WO2014199473A1 - Resin composition, and method for manufacturing insulated electric wire using same - Google Patents

Resin composition, and method for manufacturing insulated electric wire using same Download PDF

Info

Publication number
WO2014199473A1
WO2014199473A1 PCT/JP2013/066267 JP2013066267W WO2014199473A1 WO 2014199473 A1 WO2014199473 A1 WO 2014199473A1 JP 2013066267 W JP2013066267 W JP 2013066267W WO 2014199473 A1 WO2014199473 A1 WO 2014199473A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
oligomer
polymer
thermosetting
molecular weight
Prior art date
Application number
PCT/JP2013/066267
Other languages
French (fr)
Japanese (ja)
Inventor
新太郎 武田
悟 天羽
唯 新井
康太郎 荒谷
小林 稔幸
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/066267 priority Critical patent/WO2014199473A1/en
Priority to JP2015522333A priority patent/JP6006873B2/en
Publication of WO2014199473A1 publication Critical patent/WO2014199473A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers

Definitions

  • the present invention relates to a resin composition and a method of manufacturing an insulated wire using the same.
  • the insulated wire used as a winding of a rotating electrical machine is required to have heat resistance that can cope with an increase in the amount of heat generation associated with downsizing and high output.
  • an enameled wire obtained by applying and baking a varnish obtained by dissolving an insulating resin in a solvent is mainly used.
  • an enameled wire manufactured by applying and baking a polyimide varnish belongs to a heat resistance category equivalent to Class H or more, and has heat resistance that can withstand a long-term high temperature environment.
  • thermoplastic resin as an insulating resin for forming an insulating film and manufacturing without using a solvent by extrusion molding is effective in reducing the environmental load. It is believed that.
  • thermoplastic resin for forming the insulating film a crystalline resin having a clear melting point is generally used.
  • the fluidity of the resin is secured by heating to a temperature higher than the glass transition temperature, and extrusion molding is performed. There is a need to do. At this time, by adding a plasticizer or alloying a resin having a lower glass transition temperature, the glass transition temperature of the non-crystalline resin can be lowered to improve the extrusion moldability of the non-crystalline resin. desired.
  • Patent Document 1 discloses a non-halogen flame retardant resin composition capable of satisfying flame retardancy, tensile properties at high temperature, and heat deformation resistance, and a polyphenylene ether system as a technique for providing an insulated wire and a flat cable using the same.
  • a flame retardant resin composition containing 1 to 20 parts by mass is disclosed.
  • Patent Document 2 is a resin composition excellent in mechanical physical properties, dimensional stability, heat resistance, flame retardance, etc., and particularly excellent in high temperature physical properties, materials for substrates, sheets, laminates, copper foil with resin,
  • the average linear expansion coefficient ( ⁇ 2) from a temperature 10 ° C. higher than the glass transition temperature of the resin composition to a temperature 50 ° C. higher than the glass transition temperature of the resin composition is 3.0 ⁇ 10 ⁇ 3 [
  • a resin composition having a temperature of not more than ° C -1 ] is disclosed.
  • the resin composition disclosed in Patent Document 1 contains a styrenic thermoplastic elastomer, and this styrenic thermoplastic elastomer is considered to be useful for improving the tensile elongation at break (see [0023]).
  • a resin with a lower glass transition temperature such as a styrenic thermoplastic elastomer is added to the resin for forming a film to improve mechanical properties, the heat resistance (long-term heat resistance life) of the insulated wire is reduced.
  • the method of adding a plasticizer is known as a means to improve the mechanical characteristic of resin, the heat resistance of an insulated wire also falls with a plasticizer.
  • plasticizers have relatively low molecular weight and volatilize when the insulated wire is used for a long period of time, and the effect thereof can not be obtained, so it is not suitable for improving long-term characteristics.
  • an oligomer exemplified as a maleic anhydride-modified polyethylene oligomer may be blended in a resin composition (see [0114] and [0117]).
  • the glass transition temperature also tends to decrease, and therefore, it is considered that the formability of extrusion molding is improved by adding a low molecular weight polymer such as an oligomer of the noncrystalline resin.
  • the object of the present invention is to easily extrude a resin composition having good extrusion formability capable of forming a film of an insulated wire excellent in heat resistance and toughness, and an insulated wire excellent in heat resistance and toughness. It is to provide a method of manufacturing.
  • a resin composition according to the present invention comprises a non-crystalline polymer, an oligomer formed by polymerizing a monomer of the same type as a monomer constituting the polymer, and a thermosetting molecule.
  • the average molecular weight of the oligomer is one tenth or less of the average molecular weight of the polymer.
  • the manufacturing method of the insulated wire which concerns on this invention is characterized by including the process of preparing the said resin composition, and the process of fuse
  • a resin composition having good extrusion formability capable of forming a film of an insulated wire excellent in heat resistance and toughness, and an insulated wire excellent in heat resistance and toughness can be easily extruded and manufactured.
  • FIG. 7 is a schematic cross-sectional view of the insulated wire according to the second embodiment.
  • the resin composition according to the present embodiment mainly comprises a noncrystalline polymer, an oligomer and a thermosetting molecule.
  • the resin composition which concerns on this embodiment is a resin composition used for formation of the insulating film with which an insulated wire is equipped.
  • the insulating film formed of this resin composition is excellent in heat resistance and can exhibit a long heat resistance life. Moreover, it is excellent in the toughness with respect to a bending, and adhesiveness with the core wire of an insulated wire.
  • this resin composition has the characteristics that the moldability in the extrusion molding performed by melting a resin composition is favorable.
  • the non-crystalline polymer according to the present embodiment is a polymer of a type classified into a thermoplastic non-crystalline resin, has insulating properties, and has excellent heat resistance.
  • the non-crystalline polymer is a thermoplastic resin, for example, a resin which exhibits a broad endothermic peak shape and does not show a clear melting point in a DSC curve obtained by analysis by differential scanning calorimetry.
  • the non-crystalline polymer is a main component of the resin composition according to the present embodiment, and constitutes a base polymer.
  • the heat resistance possessed by the non-crystalline polymer according to the present embodiment is preferably heat resistance which belongs to H class or more equivalent in the heat resistance classification of insulation type and can exhibit a long heat resistance life. More specifically, the heat resistance index is preferably 180 ° C. or more.
  • the heat resistance index refers to kinetic analysis of decomposition reaction by Ozawa method (Taku Ozawa, "non-isothermal kinetic (1) case of single element process", heat measurement, The Japan Thermometer Society) , No. 3, pp. 125-132), and the index is calculated based on thermal analysis of the resin, and the resin composition is maintained at a constant temperature It means the holding temperature which requires 20,000 hours to reduce the weight by 5% by mass.
  • a method of thermal analysis there is a method (Friedman-Ozawa method) of scanning at a plurality of temperature rising rates and measuring the temperature when the weight decreases by 5% by mass.
  • the activation energy of the decomposition reaction of the insulating resin involved in the weight reduction is plotted by plotting the temperature when the measured weight decreases by a predetermined amount (for example, 5% by mass) with respect to each heating rate.
  • a predetermined amount for example, 5% by mass
  • the activation energy of the decomposition reaction of the insulating resin involved in the weight reduction is derived by plotting the time until the measured weight decreases (for example, 5% by mass) for each holding temperature. be able to.
  • the heat resistance index can be calculated from the value of activation energy derived by any of these methods.
  • non-crystalline polymer As the non-crystalline polymer according to the present embodiment, a so-called super engineering plastic is used.
  • super engineering plastic means a plastic having heat resistance that can be used for a long time in an environment at 150 ° C. or higher.
  • Specific examples of the non-crystalline polymer according to this embodiment include polyphenylene ether, polyamide imide, polyether imide, polyether sulfone, polysulfone, polyarylate and the like.
  • the molecular weight of the non-crystalline polymer according to the present embodiment should be an appropriate value according to the resin type of the non-crystalline polymer, the formability in the production of the insulated wire, the mechanical properties of the insulating film to be produced, etc. Can.
  • the number average molecular weight of the non-crystalline polymer according to the present embodiment is usually about 5,000 or more and 200,000 or less.
  • the polymerization degree of the non-crystalline polymer according to the present embodiment is not particularly limited, and the number average polymerization degree corresponding to the above-mentioned number average molecular weight is determined according to the resin type of the non-crystalline polymer. It can be possessed.
  • the polymer according to the present embodiment may be a homopolymer obtained by polymerizing one kind of monomer or a copolymer obtained by polymerizing plural kinds of monomers.
  • the copolymerization may be any polymerization form of random polymerization, block polymerization and graft polymerization as long as the formability is not impaired.
  • the oligomer according to the present embodiment is a polymer formed by polymerizing the same kind of monomer as that constituting the non-crystalline polymer. Therefore, this oligomer, like the non-crystalline polymer described above, has insulating properties and excellent heat resistance.
  • the resin composition according to the present embodiment becomes a resin composition that exhibits a low glass transition temperature as compared to the glass transition temperature of the base polymer alone that constitutes the resin composition. Therefore, the moldability in extrusion molding performed by melting the resin composition is good.
  • an oligomer is a polymer which has the same kind of polymerization form, when a non-crystalline polymer is a copolymer.
  • the number average molecular weight of the oligomer according to this embodiment is 1/10 or less, preferably 1/40 to 1/10, more preferably 1/20 of the number average molecular weight of the non-crystalline polymer described above. More than one tenth.
  • the glass transition temperature of the resin composition can be effectively reduced when the number average molecular weight of the oligomer is one tenth or less of the average molecular weight of the non-crystalline polymer that is the main component of the resin composition it can.
  • the number average molecular weight of the oligomer is too small, the viscosity of the melted resin composition is low and the moldability may be deteriorated. Moreover, there is a possibility that the toughness of the insulated wire can not be secured.
  • the degree of polymerization of the oligomer according to the present embodiment is not particularly limited, and may have a number average degree of polymerization corresponding to the above-described number average molecular weight according to the resin type of the oligomer.
  • the term "oligomer” means having a relatively low degree of polymerization relative to the non-crystalline polymer.
  • thermosetting molecule which concerns on this embodiment is a polymer which has the reactive group which carries out a thermosetting reaction in the both ends of a principal chain.
  • a thermosetting reaction means the crosslinking reaction between molecules which hardens a resin composition by heating.
  • the resin composition according to the present embodiment by including such a thermosetting molecule, generates a polymer having a molecular weight or polymerization degree increased by a thermosetting reaction, and is an insulated wire excellent in toughness against bending. A film can be formed.
  • thermosetting molecules polymers classified into epoxy resin, phenol resin, polyimide, polyurethane, unsaturated polyester, urea resin, melamine resin and the like can be used.
  • epoxy resin amides such as dicyandiamide, amines such as diaminodiphenyl sulfone, acid anhydrides, etc., in the phenol resin, hexamethylenetetramine, etc., in unsaturated polyester, benzoyl peroxide, etc. in unsaturated polyester, ammonium in urea resin.
  • a curing agent such as salt is used in combination.
  • the curing agent to be used may be substantially reactive equivalent with respect to the reactive group which undergoes a thermosetting reaction.
  • thermosetting molecule which concerns on this embodiment, the epoxy resin which is excellent in heat resistance is preferable.
  • the epoxy resin undergoes a thermosetting reaction with these, and an insulated wire excellent in toughness can be obtained.
  • a thermosetting molecule that undergoes a thermosetting reaction with a noncrystalline polymer or oligomer as described above it may be approximately equivalent to the total amount of reactive groups contained in the noncrystalline polymer or oligomer.
  • the modified product of an oligomer means an oligomer to which a thermosetting reactivity is imparted by substituting or adding a reactive group which undergoes a thermosetting reaction at both ends of the main chain.
  • the modified product of the oligomer include an epoxy modified product having an epoxy group, a styrene modified product having a vinylbenzyl group, an isocyanate modified product having an isocyanate group, and the like.
  • an amide such as dicyandiamide, an amine such as diaminodiphenyl sulfone, an acid anhydride, etc.
  • a curing agent such as an unsaturated imide such as a bismaleimide compound
  • the curing agent to be used may be substantially reactive equivalent with respect to the reactive group which undergoes a thermosetting reaction.
  • the number average molecular weight of the thermosetting molecule according to this embodiment is 1/10 or less, preferably 1/40 to 1/10, more preferably 20 or less of the number average molecular weight of the non-crystalline polymer described above. It is preferable to set it as 1/10 or more and 1/10 or less.
  • the number average molecular weight of the thermosetting molecule is 1/10 or less of the average molecular weight of the non-crystalline polymer which is the main component of the resin composition. And the glass transition temperature of the resin composition can be effectively reduced.
  • the total content of the oligomer and the thermosetting molecule is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the polymer.
  • the glass transition temperature of a resin composition can be effectively reduced as total content of an oligomer and a thermosetting molecule is 10 mass parts or more.
  • the total content of the oligomer and the thermosetting molecule is 100 parts by mass or less, there is no possibility that the viscosity of the resin composition is excessively reduced.
  • the method for producing an insulated wire according to the present embodiment is a method carried out according to a general method for producing an insulated wire by extrusion molding, and in particular, the step of preparing a resin composition, and coating the resin composition on a conductor And heating the resin composition to thermally cure the resin composition.
  • the insulated wire manufactured by this method comprises at least a conductor and an insulating film formed of the resin composition, but the insulating film is only a single layer formed of the resin composition according to the present embodiment.
  • the present invention is not limited to this, and may have a structure in which a plurality of layers are stacked.
  • the polymer comprises an amorphous polymer, an oligomer formed by polymerizing a monomer of the same kind as the monomer constituting the polymer, and a thermosetting molecule, and the average molecular weight of the oligomer is a polymer
  • a resin composition is prepared which is not more than one tenth of the average molecular weight of The molecules contained in these resin compositions can be prepared according to conventional methods and are commercially available.
  • polyphenylene ether suitable as a non-crystalline polymer and its oligomers are 2,6-dimethyl-1,4-phenylene ether, 2,6-diethyl-1,4-phenylene ether, 2,6-dipropyl-1, It can be prepared by the oxidative coupling reaction of monomer units such as 4-phenylene ether and 2-methyl-6-ethyl-1,4-phenylene ether.
  • polyphenylene ether is a resin which is excellent in heat resistance but inferior in moldability, the resin composition to be prepared is excellent in moldability at the time of coating a conductor.
  • the conductor is a copper wire, an aluminum wire, an alloy wire thereof, or the like which forms the core wire of the insulated wire.
  • the copper wire may be made of any of tough pitch copper, oxygen free copper and deoxidized copper, and may be any of soft copper wire and hard copper wire.
  • the plating copper wire by which tin, nickel, silver, aluminum, etc. were plated on the surface may be sufficient.
  • As the aluminum wire, hard aluminum wire, semi-hard aluminum wire or the like is used.
  • alloy wire for example, copper-tin alloy, copper-silver alloy, copper-zinc alloy, copper-chromium alloy, copper-zirconium alloy, aluminum-copper alloy, aluminum-silver alloy, aluminum-zinc alloy, aluminum -Iron alloy, aluminum alloy (Aldrey Aluminum), etc.
  • the shape of the conductor may be either a round wire or a flat wire, or may be a single wire or a stranded wire.
  • the step of coating the resin composition on the conductor is performed using an extruder such as a crosshead die having a die according to the desired wire shape.
  • the resin composition prepared in advance is charged into the hopper of such an extrusion molding machine in a pelletized state or the like, is supplied to a cylinder, is a temperature above the glass transition temperature, and does not proceed with a thermosetting reaction. It is heated to a temperature and brought into a molten state.
  • molding at a lower melting temperature than usual can be performed by using the resin composition according to the present embodiment in which the glass transition temperature is lowered. Thereafter, the heated and melted resin composition is supplied to the crosshead while being kneaded by a screw provided in a cylinder.
  • each composition component is melted and kneaded in a cylinder to prepare a resin composition, which is supplied to the crosshead.
  • a conductor core wire is passed through the crosshead.
  • the conductor core wire is obtained by wire drawing which is gradually drawn down to a predetermined wire diameter by passing the die. It is preferable to improve adhesion by roughening the surface of the conductor core wire in advance or chemically modifying the surface with a coupling agent or the like.
  • the outer periphery of the conductor core is coated with the molten resin composition to form an insulating film. Thereafter, the conductor core coated with the resin composition passes through the sizer and is cooled by the water layer or the like to be an insulated wire.
  • the insulated wire is heat-treated by an electric furnace or the like after the coating with the resin composition. In this step, a thermosetting reaction involving a thermosetting molecule contained in the resin composition proceeds, the insulating coating is thermally cured, and an insulated wire excellent in toughness against bending is produced.
  • the application of the insulated wire according to the present embodiment is not particularly limited, for example, it is wound on a stator core of a rotating electrical machine provided in household electric appliances, industrial electric appliances, ships, railways, electric vehicles, etc. It can be used as a wound wire.
  • Example 1 The resin composition according to Example 1 was produced and subjected to thermal analysis.
  • poly (2,6-dimethyl-1,4-phenylene oxide) manufactured by Sigma-Aldrich
  • chemical formula 1 having a number average molecular weight of about 20000, a number average molecular weight as an oligomer Is a polyphenylene ether “OPE 2000” (made by Mitsubishi Gas Chemical Co., Ltd.) (chemical formula 2) having a value of about 2000, and as a thermosetting molecule, a polyphenylene ether “OPE2st” (made by Mitsubishi Gas Chemical Co., Ltd.) in which styrene is modified at both ends
  • BMI-5000 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide
  • the film of the produced resin composition was scanned at a plurality of temperature rising rates, and the temperature when the weight decreased by 5% by mass was measured.
  • the activation energy of the thermal decomposition reaction is calculated by plotting the temperature at which the measured weight decreases by 5% by mass for each heating rate, and the weight of 5% by mass decreases by 20,000 hours.
  • the heat resistance index was determined as the temperature required to Further, the produced resin composition film was subjected to differential scanning calorimetry (DSC) to measure the glass transition temperature.
  • DSC differential scanning calorimetry
  • the heat resistance index of the resin composition according to the comparative example in which only the non-crystalline polymer is contained alone is about 228 ° C., and the glass transition temperature is about 210 ° C.
  • the resin composition which concerns on Example 1 compared with the resin composition which concerns on a comparative example, it is recognized that the glass transition temperature is falling large, suppressing the fall of a heat resistance index small. Therefore, it was confirmed that the resin composition which concerns on Example 1 is a resin composition with favorable extrusion moldability which can form the film of the insulated wire excellent in heat resistance.
  • the insulated wire was manufactured using the resin composition concerning Example 1, and the toughness was evaluated.
  • the resin composition was extruded on a copper round wire of 1 mm in diameter while melting and kneading at 185 ° C.
  • the film thickness of the film was 100 ⁇ m.
  • the formed round wire was wound, heated at 200 ° C. for 1 hour, and thermally cured to obtain an insulated wire according to Example 1.
  • FIG. 1 is a schematic cross-sectional view of the insulated wire according to the first embodiment.
  • the manufactured insulated wire 1 has a structure in which the outer periphery of a copper conductor 10 having a circular cross section is covered with an insulating film formed of a resin composition 20.
  • the toughness of the insulated wire 1 is formed by winding the insulated wire 1 having a predetermined length, and visually checking whether cracking of the film or peeling from the copper wire is generated with respect to bending at this time. Evaluated by. As a result, cracking and peeling were not confirmed, and it was confirmed that the insulated wire according to Example 1 is excellent in toughness against bending.
  • Example 2 The resin composition according to Example 2 was produced and subjected to thermal analysis.
  • a non-crystalline polymer poly (2,6-dimethyl-1,4-phenylene oxide) (manufactured by Sigma-Aldrich) having a number average molecular weight of about 20000, and as an oligomer, a number average molecular weight of about 1000
  • OPE 1000 polyphenylene ether
  • thermosetting molecule an epoxy-modified polyphenylene ether (Chemical formula 5) in which both ends were epoxidized was used respectively.
  • the epoxy-modified product was prepared by the following procedure. First, 5.0 g of polyphenylene ether "OPE 1000" (manufactured by Mitsubishi Gas Chemical Co., Ltd.) is dissolved in 50 mL of toluene (manufactured by Tokyo Chemical Industry Co., Ltd.), and 13.0 g of epichlorohydrin (manufactured by Sigma-Aldrich) is added thereto. , Heated at an external temperature of 100 ° C. Subsequently, 4.5 g of sodium ethoxide (20% ethanol solution) (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added, and the reaction was performed with stirring at an external temperature of 100 ° C. for 5 hours.
  • OPE 1000 polyphenylene ether
  • toluene manufactured by Tokyo Chemical Industry Co., Ltd.
  • epichlorohydrin manufactured by Sigma-Aldrich
  • reaction solution was cooled, washed three times with 0.1 N aqueous hydrochloric acid solution and three times with distilled water, filtered, and the filtrate was concentrated to obtain an epoxy-modified product.
  • residue of filtration is azeotroped twice with toluene, then dissolved in toluene and filtered, and the filtrate is concentrated to obtain an epoxy-modified product, which is combined with that obtained from the filtrate.
  • the heat resistance index and the glass transition temperature were determined.
  • the heat resistance index of the resin composition according to Example 2 was about 198 ° C.
  • the glass transition temperature was about 160 ° C.
  • the heat resistance index of the resin composition according to the comparative example in which only the non-crystalline polymer is contained alone is about 228 ° C., and the glass transition temperature is about 210 ° C.
  • the resin composition which concerns on Example 2 compared with the resin composition which concerns on a comparative example, it is recognized that the glass transition temperature is falling large, suppressing the fall of a heat resistance index small. Therefore, it was confirmed that the resin composition which concerns on Example 2 is a resin composition with a favorable extrusion moldability which can form the film of the insulated wire excellent in heat resistance.
  • an insulated wire was manufactured using the resin composition according to Example 2, and its toughness was evaluated.
  • the resin composition was extruded on a 1 mm ⁇ 2 mm rectangular flat line while melting and kneading at 180 ° C.
  • the film thickness of the film was 100 ⁇ m.
  • the molded round wire was wound, heated at 200 ° C. for 1 hour, and thermally cured to obtain an insulated wire according to Example 2.
  • FIG. 2 is a schematic cross-sectional view of the insulated wire according to the second embodiment.
  • the manufactured insulated wire 2 has a structure in which the outer periphery of a copper conductor 10 having a rectangular cross section is covered with an insulating film formed of a resin composition 20.
  • the toughness of the insulated wire 2 is formed by winding the insulated wire 2 of a predetermined length, and visually checking whether cracking of the film or peeling from the copper wire has occurred with respect to bending at this time. Evaluated by. As a result, no cracking or peeling was confirmed, and it was confirmed that the insulated wire according to Example 2 is excellent in toughness against bending.
  • Example 3 The resin composition according to Example 3 was produced and subjected to thermal analysis.
  • poly (2,6-dimethyl-1,4-phenylene oxide) (Sigma-Aldrich) having a number average molecular weight of about 20000, and as a number average molecular weight of about 2000 as an oligomer
  • polyphenylene ether "OPE 2000” (made by Mitsubishi Gas Chemical Co., Ltd.)
  • a thermosetting molecule bisphenol A epoxy resin "JER 1004" (made by Mitsubishi Chemical Co., Ltd.) having a number average molecular weight of about 1650 was used respectively.
  • oligomer and thermosetting molecule of hydroxyl equivalent of polymer and oligomer are added to 100 parts by mass of non-crystalline polymer, and then 5 parts by mass of dicyandiamide as a polymerization catalyst of epoxy resin is added These were dissolved in hot toluene. Then, the obtained solution was cast, and toluene was evaporated to prepare a resin composition according to Example 3 in the form of a film.
  • the heat resistance index and the glass transition temperature were determined.
  • the heat resistance index of the resin composition according to Example 3 was about 180 ° C.
  • the glass transition temperature was about 170 ° C.
  • the heat resistance index of the resin composition according to the comparative example in which only the non-crystalline polymer is contained alone is about 228 ° C., and the glass transition temperature is about 210 ° C.
  • the resin composition which concerns on Example 3 compared with the resin composition which concerns on a comparative example, it is recognized that the glass transition temperature is falling large, suppressing the fall of a heat resistance index small. Therefore, it was confirmed that the resin composition which concerns on Example 3 is a resin composition with favorable extrusion moldability which can form the film of the insulated wire excellent in heat resistance.
  • an insulated wire was manufactured using the resin composition according to Example 3, and its toughness was evaluated.
  • the resin composition was extruded while being melted and kneaded at 170 ° C. on an aluminum round wire having a diameter of 100 ⁇ m.
  • the film thickness of the film was 100 ⁇ m.
  • the molded round wire was wound, heated at 220 ° C. for 1 hour, and thermally cured to obtain an insulated wire according to Example 3.
  • the toughness of the obtained insulated wire is obtained by winding the insulated wire of a predetermined length and visually checking whether cracking of the film or peeling from the copper wire has occurred in bending at this time. Evaluated by. As a result, cracking and peeling were not confirmed, and it was confirmed that the insulated wire manufactured using the resin composition according to Example 3 is excellent in toughness against bending.

Abstract

A resin composition comprises a non-crystalline polymer, an oligomer produced by polymerizing a monomer that is of the same type as a monomer constituting the polymer, and a heat-curable molecule, wherein the average molecular weight of the oligomer is equal to or smaller than 1/10 of the average molecular weight of the polymer.

Description

樹脂組成物及びそれを用いた絶縁電線の製造方法Resin composition and method of manufacturing insulated wire using the same
 本発明は、樹脂組成物及びそれを用いた絶縁電線の製造方法に関する。 The present invention relates to a resin composition and a method of manufacturing an insulated wire using the same.
 現在、家庭用電気機器、産業用電気機器、船舶、鉄道、電気自動車等に用いられる駆動用モータ等の回転電機のさらなる小型化や高出力化が進められている。
 そのため、回転電機の巻線として用いられる絶縁電線には、小型化、高出力化に伴う発熱量の増大に対応し得る耐熱性が要求されている。
At present, further miniaturization and higher output of rotary electric machines such as drive motors used for household electric appliances, industrial electric appliances, ships, railways, electric vehicles and the like are being promoted.
Therefore, the insulated wire used as a winding of a rotating electrical machine is required to have heat resistance that can cope with an increase in the amount of heat generation associated with downsizing and high output.
 従来、回転電機の巻線としては、絶縁樹脂を溶剤に溶解したワニスを塗布及び焼付したエナメル線が主に用いられている。例えば、ポリイミドワニスを塗布及び焼付して製造されるエナメル線は、H種相当以上の耐熱区分に属し、長期の高温環境に耐える耐熱性を有している。
 しかしながら、このようなエナメル線において所定の膜厚の絶縁皮膜を形成するには、ワニスの塗布及び焼付の工程を多数回繰り返す必要があり、ワニスに含まれる溶剤が工程毎に廃棄物として発生するという問題を抱えている。
 そこで、絶縁電線を製造する方法としては、絶縁被膜を形成する絶縁樹脂として熱可塑性樹脂を採用し、押出成形によって溶剤を使用することなく製造する方法が、環境負荷を低減する上で有効であると考えられている。
Conventionally, as a winding of a rotating electrical machine, an enameled wire obtained by applying and baking a varnish obtained by dissolving an insulating resin in a solvent is mainly used. For example, an enameled wire manufactured by applying and baking a polyimide varnish belongs to a heat resistance category equivalent to Class H or more, and has heat resistance that can withstand a long-term high temperature environment.
However, in order to form an insulating film having a predetermined film thickness in such an enameled wire, it is necessary to repeat the steps of applying and baking the varnish many times, and the solvent contained in the varnish is generated as waste in each step. Have the problem of
Therefore, as a method of manufacturing an insulated wire, a method of using a thermoplastic resin as an insulating resin for forming an insulating film and manufacturing without using a solvent by extrusion molding is effective in reducing the environmental load. It is believed that.
 押出成形では、熱可塑性樹脂を、ガラス転移温度以上まで加熱し、成形に適した粘度に溶融させることを要する。
 そのため、絶縁皮膜を形成する熱可塑性樹脂としては、明確な融点を有している結晶性樹脂が用いられるのが一般的である。
 これに対して、明確な融点を有していない非結晶性樹脂を用いて絶縁被膜を形成する場合には、ガラス転移温度より高い温度に加熱することによって樹脂の流動性を確保して押出成形が行う必要がある。このとき、可塑剤を添加したり、ガラス転移温度がより低い樹脂をアロイ化することによって、非結晶性樹脂のガラス転移温度を低下させて、非結晶性樹脂の押出成形性を向上させることが望まれる。
In extrusion molding, it is necessary to heat the thermoplastic resin to a temperature above the glass transition temperature and melt it to a viscosity suitable for molding.
Therefore, as a thermoplastic resin for forming the insulating film, a crystalline resin having a clear melting point is generally used.
On the other hand, when forming an insulating film using non-crystalline resin which does not have a clear melting point, the fluidity of the resin is secured by heating to a temperature higher than the glass transition temperature, and extrusion molding is performed. There is a need to do. At this time, by adding a plasticizer or alloying a resin having a lower glass transition temperature, the glass transition temperature of the non-crystalline resin can be lowered to improve the extrusion moldability of the non-crystalline resin. desired.
 例えば、耐熱性に優れた非結晶性樹脂として知られるポリフェニレンエーテルをベースポリマーとする樹脂組成物において、押出成形性にも関わる機械的特性を向上させる技術が提案されている。
 特許文献1には、燃性、高温下での引張り特性、耐熱変形性を満足できるノンハロゲン系難燃性樹脂組成物、並びにこれらを用いた絶縁電線、フラットケーブルを提供する技術として、ポリフェニレンエーテル系樹脂5~80質量%及びスチレン系熱可塑性エラストマー95~20質量%含有するベースポリマー100質量部あたり、リン系化合物5~100質量部、窒素系有機化合物3~80質量部、および多官能性モノマー1~20質量部を含有する難燃性樹脂組成物が開示されている。
For example, in a resin composition containing a polyphenylene ether known as a non-crystalline resin excellent in heat resistance as a base polymer, a technique for improving mechanical properties also involved in extrusion moldability has been proposed.
Patent Document 1 discloses a non-halogen flame retardant resin composition capable of satisfying flame retardancy, tensile properties at high temperature, and heat deformation resistance, and a polyphenylene ether system as a technique for providing an insulated wire and a flat cable using the same. 5 to 100 parts by mass of a phosphorus based compound, 3 to 80 parts by mass of a nitrogen based organic compound, and a polyfunctional monomer per 100 parts by mass of a base polymer containing 5 to 80% by mass of resin and 95 to 20% by mass of styrenic thermoplastic elastomer A flame retardant resin composition containing 1 to 20 parts by mass is disclosed.
 また、特許文献2には、力学的物性、寸法安定性、耐熱性、難燃性等に優れ、特に高温物性に優れた樹脂組成物、基板用材料、シート、積層板、樹脂付き銅箔、銅張積層板、TAB用テープ、プリント基板、プリプレグ、接着シート及び光回路形成材料を提供する技術として、熱可塑性樹脂100重量部と無機化合物0.1~65重量部とを含有する樹脂組成物であって、樹脂組成物のガラス転移温度よりも10℃高い温度から、樹脂組成物のガラス転移温度よりも50℃高い温度までの平均線膨張率(α2)が3.0×10-3[℃-1]以下である樹脂組成物が開示されている。 Further, Patent Document 2 is a resin composition excellent in mechanical physical properties, dimensional stability, heat resistance, flame retardance, etc., and particularly excellent in high temperature physical properties, materials for substrates, sheets, laminates, copper foil with resin, A resin composition containing 100 parts by weight of a thermoplastic resin and 0.1 to 65 parts by weight of an inorganic compound as a technique for providing a copper-clad laminate, a tape for TAB, a printed circuit board, a prepreg, an adhesive sheet and an optical circuit forming material The average linear expansion coefficient (α2) from a temperature 10 ° C. higher than the glass transition temperature of the resin composition to a temperature 50 ° C. higher than the glass transition temperature of the resin composition is 3.0 × 10 −3 [ A resin composition having a temperature of not more than ° C -1 ] is disclosed.
特開2009-249552号公報JP, 2009-249552, A 特開2004-176032号公報JP, 2004-176032, A
 特許文献1に開示される樹脂組成物は、スチレン系熱可塑性エラストマーを含有し、このスチレン系熱可塑性エラストマーは、引張破断伸びの向上に役立つ([0023]参照)とされている。
 しかしながら、機械的特性を向上させるために、被膜を形成する樹脂にスチレン系熱可塑性エラストマーのようなガラス転移温度がより低い樹脂を加えると、絶縁電線の耐熱性(長期の耐熱寿命)は低下するという問題がある。
 また、樹脂の機械的特性を向上させる手段としては、可塑剤を添加する方法が知られているが、可塑剤によっても絶縁電線の耐熱性は低下する。また、可塑剤は、比較的低分子量の物質が多く、絶縁電線を長期間使用していると揮発して、その作用が得られなくなる点で、長期の特性の向上には不向きである。
 また、特許文献2では、必要に応じて、無水マレイン酸変性ポリエチレンオリゴマーに例示されるオリゴマーを樹脂組成物に配合してもよいとされている([0114]、[0117]参照)。
 一般に、樹脂の数平均分子量が低下すると、ガラス転移温度も低下する傾向にあるため、非結晶性樹脂のオリゴマーのような低分子量体を加えることによって、押出成形の成形性が向上すると考えられる。
 しかしながら、絶縁電線の皮膜に非結晶性樹脂の低分子量体を加えると、絶縁電線の靭性が劣化するという問題がある。
 そこで、非結晶性樹脂による絶縁電線の被膜の形成において、このようにトレードオフの関係にある、押出成形における成形性と、製造される絶縁電線が示す耐熱性や靭性とが、両立した樹脂組成物が求められている。
 したがって、本発明の課題は、耐熱性及び靭性に優れた絶縁電線の皮膜を形成し得る押出成形性が良好な樹脂組成物、並びに耐熱性及び靭性に優れた絶縁電線を容易に押出成形して製造する方法を提供することにある。
The resin composition disclosed in Patent Document 1 contains a styrenic thermoplastic elastomer, and this styrenic thermoplastic elastomer is considered to be useful for improving the tensile elongation at break (see [0023]).
However, if a resin with a lower glass transition temperature such as a styrenic thermoplastic elastomer is added to the resin for forming a film to improve mechanical properties, the heat resistance (long-term heat resistance life) of the insulated wire is reduced. There is a problem of
Moreover, although the method of adding a plasticizer is known as a means to improve the mechanical characteristic of resin, the heat resistance of an insulated wire also falls with a plasticizer. Further, many plasticizers have relatively low molecular weight and volatilize when the insulated wire is used for a long period of time, and the effect thereof can not be obtained, so it is not suitable for improving long-term characteristics.
Further, in Patent Document 2, it is said that, as necessary, an oligomer exemplified as a maleic anhydride-modified polyethylene oligomer may be blended in a resin composition (see [0114] and [0117]).
Generally, when the number average molecular weight of the resin decreases, the glass transition temperature also tends to decrease, and therefore, it is considered that the formability of extrusion molding is improved by adding a low molecular weight polymer such as an oligomer of the noncrystalline resin.
However, when a low molecular weight polymer of non-crystalline resin is added to the film of the insulated wire, there is a problem that the toughness of the insulated wire is deteriorated.
Then, in formation of the film of the insulated wire by non-crystalline resin, the resin composition in which the moldability in extrusion molding and the heat resistance and toughness which the insulated wire manufactured which is in such a trade-off relation are compatible Things are being sought.
Therefore, the object of the present invention is to easily extrude a resin composition having good extrusion formability capable of forming a film of an insulated wire excellent in heat resistance and toughness, and an insulated wire excellent in heat resistance and toughness. It is to provide a method of manufacturing.
 前記課題を解決するために本発明に係る樹脂組成物は、非結晶性のポリマーと、前記ポリマーを構成するモノマーと同種のモノマーが重合してなるオリゴマーと、熱硬化性分子と、を含み、前記オリゴマーの平均分子量が、前記ポリマーの平均分子量の10分の1以下であることを特徴とする。 In order to solve the above problems, a resin composition according to the present invention comprises a non-crystalline polymer, an oligomer formed by polymerizing a monomer of the same type as a monomer constituting the polymer, and a thermosetting molecule. The average molecular weight of the oligomer is one tenth or less of the average molecular weight of the polymer.
 また、本発明に係る絶縁電線の製造方法は、前記樹脂組成物を調製する工程と、前記樹脂組成物を溶融させて導体を被覆する工程と、を備えることを特徴とする。 Moreover, the manufacturing method of the insulated wire which concerns on this invention is characterized by including the process of preparing the said resin composition, and the process of fuse | melting the said resin composition and coat | covering a conductor.
 本発明によれば、耐熱性及び靭性に優れた絶縁電線の皮膜を形成し得る押出成形性が良好な樹脂組成物、並びに耐熱性及び靭性に優れた絶縁電線を容易に押出成形して製造する方法を提供することができる。 According to the present invention, a resin composition having good extrusion formability capable of forming a film of an insulated wire excellent in heat resistance and toughness, and an insulated wire excellent in heat resistance and toughness can be easily extruded and manufactured. We can provide a way.
実施例1に係る絶縁電線の断面模式図である。It is a cross-sectional schematic diagram of the insulated wire which concerns on Example 1. FIG. 実施例2に係る絶縁電線の断面模式図である。FIG. 7 is a schematic cross-sectional view of the insulated wire according to the second embodiment.
 以下に本発明の一実施形態に係る樹脂組成物及びそれを用いた絶縁電線とその製造方法について詳細に説明する。 Hereinafter, a resin composition according to an embodiment of the present invention, an insulated wire using the same, and a method of manufacturing the same will be described in detail.
 本実施形態に係る樹脂組成物は、主に、非結晶性のポリマーと、オリゴマーと、熱硬化性分子と、を含んでなる。
 本実施形態に係る樹脂組成物は、絶縁電線が備える絶縁皮膜の形成に用いられる樹脂組成物である。この樹脂組成物により形成される絶縁皮膜は、耐熱性に優れ、長期の耐熱寿命を示すことができる。また、曲げに対する靭性や、絶縁電線の芯線との密着性に優れている。そして、この樹脂組成物は、樹脂組成物を溶融させて行う押出成形における成形性が良好であるという特徴を有する。
The resin composition according to the present embodiment mainly comprises a noncrystalline polymer, an oligomer and a thermosetting molecule.
The resin composition which concerns on this embodiment is a resin composition used for formation of the insulating film with which an insulated wire is equipped. The insulating film formed of this resin composition is excellent in heat resistance and can exhibit a long heat resistance life. Moreover, it is excellent in the toughness with respect to a bending, and adhesiveness with the core wire of an insulated wire. And this resin composition has the characteristics that the moldability in the extrusion molding performed by melting a resin composition is favorable.
 本実施形態に係る非結晶性のポリマーは、熱可塑性の非結晶性樹脂に分類される種の高分子であり、絶縁性を有し、耐熱性に優れた性質を有している。非結晶性のポリマーは、熱可塑性樹脂であり、例えば、示差走査熱量測定による解析で得られるDSC曲線において、吸熱ピークがブロードな形状を示し、明確な融点を示さない樹脂である。
 この非結晶性のポリマーが、本実施形態に係る樹脂組成物の主な組成成分であり、ベースポリマーを構成している。
The non-crystalline polymer according to the present embodiment is a polymer of a type classified into a thermoplastic non-crystalline resin, has insulating properties, and has excellent heat resistance. The non-crystalline polymer is a thermoplastic resin, for example, a resin which exhibits a broad endothermic peak shape and does not show a clear melting point in a DSC curve obtained by analysis by differential scanning calorimetry.
The non-crystalline polymer is a main component of the resin composition according to the present embodiment, and constitutes a base polymer.
 本実施形態に係る非結晶性のポリマーが有する耐熱性は、絶縁種別の耐熱区分でH種相当以上に属し、長期の耐熱寿命を示すことができる耐熱性であることが好ましい。より具体的には、耐熱指数が180℃以上であることが好ましい。
 ここで、本明細書において、耐熱指数とは、小澤法による分解反応の速度論的解析(小澤丈夫、「非定温速度論(1)単一素過程の場合」、熱測定、日本熱測定学会、2004年6月30日、Vol.31、No.3、p.125-132参照)の手法にしたがって、樹脂の熱分析に基づいて算出される指数であって、樹脂組成物を定温で保持して、重量が5質量%減少するのに2万時間を要する保持温度を意味するものとする。
 熱分析の方法としては、複数の昇温速度でスキャンして、重量が5質量%減少するときの温度を計測する方法(Friedman-小澤法)がある。この方法では、各昇温速度に対して、計測した重量が所定量(例えば、5質量%)減少するときの温度をプロットすることにより、重量の減少に関わる絶縁樹脂の分解反応の活性化エネルギを導出することができる。
 また、2種類以上の異なる保持温度において、重量が5質量%減少するまでの時間を計測する方法(小澤-Flynn-Wall法)がある。この方法では、各保持温度に対して、計測した重量が(例えば、5質量%)減少するまでの時間をプロットすることにより、重量の減少に関わる絶縁樹脂の分解反応の活性化エネルギを導出することができる。
 これらいずれかの方法で導出された活性化エネルギの値から耐熱指数を算出することができる。
The heat resistance possessed by the non-crystalline polymer according to the present embodiment is preferably heat resistance which belongs to H class or more equivalent in the heat resistance classification of insulation type and can exhibit a long heat resistance life. More specifically, the heat resistance index is preferably 180 ° C. or more.
Here, in the present specification, the heat resistance index refers to kinetic analysis of decomposition reaction by Ozawa method (Taku Ozawa, "non-isothermal kinetic (1) case of single element process", heat measurement, The Japan Thermometer Society) , No. 3, pp. 125-132), and the index is calculated based on thermal analysis of the resin, and the resin composition is maintained at a constant temperature It means the holding temperature which requires 20,000 hours to reduce the weight by 5% by mass.
As a method of thermal analysis, there is a method (Friedman-Ozawa method) of scanning at a plurality of temperature rising rates and measuring the temperature when the weight decreases by 5% by mass. In this method, the activation energy of the decomposition reaction of the insulating resin involved in the weight reduction is plotted by plotting the temperature when the measured weight decreases by a predetermined amount (for example, 5% by mass) with respect to each heating rate. Can be derived.
There is also a method (Ozawa-Flynn-Wall method) of measuring the time until the weight decreases by 5% by mass at two or more different holding temperatures. In this method, the activation energy of the decomposition reaction of the insulating resin involved in the weight reduction is derived by plotting the time until the measured weight decreases (for example, 5% by mass) for each holding temperature. be able to.
The heat resistance index can be calculated from the value of activation energy derived by any of these methods.
 本実施形態に係る非結晶性のポリマーとしては、所謂、スーパーエンジニアリングプラスチックが用いられる。なお、本明細書において、スーパーエンジニアリングプラスチックは、150℃以上における環境下で長期間使用できる耐熱性を有するプラスチックを意味する。本実施形態に係る非結晶性のポリマーとしては、具体的には、ポリフェニレンエーテル、ポリアミドイミド、ポリエーテルイミド、ポリエーテルサルホン、ポリサルホン、ポリアリレート等が挙げられる。 As the non-crystalline polymer according to the present embodiment, a so-called super engineering plastic is used. In the present specification, super engineering plastic means a plastic having heat resistance that can be used for a long time in an environment at 150 ° C. or higher. Specific examples of the non-crystalline polymer according to this embodiment include polyphenylene ether, polyamide imide, polyether imide, polyether sulfone, polysulfone, polyarylate and the like.
 本実施形態に係る非結晶性のポリマーの分子量は、非結晶性のポリマーの樹脂種、絶縁電線の製造における成形性、製造される絶縁皮膜の機械的特性等に応じて適宜の値とすることができる。本実施形態に係る非結晶性のポリマーの数平均分子量は、通常は、5000以上200000以下程度である。
 また、本実施形態に係る非結晶性のポリマーの重合度は、特に制限されるものではなく、非結晶性のポリマーの樹脂種に応じて、前記の数平均分子量に対応する数平均重合度を有するものとすることができる。
The molecular weight of the non-crystalline polymer according to the present embodiment should be an appropriate value according to the resin type of the non-crystalline polymer, the formability in the production of the insulated wire, the mechanical properties of the insulating film to be produced, etc. Can. The number average molecular weight of the non-crystalline polymer according to the present embodiment is usually about 5,000 or more and 200,000 or less.
Further, the polymerization degree of the non-crystalline polymer according to the present embodiment is not particularly limited, and the number average polymerization degree corresponding to the above-mentioned number average molecular weight is determined according to the resin type of the non-crystalline polymer. It can be possessed.
 本実施形態に係るポリマーとしては、一種のモノマーが重合してなるホモポリマーであっても、複数種のモノマーが重合してなる共重合体であってもよい。また、共重合は、成形性が損なわれない限り、ランダム重合、ブロック重合、グラフト重合のいずれの重合形態でもよい。 The polymer according to the present embodiment may be a homopolymer obtained by polymerizing one kind of monomer or a copolymer obtained by polymerizing plural kinds of monomers. The copolymerization may be any polymerization form of random polymerization, block polymerization and graft polymerization as long as the formability is not impaired.
 本実施形態に係るオリゴマーは、前記の非結晶性のポリマーを構成しているモノマーと同種のモノマーが重合してなる重合体である。したがって、このオリゴマーは、前記の非結晶性のポリマーと同様に、絶縁性を有し、耐熱性に優れた性質を有している。
 本実施形態に係る樹脂組成物は、このオリゴマーを含むことによって、樹脂組成物を組成するベースポリマー単独におけるガラス転移温度と比較して、低いガラス転移温度を示す樹脂組成物となる。そのため、樹脂組成物を溶融させて行う押出成形における成形性が良好である。
 なお、オリゴマーは、非結晶性のポリマーが共重合体である場合には、それと同種の重合形態を有する重合体である。
The oligomer according to the present embodiment is a polymer formed by polymerizing the same kind of monomer as that constituting the non-crystalline polymer. Therefore, this oligomer, like the non-crystalline polymer described above, has insulating properties and excellent heat resistance.
By including this oligomer, the resin composition according to the present embodiment becomes a resin composition that exhibits a low glass transition temperature as compared to the glass transition temperature of the base polymer alone that constitutes the resin composition. Therefore, the moldability in extrusion molding performed by melting the resin composition is good.
In addition, an oligomer is a polymer which has the same kind of polymerization form, when a non-crystalline polymer is a copolymer.
 本実施形態に係るオリゴマーの数平均分子量は、前記した非結晶性のポリマーの数平均分子量の10分の1以下、好ましくは40分の1以上10分の1以下、より好ましくは20分の1以上10分の1以下とする。
 オリゴマーの数平均分子量が、樹脂組成物の主な組成成分である非結晶性のポリマーの平均分子量の10分の1以下であることにより、樹脂組成物のガラス転移温度を有効に低下させることができる。
 その一方で、オリゴマーの数平均分子量が過度に小さいと、溶融させた樹脂組成物の粘度が低く成形性が悪化するおそれがある。また、絶縁電線の靭性が確保できないおそれがある。
The number average molecular weight of the oligomer according to this embodiment is 1/10 or less, preferably 1/40 to 1/10, more preferably 1/20 of the number average molecular weight of the non-crystalline polymer described above. More than one tenth.
The glass transition temperature of the resin composition can be effectively reduced when the number average molecular weight of the oligomer is one tenth or less of the average molecular weight of the non-crystalline polymer that is the main component of the resin composition it can.
On the other hand, if the number average molecular weight of the oligomer is too small, the viscosity of the melted resin composition is low and the moldability may be deteriorated. Moreover, there is a possibility that the toughness of the insulated wire can not be secured.
 本実施形態に係るオリゴマーの重合度は、特に制限されるものではなく、オリゴマーの樹脂種に応じて、前記の数平均分子量に対応する数平均重合度を有するものとすることができる。「オリゴマー」の用語は、非結晶性ポリマーに対して相対的に低重合度であることを意味する。 The degree of polymerization of the oligomer according to the present embodiment is not particularly limited, and may have a number average degree of polymerization corresponding to the above-described number average molecular weight according to the resin type of the oligomer. The term "oligomer" means having a relatively low degree of polymerization relative to the non-crystalline polymer.
 本実施形態に係る熱硬化性分子は、主鎖の両末端に、熱硬化反応する反応基を有する重合体である。
 ここで、熱硬化反応とは、加熱することによって樹脂組成物を硬化させる、分子間の架橋反応を意味する。
 本実施形態に係る熱硬化性分子を所定の反応基を有する重合体とすることによって、加熱により熱硬化性分子同士を架橋させることが可能となり、熱硬化性分子の重合体の重合度を増大させる熱硬化反応が行われる。また、前記した非結晶性のポリマー及びオリゴマーが、熱硬化性分子が有する反応基と熱硬化反応する反応基を有する場合には、加熱により熱硬化性分子を介して非結晶性のポリマー及びオリゴマーを架橋し、これらの分子量ないし重合度を増大させる熱硬化反応が行われる。
 したがって、本実施形態に係る樹脂組成物は、このような熱硬化性分子を含むことによって、分子量ないし重合度が増大した重合体を熱硬化反応により生成し、曲げに対する靭性に優れた絶縁電線の皮膜を形成することができる。
The thermosetting molecule which concerns on this embodiment is a polymer which has the reactive group which carries out a thermosetting reaction in the both ends of a principal chain.
Here, a thermosetting reaction means the crosslinking reaction between molecules which hardens a resin composition by heating.
By using the thermosetting molecule according to the present embodiment as a polymer having a predetermined reactive group, it becomes possible to crosslink the thermosetting molecules with each other by heating, and the degree of polymerization of the polymer of the thermosetting molecule is increased. Heat curing reaction is carried out. In addition, when the above-mentioned non-crystalline polymer and oligomer have a reactive group which causes a thermosetting reaction with the reactive group possessed by the thermosetting molecule, the non-crystalline polymer and oligomer via the thermosetting molecule by heating. Are cured, and a thermosetting reaction is performed to increase their molecular weight or degree of polymerization.
Therefore, the resin composition according to the present embodiment, by including such a thermosetting molecule, generates a polymer having a molecular weight or polymerization degree increased by a thermosetting reaction, and is an insulated wire excellent in toughness against bending. A film can be formed.
 本実施形態に係る熱硬化性分子としては、エポキシ樹脂、フェノール樹脂、ポリイミド、ポリウレタン、不飽和ポリエステル、尿素樹脂、メラミン樹脂等に分類される高分子を用いることができる。なお、エポキシ樹脂においてはジシアンジアミド等のアミド類やジアミノジフェニルスルホン等のアミン類や酸無水物類等、フェノール樹脂においてはヘキサメチレンテトラミン等、不飽和ポリエステルにおいては過酸化ベンゾイル等、尿素樹脂においてはアンモニウム塩等の硬化剤を併用する。これら用いる硬化剤は、熱硬化反応する反応基に対して略反応当量でよい。
 本実施形態に係る熱硬化性分子としては、これらの中でも、耐熱性に優れるエポキシ樹脂が好ましい。例えば、非結晶性のポリマーやオリゴマーが、末端にエポキシ基や水酸基を有する場合は、エポキシ樹脂がこれらと熱硬化反応し、靭性に優れた絶縁電線を得ることができる。なお、このように非結晶性のポリマーやオリゴマーと熱硬化反応する熱硬化性分子を用いる場合は、非結晶性のポリマーやオリゴマーが有する反応基の総量に対して略反応当量とすればよい。
As thermosetting molecules according to the present embodiment, polymers classified into epoxy resin, phenol resin, polyimide, polyurethane, unsaturated polyester, urea resin, melamine resin and the like can be used. In the epoxy resin, amides such as dicyandiamide, amines such as diaminodiphenyl sulfone, acid anhydrides, etc., in the phenol resin, hexamethylenetetramine, etc., in unsaturated polyester, benzoyl peroxide, etc. in unsaturated polyester, ammonium in urea resin. A curing agent such as salt is used in combination. The curing agent to be used may be substantially reactive equivalent with respect to the reactive group which undergoes a thermosetting reaction.
Among these, as a thermosetting molecule which concerns on this embodiment, the epoxy resin which is excellent in heat resistance is preferable. For example, when the non-crystalline polymer or oligomer has an epoxy group or a hydroxyl group at the end, the epoxy resin undergoes a thermosetting reaction with these, and an insulated wire excellent in toughness can be obtained. When a thermosetting molecule that undergoes a thermosetting reaction with a noncrystalline polymer or oligomer as described above is used, it may be approximately equivalent to the total amount of reactive groups contained in the noncrystalline polymer or oligomer.
 また、熱硬化性分子としては、前記した本実施形態に係るオリゴマーの変性体を用いることができる。
 ここで、オリゴマーの変性体とは、主鎖の両末端に、熱硬化反応する反応基が置換又は付加されることによって、熱硬化反応性が付与されたオリゴマーを意味する。
 オリゴマーの変性体としては、例えば、エポキシ基を有するエポキシ変性体、ビニルベンジル基を有するスチレン変性体、イソシアネート基を有するイソシアネート変性体等が挙げられる。なお、エポキシ変性体においてはジシアンジアミド等のアミド類やジアミノジフェニルスルホン等のアミン類や酸無水物類等、スチレン変性体においてはビスマレイミド化合物等の不飽和イミド類等の硬化剤を併用する。これら用いる硬化剤は、熱硬化反応する反応基に対して略反応当量でよい。
 本実施形態に係る熱硬化性分子として、このようなオリゴマーの変性体を用いることによって、耐熱性を維持しつつ、靭性に優れた絶縁電線を得ることができる。
Moreover, as a thermosetting molecule, the modified | denatured body of the oligomer based on above-mentioned this embodiment can be used.
Here, the modified product of an oligomer means an oligomer to which a thermosetting reactivity is imparted by substituting or adding a reactive group which undergoes a thermosetting reaction at both ends of the main chain.
Examples of the modified product of the oligomer include an epoxy modified product having an epoxy group, a styrene modified product having a vinylbenzyl group, an isocyanate modified product having an isocyanate group, and the like. In the epoxy-modified product, an amide such as dicyandiamide, an amine such as diaminodiphenyl sulfone, an acid anhydride, etc., and in the styrene-modified product, a curing agent such as an unsaturated imide such as a bismaleimide compound is used in combination. The curing agent to be used may be substantially reactive equivalent with respect to the reactive group which undergoes a thermosetting reaction.
By using such a modified oligomer as the thermosetting molecule according to the present embodiment, an insulated wire excellent in toughness can be obtained while maintaining heat resistance.
 本実施形態に係る熱硬化性分子の数平均分子量は、前記した非結晶性のポリマーの数平均分子量の10分の1以下、好ましくは40分の1以上10分の1以下、より好ましくは20分の1以上10分の1以下とすることが好ましい。
 熱硬化性分子の数平均分子量が、樹脂組成物の主な組成成分である非結晶性のポリマーの平均分子量の10分の1以下であることにより、熱硬化反応を行う前の樹脂組成物において、樹脂組成物のガラス転移温度を有効に低下させることができる。
The number average molecular weight of the thermosetting molecule according to this embodiment is 1/10 or less, preferably 1/40 to 1/10, more preferably 20 or less of the number average molecular weight of the non-crystalline polymer described above. It is preferable to set it as 1/10 or more and 1/10 or less.
In the resin composition before the thermosetting reaction, the number average molecular weight of the thermosetting molecule is 1/10 or less of the average molecular weight of the non-crystalline polymer which is the main component of the resin composition. And the glass transition temperature of the resin composition can be effectively reduced.
 本実施形態に係る樹脂組成物において、オリゴマー及び熱硬化性分子の総含有量は、ポリマー100質量部に対して、10質量部以上100質量部以下であることが好ましい。
 オリゴマー及び熱硬化性分子の総含有量が10質量部以上であると、樹脂組成物のガラス転移温度を有効に低下させることができる。
 また、オリゴマー及び熱硬化性分子の総含有量が100質量部以下であると、樹脂組成物の粘度が過度に低下するおそれがない。
In the resin composition according to the present embodiment, the total content of the oligomer and the thermosetting molecule is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the polymer.
The glass transition temperature of a resin composition can be effectively reduced as total content of an oligomer and a thermosetting molecule is 10 mass parts or more.
In addition, when the total content of the oligomer and the thermosetting molecule is 100 parts by mass or less, there is no possibility that the viscosity of the resin composition is excessively reduced.
 次に、本実施形態に係る絶縁電線の製造方法について説明する。 Next, a method of manufacturing the insulated wire according to the present embodiment will be described.
 本実施形態に係る絶縁電線の製造方法は、一般的な押出成形による絶縁電線の製造方法に準じて行われる方法であり、特に、樹脂組成物を調製する工程と、樹脂組成物を導体に被覆する工程と、樹脂組成物を加熱して樹脂組成物を熱硬化させる工程とを備えている。
 この方法により製造される絶縁電線は、少なくとも、導体と、樹脂組成物により形成される絶縁皮膜とを備えてなるが、絶縁被膜は、本実施形態に係る樹脂組成物により形成される単一層のみに限られず、複数層が積層された構造からなるものでもよい。
The method for producing an insulated wire according to the present embodiment is a method carried out according to a general method for producing an insulated wire by extrusion molding, and in particular, the step of preparing a resin composition, and coating the resin composition on a conductor And heating the resin composition to thermally cure the resin composition.
The insulated wire manufactured by this method comprises at least a conductor and an insulating film formed of the resin composition, but the insulating film is only a single layer formed of the resin composition according to the present embodiment. However, the present invention is not limited to this, and may have a structure in which a plurality of layers are stacked.
 樹脂組成物を調製する工程では、非結晶性のポリマーと、そのポリマーを構成するモノマーと同種のモノマーが重合してなるオリゴマーと、熱硬化性分子と、を含み、オリゴマーの平均分子量が、ポリマーの平均分子量の10分の1以下である樹脂組成物を調製する。
 これら樹脂組成物に含まれる分子は、常法に従い調製することができ、商業的にも入手可能である。
 例えば、非結晶性ポリマーとして好適なポリフェニレンエーテルやそのオリゴマーは、2,6-ジメチル-1,4-フェニレンエーテル、2,6-ジエチル-1,4-フェニレンエーテル、2,6-ジプロピル-1,4-フェニレンエーテル、2-メチル-6-エチル-1,4-フェニレンエーテル等のモノマー単位の酸化カップリング反応で調製することができる。ポリフェニレンエーテルは、耐熱性に優れるものの成形性に劣る樹脂であるが、調製される樹脂組成物は導体を被覆する際の成形性が良好である。
In the step of preparing the resin composition, the polymer comprises an amorphous polymer, an oligomer formed by polymerizing a monomer of the same kind as the monomer constituting the polymer, and a thermosetting molecule, and the average molecular weight of the oligomer is a polymer A resin composition is prepared which is not more than one tenth of the average molecular weight of
The molecules contained in these resin compositions can be prepared according to conventional methods and are commercially available.
For example, polyphenylene ether suitable as a non-crystalline polymer and its oligomers are 2,6-dimethyl-1,4-phenylene ether, 2,6-diethyl-1,4-phenylene ether, 2,6-dipropyl-1, It can be prepared by the oxidative coupling reaction of monomer units such as 4-phenylene ether and 2-methyl-6-ethyl-1,4-phenylene ether. Although polyphenylene ether is a resin which is excellent in heat resistance but inferior in moldability, the resin composition to be prepared is excellent in moldability at the time of coating a conductor.
 導体は、絶縁電線の芯線をなす、銅線、アルミ線、これらの合金線等である。
 銅線としては、タフピッチ銅、無酸素銅及び脱酸銅のいずれを材質としたものでもよく、軟銅線及び硬銅線のいずれでもよい。また、錫、ニッケル、銀、アルミニウム等が表面にめっきされためっき銅線であってもよい。
 アルミ線としては、硬アルミ線、半硬アルミ線等が用いられる。
 また、合金線としては、例えば、銅-錫合金、銅-銀合金、銅-亜鉛合金、銅-クロム合金、銅-ジルコニウム合金、アルミニウム-銅合金、アルミニウム-銀合金、アルミニウム-亜鉛合金、アルミニウム-鉄合金、イ号アルミ合金(Aldrey Aluminium)等が挙げられる。
 導体の形状としては、丸線及び平角線のいずれでもよく、単線及び撚り線のいずれでもよい。
The conductor is a copper wire, an aluminum wire, an alloy wire thereof, or the like which forms the core wire of the insulated wire.
The copper wire may be made of any of tough pitch copper, oxygen free copper and deoxidized copper, and may be any of soft copper wire and hard copper wire. Moreover, the plating copper wire by which tin, nickel, silver, aluminum, etc. were plated on the surface may be sufficient.
As the aluminum wire, hard aluminum wire, semi-hard aluminum wire or the like is used.
Further, as the alloy wire, for example, copper-tin alloy, copper-silver alloy, copper-zinc alloy, copper-chromium alloy, copper-zirconium alloy, aluminum-copper alloy, aluminum-silver alloy, aluminum-zinc alloy, aluminum -Iron alloy, aluminum alloy (Aldrey Aluminum), etc. may be mentioned.
The shape of the conductor may be either a round wire or a flat wire, or may be a single wire or a stranded wire.
 樹脂組成物を導体に被覆する工程は、所望の電線形状に応じた口金を有するクロスヘッドダイ等の押出成形機を用いて行われる。
 あらかじめ調製された樹脂組成物は、ペレット化される等した状態で、このような押出成形機のホッパに投入され、シリンダに供給されて、ガラス転移温度以上であり、熱硬化反応が進行しない反応温度まで加熱されて溶融状態とされる。この製造方法では、ガラス転移温度が低下した本実施形態に係る樹脂組成物を用いることにより、通常より低い溶融温度での成形が可能となっている。その後、加熱されて溶融した樹脂組成物は、シリンダ内に備えられるスクリュで混練されながらクロスヘッドに供給される。
 なお、ペレット化された樹脂組成物に代えて、樹脂組成物の各組成成分を押出成形機に投入してもよい。この場合には、各組成成分がシリンダ内において溶融、混練されて樹脂組成物が調製され、クロスヘッドに供給される。
The step of coating the resin composition on the conductor is performed using an extruder such as a crosshead die having a die according to the desired wire shape.
The resin composition prepared in advance is charged into the hopper of such an extrusion molding machine in a pelletized state or the like, is supplied to a cylinder, is a temperature above the glass transition temperature, and does not proceed with a thermosetting reaction. It is heated to a temperature and brought into a molten state. In this manufacturing method, molding at a lower melting temperature than usual can be performed by using the resin composition according to the present embodiment in which the glass transition temperature is lowered. Thereafter, the heated and melted resin composition is supplied to the crosshead while being kneaded by a screw provided in a cylinder.
In addition, it may replace with pelletized resin composition and may introduce each composition ingredient of a resin composition to an extrusion molding machine. In this case, each composition component is melted and kneaded in a cylinder to prepare a resin composition, which is supplied to the crosshead.
 このクロスヘッドには、線条の導体芯線が通過させられている。導体芯線は、ダイスを通過させることにより所定の線径まで徐々に引き落とす伸線加工によって得られるものである。導体芯線の表面は、あらかじめ粗面化したり、カップリング剤等で化学修飾することによって密着性を向上させることが好ましい。導体芯線の外周には、クロスヘッドを通過する際に、溶融した樹脂組成物が被覆され、絶縁皮膜が形成される。その後、樹脂組成物により被覆された導体芯線は、サイザーを通過して、水層等で冷却され絶縁電線とされる。
 樹脂組成物を熱硬化させる工程では、樹脂組成物による被覆後に電熱炉等によって絶縁電線を加熱処理する。この工程において、樹脂組成物に含まれる熱硬化性分子が関与する熱硬化反応が進行し、絶縁被膜が熱硬化し、曲げに対する靭性に優れた絶縁電線が製造される。
A conductor core wire is passed through the crosshead. The conductor core wire is obtained by wire drawing which is gradually drawn down to a predetermined wire diameter by passing the die. It is preferable to improve adhesion by roughening the surface of the conductor core wire in advance or chemically modifying the surface with a coupling agent or the like. When passing through the crosshead, the outer periphery of the conductor core is coated with the molten resin composition to form an insulating film. Thereafter, the conductor core coated with the resin composition passes through the sizer and is cooled by the water layer or the like to be an insulated wire.
In the step of heat curing the resin composition, the insulated wire is heat-treated by an electric furnace or the like after the coating with the resin composition. In this step, a thermosetting reaction involving a thermosetting molecule contained in the resin composition proceeds, the insulating coating is thermally cured, and an insulated wire excellent in toughness against bending is produced.
 本実施形態に係る絶縁電線の用途は、特に制限されるものではないが、例えば、家庭用電気機器、産業用電気機器、船舶、鉄道、電気自動車等に備えられる回転電機のステータコア等に捲回される巻線として用いることができる。 Although the application of the insulated wire according to the present embodiment is not particularly limited, for example, it is wound on a stator core of a rotating electrical machine provided in household electric appliances, industrial electric appliances, ships, railways, electric vehicles, etc. It can be used as a wound wire.
 次に、本発明の実施例を示して具体的に説明するが、本発明の技術的範囲はこれらに限定されるものではない。 EXAMPLES The present invention will next be described in detail by way of examples, which should not be construed as limiting the technical scope of the present invention.
[実施例1]
 実施例1に係る樹脂組成物を製造し、熱分析を行った。
 非結晶性のポリマーとしては、数平均分子量が約20000であるポリ(2,6-ジメチル-1,4-フェニレンオキシド)(Sigma-Aldrich社製)(化学式1)、オリゴマーとしては、数平均分子量が約2000であるポリフェニレンエーテル「OPE2000」(三菱ガス化学株式会社製)(化学式2)、熱硬化性分子としては、両末端がスチレン変性されたポリフェニレンエーテル「OPE2st」(三菱ガス化学株式会社製)(化学式3)、硬化剤としては、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド「BMI-5000」(大和化成工業株式会社製)をそれぞれ用いた。
Example 1
The resin composition according to Example 1 was produced and subjected to thermal analysis.
As a non-crystalline polymer, poly (2,6-dimethyl-1,4-phenylene oxide) (manufactured by Sigma-Aldrich) (chemical formula 1) having a number average molecular weight of about 20000, a number average molecular weight as an oligomer Is a polyphenylene ether “OPE 2000” (made by Mitsubishi Gas Chemical Co., Ltd.) (chemical formula 2) having a value of about 2000, and as a thermosetting molecule, a polyphenylene ether “OPE2st” (made by Mitsubishi Gas Chemical Co., Ltd.) in which styrene is modified at both ends As a curing agent, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide “BMI-5000” (manufactured by Daiwa Kasei Kogyo Co., Ltd.) was used as a curing agent.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 はじめに、非結晶性のポリマー100質量部に対して、オリゴマー25質量部及びオリゴマーの変性体25質量部を加え、続いて、これらに熱硬化性分子に対して反応当量の硬化剤を加え、熱トルエンに溶解させた。
 そして、得られた溶液をキャストし、トルエンを揮発させることによって、フィルム状の実施例1に係る樹脂組成物を作製した。
First, 25 parts by mass of an oligomer and 25 parts by mass of a modified oligomer are added to 100 parts by mass of a non-crystalline polymer, followed by adding a reaction equivalent curing agent to the thermosetting molecule, It was dissolved in toluene.
Then, the obtained solution was cast and the toluene was evaporated to prepare a resin composition according to Example 1 in the form of a film.
 次に、作製した樹脂組成物のフィルムを複数の昇温速度でスキャンして、重量が5質量%減少するときの温度を計測した。各昇温速度に対して、計測した重量が5質量%減少するときの温度をプロットすることにより、熱分解反応の活性化エネルギを算出し、5質量%の重量が減少するのに2万時間を要する温度を耐熱指数として求めた。
 また、作製した樹脂組成物フィルムを示差走査熱量測定(DSC)に供して、ガラス転移温度を計測した。
 その結果、実施例1に係る樹脂組成物の耐熱指数は約208℃であり、ガラス転移温度は約180℃であった。
Next, the film of the produced resin composition was scanned at a plurality of temperature rising rates, and the temperature when the weight decreased by 5% by mass was measured. The activation energy of the thermal decomposition reaction is calculated by plotting the temperature at which the measured weight decreases by 5% by mass for each heating rate, and the weight of 5% by mass decreases by 20,000 hours. The heat resistance index was determined as the temperature required to
Further, the produced resin composition film was subjected to differential scanning calorimetry (DSC) to measure the glass transition temperature.
As a result, the heat resistance index of the resin composition according to Example 1 was about 208 ° C., and the glass transition temperature was about 180 ° C.
 非結晶性ポリマーのみが単独で含まれる比較例に係る樹脂組成物の耐熱指数は約228℃であり、ガラス転移温度は約210℃である。
 実施例1に係る樹脂組成物では、比較例に係る樹脂組成物と比較すると、耐熱指数の低下が小さく抑えらていながら、ガラス転移温度が大きく低下していることが認められる。
 したがって、実施例1に係る樹脂組成物は、耐熱性に優れた絶縁電線の皮膜を形成し得る押出成形性が良好な樹脂組成物であることが確認された。
The heat resistance index of the resin composition according to the comparative example in which only the non-crystalline polymer is contained alone is about 228 ° C., and the glass transition temperature is about 210 ° C.
In the resin composition which concerns on Example 1, compared with the resin composition which concerns on a comparative example, it is recognized that the glass transition temperature is falling large, suppressing the fall of a heat resistance index small.
Therefore, it was confirmed that the resin composition which concerns on Example 1 is a resin composition with favorable extrusion moldability which can form the film of the insulated wire excellent in heat resistance.
 次に、実施例1に係る樹脂組成物を用いて絶縁電線を製造し、その靭性を評価した。
 樹脂組成物を直径1mmの銅製の丸線上に、185℃で溶融、混練しながら押出成形した。なお、皮膜の膜厚は、100μmとした。
 そして、成形した丸線を巻線化し、200℃で1時間に亘って加熱して熱硬化させて、実施例1に係る絶縁電線とした。
Next, the insulated wire was manufactured using the resin composition concerning Example 1, and the toughness was evaluated.
The resin composition was extruded on a copper round wire of 1 mm in diameter while melting and kneading at 185 ° C. The film thickness of the film was 100 μm.
Then, the formed round wire was wound, heated at 200 ° C. for 1 hour, and thermally cured to obtain an insulated wire according to Example 1.
 図1は、実施例1に係る絶縁電線の断面模式図である。
 製造された絶縁電線1は、断面が円形状の銅製の導体10の外周が、樹脂組成物20により形成された絶縁皮膜に被覆された構造を有している。
 この絶縁電線1の靭性は、所定の長さの絶縁電線1を巻線化し、このときの曲げに対して、皮膜のひび割れ、銅線からの剥離が発生しているか否かを目視により確認することによって評価した。
 その結果、ひび割れや剥離は確認されず、実施例1に係る絶縁電線が、曲げに対する靭性に優れていることが確認された。
FIG. 1 is a schematic cross-sectional view of the insulated wire according to the first embodiment.
The manufactured insulated wire 1 has a structure in which the outer periphery of a copper conductor 10 having a circular cross section is covered with an insulating film formed of a resin composition 20.
The toughness of the insulated wire 1 is formed by winding the insulated wire 1 having a predetermined length, and visually checking whether cracking of the film or peeling from the copper wire is generated with respect to bending at this time. Evaluated by.
As a result, cracking and peeling were not confirmed, and it was confirmed that the insulated wire according to Example 1 is excellent in toughness against bending.
[実施例2]
 実施例2に係る樹脂組成物を製造し、熱分析を行った。
 非結晶性のポリマーとしては、数平均分子量が約20000であるポリ(2,6-ジメチル-1,4-フェニレンオキシド)(Sigma-Aldrich社製)、オリゴマーとしては、数平均分子量が約1000であるポリフェニレンエーテル「OPE1000」(三菱ガス化学株式会社製)(化学式4)、熱硬化性分子としては、両末端がエポキシ化されたポリフェニレンエーテルのエポキシ変性体(化学式5)をそれぞれ用いた。
Example 2
The resin composition according to Example 2 was produced and subjected to thermal analysis.
As a non-crystalline polymer, poly (2,6-dimethyl-1,4-phenylene oxide) (manufactured by Sigma-Aldrich) having a number average molecular weight of about 20000, and as an oligomer, a number average molecular weight of about 1000 A certain polyphenylene ether “OPE 1000” (manufactured by Mitsubishi Gas Chemical Co., Ltd.) (Chemical formula 4) was used, and as a thermosetting molecule, an epoxy-modified polyphenylene ether (Chemical formula 5) in which both ends were epoxidized was used respectively.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 なお、エポキシ変性体は、次の手順で調製した。はじめに、5.0gのポリフェニレンエーテル「OPE1000」(三菱ガス化学株式会社製)を50mLのトルエン(東京化成工業株式会社製)に溶解させ、13.0gのエピクロルヒドリン(Sigma-Aldrich社製)を加えて、外温100℃で加熱した。続いて、4.5gのナトリウムエトキシド(20%のエタノール溶液)(東京化成工業株式会社製)を加え、外温100℃で5時間に亘って撹拌しながら反応させた。その後、冷却し、0.1Nの塩酸水溶液で3回、蒸留水で3回洗浄した後、ろ過して、そのろ液を濃縮し、エポキシ変性体を得た。また、ろ過の残渣からは、トルエンで2回共沸させた後、トルエンに溶解させ、ろ過して、そのろ液を濃縮してエポキシ変性体を得て、ろ液から得られたものと合せた。 The epoxy-modified product was prepared by the following procedure. First, 5.0 g of polyphenylene ether "OPE 1000" (manufactured by Mitsubishi Gas Chemical Co., Ltd.) is dissolved in 50 mL of toluene (manufactured by Tokyo Chemical Industry Co., Ltd.), and 13.0 g of epichlorohydrin (manufactured by Sigma-Aldrich) is added thereto. , Heated at an external temperature of 100 ° C. Subsequently, 4.5 g of sodium ethoxide (20% ethanol solution) (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added, and the reaction was performed with stirring at an external temperature of 100 ° C. for 5 hours. Then, the reaction solution was cooled, washed three times with 0.1 N aqueous hydrochloric acid solution and three times with distilled water, filtered, and the filtrate was concentrated to obtain an epoxy-modified product. In addition, the residue of filtration is azeotroped twice with toluene, then dissolved in toluene and filtered, and the filtrate is concentrated to obtain an epoxy-modified product, which is combined with that obtained from the filtrate The
 はじめに、非結晶性のポリマー100質量部に対して、オリゴマー25質量部及び熱硬化性分子25質量部を加え、続いて、エポキシ変性体の重合触媒としてジシアンジアミド5質量部を添加し、これらを熱トルエンに溶解させた。
 そして、得られた溶液をキャストし、トルエンを揮発させることによって、フィルム状の実施例2に係る樹脂組成物を作製した。
First, 25 parts by mass of an oligomer and 25 parts by mass of a thermosetting molecule are added to 100 parts by mass of a non-crystalline polymer, followed by adding 5 parts by mass of dicyandiamide as a polymerization catalyst for an epoxy-modified product. It was dissolved in toluene.
Then, the obtained solution was cast and the toluene was evaporated to prepare a resin composition according to Example 2 in the form of a film.
 次に、実施例1においてと同様にして、耐熱指数とガラス転移温度を求めた。
 その結果、実施例2に係る樹脂組成物の耐熱指数は約198℃であり、ガラス転移温度は約160℃であった。
Next, in the same manner as in Example 1, the heat resistance index and the glass transition temperature were determined.
As a result, the heat resistance index of the resin composition according to Example 2 was about 198 ° C., and the glass transition temperature was about 160 ° C.
 非結晶性ポリマーのみが単独で含まれる比較例に係る樹脂組成物の耐熱指数は約228℃であり、ガラス転移温度は約210℃である。
 実施例2に係る樹脂組成物では、比較例に係る樹脂組成物と比較すると、耐熱指数の低下が小さく抑えらていながら、ガラス転移温度が大きく低下していることが認められる。
 したがって、実施例2に係る樹脂組成物は、耐熱性に優れた絶縁電線の皮膜を形成し得る押出成形性が良好な樹脂組成物であることが確認された。
The heat resistance index of the resin composition according to the comparative example in which only the non-crystalline polymer is contained alone is about 228 ° C., and the glass transition temperature is about 210 ° C.
In the resin composition which concerns on Example 2, compared with the resin composition which concerns on a comparative example, it is recognized that the glass transition temperature is falling large, suppressing the fall of a heat resistance index small.
Therefore, it was confirmed that the resin composition which concerns on Example 2 is a resin composition with a favorable extrusion moldability which can form the film of the insulated wire excellent in heat resistance.
 次に、実施例2に係る樹脂組成物を用いて絶縁電線を製造し、その靭性を評価した。
 樹脂組成物を1mm×2mmの銅製の平角線上に、180℃で溶融、混練しながら押出成形した。なお、皮膜の膜厚は、100μmとした。
 続いて、成形した丸線を巻線化し、200℃で1時間に亘って加熱して熱硬化させて、実施例2に係る絶縁電線とした。
Next, an insulated wire was manufactured using the resin composition according to Example 2, and its toughness was evaluated.
The resin composition was extruded on a 1 mm × 2 mm rectangular flat line while melting and kneading at 180 ° C. The film thickness of the film was 100 μm.
Subsequently, the molded round wire was wound, heated at 200 ° C. for 1 hour, and thermally cured to obtain an insulated wire according to Example 2.
 図2は、実施例2に係る絶縁電線の断面模式図である。
 製造された絶縁電線2は、断面が矩形状の銅製の導体10の外周が、樹脂組成物20により形成された絶縁皮膜に被覆された構造を有している。
 この絶縁電線2の靭性は、所定の長さの絶縁電線2を巻線化し、このときの曲げに対して、皮膜のひび割れ、銅線からの剥離が発生しているか否かを目視により確認することによって評価した。
 その結果、ひび割れや剥離は確認されず、実施例2に係る絶縁電線が、曲げに対する靭性に優れていることが確認された。
FIG. 2 is a schematic cross-sectional view of the insulated wire according to the second embodiment.
The manufactured insulated wire 2 has a structure in which the outer periphery of a copper conductor 10 having a rectangular cross section is covered with an insulating film formed of a resin composition 20.
The toughness of the insulated wire 2 is formed by winding the insulated wire 2 of a predetermined length, and visually checking whether cracking of the film or peeling from the copper wire has occurred with respect to bending at this time. Evaluated by.
As a result, no cracking or peeling was confirmed, and it was confirmed that the insulated wire according to Example 2 is excellent in toughness against bending.
[実施例3]
 実施例3に係る樹脂組成物を製造し、熱分析を行った。
 非結晶性のポリマーとしては、数平均分子量が約20000であるポリ(2,6-ジメチル-1,4-フェニレンオキシド)(Sigma-Aldrich社製)、オリゴマーとしては、数平均分子量が約2000であるポリフェニレンエーテル「OPE2000」(三菱ガス化学株式会社製)、熱硬化性分子としては、数平均分子量が約1650であるビスフェノールA型エポキシ樹脂「JER1004」(三菱化学株式会社製)をそれぞれ用いた。
[Example 3]
The resin composition according to Example 3 was produced and subjected to thermal analysis.
As a non-crystalline polymer, poly (2,6-dimethyl-1,4-phenylene oxide) (Sigma-Aldrich) having a number average molecular weight of about 20000, and as a number average molecular weight of about 2000 as an oligomer As polyphenylene ether "OPE 2000" (made by Mitsubishi Gas Chemical Co., Ltd.) and a thermosetting molecule, bisphenol A epoxy resin "JER 1004" (made by Mitsubishi Chemical Co., Ltd.) having a number average molecular weight of about 1650 was used respectively.
 はじめに、非結晶性のポリマー100質量部に対して、オリゴマー25質量部と、ポリマー及びオリゴマーの水酸基当量の熱硬化性分子を加え、続いて、エポキシ樹脂の重合触媒としてジシアンジアミド5質量部を添加し、これらを熱トルエンに溶解させた。
 そして、得られた溶液をキャストし、トルエンを揮発させることによって、フィルム状の実施例3に係る樹脂組成物を作製した。
First, 25 parts by mass of oligomer and thermosetting molecule of hydroxyl equivalent of polymer and oligomer are added to 100 parts by mass of non-crystalline polymer, and then 5 parts by mass of dicyandiamide as a polymerization catalyst of epoxy resin is added These were dissolved in hot toluene.
Then, the obtained solution was cast, and toluene was evaporated to prepare a resin composition according to Example 3 in the form of a film.
 次に、実施例1においてと同様にして、耐熱指数とガラス転移温度を求めた。
 その結果、実施例3に係る樹脂組成物の耐熱指数は約180℃であり、ガラス転移温度は約170℃であった。
Next, in the same manner as in Example 1, the heat resistance index and the glass transition temperature were determined.
As a result, the heat resistance index of the resin composition according to Example 3 was about 180 ° C., and the glass transition temperature was about 170 ° C.
 非結晶性ポリマーのみが単独で含まれる比較例に係る樹脂組成物の耐熱指数は約228℃であり、ガラス転移温度は約210℃である。
 実施例3に係る樹脂組成物では、比較例に係る樹脂組成物と比較すると、耐熱指数の低下が小さく抑えらていながら、ガラス転移温度が大きく低下していることが認められる。
 したがって、実施例3に係る樹脂組成物は、耐熱性に優れた絶縁電線の皮膜を形成し得る押出成形性が良好な樹脂組成物であることが確認された。
The heat resistance index of the resin composition according to the comparative example in which only the non-crystalline polymer is contained alone is about 228 ° C., and the glass transition temperature is about 210 ° C.
In the resin composition which concerns on Example 3, compared with the resin composition which concerns on a comparative example, it is recognized that the glass transition temperature is falling large, suppressing the fall of a heat resistance index small.
Therefore, it was confirmed that the resin composition which concerns on Example 3 is a resin composition with favorable extrusion moldability which can form the film of the insulated wire excellent in heat resistance.
 次に、実施例3に係る樹脂組成物を用いて絶縁電線を製造し、その靭性を評価した。
 樹脂組成物を直径100μmのアルミニウム製の丸線上に、170℃で溶融、混練しながら押出成形した。なお、皮膜の膜厚は、100μmとした。
 続いて、成形した丸線を巻線化し、220℃で1時間に亘って加熱して熱硬化させて、実施例3に係る絶縁電線とした。
Next, an insulated wire was manufactured using the resin composition according to Example 3, and its toughness was evaluated.
The resin composition was extruded while being melted and kneaded at 170 ° C. on an aluminum round wire having a diameter of 100 μm. The film thickness of the film was 100 μm.
Subsequently, the molded round wire was wound, heated at 220 ° C. for 1 hour, and thermally cured to obtain an insulated wire according to Example 3.
 得られた絶縁電線の靭性は、所定の長さの絶縁電線を巻線化し、このときの曲げに対して、皮膜のひび割れ、銅線からの剥離が発生しているか否かを目視により確認することによって評価した。
 その結果、ひび割れや剥離は確認されず、実施例3に係る樹脂組成物を用いて製造された絶縁電線が、曲げに対する靭性に優れていることが確認された。
The toughness of the obtained insulated wire is obtained by winding the insulated wire of a predetermined length and visually checking whether cracking of the film or peeling from the copper wire has occurred in bending at this time. Evaluated by.
As a result, cracking and peeling were not confirmed, and it was confirmed that the insulated wire manufactured using the resin composition according to Example 3 is excellent in toughness against bending.
1 丸線(絶縁電線)
2 平角線(絶縁電線)
10 導体
20 皮膜(樹脂組成物)
1 Round wire (insulated wire)
2 Square wire (insulated wire)
10 conductor 20 film (resin composition)

Claims (9)

  1.  非結晶性のポリマーと、
     前記ポリマーを構成するモノマーと同種のモノマーが重合してなるオリゴマーと、
     熱硬化性分子と、
    を含み、
     前記オリゴマーの平均分子量が、前記ポリマーの平均分子量の10分の1以下である
    ことを特徴とする樹脂組成物。
    A non-crystalline polymer,
    An oligomer formed by polymerizing a monomer of the same type as a monomer constituting the polymer;
    Thermosetting molecule,
    Including
    A resin composition characterized in that the average molecular weight of the oligomer is one tenth or less of the average molecular weight of the polymer.
  2.  前記オリゴマー及び前記熱硬化性分子の総含有量が、前記ポリマー100質量部に対して、10質量部以上100質量部以下である
    ことを特徴とする請求項1に記載の樹脂組成物。
    The resin composition according to claim 1, wherein a total content of the oligomer and the thermosetting molecule is 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the polymer.
  3.  前記熱硬化性分子が、前記オリゴマーの末端にビニルベンジル基を有するスチレン変性体である
    ことを特徴とする請求項1に記載の樹脂組成物。
    The resin composition according to claim 1, wherein the thermosetting molecule is a styrene-modified product having a vinylbenzyl group at an end of the oligomer.
  4.  さらに、
     前記熱硬化性分子に対して反応当量となるビスマレイミド化合物を含む
    ことを特徴とする請求項3に記載の樹脂組成物。
    further,
    The resin composition according to claim 3, comprising a bismaleimide compound which is a reaction equivalent to the thermosetting molecule.
  5.  前記熱硬化性分子が、前記オリゴマーの末端にエポキシ基を有するエポキシ変性体である
    ことを特徴とする請求項1に記載の樹脂組成物。
    The resin composition according to claim 1, wherein the thermosetting molecule is an epoxy-modified product having an epoxy group at an end of the oligomer.
  6.  前記非結晶性のポリマーが、ポリフェニレンエーテルである
    ことを特徴とする請求項1に記載の樹脂組成物。
    The resin composition according to claim 1, wherein the noncrystalline polymer is polyphenylene ether.
  7.  前記熱硬化性分子が、前記ポリフェニレンエーテル及び前記オリゴマーが有する水酸基の総量に対して反応等量となるエポキシ樹脂である
    ことを特徴とする請求項6に記載の樹脂組成物。
    The resin composition according to claim 6, wherein the thermosetting molecule is an epoxy resin having a reaction equivalent amount with respect to a total amount of hydroxyl groups of the polyphenylene ether and the oligomer.
  8.  非結晶性のポリマーと、前記ポリマーを構成するモノマーと同種のモノマーが重合してなるオリゴマーと、熱硬化性分子と、を含み、前記オリゴマーの平均分子量が、前記ポリマーの平均分子量の10分の1以下である樹脂組成物を調製する工程と、
     前記樹脂組成物を溶融させて導体を被覆する工程と、
    を備える
    ことを特徴とする絶縁電線の製造方法。
    A non-crystalline polymer, an oligomer formed by polymerizing a monomer of the same kind as a monomer constituting the polymer, and a thermosetting molecule, wherein the average molecular weight of the oligomer is 10 minutes of the average molecular weight of the polymer Preparing a resin composition that is less than or equal to 1;
    Melting the resin composition to coat a conductor;
    A method of manufacturing an insulated wire, comprising:
  9.  非結晶性のポリマーと、前記ポリマーを構成するモノマーと同種のモノマーが重合してなるオリゴマーと、ポリフェニレンエーテル及び前記オリゴマーが有する水酸基の総量に対して1反応等量となるエポキシ樹脂と、を含み、前記オリゴマーの平均分子量が、前記ポリマーの平均分子量の10分の1以下である樹脂組成物を調製する工程と、
     前記樹脂組成物を溶融させて導体を被覆する工程と、
     前記樹脂組成物を加熱して前記樹脂組成物を熱硬化させる工程と、
    を備える
    ことを特徴とする絶縁電線の製造方法。
    A non-crystalline polymer, an oligomer formed by polymerizing a monomer of the same kind as a monomer constituting the polymer, and an epoxy resin equivalent to one reaction equivalent to the total amount of polyphenylene ether and hydroxyl groups possessed by the oligomer Preparing a resin composition in which the average molecular weight of the oligomer is not more than one tenth of the average molecular weight of the polymer;
    Melting the resin composition to coat a conductor;
    Heating the resin composition to thermally cure the resin composition;
    A method of manufacturing an insulated wire, comprising:
PCT/JP2013/066267 2013-06-12 2013-06-12 Resin composition, and method for manufacturing insulated electric wire using same WO2014199473A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/066267 WO2014199473A1 (en) 2013-06-12 2013-06-12 Resin composition, and method for manufacturing insulated electric wire using same
JP2015522333A JP6006873B2 (en) 2013-06-12 2013-06-12 Resin composition and method for producing insulated wire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066267 WO2014199473A1 (en) 2013-06-12 2013-06-12 Resin composition, and method for manufacturing insulated electric wire using same

Publications (1)

Publication Number Publication Date
WO2014199473A1 true WO2014199473A1 (en) 2014-12-18

Family

ID=52021804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066267 WO2014199473A1 (en) 2013-06-12 2013-06-12 Resin composition, and method for manufacturing insulated electric wire using same

Country Status (2)

Country Link
JP (1) JP6006873B2 (en)
WO (1) WO2014199473A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290124A (en) * 2004-03-31 2005-10-20 Asahi Kasei Chemicals Corp Polyphenylene ether resin composition
JP2010215783A (en) * 2009-03-17 2010-09-30 Asahi Kasei Chemicals Corp Polyphenylene ether
WO2012049743A1 (en) * 2010-10-13 2012-04-19 旭化成ケミカルズ株式会社 Polyphenylene ether as well as resin composition and molding thereof
WO2012081705A1 (en) * 2010-12-16 2012-06-21 旭化成イーマテリアルズ株式会社 Curable resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290124A (en) * 2004-03-31 2005-10-20 Asahi Kasei Chemicals Corp Polyphenylene ether resin composition
JP2010215783A (en) * 2009-03-17 2010-09-30 Asahi Kasei Chemicals Corp Polyphenylene ether
WO2012049743A1 (en) * 2010-10-13 2012-04-19 旭化成ケミカルズ株式会社 Polyphenylene ether as well as resin composition and molding thereof
WO2012081705A1 (en) * 2010-12-16 2012-06-21 旭化成イーマテリアルズ株式会社 Curable resin composition

Also Published As

Publication number Publication date
JP6006873B2 (en) 2016-10-12
JPWO2014199473A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
KR101148225B1 (en) Method for producing laminate
US7608336B2 (en) Flame-retardant epoxy resin composition and cured product obtained therefrom
JP2008531786A (en) Polyetherimide film and multilayer structure
KR101345011B1 (en) Rf tag and method for producing same
WO2008123326A1 (en) Thermosetting resin composite composition, resin molded body, and method for producing the composition
EP1566395B1 (en) Flame-retardant epoxy resin composition and cured object obtained therefrom
CN108192136B (en) Heat-conducting filler composition, high-heat-conducting insulating composite material and preparation method thereof
JP2020515659A (en) Fiber-reinforced polymer composition
JP6049252B2 (en) Flexible flat cable for automobile and manufacturing method thereof
KR20110110217A (en) Chrome-free method of conditioning and etching of a thermoplastic substrate for metal plating
WO2006025684A1 (en) Flexible copper-polyimide laminate and manufacturing method thereof
CN114391030A (en) Chemically compatible fluoropolymer blends
JP3248424B2 (en) Process for producing modified polyphenylene oxide, epoxy resin composition using modified polyphenylene oxide by this process, prepreg using this composition, and laminate using this prepreg
JP5200563B2 (en) Insulated wire
CN113912825B (en) Liquid crystal polyester and preparation method and application thereof
WO2008072630A1 (en) Polyamide resin, epoxy resin composition using the same, and use of the composition
JP2003026914A (en) Printed wiring board film and printed wiring board
WO2018234116A1 (en) Layered structures
WO2014199473A1 (en) Resin composition, and method for manufacturing insulated electric wire using same
JP4947976B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JPH02219858A (en) Polyarylene sulfide resin composition and molding produced therefrom
TW202311398A (en) Polyphenylene ether resin modified by bismaleimide, manufacturing method thereof, and substrate material of circuit board
CN110799594B (en) Layered structure
JP2021100807A (en) Fiber-reinforced plastic laminate molding and its manufacturing method
JP6863161B2 (en) Varnish manufacturing method, enamel wire manufacturing method, coil manufacturing method and electrical parts manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886836

Country of ref document: EP

Kind code of ref document: A1