WO2014196269A1 - Ionic vinyl ether copolymer, and method for producing organic compound using same - Google Patents

Ionic vinyl ether copolymer, and method for producing organic compound using same Download PDF

Info

Publication number
WO2014196269A1
WO2014196269A1 PCT/JP2014/060483 JP2014060483W WO2014196269A1 WO 2014196269 A1 WO2014196269 A1 WO 2014196269A1 JP 2014060483 W JP2014060483 W JP 2014060483W WO 2014196269 A1 WO2014196269 A1 WO 2014196269A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
vinyl ether
organic compound
Prior art date
Application number
PCT/JP2014/060483
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木崇将
高瀬一郎
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2015521336A priority Critical patent/JPWO2014196269A1/en
Publication of WO2014196269A1 publication Critical patent/WO2014196269A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1458Monomers containing nitrogen

Definitions

  • the present invention relates to an ionic vinyl ether copolymer and a method for producing an organic compound using the same. More specifically, the present invention relates to an ionic vinyl ether copolymer that can be preferably used as a phase transfer catalyst in an oxidation reaction in an organic solvent and water in a two-phase reaction field, and a method for producing an organic compound in the two-phase reaction field using the same. .
  • This application claims the priority of Japanese Patent Application No. 2013-120342 for which it applied to Japan on June 7, 2013, and uses the content here.
  • Oxidation reactions using oxidants are used in various applications. For example, production of aldehydes and carboxylic acids by oxidation of primary alcohols, production of ketones by oxidation of secondary alcohols, oxidation of unsaturated compounds. It is used for the production of various organic compounds such as the production of epoxy compounds and diols.
  • the oxidation reaction using hydrogen peroxide as an oxidant has attracted attention in recent years from the viewpoint of reducing environmental impact because hydrogen peroxide is inexpensive, does not exhibit corrosivity, and the by-product is water. ing.
  • an organic compound using hydrogen peroxide as an oxidizing agent for example, a polymer obtained by radical polymerization of an acrylate monomer having a quaternary ammonium salt moiety and N-isopropylacrylamide is used as an organic solvent / water.
  • a method of epoxidizing allyl alcohol by using as a phase transfer catalyst in a two-phase system is known (see Patent Document 1, Non-Patent Documents 1 and 2).
  • Non-Patent Document 2 shows that the reaction does not proceed when cyclohexene is used as a substrate. For this reason, it is applicable to the case where olefins other than allyl alcohol are used as a substrate, and development of a method for producing an organic compound capable of using hydrogen peroxide as an oxidizing agent is desired at present.
  • Representative examples of allyl alcohols include glycidol, geraniol, 2-cyclohexenol, 2-buten-1-ol, farnesol, phytol, and the like.
  • an object of the present invention is to provide an ionic vinyl ether copolymer that enables an epoxidation reaction using hydrogen peroxide in an organic solvent / water two-phase system even when an olefin other than an allyl alcohol is used as a substrate. There is to do.
  • Another object of the present invention is to oxidize an organic compound (sometimes referred to as “oxidizable organic compound”) in an organic solvent / water two-phase system and to produce a corresponding oxidized organic compound (“oxidized compound”). It is an object of the present invention to provide a method for producing an organic compound applicable to a wide range of substrates including allyl alcohol.
  • Another object of the present invention is to provide an oxidation reaction catalyst that enables an epoxidation reaction using hydrogen peroxide in an organic solvent / water two-phase system even when an olefin other than an allyl alcohol is used as a substrate. Is to provide.
  • the present inventors have used an ionic vinyl ether copolymer having a specific structure as a phase transfer catalyst, so that even when an olefin other than an allyl alcohol is used as a substrate, The present invention was completed by finding that an epoxidation reaction using hydrogen peroxide in an organic solvent / water two-phase system was possible.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • a 1 represents an alkylene group having 2 to 4 carbon atoms.
  • a represents an integer of 0 to 36. When a is an integer of 2 or more, a plurality of A 1 may be the same or different.
  • b represents an integer of 1 to 18.
  • X is the following formula (4) [In formula (4), R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms.
  • Y ⁇ represents an anion.
  • R 5 represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms.
  • d represents an integer of 0 to 5.
  • Y ⁇ represents an anion.
  • the group represented by these is shown.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms.
  • a 2 represents an alkylene group having 2 to 4 carbon atoms.
  • c represents an integer of 1 to 24. When c is an integer of 2 or more, a plurality of A 2 may be the same or different.
  • the ionic vinyl ether copolymer characterized by having the structural unit represented by these is provided.
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 9 represents an alkyl group having 1 to 36 carbon atoms or an alkenyl group having 2 to 36 carbon atoms.
  • the ionic vinyl ether copolymer having the structural unit represented by the formula:
  • the present invention also relates to a method for producing an oxidized organic compound by proceeding an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water, and the phase transfer of the two-phase reaction field
  • a method for producing an organic compound characterized in that the ionic vinyl ether copolymer is used as a catalyst.
  • the present invention provides a method for producing the organic compound, wherein the oxidation reaction proceeds in the presence of a complex oxide prepared from the ionic vinyl ether copolymer and a heteropolyacid or a salt thereof or a precursor compound thereof.
  • the production of the organic compound, wherein the heteropolyacid or a salt thereof is a heteropolyacid or a salt thereof containing a phosphorus atom and at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium.
  • the heteropolyacid or a salt thereof is a heteropolyacid or a salt thereof containing a phosphorus atom and at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium.
  • the precursor compound is an inorganic acid containing at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium, or a salt thereof, and a phosphorus atom-containing oxo acid or an organic salt thereof.
  • a method for producing a compound is provided.
  • the present invention provides the method for producing an organic compound, wherein the oxidation reaction is an epoxidation reaction of an olefin carbon-carbon double bond using hydrogen peroxide.
  • the present invention also provides a catalyst for an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water,
  • a phase transfer catalyst As a phase transfer catalyst, the following formula (1) [In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 represents an alkylene group having 2 to 4 carbon atoms. a represents an integer of 0 to 36. When a is an integer of 2 or more, a plurality of A 1 may be the same or different. b represents an integer of 1 to 18.
  • X is the following formula (4) [In formula (4), R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms. Y ⁇ represents an anion. ] Or a group represented by the following formula (5) [In Formula (5), R 5 represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. d represents an integer of 0 to 5. Y ⁇ represents an anion. ] The group represented by these is shown. ] And the following formula (2) [In the formula (2), R 6 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms.
  • a 2 represents an alkylene group having 2 to 4 carbon atoms.
  • c represents an integer of 1 to 24. When c is an integer of 2 or more, a plurality of A 2 may be the same or different.
  • the catalyst for oxidation reaction characterized by including the ionic vinyl ether copolymer which has the structural unit represented by these.
  • R 1 in the above formula (1) is a hydrogen atom
  • a 1 is a linear or branched alkylene group having 2 or 3 carbon atoms
  • a is an integer of 0 to 2
  • b The ionic vinyl ether copolymer according to [1], wherein is an integer of 1 to 4.
  • Ionic vinyl ether copolymer [4]
  • R 6 is a hydrogen atom
  • R 7 is an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 10 carbon atoms
  • a 2 is a straight or branched chain having 2 or 3 carbon atoms.
  • [5] The ionic vinyl ether copolymer according to any one of [1] to [4], further having a structural unit represented by the above formula (3).
  • the proportion of the structural unit represented by the above formula (2) is 1 to 99 mol% with respect to the total amount (100 mol%) of the structural units constituting the ionic vinyl ether copolymer. 7] The ionic vinyl ether copolymer according to any one of [7]. [9] The proportion of the structural unit represented by the formula (3) is 0 to 90 mol% with respect to the total amount (100 mol%) of the structural units constituting the ionic vinyl ether copolymer. 8] The ionic vinyl ether copolymer described in any one of [8]. [10] The ionic vinyl ether copolymer according to any one of [1] to [9], wherein the degree of polymerization of all the structural units is 10 to 10,000.
  • [11] The ionic vinyl ether copolymer according to any one of [1] to [10], which has a weight average molecular weight of 1,000 to 100,000.
  • [12] A method for producing an oxidized organic compound by proceeding an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water, as a phase transfer catalyst in the two-phase reaction field, [1] A method for producing an organic compound, wherein the ionic vinyl ether copolymer according to any one of [1] to [11] is used.
  • the organic solvent is a cyclo C 3-10 alkanol, a chain ether, a ketone, an ester (chain ester), an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon,
  • the method for producing an organic compound according to [12] which is at least one organic solvent selected from the group consisting of halogenated hydrocarbons and phenols.
  • the heteropolyacid or salt thereof is a heteropolyacid or salt thereof containing a phosphorus atom and at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium. 16] The manufacturing method of the organic compound in any one of. [18] The precursor compound includes an inorganic acid or a salt thereof containing at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium, and a phosphorus atom-containing oxo acid or a salt thereof. ] The manufacturing method of the organic compound in any one of [17].
  • the olefin is (i) a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, and / or (ii) a cycloalkene ring (a cycloalkapolyene ring such as a cycloalkadiene ring) And the method for producing an organic compound according to [19] or [20].
  • the amount of the oxidizing agent used in the method for producing an organic compound of the present invention is hydrogen peroxide as the oxidizing agent
  • the amount of the hydrogen peroxide (substantially added hydrogen peroxide) is Any one of [19] to [25], which is 0.5 to 3.0 moles per mole of the oxidized group (olefin carbon-carbon double bond, etc.) of the oxidized organic compound (olefin) A method for producing an organic compound.
  • the ionic vinyl ether copolymer of the present invention has the above-described structure, so that not only allyl alcohol but also olefin other than allyl alcohol is used as a substrate.
  • the epoxidation reaction using hydrogen peroxide in the organic solvent / water two-phase system can be efficiently advanced.
  • the ionic vinyl ether copolymer of the present invention is a copolymer having a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2) as essential structural units (monomer units).
  • R 1 in the formula (1) represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n -Linear or branched alkyl groups having 1 to 5 carbon atoms, such as a pentyl group.
  • R 1 a hydrogen atom is preferable.
  • a 1 in the formula (1) represents an alkylene group having 2 to 4 carbon atoms.
  • the alkylene group having 2 to 4 carbon atoms include linear or branched alkylene groups having 2 to 4 carbon atoms such as ethylene group, propylene group, trimethylene group and tetramethylene group.
  • a 1 a linear or branched alkylene group having 2 or 3 carbon atoms is preferable.
  • a represents an integer of 0 to 36, and when a is an integer of 2 or more, a plurality of A 1 may be the same or different.
  • a is preferably an integer of 0 to 2.
  • the addition form of these oxyalkylene structural units is not particularly limited, and may be a random type, It may be a block type.
  • B in the formula (1) represents an integer of 1 to 18.
  • b is preferably an integer of 1 to 4.
  • X in the formula (1) represents a group represented by the following formula (4) or a group (ionic group) represented by the following formula (5).
  • R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms.
  • the alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-propyl group, n-butyl group, i-butyl group, hexyl group, octyl group and the like.
  • a linear or branched alkyl group having 1 to 18 carbon atoms are examples of the alkyl group having 1 to 18 carbon atoms.
  • alkenyl group having 2 to 18 carbon atoms examples include linear or branched alkenyl groups having 2 to 18 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, and butenyl group.
  • R 2 , R 3 , and R 4 in formula (4) are each an alkyl group having 2 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms.
  • R 2 , R 3 , and R 4 are preferably an alkyl group having 2 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, more preferably an alkyl group or carbon having 4 to 10 carbon atoms.
  • Y ⁇ represents an anion.
  • Y ⁇ is not limited to a monovalent anion, and may be, for example, an anion represented by Y 2 ⁇ , Y 3 ⁇ or the like as two or more (—NR 2 R 3 R 4 ) + counter ions. May be.
  • Examples of Y ⁇ include halide ions such as chloride ion, fluoride ion and bromide ion; inorganic anions obtained by removing protons from inorganic acids such as sulfuric acid and phosphoric acid; methosulfate, ethosulfate, methophosphate, etho Examples thereof include organic anions obtained by removing protons from phosphates and various organic acids (for example, acetic acid, lactic acid, citric acid, etc.).
  • R 5 is a substituent on the aromatic heterocyclic ring (pyridine ring), and represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms.
  • D is the number of R 5 (the number of substitutions) on the aromatic heterocyclic ring and represents an integer of 0 to 5.
  • Y ⁇ represents an anion similarly to the formula (4).
  • the ionic vinyl ether copolymer of the present invention may have one of the structural units represented by the formula (1), or may have two or more.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Specific examples of R 6 include the same as R 1 described above. Among them, R 6 is preferably a hydrogen atom.
  • R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms.
  • R 7 include the same as R 2 to R 4 described above. Among them, R 7 is preferably an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 10 carbon atoms.
  • a 2 represents an alkylene group having 2 to 4 carbon atoms. Specific examples of A 2 include the same as A 1 described above. Among these, as A 2 , a linear or branched alkylene group having 2 or 3 carbon atoms is preferable.
  • c represents an integer of 1 to 24. When c is an integer of 2 or more, a plurality of A 2 may be the same or different.
  • the addition form of these oxyalkylene structural units is not particularly limited, and may be a random type, It may be a block type.
  • the ionic vinyl ether copolymer of the present invention may have one of the structural units represented by the formula (2), or may have two or more.
  • the ionic vinyl ether copolymer of the present invention may further have a structural unit represented by the following formula (3).
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Specific examples of R 8 include those similar to R 1 described above. Among these, as R 8 , a hydrogen atom is preferable.
  • R 9 represents an alkyl group having 1 to 36 carbon atoms or an alkenyl group having 2 to 36 carbon atoms.
  • R 9 include those similar to the alkyl group having 1 to 18 carbon atoms and the alkenyl group having 2 to 18 carbon atoms in R 2 to R 4 described above.
  • R 9 is preferably an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms.
  • the ionic vinyl ether copolymer of the present invention may have one of the structural units represented by the formula (3), or may have two or more.
  • the ionic vinyl ether copolymer of the present invention may have structural units other than the structural units represented by the above formulas (1) to (3) (sometimes referred to as “other structural units”).
  • the proportion of the structural unit represented by the formula (1) in the ionic vinyl ether copolymer of the present invention is not particularly limited, but is based on the total amount of the structural units constituting the ionic vinyl ether copolymer (total structural unit: 100 mol%). It is preferably 1 mol% or more, more preferably 5 to 90 mol%, further preferably 10 to 70 mol%, particularly preferably 12 to 40 mol%, and most preferably 30 mol% or more.
  • the proportion of the structural unit represented by the formula (1) to 1 mol% or more (particularly 30 mol% or more)
  • the oxidation reaction of the organic compound particularly olefin epoxidation with hydrogen peroxide
  • the proportion of the structural unit represented by the formula (2) in the ionic vinyl ether copolymer of the present invention is not particularly limited, but is 1 to 99 with respect to the total amount (100 mol%) of the structural units constituting the ionic vinyl ether copolymer.
  • the mol% is preferable, more preferably 5 to 90 mol%, still more preferably 10 to 70 mol%, particularly preferably 12 to 40 mol%, and most preferably 30 mol% or more.
  • the proportion of the structural unit represented by the formula (3) in the ionic vinyl ether copolymer of the present invention is not particularly limited, but is 0 to 90 with respect to the total amount (100 mol%) of the structural units constituting the ionic vinyl ether copolymer.
  • the mol% is preferable, more preferably 10 to 50 mol%, still more preferably 30 to 45 mol%.
  • the degree of polymerization of all structural units in the ionic vinyl ether copolymer of the present invention is not particularly limited, but is preferably 10 to 10,000, more preferably 100 to 5,000, and still more preferably 120 to 3,000.
  • the degree of polymerization is 10 or more, there is a tendency that an oxidation reaction of an organic compound (particularly, olefin epoxidation with hydrogen peroxide) can proceed with higher efficiency.
  • the degree of polymerization is 10,000 or less, when the reaction is carried out in a two-phase reaction field of organic solvent / water, there is a tendency that good reactivity can be secured without the viscosity of the aqueous phase becoming too high.
  • the ionic vinyl ether copolymer of this invention is not specifically limited, For example, it can manufacture by the following method.
  • a monomer (sometimes referred to as “monomer (i)") corresponding to a structural unit (sometimes referred to as “structural unit (i)") that can be converted into the structural unit represented by formula (1); and ,
  • a monomer corresponding to the structural unit represented by formula (2) (sometimes referred to as “monomer (2)”), and, if necessary, a monomer corresponding to the structural unit represented by formula (3)
  • the monomer (sometimes referred to as “monomer (3)”) or a monomer corresponding to another structural unit (sometimes referred to as “other monomer”) is copolymerized, and then the structural unit (i) is represented by the formula (1).
  • a monomer (sometimes referred to as “monomer (i) corresponding to a structural unit (sometimes referred to as “structural unit (i)"
  • structural unit (i) is represented by the formula (1).
  • Step 1 Copolymerizing a monomer mixture containing monomer (i) and monomer (2) as essential components to form a precursor of the ionic vinyl ether copolymer of the present invention (sometimes referred to as “precursor copolymer”).
  • Step of generating Step 2 Converting the structural unit (i) in the precursor copolymer obtained in Step 1 into the structural unit represented by the formula (1) to generate the ionic vinyl ether copolymer of the present invention.
  • the structural unit (i) is not particularly limited as long as it is a structural unit that can be converted into the structural unit represented by the formula (1).
  • Examples of the monomer (monomer (i)) corresponding to the structural unit (i) include compounds represented by the following formula (i-1).
  • R 1 , A 1 , a, and b are the same as those in formula (1).
  • Z in formula (i-1) represents an amino group, a halogen atom, or a sulfate group protected by a protecting group.
  • the protecting group in the amino group protected by the protecting group as Z include known or commonly used protecting groups for amino groups, specifically, Protective Groups in Organic Synthesis 3rd Ed. T. W. Greene, P.M. G. M.M. Wuts, John Wiley and Sons, Inc. , Protecting groups described in 1999, and the like.
  • phthaloyl group alkoxycarbonyl such as t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group, allyloxycarbonyl group, etc.
  • groups acyl groups such as trifluoroacetyl group; arylsulfonyl groups such as p-toluenesulfonyl group and 2,2-nitrobenzenesulfonyl group; and the like.
  • the halogen atom as Z include a fluorine atom, a chlorine atom, and a bromine atom.
  • the sulfate group as Z include a methane sulfate group and a p-toluene sulfate group.
  • Examples of the compound represented by the formula (i-1) in which Z is an amino group protected by a protecting group include 2-phthalimidoethyl vinyl ether.
  • the phthaloylimide group of 2-phthalimidoethyl vinyl ether is deprotected by, for example, reacting with hydrazine in Step 2, and then reacting with an alkyl halide having 1 to 18 carbon atoms or an alkenyl halide having 2 to 18 carbon atoms.
  • Z is a halogen atom, it can be converted into a group represented by the above formula (5) by reacting with pyridine or substituted pyridine in Step 2, for example.
  • the copolymerization of the monomer (vinyl ether monomer) in Step 1 can be advanced by a cationic polymerization method.
  • living cationic polymerization is preferred from the viewpoint of easy control of the molecular weight, composition, and structure of the resulting copolymer and easy obtaining of a uniform polymer having a narrow molecular weight distribution and composition distribution.
  • the copolymerization of the monomer in step 1 can be allowed to proceed in the absence of a solvent, or can be allowed to proceed in the presence of a solvent.
  • the solvent include aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as n-pentane and n-hexane; halogenated hydrocarbons such as dichloromethane and dichloroethane; diethyl ether and tetrahydrofuran. Examples include ether.
  • a polymerization solvent can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the amount of the polymerization solvent to be used is not particularly limited, but can be appropriately selected from the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the total amount of monomers.
  • a known or conventional polymerization initiator can be used, and is not particularly limited, but hydrochloric acid, phosphoric acid, sulfuric acid, oxalic acid, hydrogen iodide, acetic acid, Protonic acids such as trifluoroacetic acid; metal oxides such as phosphorus oxide, titanium oxide, aluminum oxide and other solid acids; halogens such as chlorine, bromine, iodine, iodine chloride, bromine chloride, iodine bromide; magnesium, zinc, Metal halides such as chlorides, bromides, iodides such as aluminum, titanium, iron and boron; organometallic compounds such as alkylates such as aluminum or zinc; magnesium alkylations such as Grignard reagents; triphenylmethylcarbonium ions And stable carbonium ions; Lewis acids such as boron trifluoride-diethyl ether complex It is.
  • a compound that generates protons such as water, alcohol, and proton acid
  • a compound that generates carbonium ions such as alkyl halides, and the like are used as a cocatalyst together with a polymerization initiator. You can also.
  • examples of living cationic polymerization initiators include known or conventional polymerization initiators such as HI / I 2 -based initiators, initiators combining organic aluminum compounds and additives such as ethers or esters. Agents can be used.
  • the amount of the polymerization initiator used is not particularly limited, and can be appropriately selected from known amounts used.
  • the temperature at which the monomer is copolymerized in Step 1 (polymerization temperature) varies depending on the kind of the polymerization initiator, monomer, polymerization solvent and the like to be used, and is not particularly limited, but is preferably ⁇ 80 to 150 ° C., more preferably ⁇ 78-80 ° C.
  • the polymerization time varies depending on the type of polymerization initiator, monomer, solvent and the like to be used, and is not particularly limited, but is preferably 10 minutes to 100 hours.
  • the copolymerization reaction can be carried out in any form such as a batch form, a semibatch form, and a continuous form.
  • a precursor copolymer having a structural unit represented by the following formula (i) and a structural unit represented by the formula (2) as essential structural units is obtained.
  • the precursor copolymer may be purified by a conventional method, for example, separation means such as concentration, extraction, column chromatography, or a combination means combining these before or after being subjected to Step 2. Good.
  • separation means such as concentration, extraction, column chromatography, or a combination means combining these before or after being subjected to Step 2.
  • Step 2 Good.
  • step 2 the structural unit (i) in the precursor copolymer is converted into the structural unit represented by the formula (1) to produce the ionic vinyl ether copolymer of the present invention.
  • the method for converting the structural unit (i) into the structural unit represented by the formula (1) is not particularly limited, and a well-known method can be used in the field of organic synthesis.
  • Z is an amino group protected by a phthaloyl group (phthaloylimide group)
  • Z is deprotected by reacting with hydrazine, and then an alkyl halide having 1 to 18 carbon atoms or 2 carbon atoms.
  • Z can be converted to a group represented by the formula (4) by reacting with an alkenyl halide of ⁇ 18.
  • Z is a halogen atom, it can be converted into a group represented by the above formula (5) by reacting with pyridine or substituted pyridine in Step 2, for example.
  • the ionic vinyl ether copolymer of the present invention can be purified by a conventional method, for example, separation means such as dialysis, concentration, filtration, column chromatography, or a separation means combining these.
  • the ionic vinyl ether copolymer of the present invention is a method for producing an oxidized organic compound (oxidized compound) by advancing an oxidation reaction of an organic compound (oxidized organic compound) in a two-phase reaction field between an organic solvent and water. And can be preferably used as a phase transfer catalyst in the above two-phase reaction field.
  • the ionic vinyl ether copolymer of the present invention as a phase transfer catalyst, not only allyl alcohols but also olefins other than allyl alcohols can be used as substrates for oxidation reactions (particularly due to hydrogen peroxide). Epoxidation reaction) can be carried out efficiently.
  • the manufacturing method of the said organic compound which uses the ionic vinyl ether copolymer of this invention as a phase transfer catalyst is called "the manufacturing method of the organic compound of this invention.”
  • the oxidation reaction in the method for producing an organic compound of the present invention is carried out in a two-phase reaction field of an organic solvent and water.
  • an organic solvent a known or conventional organic solvent capable of forming a two-phase with water (aqueous solution or the like) can be used, and it is appropriately selected according to the kind of the organic compound to be oxidized (especially olefin).
  • cyclo C 3-10 alkanols such as cyclopropanol and cyclohexanol
  • chain ethers such as dimethyl ether and diethyl ether
  • MIBK methyl isobutyl ketone
  • cyclopentanone Ketones such as cyclohexanone
  • esters chain esters
  • hydrocarbons eg, aliphatic hydrocarbons such as pentane, hexane, heptane, cyclohexane, methyl
  • Cycloaliphatic hydrocarbons such as cyclohexane, toluene, Ren, aromatic hydrocarbons such as ethylbenzene
  • chloroform methylene chloride, halogenated hydrocarbons such as chlorobenzene.
  • the ratio of water to the organic solvent is not particularly limited, but is preferably selected from the range of the former / the latter (weight ratio) 90/10 to 5/95, more preferably 85/15 to 10/90, still more preferably Is 80/20 to 15/85, particularly preferably 75/25 to 20/80.
  • the amount of the organic solvent used is not particularly limited, but is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 15 parts by weight with respect to 1 part by weight of the organic compound to be oxidized (olefin or the like) More preferably, it is 0.1 to 10 parts by weight (for example, 0.2 to 5 parts by weight).
  • the oxidation reaction in the method for producing an organic compound of the present invention proceeds particularly in the presence of an oxide of a complex prepared from the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof. It is preferable in that the oxidation reaction can proceed with higher efficiency.
  • the oxide of the above complex coexists with the ionic vinyl ether copolymer of the present invention and the heteropolyacid or a salt thereof or a precursor compound thereof in the reaction system in the presence of an oxidizing agent (particularly hydrogen peroxide). Can be generated.
  • the method for producing an organic compound of the present invention comprises a catalyst (oxidation reaction) for an oxidation reaction of an organic compound in a two-phase reaction field of an organic solvent and water, which contains at least the ionic vinyl ether copolymer of the present invention as a phase transfer catalyst.
  • the oxidation reaction proceeds in the presence of a catalyst.
  • the oxidation reaction catalyst preferably includes at least the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof.
  • the oxidation catalyst is a complex oxide prepared from the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof by coexisting with an oxidizing agent (particularly hydrogen peroxide). Is considered to generate.
  • the heteropolyacid or salt thereof various known heteropolyacids or salts thereof can be used, and are not particularly limited.
  • phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, silicomolybdic acid examples thereof include ribdophosphoric acid, tungstomolybdosilicic acid, and phosphovanadmolybdic acid.
  • the heteropolyacid includes phosphorus (phosphorus atom) and a heteropolyacid containing at least one (one or more) metal (metal atom) selected from the group consisting of tungsten, manganese, molybdenum, and vanadium. preferable.
  • heteropolyacids examples include phosphotungstic acid, phosphomanganic acid, phosphomolybdic acid, and phosphovanadic acid.
  • phosphotungstic acid is particularly preferable from the viewpoint of cost.
  • the salt of the heteropolyacid include onium salts, alkali metal salts, alkaline earth metal salts, transition metal salts of the above exemplified heteropolyacids.
  • the precursor compound of the heteropolyacid or salt thereof means one or more compounds that can form (prepare) the heteropolyacid or salt thereof.
  • the precursor compound does not necessarily form a heteropolyacid or a salt thereof in the reaction system.
  • the precursor compound include metal atoms such as tungsten, manganese, vanadium, molybdenum, titanium, aluminum, and niobium (preferably at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium).
  • the heteropolyacid or salt thereof is a heteropolyacid or salt thereof prepared from a compound containing at least one metal atom selected from the group consisting of tungsten, manganese, and vanadium and a compound containing at least phosphorus. Preferably there is.
  • Examples of the compound containing a hetero atom include phosphoric acid, polyphosphoric acid (including pyrophosphoric acid and metaphosphoric acid), (poly) phosphate ⁇ metal salt of (poly) phosphoric acid [for example, a compound containing a phosphorus atom]
  • (Poly) alkali metal phosphates such as potassium phosphate, sodium phosphate
  • (Poly) alkaline earth metal salts such as calcium phosphate
  • the said compound containing a phosphorus atom can be used individually by 1 type or in combination of 2 or more types.
  • phosphorus atom-containing oxo acids such as phosphoric acid or phosphates (particularly phosphoric acid) or salts thereof are preferable from the viewpoints of handleability and cost.
  • the compound containing a hetero atom include silicic acid (orthosilicate, metasilicic acid, etc.) as a compound containing a silicon atom, and arsenic acid, arsenous acid, etc. as a compound containing an arsenic atom.
  • metal compound examples include halides of metals such as tungsten, manganese, vanadium, molybdenum, titanium, aluminum, and niobium, inorganic acid salts, organic acid salts, complexes, and polyacids or salts thereof composed of the above metal atoms. Etc. These metal compounds can be used individually by 1 type or in combination of 2 or more types.
  • examples of the compound containing tungsten include tungsten halides (tungsten chloride, etc.); tungsten inorganic acid salts (sulfates, nitrates, etc.); tungsten organic acid salts (acetates) Complex with tungsten as the central metal; isopolyacid or its salt of tungsten (tungstic acid; alkali metal salt of tungstic acid such as sodium tungstate, potassium tungstate, etc.), heteropolyacid or its salt (tungstophosphoric acid ( Or tungstophosphate) (for example, 12-tungstophosphoric acid, 11-tungstophosphoric acid, etc.), vanadium tungstic acid, molybdenum tungstic acid, manganese tungstic acid, cobalt tungstic acid, silicotungstic acid, phosphovanadota Gusuten acid, manganese molybdate tungstate or salts thereof (e.g., alkali metal salts), etc.).
  • tungsten halides tungsten chloride
  • an inorganic acid (polyacid, isopolyacid) or a salt thereof containing at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium is particularly preferable.
  • an inorganic acid or a salt thereof containing at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium, and a phosphorus atom-containing oxoacid Or the combination of the salt is preferable.
  • other components can coexist in the reaction system.
  • examples of other components include hydroquinones, trialkylamines, and polyethylene glycol.
  • the usage-amount of these other components can be set suitably, and is not specifically limited.
  • oxidizing agent used in the oxidation reaction in the method for producing an organic compound of the present invention a known or conventional oxidizing agent can be used, and is not particularly limited. As described above, in the two-phase system of organic solvent / water, it is preferable to use hydrogen peroxide from the viewpoint that the advantage of the present invention that a wide range of substrates such as olefins other than allyl alcohol can be applied is effective. Hydrogen peroxide is preferably used in the form of an aqueous solution (aqueous hydrogen peroxide solution) from the viewpoint of safety. Hydrogen peroxide (or hydrogen peroxide aqueous solution) may be synthesized by a conventional method, or a commercially available product may be used.
  • the concentration of hydrogen peroxide in the case of using an aqueous hydrogen peroxide solution is not particularly limited, but is preferably 20 to 70 w / v%, more preferably 22 to 67 w / v%, and still more preferably from the viewpoint of handleability and the like. 25-65 w / v%.
  • Organic compounds Although it does not specifically limit as an organic compound (oxidized organic compound) as a substrate used in the manufacturing method of the organic compound of the present invention, for example, a compound having an ethylenically unsaturated double bond (when referred to as “olefin”) And alcohol, ketone and the like.
  • olefin a compound having an ethylenically unsaturated double bond
  • alcohol, ketone and the like.
  • ketone When secondary alcohol is oxidized with an oxidizing agent, ketone, carboxylic acid and the like are produced. Further, when the ketone is oxidized with an oxidizing agent, Bayer-bilger oxidation proceeds to produce an ester (in the case of oxidation of a chain ketone) and a lactone (in the case of oxidation of a cyclic ketone).
  • the most typical oxidation reaction when hydrogen peroxide is used as the oxidizing agent is olefin oxidation, particularly olefin carbon-carbon double bond epoxidation reaction.
  • olefin epoxidation epoxidation of olefin carbon-carbon double bond
  • the oxidation reaction in the method for producing an organic compound of the present invention is not limited to this reaction, and any of the oxidation reactions described above. It may be.
  • the method for producing an organic compound of the present invention is particularly useful in that it can be applied to a wide range of substrates such as olefins other than allyl alcohol as the substrate (oxidized organic compound) as well as allyl alcohol. .
  • the olefin is not particularly limited as long as it has at least one ethylenically unsaturated double bond (non-aromatic carbon-carbon double bond) in the molecule (in one molecule). That is, the olefin may have one or more ethylenically unsaturated double bonds in the molecule.
  • the olefin contains (i) a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, and (ii) a cycloalkene ring (including a cycloalkapolyene ring such as a cycloalkadiene ring). And the like. These compounds may have a substituent.
  • a liquid or solid (or miscible with the liquid) olefin is usually selected as the olefin usually under reaction conditions.
  • Examples of linear or branched aliphatic hydrocarbons having a carbon-carbon double bond include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene and 1-hexene. 2-hexene, 2,3-dimethyl-2-butene, 3-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, 3-octene, 2-methyl-2-butene, 1 A C 2-40 alkene (preferably a C 2-30 alkene, more preferably a C 2-20 alkene) such as nonene, 2-nonene, decene, undecene, dodecene, tetradecene, hexadecene, octadecene; butadiene, isoprene, 1, C 4-40 alkadienes such as 5-hexanediene, 1,6-heptanediene, 1,7-octadiene
  • linear or branched aliphatic hydrocarbons include, for example, aromatic hydrocarbon groups (for example, C 6-10 aryl groups such as phenyl groups), hydroxyl groups, halogen atoms (for example, fluorine atoms, chlorine atoms) , Bromine atom, etc.), mercapto group, alkoxy group (eg, C 1-10 alkoxy group such as methoxy group, ethoxy group, propoxy group, butoxy group, t-butoxy group, etc. (eg, C 1-6 alkoxy group), etc.
  • aromatic hydrocarbon groups for example, C 6-10 aryl groups such as phenyl groups
  • hydroxyl groups for example, halogen atoms (for example, fluorine atoms, chlorine atoms) , Bromine atom, etc.)
  • mercapto group eg, C 1-10 alkoxy group such as methoxy group, ethoxy group, propoxy group, butoxy group, t-butoxy group, etc.
  • a haloalkoxy group an alkylthio group (eg, a C 1-10 alkylthio group such as a methylthio group or an ethylthio group), a carboxyl group, an alkoxycarbonyl group (eg, a C 1-10 alkoxy such as a methoxycarbonyl group or an ethoxycarbonyl group) carbonyl group (e.g., a C 2-10 alkoxycarbonyl group), etc.), an acyl group (e.g., acetyl, pro Onyl group, such as C 2-10 acyl group such as trifluoroacetyl group), an acyloxy group (e.g., acetoxy group, propionyloxy group, C 1-10 acyloxy group such as trifluoroacetoxy group), an amino group, substituted amino A substituent such as a group, a nitro group, a cyano group, or a heterocyclic group (such as
  • linear or branched aliphatic hydrocarbon having a substituent examples include the linear or branched aliphatic hydrocarbon having an aryl group (for example, a phenyl group) as a substituent (for example, phenylethylene).
  • aryl group for example, a phenyl group
  • substituent for example, phenylethylene
  • styrene 1-phenylpropene, 2-phenyl-1-butene, 1-phenyl-1,3-butadiene, 1-phenyl-1,3-pentadiene, and the like.
  • the linear or branched aliphatic hydrocarbon having an aryl group (for example, phenyl group) as a substituent is an alkenyl group (for example, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, etc.) Or an aromatic compound substituted with a C 2-10 alkenyl group (preferably a C 2-6 alkenyl group), and the aromatic compound has at least one carbon in the side chain.
  • an aryl group for example, phenyl group
  • alkenyl group for example, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, etc.
  • an aromatic compound substituted with a C 2-10 alkenyl group preferably a C 2-6 alkenyl group
  • the aromatic compound has at least one carbon in the side chain.
  • the alkenyl group and / or aromatic ring may have a substituent (for example, the substituents exemplified above), and between the alkenyl group and the aromatic ring May have a linking group (such as a linking group described below).
  • Examples of the compound containing a cycloalkene ring include, for example, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclononene, cyclodecene, and cycloundecene C 3-20 cycloalkene such as cyclododecene (preferably C 4-14 cycloalkene, more preferably C 5-10 cycloalkene); cyclopentadiene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, 1, C 5-20 cycloalkadiene such as 3-cycloheptadiene, 1,4-cycloheptadiene, 1,5-cyclooctadiene, cyclodecadiene (preferably C 5-14 cycl
  • the compound which has a cycloalkene ring can be used individually by 1 type or in combination of 2 or more types.
  • C 3-20 cycloalkene is preferable, and C 5-10 cycloalkene [for example, C 6-8 cycloalkene (for example, C 5-6 cycloalkene such as cyclohexene)] can be preferably used.
  • These compounds may have a substituent on the cycloalkene ring.
  • the number of substituents and the substitution position are not particularly limited.
  • the substituent include (i) a substituent exemplified in the section of a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, and an alkyl group (for example, a methyl group, an ethyl group, an isopropyl group).
  • the olefin may be a compound containing a plurality of alkene units and / or cycloalkene units.
  • the plurality of alkene units and / or cycloalkene units in the compound containing the plurality of alkene units and / or cycloalkene units may be the same or different.
  • the plurality of alkene units and / or cycloalkene units may be bonded by a single bond (direct bond) or may be bonded through a linking group. 1 type may be sufficient as the said coupling group, and multiple types may be sufficient as it.
  • alkene unit may be a monovalent or polyvalent group corresponding to (i) a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, such as an alkadiene unit. It is used in the meaning including the alkapolyene unit
  • the “cycloalkene unit” may be a monovalent or polyvalent group corresponding to the compound (ii) containing a cycloalkene ring, and includes a cycloalkapolyene unit such as a cycloalkadiene unit. Used in.
  • the linking group is usually a polyvalent group (for example, a divalent group).
  • the linking group includes, for example, an alkylene group (for example, a C 1-20 alkylene group such as an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, and a 2-methylbutane-1,3-diyl group), a cycloalkylene group (for example, C4-10 cycloalkylene group such as 1,4-cyclohexylene group), arylene group (eg C 6-10 arylene group such as phenylene group, naphthalenediyl group, etc.), carbonyl bond, ester bond, amide bond And at least one selected from an ether bond and a urethane bond.
  • an alkylene group for example, a C 1-20 alkylene group such as an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, and a 2-methylbutan
  • Carbon contained in the carbon number of the olefin (when a substituent and / or a linking group is included, a substituent and / or a linking group (a substituent and a linking group when both a substituent and a linking group are included))
  • the total number is not particularly limited, but is preferably 2 to 40, more preferably 6 or more (for example, 6 to 30), further preferably 6 to 25, and particularly preferably 6 to 20 (For example, 7 to 20).
  • Such olefin can be used individually by 1 type or in combination of 2 or more types.
  • the olefin is preferably a compound containing (ii) a cycloalkene ring (for example, a C 3-20 cycloalkene ring, preferably a C 6-20 cycloalkene ring, particularly a cyclohexene ring).
  • the olefin may have one or more cycloalkene rings (particularly cyclohexene rings).
  • Representative olefins include, for example, the following formula (a) [In Formula (a), R 11 represents a hydrogen atom or an alkyl group, and R 12 represents a hydrogen atom, an alkyl group, an alkenyl group, a hydroxyl group, an alkoxy group, a carboxyl group, or an alkoxycarbonyl group. ] Or a compound represented by the following formula (b) [In the formula (b), R 13 represents a single bond or a linear or branched alkylene group. R 11 is the same or different and the same as above. p and q are the same or different and are 0 or an integer of 1 or more. ] And the like. When p and q are 0 and R 13 is a single bond, the compound represented by the above formula (b) has a structure in which two cyclohexene rings are directly bonded.
  • Examples of the linear or branched alkylene group (including alkylidene group) represented by R 13 include alkanes which may have a substituent (for example, ethane, propane, isopentane, 2,2-dimethylpropane, etc.) C 1-20 the corresponding divalent groups [specifically alkane, etc.), a methylene group, an ethylene group, a linear or branched chain, such as propylene, 2,2-dimethyl-1,3-diyl And a C 2-20 alkylene group (or alkylidene group)].
  • p and q are preferably 1.
  • the olefin includes, for example, cyclohexene in which R 11 and R 12 are hydrogen atoms, R 11 is a hydrogen atom, and vinyl cyclohexene (3) in which R 12 is a vinyl group in the above formula (a).
  • R 11 is a hydrogen atom
  • R 12 is a methoxycarbonyl group methyl cyclohex-3-enecarboxylate (the following formula (a-1))
  • R 11 is a hydrogen atom
  • R 12 Is an allyl group, 4-allylcyclohexene (formula (a-2) below)
  • R 11 is a methyl group
  • R 12 is a vinyl group, 2-methyl-4-vinylcyclohexene (formula (a-3) below)
  • R 11 is a methyl group and R 12 is an isopropenyl group 2-methyl-4- (2-propenyl) cyclohexene (formula (a-4) below)
  • R 11 is a methyl group
  • R 12 Is an isopropenyl group There l-methyl-4- (1-methylethenyl) cyclohexene (limonene); in the formula (b), a R 11 is a hydrogen atom
  • R 12 is
  • the oxidation reaction (epoxidation reaction, etc.) in the method for producing an organic compound of the present invention includes an organic phase containing an oxidizable organic compound (olefin, etc.) and an aqueous phase (heteropolyacid or a salt thereof or a precursor compound thereof). It is preferable that hydrogen peroxide or an aqueous solution thereof be added to a two-phase solution composed of The abundance ratio of the ionic vinyl ether copolymer of the present invention in each of the aqueous phase and the organic phase depends on the structure and temperature.
  • the method of allowing the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof to coexist in the reaction system is not particularly limited.
  • the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof may be added to the reaction system in the form of a composition, or the ionic vinyl ether of the present invention. You may add a copolymer and heteropoly acid or its salt, or these precursor compounds separately in a reaction system.
  • the amount of the ionic vinyl ether copolymer of the present invention used in the method for producing an organic compound of the present invention is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the oxidizable organic compound (olefin or the like). More preferably, it is 0.5 to 30 parts by weight, still more preferably 1.0 to 15 parts by weight. When the amount of the ionic vinyl ether copolymer of the present invention is 0.1 parts by weight or more, the oxidation reaction tends to proceed more efficiently.
  • the amount used in the case of a precursor compound, an amount corresponding to 1 mol of the heteropolyacid or a salt thereof
  • the amount is particularly limited.
  • the amount is preferably 0.01 to 3.00 mol, more preferably 0.01 to 1 mol of an oxidizable group (for example, a carbon-carbon double bond of an olefin) of an oxidizable organic compound (olefin or the like).
  • the amount is 1.00 mol, more preferably 0.01 to 0.05 mol.
  • the amount of the oxidizing agent used in the method for producing an organic compound of the present invention can be appropriately set depending on the type of the oxidizing agent, and is not particularly limited.
  • the amount of hydrogen peroxide is not particularly limited, but the oxidizable group of the oxidizable organic compound (olefin, etc.).
  • the amount is preferably 0.5 to 3.0 mol, more preferably 0.7 to 2.8 mol, and still more preferably 0.9 to 2 with respect to 1 mol. 0.0 mole.
  • oxidation reaction when hydrogen peroxide is used as the oxidizing agent, the ionic vinyl ether copolymer, heteropolyacid or salt thereof or precursor compound thereof (hereinafter referred to as oxidation reaction) of the present invention is used for the purpose of suppressing the rate of oxygen generation during the reaction.
  • the oxidation reaction (epoxidation reaction etc.) should be initiated by adding hydrogen peroxide to (usually a two-phase system).
  • the whole quantity when adding and mixing each raw material, in each raw material, the whole quantity may be added collectively (or once), and may be added in batch (or divided into multiple times).
  • hydrogen peroxide when added all at once (or at one time), in order to suppress the rapid temperature rise of the reaction solution due to reaction heat and the accompanying decomposition of hydrogen peroxide, It is desirable to add (or divide into multiple times).
  • the method of adding hydrogen peroxide in batches (or divided into multiple times) is not particularly limited. For example, if a method of dropping hydrogen peroxide into the reaction solution is used, the reaction rate can be easily adjusted and the reaction can be performed. The rapid temperature rise of the solution can be effectively prevented.
  • the reaction temperature (or the temperature of the reaction system) can be appropriately set according to the kind of the organic compound to be oxidized, the oxidizing agent, etc., and is not particularly limited.
  • hydrogen peroxide when used as the oxidizing agent, it is preferably 50 to 70 ° C., more preferably 55 to 65 ° C. in consideration of oxygen generation due to decomposition of hydrogen peroxide.
  • the reaction temperature By setting the reaction temperature to 70 ° C. or lower, the generation of oxygen can be suppressed, and the production can be more safely performed.
  • the said reaction may be performed under a normal pressure and can also be performed under reduced pressure or pressurization.
  • the pH of the reaction system is not particularly limited, but is preferably 2 to 7, more preferably 3 to 5, and still more preferably 3.5 to 4.5.
  • reaction time is not particularly limited, for example, when hydrogen peroxide is used as the oxidizing agent, it is preferable to terminate the reaction immediately after the target oxide is formed in order to avoid generation of excess oxygen. .
  • the obtained oxidized compound (epoxy compound, etc.) is separated and purified from the raw materials and the like according to the purpose by a conventional method, for example, separation means such as filtration, concentration, column chromatography, etc., or a separation means combining these. be able to.
  • Example 1 [Production of copolymer represented by the following formula (I-1)] 2-Phthalimidoethyl vinyl ether (4.31 g) was dissolved in dichloromethane (15 mL), and at room temperature, 2-ethoxyethyl vinyl ether (2.49 g), isobutyl vinyl ether (2.6 mL), and 1,4-dioxane (2 .1 mL) was added sequentially and stirred. Next, the mixture was cooled to ⁇ 68 ° C., and boron trifluoride diethyl ether complex 0.1 M dichloromethane solution (4.0 mL) was added dropwise over 5 minutes. After completion of dropping, the temperature was raised to 10 ° C.
  • the white slurry liquid (1) was dissolved in 1,4-dioxane (20 mL), and methanol (10 mL) was added to make a homogeneous solution. Next, hydrazine monohydrate (2.4 mL) was added at room temperature, the temperature was raised to 65 ° C. with stirring, and stirring was continued for another 3 hours. Thereafter, the precipitated solid was removed by filtration, and the filtrate was concentrated under reduced pressure. The obtained crude product was purified by dialysis to obtain a white slurry (4.09 g, sometimes referred to as “white slurry (2)”).
  • the white slurry (2) is dissolved in a mixed solvent of N, N-dimethylformamide (20 mL) and ethanol (10 mL), 1-bromobutane (9.59 g) is added at room temperature, and the mixture is heated to 120 ° C. and stirred. did. After 13 hours, it was cooled to room temperature and concentrated under reduced pressure. Ethyl acetate was added to the obtained crude product to precipitate a white solid, which was collected by filtration and dried to obtain PTC-1 (6.1 g) as a pale yellow liquid. From the measurement of 1 H-NMR spectrum of the obtained PTC-1, it was confirmed to be a copolymer represented by the following formula (I-1).
  • n1 / n2 / n3 in PTC-1 was 32.4 / 35.0 / 32.6.
  • “Ran” in formula (I-1) means that each structural unit is added by random copolymerization, and the same applies to the following.
  • Example 2 [Production of copolymer represented by the following formula (I-2)] 2-Chloroethyl vinyl ether (1.0 mL), 2-ethoxyethyl vinyl ether (1.06 g), and isobutyl vinyl ether (1.3 mL) were dissolved in dichloromethane (8.0 mL). Next, 1,4-dioxane (1.0 mL) was added and the mixture was cooled to ⁇ 70 ° C., and boron trifluoride diethyl ether complex 0.1 M dichloromethane solution (2.0 mL) was added dropwise over 5 minutes.
  • formula (I-2) 2-Chloroethyl vinyl ether (1.0 mL), 2-ethoxyethyl vinyl ether (1.06 g), and isobutyl vinyl ether (1.3 mL) were dissolved in dichloromethane (8.0 mL). Next, 1,4-dioxane (1.0 mL) was added and the mixture was cooled to
  • the ratio (molar ratio) of n4 / n5 / n6 in PTC-2 was 34.5 / 31.5 / 34.0.
  • Example 3 [Epoxidation of 3-vinylcyclohexene using PTC-1 as a phase transfer catalyst]
  • PTC-1 (0.124 g) was dissolved in ion exchange water (2.04 g).
  • sodium tungstate dihydrate (0.197 g)
  • 85% phosphoric acid (0.114 g)
  • disodium hydrogen phosphate dodecahydrate 0.0525 g
  • ethyl acetate 9.05 g
  • 3-vinylcyclohexene 3.64 g
  • the temperature was raised to 60 ° C., and 35% hydrogen peroxide (4.08 g) was added and stirred.
  • 1 is a graph showing the results of the epoxidation reaction of 3-vinylcyclohexene.
  • the horizontal axis represents the reaction time (unit: hours), and the vertical axis represents 1,2-epoxy-4-vinylcyclohexane in gas chromatography. This is the peak ratio (unit: area%).
  • the ratio of the peak of 1,2-epoxy-4-vinylcyclohexane is the peak area of 1,2-epoxy-4-vinylcyclohexane, the peak area of 3-vinylcyclohexene and 1,2-epoxy-4-vinylcyclohexane. It is calculated by dividing by the sum of. As shown in FIG.
  • Example 4 [Epoxidation of 3-vinylcyclohexene using PTC-2 as a phase transfer catalyst]
  • PTC-2 (0.373 g) was dissolved in ion exchange water (1.97 g).
  • ethyl acetate (9.03 g) and 3-vinylcyclohexene (3.19 g) were added, the temperature was raised to 60 ° C., 35% hydrogen peroxide (4.10 g) was added, and the mixture was stirred.
  • Example 5 [Epoxidation of 3-vinylcyclohexene using PTC-2 as a phase transfer catalyst]
  • the epoxidation reaction of 3-vinylcyclohexene was carried out in the same manner as in Example 4 except that the amount of PTC-2 was changed to 0.673 g.
  • PTC-2 as a phase transfer catalyst, epoxidation of the double bond in the aliphatic ring of 3-vinylcyclohexene proceeds, and 1,2-epoxy-4-vinylcyclohexane was confirmed to generate.
  • Example 6 Epoxidation of 3-vinylcyclohexene using PTC-2 as a phase transfer catalyst
  • the epoxidation reaction of 3-vinylcyclohexene was carried out in the same manner as in Example 4 except that ethyl acetate was changed to toluene.
  • epoxidation of the double bond in the aliphatic ring of 3-vinylcyclohexene proceeds, and 1,2-epoxy-4-vinylcyclohexane was confirmed to generate.
  • the ionic vinyl ether copolymer of the present invention has the above-described structure, so that not only allyl alcohol but also olefin other than allyl alcohol is used as a substrate.
  • the epoxidation reaction using hydrogen peroxide in the organic solvent / water two-phase system can be efficiently advanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is an ionic vinyl ether copolymer which enables an epoxidation reaction using hydrogen peroxide in an (organic solvent)/water biphase system even when an olefin other than allyl-type alcohols is used as a substrate. An ionic vinyl ether copolymer characterized by having a constitutional unit represented by formula (1) and a constitutional unit represented by formula (2). In formula (1), X represents a group represented by formula (4) or a group represented by formula (5).

Description

イオン性ビニルエーテルコポリマー及びこれを用いた有機化合物の製造方法Ionic vinyl ether copolymer and method for producing organic compound using the same
 本発明は、イオン性ビニルエーテルコポリマー及びこれを用いた有機化合物の製造方法に関する。より詳しくは、有機溶媒と水との二相系反応場での酸化反応における相間移動触媒として好ましく使用できるイオン性ビニルエーテルコポリマー、及びこれを用いた上記二相系反応場における有機化合物の製造方法に関する。本願は、2013年6月7日に日本に出願した、特願2013-120342号の優先権を主張し、その内容をここに援用する。 The present invention relates to an ionic vinyl ether copolymer and a method for producing an organic compound using the same. More specifically, the present invention relates to an ionic vinyl ether copolymer that can be preferably used as a phase transfer catalyst in an oxidation reaction in an organic solvent and water in a two-phase reaction field, and a method for producing an organic compound in the two-phase reaction field using the same. . This application claims the priority of Japanese Patent Application No. 2013-120342 for which it applied to Japan on June 7, 2013, and uses the content here.
 酸化剤を用いた酸化反応は様々な用途に利用されており、例えば、第1級アルコールの酸化によるアルデヒド及びカルボン酸の製造、第2級アルコールの酸化によるケトンの製造、不飽和化合物の酸化によるエポキシ化合物やジオールの製造などの各種の有機化合物の製造に利用されている。中でも、酸化剤として過酸化水素を用いた酸化反応は、過酸化水素が安価であり、腐食性を示さず、副生成物が水であることから、環境負荷低減等の観点で近年注目を集めている。 Oxidation reactions using oxidants are used in various applications. For example, production of aldehydes and carboxylic acids by oxidation of primary alcohols, production of ketones by oxidation of secondary alcohols, oxidation of unsaturated compounds. It is used for the production of various organic compounds such as the production of epoxy compounds and diols. In particular, the oxidation reaction using hydrogen peroxide as an oxidant has attracted attention in recent years from the viewpoint of reducing environmental impact because hydrogen peroxide is inexpensive, does not exhibit corrosivity, and the by-product is water. ing.
 過酸化水素を酸化剤として用いた有機化合物の製造方法として、例えば、第四級アンモニウム塩部位を有するアクリレートモノマーとN-イソプロピルアクリルアミドとをラジカル重合させることにより得られるポリマーを、有機溶媒/水の二相系における相間移動触媒として使用し、アリル型アルコールをエポキシ化する方法が知られている(特許文献1、非特許文献1、2参照)。 As a method for producing an organic compound using hydrogen peroxide as an oxidizing agent, for example, a polymer obtained by radical polymerization of an acrylate monomer having a quaternary ammonium salt moiety and N-isopropylacrylamide is used as an organic solvent / water. A method of epoxidizing allyl alcohol by using as a phase transfer catalyst in a two-phase system is known (see Patent Document 1, Non-Patent Documents 1 and 2).
特開2003-33659号公報Japanese Patent Laid-Open No. 2003-33659
 しかしながら、上記先行技術文献に開示された相間移動触媒を含む触媒系では、アリル型アルコールのような酸化反応を受け易いとされる二重結合を有する化合物に対する触媒活性は認められていたものの、アリル型アルコール以外のオレフィン(特に、アリル位に酸素原子を有しないオレフィン)に対しては触媒活性が認められていなかった。例えば、非特許文献2には、シクロヘキセンを基質とした場合に反応が進行しないことが示されている。このため、基質としてアリル型アルコール以外のオレフィンを使用した場合にも適用可能であり、酸化剤として過酸化水素を使用可能な有機化合物の製造方法の開発が望まれているのが現状である。なお、アリル型アルコールの代表例としては、例えば、グリシドール、ゲラニオール、2-シクロヘキセノール、2-ブテン-1-オール、ファルネソール、フィトール等が挙げられる。 However, in the catalyst system including the phase transfer catalyst disclosed in the above prior art document, although catalytic activity for a compound having a double bond, which is considered to be susceptible to an oxidation reaction such as allyl alcohol, has been recognized, allyl No catalytic activity was observed for olefins other than type alcohols (particularly olefins having no oxygen atom at the allylic position). For example, Non-Patent Document 2 shows that the reaction does not proceed when cyclohexene is used as a substrate. For this reason, it is applicable to the case where olefins other than allyl alcohol are used as a substrate, and development of a method for producing an organic compound capable of using hydrogen peroxide as an oxidizing agent is desired at present. Representative examples of allyl alcohols include glycidol, geraniol, 2-cyclohexenol, 2-buten-1-ol, farnesol, phytol, and the like.
 従って、本発明の目的は、アリル型アルコール以外のオレフィンを基質として使用した場合でも、有機溶媒/水の二相系における過酸化水素を用いたエポキシ化反応を可能とするイオン性ビニルエーテルコポリマーを提供することにある。
 また、本発明の他の目的は、有機溶媒/水の二相系において有機化合物(「被酸化有機化合物」と称する場合がある)を酸化し、対応する酸化された有機化合物(「酸化化合物」と称する場合がある)を製造する方法であって、アリル型アルコールを含む広範な基質に適用できる有機化合物の製造方法を提供することにある。
 さらに、本発明の他の目的は、アリル型アルコール以外のオレフィンを基質として使用した場合でも、有機溶媒/水の二相系における過酸化水素を用いたエポキシ化反応を可能とする酸化反応用触媒を提供することにある。
Accordingly, an object of the present invention is to provide an ionic vinyl ether copolymer that enables an epoxidation reaction using hydrogen peroxide in an organic solvent / water two-phase system even when an olefin other than an allyl alcohol is used as a substrate. There is to do.
Another object of the present invention is to oxidize an organic compound (sometimes referred to as “oxidizable organic compound”) in an organic solvent / water two-phase system and to produce a corresponding oxidized organic compound (“oxidized compound”). It is an object of the present invention to provide a method for producing an organic compound applicable to a wide range of substrates including allyl alcohol.
Furthermore, another object of the present invention is to provide an oxidation reaction catalyst that enables an epoxidation reaction using hydrogen peroxide in an organic solvent / water two-phase system even when an olefin other than an allyl alcohol is used as a substrate. Is to provide.
 本発明者らは上記課題を解決するために鋭意検討した結果、特定構造のイオン性ビニルエーテルコポリマーを相間移動触媒として用いることにより、アリル型アルコール以外のオレフィンを基質として使用した場合であっても、有機溶媒/水の二相系における過酸化水素を用いたエポキシ化反応が可能であることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have used an ionic vinyl ether copolymer having a specific structure as a phase transfer catalyst, so that even when an olefin other than an allyl alcohol is used as a substrate, The present invention was completed by finding that an epoxidation reaction using hydrogen peroxide in an organic solvent / water two-phase system was possible.
 すなわち、本発明は、下記式(1)
Figure JPOXMLDOC01-appb-C000010
[式(1)中、R1は、水素原子又は炭素数1~5のアルキル基を示す。A1は、炭素数2~4のアルキレン基を示す。aは0~36の整数を示し、aが2以上の整数の場合、複数のA1は同一であってもよいし異なっていてもよい。bは1~18の整数を示す。Xは、下記式(4)
Figure JPOXMLDOC01-appb-C000011
[式(4)中、R2、R3、及びR4は、同一又は異なって、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。Y-は、アニオンを示す。]
で表される基、又は、下記式(5)
Figure JPOXMLDOC01-appb-C000012
[式(5)中、R5は、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基を示す。dは0~5の整数を示す。Y-は、アニオンを示す。]
で表される基を示す。]
で表される構成単位、並びに下記式(2)
Figure JPOXMLDOC01-appb-C000013
[式(2)中、R6は、水素原子又は炭素数1~5のアルキル基を示す。R7は、水素原子、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。A2は、炭素数2~4のアルキレン基を示す。cは、1~24の整数を示し、cが2以上の整数の場合、複数のA2は同一であってもよいし異なっていてもよい。]
で表される構成単位を有することを特徴とするイオン性ビニルエーテルコポリマーを提供する。
That is, the present invention provides the following formula (1):
Figure JPOXMLDOC01-appb-C000010
[In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 represents an alkylene group having 2 to 4 carbon atoms. a represents an integer of 0 to 36. When a is an integer of 2 or more, a plurality of A 1 may be the same or different. b represents an integer of 1 to 18. X is the following formula (4)
Figure JPOXMLDOC01-appb-C000011
[In formula (4), R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms. Y represents an anion. ]
Or a group represented by the following formula (5)
Figure JPOXMLDOC01-appb-C000012
[In Formula (5), R 5 represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. d represents an integer of 0 to 5. Y represents an anion. ]
The group represented by these is shown. ]
And the following formula (2)
Figure JPOXMLDOC01-appb-C000013
[In the formula (2), R 6 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms. A 2 represents an alkylene group having 2 to 4 carbon atoms. c represents an integer of 1 to 24. When c is an integer of 2 or more, a plurality of A 2 may be the same or different. ]
The ionic vinyl ether copolymer characterized by having the structural unit represented by these is provided.
 さらに、下記式(3)
Figure JPOXMLDOC01-appb-C000014
[式(3)中、R8は、水素原子又は炭素数1~5のアルキル基を示す。R9は、炭素数1~36のアルキル基、又は炭素数2~36のアルケニル基を示す。]
で表される構成単位を有する前記のイオン性ビニルエーテルコポリマーを提供する。
Further, the following formula (3)
Figure JPOXMLDOC01-appb-C000014
[In Formula (3), R 8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 9 represents an alkyl group having 1 to 36 carbon atoms or an alkenyl group having 2 to 36 carbon atoms. ]
The ionic vinyl ether copolymer having the structural unit represented by the formula:
 また、本発明は、有機溶媒と水との二相系反応場において、有機化合物の酸化反応を進行させ、酸化された有機化合物を製造する方法であって、前記二相系反応場の相間移動触媒として、前記のイオン性ビニルエーテルコポリマーを使用することを特徴とする有機化合物の製造方法を提供する。 The present invention also relates to a method for producing an oxidized organic compound by proceeding an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water, and the phase transfer of the two-phase reaction field Provided is a method for producing an organic compound, characterized in that the ionic vinyl ether copolymer is used as a catalyst.
 さらに、前記酸化反応を、前記イオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とから調製される錯体の酸化物の存在下で進行させる前記の有機化合物の製造方法を提供する。 Furthermore, the present invention provides a method for producing the organic compound, wherein the oxidation reaction proceeds in the presence of a complex oxide prepared from the ionic vinyl ether copolymer and a heteropolyacid or a salt thereof or a precursor compound thereof.
 さらに、前記ヘテロポリ酸若しくはその塩が、リン原子、並びに、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも一種の金属原子を含むヘテロポリ酸若しくはその塩である前記の有機化合物の製造方法を提供する。 Further, the production of the organic compound, wherein the heteropolyacid or a salt thereof is a heteropolyacid or a salt thereof containing a phosphorus atom and at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium. Provide a method.
 さらに、前記前駆化合物が、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも一種の金属原子を含む無機酸又はその塩、並びに、リン原子含有オキソ酸又はその塩を含む前記の有機化合物の製造方法を提供する。 Further, the precursor compound is an inorganic acid containing at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium, or a salt thereof, and a phosphorus atom-containing oxo acid or an organic salt thereof. A method for producing a compound is provided.
 さらに、前記酸化反応が、過酸化水素を使用したオレフィンの炭素-炭素二重結合のエポキシ化反応である前記の有機化合物の製造方法を提供する。 Furthermore, the present invention provides the method for producing an organic compound, wherein the oxidation reaction is an epoxidation reaction of an olefin carbon-carbon double bond using hydrogen peroxide.
 また、本発明は、有機溶媒と水との二相系反応場における有機化合物の酸化反応用の触媒であって、
 相間移動触媒として下記式(1)
Figure JPOXMLDOC01-appb-C000015
[式(1)中、R1は、水素原子又は炭素数1~5のアルキル基を示す。A1は、炭素数2~4のアルキレン基を示す。aは0~36の整数を示し、aが2以上の整数の場合、複数のA1は同一であってもよいし異なっていてもよい。bは1~18の整数を示す。Xは、下記式(4)
Figure JPOXMLDOC01-appb-C000016
[式(4)中、R2、R3、及びR4は、同一又は異なって、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。Y-は、アニオンを示す。]
で表される基、又は、下記式(5)
Figure JPOXMLDOC01-appb-C000017
[式(5)中、R5は、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基を示す。dは0~5の整数を示す。Y-は、アニオンを示す。]
で表される基を示す。]
で表される構成単位、並びに下記式(2)
Figure JPOXMLDOC01-appb-C000018
[式(2)中、R6は、水素原子又は炭素数1~5のアルキル基を示す。R7は、水素原子、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。A2は、炭素数2~4のアルキレン基を示す。cは、1~24の整数を示し、cが2以上の整数の場合、複数のA2は同一であってもよいし異なっていてもよい。]
で表される構成単位を有するイオン性ビニルエーテルコポリマー含むことを特徴とする酸化反応用触媒を提供する。
The present invention also provides a catalyst for an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water,
As a phase transfer catalyst, the following formula (1)
Figure JPOXMLDOC01-appb-C000015
[In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 represents an alkylene group having 2 to 4 carbon atoms. a represents an integer of 0 to 36. When a is an integer of 2 or more, a plurality of A 1 may be the same or different. b represents an integer of 1 to 18. X is the following formula (4)
Figure JPOXMLDOC01-appb-C000016
[In formula (4), R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms. Y represents an anion. ]
Or a group represented by the following formula (5)
Figure JPOXMLDOC01-appb-C000017
[In Formula (5), R 5 represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. d represents an integer of 0 to 5. Y represents an anion. ]
The group represented by these is shown. ]
And the following formula (2)
Figure JPOXMLDOC01-appb-C000018
[In the formula (2), R 6 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms. A 2 represents an alkylene group having 2 to 4 carbon atoms. c represents an integer of 1 to 24. When c is an integer of 2 or more, a plurality of A 2 may be the same or different. ]
The catalyst for oxidation reaction characterized by including the ionic vinyl ether copolymer which has the structural unit represented by these.
 すなわち、本発明は以下に関する。
 [1]上記式(1)で表される構成単位、並びに上記式(2)で表される構成単位を有することを特徴とするイオン性ビニルエーテルコポリマー。
 [2]上記式(1)中のR1が水素原子であり、A1が炭素数2又は3の直鎖又は分岐鎖状のアルキレン基であり、aが0~2の整数であり、bが1~4の整数である[1]に記載のイオン性ビニルエーテルコポリマー。
 [3]上記式(4)中のR2、R3、及びR4の全てが炭素数4~8のアルキル基又は炭素数4~18のアルケニル基である[1]又は[2]に記載のイオン性ビニルエーテルコポリマー。
 [4]上記式(2)中のR6が水素原子、R7が炭素数1~4のアルキル基又は炭素数2~10のアルケニル基、A2が炭素数2又は3の直鎖又は分岐鎖状のアルキレン基である[1]~[3]のいずれかに記載のイオン性ビニルエーテルコポリマー。
 [5]さらに、上記式(3)で表される構成単位を有する[1]~[4]のいずれかに記載のイオン性ビニルエーテルコポリマー。
 [6]上記式(3)中のR8が水素原子であり、R9が炭素数1~10のアルキル基又は炭素数2~10のアルケニル基である[5]に記載のイオン性ビニルエーテルコポリマー。
 [7]上記式(1)で表される構成単位の割合が、イオン性ビニルエーテルコポリマーを構成する構成単位の全量(全構成単位;100モル%)に対して、1モル%以上である[1]~[6]のいずれかに記載のイオン性ビニルエーテルコポリマー。
 [8]上記式(2)で表される構成単位の割合が、イオン性ビニルエーテルコポリマーを構成する構成単位の全量(100モル%)に対して、1~99モル%である[1]~[7]のいずれかに記載のイオン性ビニルエーテルコポリマー。
 [9]上記式(3)で表される構成単位の割合が、イオン性ビニルエーテルコポリマーを構成する構成単位の全量(100モル%)に対して、0~90モル%である[5]~[8]のいずれかに記載のイオン性ビニルエーテルコポリマー。
 [10]全構成単位の重合度が、10~10000である[1]~[9]のいずれかに記載のイオン性ビニルエーテルコポリマー。
 [11]重量平均分子量が1000~100000である[1]~[10]のいずれかに記載のイオン性ビニルエーテルコポリマー。
 [12]有機溶媒と水との二相系反応場において、有機化合物の酸化反応を進行させ、酸化された有機化合物を製造する方法であって、前記二相系反応場の相間移動触媒として、[1]~[11]のいずれかに記載のイオン性ビニルエーテルコポリマーを使用することを特徴とする有機化合物の製造方法。
 [13]有機溶媒が、シクロC3-10アルカノール類、鎖状エーテル類、ケトン類、エステル(鎖状エステル)類、脂肪族炭化水素類、脂環族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類、及びフェノール類からなる群より選択された少なくとも一種の有機溶媒である[12]に記載の有機化合物の製造方法。
 [14]水と有機溶媒との割合が、前者/後者(重量比)90/10~5/95である[12]又は[13]に記載の有機化合物の製造方法。
 [15]有機溶媒の使用量が、被酸化有機化合物1重量部に対して、0.01~20重量部である[12]~[14]のいずれかに記載の有機化合物の製造方法。
 [16]前記酸化反応を、前記イオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とから調製される錯体の酸化物の存在下で進行させる[12]~[15]のいずれかに記載の有機化合物の製造方法。
 [17]前記ヘテロポリ酸若しくはその塩が、リン原子、並びに、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも一種の金属原子を含むヘテロポリ酸若しくはその塩である[12]~[16]のいずれかに記載の有機化合物の製造方法。
 [18]前記前駆化合物が、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも一種の金属原子を含む無機酸又はその塩、並びに、リン原子含有オキソ酸又はその塩を含む[12]~[17]のいずれかに記載の有機化合物の製造方法。
 [19]前記酸化反応が、酸化剤を使用したオレフィンの炭素-炭素二重結合のエポキシ化反応である[12]~[18]のいずれかに記載の有機化合物の製造方法。
 [20]前記酸化反応が、酸化剤として過酸化水素を使用したオレフィンの炭素-炭素二重結合のエポキシ化反応である[12]~[19]のいずれかに記載の有機化合物の製造方法。
 [21]前記オレフィンが、(i)炭素-炭素二重結合を有する直鎖又は分岐鎖状の脂肪族炭化水素、及び/又は(ii)シクロアルケン環(シクロアルカジエン環などのシクロアルカポリエン環も含む)である[19]又は[20]に記載の有機化合物の製造方法。
 [22]前記オレフィンが、下記式(a)、及び/又は下記式(b)で表される化合物である[19]~[21]のいずれかに記載の有機化合物の製造方法。
 [23]前記オレフィンがシクロヘキセン、ビニルシクロヘキセン(3-ビニルシクロヘキセン)、シクロヘキサ-3-エンカルボン酸メチル、4-アリルシクロヘキセン、2-メチル-4-ビニルシクロヘキセン、2-メチル-4-(2-プロペニル)シクロヘキセン、1-メチル-4-(1-メチルエテニル)シクロヘキセン(リモネン)、シクロヘキサ-3-エンカルボン酸シクロヘキセニルメチル、ビス[1,3-(シクロヘキサ-3-エンカルボン酸)]-2,2-ジメチルプロピルエステル、ビス[1,3-(4-メチルシクロヘキサ-3-エンカルボン酸)]-2,2-ジメチルプロピルエステル[4-メチルシクロヘキサ-3-エンカルボン酸=2,2-ジメチル-3-(4-メチルシクロヘキサ-3-エンカルボニルオキシ)プロピル]、及び、ビス[1,3-(3-メチルシクロヘキサ-3-エンカルボン酸)]-2,2-ジメチルプロピルエステル[3-メチルシクロヘキサ-3-エンカルボン酸=2,2-ジメチル-3-(3-メチルシクロヘキサ-3-エンカルボニルオキシ)プロピル]からなる群より選択される少なくとも1つである[19]~[22]のいずれかに記載の有機化合物の製造方法。
 [24]イオン性ビニルエーテルコポリマーの使用量が、被酸化有機化合物100重量部に対して、0.1~50重量部である[12]~[23]のいずれかに記載の有機化合物の製造方法。
 [25]ヘテロポリ酸若しくはその塩又はこれらの前駆化合物の使用量(前駆化合物の場合にはヘテロポリ酸若しくはその塩1モルに相当する量)が、被酸化有機化合物の被酸化基1モルに対し、0.01~3.00モルである[16]~[24]のいずれかに記載の有機化合物の製造方法。
 [26]本発明の有機化合物の製造方法における酸化剤の使用量が、酸化剤として過酸化水素を使用する場合、該過酸化水素(実質的に添加する過酸化水素)の使用量が、被酸化有機化合物(オレフィン)の被酸化基(オレフィンの炭素-炭素二重結合等)1モルに対して、0.5~3.0モルである[19]~[25]のいずれかに記載の有機化合物の製造方法。
 [27]反応温度(反応系の温度)が、酸化剤として過酸化水素を使用する場合、50~70℃である[19]~[26]のいずれかに記載の有機化合物の製造方法。
 [28]反応系(水相)のpHが、2~7である[12]~[27]のいずれかに記載の有機化合物の製造方法。
 [29]有機溶媒と水との二相系反応場における有機化合物の酸化反応用の触媒であって、相間移動触媒として上記式(1)で表される構成単位、並びに上記式(2)で表される構成単位を有するイオン性ビニルエーテルコポリマー含むことを特徴とする酸化反応用触媒。
That is, the present invention relates to the following.
[1] An ionic vinyl ether copolymer having a structural unit represented by the above formula (1) and a structural unit represented by the above formula (2).
[2] R 1 in the above formula (1) is a hydrogen atom, A 1 is a linear or branched alkylene group having 2 or 3 carbon atoms, a is an integer of 0 to 2, b The ionic vinyl ether copolymer according to [1], wherein is an integer of 1 to 4.
[3] Described in [1] or [2], wherein all of R 2 , R 3 , and R 4 in formula (4) are an alkyl group having 4 to 8 carbon atoms or an alkenyl group having 4 to 18 carbon atoms. Ionic vinyl ether copolymer.
[4] In the above formula (2), R 6 is a hydrogen atom, R 7 is an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and A 2 is a straight or branched chain having 2 or 3 carbon atoms. The ionic vinyl ether copolymer according to any one of [1] to [3], which is a chain alkylene group.
[5] The ionic vinyl ether copolymer according to any one of [1] to [4], further having a structural unit represented by the above formula (3).
[6] The ionic vinyl ether copolymer according to [5], wherein R 8 in the above formula (3) is a hydrogen atom, and R 9 is an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms. .
[7] The proportion of the structural unit represented by the above formula (1) is 1 mol% or more with respect to the total amount of the structural units constituting the ionic vinyl ether copolymer (total structural unit: 100 mol%). ] The ionic vinyl ether copolymer according to any one of [6] to [6].
[8] The proportion of the structural unit represented by the above formula (2) is 1 to 99 mol% with respect to the total amount (100 mol%) of the structural units constituting the ionic vinyl ether copolymer. 7] The ionic vinyl ether copolymer according to any one of [7].
[9] The proportion of the structural unit represented by the formula (3) is 0 to 90 mol% with respect to the total amount (100 mol%) of the structural units constituting the ionic vinyl ether copolymer. 8] The ionic vinyl ether copolymer described in any one of [8].
[10] The ionic vinyl ether copolymer according to any one of [1] to [9], wherein the degree of polymerization of all the structural units is 10 to 10,000.
[11] The ionic vinyl ether copolymer according to any one of [1] to [10], which has a weight average molecular weight of 1,000 to 100,000.
[12] A method for producing an oxidized organic compound by proceeding an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water, as a phase transfer catalyst in the two-phase reaction field, [1] A method for producing an organic compound, wherein the ionic vinyl ether copolymer according to any one of [1] to [11] is used.
[13] The organic solvent is a cyclo C 3-10 alkanol, a chain ether, a ketone, an ester (chain ester), an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, The method for producing an organic compound according to [12], which is at least one organic solvent selected from the group consisting of halogenated hydrocarbons and phenols.
[14] The method for producing an organic compound according to [12] or [13], wherein the ratio of water to the organic solvent is the former / the latter (weight ratio) 90/10 to 5/95.
[15] The method for producing an organic compound according to any one of [12] to [14], wherein the amount of the organic solvent used is 0.01 to 20 parts by weight with respect to 1 part by weight of the organic compound to be oxidized.
[16] Any of [12] to [15], wherein the oxidation reaction proceeds in the presence of an oxide of a complex prepared from the ionic vinyl ether copolymer and a heteropolyacid or a salt thereof or a precursor compound thereof. A method for producing the organic compound according to 1.
[17] The heteropolyacid or salt thereof is a heteropolyacid or salt thereof containing a phosphorus atom and at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium. 16] The manufacturing method of the organic compound in any one of.
[18] The precursor compound includes an inorganic acid or a salt thereof containing at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium, and a phosphorus atom-containing oxo acid or a salt thereof. ] The manufacturing method of the organic compound in any one of [17].
[19] The method for producing an organic compound according to any one of [12] to [18], wherein the oxidation reaction is an epoxidation reaction of a carbon-carbon double bond of an olefin using an oxidizing agent.
[20] The method for producing an organic compound according to any one of [12] to [19], wherein the oxidation reaction is an epoxidation reaction of an olefin carbon-carbon double bond using hydrogen peroxide as an oxidizing agent.
[21] The olefin is (i) a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, and / or (ii) a cycloalkene ring (a cycloalkapolyene ring such as a cycloalkadiene ring) And the method for producing an organic compound according to [19] or [20].
[22] The method for producing an organic compound according to any one of [19] to [21], wherein the olefin is a compound represented by the following formula (a) and / or the following formula (b).
[23] The olefin is cyclohexene, vinylcyclohexene (3-vinylcyclohexene), methyl cyclohex-3-enecarboxylate, 4-allylcyclohexene, 2-methyl-4-vinylcyclohexene, 2-methyl-4- (2-propenyl) ) Cyclohexene, 1-methyl-4- (1-methylethenyl) cyclohexene (limonene), cyclohexenylmethyl cyclohex-3-enecarboxylate, bis [1,3- (cyclohex-3-enecarboxylic acid)]-2,2 -Dimethylpropyl ester, bis [1,3- (4-methylcyclohex-3-enecarboxylic acid)]-2,2-dimethylpropyl ester [4-methylcyclohex-3-enecarboxylic acid = 2,2- Dimethyl-3- (4-methylcyclohex-3-enecarbonyloxy ) Propyl] and bis [1,3- (3-methylcyclohex-3-enecarboxylic acid)]-2,2-dimethylpropyl ester [3-methylcyclohex-3-enecarboxylic acid = 2,2 The method for producing an organic compound according to any one of [19] to [22], which is at least one selected from the group consisting of -dimethyl-3- (3-methylcyclohex-3-enecarbonyloxy) propyl] .
[24] The method for producing an organic compound according to any one of [12] to [23], wherein the amount of the ionic vinyl ether copolymer used is 0.1 to 50 parts by weight with respect to 100 parts by weight of the organic compound to be oxidized. .
[25] The amount of the heteropolyacid or salt thereof or the precursor compound used (the amount corresponding to 1 mol of the heteropolyacid or salt thereof in the case of the precursor compound) is 1 mol of the oxidizable group of the oxidizable organic compound. The method for producing an organic compound according to any one of [16] to [24], which is 0.01 to 3.00 mol.
[26] When the amount of the oxidizing agent used in the method for producing an organic compound of the present invention is hydrogen peroxide as the oxidizing agent, the amount of the hydrogen peroxide (substantially added hydrogen peroxide) is Any one of [19] to [25], which is 0.5 to 3.0 moles per mole of the oxidized group (olefin carbon-carbon double bond, etc.) of the oxidized organic compound (olefin) A method for producing an organic compound.
[27] The method for producing an organic compound according to any one of [19] to [26], wherein the reaction temperature (temperature of the reaction system) is 50 to 70 ° C. when hydrogen peroxide is used as the oxidizing agent.
[28] The method for producing an organic compound according to any one of [12] to [27], wherein the pH of the reaction system (aqueous phase) is 2 to 7.
[29] A catalyst for an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water, the structural unit represented by the above formula (1) as a phase transfer catalyst, and the above formula (2) An oxidation reaction catalyst comprising an ionic vinyl ether copolymer having a structural unit represented by:
 本発明のイオン性ビニルエーテルコポリマーは上記構造を有するため、該イオン性ビニルエーテルコポリマーを相間移動触媒として用いることにより、アリル型アルコールに限らず、アリル型アルコール以外のオレフィンを基質として使用した場合であっても、有機溶媒/水の二相系における過酸化水素を用いたエポキシ化反応を効率的に進行させることができる。 Since the ionic vinyl ether copolymer of the present invention has the above-described structure, the ionic vinyl ether copolymer is used as a phase transfer catalyst, so that not only allyl alcohol but also olefin other than allyl alcohol is used as a substrate. In addition, the epoxidation reaction using hydrogen peroxide in the organic solvent / water two-phase system can be efficiently advanced.
実施例の3-ビニルシクロヘキセンのエポキシ化反応の結果を示すグラフ[横軸:反応時間(単位:時間)、縦軸:ガスクロマトグラフィーにおける1,2-エポキシ-4-ビニルシクロヘキサンのピーク面積の割合(単位:面積%)]である。The graph which shows the result of the epoxidation reaction of 3-vinylcyclohexene of an Example [A horizontal axis | shaft: Reaction time (unit: time), a vertical axis | shaft: The ratio of the peak area of 1, 2- epoxy- 4-vinylcyclohexane in a gas chromatography] (Unit: area%)].
[イオン性ビニルエーテルコポリマー]
 本発明のイオン性ビニルエーテルコポリマーは、下記式(1)で表される構成単位及び下記式(2)で表される構成単位を必須の構成単位(モノマー単位)として有するコポリマーである。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
[Ionic vinyl ether copolymer]
The ionic vinyl ether copolymer of the present invention is a copolymer having a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2) as essential structural units (monomer units).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式(1)中のR1は、水素原子又は炭素数1~5のアルキル基を示す。炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5の直鎖又は分岐鎖状のアルキル基が挙げられる。中でも、R1としては、水素原子が好ましい。 R 1 in the formula (1) represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n -Linear or branched alkyl groups having 1 to 5 carbon atoms, such as a pentyl group. Among these, as R 1 , a hydrogen atom is preferable.
 式(1)中のA1は、炭素数2~4のアルキレン基を示す。炭素数2~4のアルキレン基としては、例えば、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基等の炭素数2~4の直鎖又は分岐鎖状のアルキレン基が挙げられる。中でも、A1としては、炭素数2又は3の直鎖又は分岐鎖状のアルキレン基が好ましい。また、式(1)中のaは0~36の整数を示し、aが2以上の整数の場合、複数のA1は同一であってもよいし、異なっていてもよい。aとしては0~2の整数が好ましい。なお、式(1)中に2種以上のオキシアルキレン構成単位[A1O]が存在する場合、これらのオキシアルキレン構成単位の付加形態は特に限定されず、ランダム型であってもよいし、ブロック型であってもよい。 A 1 in the formula (1) represents an alkylene group having 2 to 4 carbon atoms. Examples of the alkylene group having 2 to 4 carbon atoms include linear or branched alkylene groups having 2 to 4 carbon atoms such as ethylene group, propylene group, trimethylene group and tetramethylene group. Among them, as A 1 , a linear or branched alkylene group having 2 or 3 carbon atoms is preferable. In the formula (1), a represents an integer of 0 to 36, and when a is an integer of 2 or more, a plurality of A 1 may be the same or different. a is preferably an integer of 0 to 2. When two or more oxyalkylene structural units [A 1 O] are present in the formula (1), the addition form of these oxyalkylene structural units is not particularly limited, and may be a random type, It may be a block type.
 式(1)中のbは1~18の整数を示す。bとしては1~4の整数が好ましい。 B in the formula (1) represents an integer of 1 to 18. b is preferably an integer of 1 to 4.
 式(1)中のXは、下記式(4)で表される基、又は下記式(5)で表される基(イオン性基)を示す。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
X in the formula (1) represents a group represented by the following formula (4) or a group (ionic group) represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式(4)中、R2、R3、及びR4は、同一又は異なって、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。炭素数1~18のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-プロピル基、n-ブチル基、i-ブチル基、ヘキシル基、オクチル基等の炭素数1~18の直鎖又は分岐鎖状のアルキル基が挙げられる。上記炭素数2~18のアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基等の炭素数2~18の直鎖又は分岐鎖状のアルケニル基が挙げられる。中でも、酸化反応をより高効率で進行させる観点で、式(4)中のR2、R3、及びR4としては、炭素数2~18のアルキル基、炭素数2~18のアルケニル基が好ましく、より好ましくは炭素数3~18のアルキル基、炭素数3~18のアルケニル基、さらに好ましくは炭素数4~8のアルキル基、炭素数4~18のアルケニル基である。特に、R2、R3、及びR4の全てが炭素数2~18のアルキル基又は炭素数2~18のアルケニル基であることが好ましく、より好ましくは炭素数4~10のアルキル基又は炭素数3~18のアルケニル基、さらに好ましくは炭素数4~8のアルキル基又は炭素数4~18のアルケニル基である。 In the formula (4), R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms. Examples of the alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-propyl group, n-butyl group, i-butyl group, hexyl group, octyl group and the like. And a linear or branched alkyl group having 1 to 18 carbon atoms. Examples of the alkenyl group having 2 to 18 carbon atoms include linear or branched alkenyl groups having 2 to 18 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, and butenyl group. Among these, from the viewpoint of allowing the oxidation reaction to proceed with higher efficiency, R 2 , R 3 , and R 4 in formula (4) are each an alkyl group having 2 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms. More preferred are an alkyl group having 3 to 18 carbon atoms, an alkenyl group having 3 to 18 carbon atoms, still more preferred are an alkyl group having 4 to 8 carbon atoms, and an alkenyl group having 4 to 18 carbon atoms. In particular, all of R 2 , R 3 , and R 4 are preferably an alkyl group having 2 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, more preferably an alkyl group or carbon having 4 to 10 carbon atoms. An alkenyl group having 3 to 18 carbon atoms, more preferably an alkyl group having 4 to 8 carbon atoms or an alkenyl group having 4 to 18 carbon atoms.
 式(4)中、Y-はアニオンを示す。Y-としては、1価のアニオンに限定されず、例えば、2個以上の(-NR234+の対イオンとして、Y2-、Y3-等で表されるアニオンであってもよい。Y-としては、例えば、塩化物イオン、フッ化物イオン、臭化物イオン等のハロゲン化物イオン;硫酸、リン酸等の無機酸からプロトンを除去した無機アニオン;メトサルフェート、エトサルフェート、メトフォスフェート、エトフォスフェート、各種有機酸(例えば、酢酸、乳酸、クエン酸等)からプロトンを除去した有機アニオン等が挙げられる。 In formula (4), Y represents an anion. Y is not limited to a monovalent anion, and may be, for example, an anion represented by Y 2− , Y 3− or the like as two or more (—NR 2 R 3 R 4 ) + counter ions. May be. Examples of Y include halide ions such as chloride ion, fluoride ion and bromide ion; inorganic anions obtained by removing protons from inorganic acids such as sulfuric acid and phosphoric acid; methosulfate, ethosulfate, methophosphate, etho Examples thereof include organic anions obtained by removing protons from phosphates and various organic acids (for example, acetic acid, lactic acid, citric acid, etc.).
 式(5)中、R5は、芳香族性複素環(ピリジン環)上の置換基であり、炭素数1~6のアルキル基、又は、炭素数2~6のアルケニル基を示す。また、dは、芳香族性複素環上のR5の数(置換数)であり、0~5の整数を示す。Y-は、式(4)と同様に、アニオンを示す。 In formula (5), R 5 is a substituent on the aromatic heterocyclic ring (pyridine ring), and represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. D is the number of R 5 (the number of substitutions) on the aromatic heterocyclic ring and represents an integer of 0 to 5. Y represents an anion similarly to the formula (4).
 本発明のイオン性ビニルエーテルコポリマーは、式(1)で表される構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。 The ionic vinyl ether copolymer of the present invention may have one of the structural units represented by the formula (1), or may have two or more.
 式(2)中、R6は、水素原子又は炭素数1~5のアルキル基を示す。R6の具体例としては、上述のR1と同様のものが挙げられる。中でも、R6としては、水素原子が好ましい。 In the formula (2), R 6 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Specific examples of R 6 include the same as R 1 described above. Among them, R 6 is preferably a hydrogen atom.
 式(2)中、R7は、水素原子、炭素数1~18のアルキル基、又は、炭素数2~18のアルケニル基を示す。R7の具体例としては、上述のR2~R4と同様のものが挙げられる。中でも、R7としては、炭素数1~4のアルキル基又は炭素数2~10のアルケニル基が好ましい。 In the formula (2), R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms. Specific examples of R 7 include the same as R 2 to R 4 described above. Among them, R 7 is preferably an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 10 carbon atoms.
 式(2)中、A2は、炭素数2~4のアルキレン基を示す。A2の具体例としては、上述のA1と同様のものが挙げられる。中でも、A2としては、炭素数2又は3の直鎖又は分岐鎖状のアルキレン基が好ましい。また、式(2)中のcは1~24の整数を示し、cが2以上の整数の場合、複数のA2は同一であってもよいし、異なっていてもよい。なお、式(2)中に2種以上のオキシアルキレン構成単位[A2O]が存在する場合、これらのオキシアルキレン構成単位の付加形態は特に限定されず、ランダム型であってもよいし、ブロック型であってもよい。 In the formula (2), A 2 represents an alkylene group having 2 to 4 carbon atoms. Specific examples of A 2 include the same as A 1 described above. Among these, as A 2 , a linear or branched alkylene group having 2 or 3 carbon atoms is preferable. In the formula (2), c represents an integer of 1 to 24. When c is an integer of 2 or more, a plurality of A 2 may be the same or different. In addition, when two or more kinds of oxyalkylene structural units [A 2 O] are present in the formula (2), the addition form of these oxyalkylene structural units is not particularly limited, and may be a random type, It may be a block type.
 本発明のイオン性ビニルエーテルコポリマーは、式(2)で表される構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。 The ionic vinyl ether copolymer of the present invention may have one of the structural units represented by the formula (2), or may have two or more.
 本発明のイオン性ビニルエーテルコポリマーは、さらに、下記式(3)で表される構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000023
The ionic vinyl ether copolymer of the present invention may further have a structural unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000023
 式(3)中、R8は、水素原子又は炭素数1~5のアルキル基を示す。R8の具体例としては、上述のR1と同様のものが挙げられる。中でも、R8としては、水素原子が好ましい。 In formula (3), R 8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Specific examples of R 8 include those similar to R 1 described above. Among these, as R 8 , a hydrogen atom is preferable.
 式(3)中、R9は、炭素数1~36のアルキル基、又は炭素数2~36のアルケニル基を示す。R9の具体例としては、例えば、上述のR2~R4における炭素数1~18のアルキル基、炭素数2~18のアルケニル基と同様のものが挙げられる。中でも、R9としては、炭素数1~10のアルキル基又は炭素数2~10のアルケニル基が好ましい。 In formula (3), R 9 represents an alkyl group having 1 to 36 carbon atoms or an alkenyl group having 2 to 36 carbon atoms. Specific examples of R 9 include those similar to the alkyl group having 1 to 18 carbon atoms and the alkenyl group having 2 to 18 carbon atoms in R 2 to R 4 described above. Among them, R 9 is preferably an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms.
 本発明のイオン性ビニルエーテルコポリマーは、式(3)で表される構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。 The ionic vinyl ether copolymer of the present invention may have one of the structural units represented by the formula (3), or may have two or more.
 本発明のイオン性ビニルエーテルコポリマーは、上記式(1)~(3)で表される構成単位以外の構成単位(「その他の構成単位」と称する場合がある)を有していてもよい。 The ionic vinyl ether copolymer of the present invention may have structural units other than the structural units represented by the above formulas (1) to (3) (sometimes referred to as “other structural units”).
 本発明のイオン性ビニルエーテルコポリマーにおける式(1)で表される構成単位の割合は、特に限定されないが、イオン性ビニルエーテルコポリマーを構成する構成単位の全量(全構成単位;100モル%)に対して、1モル%以上が好ましく、より好ましくは5~90モル%、さらに好ましくは10~70モル%、特に好ましくは12~40モル%、最も好ましくは30モル%以上である。式(1)で表される構成単位の割合を1モル%以上(特に、30モル%以上)とすることにより、有機化合物の酸化反応(特に、過酸化水素によるオレフィンのエポキシ化)をより高効率で進行させることができる傾向がある。 The proportion of the structural unit represented by the formula (1) in the ionic vinyl ether copolymer of the present invention is not particularly limited, but is based on the total amount of the structural units constituting the ionic vinyl ether copolymer (total structural unit: 100 mol%). It is preferably 1 mol% or more, more preferably 5 to 90 mol%, further preferably 10 to 70 mol%, particularly preferably 12 to 40 mol%, and most preferably 30 mol% or more. By setting the proportion of the structural unit represented by the formula (1) to 1 mol% or more (particularly 30 mol% or more), the oxidation reaction of the organic compound (particularly olefin epoxidation with hydrogen peroxide) can be further enhanced. There is a tendency to be able to proceed with efficiency.
 本発明のイオン性ビニルエーテルコポリマーにおける式(2)で表される構成単位の割合は、特に限定されないが、イオン性ビニルエーテルコポリマーを構成する構成単位の全量(100モル%)に対して、1~99モル%が好ましく、より好ましくは5~90モル%、さらに好ましくは10~70モル%、特に好ましくは12~40モル%、最も好ましくは30モル%以上である。式(2)で表される構成単位の割合を1モル%以上(特に、30モル%以上)とすることにより、親水性が向上し、これによって相間移動触媒としての機能が高まる傾向がある。 The proportion of the structural unit represented by the formula (2) in the ionic vinyl ether copolymer of the present invention is not particularly limited, but is 1 to 99 with respect to the total amount (100 mol%) of the structural units constituting the ionic vinyl ether copolymer. The mol% is preferable, more preferably 5 to 90 mol%, still more preferably 10 to 70 mol%, particularly preferably 12 to 40 mol%, and most preferably 30 mol% or more. By setting the proportion of the structural unit represented by the formula (2) to 1 mol% or more (particularly 30 mol% or more), hydrophilicity is improved, and this tends to increase the function as a phase transfer catalyst.
 本発明のイオン性ビニルエーテルコポリマーにおける式(3)で表される構成単位の割合は、特に限定されないが、イオン性ビニルエーテルコポリマーを構成する構成単位の全量(100モル%)に対して、0~90モル%が好ましく、より好ましくは10~50モル%、さらに好ましくは30~45モル%である。式(3)で表される構成単位の割合を90モル%以下とすることにより、有機化合物の酸化反応(特に、過酸化水素によるオレフィンのエポキシ化)をより高効率で進行させることができる傾向がある。 The proportion of the structural unit represented by the formula (3) in the ionic vinyl ether copolymer of the present invention is not particularly limited, but is 0 to 90 with respect to the total amount (100 mol%) of the structural units constituting the ionic vinyl ether copolymer. The mol% is preferable, more preferably 10 to 50 mol%, still more preferably 30 to 45 mol%. By setting the proportion of the structural unit represented by the formula (3) to 90 mol% or less, the organic compound oxidation reaction (particularly, olefin epoxidation with hydrogen peroxide) tends to proceed with higher efficiency. There is.
 本発明のイオン性ビニルエーテルコポリマーにおける全構成単位の重合度は、特に限定されないが、10~10000が好ましく、より好ましくは100~5000、さらに好ましくは120~3000である。重合度を10以上とすることにより、有機化合物の酸化反応(特に、過酸化水素によるオレフィンのエポキシ化)をより高効率で進行させることができる傾向がある。一方、重合度を10000以下とすることにより、有機溶媒/水の二相系反応場で反応を行う場合、水相の粘度が高くなり過ぎることなく、良好な反応性を確保できる傾向がある。 The degree of polymerization of all structural units in the ionic vinyl ether copolymer of the present invention is not particularly limited, but is preferably 10 to 10,000, more preferably 100 to 5,000, and still more preferably 120 to 3,000. By setting the degree of polymerization to 10 or more, there is a tendency that an oxidation reaction of an organic compound (particularly, olefin epoxidation with hydrogen peroxide) can proceed with higher efficiency. On the other hand, when the degree of polymerization is 10,000 or less, when the reaction is carried out in a two-phase reaction field of organic solvent / water, there is a tendency that good reactivity can be secured without the viscosity of the aqueous phase becoming too high.
 本発明のイオン性ビニルエーテルコポリマーの重量平均分子量は、特に限定されないが、1000~100000が好ましく、より好ましくは3000~75000である。また、本発明のイオン性ビニルエーテルコポリマーの分子量分布(=重量平均分子量/数平均分子量)は、特に限定されないが、1.0~3.0が好ましく、より好ましくは1.0~2.0である。なお、本発明のイオン性ビニルエーテルコポリマーの平均分子量(重量平均分子量、数平均分子量)は、ゲル・パーミエーション・クロマトグラフィーにより測定される標準ポリスチレン換算の分子量より算出される。 The weight average molecular weight of the ionic vinyl ether copolymer of the present invention is not particularly limited, but is preferably 1000 to 100,000, and more preferably 3000 to 75,000. Further, the molecular weight distribution (= weight average molecular weight / number average molecular weight) of the ionic vinyl ether copolymer of the present invention is not particularly limited, but is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. is there. The average molecular weight (weight average molecular weight, number average molecular weight) of the ionic vinyl ether copolymer of the present invention is calculated from the molecular weight in terms of standard polystyrene measured by gel permeation chromatography.
[イオン性ビニルエーテルコポリマーの製造方法]
 本発明のイオン性ビニルエーテルコポリマーは、特に限定されないが、例えば、下記の方法により製造することができる。
 式(1)で表される構成単位へと変換可能な構成単位(「構成単位(i)」と称する場合がある)に対応するモノマー(「モノマー(i)」と称する場合がある)、及び、式(2)で表される構成単位に対応するモノマー(「モノマー(2)」と称する場合がある)、さらに必要に応じて、式(3)で表される構成単位に対応するモノマー(「モノマー(3)」と称する場合がある)や、その他の構成単位に対応するモノマー(「その他のモノマー」と称する場合がある)を共重合させ、その後、構成単位(i)を式(1)で表される構成単位へと変換する方法
[Method for producing ionic vinyl ether copolymer]
Although the ionic vinyl ether copolymer of this invention is not specifically limited, For example, it can manufacture by the following method.
A monomer (sometimes referred to as "monomer (i)") corresponding to a structural unit (sometimes referred to as "structural unit (i)") that can be converted into the structural unit represented by formula (1); and , A monomer corresponding to the structural unit represented by formula (2) (sometimes referred to as “monomer (2)”), and, if necessary, a monomer corresponding to the structural unit represented by formula (3) ( The monomer (sometimes referred to as “monomer (3)”) or a monomer corresponding to another structural unit (sometimes referred to as “other monomer”) is copolymerized, and then the structural unit (i) is represented by the formula (1). )
 上記方法は、上述のように、下記の工程1及び工程2を必須の工程として含む方法である。
 工程1:モノマー(i)及びモノマー(2)を必須成分として含むモノマー混合物を共重合させ、本発明のイオン性ビニルエーテルコポリマーの前駆体となるコポリマー(「前駆体コポリマー」と称する場合がある)を生成させる工程
 工程2:工程1で得られた前駆体コポリマーにおける構成単位(i)を、式(1)で表される構成単位へと変換し、本発明のイオン性ビニルエーテルコポリマーを生成させる工程
As described above, the method includes the following step 1 and step 2 as essential steps.
Step 1: Copolymerizing a monomer mixture containing monomer (i) and monomer (2) as essential components to form a precursor of the ionic vinyl ether copolymer of the present invention (sometimes referred to as “precursor copolymer”). Step of generating Step 2: Converting the structural unit (i) in the precursor copolymer obtained in Step 1 into the structural unit represented by the formula (1) to generate the ionic vinyl ether copolymer of the present invention.
 上記構成単位(i)としては、式(1)で表される構成単位に変換可能な構成単位であればよく、特に限定されない。上記構成単位(i)に対応するモノマー(モノマー(i))としては、例えば、下記式(i-1)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000024
The structural unit (i) is not particularly limited as long as it is a structural unit that can be converted into the structural unit represented by the formula (1). Examples of the monomer (monomer (i)) corresponding to the structural unit (i) include compounds represented by the following formula (i-1).
Figure JPOXMLDOC01-appb-C000024
 式(i-1)中、R1、A1、a、及びbは、式(1)におけるものと同じである。式(i-1)中のZは、保護基により保護されたアミノ基、ハロゲン原子、又はスルフェート基を示す。Zとしての保護基により保護されたアミノ基における保護基としては、公知乃至慣用のアミノ基の保護基が挙げられ、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載の保護基等が挙げられる。具体的には、例えば、フタロイル基;t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、アリルオキシカルボニル基等のアルコキシカルボニル基;トリフルオロアセチル基等のアシル基;p-トルエンスルホニル基、2,2-ニトロベンゼンスルホニル基等のアリールスルホニル基等が挙げられる。Zとしてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。Zとしてのスルフェート基としては、メタンスルフェート基、又はp-トルエンスルフェート基等が挙げられる。 In formula (i-1), R 1 , A 1 , a, and b are the same as those in formula (1). Z in formula (i-1) represents an amino group, a halogen atom, or a sulfate group protected by a protecting group. Examples of the protecting group in the amino group protected by the protecting group as Z include known or commonly used protecting groups for amino groups, specifically, Protective Groups in Organic Synthesis 3rd Ed. T. W. Greene, P.M. G. M.M. Wuts, John Wiley and Sons, Inc. , Protecting groups described in 1999, and the like. Specifically, for example, phthaloyl group; alkoxycarbonyl such as t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group, allyloxycarbonyl group, etc. Groups; acyl groups such as trifluoroacetyl group; arylsulfonyl groups such as p-toluenesulfonyl group and 2,2-nitrobenzenesulfonyl group; and the like. Examples of the halogen atom as Z include a fluorine atom, a chlorine atom, and a bromine atom. Examples of the sulfate group as Z include a methane sulfate group and a p-toluene sulfate group.
 Zが保護基により保護されたアミノ基である式(i-1)で表される化合物としては、例えば、2-フタルイミドエチルビニルエーテル等が挙げられる。2-フタルイミドエチルビニルエーテルが有するフタロイルイミド基は、例えば、工程2において、ヒドラジンと反応させることにより脱保護し、次いで、炭素数1~18のハロゲン化アルキル又は炭素数2~18のハロゲン化アルケニルと反応させることにより、上記式(4)で表される基へと変換できる。また、Zがハロゲン原子である場合には、例えば、工程2において、ピリジン又は置換ピリジンと反応させることにより、上記式(5)で表される基へと変換できる。 Examples of the compound represented by the formula (i-1) in which Z is an amino group protected by a protecting group include 2-phthalimidoethyl vinyl ether. The phthaloylimide group of 2-phthalimidoethyl vinyl ether is deprotected by, for example, reacting with hydrazine in Step 2, and then reacting with an alkyl halide having 1 to 18 carbon atoms or an alkenyl halide having 2 to 18 carbon atoms. Can be converted into a group represented by the above formula (4). Moreover, when Z is a halogen atom, it can be converted into a group represented by the above formula (5) by reacting with pyridine or substituted pyridine in Step 2, for example.
 工程1におけるモノマー(ビニルエーテルモノマー)の共重合は、カチオン重合法により進行させることができる。特に、得られるコポリマーの分子量、組成、構造の制御が容易であり、分子量分布や組成分布が狭い均一な重合体を容易に得られる観点で、リビングカチオン重合が好ましい。 The copolymerization of the monomer (vinyl ether monomer) in Step 1 can be advanced by a cationic polymerization method. In particular, living cationic polymerization is preferred from the viewpoint of easy control of the molecular weight, composition, and structure of the resulting copolymer and easy obtaining of a uniform polymer having a narrow molecular weight distribution and composition distribution.
 工程1におけるモノマーの共重合は、溶媒の非存在下で進行させることもできるし、溶媒の存在下で進行させることもできる。溶媒(重合溶媒)としては、例えば、トルエン、キシレン等の芳香族炭化水素;n-ペンタン、n-ヘキサン等の脂肪族炭化水素;ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル等が挙げられる。なお、重合溶媒は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 The copolymerization of the monomer in step 1 can be allowed to proceed in the absence of a solvent, or can be allowed to proceed in the presence of a solvent. Examples of the solvent (polymerization solvent) include aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as n-pentane and n-hexane; halogenated hydrocarbons such as dichloromethane and dichloroethane; diethyl ether and tetrahydrofuran. Examples include ether. In addition, a polymerization solvent can also be used individually by 1 type, and can also be used in combination of 2 or more type.
 重合溶媒の使用量は、特に限定されないが、例えば、モノマーの全量100重量部に対して、0~2000重量部の範囲から適宜選択可能である。 The amount of the polymerization solvent to be used is not particularly limited, but can be appropriately selected from the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the total amount of monomers.
 工程1においてモノマーを共重合させる際に使用する重合開始剤としては、公知乃至慣用の重合開始剤を使用でき、特に限定されないが、塩酸、リン酸、硫酸、シュウ酸、ヨウ化水素、酢酸、トリフルオロ酢酸等のプロトン酸;酸化リン、酸化チタン、酸化アルミニウム等の金属酸化物及びその他の固体酸;塩素、臭素、ヨウ素、塩化ヨウ素、塩化臭素、臭化ヨウ素等のハロゲン;マグネシウム、亜鉛、アルミニウム、チタン、鉄、ホウ素等の塩化物、臭化物、ヨウ化物等のハロゲン化金属;アルミニウム又は亜鉛等のアルキル化物、グリニャール試薬等のマグネシウムのアルキル化等の有機金属化合物;トリフェニルメチルカルボニウムイオン等の安定なカルボニウムイオン;三フッ化ホウ素-ジエチルエーテル錯体等のルイス酸等が挙げられる。上記共重合においては、重合開始剤と共に、必要に応じて、水、アルコール、プロトン酸等のプロトンを生成する化合物;ハロゲン化アルキル等のカルボニウムイオンを生成する化合物等を共触媒として併用することもできる。 As the polymerization initiator used when copolymerizing the monomer in Step 1, a known or conventional polymerization initiator can be used, and is not particularly limited, but hydrochloric acid, phosphoric acid, sulfuric acid, oxalic acid, hydrogen iodide, acetic acid, Protonic acids such as trifluoroacetic acid; metal oxides such as phosphorus oxide, titanium oxide, aluminum oxide and other solid acids; halogens such as chlorine, bromine, iodine, iodine chloride, bromine chloride, iodine bromide; magnesium, zinc, Metal halides such as chlorides, bromides, iodides such as aluminum, titanium, iron and boron; organometallic compounds such as alkylates such as aluminum or zinc; magnesium alkylations such as Grignard reagents; triphenylmethylcarbonium ions And stable carbonium ions; Lewis acids such as boron trifluoride-diethyl ether complex It is. In the above copolymerization, if necessary, a compound that generates protons such as water, alcohol, and proton acid; a compound that generates carbonium ions such as alkyl halides, and the like are used as a cocatalyst together with a polymerization initiator. You can also.
 上記重合開始剤の中でも、リビングカチオン重合開始剤としては、例えば、HI/I2系開始剤、有機アルミニウム化合物とエーテル又はエステル等の添加剤とを組み合わせた開始剤等の公知乃至慣用の重合開始剤を使用できる。 Among the above polymerization initiators, examples of living cationic polymerization initiators include known or conventional polymerization initiators such as HI / I 2 -based initiators, initiators combining organic aluminum compounds and additives such as ethers or esters. Agents can be used.
 重合開始剤の使用量は、特に限定されず、周知の使用量から適宜選択可能である。 The amount of the polymerization initiator used is not particularly limited, and can be appropriately selected from known amounts used.
 工程1においてモノマーを共重合させる際の温度(重合温度)は、使用する重合開始剤、モノマー、重合溶媒等の種類によって異なり、特に限定されないが、-80~150℃が好ましく、より好ましくは-78~80℃である。重合時間は、使用する重合開始剤、モノマー、溶媒等の種類によって異なり、特に限定されないが、10分~100時間が好ましい。共重合反応は、回分形式、半回分形式、連続形式等のいずれの形式によっても行うことができる。 The temperature at which the monomer is copolymerized in Step 1 (polymerization temperature) varies depending on the kind of the polymerization initiator, monomer, polymerization solvent and the like to be used, and is not particularly limited, but is preferably −80 to 150 ° C., more preferably − 78-80 ° C. The polymerization time varies depending on the type of polymerization initiator, monomer, solvent and the like to be used, and is not particularly limited, but is preferably 10 minutes to 100 hours. The copolymerization reaction can be carried out in any form such as a batch form, a semibatch form, and a continuous form.
 工程1により、下記式(i)で表される構成単位、及び式(2)で表される構成単位を必須の構成単位として有する前駆体コポリマーが得られる。前駆体コポリマーは、工程2に供する前に、慣用の方法、例えば、濃縮、抽出、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により精製してもよいし、精製しなくてもよい。
Figure JPOXMLDOC01-appb-C000025
[式(i)中、R1、A1、a、b、及びZは、は、式(i-1)におけるものと同じ。]
By the step 1, a precursor copolymer having a structural unit represented by the following formula (i) and a structural unit represented by the formula (2) as essential structural units is obtained. The precursor copolymer may be purified by a conventional method, for example, separation means such as concentration, extraction, column chromatography, or a combination means combining these before or after being subjected to Step 2. Good.
Figure JPOXMLDOC01-appb-C000025
[In the formula (i), R 1 , A 1 , a, b, and Z are the same as those in the formula (i-1). ]
 上記前駆体コポリマーの重量平均分子量は、特に限定されないが、500~100000が好ましく、より好ましくは1000~75000である。また、上記前駆体コポリマーの分子量分布(=重量平均分子量/数平均分子量)は、特に限定されないが、1.0~3.0が好ましく、より好ましくは1.0~2.0である。なお、上記前駆体コポリマーの平均分子量(重量平均分子量、数平均分子量)は、ゲル・パーミエーション・クロマトグラフィーにより測定される標準ポリスチレン換算の分子量より算出される。 The weight average molecular weight of the precursor copolymer is not particularly limited, but is preferably 500 to 100,000, more preferably 1,000 to 75,000. Further, the molecular weight distribution (= weight average molecular weight / number average molecular weight) of the precursor copolymer is not particularly limited, but is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. The average molecular weight (weight average molecular weight, number average molecular weight) of the precursor copolymer is calculated from the molecular weight in terms of standard polystyrene measured by gel permeation chromatography.
 工程2においては、上記前駆体コポリマーにおける構成単位(i)を、式(1)で表される構成単位へと変換し、本発明のイオン性ビニルエーテルコポリマーを生成させる。構成単位(i)を式(1)で表される構成単位に変換する方法としては、特に限定されず、有機合成の分野において周知の方法を使用できる。上述のように、Zがフタロイル基により保護されたアミノ基(フタロイルイミド基)である場合には、ヒドラジンと反応させることにより脱保護し、次いで、炭素数1~18のハロゲン化アルキル又は炭素数2~18のハロゲン化アルケニルと反応させることにより、Zを式(4)で表される基へと変換できる。また、Zがハロゲン原子である場合には、例えば、工程2において、ピリジン又は置換ピリジンと反応させることにより、上記式(5)で表される基へと変換できる。 In step 2, the structural unit (i) in the precursor copolymer is converted into the structural unit represented by the formula (1) to produce the ionic vinyl ether copolymer of the present invention. The method for converting the structural unit (i) into the structural unit represented by the formula (1) is not particularly limited, and a well-known method can be used in the field of organic synthesis. As described above, when Z is an amino group protected by a phthaloyl group (phthaloylimide group), it is deprotected by reacting with hydrazine, and then an alkyl halide having 1 to 18 carbon atoms or 2 carbon atoms. Z can be converted to a group represented by the formula (4) by reacting with an alkenyl halide of ˜18. Moreover, when Z is a halogen atom, it can be converted into a group represented by the above formula (5) by reacting with pyridine or substituted pyridine in Step 2, for example.
 本発明のイオン性ビニルエーテルコポリマーは、慣用の方法、例えば、透析、濃縮、ろ過、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により精製することができる。 The ionic vinyl ether copolymer of the present invention can be purified by a conventional method, for example, separation means such as dialysis, concentration, filtration, column chromatography, or a separation means combining these.
[有機化合物の製造方法]
 本発明のイオン性ビニルエーテルコポリマーは、有機溶媒と水との二相系反応場において有機化合物(被酸化有機化合物)の酸化反応を進行させ、酸化された有機化合物(酸化化合物)を製造する方法における、上記二相系反応場の相間移動触媒として好ましく使用できる。本発明のイオン性ビニルエーテルコポリマーを相間移動触媒として使用することにより、アリル型アルコールに限らず、アリル型アルコール以外のオレフィンを基質として使用した場合であっても、その酸化反応(特に過酸化水素によるエポキシ化反応)を効率的に進行させることができる。なお、本明細書においては、本発明のイオン性ビニルエーテルコポリマーを相間移動触媒として使用する上記有機化合物の製造方法を、「本発明の有機化合物の製造方法」と称する。
[Method for producing organic compound]
The ionic vinyl ether copolymer of the present invention is a method for producing an oxidized organic compound (oxidized compound) by advancing an oxidation reaction of an organic compound (oxidized organic compound) in a two-phase reaction field between an organic solvent and water. And can be preferably used as a phase transfer catalyst in the above two-phase reaction field. By using the ionic vinyl ether copolymer of the present invention as a phase transfer catalyst, not only allyl alcohols but also olefins other than allyl alcohols can be used as substrates for oxidation reactions (particularly due to hydrogen peroxide). Epoxidation reaction) can be carried out efficiently. In addition, in this specification, the manufacturing method of the said organic compound which uses the ionic vinyl ether copolymer of this invention as a phase transfer catalyst is called "the manufacturing method of the organic compound of this invention."
 本発明の有機化合物の製造方法における上記酸化反応は、有機溶媒と水との二相系反応場で実施される。上記有機溶媒としては、水(水溶液等)と二相を形成可能な公知乃至慣用の有機溶媒を使用することができ、また、被酸化有機化合物(特に、オレフィン)の種類等に応じて適宜選択でき、特に限定されないが、例えば、シクロプロパノール、シクロヘキサノールなどのシクロC3-10アルカノール類;ジメチルエーテル、ジエチルエーテルなどの鎖状エーテル類;メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチルなどのエステル(鎖状エステル)類;炭化水素類(例えば、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類);クロロホルム、塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素類;フェノール類などが挙げられる。上記有機溶媒は1種を単独で、又は2種以上を組み合わせて使用することができる。中でも、反応効率の観点で、エステル類、芳香族炭化水素類が好ましい。 The oxidation reaction in the method for producing an organic compound of the present invention is carried out in a two-phase reaction field of an organic solvent and water. As the organic solvent, a known or conventional organic solvent capable of forming a two-phase with water (aqueous solution or the like) can be used, and it is appropriately selected according to the kind of the organic compound to be oxidized (especially olefin). For example, cyclo C 3-10 alkanols such as cyclopropanol and cyclohexanol; chain ethers such as dimethyl ether and diethyl ether; methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone Ketones such as cyclohexanone; esters (chain esters) such as ethyl acetate, butyl acetate, methyl lactate, and ethyl lactate; hydrocarbons (eg, aliphatic hydrocarbons such as pentane, hexane, heptane, cyclohexane, methyl) Cycloaliphatic hydrocarbons such as cyclohexane, toluene, Ren, aromatic hydrocarbons such as ethylbenzene); and the like phenols; chloroform, methylene chloride, halogenated hydrocarbons such as chlorobenzene. The said organic solvent can be used individually by 1 type or in combination of 2 or more types. Of these, esters and aromatic hydrocarbons are preferred from the viewpoint of reaction efficiency.
 水と有機溶媒との割合は、特に限定されないが、前者/後者(重量比)90/10~5/95の範囲から選択することが好ましく、より好ましくは85/15~10/90、さらに好ましくは80/20~15/85、特に好ましくは75/25~20/80である。また、有機溶媒の使用量は、特に限定されないが、被酸化有機化合物(オレフィン等)1重量部に対して、0.01~20重量部が好ましく、より好ましくは0.05~15重量部、さらに好ましくは0.1~10重量部(例えば、0.2~5重量部)である。 The ratio of water to the organic solvent is not particularly limited, but is preferably selected from the range of the former / the latter (weight ratio) 90/10 to 5/95, more preferably 85/15 to 10/90, still more preferably Is 80/20 to 15/85, particularly preferably 75/25 to 20/80. The amount of the organic solvent used is not particularly limited, but is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 15 parts by weight with respect to 1 part by weight of the organic compound to be oxidized (olefin or the like) More preferably, it is 0.1 to 10 parts by weight (for example, 0.2 to 5 parts by weight).
 本発明の有機化合物の製造方法における上記酸化反応は、特に、本発明のイオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とから調製される錯体の酸化物の存在下で進行させることが、上記酸化反応をより高効率で進行させることができる点で好ましい。上記錯体の酸化物は、例えば、反応系中に、酸化剤(特に、過酸化水素)の存在下で、本発明のイオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とを共存させることによって、生成させることができる。 The oxidation reaction in the method for producing an organic compound of the present invention proceeds particularly in the presence of an oxide of a complex prepared from the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof. It is preferable in that the oxidation reaction can proceed with higher efficiency. For example, the oxide of the above complex coexists with the ionic vinyl ether copolymer of the present invention and the heteropolyacid or a salt thereof or a precursor compound thereof in the reaction system in the presence of an oxidizing agent (particularly hydrogen peroxide). Can be generated.
 即ち、本発明の有機化合物の製造方法は、相間移動触媒として本発明のイオン性ビニルエーテルコポリマーを少なくとも含む、有機溶媒と水との二相系反応場における有機化合物の酸化反応用の触媒(酸化反応用触媒)の存在下で、上記酸化反応を進行させる方法である。上記酸化反応用触媒は、上述のように、本発明のイオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とを少なくとも含むことが好ましい。上記酸化反応用触媒は、酸化剤(特に、過酸化水素)と共存させることにより、本発明のイオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とから調製される錯体の酸化物を生成するものと考えられる。 That is, the method for producing an organic compound of the present invention comprises a catalyst (oxidation reaction) for an oxidation reaction of an organic compound in a two-phase reaction field of an organic solvent and water, which contains at least the ionic vinyl ether copolymer of the present invention as a phase transfer catalyst. In this case, the oxidation reaction proceeds in the presence of a catalyst. As described above, the oxidation reaction catalyst preferably includes at least the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof. The oxidation catalyst is a complex oxide prepared from the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof by coexisting with an oxidizing agent (particularly hydrogen peroxide). Is considered to generate.
 上記ヘテロポリ酸若しくはその塩としては、公知の種々のヘテロポリ酸若しくはその塩を使用することができ、特に限定されないが、例えば、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、ケイモリブデン酸、タングストモリブドリン酸、タングストモリブドケイ酸、リンバナドモリブデン酸などが挙げられる。中でも、上記ヘテロポリ酸としては、リン(リン原子)、並びに、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも1種(1種以上)の金属(金属原子)を含むヘテロポリ酸が好ましい。このようなヘテロポリ酸としては、例えば、リンタングステン酸、リンマンガン酸、リンモリブデン酸、リンバナジン酸などが挙げられる。中でも、特に、コストの観点からリンタングステン酸が好ましい。上記ヘテロポリ酸の塩としては、例えば、上記例示のヘテロポリ酸のオニウム塩、アルカリ金属塩、アルカリ土類金属塩、遷移金属塩などが挙げられる。 As the heteropolyacid or salt thereof, various known heteropolyacids or salts thereof can be used, and are not particularly limited. For example, phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, silicomolybdic acid, Examples thereof include ribdophosphoric acid, tungstomolybdosilicic acid, and phosphovanadmolybdic acid. Among them, the heteropolyacid includes phosphorus (phosphorus atom) and a heteropolyacid containing at least one (one or more) metal (metal atom) selected from the group consisting of tungsten, manganese, molybdenum, and vanadium. preferable. Examples of such heteropolyacids include phosphotungstic acid, phosphomanganic acid, phosphomolybdic acid, and phosphovanadic acid. Among these, phosphotungstic acid is particularly preferable from the viewpoint of cost. Examples of the salt of the heteropolyacid include onium salts, alkali metal salts, alkaline earth metal salts, transition metal salts of the above exemplified heteropolyacids.
 上記ヘテロポリ酸若しくはその塩の前駆化合物とは、ヘテロポリ酸若しくはその塩を形成(調製)可能な1種又は2種以上の化合物を意味する。上記前駆化合物は、反応系中で必ずしもヘテロポリ酸若しくはその塩を形成していなくてもよい。上記前駆化合物としては、例えば、タングステン、マンガン、バナジウム、モリブデン、チタン、アルミニウム、ニオブ等の金属原子(好ましくは、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも1種の金属原子)を少なくとも含む化合物(「金属化合物」と称する場合がある)と、リン、ケイ素、及びヒ素からなる群より選択された少なくとも1種のヘテロ原子(好ましくは、リン(リン原子))を少なくとも含む化合物との組み合わせを用いることができる。即ち、上記ヘテロポリ酸若しくはその塩は、タングステン、マンガン、及びバナジウムからなる群より選択された少なくとも1種の金属原子を含む化合物と、リンを少なくとも含む化合物とから調製されるヘテロポリ酸若しくはその塩であることが好ましい。 The precursor compound of the heteropolyacid or salt thereof means one or more compounds that can form (prepare) the heteropolyacid or salt thereof. The precursor compound does not necessarily form a heteropolyacid or a salt thereof in the reaction system. Examples of the precursor compound include metal atoms such as tungsten, manganese, vanadium, molybdenum, titanium, aluminum, and niobium (preferably at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium). ) And at least one heteroatom selected from the group consisting of phosphorus, silicon, and arsenic (preferably phosphorus (phosphorus atom)) Combinations with compounds can be used. That is, the heteropolyacid or salt thereof is a heteropolyacid or salt thereof prepared from a compound containing at least one metal atom selected from the group consisting of tungsten, manganese, and vanadium and a compound containing at least phosphorus. Preferably there is.
 上記ヘテロ原子を含む化合物としては、例えば、リン原子を含む化合物として、リン酸、ポリリン酸(ピロリン酸、メタリン酸を含む)、(ポリ)リン酸塩{(ポリ)リン酸の金属塩[例えば、リン酸カリウム、リン酸ナトリウムなどの(ポリ)リン酸アルカリ金属塩;リン酸カルシウムなどの(ポリ)リン酸アルカリ土類金属塩;リン酸水素カリウム、リン酸水素ナトリウム、リン酸水素二ナトリウムなどの(ポリ)リン酸水素アルカリ金属塩;リン酸水素カルシウムなどの(ポリ)リン酸水素アルカリ土類金属塩;(ポリ)リン酸アルミニウム塩(リン酸ピロリン酸アルミニウム複塩を含む)などの(ポリ)リン酸金属塩]}などが挙げられる。なお、上記リン原子を含む化合物には、五酸化二リンなどの上記リン原子を含む化合物を合成する材料(又は原料)も含まれる。上記リン原子を含む化合物は1種を単独で、又は2種以上を組み合わせて使用することができる。上記の中でも、取り扱い性、コストの観点から、リン酸又はリン酸塩(特に、リン酸)等のリン原子含有オキソ酸又はその塩が好ましい。また、上記ヘテロ原子を含む化合物としては、例えば、ケイ素原子を含む化合物としてケイ酸(オルトケイ酸、メタケイ酸等)、ヒ素原子を含む化合物としてヒ酸、亜ヒ酸などが挙げられる。 Examples of the compound containing a hetero atom include phosphoric acid, polyphosphoric acid (including pyrophosphoric acid and metaphosphoric acid), (poly) phosphate {metal salt of (poly) phosphoric acid [for example, a compound containing a phosphorus atom] (Poly) alkali metal phosphates such as potassium phosphate, sodium phosphate; (Poly) alkaline earth metal salts such as calcium phosphate; potassium hydrogen phosphate, sodium hydrogen phosphate, disodium hydrogen phosphate, etc. (Poly) alkali metal hydrogen phosphate; (Poly) alkaline earth metal phosphate such as calcium hydrogen phosphate; (Poly) aluminum phosphate (including aluminum pyrophosphate double salt) ) Metal phosphate]} and the like. In addition, the compound (or raw material) which synthesize | combines the compound containing the said phosphorus atoms, such as a phosphorus pentoxide, is also contained in the compound containing the said phosphorus atom. The said compound containing a phosphorus atom can be used individually by 1 type or in combination of 2 or more types. Among these, phosphorus atom-containing oxo acids such as phosphoric acid or phosphates (particularly phosphoric acid) or salts thereof are preferable from the viewpoints of handleability and cost. Examples of the compound containing a hetero atom include silicic acid (orthosilicate, metasilicic acid, etc.) as a compound containing a silicon atom, and arsenic acid, arsenous acid, etc. as a compound containing an arsenic atom.
 上記金属化合物としては、例えば、タングステン、マンガン、バナジウム、モリブデン、チタン、アルミニウム、ニオブなどの金属のハロゲン化物、無機酸塩、有機酸塩、錯体、上記金属原子より構成されたポリ酸又はその塩などが挙げられる。これらの金属化合物は1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the metal compound include halides of metals such as tungsten, manganese, vanadium, molybdenum, titanium, aluminum, and niobium, inorganic acid salts, organic acid salts, complexes, and polyacids or salts thereof composed of the above metal atoms. Etc. These metal compounds can be used individually by 1 type or in combination of 2 or more types.
 上記金属化合物の中でも、タングステンを含む化合物(タングステン化合物)としては、例えば、タングステンのハロゲン化物(塩化タングステンなど);タングステンの無機酸塩(硫酸塩、硝酸塩など);タングステンの有機酸塩(酢酸塩など);タングステンを中心金属とする錯体;タングステンのイソポリ酸又はその塩(タングステン酸;タングステン酸ナトリウム、タングステン酸カリウムなどのタングステン酸のアルカリ金属塩など)、ヘテロポリ酸又はその塩(タングストリン酸(又はタングストリン酸塩)(例えば、12-タングストリン酸、11-タングストリン酸など)、バナジウムタングステン酸、モリブデンタングステン酸、マンガンタングステン酸、コバルトタングステン酸、ケイタングステン酸、リンバナドタングステン酸、マンガンモリブデンタングステン酸又はこれらの塩(例えば、アルカリ金属塩など)など)が挙げられる。 Among the above metal compounds, examples of the compound containing tungsten (tungsten compound) include tungsten halides (tungsten chloride, etc.); tungsten inorganic acid salts (sulfates, nitrates, etc.); tungsten organic acid salts (acetates) Complex with tungsten as the central metal; isopolyacid or its salt of tungsten (tungstic acid; alkali metal salt of tungstic acid such as sodium tungstate, potassium tungstate, etc.), heteropolyacid or its salt (tungstophosphoric acid ( Or tungstophosphate) (for example, 12-tungstophosphoric acid, 11-tungstophosphoric acid, etc.), vanadium tungstic acid, molybdenum tungstic acid, manganese tungstic acid, cobalt tungstic acid, silicotungstic acid, phosphovanadota Gusuten acid, manganese molybdate tungstate or salts thereof (e.g., alkali metal salts), etc.).
 上記金属化合物としては、特に、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも1種の金属原子を含む無機酸(ポリ酸、イソポリ酸)又はその塩が好ましい。 As the metal compound, an inorganic acid (polyacid, isopolyacid) or a salt thereof containing at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium is particularly preferable.
 即ち、上記ヘテロポリ酸若しくはその塩の前駆化合物としては、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも1種の金属原子を含む無機酸又はその塩、並びに、リン原子含有オキソ酸又はその塩の組み合わせが好ましい。 That is, as a precursor compound of the heteropolyacid or a salt thereof, an inorganic acid or a salt thereof containing at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium, and a phosphorus atom-containing oxoacid Or the combination of the salt is preferable.
 本発明の有機化合物の製造方法においては、反応系中に他の成分を共存させることもできる。他の成分としては、例えば、ハイドロキノン類、トリアルキルアミン類、ポリエチレングリコールなどが挙げられる。これらの他の成分の使用量は適宜設定可能であり、特に限定されない。 In the method for producing an organic compound of the present invention, other components can coexist in the reaction system. Examples of other components include hydroquinones, trialkylamines, and polyethylene glycol. The usage-amount of these other components can be set suitably, and is not specifically limited.
 (酸化剤)
 本発明の有機化合物の製造方法における酸化反応に使用される酸化剤としては、公知乃至慣用の酸化剤を使用でき、特に限定されないが、上述のように、有機溶媒/水の二相系において、アリル型アルコールに限らず、アリル型アルコール以外のオレフィン等の広範な基質を適用できるという本発明の利点を効果的に享受できる点では、過酸化水素を使用することが好ましい。過酸化水素は、安全性の観点で、水溶液(過酸化水素水溶液)の状態で使用することが好ましい。過酸化水素(又は過酸化水素水溶液)は、慣用の方法で合成してもよく、市販品を用いてもよい。過酸化水素水溶液を使用する場合の過酸化水素の濃度は、特に限定されないが、取り扱い性などの観点から、20~70w/v%が好ましく、より好ましくは22~67w/v%、さらに好ましくは25~65w/v%である。
(Oxidant)
As the oxidizing agent used in the oxidation reaction in the method for producing an organic compound of the present invention, a known or conventional oxidizing agent can be used, and is not particularly limited. As described above, in the two-phase system of organic solvent / water, It is preferable to use hydrogen peroxide from the viewpoint that the advantage of the present invention that a wide range of substrates such as olefins other than allyl alcohol can be applied is effective. Hydrogen peroxide is preferably used in the form of an aqueous solution (aqueous hydrogen peroxide solution) from the viewpoint of safety. Hydrogen peroxide (or hydrogen peroxide aqueous solution) may be synthesized by a conventional method, or a commercially available product may be used. The concentration of hydrogen peroxide in the case of using an aqueous hydrogen peroxide solution is not particularly limited, but is preferably 20 to 70 w / v%, more preferably 22 to 67 w / v%, and still more preferably from the viewpoint of handleability and the like. 25-65 w / v%.
 (有機化合物)
 本発明の有機化合物の製造方法において使用される基質としての有機化合物(被酸化有機化合物)としては、特に限定されないが、例えば、エチレン性不飽和二重結合を有する化合物(「オレフィン」と称する場合がある)、アルコール、ケトンなどが挙げられる。オレフィンを酸化剤で酸化すると、通常、炭素-炭素二重結合(エチレン性不飽和二重結合)がエポキシ化され、対応するエポキシ化合物が生成する。また、条件によっては、ジオールが生成する。第1級アルコールを酸化剤で酸化すると、アルデヒド、カルボン酸等が生成する。第2級アルコールを酸化剤で酸化すると、ケトン、カルボン酸等が生成する。また、ケトンを酸化剤で酸化すると、バイヤービリガー酸化が進行して、エステル(鎖状ケトンの酸化の場合)、ラクトン(環状ケトンの酸化の場合)が生成する。特に、酸化剤として過酸化水素を用いた場合の最も代表的な酸化反応は、オレフィンの酸化、特に、オレフィンの炭素-炭素二重結合のエポキシ化反応である。以下、オレフィンのエポキシ化(オレフィンの炭素-炭素二重結合のエポキシ化)について詳細に説明するが、本発明の有機化合物の製造方法における酸化反応は当該反応に限らず、上記のいずれの酸化反応であってもよい。本発明の有機化合物の製造方法は、基質(被酸化有機化合物)としてアリル型アルコールに限らず、アリル型アルコール以外のオレフィン等の広範な基質に対して適用できるという点で、特に有用性が高い。
(Organic compounds)
Although it does not specifically limit as an organic compound (oxidized organic compound) as a substrate used in the manufacturing method of the organic compound of the present invention, for example, a compound having an ethylenically unsaturated double bond (when referred to as “olefin”) And alcohol, ketone and the like. When an olefin is oxidized with an oxidizing agent, carbon-carbon double bonds (ethylenically unsaturated double bonds) are usually epoxidized to produce the corresponding epoxy compounds. Depending on conditions, a diol is generated. Oxidation of primary alcohol with an oxidizing agent produces aldehyde, carboxylic acid and the like. When secondary alcohol is oxidized with an oxidizing agent, ketone, carboxylic acid and the like are produced. Further, when the ketone is oxidized with an oxidizing agent, Bayer-bilger oxidation proceeds to produce an ester (in the case of oxidation of a chain ketone) and a lactone (in the case of oxidation of a cyclic ketone). In particular, the most typical oxidation reaction when hydrogen peroxide is used as the oxidizing agent is olefin oxidation, particularly olefin carbon-carbon double bond epoxidation reaction. Hereinafter, olefin epoxidation (epoxidation of olefin carbon-carbon double bond) will be described in detail. However, the oxidation reaction in the method for producing an organic compound of the present invention is not limited to this reaction, and any of the oxidation reactions described above. It may be. The method for producing an organic compound of the present invention is particularly useful in that it can be applied to a wide range of substrates such as olefins other than allyl alcohol as the substrate (oxidized organic compound) as well as allyl alcohol. .
 上記オレフィンは、分子内(1分子中)に少なくとも1つのエチレン性不飽和二重結合(非芳香族性炭素-炭素二重結合)を有するものであればよく、特に限定されない。即ち、上記オレフィンは、分子内に1以上のエチレン性不飽和二重結合を有していてもよい。上記オレフィンには、(i)炭素-炭素二重結合を有する直鎖又は分岐鎖状の脂肪族炭化水素、(ii)シクロアルケン環(シクロアルカジエン環などのシクロアルカポリエン環も含む)を含有する化合物などが含まれる。これらの化合物は、置換基を有していてもよい。なお、液相で酸化反応を行う場合には、上記オレフィンとして、通常、反応条件下で液体又は固体の(又は液体と混和性のある)オレフィンが選択される場合が多い。 The olefin is not particularly limited as long as it has at least one ethylenically unsaturated double bond (non-aromatic carbon-carbon double bond) in the molecule (in one molecule). That is, the olefin may have one or more ethylenically unsaturated double bonds in the molecule. The olefin contains (i) a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, and (ii) a cycloalkene ring (including a cycloalkapolyene ring such as a cycloalkadiene ring). And the like. These compounds may have a substituent. When the oxidation reaction is performed in a liquid phase, a liquid or solid (or miscible with the liquid) olefin is usually selected as the olefin usually under reaction conditions.
 (i)炭素-炭素二重結合を有する直鎖又は分岐鎖状の脂肪族炭化水素としては、例えば、エチレン、プロペン、1-ブテン、2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、2,3-ジメチル-2-ブテン、3-ヘキセン、1-へプテン、2-へプテン、1-オクテン、2-オクテン、3-オクテン、2-メチル-2-ブテン、1-ノネン、2-ノネン、デセン、ウンデセン、ドデセン、テトラデセン、ヘキサデセン、オクタデセンなどのC2-40アルケン(好ましくはC2-30アルケン、さらに好ましくはC2-20アルケン);ブタジエン、イソプレン、1,5-ヘキサンジエン、1,6-ヘプタンジエン、1,7-オクタジエン、デカジエン、ウンデカジエン、ドデカジエンなどのC4-40アルカジエン(好ましくはC4-30アルカジエン、さらに好ましくはC4-20アルカジエン);ウンデカトリエン、ドデカトリエンなどのC6-30アルカトリエン(好ましくはC6-20アルカトリエン)などが挙げられる。炭素-炭素二重結合を有する直鎖又は分岐鎖状脂肪族炭化水素は1種を単独で、又は2種以上を組み合わせて使用することができる。 (I) Examples of linear or branched aliphatic hydrocarbons having a carbon-carbon double bond include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene and 1-hexene. 2-hexene, 2,3-dimethyl-2-butene, 3-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, 3-octene, 2-methyl-2-butene, 1 A C 2-40 alkene (preferably a C 2-30 alkene, more preferably a C 2-20 alkene) such as nonene, 2-nonene, decene, undecene, dodecene, tetradecene, hexadecene, octadecene; butadiene, isoprene, 1, C 4-40 alkadienes such as 5-hexanediene, 1,6-heptanediene, 1,7-octadiene, decadiene, undecadiene, dodecadiene (preferably C 4 -30 alkadienes, more preferably C 4-20 alkadienes); C 6-30 alkatrienes (preferably C 6-20 alkatrienes) such as undecatriene and dodecatriene. The linear or branched aliphatic hydrocarbon having a carbon-carbon double bond can be used alone or in combination of two or more.
 これらの直鎖又は分岐鎖状脂肪族炭化水素は、例えば、芳香族炭化水素基(例えば、フェニル基などのC6-10アリール基など)、ヒドロキシル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子など)、メルカプト基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、t-ブトキシ基などのC1-10アルコキシ基(例えば、C1-6アルコキシ基など)など)、ハロアルコキシ基、アルキルチオ基(例えば、メチルチオ基、エチルチオ基などのC1-10アルキルチオ基など)、カルボキシル基、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基などのC1-10アルコキシカルボニル基(例えば、C2-10アルコキシカルボニル基など)など)、アシル基(例えば、アセチル基、プロピオニル基、トリフルオロアセチル基などのC2-10アシル基など)、アシルオキシ基(例えば、アセトキシ基、プロピオニルオキシ基、トリフルオロアセトキシ基などのC1-10アシルオキシ基等)、アミノ基、置換アミノ基、ニトロ基、シアノ基、複素環基(ピリジル基などの窒素原子含有複素環基など)などの置換基を有してもよい。なお、置換基の数及び置換位置は特に限定されない。 These linear or branched aliphatic hydrocarbons include, for example, aromatic hydrocarbon groups (for example, C 6-10 aryl groups such as phenyl groups), hydroxyl groups, halogen atoms (for example, fluorine atoms, chlorine atoms) , Bromine atom, etc.), mercapto group, alkoxy group (eg, C 1-10 alkoxy group such as methoxy group, ethoxy group, propoxy group, butoxy group, t-butoxy group, etc. (eg, C 1-6 alkoxy group), etc. ), A haloalkoxy group, an alkylthio group (eg, a C 1-10 alkylthio group such as a methylthio group or an ethylthio group), a carboxyl group, an alkoxycarbonyl group (eg, a C 1-10 alkoxy such as a methoxycarbonyl group or an ethoxycarbonyl group) carbonyl group (e.g., a C 2-10 alkoxycarbonyl group), etc.), an acyl group (e.g., acetyl, pro Onyl group, such as C 2-10 acyl group such as trifluoroacetyl group), an acyloxy group (e.g., acetoxy group, propionyloxy group, C 1-10 acyloxy group such as trifluoroacetoxy group), an amino group, substituted amino A substituent such as a group, a nitro group, a cyano group, or a heterocyclic group (such as a nitrogen atom-containing heterocyclic group such as a pyridyl group) may be included. The number of substituents and the substitution position are not particularly limited.
 置換基を有する上記直鎖又は分岐鎖状脂肪族炭化水素としては、例えば、置換基としてアリール基(例えば、フェニル基など)を有する上記直鎖又は分岐鎖状脂肪族炭化水素(たとえば、フェニルエチレン(又はスチレン)、1-フェニルプロペン、2-フェニル-1-ブテン、1-フェニル-1,3-ブタジエン、1-フェニル-1,3-ペンタジエンなど)などが挙げられる。なお、置換基としてアリール基(例えば、フェニル基など)を有する上記直鎖又は分岐鎖状脂肪族炭化水素は、アルケニル基(例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基などの、C2-10アルケニル基(好ましくは、C2-6アルケニル基)など)で置換されている芳香族化合物と称することもでき、このような芳香族化合物は、側鎖に少なくとも1つの炭素-炭素二重結合を有している限り、上記アルケニル基及び/又は芳香環に置換基(例えば、上記例示の置換基など)を有していてもよく、上記アルケニル基と芳香環との間に、連結基(後述する連結基など)を有していてもよい。 Examples of the linear or branched aliphatic hydrocarbon having a substituent include the linear or branched aliphatic hydrocarbon having an aryl group (for example, a phenyl group) as a substituent (for example, phenylethylene). (Or styrene), 1-phenylpropene, 2-phenyl-1-butene, 1-phenyl-1,3-butadiene, 1-phenyl-1,3-pentadiene, and the like. In addition, the linear or branched aliphatic hydrocarbon having an aryl group (for example, phenyl group) as a substituent is an alkenyl group (for example, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, etc.) Or an aromatic compound substituted with a C 2-10 alkenyl group (preferably a C 2-6 alkenyl group), and the aromatic compound has at least one carbon in the side chain. As long as it has a carbon double bond, the alkenyl group and / or aromatic ring may have a substituent (for example, the substituents exemplified above), and between the alkenyl group and the aromatic ring May have a linking group (such as a linking group described below).
 (ii)シクロアルケン環(シクロアルカジエン環などのシクロアルカポリエン環も含む)を含有する化合物としては、例えば、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロノネン、シクロデセン、シクロウンデセン、シクロドデセンなどのC3-20シクロアルケン(好ましくはC4-14シクロアルケン、さらに好ましくはC5-10シクロアルケン);シクロペンタジエン、1,3-シクロヘキサジエン、1,4-シクロヘキサジエン、1,3-シクロヘプタジエン、1,4-シクロヘプタジエン、1,5-シクロオクタジエン、シクロデカジエンなどのC5-20シクロアルカジエン(好ましくはC5-14シクロアルカジエン、さらに好ましくはC5-10シクロアルカジエン);シクロオクタトリエンなどのC7-20シクロアルカトリエンなどが挙げられる。シクロアルケン環を有する化合物は1種を単独で、又は2種以上を組み合わせて使用することができる。上記の中でも、C3-20シクロアルケンが好ましく、さらにC5-10シクロアルケン[例えば、C6-8シクロアルケン(例えば、シクロヘキセンなどのC5-6シクロアルケンなど)]を好ましく使用できる。 (Ii) Examples of the compound containing a cycloalkene ring (including a cycloalkapolyene ring such as a cycloalkadiene ring) include, for example, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclononene, cyclodecene, and cycloundecene C 3-20 cycloalkene such as cyclododecene (preferably C 4-14 cycloalkene, more preferably C 5-10 cycloalkene); cyclopentadiene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, 1, C 5-20 cycloalkadiene such as 3-cycloheptadiene, 1,4-cycloheptadiene, 1,5-cyclooctadiene, cyclodecadiene (preferably C 5-14 cycloalkadiene, more preferably C 5 -10 cycloalkadiene); cycloocta Such as C 7-20 cycloalkadienyl triene such as Lien and the like. The compound which has a cycloalkene ring can be used individually by 1 type or in combination of 2 or more types. Among these, C 3-20 cycloalkene is preferable, and C 5-10 cycloalkene [for example, C 6-8 cycloalkene (for example, C 5-6 cycloalkene such as cyclohexene)] can be preferably used.
 これらの化合物は、シクロアルケン環に置換基を有していてもよい。置換基の数および置換位置は特に限定されない。置換基としては、(i)炭素-炭素二重結合を有する直鎖又は分岐鎖状脂肪族炭化水素の項で例示の置換基の他、例えば、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基などのC1-10アルキル基(好ましくはC1-6アルキル基)など);ハロアルキル基;アルケニル基(例えば、上記例示のアルケニル基など);アリール基(例えば、フェニル基などのC6-10アリール基など)などが挙げられる。 These compounds may have a substituent on the cycloalkene ring. The number of substituents and the substitution position are not particularly limited. Examples of the substituent include (i) a substituent exemplified in the section of a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, and an alkyl group (for example, a methyl group, an ethyl group, an isopropyl group). Groups, butyl groups, isobutyl groups, t-butyl groups and other C 1-10 alkyl groups (preferably C 1-6 alkyl groups); haloalkyl groups; alkenyl groups (eg, alkenyl groups exemplified above); aryl Group (for example, C 6-10 aryl group such as phenyl group) and the like.
 上記オレフィンは、複数のアルケン単位及び/又はシクロアルケン単位を含む化合物であってもよい。上記複数のアルケン単位及び/又はシクロアルケン単位を含む化合物における複数のアルケン単位及び/又はシクロアルケン単位は、同種であってもよく、異種であってもよい。また、上記複数のアルケン単位及び/又はシクロアルケン単位は、単結合で結合(直接結合)していてもよく、連結基を介して結合していてもよい。上記連結基は、1種であってもよく、複数種であってもよい。なお、上記「アルケン単位」とは、上記(i)炭素-炭素二重結合を有する直鎖又は分岐鎖状脂肪族炭化水素に対応する1価又は多価基であってもよく、アルカジエン単位などのアルカポリエン単位も含む意味で用いる。また、上記「シクロアルケン単位」とは、上記(ii)シクロアルケン環を含有する化合物に対応する1価又は多価基であってもよく、シクロアルカジエン単位などのシクロアルカポリエン単位も含む意味で用いる。 The olefin may be a compound containing a plurality of alkene units and / or cycloalkene units. The plurality of alkene units and / or cycloalkene units in the compound containing the plurality of alkene units and / or cycloalkene units may be the same or different. The plurality of alkene units and / or cycloalkene units may be bonded by a single bond (direct bond) or may be bonded through a linking group. 1 type may be sufficient as the said coupling group, and multiple types may be sufficient as it. The “alkene unit” may be a monovalent or polyvalent group corresponding to (i) a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, such as an alkadiene unit. It is used in the meaning including the alkapolyene unit The “cycloalkene unit” may be a monovalent or polyvalent group corresponding to the compound (ii) containing a cycloalkene ring, and includes a cycloalkapolyene unit such as a cycloalkadiene unit. Used in.
 上記連結基は、通常、多価基(例えば、2価の基など)である。連結基は、例えば、アルキレン基(例えば、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、2-メチルブタン-1,3-ジイル基等のC1-20アルキレン基など)、シクロアルキレン基(たとえば、1,4-シクロヘキシレン基等のC4-10シクロアルキレン基など)、アリーレン基(例えば、フェニレン基、ナフタレンジイル基などのC6-10アリーレン基など)、カルボニル結合、エステル結合、アミド結合、エーテル結合及びウレタン結合から選択された少なくとも1種で構成される。 The linking group is usually a polyvalent group (for example, a divalent group). The linking group includes, for example, an alkylene group (for example, a C 1-20 alkylene group such as an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, and a 2-methylbutane-1,3-diyl group), a cycloalkylene group (for example, C4-10 cycloalkylene group such as 1,4-cyclohexylene group), arylene group (eg C 6-10 arylene group such as phenylene group, naphthalenediyl group, etc.), carbonyl bond, ester bond, amide bond And at least one selected from an ether bond and a urethane bond.
 上記オレフィンの炭素数(置換基及び/又は連結基を含む場合には、置換基及び/又は連結基(置換基と連結基の両方を含む場合には、置換基及び連結基)に含まれる炭素数を合算した個数)は、特に限定されないが、2~40個が好ましく、より好ましくは6個以上(例えば、6~30個)、さらに好ましくは6~25個、特に好ましくは6~20個(例えば、7~20個)である。 Carbon contained in the carbon number of the olefin (when a substituent and / or a linking group is included, a substituent and / or a linking group (a substituent and a linking group when both a substituent and a linking group are included)) The total number) is not particularly limited, but is preferably 2 to 40, more preferably 6 or more (for example, 6 to 30), further preferably 6 to 25, and particularly preferably 6 to 20 (For example, 7 to 20).
 このようなオレフィンは1種を単独で、又は2種以上を組み合わせて使用することができる。上記オレフィンは、(ii)シクロアルケン環(例えば、C3-20シクロアルケン環、好ましくはC6-20シクロアルケン環、特にシクロヘキセン環)を含有する化合物であることが好ましい。上記オレフィンは、1又は複数のシクロアルケン環(特にシクロヘキセン環)を有していてもよい。 Such olefin can be used individually by 1 type or in combination of 2 or more types. The olefin is preferably a compound containing (ii) a cycloalkene ring (for example, a C 3-20 cycloalkene ring, preferably a C 6-20 cycloalkene ring, particularly a cyclohexene ring). The olefin may have one or more cycloalkene rings (particularly cyclohexene rings).
 代表的な上記オレフィンには、例えば、下記式(a)
Figure JPOXMLDOC01-appb-C000026
[式(a)中、R11は、水素原子又はアルキル基を示し、R12は、水素原子、アルキル基、アルケニル基、ヒドロキシル基、アルコキシ基、カルボキシル基、又はアルコキシカルボニル基を示す。]
で表される化合物や、下記式(b)
Figure JPOXMLDOC01-appb-C000027
[式(b)中、R13は単結合、又は、直鎖若しくは分岐鎖状アルキレン基を示す。R11は、同一又は異なって、前記に同じ。p及びqは、同一又は異なって、0又は1以上の整数である。]
で表される化合物などが含まれる。なお、p及びqが0であり、R13が単結合である場合には、上記式(b)で表される化合物は、2つのシクロヘキセン環が直接結合した構造を有する。
Representative olefins include, for example, the following formula (a)
Figure JPOXMLDOC01-appb-C000026
[In Formula (a), R 11 represents a hydrogen atom or an alkyl group, and R 12 represents a hydrogen atom, an alkyl group, an alkenyl group, a hydroxyl group, an alkoxy group, a carboxyl group, or an alkoxycarbonyl group. ]
Or a compound represented by the following formula (b)
Figure JPOXMLDOC01-appb-C000027
[In the formula (b), R 13 represents a single bond or a linear or branched alkylene group. R 11 is the same or different and the same as above. p and q are the same or different and are 0 or an integer of 1 or more. ]
And the like. When p and q are 0 and R 13 is a single bond, the compound represented by the above formula (b) has a structure in which two cyclohexene rings are directly bonded.
 R13で示される直鎖又は分岐鎖状アルキレン基(アルキリデン基も含む)としては、例えば、置換基を有していてもよいアルカン(たとえば、エタン、プロパン、イソペンタン、2,2-ジメチルプロパンなどのC1-20アルカンなど)に対応する2価の基[具体的には、メチレン基、エチレン基、プロピレン基、2,2-ジメチルプロパン-1,3-ジイル基などの直鎖又は分岐鎖状C2-20アルキレン基(またはアルキリデン基)]などが挙げられる。また、上記式(b)においてp及びqは、1であることが好ましい。 Examples of the linear or branched alkylene group (including alkylidene group) represented by R 13 include alkanes which may have a substituent (for example, ethane, propane, isopentane, 2,2-dimethylpropane, etc.) C 1-20 the corresponding divalent groups [specifically alkane, etc.), a methylene group, an ethylene group, a linear or branched chain, such as propylene, 2,2-dimethyl-1,3-diyl And a C 2-20 alkylene group (or alkylidene group)]. In the above formula (b), p and q are preferably 1.
 具体的には、上記オレフィンには、例えば、上記式(a)において、R11及びR12が水素原子であるシクロヘキセン、R11が水素原子であり、R12がビニル基であるビニルシクロヘキセン(3-ビニルシクロヘキセン等)、R11が水素原子であり、R12がメトキシカルボニル基であるシクロヘキサ-3-エンカルボン酸メチル(下記式(a-1))、R11が水素原子であり、R12がアリル基である4-アリルシクロヘキセン(下記式(a-2))、R11がメチル基であり、R12がビニル基である2-メチル-4-ビニルシクロヘキセン(下記式(a-3))、R11がメチル基であり、R12がイソプロペニル基である2-メチル-4-(2-プロペニル)シクロヘキセン(下記式(a-4))、R11がメチル基であり、R12がイソプロペニル基である1-メチル-4-(1-メチルエテニル)シクロヘキセン(リモネン);上記式(b)において、R11が水素原子であり、R13がメチレン基であり、pが1、qが0であるシクロヘキサ-3-エンカルボン酸シクロヘキセニルメチル(下記式(b-1))、R11が水素原子であり、R13が2,2-ジメチルプロパン-1,3-ジイルであり、p及びqが1であるビス[1,3-(シクロヘキサ-3-エンカルボン酸)]-2,2-ジメチルプロピルエステル(下記式(b-2))、R11がメチル基であり、R13が2,2-ジメチルプロパン-1,3-ジイルであり、p及びqが1であるビス[1,3-(4-メチルシクロヘキサ-3-エンカルボン酸)]-2,2-ジメチルプロピルエステル[4-メチルシクロヘキサ-3-エンカルボン酸=2,2-ジメチル-3-(4-メチルシクロヘキサ-3-エンカルボニルオキシ)プロピル](下記式(b-3))、及び、ビス[1,3-(3-メチルシクロヘキサ-3-エンカルボン酸)]-2,2-ジメチルプロピルエステル[3-メチルシクロヘキサ-3-エンカルボン酸=2,2-ジメチル-3-(3-メチルシクロヘキサ-3-エンカルボニルオキシ)プロピル](下記式(b-4))などが含まれる。 Specifically, the olefin includes, for example, cyclohexene in which R 11 and R 12 are hydrogen atoms, R 11 is a hydrogen atom, and vinyl cyclohexene (3) in which R 12 is a vinyl group in the above formula (a). -Vinylcyclohexene, etc.), R 11 is a hydrogen atom, R 12 is a methoxycarbonyl group methyl cyclohex-3-enecarboxylate (the following formula (a-1)), R 11 is a hydrogen atom, R 12 Is an allyl group, 4-allylcyclohexene (formula (a-2) below), R 11 is a methyl group, and R 12 is a vinyl group, 2-methyl-4-vinylcyclohexene (formula (a-3) below) ), R 11 is a methyl group and R 12 is an isopropenyl group 2-methyl-4- (2-propenyl) cyclohexene (formula (a-4) below), R 11 is a methyl group, R 12 Is an isopropenyl group There l-methyl-4- (1-methylethenyl) cyclohexene (limonene); in the formula (b), a R 11 is a hydrogen atom, R 13 is methylene group, p is is 1, q is 0 cyclohex Cyclohexenylmethyl-3-enecarboxylate (formula (b-1) below), R 11 is a hydrogen atom, R 13 is 2,2-dimethylpropane-1,3-diyl, and p and q are 1 Bis [1,3- (cyclohex-3-enecarboxylic acid)]-2,2-dimethylpropyl ester (formula (b-2) below), R 11 is a methyl group, R 13 is 2,2 Bis [1,3- (4-methylcyclohex-3-enecarboxylic acid)]-2,2-dimethylpropyl ester [4- which is dimethylpropane-1,3-diyl and p and q are 1 Methylcyclohex-3-encar Acid = 2,2-dimethyl-3- (4-methylcyclohex-3-enecarbonyloxy) propyl] (formula (b-3) below) and bis [1,3- (3-methylcyclohexa) -3-enecarboxylic acid)]-2,2-dimethylpropyl ester [3-methylcyclohex-3-enecarboxylic acid = 2,2-dimethyl-3- (3-methylcyclohex-3-enecarbonyloxy) Propyl] (formula (b-4) below) and the like.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 例えば、オレフィンとして、上記式(b-1)で表されるシクロヘキサ-3-エンカルボン酸シクロヘキセニルメチルを用いると、対応するエポキシ化合物(下記式(c)で表される3,4-エポキシシクロヘキセニルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート)が得られる。また、オレフィンとして、上記式(a-3)で表される2-メチル-4-ビニルシクロヘキセンを用いると、対応するエポキシ化合物(下記式(d-1)で表されるモノエポキシ体及び下記式(d-2)で表されるジエポキシ体)が得られる。さらに、オレフィンとして、上述の1-メチル-4-(1-メチルエテニル)シクロヘキセン(リモネン)を用いると、対応する1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン(リモネンジエポキシド)が得られる。さらに、オレフィンとして、上記式(b-3)で表されるビス[1,3-(4-メチルシクロヘキサ-3-エンカルボン酸)]-2,2-ジメチルプロピルエステル[4-メチルシクロヘキサ-3-エンカルボン酸=2,2-ジメチル-3-(4-メチルシクロヘキサ-3-エンカルボニルオキシ)プロピル]を用いると、対応する下記式(e)で表されるエポキシ化合物が得られる。また、オレフィンとして、上記式(b-4)で表されるビス[1,3-(3-メチルシクロヘキサ-3-エンカルボン酸)]-2,2-ジメチルプロピルエステル[3-メチルシクロヘキサ-3-エンカルボン酸=2,2-ジメチル-3-(3-メチルシクロヘキサ-3-エンカルボニルオキシ)プロピル]を用いると、対応する下記式(f)で表されるエポキシ化合物が得られる。 For example, when cyclohexenylmethyl cyclohex-3-enecarboxylate represented by the above formula (b-1) is used as the olefin, the corresponding epoxy compound (3,4-epoxycyclohexane represented by the following formula (c) is used. Hexenylmethyl (3,4-epoxy) cyclohexanecarboxylate) is obtained. Further, when 2-methyl-4-vinylcyclohexene represented by the above formula (a-3) is used as the olefin, the corresponding epoxy compound (monoepoxy compound represented by the following formula (d-1) and the following formula: A diepoxy compound represented by (d-2) is obtained. Furthermore, when 1-methyl-4- (1-methylethenyl) cyclohexene (limonene) is used as the olefin, the corresponding 1,2-epoxy-4- (2-methyloxiranyl) -1-methylcyclohexane ( Limonene diepoxide). Further, as the olefin, bis [1,3- (4-methylcyclohex-3-enecarboxylic acid)]-2,2-dimethylpropyl ester [4-methylcyclohexaester represented by the above formula (b-3) is used. When -3-enecarboxylic acid = 2,2-dimethyl-3- (4-methylcyclohex-3-enecarbonyloxy) propyl] is used, a corresponding epoxy compound represented by the following formula (e) is obtained. . As the olefin, bis [1,3- (3-methylcyclohex-3-enecarboxylic acid)]-2,2-dimethylpropyl ester represented by the above formula (b-4) [3-methylcyclohexa When -3-enecarboxylic acid = 2,2-dimethyl-3- (3-methylcyclohex-3-enecarbonyloxy) propyl] is used, a corresponding epoxy compound represented by the following formula (f) is obtained. .
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 本発明の有機化合物の製造方法における酸化反応(エポキシ化反応等)は、被酸化有機化合物(オレフィン等)を含む有機相と、水相(ヘテロポリ酸若しくはその塩又はこれらの前駆化合物を含む場合には、これらが含まれる)とで構成される二相系溶液に、過酸化水素又はその水溶液を添加して進行させることが好ましい。なお、本発明のイオン性ビニルエーテルコポリマーの水相及び有機相のそれぞれにおける存在割合は、構造及び温度等に依存する。 The oxidation reaction (epoxidation reaction, etc.) in the method for producing an organic compound of the present invention includes an organic phase containing an oxidizable organic compound (olefin, etc.) and an aqueous phase (heteropolyacid or a salt thereof or a precursor compound thereof). It is preferable that hydrogen peroxide or an aqueous solution thereof be added to a two-phase solution composed of The abundance ratio of the ionic vinyl ether copolymer of the present invention in each of the aqueous phase and the organic phase depends on the structure and temperature.
 本発明の有機化合物の製造方法において、本発明のイオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とを反応系中に共存させる方法は、特に限定されない。例えば、あらかじめ本発明のイオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とを混合して組成物とした状態で反応系中に添加してもよいし、本発明のイオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とを別々に反応系中に添加してもよい。 In the method for producing an organic compound of the present invention, the method of allowing the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof to coexist in the reaction system is not particularly limited. For example, the ionic vinyl ether copolymer of the present invention and a heteropolyacid or a salt thereof or a precursor compound thereof may be added to the reaction system in the form of a composition, or the ionic vinyl ether of the present invention. You may add a copolymer and heteropoly acid or its salt, or these precursor compounds separately in a reaction system.
 本発明の有機化合物の製造方法における本発明のイオン性ビニルエーテルコポリマーの使用量は、特に限定されないが、被酸化有機化合物(オレフィン等)100重量部に対して、0.1~50重量部が好ましく、より好ましくは0.5~30重量部、さらに好ましくは1.0~15重量部である。本発明のイオン性ビニルエーテルコポリマーの使用量を0.1重量部以上とすることにより、酸化反応をより効率的に進行させることができる傾向がある。 The amount of the ionic vinyl ether copolymer of the present invention used in the method for producing an organic compound of the present invention is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the oxidizable organic compound (olefin or the like). More preferably, it is 0.5 to 30 parts by weight, still more preferably 1.0 to 15 parts by weight. When the amount of the ionic vinyl ether copolymer of the present invention is 0.1 parts by weight or more, the oxidation reaction tends to proceed more efficiently.
 本発明の有機化合物の製造方法においてヘテロポリ酸若しくはその塩又はこれらの前駆化合物を使用する場合、その使用量(前駆化合物の場合にはヘテロポリ酸若しくはその塩1モルに相当する量)は、特に限定されないが、被酸化有機化合物(オレフィン等)の被酸化基(例えば、オレフィンの炭素-炭素二重結合等)1モルに対し、0.01~3.00モルが好ましく、より好ましくは0.01~1.00モル、さらに好ましくは0.01~0.05モルである。使用量を0.01モル以上とすることにより、酸化反応をより効率的に進行させることができる傾向がある。 When a heteropolyacid or a salt thereof or a precursor compound thereof is used in the method for producing an organic compound of the present invention, the amount used (in the case of a precursor compound, an amount corresponding to 1 mol of the heteropolyacid or a salt thereof) is particularly limited. However, the amount is preferably 0.01 to 3.00 mol, more preferably 0.01 to 1 mol of an oxidizable group (for example, a carbon-carbon double bond of an olefin) of an oxidizable organic compound (olefin or the like). The amount is 1.00 mol, more preferably 0.01 to 0.05 mol. When the amount used is 0.01 mol or more, the oxidation reaction tends to proceed more efficiently.
 本発明の有機化合物の製造方法における酸化剤の使用量は、酸化剤の種類等により適宜設定可能であり、特に限定されない。例えば、上記酸化剤として過酸化水素を使用する場合、該過酸化水素(実質的に添加する過酸化水素)の使用量は、特に限定されないが、被酸化有機化合物(オレフィン等)の被酸化基(例えば、オレフィンの炭素-炭素二重結合等)1モルに対して、0.5~3.0モルが好ましく、より好ましくは0.7~2.8モル、さらに好ましくは0.9~2.0モルである。 The amount of the oxidizing agent used in the method for producing an organic compound of the present invention can be appropriately set depending on the type of the oxidizing agent, and is not particularly limited. For example, when hydrogen peroxide is used as the oxidant, the amount of hydrogen peroxide (substantially added hydrogen peroxide) is not particularly limited, but the oxidizable group of the oxidizable organic compound (olefin, etc.). (For example, carbon-carbon double bond of olefin) The amount is preferably 0.5 to 3.0 mol, more preferably 0.7 to 2.8 mol, and still more preferably 0.9 to 2 with respect to 1 mol. 0.0 mole.
 上記酸化反応では、酸化剤として過酸化水素を使用する場合、反応中の酸素発生速度を抑える目的から、本発明のイオン性ビニルエーテルコポリマー、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物(以上、酸化反応用触媒)、及び被酸化有機化合物(オレフィン等)(これらを総称して「原料」と称する場合がある)、並びにその他の成分(例えば、ハイドロキノン類など)を混合した後、得られる混合溶液(通常、二相系である)に過酸化水素を添加することによって、酸化反応(エポキシ化反応等)を開始させるべきである。なお、各原料を添加し混合する場合、各原料において、全量を一括して(又は一回で)添加してもよく、回分して(又は複数回に分けて)添加してもよい。なお、過酸化水素を添加する場合、全量を一括して(又は一回で)添加した場合、反応熱による反応溶液の急激な温度上昇、及びそれに伴う過酸化水素の分解を抑制するため、回分して(又は複数回に分けて)添加するのが望ましい。過酸化水素を回分して(又は複数回に分けて)添加する方法は、特に限定されないが、例えば、過酸化水素を反応溶液に滴下する方法を利用すると、容易に反応速度を調整でき、反応溶液の急激な温度上昇を有効に防止することができる。 In the above oxidation reaction, when hydrogen peroxide is used as the oxidizing agent, the ionic vinyl ether copolymer, heteropolyacid or salt thereof or precursor compound thereof (hereinafter referred to as oxidation reaction) of the present invention is used for the purpose of suppressing the rate of oxygen generation during the reaction. Catalyst), oxidizable organic compounds (olefins, etc.) (these may be collectively referred to as “raw materials”), and other components (for example, hydroquinones, etc.), and then a mixed solution ( The oxidation reaction (epoxidation reaction etc.) should be initiated by adding hydrogen peroxide to (usually a two-phase system). In addition, when adding and mixing each raw material, in each raw material, the whole quantity may be added collectively (or once), and may be added in batch (or divided into multiple times). In addition, when hydrogen peroxide is added all at once (or at one time), in order to suppress the rapid temperature rise of the reaction solution due to reaction heat and the accompanying decomposition of hydrogen peroxide, It is desirable to add (or divide into multiple times). The method of adding hydrogen peroxide in batches (or divided into multiple times) is not particularly limited. For example, if a method of dropping hydrogen peroxide into the reaction solution is used, the reaction rate can be easily adjusted and the reaction can be performed. The rapid temperature rise of the solution can be effectively prevented.
 反応温度(又は反応系の温度)は、被酸化有機化合物や酸化剤等の種類に応じて適宜設定可能であり、特に限定されない。例えば、酸化剤として過酸化水素を使用する場合には、過酸化水素の分解による酸素発生を考慮し、50~70℃が好ましく、より好ましくは55~65℃である。反応温度を70℃以下とすることにより、酸素の発生を抑制でき、より安全に製造することができる傾向がある。また、上記反応は、常圧下で行ってもよく、減圧下又は加圧下で行うこともできる。 The reaction temperature (or the temperature of the reaction system) can be appropriately set according to the kind of the organic compound to be oxidized, the oxidizing agent, etc., and is not particularly limited. For example, when hydrogen peroxide is used as the oxidizing agent, it is preferably 50 to 70 ° C., more preferably 55 to 65 ° C. in consideration of oxygen generation due to decomposition of hydrogen peroxide. By setting the reaction temperature to 70 ° C. or lower, the generation of oxygen can be suppressed, and the production can be more safely performed. Moreover, the said reaction may be performed under a normal pressure and can also be performed under reduced pressure or pressurization.
 また、反応系(水相)のpHは、特に限定されないが、2~7が好ましく、より好ましくは3~5、さらに好ましくは3.5~4.5である。 The pH of the reaction system (aqueous phase) is not particularly limited, but is preferably 2 to 7, more preferably 3 to 5, and still more preferably 3.5 to 4.5.
 反応時間は、特に限定されないが、例えば、酸化剤として過酸化水素を使用する場合には、余剰酸素の発生を避けるため、目的の酸化物が生成した後、速やかに反応を終了させることが好ましい。 Although the reaction time is not particularly limited, for example, when hydrogen peroxide is used as the oxidizing agent, it is preferable to terminate the reaction immediately after the target oxide is formed in order to avoid generation of excess oxygen. .
 なお、得られた酸化化合物(エポキシ化合物等)は、目的に応じ、慣用の方法、例えば、濾過、濃縮、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により原料等から分離精製することができる。 The obtained oxidized compound (epoxy compound, etc.) is separated and purified from the raw materials and the like according to the purpose by a conventional method, for example, separation means such as filtration, concentration, column chromatography, etc., or a separation means combining these. be able to.
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
実施例1
[下記式(I-1)で表されるコポリマーの製造]
 2-フタルイミドエチルビニルエーテル(4.31g)をジクロロメタン(15mL)に溶解させ、室温下で、2-エトキシエチルビニルエーテル(2.49g)、イソブチルビニルエーテル(2.6mL)、及び1,4-ジオキサン(2.1mL)を順次加え、攪拌した。次いで、-68℃まで冷却し、三フッ化ホウ素ジエチルエーテル錯体0.1Mジクロロメタン溶液(4.0mL)を5分間かけて滴下した。滴下終了後、30分間かけて10℃まで昇温し、メタノール(0.3wt%アンモニア水溶液含有;5.0mL)を加え、10分間攪拌した。その後、反応混合物にジクロロメタン(50mL)を加え、この溶液を、イオン交換水(50mL)、飽和食塩水(50mL)で順次洗浄し、無水硫酸ナトリウム(10g)と無水硫酸マグネシウム(5g)を同時に加え、乾燥させた。固体をろ過により除去し、ろ液を減圧下で濃縮することにより、白色スラリー液(8.41g、「白色スラリー液(1)」と称する場合がある)を得た。
 上記白色スラリー液(1)を1,4-ジオキサン(20mL)に溶解させ、メタノール(10mL)を加え均一溶液とした。次いで、室温下で、ヒドラジン一水和物(2.4mL)を加え、攪拌しながら65℃まで昇温し、さらに3時間攪拌を継続した。その後、析出した固体をろ過により除去し、ろ液を減圧下で濃縮した。得られた粗生成物を透析によって精製し、白色スラリー液(4.09g、「白色スラリー液(2)」と称する場合がある)を得た。
 上記白色スラリー液(2)をN,N-ジメチルホルムアミド(20mL)及びエタノール(10mL)の混合溶媒に溶解させ、室温下で1-ブロモブタン(9.59g)を加え、120℃まで昇温し攪拌した。13時間後、室温まで冷却し、減圧下で濃縮した。得られた粗生成物に酢酸エチルを加えることで白色固体を沈殿させ、これをろ過により回収し乾燥させることによって、PTC-1(6.1g)を淡黄色液体として得た。得られたPTC-1の1H-NMRスペクトル測定により、下記式(I-1)で表されるコポリマーであることが確認された。
 1H-NMR(500MHz、CDCl3):δ0.89(t,9H,J=7.0Hz,CH3)、1.23-1.38(m,30H,CH2)、1.58-1.94(m,6H,CH2)、2.75(s,3H,CH3)、3.28-3.31(m,6H,CH2)、3.38(s,3H,CH3)、3.54-3.69(m,26H,CH2)、3.80-3.82(m,2H,CH2)、3.91-3.93(m,2H,CH2
Figure JPOXMLDOC01-appb-C000030
Example 1
[Production of copolymer represented by the following formula (I-1)]
2-Phthalimidoethyl vinyl ether (4.31 g) was dissolved in dichloromethane (15 mL), and at room temperature, 2-ethoxyethyl vinyl ether (2.49 g), isobutyl vinyl ether (2.6 mL), and 1,4-dioxane (2 .1 mL) was added sequentially and stirred. Next, the mixture was cooled to −68 ° C., and boron trifluoride diethyl ether complex 0.1 M dichloromethane solution (4.0 mL) was added dropwise over 5 minutes. After completion of dropping, the temperature was raised to 10 ° C. over 30 minutes, methanol (containing 0.3 wt% ammonia aqueous solution; 5.0 mL) was added, and the mixture was stirred for 10 minutes. Thereafter, dichloromethane (50 mL) was added to the reaction mixture, and this solution was washed successively with ion-exchanged water (50 mL) and saturated brine (50 mL), and anhydrous sodium sulfate (10 g) and anhydrous magnesium sulfate (5 g) were added simultaneously. , Dried. The solid was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a white slurry liquid (8.41 g, sometimes referred to as “white slurry liquid (1)”).
The white slurry liquid (1) was dissolved in 1,4-dioxane (20 mL), and methanol (10 mL) was added to make a homogeneous solution. Next, hydrazine monohydrate (2.4 mL) was added at room temperature, the temperature was raised to 65 ° C. with stirring, and stirring was continued for another 3 hours. Thereafter, the precipitated solid was removed by filtration, and the filtrate was concentrated under reduced pressure. The obtained crude product was purified by dialysis to obtain a white slurry (4.09 g, sometimes referred to as “white slurry (2)”).
The white slurry (2) is dissolved in a mixed solvent of N, N-dimethylformamide (20 mL) and ethanol (10 mL), 1-bromobutane (9.59 g) is added at room temperature, and the mixture is heated to 120 ° C. and stirred. did. After 13 hours, it was cooled to room temperature and concentrated under reduced pressure. Ethyl acetate was added to the obtained crude product to precipitate a white solid, which was collected by filtration and dried to obtain PTC-1 (6.1 g) as a pale yellow liquid. From the measurement of 1 H-NMR spectrum of the obtained PTC-1, it was confirmed to be a copolymer represented by the following formula (I-1).
1 H-NMR (500 MHz, CDCl 3 ): δ 0.89 (t, 9H, J = 7.0 Hz, CH 3 ), 1.23-1.38 (m, 30H, CH 2 ), 1.58-1 .94 (m, 6H, CH 2 ), 2.75 (s, 3H, CH 3 ), 3.28-3.31 (m, 6H, CH 2 ), 3.38 (s, 3H, CH 3 ) 3.54-3.69 (m, 26H, CH 2 ), 3.80-3.82 (m, 2H, CH 2 ), 3.91-3.93 (m, 2H, CH 2 )
Figure JPOXMLDOC01-appb-C000030
 なお、PTC-1におけるn1/n2/n3の比(モル比)は、32.4/35.0/32.6であった。また、式(I-1)中の「ran」は、各構成単位がランダム共重合により付加していることを意味し、以下も同様である。 The ratio (molar ratio) of n1 / n2 / n3 in PTC-1 was 32.4 / 35.0 / 32.6. “Ran” in formula (I-1) means that each structural unit is added by random copolymerization, and the same applies to the following.
 実施例2
[下記式(I-2)で表されるコポリマーの製造]
 2-クロロエチルビニルエーテル(1.0mL)、2-エトキシエチルビニルエーテル(1.06g)、及びイソブチルビニルエーテル(1.3mL)をジクロロメタン(8.0mL)に溶解させた。次いで、1,4-ジオキサン(1.0mL)を加えて-70℃まで冷却し、三フッ化ホウ素ジエチルエーテル錯体0.1Mジクロロメタン溶液(2.0mL)を5分間かけて滴下した。滴下終了後、15℃まで徐々に昇温し、メタノール(0.3wt%アンモニア水溶液含有;3.0mL)を加え10分間攪拌した。その後、反応混合物にジクロロメタン(30mL)を加え、この溶液をイオン交換水(50mL)、飽和食塩水(50mL)で順次洗浄し、無水硫酸ナトリウム(10g)を加えて乾燥させた。固体をろ過により除き、ろ液を減圧下で濃縮することにより、淡黄色液体(2.96g)を得た。これをトルエン(3.0mL)とピリジン(4.0mL)の混合溶媒中、8時間還流した。次いで、未反応のピリジンを減圧下で濃縮することにより除去し、ジエチルエーテルを加えて生成物を沈殿させた。その後、ジエチルエーテル相を除去し、残渣を減圧下で濃縮することにより、PTC-2(4.04g)を赤色液体として得た。得られたPTC-2の1H-NMRスペクトル測定により、下記式(I-2)で表されるコポリマーであることが確認された。
 1H-NMR(500MHz、CDCl3):δ0.89(t,9H,J=7.0Hz,CH3)、1.23-1.38(m,30H,CH2)、1.58-1.94(m,6H,CH2)、2.75(s,3H,CH3)、3.28-3.31(m,6H,CH2)、3.38(s,3H,CH3)、3.54-3.69(m,26H,CH2)、3.80-3.82(m,2H,CH2)、3.91-3.93(m,2H,CH2
Figure JPOXMLDOC01-appb-C000031
Example 2
[Production of copolymer represented by the following formula (I-2)]
2-Chloroethyl vinyl ether (1.0 mL), 2-ethoxyethyl vinyl ether (1.06 g), and isobutyl vinyl ether (1.3 mL) were dissolved in dichloromethane (8.0 mL). Next, 1,4-dioxane (1.0 mL) was added and the mixture was cooled to −70 ° C., and boron trifluoride diethyl ether complex 0.1 M dichloromethane solution (2.0 mL) was added dropwise over 5 minutes. After completion of the dropwise addition, the temperature was gradually raised to 15 ° C., methanol (containing 0.3 wt% ammonia aqueous solution; 3.0 mL) was added, and the mixture was stirred for 10 minutes. Thereafter, dichloromethane (30 mL) was added to the reaction mixture, and this solution was washed successively with ion-exchanged water (50 mL) and saturated brine (50 mL), and dried over anhydrous sodium sulfate (10 g). The solid was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a pale yellow liquid (2.96 g). This was refluxed in a mixed solvent of toluene (3.0 mL) and pyridine (4.0 mL) for 8 hours. Unreacted pyridine was then removed by concentration under reduced pressure and diethyl ether was added to precipitate the product. Thereafter, the diethyl ether phase was removed, and the residue was concentrated under reduced pressure to obtain PTC-2 (4.04 g) as a red liquid. From the measurement of 1 H-NMR spectrum of the obtained PTC-2, it was confirmed to be a copolymer represented by the following formula (I-2).
1 H-NMR (500 MHz, CDCl 3 ): δ 0.89 (t, 9H, J = 7.0 Hz, CH 3 ), 1.23-1.38 (m, 30H, CH 2 ), 1.58-1 .94 (m, 6H, CH 2 ), 2.75 (s, 3H, CH 3 ), 3.28-3.31 (m, 6H, CH 2 ), 3.38 (s, 3H, CH 3 ) 3.54-3.69 (m, 26H, CH 2 ), 3.80-3.82 (m, 2H, CH 2 ), 3.91-3.93 (m, 2H, CH 2 )
Figure JPOXMLDOC01-appb-C000031
 なお、PTC-2におけるn4/n5/n6の比(モル比)は、34.5/31.5/34.0であった。 The ratio (molar ratio) of n4 / n5 / n6 in PTC-2 was 34.5 / 31.5 / 34.0.
 実施例3
[PTC-1を相間移動触媒として用いた3-ビニルシクロヘキセンのエポキシ化反応]
 PTC-1(0.124g)をイオン交換水(2.04g)に溶解させた。ここに、タングステン酸ナトリウム・二水和物(0.197g)、85%りん酸(0.114g)、及び、リン酸水素二ナトリウム・十二水和物(0.0525g)を順次加え攪拌した。5分後、酢酸エチル(9.05g)、及び3-ビニルシクロヘキセン(3.64g)を加え60℃まで昇温し、35%過酸化水素(4.08g)を加え攪拌した。
 図1は、上記3-ビニルシクロヘキセンのエポキシ化反応の結果を示すグラフであり、横軸は反応時間(単位:時間)、縦軸はガスクロマトグラフィーにおける1,2-エポキシ-4-ビニルシクロヘキサンのピークの割合(単位:面積%)である。なお、1,2-エポキシ-4-ビニルシクロヘキサンのピークの割合は、1,2-エポキシ-4-ビニルシクロヘキサンのピーク面積を3-ビニルシクロヘキセンと1,2-エポキシ-4-ビニルシクロヘキサンのピーク面積の総和により除することにより算出される。
 図1に示すように、PTC-1を相間移動触媒として使用することにより、3-ビニルシクロヘキセンの脂肪族環(シクロヘキセン環)中の二重結合のエポキシ化が進行し、1,2-エポキシ-4-ビニルシクロヘキサンが生成することが確認された。
Example 3
[Epoxidation of 3-vinylcyclohexene using PTC-1 as a phase transfer catalyst]
PTC-1 (0.124 g) was dissolved in ion exchange water (2.04 g). To this, sodium tungstate dihydrate (0.197 g), 85% phosphoric acid (0.114 g), and disodium hydrogen phosphate dodecahydrate (0.0525 g) were sequentially added and stirred. . After 5 minutes, ethyl acetate (9.05 g) and 3-vinylcyclohexene (3.64 g) were added, the temperature was raised to 60 ° C., and 35% hydrogen peroxide (4.08 g) was added and stirred.
FIG. 1 is a graph showing the results of the epoxidation reaction of 3-vinylcyclohexene. The horizontal axis represents the reaction time (unit: hours), and the vertical axis represents 1,2-epoxy-4-vinylcyclohexane in gas chromatography. This is the peak ratio (unit: area%). The ratio of the peak of 1,2-epoxy-4-vinylcyclohexane is the peak area of 1,2-epoxy-4-vinylcyclohexane, the peak area of 3-vinylcyclohexene and 1,2-epoxy-4-vinylcyclohexane. It is calculated by dividing by the sum of.
As shown in FIG. 1, by using PTC-1 as a phase transfer catalyst, epoxidation of a double bond in the aliphatic ring (cyclohexene ring) of 3-vinylcyclohexene proceeds, and 1,2-epoxy- It was confirmed that 4-vinylcyclohexane was formed.
 実施例4
[PTC-2を相間移動触媒として用いた3-ビニルシクロヘキセンのエポキシ化反応]
 PTC-2(0.373g)をイオン交換水(1.97g)に溶解させた。ここに、タングステン酸ナトリウム・二水和物(0.193g)、85%りん酸(0.108g)、及び、りん酸水素二ナトリウム・十二水和物(0.0558g)を順次加え攪拌した。5分後、酢酸エチル(9.03g)、及び3-ビニルシクロヘキセン(3.19g)を加え60℃まで昇温し、35%過酸化水素(4.10g)を加え、攪拌した。
 図1に示すように、PTC-2を相間移動触媒として使用することにより、3-ビニルシクロヘキセンの脂肪族環中の二重結合のエポキシ化が進行し、1,2-エポキシ-4-ビニルシクロヘキサンが生成することが確認された。
Example 4
[Epoxidation of 3-vinylcyclohexene using PTC-2 as a phase transfer catalyst]
PTC-2 (0.373 g) was dissolved in ion exchange water (1.97 g). To this, sodium tungstate dihydrate (0.193 g), 85% phosphoric acid (0.108 g), and disodium hydrogen phosphate dodecahydrate (0.0558 g) were sequentially added and stirred. . After 5 minutes, ethyl acetate (9.03 g) and 3-vinylcyclohexene (3.19 g) were added, the temperature was raised to 60 ° C., 35% hydrogen peroxide (4.10 g) was added, and the mixture was stirred.
As shown in FIG. 1, by using PTC-2 as a phase transfer catalyst, epoxidation of the double bond in the aliphatic ring of 3-vinylcyclohexene proceeds, and 1,2-epoxy-4-vinylcyclohexane Was confirmed to generate.
 実施例5
[PTC-2を相間移動触媒として用いた3-ビニルシクロヘキセンのエポキシ化反応]
 PTC-2の量を0.673gに変更したこと以外は実施例4と同様にして、3-ビニルシクロヘキセンのエポキシ化反応を実施した。
 図1に示すように、PTC-2を相間移動触媒として使用することにより、3-ビニルシクロヘキセンの脂肪族環中の二重結合のエポキシ化が進行し、1,2-エポキシ-4-ビニルシクロヘキサンが生成することが確認された。
Example 5
[Epoxidation of 3-vinylcyclohexene using PTC-2 as a phase transfer catalyst]
The epoxidation reaction of 3-vinylcyclohexene was carried out in the same manner as in Example 4 except that the amount of PTC-2 was changed to 0.673 g.
As shown in FIG. 1, by using PTC-2 as a phase transfer catalyst, epoxidation of the double bond in the aliphatic ring of 3-vinylcyclohexene proceeds, and 1,2-epoxy-4-vinylcyclohexane Was confirmed to generate.
 実施例6
[PTC-2を相間移動触媒として用いた3-ビニルシクロヘキセンのエポキシ化反応]
 酢酸エチルをトルエンに変更したこと以外は実施例4と同様にして、3-ビニルシクロヘキセンのエポキシ化反応を実施した。
 図1に示すように、PTC-2を相間移動触媒として使用することにより、3-ビニルシクロヘキセンの脂肪族環中の二重結合のエポキシ化が進行し、1,2-エポキシ-4-ビニルシクロヘキサンが生成することが確認された。
Example 6
[Epoxidation of 3-vinylcyclohexene using PTC-2 as a phase transfer catalyst]
The epoxidation reaction of 3-vinylcyclohexene was carried out in the same manner as in Example 4 except that ethyl acetate was changed to toluene.
As shown in FIG. 1, by using PTC-2 as a phase transfer catalyst, epoxidation of the double bond in the aliphatic ring of 3-vinylcyclohexene proceeds, and 1,2-epoxy-4-vinylcyclohexane Was confirmed to generate.
 本発明のイオン性ビニルエーテルコポリマーは上記構造を有するため、該イオン性ビニルエーテルコポリマーを相間移動触媒として用いることにより、アリル型アルコールに限らず、アリル型アルコール以外のオレフィンを基質として使用した場合であっても、有機溶媒/水の二相系における過酸化水素を用いたエポキシ化反応を効率的に進行させることができる。 Since the ionic vinyl ether copolymer of the present invention has the above-described structure, the ionic vinyl ether copolymer is used as a phase transfer catalyst, so that not only allyl alcohol but also olefin other than allyl alcohol is used as a substrate. In addition, the epoxidation reaction using hydrogen peroxide in the organic solvent / water two-phase system can be efficiently advanced.

Claims (8)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R1は、水素原子又は炭素数1~5のアルキル基を示す。A1は、炭素数2~4のアルキレン基を示す。aは0~36の整数を示し、aが2以上の整数の場合、複数のA1は同一であってもよいし異なっていてもよい。bは1~18の整数を示す。Xは、下記式(4)
    Figure JPOXMLDOC01-appb-C000002
    [式(4)中、R2、R3、及びR4は、同一又は異なって、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。Y-は、アニオンを示す。]
    で表される基、又は、下記式(5)
    Figure JPOXMLDOC01-appb-C000003
    [式(5)中、R5は、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基を示す。dは0~5の整数を示す。Y-は、アニオンを示す。]
    で表される基を示す。]
    で表される構成単位、並びに下記式(2)
    Figure JPOXMLDOC01-appb-C000004
    [式(2)中、R6は、水素原子又は炭素数1~5のアルキル基を示す。R7は、水素原子、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。A2は、炭素数2~4のアルキレン基を示す。cは、1~24の整数を示し、cが2以上の整数の場合、複数のA2は同一であってもよいし異なっていてもよい。]
    で表される構成単位を有することを特徴とするイオン性ビニルエーテルコポリマー。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 represents an alkylene group having 2 to 4 carbon atoms. a represents an integer of 0 to 36. When a is an integer of 2 or more, a plurality of A 1 may be the same or different. b represents an integer of 1 to 18. X is the following formula (4)
    Figure JPOXMLDOC01-appb-C000002
    [In formula (4), R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms. Y represents an anion. ]
    Or a group represented by the following formula (5)
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (5), R 5 represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. d represents an integer of 0 to 5. Y represents an anion. ]
    The group represented by these is shown. ]
    And the following formula (2)
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (2), R 6 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms. A 2 represents an alkylene group having 2 to 4 carbon atoms. c represents an integer of 1 to 24. When c is an integer of 2 or more, a plurality of A 2 may be the same or different. ]
    An ionic vinyl ether copolymer having a structural unit represented by:
  2.  さらに、下記式(3)
    Figure JPOXMLDOC01-appb-C000005
    [式(3)中、R8は、水素原子又は炭素数1~5のアルキル基を示す。R9は、炭素数1~36のアルキル基、又は炭素数2~36のアルケニル基を示す。]
    で表される構成単位を有する請求項1に記載のイオン性ビニルエーテルコポリマー。
    Further, the following formula (3)
    Figure JPOXMLDOC01-appb-C000005
    [In Formula (3), R 8 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 9 represents an alkyl group having 1 to 36 carbon atoms or an alkenyl group having 2 to 36 carbon atoms. ]
    The ionic vinyl ether copolymer of Claim 1 which has a structural unit represented by these.
  3.  有機溶媒と水との二相系反応場において、有機化合物の酸化反応を進行させ、酸化された有機化合物を製造する方法であって、前記二相系反応場の相間移動触媒として、請求項1又は2に記載のイオン性ビニルエーテルコポリマーを使用することを特徴とする有機化合物の製造方法。 A method for producing an oxidized organic compound by advancing an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water, wherein the phase transfer catalyst is used as the phase transfer catalyst in the two-phase reaction field. Or an ionic vinyl ether copolymer as described in 2 above.
  4.  前記酸化反応を、前記イオン性ビニルエーテルコポリマーと、ヘテロポリ酸若しくはその塩又はこれらの前駆化合物とから調製される錯体の酸化物の存在下で進行させる請求項3に記載の有機化合物の製造方法。 The method for producing an organic compound according to claim 3, wherein the oxidation reaction proceeds in the presence of a complex oxide prepared from the ionic vinyl ether copolymer and a heteropolyacid or a salt thereof or a precursor compound thereof.
  5.  前記ヘテロポリ酸若しくはその塩が、リン原子、並びに、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも一種の金属原子を含むヘテロポリ酸若しくはその塩である請求項4に記載の有機化合物の製造方法。 The organic compound according to claim 4, wherein the heteropolyacid or a salt thereof is a heteropolyacid or a salt thereof containing a phosphorus atom and at least one metal atom selected from the group consisting of tungsten, manganese, molybdenum, and vanadium. Manufacturing method.
  6.  前記前駆化合物が、タングステン、マンガン、モリブデン、及びバナジウムからなる群より選択された少なくとも一種の金属原子を含む無機酸又はその塩、並びに、リン原子含有オキソ酸又はその塩を含む請求項4に記載の有機化合物の製造方法。 The said precursor compound contains the inorganic acid or its salt containing at least 1 type of metal atom selected from the group which consists of tungsten, manganese, molybdenum, and vanadium, and its phosphorus atom containing oxo acid or its salt. A method for producing the organic compound.
  7.  前記酸化反応が、過酸化水素を使用したオレフィンの炭素-炭素二重結合のエポキシ化反応である請求項3~6のいずれか一項に記載の有機化合物の製造方法。 The method for producing an organic compound according to any one of claims 3 to 6, wherein the oxidation reaction is an epoxidation reaction of a carbon-carbon double bond of an olefin using hydrogen peroxide.
  8.  有機溶媒と水との二相系反応場における有機化合物の酸化反応用の触媒であって、
     相間移動触媒として下記式(1)
    Figure JPOXMLDOC01-appb-C000006
    [式(1)中、R1は、水素原子又は炭素数1~5のアルキル基を示す。A1は、炭素数2~4のアルキレン基を示す。aは0~36の整数を示し、aが2以上の整数の場合、複数のA1は同一であってもよいし異なっていてもよい。bは1~18の整数を示す。Xは、下記式(4)
    Figure JPOXMLDOC01-appb-C000007
    [式(4)中、R2、R3、及びR4は、同一又は異なって、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。Y-は、アニオンを示す。]
    で表される基、又は、下記式(5)
    Figure JPOXMLDOC01-appb-C000008
    [式(5)中、R5は、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基を示す。dは0~5の整数を示す。Y-は、アニオンを示す。]
    で表される基を示す。]
    で表される構成単位、並びに下記式(2)
    Figure JPOXMLDOC01-appb-C000009
    [式(2)中、R6は、水素原子又は炭素数1~5のアルキル基を示す。R7は、水素原子、炭素数1~18のアルキル基、又は炭素数2~18のアルケニル基を示す。A2は、炭素数2~4のアルキレン基を示す。cは、1~24の整数を示し、cが2以上の整数の場合、複数のA2は同一であってもよいし異なっていてもよい。]
    で表される構成単位を有するイオン性ビニルエーテルコポリマー含むことを特徴とする酸化反応用触媒。
    A catalyst for an oxidation reaction of an organic compound in a two-phase reaction field between an organic solvent and water,
    As a phase transfer catalyst, the following formula (1)
    Figure JPOXMLDOC01-appb-C000006
    [In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 represents an alkylene group having 2 to 4 carbon atoms. a represents an integer of 0 to 36. When a is an integer of 2 or more, a plurality of A 1 may be the same or different. b represents an integer of 1 to 18. X is the following formula (4)
    Figure JPOXMLDOC01-appb-C000007
    [In formula (4), R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms. Y represents an anion. ]
    Or a group represented by the following formula (5)
    Figure JPOXMLDOC01-appb-C000008
    [In Formula (5), R 5 represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. d represents an integer of 0 to 5. Y represents an anion. ]
    The group represented by these is shown. ]
    And the following formula (2)
    Figure JPOXMLDOC01-appb-C000009
    [In the formula (2), R 6 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms. A 2 represents an alkylene group having 2 to 4 carbon atoms. c represents an integer of 1 to 24. When c is an integer of 2 or more, a plurality of A 2 may be the same or different. ]
    A catalyst for oxidation reaction, comprising an ionic vinyl ether copolymer having a structural unit represented by:
PCT/JP2014/060483 2013-06-07 2014-04-11 Ionic vinyl ether copolymer, and method for producing organic compound using same WO2014196269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015521336A JPWO2014196269A1 (en) 2013-06-07 2014-04-11 Ionic vinyl ether copolymer and method for producing organic compound using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-120342 2013-06-07
JP2013120342 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014196269A1 true WO2014196269A1 (en) 2014-12-11

Family

ID=52007923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060483 WO2014196269A1 (en) 2013-06-07 2014-04-11 Ionic vinyl ether copolymer, and method for producing organic compound using same

Country Status (3)

Country Link
JP (1) JPWO2014196269A1 (en)
TW (1) TW201509964A (en)
WO (1) WO2014196269A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993581A (en) * 2018-07-13 2018-12-14 浙江大学 Load type metal polyoxy hydrochlorate hybrid catalyst and its preparation method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735065B (en) * 2021-09-27 2023-05-02 湖南大学 Method for producing hydrogen peroxide by using modified amino functionalized zirconium-based metal-organic framework composite photocatalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033659A (en) * 2001-07-26 2003-02-04 Tokyo Kasei Kogyo Kk Novel tungsten catalyst and epoxidation of allyl type alcohol using the same
JP2003183330A (en) * 2001-12-18 2003-07-03 Kao Corp Vinyl ether copolymer
JP2013112639A (en) * 2011-11-29 2013-06-10 Daicel Corp Quaternary ammonium salt, catalyst for oxidation reaction containing the same, method for producing epoxy compound, and method for separating the catalyst for oxidation reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033659A (en) * 2001-07-26 2003-02-04 Tokyo Kasei Kogyo Kk Novel tungsten catalyst and epoxidation of allyl type alcohol using the same
JP2003183330A (en) * 2001-12-18 2003-07-03 Kao Corp Vinyl ether copolymer
JP2013112639A (en) * 2011-11-29 2013-06-10 Daicel Corp Quaternary ammonium salt, catalyst for oxidation reaction containing the same, method for producing epoxy compound, and method for separating the catalyst for oxidation reaction

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CARL SCOTT ET AL.: "Interfacial Alternating Free-Radical Copolymerization: A New Route to Liquid-Core Capsules", POLYMER PREPRINTS, vol. 46, no. 1, 2005, pages 47 - 48 *
CHARLES SCOTT ET AL.: "Liquid-Core Capsules via Interfacial Polymerization: A Free-Radical Analogy of the Nylon Rope Trick", J. AM. CHEM. SOC., vol. 127, no. 12, 2005, pages 4160 - 4161 *
HIROMI HAMAMOTO ET AL.: "A Recyclable Catalytic System Based on a Temperature-Responsive Catalyst", ANGEW. CHEM. INT. ED., vol. 44, no. 29, 2005, pages 4536 - 4538 *
YOICHI M. A. YAMADA ET AL.: "Oxidation of allylic alcohols, amines, and sulfides mediated by assembled triphase catalyst of phosphotungstate and non-cross-linked amphiphilic copolymer", TETRAHEDRON, vol. 60, no. 18, 2004, pages 4087 - 4096, XP004502642, DOI: doi:10.1016/j.tet.2004.02.072 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993581A (en) * 2018-07-13 2018-12-14 浙江大学 Load type metal polyoxy hydrochlorate hybrid catalyst and its preparation method and application

Also Published As

Publication number Publication date
TW201509964A (en) 2015-03-16
JPWO2014196269A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US7696366B2 (en) Production process of bifunctional epoxy monomer by selective oxidation of diolefin compound
CN104203933A (en) Method for manufacturing epoxy compound, and catalyst composition for epoxylating reaction
CN101250169A (en) Method for synthesizing aliphatic diepoxides
CN103539762A (en) Method for producing epoxypropane by propylene epoxidation
JP5550051B2 (en) Method for producing epoxy compound
JP5800709B2 (en) Method for producing epoxy compound
JP2013112639A (en) Quaternary ammonium salt, catalyst for oxidation reaction containing the same, method for producing epoxy compound, and method for separating the catalyst for oxidation reaction
WO2014196269A1 (en) Ionic vinyl ether copolymer, and method for producing organic compound using same
CN103418434B (en) Homogeneous phase molybdenum basic ring oxidation catalyst
JP5894144B2 (en) Production process of divinylarene dioxide
JP4998977B2 (en) Method for producing bifunctional epoxy monomer by selective oxidation of diolefin compound
TW201139394A (en) Manufacture of an epoxyethyl carboxylate or glycidyl carboxylate
JPWO2012008308A1 (en) Method for producing epoxy compound
JP6609902B2 (en) Method for producing epoxy compound
JPWO2018083881A1 (en) Method for producing polyvalent glycidyl compound
KR102609694B1 (en) Cyclododecanone and method for preparation of the same
JP5270932B2 (en) Method for producing epoxy compound
CN104557787B (en) Method for preparing epoxy chloropropane
JPH01190647A (en) Production of aldehyde and epoxide compound
JP5103661B2 (en) Method for producing diepoxy compound
JP2010155805A (en) Method for producing epoxy compound
KR102528919B1 (en) Method for preparation of cyclododecanone
JPS5839676A (en) Preparation of olefin oxide
JP2015189695A (en) Mono-epoxidation method of cyclic olefin compound having vinyl group or allyl group
JP4104989B2 (en) Epoxidation catalyst composition and method for producing epoxy compound using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807862

Country of ref document: EP

Kind code of ref document: A1