2) is more preferable.
  • the epoxy resin containing the epoxy compound of the present invention is excellent in curability, so that the epoxy equivalent is preferably in the range of 125 to 300 g / equivalent.
  • the melt viscosity preferably has a value measured at 150 ° C. in the range of 0.1 to 4.0 dPa ⁇ s.
  • the curable composition of the present invention comprises the epoxy compound detailed above or an epoxy resin containing the epoxy compound and a curing agent as essential components.
  • Examples of the curing agent used here include various known curing agents such as amine compounds, amide compounds, acid anhydride compounds, and phenol compounds.
  • examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivative.
  • examples of the amide compound include dicyandiamide. And polyamide resins synthesized from dimer of linolenic acid and ethylenediamine.
  • acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and tetrahydrophthalic anhydride.
  • Acid, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc., and phenolic compounds include phenol novolac resin, cresol novolac resin Aromatic hydrocarbon formaldehyde resin modified phenolic resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensation Novolac resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin
  • the compounding ratio of the epoxy compound or epoxy resin and the curing agent is high in curability and becomes a curable composition excellent in heat resistance and flame retardancy in the cured product. It is preferable that the equivalent ratio of the epoxy group in the compound or epoxy resin to the active hydrogen atom in the curing agent (epoxy group / active hydrogen atom) is 1 / 0.5 to 1 / 1.5.
  • the curable composition of the present invention may contain other epoxy resins in addition to the epoxy compound of the present invention.
  • epoxy resins used here are specifically 2,7-diglycidyloxynaphthalene, ⁇ -naphthol novolak type epoxy resin, ⁇ -naphthol novolak type epoxy resin, ⁇ -naphthol / ⁇ -naphthol co-condensation type novolak.
  • Biphenyl type epoxy resins such as biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, etc .; phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolak type resins Xy-resins, epoxidized products of condensates of phenolic compounds and aromatic aldehydes having phenolic hydroxyl groups, novolac-type epoxy resins such as biphenyl novolac-type epoxy resins; triphenylmethane-type epoxy resins; tetraphenylethane-type epoxy resins; And cyclopentadiene-phenol addition reaction type epoxy resin; phenol aralkyl type epoxy resin; and phosphorus atom-containing epoxy resin.
  • the phosphorus atom-containing epoxy resin an epoxidized product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as “HCA”), HCA and quinones
  • HCA 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • HCA 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • the epoxy compound of the present invention is preferably used in a range of 50% by mass or more.
  • the blending ratio of the curable composition is high in curability and becomes a curable composition having excellent heat resistance and flame retardancy in the cured product. It is preferable that the equivalent ratio (epoxy group / active hydrogen atom) between the epoxy group and the active hydrogen atom in the curing agent is 1 / 0.5 to 1 / 1.5.
  • a curing accelerator can be used in combination as necessary.
  • Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • imidazole compounds are 2-ethyl-4-methylimidazole and phosphorus compounds are triphenylphosphine because they are excellent in curability, heat resistance, electrical properties, moisture resistance reliability, etc.
  • tertiary amine 1,8-diazabicyclo- [5.4.0] -undecene (DBU) is preferable.
  • the curable composition of the present invention described in detail above may further contain other additive components depending on the application and desired performance. Specifically, for the purpose of further improving the flame retardancy, a non-halogen flame retardant containing substantially no halogen atom may be blended.
  • non-halogen flame retardants examples include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants.
  • the flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.
  • the phosphorus flame retardant either inorganic or organic can be used.
  • the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like.
  • the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of thermosetting resins such as phenolic resin, and (iii) thermosetting of phenolic resin on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide or titanium hydroxide.
  • a method of double coating with a resin may be used.
  • general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds,
  • the blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable composition, and the desired degree of flame retardancy.
  • the epoxy component, the curing agent, and others In 100 parts by mass of the curable composition containing all of the additives and fillers, when red phosphorus is used as a non-halogen flame retardant, it is preferably blended in the range of 0.1 to 2.0 parts by mass.
  • red phosphorus when used as a non-halogen flame retardant, it is preferably blended in the range of 0.1 to 2.0 parts by mass.
  • an organic phosphorus compound it is preferably blended in the range of 0.1 to 10.0 parts by mass, and particularly preferably in the range of 0.5 to 6.0 parts by mass.
  • the phosphorous flame retardant when using the phosphorous flame retardant, may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
  • nitrogen-based flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate, melem sulfate, sulfate (Iii) co-condensates of phenolic compounds such as phenol, cresol, xylenol, butylphenol, and nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine, formguanamine and formaldehyde; ) A mixture of the co-condensate of (ii) and a phenol resin such as a phenol formaldehyde condensate, (iv) Those obtained by further modifying (ii) and (iii) with paulownia oil, isomerized linseed oil, etc. It is done.
  • cyanuric acid compound examples include cyanuric acid and melamine cyanurate.
  • the compounding amount of the nitrogen-based flame retardant is appropriately selected according to the type of the nitrogen-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy, for example, an epoxy component, It is preferable to add in the range of 0.05 to 10 parts by mass, particularly in the range of 0.1 to 5 parts by mass, in 100 parts by mass of the curable composition containing all of the curing agent, other additives and fillers. It is preferable to mix with.
  • a metal hydroxide, a molybdenum compound or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the amount of the silicone flame retardant is appropriately selected depending on the type of the silicone flame retardant, the other components of the curable composition, and the desired degree of flame retardancy. It is preferable to blend in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable composition containing all of the additive, other additives and fillers. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.
  • inorganic flame retardant examples include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.
  • the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • the metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • boron compound examples include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • the low-melting-point glass include, for example, Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO system, P—Sn—O—F system, PbO—V 2 O 5 —TeO 2 system, Al 2 O 3 —H 2 O system, lead borosilicate system, etc.
  • the glassy compound can be mentioned.
  • the blending amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, the other components of the curable composition, and the desired degree of flame retardancy. , And other additives and fillers, etc. are preferably blended in the range of 0.5 to 50 parts by weight, particularly in the range of 5 to 30 parts by weight, in 100 parts by weight of the curable composition. It is preferable.
  • organic metal salt flame retardant examples include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.
  • the compounding amount of the organic metal salt flame retardant is appropriately selected according to the type of the organic metal salt flame retardant, the other components of the curable composition, and the desired degree of flame retardancy. It is preferable to blend in the range of 0.005 to 10 parts by mass in 100 parts by mass of the curable composition containing all of the components, curing agent, and other additives and fillers.
  • various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier can be added to the curable composition of the present invention as necessary.
  • an inorganic filler can be blended as necessary. Since the epoxy compound and the epoxy resin of the present invention have a low melt viscosity, it is possible to increase the blending amount of the inorganic filler, and such a curable composition is particularly suitable for use in semiconductor sealing materials. Can be used.
  • the inorganic filler examples include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. Especially, since it becomes possible to mix
  • the fused silica can be used in either crushed or spherical shape, but in order to increase the blending amount of the fused silica and to suppress an increase in the melt viscosity of the curable composition, a spherical one is mainly used. It is preferable. Furthermore, in order to increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica.
  • the filling rate is preferably in the range of 0.5 to 95 parts by mass in 100 parts by mass of the curable composition.
  • a conductive filler such as silver powder or copper powder can be used.
  • an organic solvent examples include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, and propylene glycol monomethyl ether acetate.
  • the amount can be appropriately selected depending on the application. For example, in the printed wiring board application, it is preferable to use a polar solvent having a boiling point of 160 ° C.
  • methyl ethyl ketone such as methyl ethyl ketone, acetone, dimethylformamide, etc. It is preferable to use in the ratio.
  • organic solvents for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, It is preferable to use carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like, and the nonvolatile content is 30 to 60% by mass. It is preferable to use in proportions.
  • the curable composition of the present invention can be obtained by uniformly mixing the above-described components.
  • the curable composition of the present invention in which an epoxy resin component, a curing agent and, if necessary, a curing accelerator are blended can be easily made into a cured product by a method similar to a conventionally known method.
  • Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.
  • the epoxy compound of the present invention has a low melt viscosity and is excellent in heat resistance and flame retardancy in a cured product, it can be used for various electronic material applications. Especially, it can use suitably for a semiconductor sealing material application taking advantage of the low melt viscosity.
  • the semiconductor sealing material is, for example, a method in which a compound such as an epoxy component, a curing agent, and a filler containing the epoxy compound of the present invention is sufficiently mixed until uniform using an extruder, kneader, roll, or the like. Can be adjusted.
  • the filler used here include the inorganic filler described above.
  • the filler is preferably used in the range of 0.5 to 95 parts by mass in 100 parts by mass of the curable composition. Among these, it is preferable to use in the range of 70 to 95 parts by weight, particularly in the range of 80 to 95 parts by weight because flame retardancy, moisture resistance and solder crack resistance are improved and the linear expansion coefficient can be reduced. preferable.
  • a method for molding a semiconductor package using the obtained semiconductor sealing material includes, for example, molding the semiconductor sealing material using a casting or transfer molding machine, injection molding machine, etc., and further a temperature of 50 to 200 ° C. Examples of the method include heating for 2 to 10 hours under conditions, and by such a method, a semiconductor device which is a molded product can be obtained.
  • a varnish-like curable composition containing the epoxy compound of the present invention, a curing agent, an organic solvent, and other additives is used as a reinforcing substrate.
  • a method of impregnating and stacking copper foils and heat pressing examples include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the varnish-like curable composition described above is first heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C., so that a prepreg as a cured product is obtained. obtain.
  • the mass ratio of the curable composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable to prepare so that the resin content in the prepreg is 20 to 60 mass%.
  • the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and heat-pressed at 170 to 250 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa, A desired printed circuit board can be obtained.
  • melt viscosity at 150 ° C. and GPC, NMR and MS spectra were measured under the following conditions.
  • GPC Measurement conditions are as follows. Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 model II version 4.10”.
  • Example 1 Production of Epoxy Resin (1)
  • a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 282 parts by mass of phenol (3 mol) and 3 parts by mass of paratoluenesulfonic acid, The temperature was raised from room temperature to 80 ° C. with stirring. After reaching 80 ° C., 162 parts by mass (1.5 mol) of parabenzoquinone was added for 1 hour, and then the temperature was further raised to 130 ° C. and stirred for 1 hour to react. After completion of the reaction, the reaction product was dried under reduced pressure to obtain 250 parts by mass of the phenol intermediate (1).
  • the GPC chart of the obtained phenol intermediate is shown in FIG. 1, the 13C NMR spectrum is shown in FIG.
  • the hydroxyl group equivalent of the phenol intermediate (1) is 88 g / equivalent, and 202 peaks corresponding to the compound represented by the following structural formula (a-1) from the MS spectrum are represented by the following structural formula (b-1). 294 peaks corresponding to the above compound and 386 peaks corresponding to the compound represented by the following structural formula (c-1) were detected.
  • the epoxy equivalent of the epoxy resin (1) is 160 g / equivalent, and the content of the binuclear compound (x1) equivalent component represented by the following structural formula (A-1) in the epoxy resin calculated from the GPC chart is 29.7%, content of trinuclear compound (x2) equivalent component represented by the following structural formula (B-1) is 27.0%, tetranuclear represented by the following structural formula (C-1) The content of the component (x3) equivalent component was 9.7%.
  • FIG. 5 shows a GPC chart of the obtained phenol intermediate (2)
  • FIG. 6 shows a 13C NMR spectrum
  • FIG. 7 shows an MS spectrum.
  • the phenol intermediate (2) has a hydroxyl group equivalent of 81 g / equivalent, 216 peaks corresponding to the compound represented by the following structural formula (a-2) from the MS spectrum, represented by the following structural formula (b-2). 322 peaks corresponding to the above compound and 428 peaks corresponding to the following structural formula (c-2) were detected.
  • the epoxy equivalent of the epoxy resin (2) is 149 g / equivalent, and from the MS spectrum, 384 peaks corresponding to the binuclear compound (x1) represented by the following structural formula (A-2), the following structural formula (B- 546 peaks corresponding to the trinuclear compound (x2) represented by 2) and 708 peaks corresponding to the tetranuclear compound (x3) represented by the following structural formula (C-2) were detected.
  • the content of the binuclear compound (x1) equivalent component in the epoxy resin calculated from the GPC chart is 4.1%
  • the content of the trinuclear compound (x2) equivalent component is 70.7%
  • the content of (x3) equivalent component was 3.5%.
  • Example 3 Production of Epoxy Resin (3)
  • 649 parts by mass of orthocresol (6.0 mol) 3 parts by mass of paratoluenesulfonic acid was heated from room temperature to 80 ° C. with stirring.
  • 80 ° C. 162 parts by mass (1.5 mol) of parabenzoquinone was added for 1 hour, and then the temperature was further raised to 130 ° C. and stirred for 1 hour to react.
  • the reaction product was dried under reduced pressure to obtain 260 parts by mass of a phenol intermediate (3).
  • a GPC chart of the resulting phenol intermediate (3) is shown in FIG.
  • the hydroxyl equivalent of the phenol intermediate (3) was 97 g / equivalent.
  • the epoxy equivalent of the epoxy resin (3) is 160 g / equivalent, and the content of the binuclear compound (x1) equivalent component in the epoxy resin calculated from the GPC chart is 19.4%, the trinuclear compound (x2). The content of the equivalent component was 35.2%, and the content of the tetranuclear compound (x3) equivalent component was 8.0%.
  • a GPC chart of the resulting phenol intermediate (4) is shown in FIG. 13, and an MS spectrum is shown in FIG.
  • the hydroxyl equivalent of the phenol intermediate (4) is 88 g / equivalent, and from the MS spectrum, 230 peaks corresponding to the compound represented by the following structural formula (a-3) are represented by the following structural formula (b-3). 350 peaks corresponding to the above compound and 470 peaks corresponding to the compound represented by the following structural formula (c-3) were detected.
  • the epoxy equivalent of the epoxy resin (4) is 152 g / equivalent, and the content of the binuclear compound (x1) equivalent component represented by the following structural formula (A-3) in the epoxy resin calculated from the GPC chart is 7.0%, content of trinuclear compound (x2) equivalent component represented by the following structural formula (B-3) is 74.3%, tetranuclear represented by the following structural formula (C-3) The content of the compound (x3) equivalent component was 1.0%.
  • Example 5 Production of Epoxy Resin (5)
  • a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer 240 parts by mass of 2,7-dihydroxynaphthalene (1.5 mol), parabenzoquinone 162 Mass parts (1.5 mol), 268 parts by mass of isopropyl alcohol, and 8 parts by mass of oxalic acid were charged, and the temperature was raised from room temperature to 120 ° C. while stirring. After reaching 120 ° C., the reaction was allowed to stir for 2 hours. After completion of the reaction, the mixture was heated to 180 ° C. and dried under reduced pressure to obtain 359 parts by mass of a phenol intermediate (5).
  • the GPC chart of the obtained phenol intermediate is shown in FIG.
  • the epoxy equivalent of the epoxy resin (5) is 155 g / equivalent, and from the MS spectrum, the peak of 492 corresponding to the binuclear compound (x1) represented by the following structural formula (A-4), the following structural formula (B- 762 peaks corresponding to the trinuclear compound (x2) represented by 4) were detected.
  • the content of the binuclear compound (x1) equivalent component calculated from the GPC chart was 34.2%, and the content of the trinuclear compound (x2) equivalent component was 21.7%.
  • Example 6 Production of Epoxy Resin (6)
  • 160 parts by mass (1.0 mol) of 2,7-dihydroxynaphthalene, 158 parts of naphthoquinone Parts (1.0 mol) and 318 parts by mass of methyl isobutyl ketone were charged, and the temperature was raised from room temperature to 150 ° C. with stirring. After reaching 150 ° C., the reaction was allowed to stir for 3 hours. After completion of the reaction, the mixture was heated to 180 ° C. and dried under reduced pressure to obtain 300 parts by mass of a phenol intermediate (6).
  • a GPC chart of the obtained phenol intermediate is shown in FIG.
  • the epoxy equivalent of the epoxy resin (6) is 173 g / equivalent, and from the MS spectrum, the peak of 542 corresponding to the dinuclear compound (x1) represented by the following structural formula (A-5), the following structural formula (D) The peak of 412 corresponding to the compound represented by was detected.
  • the content of the binuclear compound (x1) equivalent component calculated from the GPC chart was 27.0%, and the content of the compound represented by the following structural formula (D) was 4.2%.
  • TPP Triphenylphosphine
  • a curable composition was obtained by melt-kneading at a temperature of 5 minutes. Using the obtained curable composition, a sample having a width of 12.7 mm, a length of 127 mm, and a thickness of 1.6 mm was molded by a transfer molding machine at a temperature of 175 ° C. for 90 seconds, and then at a temperature of 175 ° C. for 5 hours. After curing, an evaluation sample was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

溶融粘度が低く、硬化物における耐熱性及び難燃性に優れるエポキシ化合物、これを含むエポキシ樹脂、硬化性組成物とその硬化物、及び半導体封止材料を提供すること。下記一般式(I)[式中Gはグリシジル基を表し、Xは下記構造式(x1)又は(x2){式(x1)又は(x2)中、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)又は(Ar2)(式(3)又は(4)中、Gはグリシジル基を表し、p及びrはそれぞれ1又は2である。) で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。} で表される構造部位である。] で表される分子構造を有することを特徴とするエポキシ化合物。

Description

エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
 本発明は、溶融粘度が低く、硬化物における耐熱性及び難燃性に優れるエポキシ化合物、これを含むエポキシ樹脂、硬化性組成物とその硬化物、半導体封止材料、及びプリント配線基板に関する。
 エポキシ樹脂は、接着剤や、成形材料、塗料等の材料に用いられている他、得られる硬化物が耐熱性や耐湿性などに優れる点から半導体封止材料やプリント配線板用絶縁材料等の電気・電子分野で幅広く用いられている。
 このうち、車載用パワーモジュールに代表されるパワー半導体は電気・電子機器における省エネルギー化の鍵を握る重要な技術であり、パワー半導体の更なる大電流化、小型化、高効率化に伴い、従来のシリコン(Si)半導体から炭化ケイ素(SiC)半導体への移行が進められている。SiC半導体の利点はより高温条件下での動作が可能な点にあり、従って、半導体封止材にはこれまで以上に高い耐熱性が要求される。これに加え、ハロゲン系難燃剤を用いずとも高い難燃性を示すこと、低粘度かつ流動性に優れフィラーの高充填が可能であることも半導体封止材用樹脂の重要な要求性能であり、これらの性能を全て兼備する樹脂材料が求められている。
 これら様々な要求特性に対応するための樹脂材料として、例えば、下記構造式
Figure JPOXMLDOC01-appb-C000004
(式中、Gはグリシジル基を表す。)
で表されるエポキシ化合物を含有するエポキシ樹脂が知られている(特許文献1参照)。このようなエポキシ樹脂は硬化物における耐熱性に優れる特徴を有するものの、難燃性が十分ではなく、また、溶融粘度も高いものであった。
特開2004-339371号公報
 従って、本発明が解決しようとする課題は、溶融粘度が低く、硬化物における耐熱性及び難燃性に優れるエポキシ化合物、これを含むエポキシ樹脂、硬化性組成物とその硬化物、半導体封止材料、及びプリント配線基板を提供することにある。
 本発明者らは上記課題を解決するため鋭意検討した結果、キノン骨格を有する化合物とフェノール性水酸基を有する化合物との反応生成物をポリグリシジルエーテル化して得られるエポキシ化合物は、メチレン基を介さずに芳香核同士が結合した、低分子量かつエポキシ基濃度の高い構造を有し、かつ、該エポキシ基の反応性が高いことから、溶融粘度が低く、硬化物における耐熱性及び難燃性に優れるものであることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記一般式(I)
Figure JPOXMLDOC01-appb-C000005
[式中Gはグリシジル基を表し、Xは下記構造式(x1)又は(x2)
Figure JPOXMLDOC01-appb-C000006
{式(x1)又は(x2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、lは0~3の整数、nは0~4の整数である。lまたはnが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。また、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)又は(Ar2)
Figure JPOXMLDOC01-appb-C000007
(式(Ar1)又は(Ar2)中、Gはグリシジル基を表し、p及びrはそれぞれ1又は2である。R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、式(Ar2)中のRは2つの芳香核のうちどちらに結合していてもよく、qは0~4の整数、sは0~6の整数である。q又はsが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。)
で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。}
で表される構造部位である。]
で表される分子構造を有することを特徴とするエポキシ化合物に関する。
 本発明は更に、前記エポキシ化合物を含有するエポキシ樹脂に関する。
 本発明は更に、分子構造中にキノン構造を有する化合物(Q)と分子構造中にフェノール性水酸基を有する化合物(P)とを反応させてフェノール中間体を得、次いで、得られたフェノール中間体とエピハロヒドリンとを反応させることを特徴とするエポキシ樹脂の製造方法に関する。
 本発明は更に、前記製造方法により製造されるエポキシ樹脂に関する。
 本発明は更に、前記エポキシ化合物又はエポキシ樹脂、及び硬化剤を必須の成分とする硬化性組成物に関する。
 本発明は更に、前記硬化性組成物を硬化反応させてなる硬化物に関する。
 本発明は更に、前記硬化性組成物に加え、更に無機充填材を含有する半導体封止材料に関する。
 本発明は更に、前記硬化性組成物に有機溶剤を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板。
 本発明によれば、溶融粘度が低く、硬化物における耐熱性及び難燃性に優れるエポキシ化合物、これを含むエポキシ樹脂、硬化性組成物とその硬化物、半導体封止材料、及びプリント配線基板を提供できる。
図1は、実施例1で得られたフェノール中間体(1)のGPCチャートである。 図2は、実施例1で得られたフェノール中間体(1)の13C-NMRチャートである。 図3は、実施例1で得られたフェノール中間体(1)のMSスペクトルである。 図4は、実施例1で得られたエポキシ樹脂(1)のGPCチャートである。 図5は、実施例2で得られたフェノール中間体(2)のGPCチャートである。 図6は、実施例2で得られたフェノール中間体(2)の13C-NMRチャートである。 図7は、実施例2で得られたフェノール中間体(2)のMSスペクトルである。 図8は、実施例2で得られたエポキシ樹脂(2)のGPCチャートである。 図9は、実施例2で得られたエポキシ樹脂(2)の13C-NMRチャートである。 図10は、実施例2で得られたエポキシ樹脂(2)のMSスペクトルである。 図11は、実施例3で得られたフェノール中間体(3)のGPCチャートである。 図12は、実施例3で得られたエポキシ樹脂(3)のGPCチャートである。 図13は、実施例4で得られたフェノール中間体(4)のGPCチャートである。 図14は、実施例4で得られたフェノール中間体(4)のMSスペクトルである。 図15は、実施例4で得られたエポキシ樹脂(4)のGPCチャートである。 図16は、実施例5で得られたフェノール中間体(5)のGPCチャートである。 図17は、実施例5で得られたフェノール中間体(5)の13C-NMRチャートである。 図18は、実施例5で得られたフェノール中間体(5)のMSスペクトルである。 図19は、実施例5で得られたエポキシ樹脂(5)のGPCチャートである。 図20は、実施例5で得られたエポキシ樹脂(5)の13C-NMRチャートである。 図21は、実施例5で得られたエポキシ樹脂(5)のMSスペクトルである。 図22は、実施例6で得られたフェノール中間体(6)のGPCチャートである。 図23は、実施例6で得られたフェノール中間体(6)のMSスペクトルである。 図24は、実施例6で得られたエポキシ樹脂(6)のGPCチャートである。 図25は、実施例6で得られたエポキシ樹脂(6)のMSスペクトルである。
 以下、本発明を詳細に説明する。
 本発明のエポキシ化合物は、下記一般式(I)
Figure JPOXMLDOC01-appb-C000008
[式中Gはグリシジル基を表し、Xは下記構造式(x1)又は(x2)
Figure JPOXMLDOC01-appb-C000009
{式(x1)又は(x2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、lは0~3の整数、nは0~4の整数である。lまたはnが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。また、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)又は(Ar2)
Figure JPOXMLDOC01-appb-C000010
(式(Ar1)又は(Ar2)中、Gはグリシジル基を表し、p及びrはそれぞれ1又は2である。R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、式(Ar2)中のRは2つの芳香核のうちどちらに結合していてもよく、qは0~4の整数、sは0~6の整数である。q又はsが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。)
で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。}
で表される構造部位である。]
で表される分子構造を有することを特徴とする。
 前記一般式(I)で表される本発明のエポキシ化合物は、メチレン鎖を介さずに芳香核同士が結合した構造を有することから、分子量が低く、かつ、芳香環及びエポキシ基濃度が高い特徴を有する。一般に、分子量が低くエポキシ基濃度の高い化合物は、溶融粘度が低い特徴を有する反面、易燃性のエポキシ基濃度が高くなり、また多数のエポキシ基が近接して存在するため硬化物の難燃性に劣る傾向がある。これに対し本願発明のエポキシ化合物は、ビフェニル骨格或いはターフェニル骨格を有すること、前記構造式(x1)又は(x2)中、芳香核のパラ位に位置する二つのエポキシ基が反応性に優れることから、低分子量で溶融粘度の低い化合物でありながら、硬化物における耐熱性や難燃性にも優れる特徴を有する。
 前記構造式(x1)又は(x2)においてkは1~3の整数、mは1又は2である。k又はmの値が1の場合に相当する化合物(以下「2核体化合物(x1)」と略記する。)は、低分子量で粘度が低くありながら、硬化物における耐熱性及び難燃性にも優れる特徴を有する。一方、k又はmの値が2の場合に相当する化合物(以下「3核体化合物(x2)」と略記する。)や、kの値が3の場合に相当する化合物(以下「4核体化合物(x3)」と略記する。)は、分子骨格の剛直性がより高く、芳香環濃度も高いことから、硬化物における耐熱性と難燃性に一層優れる特徴を有する。
 前記一般式(I)で表される化合物は、例えば、分子構造中にキノン構造を有する化合物(Q)と、分子構造中にフェノール性水酸基を有する化合物(P)とを、無触媒又は酸触媒条件下、40~180℃の温度範囲で反応させてフェノール中間体を得、得られたフェノール中間体をエピハロヒドリンと反応させてグリシジルエーテル化する方法により製造されるものが挙げられる。このような方法により本発明のエポキシ化合物を製造する場合、反応条件により任意の成分を選択的に製造したり、複数種のエポキシ化合物の混合物であるエポキシ樹脂として製造したりすることが出来る。また、混合物であるエポキシ樹脂から任意の成分のみを単離して用いても良い。
 前記分子構造中にキノン構造を有する化合物(Q)は、例えば、下記構造式(Q1)又は(Q2)
Figure JPOXMLDOC01-appb-C000011
[式(Q1)又は(Q2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、lは0~3の整数、nは0~4の整数である。lまたはnが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。]
で表される化合物が挙げられ、具体的には、パラベンゾキノン、2-メチルベンゾキノン、2,3,5-トリメチル-ベンゾキノン、ナフトキノン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記分子構造中にフェノール性水酸基を有する化合物(P)は、例えば、下記構造式(P1)又は(P2)
Figure JPOXMLDOC01-appb-C000012
[式(P1)又は(P2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、qは0~4の整数、sは0~6の整数である。q又はsが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。また、p及びrはそれぞれ1又は2である。]
で表される化合物が挙げられ、具体的には、フェノール、オルソクレゾール、メタクレゾール、パラクレゾール、2,6-ジメチルフェノール、2,5-ジメチルフェノール、2,4-ジメチルフェノール、3,5-ジメチルフェノール、2,3,4-トリメチルフェノール、2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール、2,4,5-トリメチルフェノール、3,4,5-トリメチルフェノール、4-イソプロピルフェノール、4-tert-ブチルフェノール、2-メトキシフェノール、3-メトキシフェノール、4-メトキシフェノール、2‐メトキシ-4-メチルフェノール、2-tert-ブチル-4-メトキシフェノール、2,6-ジメトキシフェノール、3,5-ジメトキシフェノール、2-エトキシフェノール、3-エトキシフェノール、4-エトキシフェノール、2-フェニルフェノール、3-フェニルフェノール、4-フェニルフェノール、4-ベンジルフェノール、1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、1,4-ジヒドロキシベンゼン、1-ナフトール、2-ナフトール、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記分子構造中にキノン構造を有する化合物(Q)と前記分子構造中にフェノール性水酸基を有する化合物(P)との反応は、反応性が高いことから無触媒条件下でも進行するが、適宜酸触媒を用いて行っても良い。ここで用いる酸触媒は例えば、塩酸、硫酸、リン酸、などの無機酸や、メタンスルホン酸、p-トルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸等が挙げられる。これら酸触媒を用いる場合は、前記キノン構造を有する化合物(Q)と前記分子構造中にフェノール性水酸基を有する化合物(P)との合計質量に対し、5.0質量%以下の量で用いることが好ましい。
 また、該反応は無溶剤条件下で行うことが好ましいが、必要に応じて有機溶媒中で行っても良い。ここで用いる有機溶媒は例えば、メチルセロソルブ、イソプロピルアルコール、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトンなどが挙げられる。これら有機溶剤を用いる場合は、反応効率が向上することから、キノン構造を有する化合物(Q)と分子構造中にフェノール性水酸基を有する化合物(P)との合計100質量部に対し、有機溶剤が50~200質量部の範囲となる割合で用いることが好ましい
 前記分子構造中にキノン構造を有する化合物(Q)と前記分子構造中にフェノール性水酸基を有する化合物(P)との反応終了後は、減圧乾燥するなどしてフェノール中間体を得ることが出来る。
 次に、フェノール中間体とエピハロヒドリンとの反応は、例えば、フェノール中間体中のフェノール性水酸基1モル対し、エピハロヒドリンが2~10モルの範囲となる割合で両者を用い、フェノール性水酸基1モル対し0.9~2.0モルの塩基性触媒を一括又は分割添加しながら20~120℃の温度で0.5~10時間反応させる方法が挙げられる。ここで用いる塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に反応混合物中から減圧または常圧条件下で連続的に水及びエピハロヒドリン類を留出させ、これを分液して水は除去し、エピハロヒドリンは反応混合物中に連続的に戻す方法でもよい。
 なお、工業生産を行う際、エポキシ樹脂生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリンと、反応で消費される分で消失する分に相当する新しいエピハロヒドリンとを併用することが好ましい。この時、使用するエピハロヒドリンは特に限定されないが、例えばエピクロルヒドリン、エピブロモヒドリン、β-メチルエピクロルヒドリン等が挙げられる。なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。
 また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、具体的には、水酸化ナトリウムや水酸化カリウム等が挙げられる。これらの塩基性触媒は10~55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用してもよい。また、フェノール中間体とエピハロヒドリンとの反応は有機溶媒を併用することにより反応速度を高めることができる。ここで用いる有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン溶媒、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール溶媒、メチルセロソルブ、エチルセロソルブ等のセロソルブ溶媒、テトラヒドロフラン、1、4-ジオキサン、1、3-ジオキサン、ジエトキシエタン等のエーテル溶媒、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調整するために適宜2種以上を併用してもよい。
 反応終了後は、反応混合物を水洗した後、加熱減圧下での蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また、加水分解性ハロゲンの一層少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合の使用量はエポキシ樹脂100質量部に対して0.1~3.0質量部となる割合であることが好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより目的とする本発明のエポキシ化合物或いはエポキシ樹脂を得ることができる。
 本発明のエポキシ化合物は、前記一般式(I)で表される構造を有するものであればいずれも溶融粘度が低く、硬化物における耐熱性及び難燃性に優れるという本願発明の効果を奏するものである。以下、前記一般式(I)で表される構造を有するエポキシ化合物のより好ましいものについて詳述する。
 前記一般式(I)で表されるエポキシ化合物の代表的なものとして、下記構造式(I-1)~(I-3)
Figure JPOXMLDOC01-appb-C000013
[式(I-1)~(I-3)中、Gはグリシジル基を表し、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)又は(Ar2)
Figure JPOXMLDOC01-appb-C000014
(式(Ar1)又は(Ar2)中、Gはグリシジル基を表し、p及びrはそれぞれ1又は2である。R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、式(Ar2)中のRは2つの芳香核のうちどちらに結合していてもよく、qは0~4の整数、sは0~6の整数である。q又はsが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。)
で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。]
の何れかで表されるエポキシ化合物が挙げられる。
 前記構造式(I-1)で表されるエポキシ化合物は、更に具体的には、下記構造式(1)~(7)
Figure JPOXMLDOC01-appb-C000015
[式(1)~(7)中Gはグリシジル基であり、kは1~3の整数である。Rは炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、uは1~4の整数である。uが2以上の場合、複数のRは同一であっても良いし、それぞれ異なっていても良い。]
の何れかで表されるエポキシ化合物が挙げられる。以下、それぞれについて詳述する。
 下記構造式(1)
Figure JPOXMLDOC01-appb-C000016
で表されるエポキシ化合物は、前記一般式(I)で表される本発明のエポキシ化合物の中でも、溶融粘度と、硬化物における耐熱性及び難燃性とのバランスに特に優れる特徴を有する。
中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れることから、前記構造式(1)においてkの値が1である2核体化合物(x1)と、kの値が2である3核体化合物(x2)とを含有するエポキシ樹脂として用いることが好ましく、エポキシ樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で10~50%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で10~50%の範囲であることがより好ましい。
 更に、耐熱性と難燃性とに一層優れる硬化物が得られる点においては、前記2核体化合物(x1)、前記3核体化合物(x2)に加え、kの値が3である4核体化合物(x3)や、下記構造式(1’)
Figure JPOXMLDOC01-appb-C000017
で表される4核体化合物(x3’)を含有するエポキシ樹脂として用いることが好ましく、このとき、エポキシ樹脂中の前記4核体化合物(x3)と前記4核体化合物(x3’)との合計の含有量は、GPC測定における面積比率で2~20%の範囲であることが好ましい。
 なお、本発明において、エポキシ樹脂中の前記2核体化合物(x1)、前記3核体化合物(x2)、前記4核体化合物(x3)及び前記4核体化合物(x3’)の含有率とは、下記の条件によるGPC測定データから算出される、エポキシ樹脂の全ピーク面積に対する前記各成分のピーク面積の割合である。
<GPC測定条件>
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
 前記構造式(1)で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてフェノールを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとフェノールとの反応割合は、得られるエポキシ樹脂中の前記2核体化合物(x1)と前記3核体化合物(x2)との含有量を前述した好ましい範囲に調整することが容易となることから、パラベンゾキノン1モルに対し、フェノールが0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(1)で表される化合物は、例えば、下記構造式(1-1)~(1-9)
Figure JPOXMLDOC01-appb-C000018
の何れかで表されるエポキシ化合物等が挙げられる。
 下記構造式(2)
Figure JPOXMLDOC01-appb-C000019
で表されるエポキシ化合物は、前記一般式(I)で表される本発明のエポキシ化合物の中でも、特に溶融粘度が低く、硬化物における耐熱性及び難燃性にも優れる特徴を有する。 
 中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れることから、前記構造式(2)においてkの値が1である2核体化合物(x1)と、前記構造式(2)においてkの値が2である3核体化合物(x2)とを含有するエポキシ樹脂として用いることが好ましく、エポキシ樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で2~50%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で10~90%の範囲であることがより好ましい。更に、エポキシ樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で2~25%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で25~90%の範囲であることが特に好ましい。
 また、耐熱性に一層優れる硬化物が得られる点においては、前記2核体化合物(x1)、前記3核体化合物(x2)に加え、前記構造式(2)においてkの値が3である4核体化合物(x3)や、下記構造式(2’)
Figure JPOXMLDOC01-appb-C000020
で表される4核体化合物(x3’)を含有するエポキシ樹脂として用いることが好ましく、このとき、エポキシ樹脂中の前記4核体化合物(x3)と前記4核体化合物(x3’)との合計の含有量は、GPC測定における面積比率で2~20%の範囲であることが好ましい。
 前記構造式(2)で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてクレゾールを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとクレゾールとの反応割合は、得られるエポキシ樹脂中の前記2核体化合物(x1)と前記3核体化合物(x2)との含有量を前述した好ましい範囲に調整することが容易となることから、パラベンゾキノン1モルに対し、クレゾールが0.1~10.0モルの範囲となる割合であることが好ましい。
 ここで用いるクレゾールは、オルソクレゾール、メタクレゾール、パラクレゾールの何れでも良く、また、複数種を併用しても良い。中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性にも優れるエポキシ樹脂が得られることから、オルソクレゾールが好ましい。
 前記構造式(2)で表される化合物は、例えば、下記構造式(2-1)~(2-31)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023

の何れかで表されるエポキシ化合物等が挙げられる。
 下記構造式(3)
Figure JPOXMLDOC01-appb-C000024
で表されるエポキシ化合物は、前記一般式(I)で表される本発明のエポキシ化合物の中でも、特に溶融粘度が低く、硬化物における耐熱性及び難燃性にも優れる特徴を有する。
 中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れることから、前記構造式(3)においてkの値が1である2核体化合物(x1)と、前記構造式(3)においてkの値が2である3核体化合物(x2)とを含有するエポキシ樹脂として用いることが好ましく、エポキシ樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で2~50%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で10~95%の範囲であることがより好ましい。更に、エポキシ樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で2~25%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で50~95%の範囲であることが特に好ましい。
 また、耐熱性に一層優れる硬化物が得られる点においては、前記2核体化合物(x1)、前記3核体化合物(x2)に加え、前記構造式(3)においてkの値が3である4核体化合物(x3)や、下記構造式(3’)
Figure JPOXMLDOC01-appb-C000025
で表される4核体化合物(x3’)を含有するエポキシ樹脂として用いることが好ましく、このとき、エポキシ樹脂中の前記4核体化合物(x3)と前記4核体化合物(x3’)との合計の含有量は、GPC測定における面積比率で0.5~10%の範囲であることが好ましい。
 前記構造式(3)で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてジメチルフェノールを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとジメチルフェノールとの反応割合は、得られるエポキシ樹脂中の前記2核体化合物(x1)と前記3核体化合物(x2)との含有量を前述した好ましい範囲に調整することが容易となることから、パラベンゾキノン1モルに対し、ジメチルフェノールが0.1~10.0モルの範囲となる割合であることが好ましい。
 ここで用いるジメチルフェノールは2,6-ジメチルフェノール、2,5-ジメチルフェノール、2,4-ジメチルフェノール、3,5-ジメチルフェノール等何れの位置異性体のものでも良い。中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性にも優れるエポキシ樹脂が得られることから、2,6-ジメチルフェノールが好ましい。
 前記構造式(3)で表される化合物は、例えば、下記構造式(3-1)~(3-3)
Figure JPOXMLDOC01-appb-C000026

の何れかで表されるエポキシ化合物等が挙げられる。
 下記構造式(4)
Figure JPOXMLDOC01-appb-C000027
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてジヒドロキシベンゼンを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとジヒドロキシベンゼンとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、パラベンゾキノン1モルに対し、ジヒドロキシベンゼンが0.1~10.0モルの範囲となる割合であることが好ましい。
 ここで用いるジヒドロキシベンゼンは、1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、1,4-ジヒドロキシベンゼン等何れの位置異性体のものでも良い。中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性にも優れるエポキシ樹脂が得られることから、1,3-ジヒドロキシベンゼンが好ましい。
 前記構造式(4)で表される化合物は、例えば、下記構造式(4-1)~(4-3)
Figure JPOXMLDOC01-appb-C000028

の何れかで表されるエポキシ化合物等が挙げられる。
 前記構造式(4)で表されるエポキシ化合物を含有するエポキシ樹脂は、更にこれら以外のエポキシ化合物を含有していても良い。該その他のエポキシ化合物としては、例えば、下記構造式(1-10)~(1-12)や、(4’-1)~(4’-5)
Figure JPOXMLDOC01-appb-C000029
(式中u及びvはそれぞれ1又は2である。)
の何れかで表されるエポキシ化合物等が挙げられる。
 エポキシ樹脂が前記構造式(4)で表される化合物に併せて、前記その他のエポキシ化合物を含む場合、エポキシ樹脂中の各成分の含有割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に優れるエポキシ樹脂となることから、前記構造式(4)においてkの値が1である2核体化合物(x1)と前記構造式(1-10)で表される化合物との合計の含有率がGPC測定における面積比率で5~40%の範囲であり、前記構造式(4)においてkの値が2である3核体化合物(x2)、前記構造式(1-11)で表される化合物及び前記構造式(4’-1)又は(4’-2)で表される化合物の合計の含有率が10~60%の範囲であることが好ましい。
 下記構造式(5)
Figure JPOXMLDOC01-appb-C000030

で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてナフトールを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとナフトールとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、パラベンゾキノン1モルに対し、ナフトールが0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(5)で表されるエポキシ化合物の中でも、硬化物における耐熱性及び難燃性に特に優れることから、前記構造式(5)においてkの値が1である2核体化合物(x1)と、前記構造式(5)においてkの値が2である3核体化合物(x2)とを含有するエポキシ樹脂として用いることが好ましく、エポキシ樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で5~60%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で5~50%の範囲であることがより好ましい。
 前記構造式(5)で表される化合物は、例えば、下記構造式(5-1)~(5-10)
Figure JPOXMLDOC01-appb-C000031

の何れかで表されるエポキシ化合物等が挙げられる。
 下記構造式(6)
Figure JPOXMLDOC01-appb-C000032
で表されるエポキシ化合物は、前記一般式(I)で表されるエポキシ化合物の中でも、硬化物における耐熱性及び難燃性に特に優れる特徴を有する。
 中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れることから、前記構造式(6)においてkの値が1である2核体化合物(x1)と、前記構造式(6)においてkの値が2である3核体化合物(x2)とを含有するエポキシ樹脂として用いることが好ましく、エポキシ樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で5~60%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で5~50%の範囲であることがより好ましい。
 前記構造式(6)の何れかで表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてジヒドロキシナフタレンを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとジヒドロキシナフタレンとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、パラベンゾキノン1モルに対し、ジヒドロキシナフタレンが0.1~10.0モルの範囲となる割合であることが好ましい。
 ここで用いるジヒドロキシナフタレンは、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等何れの位置異性体のものでも良い。中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性にも優れるエポキシ樹脂が得られることから、2,7-ジヒドロキシナフタレンが好ましい。
 前記構造式(6)で表される化合物は、例えば、下記構造式(6-1)~(6-30)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035

の何れかで表されるエポキシ化合物等が挙げられる。
 下記構造式(7)
Figure JPOXMLDOC01-appb-C000036

で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてフェニルフェノールを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとフェニルフェノールとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、パラベンゾキノン1モルに対し、フェニルフェノールが0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(7)で表される化合物は、例えば、下記構造式(7-1)~(7-12)
Figure JPOXMLDOC01-appb-C000037

の何れかで表されるエポキシ化合物等が挙げられる。
 前記構造式(I-2)で表されるエポキシ化合物は、更に具体的には、下記構造式(8)~(11)
Figure JPOXMLDOC01-appb-C000038

[式(8)~(11)中Gはグリシジル基であり、qは0~4の整数、rは1又は2である。Rは炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、uは1~4の整数である。uが2以上の場合、複数のRは同一であっても良いし、それぞれ異なっていても良い。]
の何れかで表されるエポキシ化合物が挙げられる。以下、それぞれについて詳述する。
 下記構造式(8)
Figure JPOXMLDOC01-appb-C000039
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)として2,4,6-トリメチル-パラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてフェノール、クレゾール、ジメチルフェノール等を用い、前述の方法により製造することが出来る。このとき2,4,6-トリメチル-パラベンゾキノンと、前記分子構造中にフェノール性水酸基を有する化合物(P)との反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、2,4,6-トリメチル-パラベンゾキノン1モルに対し、前記分子構造中にフェノール性水酸基を有する化合物(P)が0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(8)で表される化合物は、例えば、下記構造式(8-1)~(8-9)
Figure JPOXMLDOC01-appb-C000040
の何れかで表されるエポキシ化合物が挙げられる。
 下記構造式(9)
Figure JPOXMLDOC01-appb-C000041
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)として2,4,6-トリメチル-パラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてジヒドロキシベンゼンを用い、前述の方法により製造することが出来る。このとき2,4,6-トリメチル-パラベンゾキノンとジヒドロキシベンゼンとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、2,4,6-トリメチル-パラベンゾキノン1モルに対し、ジヒドロキシベンゼンが0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(9)で表される化合物は、例えば、下記構造式(9-1)
Figure JPOXMLDOC01-appb-C000042
で表されるエポキシ化合物等が挙げられる。
 下記構造式(10)
Figure JPOXMLDOC01-appb-C000043
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)として2,4,6-トリメチル-パラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてジヒドロキシナフタレン又はナフトールを用い、前述の方法により製造することが出来る。このとき2,4,6-トリメチル-パラベンゾキノンと前記分子構造中にフェノール性水酸基を有する化合物(P)との反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、2,4,6-トリメチル-パラベンゾキノン1モルに対し、前記分子構造中にフェノール性水酸基を有する化合物(P)0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(10)で表される化合物は、例えば、下記構造式(10-1)~(10-12)
Figure JPOXMLDOC01-appb-C000044
の何れかで表されるエポキシ化合物等が挙げられる。
 下記構造式(11)
Figure JPOXMLDOC01-appb-C000045
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)として2,4,6-トリメチル-パラベンゾキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてフェニルフェノール化合物を用い、前述の方法により製造することが出来る。このとき2,4,6-トリメチル-パラベンゾキノンとフェニルフェノール化合物との反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、2,4,6-トリメチル-パラベンゾキノン1モルに対し、前記分子構造中にフェニルフェノール化合物0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(11)で表される化合物は、例えば、下記構造式(11-1)~(11-3)
Figure JPOXMLDOC01-appb-C000046

の何れかで表されるエポキシ化合物等が挙げられる。
 前記構造式(I-3)で表されるエポキシ化合物は、更に具体的には、下記構造式(12)~(16)
Figure JPOXMLDOC01-appb-C000047

[式(12)~(16)中Gはグリシジル基であり、qは0~4の整数、mは1又は2である。Rは炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、uは1~4の整数である。uが2以上の場合、複数のRは同一であっても良いし、それぞれ異なっていても良い。]
の何れかで表されるエポキシ化合物が挙げられる。以下、それぞれについて詳述する。
 下記構造式(12)
Figure JPOXMLDOC01-appb-C000048
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてナフトキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてフェノール、クレゾール、ジメチルフェノール等を用い、前述の方法により製造することが出来る。このときナフトキノンと、前記分子構造中にフェノール性水酸基を有する化合物(P)との反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、ナフトキノン1モルに対し、前記分子構造中にフェノール性水酸基を有する化合物(P)が0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(12)で表される化合物は、例えば、下記構造式(12-1)~(12-9)
Figure JPOXMLDOC01-appb-C000049
の何れかで表されるエポキシ化合物が挙げられる。
 下記構造式(13)
Figure JPOXMLDOC01-appb-C000050
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてナフトキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてジヒドロキシベンゼンを用い、前述の方法により製造することが出来る。このとき2,4,6-トリメチル-パラベンゾキノンと1,3-ジヒドロキシベンゼンとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、2,4,6-トリメチル-パラベンゾキノン1モルに対し、ジヒドロキシベンゼンが0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(13)で表される化合物は、例えば、下記構造式(13-1)
Figure JPOXMLDOC01-appb-C000051
で表されるエポキシ化合物が挙げられる。
 下記構造式(14)
Figure JPOXMLDOC01-appb-C000052
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてナフトキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてナフトールを用い、前述の方法により製造することが出来る。このときナフトキノンとナフトールとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることからナフトキノン1モルに対し、ナフトールが0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(14)で表される化合物は、例えば、下記構造式(14-1)~(14-4)
Figure JPOXMLDOC01-appb-C000053
の何れかで表されるエポキシ化合物が挙げられる。
 下記構造式(15)
Figure JPOXMLDOC01-appb-C000054
で表されるエポキシ化合物は、前記一般式(I)で表されるエポキシ化合物の中でも、特に硬化物における耐熱性及び難燃性に特に優れる特徴を有する。前記構造式(15)で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてナフトキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてジヒドロキシナフタレンを用い、前述の方法により製造することが出来る。このときナフトキノンとジヒドロキシナフタレンとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることから、ナフトキノン1モルに対し、ジヒドロキシナフタレンが0.1~10.0モルの範囲となる割合であることが好ましい。
 ここで用いるジヒドロキシナフタレンは、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等何れの位置異性体のものでも良い。中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性にも優れるエポキシ樹脂が得られることから、2,7-ジヒドロキシナフタレンが好ましい。
 前記構造式(15)で表される化合物は、例えば、下記構造式(15-1)~(15-8)
Figure JPOXMLDOC01-appb-C000055

の何れかで表される化合物が挙げられる。
 前記構造式(15)で表されるエポキシ化合物を含有するエポキシ樹脂は、更にこれら以外のエポキシ化合物を含有していても良い。中でも、硬化物における難燃性に優れることから、下記構造式(15’)
Figure JPOXMLDOC01-appb-C000056
で表されるジナフトフラン化合物を含有していることが好ましい。この場合、エポキシ樹脂中の各成分の含有割合は、前記構造式(15)においてmの値が1である2核体化合物(x1)の含有率がGPC測定における面積比率で2~60%の範囲であり、かつ、前記ジナフトフラン化合物の含有率が1~60%の範囲であることが好ましい。
 下記構造式(16)
Figure JPOXMLDOC01-appb-C000057
で表されるエポキシ化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてナフトキノンを、前記分子構造中にフェノール性水酸基を有する化合物(P)としてフェニルフェノール化合物を用い、前述の方法により製造することが出来る。このときナフトキノンとフェニルフェノール化合物との反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるエポキシ樹脂となることからナフトキノン1モルに対し、フェニルフェノール化合物が0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(16)で表される化合物は、例えば、下記構造式(16-1)~(16-7)
Figure JPOXMLDOC01-appb-C000058

の何れかで表されるエポキシ化合物等が挙げられる。
 これら例示したエポキシ化合物のうち、溶融粘度が低く、硬化物における耐熱性及び難燃性とのバランスに優れる点では前記構造式(1)~(3)の何れかで表されるエポキシ化合物が好ましく、これらの中でも特に溶融粘度が低いことから前記構造式(1)で表されるエポキシ化合物がより好ましい。
 一方、硬化物における耐熱性及び難燃性に特に優れる点では前記構造式(6)又は(15)で表されるエポキシ化合物が好ましく、特に難燃性に優れる点では前記構造式(15-1)又は(15-2)で表されるエポキシ化合物がより好ましい。
 前記本発明のエポキシ化合物を含むエポキシ樹脂は、硬化性に優れることからそのエポキシ当量が125~300g/当量の範囲であることが好ましい。また、溶融粘度は、150℃条件下で測定される値が0.1~4.0dPa・sの範囲であることが好ましい。
 本発明の硬化性組成物は、以上詳述したエポキシ化合物又はこれを含むエポキシ樹脂と、硬化剤とを必須成分とするものである。
 ここで用いる硬化剤は、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物などの各種の公知の硬化剤が挙げられる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
 本発明の硬化性組成物において、エポキシ化合物又はエポキシ樹脂と、硬化剤との配合割合は、硬化性が高く、硬化物における耐熱性及び難燃性に優れる硬化性組成物となることから、エポキシ化合物又はエポキシ樹脂中のエポキシ基と、硬化剤中の活性水素原子との当量比(エポキシ基/活性水素原子)が1/0.5~1/1.5となる割合であることが好ましい。
 本発明の硬化性組成物は、本発明のエポキシ化合物に加え、その他のエポキシ樹脂を含有しても良い。
 ここで用いるその他のエポキシ樹脂は、具体的には、2,7-ジグリシジルオキシナフタレン、α-ナフトールノボラック型エポキシ樹脂、β-ナフトールノボラック型エポキシ樹脂、α-ナフトール/β-ナフトール共縮合型ノボラックのポリグリシジルエーテル、ナフトールアラルキル型エポキシ樹脂、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン等のナフタレン骨格含有エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール系化合物とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;リン原子含有エポキシ樹脂等が挙げられる。
 ここで、リン原子含有エポキシ樹脂としては、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「HCA」と略記する。)のエポキシ化物、HCAとキノン類とを反応させて得られるフェノール樹脂のエポキシ化物、フェノールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、クレゾールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、また、ビスフェノールA型エポキシ樹脂を及びHCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂等が挙げられる。
 これらその他のエポキシ樹脂を用いる場合には、本発明のエポキシ化合物の特徴である溶融粘度が低く、硬化物における耐熱性及び難燃性に優れる効果が十分に発揮されることから、全エポキシ樹脂成分中、本発明のエポキシ化合物が50質量%以上となる範囲で用いることが好ましい。
 また、これらその他のエポキシ樹脂を用いる場合、硬化性組成物の配合割合は、硬化性が高く、硬化物における耐熱性及び難燃性に優れる硬化性組成物となることから、全エポキシ成分中のエポキシ基と、前記硬化剤中の活性水素原子との当量比(エポキシ基/活性水素原子)が1/0.5~1/1.5となる割合であることが好ましい。
 本発明の硬化性組成物には、必要に応じて硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、イミダゾール化合物では2-エチル-4-メチルイミダゾール、リン系化合物ではトリフェニルホスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)が好ましい。
 以上詳述した本発明の硬化性組成物は、用途や所望の性能に応じて、更に、その他の添加剤成分を含有していても良い。具体的には、難燃性をさらに向上させる目的で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
 前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
 前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
 また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
 前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサー10-ホスファフェナントレン=10-オキシド、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン=10-オキシド、10―(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
 それらの配合量としては、リン系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、及びその他の添加剤や充填材等全てを配合した硬化性組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1~2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1~10.0質量部の範囲で配合することが好ましく、特に0.5~6.0質量部の範囲で配合することが好ましい。
 また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
 前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
 前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール系化合物と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
 前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、その他の添加剤や充填材等全てを配合した硬化性組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、特に0.1~5質量部の範囲で配合することが好ましい。
 また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
 前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
 前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、及びその他の添加剤や充填材等全てを配合した硬化性組成物100質量部中、0.05~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
 前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
 前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
 前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
 前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
 前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
 前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
 前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
 前記無機系難燃剤の配合量は、無機系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、及びその他の添加剤や充填材等全てを配合した硬化性組成物100質量部中、0.5~50質量部の範囲で配合することが好ましく、特に5~30質量部の範囲で配合することが好ましい。
 前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
 前記有機金属塩系難燃剤の配合量は、有機金属塩系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、及びその他の添加剤や充填材等全てを配合した硬化性組成物100質量部中、0.005~10質量部の範囲で配合することが好ましい。
 この他、本発明の硬化性組成物は必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
 本発明の硬化性組成物には、必要に応じて無機質充填材を配合することができる。本発明のエポキシ化合物及びエポキシ樹脂は溶融粘度が低い特徴を有することから、無機質充填剤の配合量を高めることが可能であり、このような硬化性組成物は特に半導体封止材料用途に好適に用いることが出来る。
 前記無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。中でも、無機質充填材をより多く配合することが可能となることから、前記溶融シリカが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ、硬化性組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は硬化性組成物100質量部中、0.5~95質量部の範囲で配合することが好ましい。
 この他、本発明の硬化性組成物を導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
 本発明の硬化性組成物をプリント配線基板用ワニスに調整する場合には、有機溶剤を配合することが好ましい。ここで使用し得る前記有機溶剤は、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40~80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分30~60質量%となる割合で使用することが好ましい。
 本発明の硬化性組成物は、上記した各成分を均一に混合することにより得られる。エポキシ樹成分、硬化剤、更に必要により硬化促進剤の配合された本発明の硬化性組成物は、従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物は、積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
 本発明のエポキシ化合物は溶融粘度が低く、硬化物における耐熱性及び難燃性に優れることから、各種電子材料用途に用いることが出来る。中でも、その溶融粘度の低さを活かし、特に半導体封止材料用途として好適に用いることが出来る。
 該半導体封止材料は、例えば、本発明のエポキシ化合物を含むエポキシ成分、硬化剤、及び充填材等の配合物を、押出機、ニーダー、ロール等を用いて均一になるまで十分に混合する方法により調整することが出来る。ここで用いる充填材は前記した無機充填材が挙げられ、前述の通り、硬化性組成物100質量部中、0.5~95質量部の範囲で用いることが好ましい。中でも、難燃性や耐湿性、耐半田クラック性が向上し、線膨張係数を低減できることから、70~95質量部の範囲で用いることが好ましく、80~95質量部の範囲で用いることが特に好ましい。
 得られた半導体封止材料を用いて半導体パッケージを成型する方法は、例えば、該半導体封止材料を注型或いはトランスファー成形機、射出成型機などを用いて成形し、更に50~200℃の温度条件下で2~10時間加熱する方法が挙げられ、このような方法により、成形物である半導体装置を得ることが出来る。
 また、本発明のエポキシ化合物を用いてプリント回路基板を製造するには、本発明のエポキシ化合物、硬化剤、有機溶剤、その他添加剤等を含むワニス状の硬化性組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性組成物を、用いた溶剤種に応じた加熱温度、好ましくは50~170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる硬化性組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~250℃で10分~3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。
 次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、150℃における溶融粘度及びGPC、NMR、MSスペクトルは以下の条件にて測定した。
溶融粘度測定法:ASTM D4287に準拠し、ICI粘度計にて測定した。
GPC:測定条件は以下の通り。
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
13C-NMR:測定条件は以下の通り。
装置:日本電子(株)製 AL-400
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
溶媒 :ジメチルスルホキシド
パルス角度:45°パルス
試料濃度 :30wt%
積算回数 :10000回
MS :日本電子株式会社製 二重収束型質量分析装置「AX505H(FD505H)」
実施例1 エポキシ樹脂(1)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、フェノール282質量部(3モル)、パラトルエンスルホン酸3質量部を仕込み、撹拌しながら室温から80℃まで昇温した。80℃に到達した後、パラベンゾキノン162質量部(1.5モル)を1時間要して添加し、その後更に130℃まで昇温し1時間攪拌して反応させた。反応終了後、減圧下乾燥し、フェノール中間体(1)250質量部を得た。得られたフェノール中間体のGPCチャートを図1、13CNMRスペクトルを図2、およびMSスペクトルを図3に示す。フェノール中間体(1)の水酸基当量は88g/当量であり、MSスペクトルから下記構造式(a-1)で表される化合物に相当する202のピーク、下記構造式(b-1)で表される化合物に相当する294のピーク、及び下記構造式(c-1)で表される化合物に相当する386のピークが検出された。
Figure JPOXMLDOC01-appb-C000059
 次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール中間体(1)88質量部(水酸基1.0当量)、エピクロルヒドリン463質量部(5.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止して下層に溜まった水層を除去し、攪拌を再開して150℃減圧下で未反応エピクロルヒドリンを留去した。得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解させた。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後、洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(1)140質量部を得た。得られたエポキシ樹脂(1)のGPCチャートを図4に示す。エポキシ樹脂(1)のエポキシ当量は160g/当量であり、GPCチャートから算出されるエポキシ樹脂中の下記構造式(A-1)で表される2核体化合物(x1)相当成分の含有量は29.7%、下記構造式(B-1)で表される3核体化合物(x2)相当成分の含有量は27.0%、下記構造式(C-1)で表される4核体化合物(x3)相当成分の含有量は9.7%であった。
Figure JPOXMLDOC01-appb-C000060
実施例2 エポキシ樹脂(2)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、オルソクレゾール649質量部(6.0モル)、パラベンゾキノン162質量部(1.5モル)、パラトルエンスルホン酸8質量部を仕込み、撹拌しながら室温から120℃まで昇温した。120℃に到達後、2時間攪拌した。反応終了後、析出した結晶物を渡別し、水200質量部で2回水洗した。その後加熱減圧条件下で乾燥してフェノール中間体(2)117質量部得た。得られたフェノール中間体(2)のGPCチャートを図5に、13CNMRスペクトルを図6、およびMSスペクトルを図7に示す。フェノール中間体(2)の水酸基当量は81g/当量であり、MSスペクトルから下記構造式(a-2)で表される化合物に相当する216のピーク、下記構造式(b-2)で表される化合物に相当する322のピーク、下記構造式(c-2)に相当する428のピークが検出された。
Figure JPOXMLDOC01-appb-C000061
 次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール中間体(2)81質量部(水酸基1.0当量)、エピクロルヒドリン463質量部(5.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止して層に溜まった水層を除去し、攪拌を再開して150℃減圧下で未反応エピクロルヒドリンを留去した。得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解させた。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後、洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧条件下で留去して目的のエポキシ樹脂(2)130質量部を得た。得られたエポキシ樹脂(2)のGPCチャートを図8に、13CNMRスペクトルを図9、およびMSスペクトルを図10に示す。エポキシ樹脂(2)のエポキシ当量は149g/当量であり、MSスペクトルから下記構造式(A-2)で表される2核体化合物(x1)に相当する384のピーク、下記構造式(B-2)で表される3核体化合物(x2)に相当する546のピーク、下記構造式(C-2)で表される4核体化合物(x3)に相当する708のピークが検出された。GPCチャートから算出されるエポキシ樹脂中の2核体化合物(x1)相当成分の含有量は4.1%、3核体化合物(x2)相当成分の含有量は70.7%、4核体化合物(x3)相当成分の含有量は3.5%であった。
Figure JPOXMLDOC01-appb-C000062
実施例3 エポキシ樹脂(3)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、オルソクレゾール649質量部(6.0モル)、パラトルエンスルホン酸3質量部を仕込み、撹拌しながら室温から80℃まで昇温した。80℃に到達した後、パラベンゾキノン162質量部(1.5モル)を1時間要して添加し、その後更に130℃まで昇温し1時間攪拌して反応させた。反応終了後、減圧下乾燥し、フェノール中間体(3)260質量部得た。得られたフェノール中間体(3)のGPCチャートを図11に示す。フェノール中間体(3)の水酸基当量は97g/当量であった。
 次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール中間体(3)97質量部(水酸基1.0当量)、エピクロルヒドリン463質量部(5.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止して層に溜まった水層を除去し、攪拌を再開して150℃減圧下で未反応エピクロルヒドリンを留去した。得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解させた。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後、洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧条件下で留去して目的のエポキシ樹脂(3)143質量部を得た。得られたエポキシ樹脂(3)のGPCチャートを図12に示す。エポキシ樹脂(3)のエポキシ当量は160g/当量であり、GPCチャートから算出されるエポキシ樹脂中の2核体化合物(x1)相当成分の含有量は19.4%、3核体化合物(x2)相当成分の含有量は35.2%、4核体化合物(x3)相当成分の含有量は8.0%であった。
実施例4 エポキシ樹脂(4)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,6-ジメチルフェノール733質量部(6.0モル)、パラベンゾキノン216質量部(2.0モル)、パラトルエンスルホン酸9質量部を仕込み、撹拌しながら室温から120℃まで昇温した。120℃に到達後、2時間攪拌した。反応終了後、析出した結晶物を渡別し、水200質量部で2回水洗した。その後加熱減圧条件下で乾燥してフェノール中間体(4)123質量部得た。得られたフェノール中間体(4)のGPCチャートを図13に、MSスペクトルを図14に示す。フェノール中間体(4)の水酸基当量は88g/当量であり、MSスペクトルから下記構造式(a-3)で表される化合物に相当する230のピーク、下記構造式(b-3)で表される化合物に相当する350のピーク、下記構造式(c-3)で表される化合物に相当する470のピークが検出された。
Figure JPOXMLDOC01-appb-C000063
 次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール中間体(4)88質量部(水酸基1.0当量)、エピクロルヒドリン463質量部(5.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止して層に溜まった水層を除去し、攪拌を再開して150℃減圧下で未反応エピクロルヒドリンを留去した。得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解させた。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後、洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧条件下で留去して目的のエポキシ樹脂(4)130質量部を得た。得られたエポキシ樹脂(4)のGPCチャートを図15に示す。エポキシ樹脂(4)のエポキシ当量は152g/当量であり、GPCチャートから算出されるエポキシ樹脂中の下記構造式(A-3)で表される2核体化合物(x1)相当成分の含有量は7.0%、下記構造式(B-3)で表される3核体化合物(x2)相当成分の含有量は74.3%、下記構造式(C-3)で表される4核体化合物(x3)相当成分の含有量は1.0%であった。
Figure JPOXMLDOC01-appb-C000064
実施例5 エポキシ樹脂(5)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7-ジヒドロキシナフタレン240質量部(1.5モル)、パラベンゾキノン162質量部(1.5モル)、イソプロピルアルコール268質量部、シュウ酸8質量部を仕込み、撹拌しながら室温から120℃まで昇温した。120℃に到達した後、2時間攪拌して反応させた。反応終了後、180℃まで加熱して減圧下乾燥し、フェノール中間体(5)359質量部を得た。得られたフェノール中間体のGPCチャートを図16に、13CNMRスペクトルを図17、およびMSスペクトルを図18に示す。フェノール中間体(5)の水酸基当量は68g/当量であり、MSスペクトルから下記構造式(a-4)で表される化合物に相当する268のピーク、下記構造式(b-4)で表される化合物に相当する426のピークが検出された。
Figure JPOXMLDOC01-appb-C000065
 次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール中間体(5)68質量部(水酸基1.0当量)、エピクロルヒドリン463質量部(5.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止して下層に溜まった水層を除去し、攪拌を再開して150℃減圧下で未反応エピクロルヒドリンを留去した。得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解させた。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後、洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(5)120質量部を得た。得られたエポキシ樹脂(5)のGPCチャートを図19に、13CNMRスペクトルを図20、およびMSスペクトルを図21に示す。エポキシ樹脂(5)のエポキシ当量は155g/当量であり、MSスペクトルから下記構造式(A-4)で表される2核体化合物(x1)に相当する492のピーク、下記構造式(B-4)で表される3核体化合物(x2)に相当する762のピークが検出された。GPCチャートから算出される2核体化合物(x1)相当成分の含有量は34.2%、3核体化合物(x2)相当成分の含有量は21.7%であった。
Figure JPOXMLDOC01-appb-C000066
実施例6 エポキシ樹脂(6)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7-ジヒドロキシナフタレン160質量部(1.0モル)、ナフトキノン158質量部(1.0モル)、メチルイソブチルケトン318質量部を仕込み、撹拌しながら室温から150℃まで昇温した。150℃に到達した後、3時間攪拌して反応させた。反応終了後、180℃まで加熱して減圧下乾燥し、フェノール中間体(6)300質量部を得た。得られたフェノール中間体のGPCチャートを図22に、MSスペクトルを図23に示す。に示す。フェノール中間体(6)の水酸基当量は101g/当量であり、MSスペクトルから下記構造式(a-5)で表される化合物に相当する318のピーク、下記構造式(d)で表される化合物に相当する300のピークが検出された。
Figure JPOXMLDOC01-appb-C000067
 次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール中間体(6)101質量部(水酸基1.0当量)、エピクロルヒドリン463質量部(5.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止して下層に溜まった水層を除去し、攪拌を再開して150℃減圧下で未反応エピクロルヒドリンを留去した。得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解させた。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後、洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(6)150質量部を得た。得られたエポキシ樹脂(6)のGPCチャートを図24に、MSスペクトルを図25に示す。エポキシ樹脂(6)のエポキシ当量は173g/当量であり、MSスペクトルから下記構造式(A-5)で表される2核体化合物(x1)に相当する542のピーク、下記構造式(D)で表される化合物に相当する412のピークが検出された。GPCチャートから算出される2核体化合物(x1)相当成分の含有量は27.0%、下記構造式(D)で表される化合物の含有量は4.2%であった。
Figure JPOXMLDOC01-appb-C000068
 実施例7~12及び比較例1
 先で得たエポキシ樹脂(1)~(6)について、下記の要領で各種評価試験を行った。比較対象サンプルとして、以下2種のエポキシ樹脂を用いた。
エポキシ樹脂(1’):トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製「EPPN-502H」エポキシ当量172g/当量)
<溶融粘度の測定>
 前記エポキシ樹脂(1)~(6)及び(1’)それぞれについて、ASTM D4287に準拠し150℃における溶融粘度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000069
<耐熱性の評価>
1)評価サンプルの作成
 前記エポキシ樹脂(1)~(6)、(1’)の何れかと、硬化剤としてフェノールノボラック型フェノール樹脂(DIC株式会社製「TD-2131」水酸基当量104g/当量)、硬化促進剤としてトリフェニルホスフィン(以下「TPP」と略記する。)を用い、下記表2に示す組成で配合して硬化性組成物を得た。これを11cm×9cm×2.4mmの型枠に流し込み、プレスで150℃の温度で10分間成型した後、型枠から成型物を取り出し、次いで、175℃の温度で5時間後硬化させて評価サンプルを得た。
2)ガラス転移温度の測定
 粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用い、前記評価サンプルについて弾性率変化が最大となる(tanδ変化率が最も大きい)温度を測定し、これをガラス転移温度として評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000070
<難燃性の評価>
1)評価サンプルの作成
 前記エポキシ樹脂(1)~(6)、(1’)の何れかと、硬化剤としてフェノールノボラック型フェノール樹脂(DIC株式会社製「TD-2131」水酸基当量104g/当量)、硬化促進剤としてトリフェニルホスフィン(以下「TPP」と略記する。)、無機充填材として球状シリカ(電気化学株式会社製「FB-5604」)、シランカップリング剤としてカップリング剤(信越化学株式会社製「KBM-403」)、カルナウバワックス(株式会社セラリカ野田製「PEARL WAX No.1-P」)、カーボンブラックを、下記表3に示す組成で配合し、2本ロールを用いて85℃の温度で5分間溶融混練して硬化性組成物を得た。得られた硬化性組成物を用い、トランスファー成形機にて幅12.7mm、長さ127mm、厚み1.6mm大のサンプルを175℃の温度で90秒成形した後、175℃の温度で5時間後硬化して評価用サンプルを得た。
2)難燃性の評価
 先で得た厚さ1.6mmの評価用サンプル5本を用い、UL-94試験法に準拠して燃焼試験を行った。結果を表3に示す。
難燃試験クラス
*1:1回の接炎における最大燃焼時間(秒)
*2:試験片5本の合計燃焼時間(秒)
Figure JPOXMLDOC01-appb-T000071

Claims (10)

  1. 下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中Gはグリシジル基を表し、Xは下記構造式(x1)又は(x2)
    Figure JPOXMLDOC01-appb-C000002

    {式(x1)又は(x2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、lは0~3の整数、nは0~4の整数である。lまたはnが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。また、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)又は(Ar2)
    Figure JPOXMLDOC01-appb-C000003

    (式(Ar1)又は(Ar2)中、Gはグリシジル基を表し、p及びrはそれぞれ1又は2である。R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、式(Ar2)中のRは2つの芳香核のうちどちらに結合していてもよく、qは0~4の整数、sは0~6の整数である。q又はsが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。)
    で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。}
    で表される構造部位である。]
    で表される分子構造を有することを特徴とするエポキシ化合物。
  2. 請求項1に記載のエポキシ化合物を含有するエポキシ樹脂。
  3. 分子構造中にキノン構造を有する化合物(Q)と分子構造中にフェノール性水酸基を有する化合物(P)を反応させてフェノール中間体を得、次いで、得られたフェノール中間体とエピハロヒドリンとを反応させることを特徴とするエポキシ樹脂の製造方法。
  4. 請求項3に記載の製造方法により製造されるエポキシ樹脂。
  5. エポキシ当量が125~300g/当量の範囲にある請求項2又は4に記載のエポキシ樹脂。
  6. 150℃における溶融粘度が0.1~4.0dPa・sの範囲である請求項2、4又は5に記載のエポキシ樹脂。
  7. 請求項1に記載のエポキシ化合物又は請求項2、4、5、6の何れか一つに記載のエポキシ樹脂と、硬化剤とを必須成分とする硬化性組成物。
  8. 請求項7に記載の硬化性組成物を硬化反応させてなる硬化物。
  9. 請求項7に記載の硬化性組成物に加え、更に無機充填剤を含有する半導体封止材料。
  10. 請求項7に記載の硬化性組成物に、更に有機溶剤を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板。
PCT/JP2014/054138 2013-06-14 2014-02-21 エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板 WO2014199660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157031325A KR102163493B1 (ko) 2013-06-14 2014-02-21 에폭시 화합물, 에폭시 수지, 경화성 조성물, 그 경화물, 반도체 봉지 재료, 및 프린트 배선 기판
CN201480033971.4A CN105308091B (zh) 2013-06-14 2014-02-21 环氧化合物、环氧树脂、固化性组合物、其固化物、半导体密封材料以及印刷电路基板
JP2014531437A JP5637419B1 (ja) 2013-06-14 2014-02-21 エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
US14/897,363 US10435382B2 (en) 2013-06-14 2014-02-21 Epoxy compound, epoxy resin, curable composition, cured product thereof, semiconductor sealing material, and printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-125564 2013-06-14
JP2013125564 2013-06-14

Publications (1)

Publication Number Publication Date
WO2014199660A1 true WO2014199660A1 (ja) 2014-12-18

Family

ID=52021968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054138 WO2014199660A1 (ja) 2013-06-14 2014-02-21 エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板

Country Status (6)

Country Link
US (1) US10435382B2 (ja)
JP (1) JP5637419B1 (ja)
KR (1) KR102163493B1 (ja)
CN (1) CN105308091B (ja)
TW (1) TWI603989B (ja)
WO (1) WO2014199660A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104214A1 (ja) * 2014-12-25 2016-06-30 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
JP2016117670A (ja) * 2014-12-19 2016-06-30 Dic株式会社 シアン酸エステル化合物、シアン酸エステル樹脂、シアン酸エステル化合物の製造方法、硬化性樹脂組成物、その硬化物、ビルドアップ用接着フィルム、半導体封止材料、プリプレグ、及び回路基板
JP2016121077A (ja) * 2014-12-24 2016-07-07 Dic株式会社 (メタ)アクリレート化合物、(メタ)アクリレート化合物の製造方法、ラジカル硬化性樹脂、ラジカル硬化性樹脂組成物、その硬化物、レジスト材料
JP2016121208A (ja) * 2014-12-24 2016-07-07 Dic株式会社 カルボキシル基含有感光性化合物、感光性樹脂、その硬化物、これらを用いたレジスト材料、及びカルボキシル基含有感光性化合物の製造方法
JP2017132704A (ja) * 2016-01-26 2017-08-03 日本化薬株式会社 エポキシ樹脂、およびその組成物
US10377734B2 (en) 2013-02-08 2019-08-13 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenol derivative for use in the composition
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679248B1 (ja) * 2013-06-26 2015-03-04 Dic株式会社 エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP6459473B2 (ja) * 2014-12-16 2019-01-30 Dic株式会社 カルボキシル基含有感光性化合物、感光性樹脂、その硬化物、これらを用いたレジスト材料、及びカルボキシル基含有感光性化合物の製造方法
JP6413740B2 (ja) * 2014-12-16 2018-10-31 Dic株式会社 ベンゾオキサジン化合物、ベンゾオキサジン樹脂、ベンゾオキサジン樹脂の製造方法、硬化性樹脂組成物、その硬化物、frp材料、半導体封止材料、ワニス、回路基板、プリプレグ、及びビルドアップフィルム
JP6410097B2 (ja) * 2014-12-17 2018-10-24 Dic株式会社 ベンゾオキサジン化合物、ベンゾオキサジン樹脂、ベンゾオキサジン樹脂の製造方法、硬化性樹脂組成物、その硬化物、frp材料、半導体封止材料、ワニス、回路基板、プリプレグ、及びビルドアップフィルム
JP6992932B2 (ja) * 2019-10-25 2022-02-03 Dic株式会社 多官能フェノール樹脂、多官能エポキシ樹脂、それらを含む硬化性樹脂組成物及びその硬化物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089644A (ja) * 1999-09-22 2001-04-03 Dainippon Ink & Chem Inc 多層プリント配線板用層間電気絶縁材料
JP2009209117A (ja) * 2008-03-06 2009-09-17 Kawasaki Kasei Chem Ltd エポキシ化合物、及びその製造方法ならびにエポキシ樹脂組成物、及びその硬化体
JP2013023612A (ja) * 2011-07-22 2013-02-04 Dic Corp ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料
JP2013023613A (ja) * 2011-07-22 2013-02-04 Dic Corp ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU647314A1 (ru) * 1977-06-22 1979-02-15 Сумгаитский Филиал Ордена Трудового Красного Знамени Института Нефтехимических Процессов Им. Академика Ю.Г.Мамедалиева Сополимер -бензохинона с эпоксидиановой смолой как св зующее дл термостойких высокоадгезивных материалов,покрытий,клеев
JP2004256680A (ja) * 2003-02-26 2004-09-16 Dainippon Ink & Chem Inc 粉体塗料用エポキシ樹脂組成物
JP2004339371A (ja) 2003-05-15 2004-12-02 Nippon Kayaku Co Ltd エポキシ樹脂組成物、及びその硬化物
JP2005294218A (ja) * 2004-04-05 2005-10-20 Toyota Motor Corp 固体高分子電解質、固体高分子電解質膜、及び燃料電池
JP2007308640A (ja) * 2006-05-19 2007-11-29 Kyocera Chemical Corp 積層板用樹脂組成物、有機基材プリプレグ、金属張積層板およびプリント配線板
JP5540494B2 (ja) * 2008-10-30 2014-07-02 日立化成株式会社 熱硬化性樹脂組成物、及びこれを用いたプリプレグ,積層板及びプリント配線板
JP2013108067A (ja) * 2011-10-25 2013-06-06 Hitachi Chemical Co Ltd 相溶化樹脂の製造方法、相溶化樹脂、熱硬化性樹脂組成物、プリプレグ及び積層板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089644A (ja) * 1999-09-22 2001-04-03 Dainippon Ink & Chem Inc 多層プリント配線板用層間電気絶縁材料
JP2009209117A (ja) * 2008-03-06 2009-09-17 Kawasaki Kasei Chem Ltd エポキシ化合物、及びその製造方法ならびにエポキシ樹脂組成物、及びその硬化体
JP2013023612A (ja) * 2011-07-22 2013-02-04 Dic Corp ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料
JP2013023613A (ja) * 2011-07-22 2013-02-04 Dic Corp ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HANS BROCKMANN ET AL.: "Regioselektive Synthesen von 3,3'-Bijuglon, Mamegakinon, Dianellinon, cyclo-Trijuglon, Xylospyrin und Trianellinon durch Phenol/Chinon -Addition", LIEBIGS ANN. CHEM., vol. 3, 1983, pages 433 - 447 *
MADHUSHREE DAS SARMA ET AL.: "Synthesis and antiproliferative activity of some novel derivatives of diospyrin, a plant-derived naphthoquinonoid", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 15, 2007, pages 3672 - 3677, XP022047551, DOI: doi:10.1016/j.bmc.2007.03.022 *
RUDOLF PUMMERER ET AL.: "Die Kondensation von Chinonen mit Phenolen. (3. Mitteilung uber Diarylchinone", BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT (A AND B SERIES, vol. 60, 1927, pages 1442 - 1451, XP001068313 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377734B2 (en) 2013-02-08 2019-08-13 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenol derivative for use in the composition
JP2016117670A (ja) * 2014-12-19 2016-06-30 Dic株式会社 シアン酸エステル化合物、シアン酸エステル樹脂、シアン酸エステル化合物の製造方法、硬化性樹脂組成物、その硬化物、ビルドアップ用接着フィルム、半導体封止材料、プリプレグ、及び回路基板
JP2016121077A (ja) * 2014-12-24 2016-07-07 Dic株式会社 (メタ)アクリレート化合物、(メタ)アクリレート化合物の製造方法、ラジカル硬化性樹脂、ラジカル硬化性樹脂組成物、その硬化物、レジスト材料
JP2016121208A (ja) * 2014-12-24 2016-07-07 Dic株式会社 カルボキシル基含有感光性化合物、感光性樹脂、その硬化物、これらを用いたレジスト材料、及びカルボキシル基含有感光性化合物の製造方法
JPWO2016104214A1 (ja) * 2014-12-25 2017-10-05 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
CN107108549A (zh) * 2014-12-25 2017-08-29 三菱瓦斯化学株式会社 化合物、树脂、光刻用基底膜形成材料、光刻用基底膜、图案形成方法和纯化方法
JP7026439B2 (ja) 2014-12-25 2022-02-28 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
US20170349564A1 (en) 2014-12-25 2017-12-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US10745372B2 (en) 2014-12-25 2020-08-18 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
WO2016104214A1 (ja) * 2014-12-25 2016-06-30 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11572430B2 (en) 2015-09-10 2023-02-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
JP2017132704A (ja) * 2016-01-26 2017-08-03 日本化薬株式会社 エポキシ樹脂、およびその組成物

Also Published As

Publication number Publication date
CN105308091A (zh) 2016-02-03
TWI603989B (zh) 2017-11-01
CN105308091B (zh) 2017-02-01
US20160130243A1 (en) 2016-05-12
JP5637419B1 (ja) 2014-12-10
JPWO2014199660A1 (ja) 2017-02-23
US10435382B2 (en) 2019-10-08
KR102163493B1 (ko) 2020-10-08
TW201446825A (zh) 2014-12-16
KR20160021085A (ko) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5637419B1 (ja) エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5245199B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP5664817B2 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5136729B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5682805B1 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5692471B1 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5679248B1 (ja) エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP6900949B2 (ja) エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP5682804B1 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP6403003B2 (ja) シアン酸エステル化合物、シアン酸エステル樹脂、硬化性組成物、その硬化物、ビルドアップフィルム、半導体封止材料、プリプレグ、回路基板、及びシアン酸エステル樹脂の製造方法
JP5024604B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂及びその製造方法
JP5035604B2 (ja) エポキシ樹脂組成物、その硬化物、および新規エポキシ樹脂
JP6750427B2 (ja) 多官能エポキシ樹脂、その製造方法、硬化性樹脂組成物及びその硬化物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033971.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014531437

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031325

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897363

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811057

Country of ref document: EP

Kind code of ref document: A1