WO2014192550A1 - Thin inorganic laminated film - Google Patents

Thin inorganic laminated film Download PDF

Info

Publication number
WO2014192550A1
WO2014192550A1 PCT/JP2014/062927 JP2014062927W WO2014192550A1 WO 2014192550 A1 WO2014192550 A1 WO 2014192550A1 JP 2014062927 W JP2014062927 W JP 2014062927W WO 2014192550 A1 WO2014192550 A1 WO 2014192550A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film
inorganic thin
peak current
blood glucose
Prior art date
Application number
PCT/JP2014/062927
Other languages
French (fr)
Japanese (ja)
Inventor
宗範 河本
阿部 和洋
大谷 寿幸
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2014524205A priority Critical patent/JP6439444B2/en
Publication of WO2014192550A1 publication Critical patent/WO2014192550A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • the present invention relates to an inorganic thin film laminated film, and particularly to an inorganic thin film laminated film suitably used as an electrode film for a blood glucose level sensor because of its excellent electrochemical characteristics and chemical resistance.
  • the blood glucose level sensor is used by a diabetic patient or a person suspected of having diabetes to measure a blood glucose level several times a day and manage the numerical value.
  • a patterned electrode film in which a gold thin film is laminated is used (Patent Document 1). This is because an electrode film in which a thin gold film is laminated has a low surface resistance value which is important for the reliability as a sensor and is excellent in environmental stability.
  • the object of the present invention is a low-cost inorganic thin film, having a low surface resistance value and chemical resistance, and suitable as an electrode film for a biosensor such as a blood glucose level sensor. It is providing the inorganic thin film laminated film which can be used.
  • this invention consists of the following structures. 1. In cyclic voltammetry measurement of ferrocyanide ions using an inorganic thin film laminated directly on at least one surface of a film substrate or via another layer, and using silver / silver chloride as a reference electrode, +0. An inorganic thin film laminated film characterized by exhibiting an oxidation peak current at a potential between 2 V and +0.9 V and a reduction peak current at a potential between -0.3 V and +0.4 V. 2. 2. The inorganic thin film laminated film as described in the above item 1, wherein an intermediate layer is provided between the film substrate and the inorganic thin film, and the intermediate layer is a thin film of either titanium or nickel-titanium alloy. 3.
  • the oxidation peak current and reduction peak current obtained from the second cyclic voltammetry measurement are the oxidation peak current and reduction peak current obtained from the first cyclic voltammetry measurement, and 3.
  • the inorganic thin film is made of indium tin oxide, palladium, ruthenium, nickel, nickel-copper alloy (nickel content is 40% by weight or more and copper content is 60% by weight or less), or nickel-palladium alloy.
  • the inorganic thin film laminated film according to any one of the first to fourth aspects which is a thin film or a laminate of these thin films. 6).
  • the inorganic thin film laminated film according to any one of the first to fifth aspects wherein the total thickness of the inorganic thin film and the intermediate layer is 5 nm or more and 400 nm or less. 7).
  • a blood glucose sensor strip comprising the electrode film for a blood glucose sensor according to the seventh aspect. 9.
  • a blood sugar level sensor device comprising the blood sugar level sensor strip according to the eighth aspect.
  • the inorganic thin film laminated film which can be used suitably as an electrode film for biosensors, such as a blood glucose level sensor. did. And the electrode film for biosensors, such as a blood glucose level sensor using the inorganic thin film laminated film of this invention, can take out an electrical signal stably.
  • FIG. 2 is a cyclic voltammogram of a cyclic voltammetry measurement result of the ruthenium thin film laminated film of Example 1.
  • FIG. 10 is a cyclic voltammogram of a cyclic voltammetry measurement result of a nickel (87 wt%)-palladium (13 wt%) alloy thin film laminated film of Example 9.
  • the inorganic thin film laminated film of the present invention exhibits an oxidation peak current at a potential between +0.2 V and +0.9 V in cyclic voltammetry measurement of ferrocyanide ions using silver / silver chloride as a reference electrode.
  • the oxidation peak current observed outside the range of +0.2 V to +0.9 V is due to the fact that substances other than ferrocyanide are oxidized, and is not related to proper operation as an electrode for a blood glucose level sensor. It is an oxidation peak current. Also, an oxidation peak current greater than +0.9 V is not preferable because it requires a large voltage when operating as a blood glucose level sensor electrode.
  • the inorganic thin film laminated film of the present invention exhibits a reduction peak current at a potential between ⁇ 0.4V and + 0.3V. This indicates that the inorganic thin film on the inorganic thin film laminated film of the present invention can be reduced to ferrocyanide ions without dissolving in ferricyanide ions, and as an electrode of a blood glucose level sensor It is a requirement to work properly.
  • the reduction peak current observed outside the range of ⁇ 0.4 V to +0.3 V is due to reduction of substances other than ferricyanide, and is related to proper operation as a blood glucose sensor electrode. It is a reduction peak current without any.
  • the absolute values of the oxidation peak current and the reduction peak current vary depending on the measurement conditions, but are 0.05 mA or more and 2 mA or less under the conditions of the examples of the present invention. In the case of less than 0.05 mA, it is considered that the redox reaction does not occur as the essence of the inorganic thin film, or the inorganic thin film is eluted at the initial stage of measurement, and the redox reaction does not occur. When it is larger than 2 mA, the current value is excessive, and the current value generated by elution of the inorganic thin film is observed.
  • the profile of cyclic voltammetry measurement when the above requirements are satisfied has a shape as shown in FIG.
  • an inorganic thin film laminated film that does not satisfy the above requirements may show a current value depending on the glucose concentration.
  • the inorganic thin film is unstable, reproducibility is low. That is, the above requirements must be met in order to operate properly as an electrode for a blood glucose sensor.
  • the inorganic thin film on the inorganic thin film laminated film of the present invention remains stably without dissolving and the surface form does not change even after the oxidation reaction and reduction reaction of the first measurement. This indicates that the inorganic thin film is very suitable as an electrode for a blood glucose level sensor.
  • the surface resistance value of the inorganic thin film laminated film in the present invention is preferably 300 ⁇ / ⁇ or less, more preferably 250 ⁇ / ⁇ or less, and particularly preferably 200 ⁇ / ⁇ or less.
  • the surface resistance value is preferably low, but usually 0 ⁇ / ⁇ is not usually achieved, and the lower limit may be 0.01 ⁇ / ⁇ , or 1 ⁇ / ⁇ or more.
  • the inorganic thin film laminated film of the present invention has a structure in which an inorganic thin film is laminated directly on at least one surface of a film substrate or via another layer.
  • an inorganic thin film is laminated directly on at least one surface of a film substrate or via another layer.
  • the film substrate used in the present invention is formed by forming an organic polymer into a film by melt extrusion or solution extrusion into a film, and stretching, heat setting, heat relaxation in the longitudinal direction and / or the width direction as necessary. It is a film that has been treated.
  • Organic polymers include polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyimide, polyamideimide, polyethersulfane, polyetheretherketone , Polycarbonate, polyarylate, cellulose propionate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyether imide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, norbornene-based polymer, and the like.
  • organic polymers polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, syndiotactic polystyrene, norbornene polymer, polycarbonate, polyarylate and the like are preferable. These organic polymers may be copolymerized with a small amount of other organic polymer monomers, or may be blended with other organic polymers.
  • the thickness of the film substrate used in the present invention is preferably 10 to 300 ⁇ m, more preferably 20 to 250 ⁇ m. If the thickness of the plastic film is less than 10 ⁇ m, the mechanical strength is insufficient, and handling of a sensor such as a blood glucose level sensor becomes difficult. On the other hand, when the thickness exceeds 300 ⁇ m, the thickness of a sensor such as a blood glucose level sensor becomes too thick, which is not preferable.
  • the film substrate used in the present invention is a surface such as corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc. on the above-mentioned film within the range not impairing the object of the present invention.
  • An activation treatment may be performed.
  • the film substrate used in the present invention is a cured product comprising a curable resin as a main component for the purpose of improving adhesion to an inorganic thin film, imparting chemical resistance, and preventing precipitation of low molecular weight substances such as oligomers. It is also preferred to provide a layer.
  • the curable resin is not particularly limited as long as it is a resin that is cured by application of energy such as heating, ultraviolet irradiation, electron beam irradiation, etc., and silicone resin, acrylic resin, methacrylic resin, epoxy resin, melamine resin, polyester resin, urethane Resin etc. are mentioned.
  • the total film thickness of the inorganic thin film and the later-described intermediate layer in the present invention is preferably in the range of 5 to 400 nm, more preferably 10 to 300 nm, and particularly preferably 15 to 200 nm.
  • this film thickness is less than 5 nm, a thin pinhole is generated, which is not preferable because it is difficult to obtain an electric signal when used as an electrode of a blood glucose level sensor.
  • the film thickness is thicker than 400 nm, the stress of the inorganic thin film is increased, peeling is likely to occur, adhesion may be lowered, and warping of the substrate is also not preferable.
  • the inorganic thin film in the present invention is preferably a thin film made of ruthenium, palladium, nickel, nickel-copper alloy, nickel-palladium alloy, or indium tin oxide, and may be a laminate in which these are laminated.
  • the nickel content is preferably 40% by weight or more and the copper content is preferably 60% by weight or less. Outside this range, proper cyclic voltammetry results are not obtained, and therefore it is difficult to use as an electrode for a blood glucose level sensor.
  • Nickel-palladium alloy can be suitably used in any composition.
  • any thin film of nickel, titanium, nickel-copper alloy, or nickel-titanium alloy is used between the base film and the film to improve adhesion and reduce costs.
  • a layer may be provided as an intermediate layer.
  • the nickel-copper alloy and nickel-titanium alloy as the intermediate layer can be suitably used in any composition.
  • the film thickness of the intermediate layer may be appropriately set so that the film thickness of the entire inorganic thin film is in the range of 5 to 400 nm.
  • a vacuum deposition method As a method for forming an inorganic thin film in the present invention, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known, and the above method is appropriately selected according to a required film thickness.
  • the sputtering method is preferable from the viewpoint of developing high adhesion and reducing variations in film thickness.
  • a bias voltage such as direct current, alternating current, and high frequency may be applied to the substrate as long as the object of the present invention is not impaired.
  • the pressure in the vacuum chamber is evacuated to a vacuum degree of 0.0005 Pa or less (attainment vacuum degree is 0.0005 Pa or less) before sputtering, and then Ar or the like is not discharged. It is preferable to perform sputtering by introducing an active gas into a vacuum chamber, generating discharge in a pressure range of 0.01 to 10 Pa.
  • the DC sputtering method is preferable from the viewpoint of productivity, and the DC magnetron sputtering method is more preferable. The same applies to other methods such as vapor deposition and CVD.
  • an inorganic thin film is formed on the film by a vacuum process such as sputtering.
  • a vacuum process such as sputtering.
  • the performance of the inorganic thin film laminated film is adversely affected.
  • a plastic film contains a volatile component
  • the sputtered inorganic particles and the gas volatilized from the plastic film collide with each other in the gas phase. Particle energy may be reduced. As a result, the adhesiveness of the inorganic thin film formed on the plastic film tends to decrease, which is not preferable.
  • the volatile components present in the plastic film include low molecular weight components such as moisture and oligomers absorbed in the film.
  • the heat treatment temperature at this time is preferably in the range of 0 to 200 ° C. If it is less than 0 ° C., the effect of reducing volatile components tends to be insufficient, which is not preferable, and if it exceeds 200 ° C., it is difficult to maintain the flatness of the film, which is not preferable.
  • the expression “heated to the lower limit temperature of 0 ° C.” is under a vacuum process, unlike under normal pressure. Therefore, even if it is 0 ° C., the effect of being heated substantially is obtained. It is what is described.
  • the pressure at this time is preferably 1000 Pa or less, and more preferably 100 Pa or less.
  • the pressure is higher than 1000 Pa, the effect of removing volatile components tends to be insufficient, which is not preferable.
  • the pressure is preferably low, and the lower limit is 1 ⁇ 10 ⁇ 6 Pa.
  • the vacuum exposure time is preferably 1 to 100 minutes. If the vacuum exposure time is less than 1 minute, the effect of removing volatile components tends to be insufficient, which is not preferable. On the other hand, when the time exceeds 100 minutes, productivity is lowered, which is not preferable industrially.
  • the film temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 20 to 180 ° C.
  • the roll set temperature at this time is preferably in the range of 0 to 200 ° C., more preferably in the range of 20 to 180 ° C., similarly to the film temperature.
  • the infrared heater may be any of a near infrared type, a middle infrared type, and a far infrared type.
  • the input power to the infrared heater is preferably in the range of 5 to 50000 W / m 2 ⁇ min. An input power of less than 5 W ⁇ m 2 / min is not preferable because the effect of increasing the film temperature is poor, and an input power higher than 50000 W / m 2 ⁇ min is not preferable, and the film temperature becomes too high and the flatness of the film is deteriorated. This is not preferable.
  • a film suitable for an electrode having an inorganic thin film excellent in adhesion to the substrate and film quality can be obtained. Therefore, when a film suitable for this electrode is used for a blood glucose level sensor, the reliability of the sensor is not impaired.
  • the inorganic thin film laminated film obtained as described above is subjected to desired patterning by a method such as photolithography and is preferably used as an electrode film for a blood glucose level sensor.
  • the electrode film for a blood glucose level sensor is formed on a blood glucose level sensor strip corresponding to the type of the blood glucose level sensor device, and is used by being attached to the blood glucose level sensor device.
  • Example 1 A biaxially stretched polyethylene terephthalate film (E5001, manufactured by Toyobo Co., Ltd.) having a thickness of 250 ⁇ m was used as the plastic film.
  • the film was exposed to vacuum.
  • the rewinding process was performed in a vacuum chamber, the pressure at this time was 2 ⁇ 10 ⁇ 3 Pa, and the exposure time was 20 minutes.
  • the set temperature of the center roll was 40 ° C.
  • a ruthenium thin film was formed on one side of the biaxially stretched polyester film using a ruthenium target.
  • sputtering was performed after confirming that the ultimate pressure of the vacuum chamber before sputtering was 1 ⁇ 10 ⁇ 4 Pa (degree of ultimate vacuum).
  • DC power of 3 W / ⁇ was applied.
  • Ar gas was flowed, it was made into the atmosphere of 0.4 Pa, and it formed into a film using DC magnetron sputtering method.
  • the center roll set temperature was 0 ° C.
  • a ruthenium thin film having a thickness of 60 nm was deposited.
  • FIG. 1 is a result of cyclic voltammetry (CV) measurement of a ruthenium thin film laminated film.
  • CV cyclic voltammetry
  • Example 2 The same procedure as in Example 1 was performed except that a titanium thin film having a thickness of 10 nm was laminated on one side of the biaxially stretched polyester film by sputtering, and a ruthenium thin film having a thickness of 60 nm was further laminated thereon. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement.
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 3 Using a nickel (65 wt%)-copper (35 wt%) alloy target, a 100 nm thick nickel (65 wt%)-copper (35 wt%) alloy thin film is formed on one side of a biaxially stretched polyester film. The same operation as in Example 1 was performed except that the film was formed. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement.
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 4 A nickel (65 wt%)-copper (35 wt%) alloy thin film having a thickness of 100 nm was laminated on one surface of a biaxially stretched polyester film, and a palladium thin film layer having a thickness of 10 nm was further laminated thereon. Except for this, the same procedure as in Example 1 was performed. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement.
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 5 It implemented like Example 1 except having laminated
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 6 This was carried out in the same manner as in Example 1 except that a nickel thin film having a film thickness of 100 nm was laminated on one surface of the biaxially stretched polyester film and a palladium thin film having a film thickness of 10 nm was further laminated thereon. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement.
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 7 A nickel (65 wt%)-palladium (35 wt%) alloy thin film was formed on one side of a biaxially stretched polyester film using a nickel (65 wt%)-palladium (35 wt%) alloy target. Except for this, the same procedure as in Example 1 was performed. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 8 A nickel (75 wt%)-palladium (25 wt%) alloy thin film was formed on one side of a biaxially stretched polyester film using a nickel (75 wt%)-palladium (25 wt%) alloy target. Except for this, the same procedure as in Example 1 was performed. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 9 A nickel (87 wt%)-palladium (13 wt%) alloy thin film was formed on one side of a biaxially stretched polyester film using a nickel (87 wt%)-palladium (13 wt%) alloy target. Except for this, the same procedure as in Example 1 was performed. As shown in FIG. 2 and Table 1, in the first measurement, an oxidation peak current was observed at a potential of +0.30 mA at a potential of +0.32 V, and a reduction peak current was ⁇ 0.12 mA at a potential of +0.22 V. Was observed at a current of. In the first measurement, an oxidation peak current and a reduction peak current were observed at suitable potentials. Therefore, although the identity of the measurement results in the second measurement was insufficient, this inorganic thin film is a single-use blood glucose level. It can be used suitably as a sensor electrode.
  • Example 10 This was carried out in the same manner as in Example 1 except that a titanium thin film having a film thickness of 100 nm was laminated on one side of the biaxially stretched polyester film, and a palladium thin film having a film thickness of 10 nm was further laminated thereon. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement.
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 11 Using an alloy target of nickel (50% by weight) -titanium (50% by weight), an alloy thin film layer of nickel (50% by weight) -titanium (50% by weight) with a film thickness of 100 nm on one side of a biaxially stretched polyester film was carried out in the same manner as in Example 1 except that a palladium thin film having a thickness of 10 nm was further laminated thereon. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement.
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 13 A mixed solvent of toluene / MEK (80/20: mass ratio) as a solvent is added to 100 parts by mass of a photopolymerization initiator-containing ultraviolet curable acrylic resin (manufactured by Dainichi Seika Kogyo Co., Ltd., Seika Beam EXF-01J). Was added so as to be 50% by mass, and stirred to dissolve uniformly to prepare a coating solution.
  • a photopolymerization initiator-containing ultraviolet curable acrylic resin manufactured by Dainichi Seika Kogyo Co., Ltd., Seika Beam EXF-01J.
  • the coating solution prepared so that the thickness of the coating film is 3000 nm is applied to the Meyer bar. Applied. After drying at 80 ° C. for 1 minute, UV irradiation (light quantity: 300 mJ / ⁇ ) is performed using an ultraviolet irradiation device (UB042-5AM-W, manufactured by Eye Graphics Co., Ltd.) to cure and cure the coating film.
  • a nickel (65 wt%)-copper (35 wt%) alloy laminated film was prepared in the same manner as in Example 3 except that the physical layer was laminated and subjected to a subsequent process such as vacuum exposure.
  • This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
  • Example 1 It implemented like Example 1 except having laminated
  • Example 2 Using an alloy target of nickel (92.5% by weight) -titanium (7.5% by weight), a nickel (92.5% by weight) -titanium (7. 5% by weight) was carried out in the same manner as in Example 1 except that an alloy thin film was laminated. As shown in Table 1, in the first measurement, an oxidation peak current was observed at a potential of +0.34 V at a current value of +0.27 mA, but no reduction peak current could be recognized. The voltage range was expanded to -0.3 to +0.9 V and remeasured. The result was the same as described above. This inorganic thin film cannot be suitably used as an electrode for a blood glucose level sensor.
  • Example 3 Using a nickel (30% by weight) -copper (70% by weight) alloy target, a 100 nm thick nickel (30% by weight) -copper (70% by weight) alloy thin film is formed on one side of a biaxially stretched polyester film. The same operation as in Example 1 was performed except that the layers were laminated. As shown in Table 1, the voltage range was expanded to ⁇ 0.3 to +0.9 V and the measurement was made again. However, the oxidation peak current and the reduction peak current could not be recognized in the first measurement. This inorganic thin film cannot be suitably used as an electrode for a blood glucose level sensor.
  • the inorganic thin film laminated film of the present invention has an oxidation peak current at a potential between 0.2 V and +0.9 V and a potential between ⁇ 0.3 V and +0.4 V in cyclic voltammetry measurement of ferrocyanide ions. Since it shows a reduction peak current, it can be suitably used as an electrode film for a blood glucose level sensor.

Abstract

This invention solves the problem of providing a thin inorganic laminated film which, while being an inexpensive inorganic thin film, exhibits chemical resistance and low surface resistance and can be suitably used as an electrode film for a biosensor such as a blood sugar level sensor. The means for solving the problem is to use a thin inorganic laminated film obtained by laminating an inorganic thin film onto at least one surface of a film substrate either directly or with another layer interposed therebetween, wherein the film exhibits an oxidation peak current at a potential between +0.2 V and +0.9 V, and a reduction peak current at a potential between -0.3 V and +0.4 V in a cyclic voltammetry measurement of ferrocyanide ions in which silver/silver chloride is used as a reference electrode.

Description

無機薄膜積層フィルムInorganic thin film laminated film
 本発明は無機薄膜積層フィルムに関するものであり、特に、電気化学特性、薬品耐性が優れることから、血糖値センサー用の電極フィルムとして好適に用いられる無機薄膜積層フィルムに関するものである。 The present invention relates to an inorganic thin film laminated film, and particularly to an inorganic thin film laminated film suitably used as an electrode film for a blood glucose level sensor because of its excellent electrochemical characteristics and chemical resistance.
 血糖値センサーは、糖尿病患者または糖尿病の疑いのある人が、一日に数回、血糖値を測定し、その数値を管理するために用いられている。血糖値センサーにおいては、血糖値を検出するために、金薄膜を積層した電極フィルムをパターン化したものが使用される(特許文献1)。これは、金薄膜を積層した電極フィルムが、センサーとしての信頼性に重要である低い表面抵抗値を有し、かつ環境に対する安定性において優れるためである。 The blood glucose level sensor is used by a diabetic patient or a person suspected of having diabetes to measure a blood glucose level several times a day and manage the numerical value. In the blood glucose level sensor, in order to detect the blood glucose level, a patterned electrode film in which a gold thin film is laminated is used (Patent Document 1). This is because an electrode film in which a thin gold film is laminated has a low surface resistance value which is important for the reliability as a sensor and is excellent in environmental stability.
 一方、糖尿病患者は欧米を中心に多いものであったが、近年、日本、中国、インドなど世界中で患者数が増加傾向にある。このため、安価な電極材料を用いた電極フィルムの要望が強くなってきた。 On the other hand, there are many diabetic patients mainly in Europe and the United States, but in recent years, the number of patients in Japan, China, India, etc. has been increasing. For this reason, the demand for an electrode film using an inexpensive electrode material has increased.
特開2011-50300号公報JP 2011-50300 A
 すなわち、本発明の目的は、上記の従来の問題点に鑑み、安価な無機薄膜でありながら、低い表面抵抗値、耐薬品性を有し、血糖値センサー等のバイオセンサー用電極フィルムとして好適に使用できる無機薄膜積層フィルムを提供することにある。 That is, in view of the above-mentioned conventional problems, the object of the present invention is a low-cost inorganic thin film, having a low surface resistance value and chemical resistance, and suitable as an electrode film for a biosensor such as a blood glucose level sensor. It is providing the inorganic thin film laminated film which can be used.
 即ち、本発明は、以下の構成よりなる。
1. フィルム基材の少なくとも片面上に直接、または他の層を介して、無機薄膜を積層したフィルムであって、銀/塩化銀を参照電極としたフェロシアン化物イオンのサイクリックボルタンメトリー測定において、+0.2Vから+0.9Vの間の電位に酸化ピーク電流を、-0.3Vから+0.4Vの間の電位に還元ピーク電流を示すことを特徴とする無機薄膜積層フィルム。
2. フィルム基材と無機薄膜の間に中間層を有し、中間層が、チタン若しくはニッケル-チタン合金のいずれかの薄膜であることを特徴とする上記第1に記載の無機薄膜積層フィルム。
3. 2回のサイクリックボルタンメトリー測定を行う場合に、2回目のサイクリックボルタンメトリー測定から得られる酸化ピーク電流と還元ピーク電流が、1回目のサイクリックボルタンメトリー測定から得られる酸化ピーク電流と還元ピーク電流と、各々実質的に同一の電流を示すことを特徴とする上記第1又は2に記載の無機薄膜積層フィルム。
4. 表面抵抗値が、300Ω/□以下であることを特徴とする上記第1から第3のいずれかに記載の無機薄膜積層フィルム。
5. 無機薄膜が、インジウム錫酸化物、パラジウム、ルテニウム、ニッケル、ニッケル-銅合金(ニッケルの含有率が40重量%以上で銅の含有率が60重量%以下)、ニッケル-パラジウム合金のいずれかからなる薄膜であるか、またはこれらの薄膜の積層物であることを特徴とする上記第1から第4のいずれかに記載の無機薄膜積層フィルム。
6. 無機薄膜と中間層の膜厚の合計が、5nm以上400nm以下であることを特徴とする上記第1から第5のいずれかに記載の無機薄膜積層フィルム。
7. 上記第1から第6のいずれかに記載の無機薄膜積層フィルムに、パターニングが施されてなることを特徴とする血糖値センサー用電極フィルム。
8. 上記第7に記載の血糖値センサー用電極フィルムが用いられてなることを特徴とする血糖値センサー用ストリップ。
9. 上記第8に記載の血糖値センサー用ストリップが用いられてなることを特徴とする血糖値センサーデバイス。
That is, this invention consists of the following structures.
1. In cyclic voltammetry measurement of ferrocyanide ions using an inorganic thin film laminated directly on at least one surface of a film substrate or via another layer, and using silver / silver chloride as a reference electrode, +0. An inorganic thin film laminated film characterized by exhibiting an oxidation peak current at a potential between 2 V and +0.9 V and a reduction peak current at a potential between -0.3 V and +0.4 V.
2. 2. The inorganic thin film laminated film as described in the above item 1, wherein an intermediate layer is provided between the film substrate and the inorganic thin film, and the intermediate layer is a thin film of either titanium or nickel-titanium alloy.
3. When performing two cyclic voltammetry measurements, the oxidation peak current and reduction peak current obtained from the second cyclic voltammetry measurement are the oxidation peak current and reduction peak current obtained from the first cyclic voltammetry measurement, and 3. The inorganic thin film laminated film as described in 1 or 2 above, wherein each of them exhibits substantially the same current.
4). The inorganic thin film laminated film according to any one of the first to third aspects, wherein the surface resistance value is 300Ω / □ or less.
5. The inorganic thin film is made of indium tin oxide, palladium, ruthenium, nickel, nickel-copper alloy (nickel content is 40% by weight or more and copper content is 60% by weight or less), or nickel-palladium alloy. The inorganic thin film laminated film according to any one of the first to fourth aspects, which is a thin film or a laminate of these thin films.
6). The inorganic thin film laminated film according to any one of the first to fifth aspects, wherein the total thickness of the inorganic thin film and the intermediate layer is 5 nm or more and 400 nm or less.
7). A blood glucose sensor electrode film, wherein the inorganic thin film laminated film according to any one of the first to sixth aspects is patterned.
8). A blood glucose sensor strip comprising the electrode film for a blood glucose sensor according to the seventh aspect.
9. 9. A blood sugar level sensor device comprising the blood sugar level sensor strip according to the eighth aspect.
 本発明によれば、安価な無機薄膜でありながら、低い表面抵抗値、耐薬品性を有し、血糖値センサー等のバイオセンサー用電極フィルムとして好適に使用できる無機薄膜積層フィルムの提供を可能とした。そして、本発明の無機薄膜積層フィルムを用いた血糖値センサーなどのバイオセンサー用の電極フィルムは、安定的に電気信号を取り出すことができる。 ADVANTAGE OF THE INVENTION According to this invention, although it is an inexpensive inorganic thin film, it has low surface-resistance value and chemical resistance, and can provide the inorganic thin film laminated film which can be used suitably as an electrode film for biosensors, such as a blood glucose level sensor. did. And the electrode film for biosensors, such as a blood glucose level sensor using the inorganic thin film laminated film of this invention, can take out an electrical signal stably.
実施例1のルテニウム薄膜積層フィルムのサイクリックボルタンメトリー測定結果のサイクリックボルタモグラムである。2 is a cyclic voltammogram of a cyclic voltammetry measurement result of the ruthenium thin film laminated film of Example 1. FIG. 実施例9のニッケル(87重量%)-パラジウム(13重量%)合金薄膜積層フィルムのサイクリックボルタンメトリー測定結果のサイクリックボルタモグラムである。10 is a cyclic voltammogram of a cyclic voltammetry measurement result of a nickel (87 wt%)-palladium (13 wt%) alloy thin film laminated film of Example 9.
 本発明の無機薄膜積層フィルムは、銀/塩化銀を参照電極としたフェロシアン化物イオンのサイクリックボルタンメトリー測定において、+0.2Vから+0.9Vの間の電位に酸化ピーク電流を示す。これは、本発明の無機薄膜積層フィルム上の無機薄膜が、フェロシアン化物イオンに溶解することなく、フェロシアン化物イオンをフェリシアン化イオンに酸化できることを示すものであり、血糖値センサーの電極として適切に動作することの要件である。+0.2Vから+0.9Vの範囲外に観測される酸化ピーク電流は、フェロシアン化物以外の物質が酸化していることに起因し、血糖値センサー用電極としての適切な動作とは関係のない酸化ピーク電流である。また、+0.9Vより大きい酸化ピーク電流は、血糖値センサー用電極として動作する際に、大きな電圧を要することにつながるので好ましくないものである。 The inorganic thin film laminated film of the present invention exhibits an oxidation peak current at a potential between +0.2 V and +0.9 V in cyclic voltammetry measurement of ferrocyanide ions using silver / silver chloride as a reference electrode. This indicates that the inorganic thin film on the inorganic thin film laminated film of the present invention can oxidize ferrocyanide ions to ferricyanide ions without dissolving in ferrocyanide ions, and is used as an electrode for a blood glucose level sensor. It is a requirement to work properly. The oxidation peak current observed outside the range of +0.2 V to +0.9 V is due to the fact that substances other than ferrocyanide are oxidized, and is not related to proper operation as an electrode for a blood glucose level sensor. It is an oxidation peak current. Also, an oxidation peak current greater than +0.9 V is not preferable because it requires a large voltage when operating as a blood glucose level sensor electrode.
 本発明の無機薄膜積層フィルムは、-0.4Vから+0.3Vの間の電位に還元ピーク電流を示す。これは、本発明の無機薄膜積層フィルム上の無機薄膜が、フェリシアン化イオンに溶解することなく、フェリシアン化イオンがフェロシアン化イオンに還元できることを示すものであり、血糖値センサーの電極として適切に動作することの要件である。-0.4Vから+0.3Vの範囲外に観測される還元ピーク電流は、フェリシアン化物以外の物質が還元していることに起因するものであり、血糖値センサー電極としての適切な動作と関係のない還元ピーク電流である。 The inorganic thin film laminated film of the present invention exhibits a reduction peak current at a potential between −0.4V and + 0.3V. This indicates that the inorganic thin film on the inorganic thin film laminated film of the present invention can be reduced to ferrocyanide ions without dissolving in ferricyanide ions, and as an electrode of a blood glucose level sensor It is a requirement to work properly. The reduction peak current observed outside the range of −0.4 V to +0.3 V is due to reduction of substances other than ferricyanide, and is related to proper operation as a blood glucose sensor electrode. It is a reduction peak current without any.
 酸化ピーク電流および還元ピーク電流の絶対値は、測定条件によって異なるが、本発明の実施例の条件においては、0.05mA以上2mA以下となる。0.05mA未満の場合、無機薄膜の本質として上記の酸化還元反応が起こらない、あるいは測定の初期に無機薄膜が溶出してしまって、上記の酸化還元反応が起こらないことが考えられる。2mAより大きい場合は、電流値が過大であり、無機薄膜が溶出することによって発生する電流値を観測している。本発明において、上記要件を満たした場合のサイクリックボルタンメトリー測定のプロファイルは、例えば図1に示されるような形状となる。 The absolute values of the oxidation peak current and the reduction peak current vary depending on the measurement conditions, but are 0.05 mA or more and 2 mA or less under the conditions of the examples of the present invention. In the case of less than 0.05 mA, it is considered that the redox reaction does not occur as the essence of the inorganic thin film, or the inorganic thin film is eluted at the initial stage of measurement, and the redox reaction does not occur. When it is larger than 2 mA, the current value is excessive, and the current value generated by elution of the inorganic thin film is observed. In the present invention, the profile of cyclic voltammetry measurement when the above requirements are satisfied has a shape as shown in FIG.
 上記の要件を充足しない無機薄膜積層フィルムであっても、グルコース濃度に依存した電流値を示すことがある。しかし、無機薄膜が不安定であるために、再現性が低い。すなち、血糖値センサー用の電極として適切に動作するには、上記の要件を満たさなければならない。 Even an inorganic thin film laminated film that does not satisfy the above requirements may show a current value depending on the glucose concentration. However, since the inorganic thin film is unstable, reproducibility is low. That is, the above requirements must be met in order to operate properly as an electrode for a blood glucose sensor.
 また、血糖値センサー用の電極としてさらに好適に動作するために、下記の要件を満たすことが好ましい。すなわち、2回目の測定において実質的に同一の酸化および還元ピーク電流を示すことである。ここで、「実質的に」とは、1回目と2回目の測定における酸化および還元ピーク電流を示す電位の値の差が±0.05V、酸化または還元ピーク電流値の差が絶対値にて±20%の範囲である。これは、1回目の測定の酸化反応および還元反応を経ても、本発明の無機薄膜積層フィルム上の無機薄膜が溶解することなく安定に残存していること、および、表面形態が変化していないことを示し、該無機薄膜が血糖値センサー用の電極として非常に適していることを示すものである。 In order to operate more suitably as an electrode for a blood glucose level sensor, it is preferable to satisfy the following requirements. That is, it shows substantially the same oxidation and reduction peak current in the second measurement. Here, “substantially” means that the difference in potential value indicating oxidation and reduction peak current in the first and second measurements is ± 0.05 V, and the difference in oxidation or reduction peak current value is an absolute value. The range is ± 20%. This is because the inorganic thin film on the inorganic thin film laminated film of the present invention remains stably without dissolving and the surface form does not change even after the oxidation reaction and reduction reaction of the first measurement. This indicates that the inorganic thin film is very suitable as an electrode for a blood glucose level sensor.
 本発明における無機薄膜積層フィルムの表面抵抗値は、300Ω/□以下が好ましく、さらに好ましくは250Ω/□以下、特に好ましくは200Ω/□以下である。表面抵抗値300Ω/□より高い場合、上記の酸化ピーク電流と還元ピーク電流が確認できず、血糖値センサーの電極として使用した際に電気信号が得られなくなるので好ましくない。表面抵抗値は低いほうが好ましいが、通常0Ω/□が達成されることは通常なく、その下限は0.01Ω/□でよく、1Ω/□以上でも構わない。 The surface resistance value of the inorganic thin film laminated film in the present invention is preferably 300Ω / □ or less, more preferably 250Ω / □ or less, and particularly preferably 200Ω / □ or less. When the surface resistance value is higher than 300Ω / □, the oxidation peak current and the reduction peak current cannot be confirmed, and an electric signal cannot be obtained when used as an electrode of a blood glucose level sensor. The surface resistance value is preferably low, but usually 0Ω / □ is not usually achieved, and the lower limit may be 0.01Ω / □, or 1Ω / □ or more.
 本発明の無機薄膜積層フィルムは、フィルム基材の少なくとも片面上に直接、または他の層を介して、無機薄膜を積層した構造を有する。以下、各層別に詳細に説明する。 The inorganic thin film laminated film of the present invention has a structure in which an inorganic thin film is laminated directly on at least one surface of a film substrate or via another layer. Hereinafter, each layer will be described in detail.
(フィルム基材)
 本発明で用いるフィルム基材とは、有機高分子をフィルム状に溶融押出し又は溶液押出しをしてフィルム状に成形し、必要に応じ、長手方向及び/又は幅方向に延伸、熱固定、熱弛緩処理等を施したフィルムである。有機高分子としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ナイロン6、ナイロン4、ナイロン66、ナイロン12、ポリイミド、ポリアミドイミド、ポリエーテルサルファン、ポリエーテルエーテルケトン、ポリカーボネート、ポリアリレート、セルロースプロピオネート、ポリ塩化ビニール、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエーテルイミド、ポリフェニレンスルフィド、ポリフェニレンオキサイド、ポリスチレン、シンジオタクチックポリスチレン、ノルボルネン系ポリマーなどが挙げられる。
(Film substrate)
The film substrate used in the present invention is formed by forming an organic polymer into a film by melt extrusion or solution extrusion into a film, and stretching, heat setting, heat relaxation in the longitudinal direction and / or the width direction as necessary. It is a film that has been treated. Organic polymers include polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyimide, polyamideimide, polyethersulfane, polyetheretherketone , Polycarbonate, polyarylate, cellulose propionate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyether imide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, norbornene-based polymer, and the like.
 これらの有機高分子のなかで、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレン-2,6-ナフタレート、シンジオタクチックポリスチレン、ノルボルネン系ポリマー、ポリカーボネート、ポリアリレートなどが好適である。また、これらの有機高分子は他の有機重合体の単量体を少量共重合してもよいし、他の有機高分子をブレンドしてもよい。 Among these organic polymers, polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, syndiotactic polystyrene, norbornene polymer, polycarbonate, polyarylate and the like are preferable. These organic polymers may be copolymerized with a small amount of other organic polymer monomers, or may be blended with other organic polymers.
 本発明で用いるフィルム基材の厚みは、10~300μmであることが好ましく、より好ましくは20~250μmである。プラスチックフィルムの厚みが10μm未満では機械的強度が不足し、血糖値センサーなどのセンサーのハンドリングが難しくなるため好ましくない。一方、厚みが300μmを超えると、血糖値センサーなどのセンサーの厚みが厚くなりすぎるため、好ましくない。 The thickness of the film substrate used in the present invention is preferably 10 to 300 μm, more preferably 20 to 250 μm. If the thickness of the plastic film is less than 10 μm, the mechanical strength is insufficient, and handling of a sensor such as a blood glucose level sensor becomes difficult. On the other hand, when the thickness exceeds 300 μm, the thickness of a sensor such as a blood glucose level sensor becomes too thick, which is not preferable.
 本発明で用いるフィルム基材は、本発明の目的を損なわない範囲で、前記のようなフィルムにコロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理などの表面活性化処理が施されていてもよい。 The film substrate used in the present invention is a surface such as corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc. on the above-mentioned film within the range not impairing the object of the present invention. An activation treatment may be performed.
 また、本発明で用いるフィルム基材には、無機薄膜との密着性向上、耐薬品性の付与、オリゴマーなどの低分子量物の析出防止を目的として、硬化型樹脂を主たる構成成分とする硬化物層を設けることも好ましい。 In addition, the film substrate used in the present invention is a cured product comprising a curable resin as a main component for the purpose of improving adhesion to an inorganic thin film, imparting chemical resistance, and preventing precipitation of low molecular weight substances such as oligomers. It is also preferred to provide a layer.
 前記の硬化型樹脂は、加熱、紫外線照射、電子線照射などのエネルギー印加により硬化する樹脂であれば特に限定されなく、シリコーン樹脂、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、メラミン樹脂、ポリエステル樹脂、ウレタン樹脂などが挙げられる。 The curable resin is not particularly limited as long as it is a resin that is cured by application of energy such as heating, ultraviolet irradiation, electron beam irradiation, etc., and silicone resin, acrylic resin, methacrylic resin, epoxy resin, melamine resin, polyester resin, urethane Resin etc. are mentioned.
(無機薄膜)
 本発明における無機薄膜と後述の中間層の合計膜厚は、5~400nmの範囲が好ましく、更に好ましくは10~300nm、特に好ましくは15~200nmである。この膜厚が5nm未満の場合、薄膜のピンホールが生成し、血糖値センサーの電極として使用した際に電気信号が得づらくなるので好ましくない。一方、この膜厚が400nmよりも厚い場合、無機薄膜の応力が大きくなり、剥離が発生しやすく、密着性が低下する恐れがあり、また、基材の反りも発生するので、好ましくない。
(Inorganic thin film)
The total film thickness of the inorganic thin film and the later-described intermediate layer in the present invention is preferably in the range of 5 to 400 nm, more preferably 10 to 300 nm, and particularly preferably 15 to 200 nm. When this film thickness is less than 5 nm, a thin pinhole is generated, which is not preferable because it is difficult to obtain an electric signal when used as an electrode of a blood glucose level sensor. On the other hand, when the film thickness is thicker than 400 nm, the stress of the inorganic thin film is increased, peeling is likely to occur, adhesion may be lowered, and warping of the substrate is also not preferable.
 本発明における無機薄膜は、ルテニウム、パラジウム、ニッケル、ニッケル-銅合金、ニッケル-パラジウム合金、インジウム錫酸化物からなる薄膜であるが好ましく、これらが積層された積層物でも良い。ニッケル-銅合金の場合は、ニッケル含有率が40重量%以上、銅含有率が60重量%以下であることが好ましい。この範囲外では、適切なサイクリックボルタンメトリーの結果とならず、したがって血糖値センサー用の電極として用いられづらくなる。 The inorganic thin film in the present invention is preferably a thin film made of ruthenium, palladium, nickel, nickel-copper alloy, nickel-palladium alloy, or indium tin oxide, and may be a laminate in which these are laminated. In the case of a nickel-copper alloy, the nickel content is preferably 40% by weight or more and the copper content is preferably 60% by weight or less. Outside this range, proper cyclic voltammetry results are not obtained, and therefore it is difficult to use as an electrode for a blood glucose level sensor.
 ニッケル-パラジウム合金は任意の組成にて好適に使用することができる。 Nickel-palladium alloy can be suitably used in any composition.
 また、ルテニウム、パラジウム薄膜の場合、密着力性を向上させること、およびコストダウンを図るため、基材フィルムとの間に、ニッケル、チタン、ニッケル-銅合金、ニッケル-チタン合金のいずれかの薄膜層を中間層として設けても良い。中間層としての、ニッケル-銅合金およびニッケル-チタン合金は、任意の組成にて好適に使用することができる。中間層の膜厚は、無機薄膜全体としての膜厚が、上記の5~400nmの範囲となるように適宜設定すればよい。 In the case of ruthenium and palladium thin films, any thin film of nickel, titanium, nickel-copper alloy, or nickel-titanium alloy is used between the base film and the film to improve adhesion and reduce costs. A layer may be provided as an intermediate layer. The nickel-copper alloy and nickel-titanium alloy as the intermediate layer can be suitably used in any composition. The film thickness of the intermediate layer may be appropriately set so that the film thickness of the entire inorganic thin film is in the range of 5 to 400 nm.
 本発明における無機薄膜の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法などが知られており、必要とする膜厚に応じて、前記の方法を適宜用いることができるが、高い付着力の発現や膜厚のバラツキを低減するという観点からスパッタリング法が好ましい。 As a method for forming an inorganic thin film in the present invention, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known, and the above method is appropriately selected according to a required film thickness. Although it can be used, the sputtering method is preferable from the viewpoint of developing high adhesion and reducing variations in film thickness.
 この時、プラズマ照射、イオンアシスト等の手段を併用したりしてもよい。また、本発明の目的を損なわない範囲で、基板に直流、交流、高周波などのバイアス電圧を印加してもよい。 At this time, means such as plasma irradiation and ion assist may be used in combination. In addition, a bias voltage such as direct current, alternating current, and high frequency may be applied to the substrate as long as the object of the present invention is not impaired.
 例えば、スパッタリング法にて成膜する場合には、スパッタリングを行う前に真空チェンバー内の圧力を0.0005Pa以下の真空度まで排気(到達真空度が0.0005Pa以下)した後に、Arなどの不活性ガスを真空チェンバーに導入し、0.01~10Paの圧力範囲において放電を発生させ、スパッタリングを行うのが好ましい。特に生産性の観点からDCスパッタリング法が好ましく、DCマグネトロンスパッタリング法が更に好ましい。また、蒸着法、CVD法などの他の方法においても同様である。 For example, when a film is formed by sputtering, the pressure in the vacuum chamber is evacuated to a vacuum degree of 0.0005 Pa or less (attainment vacuum degree is 0.0005 Pa or less) before sputtering, and then Ar or the like is not discharged. It is preferable to perform sputtering by introducing an active gas into a vacuum chamber, generating discharge in a pressure range of 0.01 to 10 Pa. In particular, the DC sputtering method is preferable from the viewpoint of productivity, and the DC magnetron sputtering method is more preferable. The same applies to other methods such as vapor deposition and CVD.
 このようにフィルム上に無機薄膜をスパッタリングなどの真空プロセスにより成膜するが、プラスチックフィルム中に揮発成分を含んでいると、無機薄膜積層フィルムの性能に悪影響を与えるため好ましくない。 As described above, an inorganic thin film is formed on the film by a vacuum process such as sputtering. However, if a volatile component is contained in the plastic film, the performance of the inorganic thin film laminated film is adversely affected.
 プラスチックフィルム中に揮発成分を含んでいると、例えば、スパッタリング法で無機薄膜をフィルム基板上に形成させる場合、スパッタリングされた無機粒子とプラスチックフィルムから揮発したガスが気相中で衝突して、無機粒子のエネルギーが低下する場合がある。この結果、プラスチックフィルム上に形成される無機薄膜の付着性は低下し易くなり好ましくない。 When a plastic film contains a volatile component, for example, when an inorganic thin film is formed on a film substrate by sputtering, the sputtered inorganic particles and the gas volatilized from the plastic film collide with each other in the gas phase. Particle energy may be reduced. As a result, the adhesiveness of the inorganic thin film formed on the plastic film tends to decrease, which is not preferable.
 また、揮発成分が無機薄膜に取り込まれた場合、欠陥が生成するので、血糖値センサーの電極として使用した際に適切な動作ができず好ましくない。 Also, when a volatile component is taken into the inorganic thin film, a defect is generated, which is not preferable because an appropriate operation cannot be performed when used as an electrode of a blood glucose level sensor.
 例えば、プラスチックフィルム中に存在する揮発成分としては、フィルム中に吸水された水分やオリゴマーなどの低分子量成分などが挙げられる。 For example, the volatile components present in the plastic film include low molecular weight components such as moisture and oligomers absorbed in the film.
 前記の揮発成分を減少させるためには、スパッタリングを行う前に加熱処理を施すのが好適である。このときの加熱処理温度は0~200℃の範囲であることが好ましい。0℃未満では揮発成分を減少させる効果が不十分となりやすいため好ましくなく、200℃を越える温度では、フィルムの平面性を保つのが難しくなる傾向にあり好ましくない。下限温度の0℃に加熱、という表現は、常圧下とは異なり、真空プロセス下であるので、0℃であっても実質的に加熱されているかのような効果が得られるため、このように記載しているものである。 In order to reduce the volatile components, it is preferable to perform heat treatment before sputtering. The heat treatment temperature at this time is preferably in the range of 0 to 200 ° C. If it is less than 0 ° C., the effect of reducing volatile components tends to be insufficient, which is not preferable, and if it exceeds 200 ° C., it is difficult to maintain the flatness of the film, which is not preferable. The expression “heated to the lower limit temperature of 0 ° C.” is under a vacuum process, unlike under normal pressure. Therefore, even if it is 0 ° C., the effect of being heated substantially is obtained. It is what is described.
 また、スパッタリング等を行う真空チェンバーの中でフィルムを真空暴露することで揮発成分を減少させることも有効な手段である。真空暴露の際にフィルムに接触するロール設定温度を高くしてすること、あるいは赤外線ヒーターによるフィルム加熱を併用することで揮発成分をより減少させることも好ましい。 Also, it is an effective means to reduce volatile components by exposing the film to a vacuum in a vacuum chamber for performing sputtering or the like. It is also preferable to reduce the volatile components by increasing the roll set temperature that contacts the film during vacuum exposure or by using film heating with an infrared heater in combination.
 この時の圧力は、1000Pa以下であることが好ましく、さらに好ましくは100Pa以下である。1000Paよりも高い圧力では揮発成分除去の効果が不十分になり易くあまり好ましくない。揮発成分の除去のために、圧力は低いほうが好ましく、下限は1×10-6Paである。 The pressure at this time is preferably 1000 Pa or less, and more preferably 100 Pa or less. When the pressure is higher than 1000 Pa, the effect of removing volatile components tends to be insufficient, which is not preferable. In order to remove volatile components, the pressure is preferably low, and the lower limit is 1 × 10 −6 Pa.
 また、真空暴露時間は、1分~100分とすることが好ましい。真空暴露時間が1分未満では、揮発成分除去の効果が不十分となり易くあまり好ましくない。一方、100分を超える時間では、生産性が低下するために、工業的にあまり好ましくない。 The vacuum exposure time is preferably 1 to 100 minutes. If the vacuum exposure time is less than 1 minute, the effect of removing volatile components tends to be insufficient, which is not preferable. On the other hand, when the time exceeds 100 minutes, productivity is lowered, which is not preferable industrially.
 さらに、真空暴露の際にフィルム温度を高くすることでより効率的に揮発成分の低減を行うことができる。フィルム温度としては、0~200℃の範囲が好ましく、より好ましくは20~180℃の範囲である。 Furthermore, volatile components can be reduced more efficiently by increasing the film temperature during vacuum exposure. The film temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 20 to 180 ° C.
 フィルム温度を制御するためには、フィルムに接触するロール設定温度を高くすること、あるいは赤外線ヒーターによるフィルム加熱を併用する手段が有効である。この時のロール設定温度としては、上記フィルム温度と同様に0~200℃の範囲が好ましく、より好ましくは20~180℃の範囲である。 In order to control the film temperature, it is effective to increase the roll set temperature in contact with the film or to use the film heating with an infrared heater in combination. The roll set temperature at this time is preferably in the range of 0 to 200 ° C., more preferably in the range of 20 to 180 ° C., similarly to the film temperature.
 また、赤外線ヒーターは近赤外線型、中赤外線型、遠赤外線型のうちいずれでもよい。赤外線ヒーターへの投入電力は、5~50000W/m・minの範囲が好ましい。5W・m/min未満の投入電力ではフィルム温度を上昇させる効果が乏しくなるため好ましくなく、50000W/m・minよりも高い投入電力では、フィルム温度が高くなりすぎ、フィルムの平面性が低下するために好ましくない。 The infrared heater may be any of a near infrared type, a middle infrared type, and a far infrared type. The input power to the infrared heater is preferably in the range of 5 to 50000 W / m 2 · min. An input power of less than 5 W · m 2 / min is not preferable because the effect of increasing the film temperature is poor, and an input power higher than 50000 W / m 2 · min is not preferable, and the film temperature becomes too high and the flatness of the film is deteriorated. This is not preferable.
 前記のように、成膜雰囲気中の水分や有機物などの不純物を可能な限り除去することで、基材との付着力および膜質に優れた無機薄膜を有する電極用として好適なフィルムが得られる。そのため、この電極用として好適なフィルムを血糖値センサーに用いると、センサーの信頼性を損なうことがない。 As described above, by removing impurities such as moisture and organic substances in the film formation atmosphere as much as possible, a film suitable for an electrode having an inorganic thin film excellent in adhesion to the substrate and film quality can be obtained. Therefore, when a film suitable for this electrode is used for a blood glucose level sensor, the reliability of the sensor is not impaired.
 上記のようにして得られた無機薄膜積層フィルムは、フォトリソグラフィー等の方法で所望のパターニングが施され、血糖値センサー用の電極フィルムとして好ましく用いられる。血糖値センサー用電極フィルムは、血糖値センサーデバイスの種類に応じた血糖値センサー用ストリップに作成され、血糖値センサー用デバイスに装着されて使用される。 The inorganic thin film laminated film obtained as described above is subjected to desired patterning by a method such as photolithography and is preferably used as an electrode film for a blood glucose level sensor. The electrode film for a blood glucose level sensor is formed on a blood glucose level sensor strip corresponding to the type of the blood glucose level sensor device, and is used by being attached to the blood glucose level sensor device.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。なお、無機薄膜積層フィルムの各特性は、下記の方法により測定した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, each characteristic of the inorganic thin film laminated film was measured by the following method.
(1)サイクリックボルタンメトリー測定
 無機薄膜積層フィルムを50mm×5mm幅の短冊状に切り出した。5mMのフェロシアン化カリウムおよび1Mの硝酸カリウムを含む水溶液に、短冊状の無機薄膜積層フィルムを10mm浸漬させた。参照極の銀/塩化銀、対極の白金コイルも該溶液に設置した。対銀/塩化銀にて、まず、開始電圧を、+0.1V、折り返し電圧を+0.5V、終了電圧を+0.1Vとし、50mV/sの走査速度で測定を行った。この+0.1V~+0.5Vの範囲に酸化ピーク電流及び還元ピーク電流が見られた場合には、前記の測定を1回目測定とし、続いて2回目も同一条件で測定した。一方、この+0.1V~+0.5Vの範囲に酸化ピーク電流及び/又は還元ピーク電流が見られない場合には、開始電圧を-0.3V、折り返し電圧を+0.9V、終了電圧を-0.3Vとして再測定した。
(1) Cyclic voltammetry measurement The inorganic thin film laminated film was cut into a strip shape having a width of 50 mm x 5 mm. A strip-shaped inorganic thin film laminated film was immersed 10 mm in an aqueous solution containing 5 mM potassium ferrocyanide and 1 M potassium nitrate. A silver / silver chloride reference electrode and a platinum coil counter electrode were also placed in the solution. First, with respect to silver / silver chloride, measurement was performed at a scanning speed of 50 mV / s with a starting voltage of +0.1 V, a folding voltage of +0.5 V, and an ending voltage of +0.1 V. When an oxidation peak current and a reduction peak current were observed in the range of +0.1 V to +0.5 V, the above measurement was taken as the first measurement, and then the second measurement was performed under the same conditions. On the other hand, when no oxidation peak current and / or reduction peak current is observed in the range of +0.1 V to +0.5 V, the start voltage is −0.3 V, the folding voltage is +0.9 V, and the end voltage is −0. Remeasured as 3V.
(2)表面抵抗値
 JIS-K7194に準拠し、4端子法にて測定した。測定機は、三菱油化(株)製 Lotest AMCP-T400を用いた。
(2) Surface resistance value Measured by a four-terminal method in accordance with JIS-K7194. As a measuring machine, Lotest AMCP-T400 manufactured by Mitsubishi Yuka Co., Ltd. was used.
(3)無機薄膜の膜厚
 無機薄膜積層フィルム試料片を1mm×10mmの大きさに切り出し、電子顕微鏡用エポキシ樹脂に包埋した。これをウルトラミクロトームの試料ホルダに固定し、包埋した試料片の短辺に平行な断面薄切片を作製した。次いで、この切片の薄膜の著しい損傷がない部位において、透過型電子顕微鏡(JEOL社製、JEM-2010)を用い、加速電圧200kV、明視野で観察倍率1万倍にて写真撮影を行って得られた写真から膜厚を求めた。
(3) Film thickness of inorganic thin film An inorganic thin film laminated film sample piece was cut into a size of 1 mm × 10 mm and embedded in an epoxy resin for an electron microscope. This was fixed to a sample holder of an ultramicrotome, and a cross-sectional thin section parallel to the short side of the embedded sample piece was produced. Next, in a portion where the thin film of this section is not significantly damaged, a transmission electron microscope (manufactured by JEOL, JEM-2010) is used to photograph at an acceleration voltage of 200 kV and a bright field at an observation magnification of 10,000 times. The film thickness was determined from the photograph taken.
〔実施例1〕
 プラスチックフィルムとして、厚み250μmの二軸延伸ポリエチレンテレフタレート系フィルム(E5001、東洋紡社製)を用いた。
[Example 1]
A biaxially stretched polyethylene terephthalate film (E5001, manufactured by Toyobo Co., Ltd.) having a thickness of 250 μm was used as the plastic film.
 続いて二軸延伸ポリエステルフィルムの片面に、ルテニウム薄膜を成膜するために、フィルムの真空暴露を行った。真空チャンバーで巻き返し処理を行い、このときの圧力は2×10-3Paであり、暴露時間は20分とした。また、センターロールの設定温度は40℃とした。 Subsequently, in order to form a ruthenium thin film on one surface of the biaxially stretched polyester film, the film was exposed to vacuum. The rewinding process was performed in a vacuum chamber, the pressure at this time was 2 × 10 −3 Pa, and the exposure time was 20 minutes. The set temperature of the center roll was 40 ° C.
 その後、ルテニウムターゲットを用いて、二軸延伸ポリエステルフィルムの片面に、ルテニウム薄膜を成膜した。このときスパッタリング前の真空チャンバーの到達圧力が1×10-4Pa(到達真空度)であることを確認後、スパッタリングを実施した。スパッタリングの条件は、3W/□のDC電力を印加した。また、Arガスを流し、0.4Paの雰囲気下とし、DCマグネトロンスパッタリング法を用いて成膜した。また、センターロール設定温度は0℃とした。以上のようにして、膜厚60nmのルテニウム薄膜を堆積させた。 Thereafter, a ruthenium thin film was formed on one side of the biaxially stretched polyester film using a ruthenium target. At this time, sputtering was performed after confirming that the ultimate pressure of the vacuum chamber before sputtering was 1 × 10 −4 Pa (degree of ultimate vacuum). As the sputtering condition, DC power of 3 W / □ was applied. Moreover, Ar gas was flowed, it was made into the atmosphere of 0.4 Pa, and it formed into a film using DC magnetron sputtering method. The center roll set temperature was 0 ° C. As described above, a ruthenium thin film having a thickness of 60 nm was deposited.
 図1は、ルテニウム薄膜積層フィルムのサイクリックボルタンメトリー(CV)測定結果である。1回目の測定において、酸化ピーク電流が+0.32Vの電位にて+0.31mAの電流値で観測され、還元ピーク電流が+0.22Vの電位に-0.16mAの電流にて観測された。2回目の測定においては、酸化ピーク電流が+0.32Vの電位に+0.28mAの電流値で観測され、還元ピーク電流が+0.22Vの電位に-0.16mAの電流にて観測された。1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
〔実施例2〕
 二軸延伸ポリエステルフィルムの片面に、スパッタリングにて膜厚10nmのチタン薄膜を積層し、さらにその上に膜厚60nmのルテニウム薄膜を積層したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
FIG. 1 is a result of cyclic voltammetry (CV) measurement of a ruthenium thin film laminated film. In the first measurement, an oxidation peak current was observed at a current value of +0.31 mA at a potential of +0.32 V, and a reduction peak current was observed at a potential of +0.22 V at a current of −0.16 mA. In the second measurement, an oxidation peak current was observed at a current value of +0.28 mA at a potential of +0.32 V, and a reduction peak current was observed at a current of −0.16 mA at a potential of +0.22 V. In the first measurement, the oxidation peak current and the reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. Can be suitably used as an electrode.
[Example 2]
The same procedure as in Example 1 was performed except that a titanium thin film having a thickness of 10 nm was laminated on one side of the biaxially stretched polyester film by sputtering, and a ruthenium thin film having a thickness of 60 nm was further laminated thereon. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例3〕
 ニッケル(65重量%)-銅(35重量%)の合金ターゲットを用いて、二軸延伸ポリエステルフィルムの片面に、膜厚100nmのニッケル(65重量%)-銅(35重量%)の合金薄膜を成膜したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 3
Using a nickel (65 wt%)-copper (35 wt%) alloy target, a 100 nm thick nickel (65 wt%)-copper (35 wt%) alloy thin film is formed on one side of a biaxially stretched polyester film. The same operation as in Example 1 was performed except that the film was formed. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例4〕
 二軸延伸ポリエステルフィルムの片面に、スパッタリングにて膜厚100nmのニッケル(65重量%)-銅(35重量%)合金薄膜を積層し、さらにその上に膜厚10nmのパラジウム薄膜層を積層したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 4
A nickel (65 wt%)-copper (35 wt%) alloy thin film having a thickness of 100 nm was laminated on one surface of a biaxially stretched polyester film, and a palladium thin film layer having a thickness of 10 nm was further laminated thereon. Except for this, the same procedure as in Example 1 was performed. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例5〕
 二軸延伸ポリエステルフィルムの片面に、スパッタリングにて膜厚100nmのニッケル薄膜を積層したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の
測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 5
It implemented like Example 1 except having laminated | stacked the nickel thin film with a film thickness of 100 nm on one side of the biaxially stretched polyester film by sputtering. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例6〕
 二軸延伸ポリエステルフィルムの片面に、スパッタリングにて膜厚100nmのニッケル薄膜を積層し、さらにその上に膜厚10nmのパラジウム薄膜を積層したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 6
This was carried out in the same manner as in Example 1 except that a nickel thin film having a film thickness of 100 nm was laminated on one surface of the biaxially stretched polyester film and a palladium thin film having a film thickness of 10 nm was further laminated thereon. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例7〕
 ニッケル(65重量%)-パラジウム(35重量%)の合金ターゲットを用いて、二軸延伸ポリエステルフィルムの片面に、ニッケル(65重量%)-パラジウム(35重量%)の合金薄膜を成膜したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 7
A nickel (65 wt%)-palladium (35 wt%) alloy thin film was formed on one side of a biaxially stretched polyester film using a nickel (65 wt%)-palladium (35 wt%) alloy target. Except for this, the same procedure as in Example 1 was performed. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例8〕
 ニッケル(75重量%)-パラジウム(25重量%)の合金ターゲットを用いて、二軸延伸ポリエステルフィルムの片面に、ニッケル(75重量%)-パラジウム(25重量%)の合金薄膜を成膜したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 8
A nickel (75 wt%)-palladium (25 wt%) alloy thin film was formed on one side of a biaxially stretched polyester film using a nickel (75 wt%)-palladium (25 wt%) alloy target. Except for this, the same procedure as in Example 1 was performed. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例9〕
ニッケル(87重量%)-パラジウム(13重量%)の合金ターゲットを用いて、二軸延伸ポリエステルフィルムの片面に、ニッケル(87重量%)-パラジウム(13重量%)の合金薄膜を成膜したこと以外は、実施例1と同様に実施した。図2と表1に示すように、1回目の測定において、酸化ピーク電流が+0.32Vの電位に+0.30mAの電流値で観測され、還元ピーク電流が+0.22Vの電位に-0.12mAの電流にて観測された。1回目の測定においては、好適な電位に酸化ピーク電流と還元ピーク電流が観測されたので、2回目の測定における測定結果の同一性は不十分だったものの、この無機薄膜はシングルユースの血糖値センサー用電極としては好適に使用できるものである。
Example 9
A nickel (87 wt%)-palladium (13 wt%) alloy thin film was formed on one side of a biaxially stretched polyester film using a nickel (87 wt%)-palladium (13 wt%) alloy target. Except for this, the same procedure as in Example 1 was performed. As shown in FIG. 2 and Table 1, in the first measurement, an oxidation peak current was observed at a potential of +0.30 mA at a potential of +0.32 V, and a reduction peak current was −0.12 mA at a potential of +0.22 V. Was observed at a current of. In the first measurement, an oxidation peak current and a reduction peak current were observed at suitable potentials. Therefore, although the identity of the measurement results in the second measurement was insufficient, this inorganic thin film is a single-use blood glucose level. It can be used suitably as a sensor electrode.
〔実施例10〕
 二軸延伸ポリエステルフィルムの片面に、スパッタリングにて膜厚100nmのチタン薄膜を積層し、さらにその上に膜厚10nmのパラジウム薄膜を積層したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 10
This was carried out in the same manner as in Example 1 except that a titanium thin film having a film thickness of 100 nm was laminated on one side of the biaxially stretched polyester film, and a palladium thin film having a film thickness of 10 nm was further laminated thereon. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例11〕
 ニッケル(50重量%)-チタン(50重量%)の合金ターゲットを使用し、二軸延伸ポリエステルフィルムの片面に、膜厚100nmのニッケル(50重量%)-チタン(50重量%)の合金薄膜層を積層し、さらにその上に膜厚10nmのパラジウム薄膜を積層したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 11
Using an alloy target of nickel (50% by weight) -titanium (50% by weight), an alloy thin film layer of nickel (50% by weight) -titanium (50% by weight) with a film thickness of 100 nm on one side of a biaxially stretched polyester film Was carried out in the same manner as in Example 1 except that a palladium thin film having a thickness of 10 nm was further laminated thereon. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例12〕
 インジウム錫酸化物(In:Sn=90重量%:10重量%)ターゲットを使用し、二軸延伸ポリエステルフィルムの片面に、膜厚30nmのインジウム錫酸化物を積層し、さらに、150℃、1時間の加熱処理を行い、表面抵抗値が150Ω/□の積層フィルムを得たこと、及びイクリックボルタンメトリー測定においては、一回目の折り返し電圧を0.8V、二回目の折り返し電圧を-0.2Vとしたこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。
Example 12
Using an indium tin oxide (In: Sn = 90% by weight: 10% by weight) target, indium tin oxide with a film thickness of 30 nm is laminated on one side of a biaxially stretched polyester film, and further, 150 ° C., 1 hour In the cyclic voltammetry measurement, the first folding voltage was 0.8V, and the second folding voltage was -0.2V. The same operation as in Example 1 was carried out except that. As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔実施例13〕
 光重合開始剤含有紫外線硬化型アクリル系樹脂(大日精化工業社製、セイカビームEXF-01J)100質量部に、溶剤としてトルエン/MEK(80/20:質量比)の混合溶媒を、固形分濃度が50質量%になるように加え、撹拌して均一に溶解し塗布液を調製した。
Example 13
A mixed solvent of toluene / MEK (80/20: mass ratio) as a solvent is added to 100 parts by mass of a photopolymerization initiator-containing ultraviolet curable acrylic resin (manufactured by Dainichi Seika Kogyo Co., Ltd., Seika Beam EXF-01J). Was added so as to be 50% by mass, and stirred to dissolve uniformly to prepare a coating solution.
 188μmで表面に易接着層を有する二軸延伸ポリエチレンテレフタレート系フィルム(A4100、東洋紡社製)の易接着層上に、塗膜の厚みが3000nmになるように、調製した塗布液を、マイヤーバーを用いて塗布した。80℃で1分間乾燥を行った後、紫外線照射装置(アイグラフィックス社製、UB042-5AM-W型)を用いて紫外線を照射(光量:300mJ/□)し、塗膜を硬化させ、硬化物層を積層後、真空暴露等の後工程に供した他は実施例3と同様にしてニッケル(65重量%)-銅(35重量%)合金積層フィルムを作製した。 On the easy-adhesion layer of a biaxially stretched polyethylene terephthalate film (A4100, manufactured by Toyobo Co., Ltd.) having an easy-adhesion layer on the surface at 188 μm, the coating solution prepared so that the thickness of the coating film is 3000 nm is applied to the Meyer bar. Applied. After drying at 80 ° C. for 1 minute, UV irradiation (light quantity: 300 mJ / □) is performed using an ultraviolet irradiation device (UB042-5AM-W, manufactured by Eye Graphics Co., Ltd.) to cure and cure the coating film. A nickel (65 wt%)-copper (35 wt%) alloy laminated film was prepared in the same manner as in Example 3 except that the physical layer was laminated and subjected to a subsequent process such as vacuum exposure.
 表1に示すように、1回目の測定において、好適な電位に酸化ピーク電流と還元ピーク電流が観測され、さらに2回目の測定が1回目の測定と実質的に同一となっていることから、この無機薄膜は血糖値センサー用電極として好適に使用できるものである。 As shown in Table 1, in the first measurement, an oxidation peak current and a reduction peak current are observed at a suitable potential, and the second measurement is substantially the same as the first measurement. This inorganic thin film can be suitably used as an electrode for a blood glucose level sensor.
〔比較例1〕
 二軸延伸ポリエステルフィルムの片面に、スパッタリングにて膜厚50nmの銀薄膜を積層したこと以外は、実施例1と同様に実施した。表1に示すように、電圧範囲を-0.3~+0.9Vに拡げて測定し直したが、1回目の測定において、酸化ピーク電流と還元ピーク電流が認識できなかった。この無機薄膜は血糖値センサー用電極として好適に使用できるものでない。
[Comparative Example 1]
It implemented like Example 1 except having laminated | stacked the silver thin film with a film thickness of 50 nm on one side of the biaxially stretched polyester film by sputtering. As shown in Table 1, the voltage range was expanded to −0.3 to +0.9 V and the measurement was made again. However, the oxidation peak current and the reduction peak current could not be recognized in the first measurement. This inorganic thin film cannot be suitably used as an electrode for a blood glucose level sensor.
〔比較例2〕
 ニッケル(92.5重量%)-チタン(7.5重量%)の合金ターゲットを使用し、二軸延伸ポリエステルフィルムの片面に、膜厚100nmのニッケル(92.5重量%)-チタン(7.5重量%)の合金薄膜を積層したこと以外は、実施例1と同様に実施した。表1に示すように、1回目の測定において、酸化ピーク電流が+0.34Vの電位に+0.27mAの電流値で観測されたが、還元ピーク電流を認めることはできなかった。電圧範囲を-0.3~+0.9Vに拡げて再測定したが、前記と同様結果であった。この無機薄膜は血糖値センサー用電極として好適に使用できるものでない。
[Comparative Example 2]
Using an alloy target of nickel (92.5% by weight) -titanium (7.5% by weight), a nickel (92.5% by weight) -titanium (7. 5% by weight) was carried out in the same manner as in Example 1 except that an alloy thin film was laminated. As shown in Table 1, in the first measurement, an oxidation peak current was observed at a potential of +0.34 V at a current value of +0.27 mA, but no reduction peak current could be recognized. The voltage range was expanded to -0.3 to +0.9 V and remeasured. The result was the same as described above. This inorganic thin film cannot be suitably used as an electrode for a blood glucose level sensor.
〔比較例3〕
 ニッケル(30重量%)-銅(70重量%)の合金ターゲットを使用し、二軸延伸ポリエステルフィルムの片面に、膜厚100nmのニッケル(30重量%)-銅(70重量%)の合金薄膜を積層したこと以外は、実施例1と同様に実施した。表1に示すように、電圧範囲を-0.3~+0.9Vに拡げて測定し直したが、1回目の測定において、酸化ピーク電流と還元ピーク電流が認識できなかった。この無機薄膜は血糖値センサー用電極として好適に使用できるものでない。
[Comparative Example 3]
Using a nickel (30% by weight) -copper (70% by weight) alloy target, a 100 nm thick nickel (30% by weight) -copper (70% by weight) alloy thin film is formed on one side of a biaxially stretched polyester film. The same operation as in Example 1 was performed except that the layers were laminated. As shown in Table 1, the voltage range was expanded to −0.3 to +0.9 V and the measurement was made again. However, the oxidation peak current and the reduction peak current could not be recognized in the first measurement. This inorganic thin film cannot be suitably used as an electrode for a blood glucose level sensor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の無機薄膜積層フィルムは、フェロシアン化物イオンのサイクリックボルタンメトリー測定において、0.2Vから+0.9Vの間の電位に酸化ピーク電流を、-0.3Vから+0.4Vの間の電位に還元ピーク電流を示すことから、血糖値センサー用電極フィルムとして好適に使用することができる。 The inorganic thin film laminated film of the present invention has an oxidation peak current at a potential between 0.2 V and +0.9 V and a potential between −0.3 V and +0.4 V in cyclic voltammetry measurement of ferrocyanide ions. Since it shows a reduction peak current, it can be suitably used as an electrode film for a blood glucose level sensor.

Claims (9)

  1. フィルム基材の少なくとも片面上に直接、または他の層を介して、無機薄膜を積層したフィルムであって、銀/塩化銀を参照電極としたフェロシアン化物イオンのサイクリックボルタンメトリー測定において、+0.2Vから+0.9Vの間の電位に酸化ピーク電流を、-0.3Vから+0.4Vの間の電位に還元ピーク電流を示すことを特徴とする無機薄膜積層フィルム。 In cyclic voltammetry measurement of ferrocyanide ions using an inorganic thin film laminated directly on at least one surface of a film substrate or via another layer, and using silver / silver chloride as a reference electrode, +0. An inorganic thin film laminated film characterized by exhibiting an oxidation peak current at a potential between 2 V and +0.9 V and a reduction peak current at a potential between -0.3 V and +0.4 V.
  2. フィルム基材と無機薄膜の間に中間層を有し、中間層が、チタン若しくはニッケル-チタン合金のいずれかの薄膜であることを特徴とする請求項1に記載の無機薄膜積層フィルム。 The inorganic thin film laminated film according to claim 1, further comprising an intermediate layer between the film substrate and the inorganic thin film, wherein the intermediate layer is a thin film of titanium or a nickel-titanium alloy.
  3. 2回のサイクリックボルタンメトリー測定を行う場合に、2回目のサイクリックボルタンメトリー測定から得られる酸化ピーク電流と還元ピーク電流が、1回目のサイクリックボルタンメトリー測定から得られる酸化ピーク電流と還元ピーク電流と、各々実質的に同一の電流を示すことを特徴とする請求項1又は2に記載の無機薄膜積層フィルム。 When performing two cyclic voltammetry measurements, the oxidation peak current and reduction peak current obtained from the second cyclic voltammetry measurement are the oxidation peak current and reduction peak current obtained from the first cyclic voltammetry measurement, and The inorganic thin film laminated film according to claim 1, wherein each of the films exhibits substantially the same current.
  4. 表面抵抗値が、300Ω/□以下であることを特徴とする請求項1から3のいずれかに記載の無機薄膜積層フィルム。 A surface resistance value is 300 ohms / square or less, The inorganic thin film laminated film in any one of Claim 1 to 3 characterized by the above-mentioned.
  5. 無機薄膜が、インジウム錫酸化物、パラジウム、ルテニウム、ニッケル、ニッケル-銅合金(ニッケルの含有率が40重量%以上で銅の含有率が60重量%以下)、ニッケル-パラジウム合金のいずれかからなる薄膜であるか、またはこれらの薄膜の積層物であることを特徴とする請求項1から4のいずれかに記載の無機薄膜積層フィルム。 The inorganic thin film is made of indium tin oxide, palladium, ruthenium, nickel, nickel-copper alloy (nickel content is 40% by weight or more and copper content is 60% by weight or less), or nickel-palladium alloy. The inorganic thin film laminated film according to any one of claims 1 to 4, wherein the inorganic thin film laminated film is a thin film or a laminate of these thin films.
  6. 無機薄膜と中間層の膜厚の合計が、5nm以上400nm以下であることを特徴とする請求項1から5のいずれかに記載の無機薄膜積層フィルム。 The inorganic thin film laminated film according to any one of claims 1 to 5, wherein the total thickness of the inorganic thin film and the intermediate layer is 5 nm or more and 400 nm or less.
  7. 請求項1から6のいずれかに記載の無機薄膜積層フィルムに、パターニングが施されてなることを特徴とする血糖値センサー用電極フィルム。 An electrode film for a blood glucose level sensor, wherein the inorganic thin film laminated film according to any one of claims 1 to 6 is patterned.
  8. 請求項7に記載の血糖値センサー用電極フィルムが用いられてなることを特徴とする血糖値センサー用ストリップ。 A blood glucose sensor strip comprising the blood glucose sensor electrode film according to claim 7.
  9. 請求項8に記載の血糖値センサー用ストリップが用いられてなることを特徴とする血糖値センサーデバイス。 A blood glucose level sensor device comprising the blood glucose level sensor strip according to claim 8.
PCT/JP2014/062927 2013-05-29 2014-05-15 Thin inorganic laminated film WO2014192550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524205A JP6439444B2 (en) 2013-05-29 2014-05-15 Blood glucose sensor electrode film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112857 2013-05-29
JP2013112857 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014192550A1 true WO2014192550A1 (en) 2014-12-04

Family

ID=51988585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062927 WO2014192550A1 (en) 2013-05-29 2014-05-15 Thin inorganic laminated film

Country Status (3)

Country Link
JP (1) JP6439444B2 (en)
TW (1) TWI640421B (en)
WO (1) WO2014192550A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060119A1 (en) * 2013-10-21 2015-04-30 東洋紡株式会社 Nickel-copper alloy thin layer laminate film
WO2017112688A1 (en) * 2015-12-23 2017-06-29 Materion Corporation Nickel alloys for biosensors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312384B (en) * 2016-06-15 2022-12-30 伊士曼化工公司 Physical vapor deposition biosensor assembly
KR102547063B1 (en) 2016-09-16 2023-06-22 이스트만 케미칼 컴파니 Biosensor electrodes fabricated by physical vapor deposition
EP3512958B1 (en) 2016-09-16 2022-04-06 Eastman Chemical Company Biosensor electrodes prepared by physical vapor deposition
US11881549B2 (en) 2017-06-22 2024-01-23 Eastman Chemical Company Physical vapor deposited electrode for electrochemical sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105394A (en) * 1985-11-01 1987-05-15 ダイセル化学工業株式会社 Transparent conductive film
JPH10217380A (en) * 1996-05-28 1998-08-18 Mitsui Chem Inc Transparent laminate and filter for display using the same
JP2008521002A (en) * 2004-11-22 2008-06-19 ホーム ダイアグナスティックス,インコーポレーテッド Biosensor comprising semiconductor electrode or ruthenium-containing mediator and method of use thereof
JP2009132138A (en) * 2007-11-01 2009-06-18 Toray Ind Inc Palladium metal film laminated film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269691A (en) * 1995-03-31 1996-10-15 Toppan Printing Co Ltd Metal coated film
JP3476301B2 (en) * 1996-02-26 2003-12-10 三井化学株式会社 Transparent gas barrier film
TW446637B (en) * 1996-05-28 2001-07-21 Mitsui Chemicals Inc Transparent laminates and optical filters for displays using the same
US8795856B2 (en) * 2007-09-26 2014-08-05 National University Corporation Nickel thin film, method for formation of the nickel thin film, ferromagnetic nano-junction element, method for producing the ferromagnetic nano-junction element, thin metallic wire, and method for formation of the thin metallic wire
JP2009196249A (en) * 2008-02-22 2009-09-03 Asahi Kasei E-Materials Corp Laminate and manufacturing method of laminate
KR20100117173A (en) * 2009-04-24 2010-11-03 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Electrochemical biosensor electrode strip and preparing method thereof
EP2623974B1 (en) * 2010-09-30 2022-02-16 PHC Holdings Corporation Sensor, sensor system, and sensor manufacture process
JP5918614B2 (en) * 2012-04-24 2016-05-18 グンゼ株式会社 Conductive substrate, touch panel, and method of manufacturing conductive substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105394A (en) * 1985-11-01 1987-05-15 ダイセル化学工業株式会社 Transparent conductive film
JPH10217380A (en) * 1996-05-28 1998-08-18 Mitsui Chem Inc Transparent laminate and filter for display using the same
JP2008521002A (en) * 2004-11-22 2008-06-19 ホーム ダイアグナスティックス,インコーポレーテッド Biosensor comprising semiconductor electrode or ruthenium-containing mediator and method of use thereof
JP2009132138A (en) * 2007-11-01 2009-06-18 Toray Ind Inc Palladium metal film laminated film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060119A1 (en) * 2013-10-21 2015-04-30 東洋紡株式会社 Nickel-copper alloy thin layer laminate film
JP5904289B2 (en) * 2013-10-21 2016-04-13 東洋紡株式会社 Nickel copper alloy thin film laminated film
WO2017112688A1 (en) * 2015-12-23 2017-06-29 Materion Corporation Nickel alloys for biosensors
US10808273B2 (en) 2015-12-23 2020-10-20 Materion Corporation Nickel alloys for biosensors
US11299761B2 (en) 2015-12-23 2022-04-12 Materion Corporation Nickel alloys for biosensors

Also Published As

Publication number Publication date
TWI640421B (en) 2018-11-11
TW201504035A (en) 2015-02-01
JP6439444B2 (en) 2018-12-19
JPWO2014192550A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6439444B2 (en) Blood glucose sensor electrode film
TWI671203B (en) Blood glucose sensor strip and blood glucose sensor device
JP4777008B2 (en) Conductive laminated film, electrode plate for touch panel and touch panel
KR101963075B1 (en) Transparent conductive film
CN108292183B (en) Transparent conductive film
US11624723B2 (en) Biosensor electrodes prepared by physical vapor deposition
US11630075B2 (en) Biosensor electrodes prepared by physical vapor deposition
TWI813867B (en) Transparent Conductive Film
JP2023038265A (en) Transparent electroconductive film
JP5904289B2 (en) Nickel copper alloy thin film laminated film
JP2007021974A (en) Metallized film
JP6197869B2 (en) Blood glucose sensor electrode film
JP5834894B2 (en) Method for producing transparent conductive film
WO2022049898A1 (en) Transparent conductive film
KR20190127977A (en) A biosensor electrode and a method for forming the same
CN112918034A (en) Transparent conductive film
TW202222561A (en) Transparent Conductive Film
CN114930470A (en) Transparent conductive film
JP2007139582A (en) Metallized film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014524205

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804654

Country of ref document: EP

Kind code of ref document: A1