WO2014185119A1 - 接着構造体及び接着状態検出方法 - Google Patents

接着構造体及び接着状態検出方法 Download PDF

Info

Publication number
WO2014185119A1
WO2014185119A1 PCT/JP2014/054826 JP2014054826W WO2014185119A1 WO 2014185119 A1 WO2014185119 A1 WO 2014185119A1 JP 2014054826 W JP2014054826 W JP 2014054826W WO 2014185119 A1 WO2014185119 A1 WO 2014185119A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
adhesive
pressure
bonded
optical
Prior art date
Application number
PCT/JP2014/054826
Other languages
English (en)
French (fr)
Inventor
齋藤 望
隆之 清水
阿部 俊夫
展雄 武田
周 水口
圭吾 宇平
Original Assignee
三菱重工業株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 国立大学法人東京大学 filed Critical 三菱重工業株式会社
Priority to RU2015143136A priority Critical patent/RU2644613C2/ru
Priority to EP14797172.5A priority patent/EP3001178B1/en
Priority to JP2015516958A priority patent/JP6174132B2/ja
Priority to CN201480021967.6A priority patent/CN105143853B/zh
Priority to CA2909484A priority patent/CA2909484C/en
Priority to BR112015026520-0A priority patent/BR112015026520B1/pt
Priority to US14/784,600 priority patent/US10145786B2/en
Publication of WO2014185119A1 publication Critical patent/WO2014185119A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35351Sensor working in transmission using other means to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • G01L11/025Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/088Using a sensor fibre

Definitions

  • the present invention relates to an adhesion structure and an adhesion state detection method.
  • the adhesion quality is evaluated by, for example, ultrasonic flaw detection after the members are bonded with an adhesive.
  • the ultrasonic flaw detection inspection it is possible to detect defects such as generation of voids in the adhesive layer and peeling of members, but it is not possible to evaluate the adhesive strength. This is because the adhesive strength depends on the pressure applied to the member at the time of bonding, but the pressure cannot be inspected by the ultrasonic flaw detection inspection. Furthermore, ultrasonic flaw detection requires time and labor and requires qualifications for inspectors. Moreover, when a carbon fiber composite material is used as a member, the members are bonded to each other, for example, at the time of autoclave molding. Autoclave pressure and bag pressure are measured at the time of autoclave molding, but the pressure at the bonded portion itself is not measured.
  • This invention is made in view of such a situation, Comprising: It aims at providing the adhesion structure and the adhesion state detection method which can judge whether the members are adhere
  • the bonding structure and the bonding state detection method of the present invention employ the following means.
  • An adhesive structure includes a first member, a second member, an adhesive that bonds the first member and the second member, the first member, and the second member.
  • An optical fiber sandwiched between the first member and the second member is detected by birefringence of the optical fiber.
  • the first member and the second member are bonded by the adhesive.
  • the first member and the second member are bonded together by applying an appropriate pressure with the adhesive sandwiched therebetween.
  • the optical fiber sandwiched between the first member and the second member is used to detect the adhesion state between the first member and the second member by birefringence.
  • the optical spectrum In the state where no pressure is applied to the optical fiber, the optical spectrum has one peak.
  • the cross-sectional shape of the circular optical fiber is distorted and changes to, for example, an ellipse (flattened or oval), so that a plurality of optical spectra (for example, It changes into a shape with two peaks. This is the birefringence of the optical fiber, and the optical fiber is a pressure sensor.
  • the optical fiber when pressure is appropriately applied to the first member and the second member and bonded, pressure is applied to the optical fiber from both directions of the first member and the second member. For this reason, the optical fiber has a plurality of optical spectrum peaks due to birefringence. Thus, the optical fiber is used as a pressure sensor, so that the adhesion state between the first member and the second member is detected.
  • this configuration detects the adhesion state between the first member and the second member based on the birefringence of the optical fiber, so that it can be determined whether or not the members are appropriately bonded.
  • the first member and the second member are carbon fiber composite laminates, and when the first member and the second member are bonded using a pressure device, It is preferable that an adhesive state between the first member and the second member is detected by birefringence of the optical fiber.
  • the inside of the bag is made less than atmospheric pressure, and the inside of the auto grave is pressurized.
  • an adhesion state between the first member and the second member is detected by birefringence of the optical fiber.
  • a solid object is inserted between the optical fiber and at least one of the first member and the second member.
  • the solid object is inserted between the optical fiber and the adhesive.
  • the solid material is preferably formed by curing the same kind of adhesive as the adhesive.
  • the solid object and the adhesive are integrated in the bonding process of the bonded structure, the solid object does not become an impurity with respect to the bonded structure.
  • the bonding state detection method includes a first step of bonding the first member and the second member with an adhesive while sandwiching the optical fiber, and the first member by birefringence of the optical fiber. And a second step of detecting an adhesion state with the second member.
  • FIG. 1 is a schematic plan view of a measurement / diagnosis apparatus according to a first embodiment of the present invention. It is the figure which showed the optical spectrum in case the pressure is not applied to the optical fiber which concerns on 1st Embodiment of this invention. It is the figure which showed the optical spectrum at the time of applying a pressure to the optical fiber which concerns on 1st Embodiment of this invention.
  • the change of the optical spectrum shape of the optical fiber during the process of covering the laminated plate to be bonded according to the first embodiment of the present invention with a bag, setting the bag interior to less than atmospheric pressure, pressurizing and heating the interior of the autoclave was shown. It is a graph.
  • FIG. 1 is an exploded perspective view showing an adhesive structure 10 according to the first embodiment.
  • a member to be bonded is a carbon fiber composite laminate.
  • the bonding structure 10 is used as a structural material such as an aircraft, an automobile, and a windmill by combining a plurality of the bonding structures 10.
  • the adhesive structure 10 includes a laminated plate 12A, a laminated plate 12B, an adhesive 14 that bonds the laminated plate 12A and the laminated plate 12B, and an optical fiber 16 sandwiched between the laminated plate 12A and the laminated plate 12B.
  • the optical fiber 16 is used as a sensor (optical fiber sensor) for detecting an adhesive state between the laminated plate 12A and the laminated plate 12B by birefringence.
  • the optical fiber 16 is a single mode fiber having a cladding diameter of 125 ⁇ m, for example, and has a circular cross-sectional shape.
  • the adhesive 14 is formed as an adhesive layer as an example.
  • the kind of the adhesive agent 14 is not specifically limited, For example, an epoxy resin adhesive can be used.
  • At least one of the laminated plates 12 ⁇ / b> A and 12 ⁇ / b> B is cured before being bonded by the adhesive 14.
  • the planar shape of laminated board 12A, 12B shown by FIG. 1 is a rectangle, this is an example and the planar shape of laminated board 12A, 12B is not limited to this. Note that the shapes of the laminated plates 12A and 12B are not necessarily flat.
  • the optical fiber 16 shown in FIG. 1 is bent a plurality of times, and the light input end 16A and the output end 16B protrude from the same side of the laminated plates 12A and 12B. 16 does not need to be bent and sandwiched, and the input end 16A and the output end 16B may protrude from different sides of the laminated plates 12A and 12B.
  • the optical fiber 16 may receive and input light from the same end.
  • the optical fiber 16 shown in FIG. 1 is sandwiched between the laminated plate 12A and the laminated plate 12B in a state of being embedded in the adhesive 14, the optical fiber 16 is not limited to this. It does not have to be in an embedded state.
  • the input ends 16 ⁇ / b> A and 16 ⁇ / b> B of the optical fiber 16 are connected to the measurement / diagnosis device 22 via the connector 20.
  • the measurement / diagnosis device 22 receives light having a predetermined wavelength from the input end 16A of the optical fiber 16 and detects light that has passed through the optical fiber 16 from the output end 16B to obtain an optical spectrum.
  • the laminated plates 12A and 12B are bonded by applying pressure with the adhesive 14 sandwiched therebetween.
  • pressure is also applied to the optical fiber 16.
  • the optical spectrum In a state where no pressure is applied to the optical fiber 16, the optical spectrum has one peak as shown in FIG.
  • the cross-sectional shape of the optical fiber 16 that is circular as shown in FIG. 4 is distorted and becomes, for example, elliptical (flattened or oval). Since it changes, the optical spectrum changes to a shape having a plurality of (for example, two) peaks. This is the birefringence of the optical fiber 16.
  • the laminates 12A and 12B are bonded using a pressure device (in the first embodiment, an autoclave as an example). Further, the adhesion state is detected by the birefringence of the optical fiber 16. Thereby, in this 1st Embodiment, when laminating
  • test results according to the first embodiment will be described with reference to FIGS. 5 and 6 are test results in which the uncured adhesive 14 is sandwiched between the laminated plates 12A and 12B, and the optical fiber 16 is embedded between the adhesive 14 and the laminated plates 12A and 12B.
  • FIG. 5 shows the change in the optical spectrum shape of the optical fiber 16 in the process of covering the laminated plates 12A and 12B with bags, making the bag less than atmospheric pressure (vacuum), and pressurizing and raising the temperature in the autoclave. It is a graph.
  • the temperature is raised in the next step.
  • the temperature during the temperature rising_2 is higher than that during the temperature rising_1 in FIG.
  • the peak of the optical spectrum returns to one.
  • the non-axisymmetric pressure which is the pressure applied only to the optical fiber 16 from a predetermined direction, decreases, and the cross-sectional shape of the optical fiber 16 changes. This is because of relaxation. Even if the pressure applied to the optical fiber 16 decreases, the pressure required for bonding is maintained on the laminated plates 12A and 12B.
  • the adhesive 14 is cured, and the laminated plates 12A and 12B are bonded.
  • FIG. 6 shows the change of the optical spectrum shape of the optical fiber 16 in the process of pressurizing and raising the temperature inside the autoclave without covering the laminated plates 12A and 12B with bags. That is, the laminated plates 12A and 12B are in a hydrostatic pressure state.
  • the optical spectrum shape is the same shape with almost no change without two peaks. Further, even during the temperature rise, the optical spectrum shape does not change except that the peak position moves in a higher frequency direction. This indicates that the pressure required for adhesion is not sufficiently applied to the laminated plates 12A and 12B due to the formation of voids or the like in the adhesive 14 in the hydrostatic pressure state.
  • the adhesive structure 10 has the laminated plate 12 ⁇ / b> A and the laminated plate 12 ⁇ / b> B sandwiched between the adhesive 14 and the optical fiber 16 and covered with a bag. It can be seen that it is preferable that the adhesive state of the laminated plates 12A and 12B be detected by the birefringence of the optical fiber 16 while the bag is under atmospheric pressure and the autograve is pressurized.
  • the bag is evacuated and maintained in its state until the end of molding, or is released into the atmosphere when the pressure is evacuated and the pressure becomes 1 atm or more. Further, the autoclave is opened to the atmosphere when cooling is started and the temperature becomes 60 ° C. or lower after the adhesive 14 is cured.
  • the bag is evacuated, and after the adhesive 14 is cured, the bag is opened to the atmosphere before starting cooling.
  • the autoclave is opened to the atmosphere after the adhesive 14 is cured and before the cooling is started.
  • FIG. 7 is an exploded perspective view showing the bonding structure 10 according to the second embodiment.
  • FIG. 8 is an exploded vertical cross-sectional view of the bonding structure 10 according to the second embodiment.
  • the bonding structure 10 according to the second embodiment includes a solid element 30 that is a solid object between the optical fiber 16 and at least one of the laminated plate 12A and the laminated plate 12B. Inserted.
  • Optical fibers 16_2 and 16_3 into which the solid element 30 is inserted are arranged. Further, a temperature sensor 32 is arranged for each optical fiber 16 on the upper surface of the laminated plate 12 ⁇ / b> A in order to measure the temperature in the vicinity of each optical fiber 16.
  • the temperature sensor 32 is, for example, a thermocouple.
  • the solid element 30 is inserted between the optical fiber 16_2 and the laminated plate 12B.
  • the solid element 30 is inserted between the optical fiber 16_3 and the adhesive 14.
  • the solid element 30 is, for example, a cured adhesive, and includes a chemical curing type, a thermosetting type, and a thermoplastic type.
  • the chemical curing type is an adhesive that undergoes a curing reaction by, for example, mixing two liquids of a main agent and a curing agent, and is, for example, EA9394 manufactured by Henkel.
  • the thermosetting type is an adhesive that undergoes a curing reaction when heat is applied to the adhesive from the outside, such as FM300-2 manufactured by Cytec.
  • a thermoplastic type is an adhesive that once undergoes a polymerization reaction with heat applied to the adhesive and proceeds with a curing reaction by heat dissipation. For example, PPS (Poly Phenylene) Sulfide Resin) resin.
  • a shim such as an uncured prepreg used for adjusting the gap of the bonded portion can be used.
  • the solid element 30 As an example of the solid element 30, a material obtained by curing the above-described Cytec FM300-2 is used. In the second embodiment, as an example, FM300-2 manufactured by Cytec was also used as the adhesive 14. Thus, since the solid element 30 is formed by curing the same kind of adhesive as the adhesive 14, the solid element 30 and the adhesive 14 are integrated (assimilated) in the bonding process of the bonding structure 10. The solid element 30 does not become an impurity with respect to the bonded structure 10, and the strength in the vicinity where the solid element 30 is inserted does not decrease. In addition, as the solid element 30, which of a chemical curing type, a thermosetting type, and a thermoplastic type is appropriately selected depending on the shape of the solid element 30, the type of the adhesive 14 to be used, and the like.
  • the size of the solid element 30 is, for example, a plate shape of 20 mm ⁇ 5 mm, and the long direction is arranged along the direction of the optical fiber 16.
  • the solid element 30 does not need to be inserted into the entire optical fiber 16 and may be inserted into the sensing portion of the optical fiber 16.
  • the solid element 30 does not need to be rectangular, may be square, may be a polygon other than a rectangle, or a circle.
  • the thickness of the solid element 30 is selected so that the total thickness of the optical fiber 16 and the solid element 30 is thinner than the thickness of the adhesive layer formed by the adhesive 14.
  • FIG. 9 is a schematic view showing the bonding process of the bonding structure 10.
  • the bonding structure 10 is laminated in the order of the laminated plate 12A, the adhesive 14, the optical fiber 16, and the laminated plate 12B (FIG. 9A).
  • the stacked ones are covered with a bag 40 (FIG. 9B).
  • the inside of the bag 40 is evacuated, and the internal pressure is reduced to less than atmospheric pressure (FIG. 9C). This causes a pressure difference of about 1 atm between the inside and the outside of the bag 40.
  • pressurization autoclave pressurization
  • FIG. 9D predetermined pressure
  • FIG. 10 is a graph showing changes in the amount of non-axisymmetric distortion of the optical fibers 16_1, 16_2, and 16_3 during the initial pressurization process.
  • the initial pressurizing process is shown in FIGS. 9 (c) and 9 (d).
  • the non-axisymmetric strain amount is a strain amount that is distorted into an elliptical shape by applying pressure to the optical fiber 16 based on the optical spectrum shape.
  • the vertical axis in FIG. 10 represents the pressure difference between the inside and outside of the bag 40, the temperature, and the amount of non-axisymmetric strain, and the horizontal axis represents time. 0 atm on the vertical axis represents the case where the inside of the bag 40 is at atmospheric pressure and no pressure is applied from the outside. Further, the temperatures measured by the temperature sensors 30 corresponding to the optical fibers 16_1, 16_2, and 16_3 were not significantly different from each other, and changed with time in substantially the same manner.
  • FIG. 10 is a case where the inside of the bag 40 is evacuated (FIG. 9C), and the pressure changes to 1 atm and the amount of non-axisymmetric distortion of the optical fibers 16_2 and 16_3 increases.
  • the non-axisymmetric strain amount in the region A peaked at the initial stage. The reason for this is that when pressure is applied to the optical fiber sensors 16_2 and 16_3, the amount of non-axisymmetric distortion becomes the largest at the initial stage. This is because the stress on 16_2 and 16_3 is relaxed, and thereafter the amount of non-axisymmetric strain is reduced.
  • Region B is the case where the vacuum in the bag 40 was released, and the non-axisymmetric distortion of the optical fibers 16_2 and 16_3 disappeared.
  • the region B is experimentally provided to measure the non-axisymmetric distortion of the optical fibers 16_2 and 16_3, and is not performed in the actual initial pressurizing process.
  • Region C is a case where evacuation inside bag 40 was resumed, and the amount of non-axisymmetric distortion of optical fibers 16_2 and 16_3 increased as in region A.
  • the sensitivity of the optical fiber 16_3 in which the solid element 30 is inserted between the adhesive 14 and the optical fiber 16_2 in which the solid element 30 is inserted between the laminated plates 12B is higher in both the regions A and C.
  • the solid element 30 is preferably inserted between the optical fiber 16 and the adhesive 14, whereby the bonding process of the bonding structure 10 before and during bonding of the laminated plates 12 ⁇ / b> A and 12 ⁇ / b> B.
  • Region D is when autoclave pressurization (FIG. 9D) is performed, and the pressure is set to 7 atm at maximum. Along with the pressurization, the amount of non-axisymmetric distortion of the optical fibers 16_2 and 16_3 increased, but the response of the optical fiber 16_2 was slower than that of the optical fiber 16_3.
  • Region E is when the pressure is released, and the pressure drops to 1 atm, and the non-axisymmetric distortion of the optical fibers 16_2 and 16_3 disappears.
  • the region E is experimentally provided to measure the non-axisymmetric distortion of the optical fibers 16_2 and 16_3, and is not performed in the actual initial pressurizing process.
  • Region F is a case where autoclave pressurization was resumed, and the amount of non-axisymmetric distortion of the optical fibers 16_2 and 16_3 increased as in region D. Along with the pressurization, the amount of non-axisymmetric distortion of the optical fibers 16_2 and 16_3 increased. However, since the adhesive 14 gradually softened when heating was started, the stress applied to the optical fibers 16_2 and 16_3 was relaxed, and the amount of non-axisymmetric strain gradually decreased.
  • the change in the amount of non-axisymmetric distortion was smaller in the optical fiber 16_1 into which the solid element 30 was not inserted than in the optical fibers 16_2 and 16_3. This is because the optical fiber 16_1 is not inserted with the solid element 30, and therefore, when pressure is applied, the optical fiber 16_1 is embedded in the adhesive 14 so that no stress is applied to the optical fiber 16_1 and the shape of the optical fiber 16_1 does not change.
  • the optical fibers 16_2 and 16_3 into which the solid element 30 is inserted are inhibited from being sunk into the adhesive 14 by the solid element 30, stress is applied to the optical fibers 16_2 and 16_3, and the shape changes. Axisymmetric strain changes. This makes it possible to determine whether or not the members are appropriately bonded even during the bonding process of the bonding structure 10.
  • FIG. 11 is a graph showing changes in the amount of non-axisymmetric strain of the optical fibers 16_1, 16_2, and 16_3 during the heating and cooling process.
  • the initial pressurizing process is shown in FIGS. 9 (e) and 9 (f).
  • the vertical axis in FIG. 11 is the amount of non-axisymmetric strain and temperature, and the horizontal axis is time. Note that the amount of non-axisymmetric distortion of the optical fibers 16_2 and 16_3 increased and decreased before heating was started (after 0 to 100 minutes), but this increase and decrease was caused by evacuation and pressurization of the bag 40. This is because non-axisymmetric distortion is not normally calculated because the spectrum varies greatly.
  • the amount of non-axisymmetric distortion of the optical fibers 16_2 and 16_3 was large at the initial stage of heating. On the other hand, there was no significant change in the amount of non-axisymmetric strain of the optical fiber 16_1. The reason is that, since the adhesive 14 is softened by heating, the optical fiber 16_1 is not sunk into the adhesive 14 and no stress is applied thereto, whereas the optical fibers 16_2 and 16_3 are inhibited from being sunk into the adhesive 14 by the solid element 30. Therefore, stress is applied to the optical fibers 16_2 and 16_3, and the shape changes.
  • the adhesive 14 becomes softer as the temperature rises, the stress applied to the optical fibers 16_2 and 16_3 is relaxed, and the amount of non-axisymmetric strain gradually decreases. Note that the optical fiber 16_1 into which the solid element 30 was not inserted did not significantly change the amount of non-axisymmetric strain even when the temperature rose.
  • the adhesive 14 is cured, and the stress applied to the optical fibers 16_1, 16_2, and 16_3 increases, so that the optical fibers 16_1, 16_2, and 16_3 are not connected. Axisymmetric strain increased.
  • FIG. 12 is a longitudinal sectional view showing an example in which the solid element 30 is inserted between the optical fiber 16 and the laminated plate 12A and between the optical fiber 16 and the laminated plate 12B.
  • the solid element 30 must be inserted so that the optical fiber 16 is embedded in the adhesive 14 after the bonding structure 10 is cured.
  • FIG. 13 is a longitudinal sectional view showing an example in which the solid element 30 is formed in a tube shape instead of a plate shape. Also in this form, the solid element 30 must be inserted so that the optical fiber 16 is embedded in the adhesive 14 after the adhesive structure 10 is cured.
  • the solid element 30 is inserted between the optical fiber 16 and at least one of the laminated plate 12A and the laminated plate 12B.
  • the bonding structure 10 according to the second embodiment can determine whether or not the members are appropriately bonded before and during the bonding of the laminated plates 12A and 12B.
  • the member to be bonded is the carbon fiber composite laminates 12A and 12B has been described, but the present invention is not limited thereto, and the member to be bonded is, for example, A fiber reinforced resin-based composite material reinforced with glass fiber or a metal material such as an aluminum alloy may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Transform (AREA)
  • Laminated Bodies (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

接着構造体(10)は、積層板(12A)、積層板(12B)、積層板(12A)と積層板(12B)とを接着する接着剤(14)、及び積層板(12A)と積層板(12B)とに挟まれる光ファイバ(16)を備える。光ファイバ(16)に所定の方向からのみ圧力が加えられると、光ファイバ(16)の断面形状が楕円形に変化するので、光スペクトルは複数(例えば2つ)のピークを持つ形状に変化する複屈折が生じる。光ファイバ(16)は、この複屈折によって積層板(12A)と積層板(12B)の接着状態を検出するためのセンサとして用いられる。これにより、接着構造体10は、部材同士が適切に接着されているか否かを判断できる。

Description

接着構造体及び接着状態検出方法
 本発明は、接着構造体及び接着状態検出方法に関するものである。
 従来、軽量化を必要とする例えば航空機構造には、炭素繊維複合材が用いられている。
 炭素繊維複合材の樹脂硬化をモニタする方法として、特許文献1に記載されているように、グレーティングセンサが内部に設けられた光ファイバを用いる方法がある。
 そして、炭素繊維複合材といった部材は、一般的に部材同士をリベットやボルト等のファスナを用いて結合される。
 部材同士の結合では、接着剤を用いることが軽量化や作業効率等の点からより最適であるが、接着品質の評価を必要とする。接着品質の評価は、部材を接着剤によって結合した後に、例えば超音波探傷検査により行われる。
特表2000-501176号公報
 しかしながら、超音波探傷検査では、接着層におけるボイドの発生や部材の剥離等の欠陥の検出は可能であるが、接着強度の評価はできない。接着強度は、接着時に部材に加えられる圧力等に依存するが、超音波探傷検査では圧力を検査することができないためである。さらに、超音波探傷検査は、時間と労力を要すると共に、検査員に資格を必要とする。
 また、炭素繊維複合材を部材とした場合、部材同士の接着は例えばオートクレーブ成型時に行われる。オートクレーブ成型時にはオートクレーブ圧力やバッグ圧力は計測されるが、接着部そのものの圧力は測定されていない。
 これらのことから、接着により部材同士を結合させる場合、大幅な安全許容を有した構造としたり、安全性を重視する箇所に対しては接着剤を用いた接着をせずに、ファスナによる結合が行われている。
 本発明は、このような事情に鑑みてなされたものであって、部材同士が適切に接着されているか否かを判断することができる、接着構造体及び接着状態検出方法を提供することを目的とする。
 上記課題を解決するために、本発明の接着構造体及び接着状態検出方法は以下の手段を採用する。
 本発明の第一態様に係る接着構造体は、第1部材と、第2部材と、前記第1部材と前記第2部材とを接着する接着剤と、前記第1部材と前記第2部材とに挟まれる光ファイバと、を備え、前記光ファイバの複屈折によって前記第1部材と前記第2部材との接着状態が検出される。
 本構成によれば、第1部材と第2部材とは接着剤により接着される。第1部材と第2部材とは、接着剤を挟んだ状態で適切な圧力が加えられることで接着される。そして、第1部材と第2部材とに挟まれた光ファイバは、複屈折によって第1部材と第2部材との接着状態を検出するために用いられる。
 光ファイバに圧力が加えられない状態では、光スペクトルはピークを一つ有する。一方、光ファイバに所定の方向からのみ圧力が加えられると、円形とされた光ファイバの断面形状が歪んで例えば楕円形(扁平した円形あるいは長円形)に変化するので、光スペクトルは複数(例えば2つ)のピークを持つ形状に変化する。これが、光ファイバの複屈折であり、光ファイバは圧力センサとされる。
 すなわち、第1部材と第2部材とに適切に圧力が加えられて接着されると、光ファイバに対して第1部材及び第2部材の両方向から圧力が加えられることとなる。このため、複屈折によって光ファイバの光スペクトルのピークが複数となる。このように、光ファイバが圧力センサとして用いられることで、第1部材と第2部材との接着状態が検出される。
 以上説明したように、本構成は、光ファイバの複屈折によって第1部材と第2部材との接着状態を検出するので、部材同士が適切に接着されているか否かを判断することができる。
 上記第一態様では、前記第1部材及び前記第2部材が、炭素繊維複合材の積層板であり、前記第1部材と前記第2部材とを加圧装置を用いて接着させる場合に、前記光ファイバの複屈折によって前記第1部材と前記第2部材との接着状態が検出されることが好ましい。
 本構成によれば、炭素繊維複合材の積層板を部材として接着させる場合に、部材同士が適切に接着されているか否かを判断することができる。
 上記第一態様では、前記接着剤及び前記光ファイバを挟んだ状態の前記第1部材と前記第2部材とをバッグで覆った後に該バッグ内を大気圧未満とし、前記オートグレーブ内を加圧している間に、前記光ファイバの複屈折によって前記第1部材と前記第2部材との接着状態が検出されることが好ましい。
 本構成によれば、炭素繊維複合材の積層板を部材として接着させる場合に、部材同士が適切に接着されているか否かをより適切に判断することができる。
 上記第一態様では、前記光ファイバと前記第1部材及び前記第2部材の少なくとも一方との間に、固体物が挿入されることが好ましい。
 本構成によれば、部材の接着前及び接着中でも、部材同士が適切に接着されているか否かを判断することができる。
 上記第一態様では、前記固体物が、前記光ファイバと前記接着剤との間に挿入されることが好ましい。
 本構成によれば、部材の接着前及び接着中でも、部材同士が適切に接着されているか否かをより正確に判断することができる。
 上記第一態様では、前記固体物が、前記接着剤と同種の接着剤を硬化して形成されることが好ましい。
 本構成によれば、接着構造体の接着過程において固体物と接着剤とが一体化するので、接着構造体に対して固体物が不純物とならない。
 本発明の第二態様に係る接着状態検出方法は、第1部材と第2部材とを光ファイバを挟みながら接着剤によって接着する第1工程と、前記光ファイバの複屈折によって前記第1部材と前記第2部材との接着状態を検出する第2工程と、を含む。
 本発明によれば、部材同士が適切に接着されているか否かを判断することができる、という優れた効果を有する。
本発明の第1実施形態に係る接着構造体を示した分解斜視図である。 本発明の第1実施形態に係る計測診断装置の概略平面図である。 本発明の第1実施形態に係る光ファイバに圧力を加えていない場合の光スペクトルを示した図である。 本発明の第1実施形態に係る光ファイバに圧力を加えた場合の光スペクトルを示した図である。 本発明の第1実施形態に係る接着させる積層板をバッグで覆って該バッグ内を大気圧未満とし、オートクレーブ内を加圧、昇温させた過程における光ファイバの光スペクトル形状の変化を示したグラフである。 本発明の第1実施形態に係る接着させる積層板をバッグで覆うことなく、オートクレーブ内を加圧、昇温させた過程における光ファイバの光スペクトル形状の変化を示したグラフである。 本発明の第2実施形態に係る接着構造体を示した分解斜視図である。 本発明の第2実施形態に係る接着構造体の分解縦断面図である。 本発明の第2実施形態に係る接着構造体の接着過程を示した模式図である。 本発明の第2実施形態に係る初期加圧過程における光ファイバの非軸対称歪み量の変化を示したグラフである。 本発明の第2実施形態に係る加熱冷却過程における光ファイバの非軸対称歪み量の変化を示したグラフである。 本発明の第2実施形態に係る接着構造体の縦断面図である。 本発明の第2実施形態に係る接着構造体の縦断面図である。
 以下に、本発明に係る接着構造体及び接着状態検出方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 以下、本発明の第1実施形態について説明する。
 図1は、本第1実施形態に係る接着構造体10を示した分解斜視図である。なお、本第1実施形態では、一例として、接着させる部材を炭素繊維複合材の積層板とする。また、接着構造体10は、例えば複数が組み合わされて航空機、自動車、及び風車等の構造材として用いられる。
 接着構造体10は、積層板12A、積層板12B、積層板12Aと積層板12Bとを接着する接着剤14、及び積層板12Aと積層板12Bとに挟まれる光ファイバ16を備える。光ファイバ16は、複屈折によって積層板12Aと積層板12Bとの接着状態を検出するためのセンサ(光ファイバセンサ)として用いられる。光ファイバ16は、例えばクラッド径125μmのシングルモードファイバであり、断面形状が円形である。
 接着剤14は、一例として接着層として形成される。接着剤14の種類は特に限定されないが、例えばエポキシ樹脂系の接着剤が使用可能である。
 積層板12A,12Bは、接着剤14により接着される前に少なくとも一方が硬化されている。
 また、図1に示される積層板12A,12Bの平面形状は四角形であるが、これは一例であり、積層板12A,12Bの平面形状はこれに限定されない。なお、積層板12A,12Bの形状は、必ずしも平面形状である必要はない。
 図1に示される光ファイバ16は、複数回曲げられて光の入力端16Aと出力端16Bとが積層板12A,12Bの同一の辺から突出しているが、これは一例であり、必ずしも光ファイバ16は曲げられて挟まれる必要はなく、入力端16Aと出力端16Bとが積層板12A,12Bの異なる辺から突出してもよい。なお、光ファイバ16は、同一の端部から光の入力及び出力がされてもよい。
 さらに、図1に示される光ファイバ16は、接着剤14に埋め込まれた状態で積層板12Aと積層板12Bとに挟まれているが、これに限らず、光ファイバ16は、接着剤14に埋め込まれた状態とされなくてもよい。
 そして、図2に示されるように、光ファイバ16の入力端16A,16Bは、各々コネクタ20を介して、計測診断装置22に接続される。計測診断装置22は、光ファイバ16の入力端16Aから所定の波長の光を入射し、出力端16Bから光ファイバ16を通過した光を検出して、光スペクトルを得る。
 積層板12A,12Bは、接着剤14を挟んだ状態で圧力が加えられることで接着される。積層板12A,12Bに圧力が加えられると、光ファイバ16にも圧力が加えられることとなる。
 光ファイバ16に圧力が加えられない状態では、図3に示されるように光スペクトルはピークを一つ有する。一方、光ファイバ16に所定の方向からのみ圧力が加えられると、図4に示されるように円形とされた光ファイバ16の断面形状が、歪んで例えば楕円形(扁平した円形あるいは長円形)に変化するので、光スペクトルは複数(例えば2つ)のピークを持つ形状に変化する。これが、光ファイバ16の複屈折である。
 すなわち、積層板12A,12Bに適切に圧力が加えられて接着されると、光ファイバ16に対して積層板12Aと積層板12Bの両方向から圧力が加えられ、複屈折によって光ファイバ16の光スペクトルのピークが複数となる。このように、光ファイバ16を圧力センサとして用いることで、積層板12A,12Bの接着状態を検出することが可能となる。
 接着させる部材を炭素繊維複合材の積層板12A,12Bとしている本第1実施形態では、加圧装置(本第1実施形態では、一例としてオートクレーブ)を用いて積層板12A,12Bを接着させる場合に、光ファイバ16の複屈折によって接着状態を検出する。これにより、本第1実施形態では、炭素繊維複合材の積層板12A,12Bを部材として接着させる場合に、部材同士が適切に接着されているか否かを判断することができる。
 次に、図5,6を用いて本第1実施形態に係る試験結果を説明する。
 図5,6は、積層板12A,12Bで未硬化の接着剤14を挟み、接着剤14及び積層板12A,12Bの間に光ファイバ16を埋め込んだ試験結果である。
 図5は、積層板12A,12Bをバッグで覆って該バッグ内を大気圧未満(真空)とし、オートクレーブ内を加圧、昇温させた過程における光ファイバ16の光スペクトル形状の変化を示したグラフである。
 図5に示されるように、オートクレーブ内を加圧する前は、光スペクトルに1つのピークのみが生じている。そして、加圧中には光スペクトルのピークが小さくなると共にピークが分かれ、加圧後には光スペクトルに明らかな2つのピークが生じる。この2つのピークは、光ファイバ16に圧力が加えられることによって、円形とされた光ファイバ16の断面形状が歪んで楕円形に変化して複屈折が起きたことを示している。すなわち、積層板12A,12Bに圧力が加えられていることを示している。
 なお、図5において、加圧前、加圧中、加圧後に至るに連れてピークの位置がより周波数の高い方向へ移動している。この理由は、加圧によって接着構造体10の温度が上昇しているためである。
 そして、次の工程において昇温が行われる。なお、図5の昇温中_1に比べ、昇温中_2の方が、温度は高い。
 昇温中には、光スペクトルのピークが1つに戻っている。この理由は、昇温により接着剤14の粘度が低下することによって、光ファイバ16に加えられる所定の方向からのみの圧力である非軸対称圧力が低下し、光ファイバ16の断面形状の変化が緩和したためである。光ファイバ16に加えられる圧力が低下しても、積層板12A,12Bには、接着に必要な圧力が維持されている。
 そして、昇温後に接着剤14が硬化し、積層板12A,12Bが接着される。
 一方、図6は、積層板12A,12Bをバッグで覆うことなく、オートクレーブ内を加圧、昇温させた過程における光ファイバ16の光スペクトル形状の変化を示している。すなわち、積層板12A,12Bは、静水圧の状態とされている。
 図6に示されるように、オートクレーブを加圧する前後では、光スペクトル形状は、ピークが2つになることもなく、ほとんど変化はなく、同形状である。
 さらに、昇温中であっても、光スペクトル形状は、ピークの位置がより周波数の高い方向へ移動する以外に変化はない。
 このことは、静水圧の状態では接着剤14にボイド等が生じることによって、積層板12A,12Bに対して、接着に必要な圧力が十分に加えられていないことを示している。
 図5,6に示される結果から、本第1実施形態に係る接着構造体10は、接着剤14及び光ファイバ16を挟んだ状態の積層板12Aと積層板12Bとをバッグで覆った後に該バッグ内を大気圧未満とし、オートグレーブ内を加圧している間に、光ファイバ16の複屈折によって積層板12A,12Bの接着状態が検出されることが好ましいことが分かる。
 なお、従来の一般的な製造工程においてバッグは、真空引きされて成形終了までその状態を維持、又は真空引きされて圧力が1atm以上になった場合に、大気開放される。また、オートクレーブは、接着剤14が硬化した後、冷却が開始されて60℃以下となった場合に、大気開放される。
 一方、本第1実施形態に係る図5に示される試験では、バッグは、真空引きされ、接着剤14が硬化した後、冷却開始前に大気開放される。また、オートクレーブは、接着剤14が硬化した後、冷却開始前に大気開放される。
 これにより、接着剤14が硬化するまで積層板12A,12Bに圧力が加えられるため、積層板12A,12Bが、より確実に接着される。
 また、ある圧力が付与された状態で冷却が開始されると、光ファイバ16の断面形状が再び楕円形に変化して複屈折が起きる現象が確認されている。これに伴い、再び光スペクトルのピークが複数(2つ)となる。この現象を利用して、複数の接着構造体10を組み合わせて、例えば航空機の構造材とし、航空機の飛行時であっても光スペクトルを計測することで、積層板12A,12Bの剥離状態をリアルタイムで検出することもできる。積層板12A,12Bが剥離した場合、光ファイバ16の断面形状の変化が緩和し、光スペクトルのピークが一つとなるためである。
〔第2実施形態〕            
 以下、本発明の第2実施形態について説明する。
 図7は、本第2実施形態に係る接着構造体10を示した分解斜視図である。図8は、本第2実施形態に係る接着構造体10の分解縦断面図である。
 図7,8に示されるように、本第2実施形態に係る接着構造体10は、光ファイバ16と積層板12A及び積層板12Bの少なくとも一方との間に、固体物である固体素子30が挿入される。
 なお、図7,8の例は、試験用の構成であり、後述するような固体素子30の有無による光スペクトル形状の変化の違いを計測するために、固体素子30が挿入されない光ファイバ16_1、固体素子30が挿入された光ファイバ16_2,16_3が配置される。また、各光ファイバ16の近辺温度を測定するために積層板12Aの上面には、各光ファイバ16毎に温度センサ32が配置される。温度センサ32は、例えば熱電対である。
 光ファイバ16_2は、積層板12Bとの間に固体素子30が挿入される。光ファイバ16_3は、接着剤14との間に固体素子30が挿入される。
 固体素子30は、例えば硬化済みの接着剤であり、化学硬化型、熱硬化型、及び熱可塑型等がある。
 化学硬化型は、例えば主剤と硬化剤との二液を混合することにより、硬化反応が進む接着剤であり、例えばHenkel社製EA9394である。
 熱硬化型は、接着剤に外部から熱を加えることにより、硬化反応が進む接着剤であり、例えばCytec社製FM300-2である。
 熱可塑型は、接着剤に加えた熱で一度重合反応を起こし、放熱により硬化反応が進む接着剤であり、例えばPPS(Poly Phenylene
Sulfide Resin)樹脂である。
 また、固体素子30としては、接着部の隙間調整に用いられる未硬化プリプレグ等のシムを用いることができる。
 本第2実施形態では、固体素子30の一例として、上述したCytec社製FM300-2を硬化したものを用いた。本第2実施形態では、一例として、接着剤14としてもCytec社製FM300-2を用いた。
 このように、固体素子30が接着剤14と同種の接着剤を硬化して形成されることにより、接着構造体10の接着過程において固体素子30と接着剤14とが一体化(同化)するので、接着構造体10に対して固体素子30が不純物とならず、固体素子30が挿入された近辺の強度が低下することもない。
 また、固体素子30としては、化学硬化型、熱硬化型、及び熱可塑型等の何れを用いるかは、固体素子30の形状、使用する接着剤14の種類等によって適宜選択される。
 また、固体素子30の大きさは、一例として20mm×5mmの板状であり、長尺方向が光ファイバ16の方向に沿って配置されている。なお、固体素子30は、光ファイバ16の全体に挿入される必要はなく、光ファイバ16のセンシング部分に挿入されればよい。なお、固体素子30は、長方形である必要はなく、正方形であってもよく、四角形以外の多角形、又は円形等であってもよい。また、固体素子30の厚さは、光ファイバ16と固体素子30の厚さの合計が接着剤14で形成される接着層の厚さより薄くなるように選択される。
 図9は、接着構造体10の接着過程を示した模式図である。
 まず、接着構造体10は、積層板12A、接着剤14、光ファイバ16、積層板12Bの順に重ねられる(図9(a))。
 次に、積層されたものがバッグ40で覆われる(図9(b))。
 次に、バッグ40の内部が真空引きされ、内部の圧力が大気圧未満とされる(図9(c))。なお、これにより、バッグ40の内部と外部とでは、約1atmの圧力差が生じる。
 次に、所定の圧力でバッグ40の外部から加圧(オートクレーブ加圧)される(図9(d))。これにより、バッグ40の内部と外部とでは、約1atmを超える圧力差が生じる。
 次に、所定の温度でバッグ40の外部から加熱(オートクレーブ加熱)される(図9(e))。
 そして、所定時間冷却することによって、接着剤14の硬化が完了し、接着構造体10が形成される(図9(f))。
 図10は、初期加圧過程における光ファイバ16_1,16_2,16_3の非軸対称歪み量の変化を示したグラフである。初期加圧過程とは、図9(c),(d)である。非軸対称歪み量は、光ファイバ16に圧力が加えられることで楕円形状に歪んだ歪み量を、光スペクトル形状に基づいて求めたものである。
 図10の縦軸はバッグ40の内部と外部との圧力差、温度、及び非軸対称歪み量であり、横軸は時間である。縦軸の0atmはバッグ40の内部が大気圧であり、かつ外部から圧力が加えられていない場合である。
 また、光ファイバ16_1,16_2,16_3に対応する温度センサ30で測定された温度は、各々有意な差はなく、略同様に時間変化した。
 図10の領域Aは、バッグ40の内部を真空引きした場合(図9(c))であり、圧力が1atmに変化すると共に光ファイバ16_2,16_3の非軸対称歪み量が大きくなった。なお、領域Aにおける非軸対称歪み量は、初期段階でピークが生じた。この理由は、光ファイバセンサ16_2,16_3に圧力が加えられると、その初期に最も非軸対称歪み量が大きくなるものの、圧力によって光ファイバセンサ16_2,16_3が固体素子30にめり込みことで光ファイバセンサ16_2,16_3への応力が緩和されるため、その後、非軸対称歪み量が小さくなるためである。
 領域Bは、バッグ40内の真空を開放した場合であり、光ファイバ16_2,16_3の非軸対称歪みは無くなった。なお、領域Bは、光ファイバ16_2,16_3の非軸対称歪みを測定するために実験的に設けたものであり、実際の初期加圧過程では行われない。
 領域Cは、バッグ40の内部の真空引きを再開した場合であり、領域Aのように光ファイバ16_2,16_3の非軸対称歪み量が大きくなった。
 なお、領域A,C共に、積層板12Bとの間に固体素子30が挿入された光ファイバ16_2よりも、接着剤14との間に固体素子30が挿入された光ファイバ16_3の方が、感度が高かった。
 このことから、固体素子30は、光ファイバ16と接着剤14との間に挿入されることが好ましく、これにより、積層板12A,12Bの接着前及び接着中である接着構造体10の接着過程でも、部材同士が適切に接着されているか否かをより正確に判断することができる。
 領域Dは、オートクレーブ加圧(図9(d))を行った場合であり、圧力は最大7atmとした。加圧と共に、光ファイバ16_2,16_3の非軸対称歪み量が大きくなったが、光ファイバ16_2の方が光ファイバ16_3よりも応答が遅かった。
 領域Eは、加圧を開放した場合であり、圧力は1atmまで低下すると共に、光ファイバ16_2,16_3の非軸対称歪みは無くなった。なお、領域Eは、光ファイバ16_2,16_3の非軸対称歪みを測定するために実験的に設けたものであり、実際の初期加圧過程では行われない。
 領域Fは、オートクレーブ加圧を再開した場合であり、領域Dのように光ファイバ16_2,16_3の非軸対称歪み量が大きくなった。
 加圧と共に、光ファイバ16_2,16_3の非軸対称歪み量が大きくなった。しかし、加熱を開始されると、徐々に接着剤14が柔らかくなるため、光ファイバ16_2,16_3に加えられる応力が緩和され、非軸対称歪み量が徐々に小さくなった。
 なお、固体素子30が挿入されない光ファイバ16_1は、光ファイバ16_2,16_3に比べて、非軸対称歪み量の変化は小さかった。
 光ファイバ16_1は固体素子30が挿入されていないため、圧力が加えられると、接着剤14にめり込み光ファイバ16_1に応力が加えられず、光ファイバ16_1の形状が変化しないためである。一方、固体素子30が挿入された光ファイバ16_2,16_3は、固体素子30によって接着剤14にめり込むことが阻害されるので、光ファイバ16_2,16_3に応力が加えられ、形状が変化するため、非軸対称歪み量が変化する。これにより、接着構造体10の接着過程でも、部材同士が適切に接着されているか否かを判断可能となる。
 また、図10に示される試験結果から積層板12Bとの間に固体素子30が挿入された光ファイバ16_2よりも、接着剤14との間に固体素子30が挿入された光ファイバ16_3の方が、感度が高いことが分かった。この理由は、接着剤14との間に固体素子30が挿入される方が、積層板12Bとの間に固体素子30が挿入される場合に比べて、光ファイバ16の接着剤14へのめり込みがより強く阻害されるためである。
 このことから、固体素子30は、光ファイバ16と接着剤14との間に挿入されることが好ましく、これにより、本第2実施形態では、積層板12A,12Bの接着前及び接着中である接着構造体10の接着過程でも、部材同士が適切に接着されているか否かをより正確に判断することができる。
 図11は、加熱冷却過程における光ファイバ16_1,16_2,16_3の非軸対称歪み量の変化を示したグラフである。初期加圧過程は、図9(e),(f)である。
 図11の縦軸は、非軸対称歪み量及び温度であり、横軸は、時間である。
 なお、加熱が開始される前(0~100分過ぎ)でも、光ファイバ16_2,16_3の非軸対称歪み量は増減したが、この増減は、バッグ40の真空引きや加圧等のために光スペクトルのバラつきが大きいことに起因するものであり、非軸対称歪みが正常に算出されなかったためである。
 図11に示されるように、加熱の初期では光ファイバ16_2,16_3の非軸対称歪み量が大きかった。一方、光ファイバ16_1の非軸対称歪み量には有意な変化はなかった。
 この理由は、加熱により接着剤14が柔らかくなるため、光ファイバ16_1は接着剤14にめり込み応力が加えられない一方、光ファイバ16_2,16_3は固体素子30によって接着剤14にめり込むことが阻害されるので、光ファイバ16_2,16_3に応力が加えられ、形状が変化するためである。
 しかし、温度の上昇と共に、接着剤14がさらに柔らかくなるため、光ファイバ16_2,16_3に加えられる応力が緩和され、非軸対称歪み量が徐々に小さくなった。
 なお、固体素子30が挿入されない光ファイバ16_1は、温度が上昇しても、有意な非軸対称歪み量の変化はなかった。
 そして、加熱が終了して温度が低下し、冷却が開始されると接着剤14が硬化し、光ファイバ16_1,16_2,16_3に加えられる応力が増加するので、光ファイバ16_1,16_2,16_3の非軸対称歪み量は増加した。
 図12は、光ファイバ16と積層板12Aとの間と、光ファイバ16と積層板12Bとの間に、固体素子30が挿入される例を示した縦断面図である。この形態の場合、接着構造体10の硬化後に、光ファイバ16が接着剤14に埋まるように固体素子30が挿入されなければならない。
 図13は、固体素子30が板状ではなくチューブ状とされる例を示した縦断面図である。この形態の場合も、接着構造体10の硬化後に、光ファイバ16が接着剤14に埋まるように固体素子30が挿入されなければならない。
 以上説明したように、本第2実施形態に係る接着構造体10は、光ファイバ16と積層板12A及び積層板12Bの少なくとも一方との間に、固体素子30が挿入される。
 これにより、本第2実施形態に係る接着構造体10は、積層板12A,12Bの接着前及び接着中でも、部材同士が適切に接着されているか否かを判断することができる。
 以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記各実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記各実施形態では、接着させる部材を炭素繊維複合材の積層板12A,12Bとする形態について説明したが、本発明は、これに限定されるものではなく、接着させる部材を、例えば、ガラス繊維などで強化された繊維強化樹脂基複合材料や、アルミ合金などの金属材料としてもよい。
 10  接着構造体
 12A 積層板
 12B 積層板
 14  接着剤
 16  光ファイバ
 30  固体素子

Claims (7)

  1.  第1部材と、
     第2部材と、
     前記第1部材と前記第2部材とを接着する接着剤と、
     前記第1部材と前記第2部材とに挟まれる光ファイバと、
    を備え、
     前記光ファイバの複屈折によって前記第1部材と前記第2部材との接着状態が検出される接着構造体。
  2.  前記第1部材及び前記第2部材は、炭素繊維複合材の積層板であり、
     前記第1部材と前記第2部材とを加圧装置を用いて接着させる場合に、前記光ファイバの複屈折によって前記第1部材と前記第2部材との接着状態が検出される請求項1記載の接着構造体。
  3.  前記接着剤及び前記光ファイバを挟んだ状態の前記第1部材と前記第2部材とをバッグで覆った後に該バッグ内を大気圧未満とし、前記オートグレーブ内を加圧している間に、前記光ファイバの複屈折によって前記第1部材と前記第2部材との接着状態が検出される請求項2記載の接着構造体。
  4.  前記光ファイバと前記第1部材及び前記第2部材の少なくとも一方との間に、固体物が挿入される請求項1から請求項3の何れか1項記載の接着構造体。
  5.  前記固体物は、前記光ファイバと前記接着剤との間に挿入される請求項4記載の接着構造体。
  6.  前記固体物は、前記接着剤と同種の接着剤を硬化して形成される請求項4又は請求項5記載の接着構造体。
  7.  第1部材と第2部材とを光ファイバを挟みながら接着剤によって接着する第1工程と、
     前記光ファイバの複屈折によって前記第1部材と前記第2部材との接着状態を検出する第2工程と、
    を含む接着状態検出方法。
PCT/JP2014/054826 2013-05-14 2014-02-27 接着構造体及び接着状態検出方法 WO2014185119A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2015143136A RU2644613C2 (ru) 2013-05-14 2014-02-27 Связанная конструкция и способ детектирования связывания
EP14797172.5A EP3001178B1 (en) 2013-05-14 2014-02-27 Bonded structure and bonding-condition detecting method
JP2015516958A JP6174132B2 (ja) 2013-05-14 2014-02-27 接着構造体及び接着状態検出方法
CN201480021967.6A CN105143853B (zh) 2013-05-14 2014-02-27 粘接构造体及粘接状态检测方法
CA2909484A CA2909484C (en) 2013-05-14 2014-02-27 Bonded structure and bonding-condition detecting method
BR112015026520-0A BR112015026520B1 (pt) 2013-05-14 2014-02-27 estrutura ligada e método de detecção de condição de ligação
US14/784,600 US10145786B2 (en) 2013-05-14 2014-02-27 Bonded structure and bonding-condition detecting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-102254 2013-05-14
JP2013102254 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014185119A1 true WO2014185119A1 (ja) 2014-11-20

Family

ID=51898105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054826 WO2014185119A1 (ja) 2013-05-14 2014-02-27 接着構造体及び接着状態検出方法

Country Status (8)

Country Link
US (1) US10145786B2 (ja)
EP (1) EP3001178B1 (ja)
JP (1) JP6174132B2 (ja)
CN (1) CN105143853B (ja)
BR (1) BR112015026520B1 (ja)
CA (1) CA2909484C (ja)
RU (1) RU2644613C2 (ja)
WO (1) WO2014185119A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114194A1 (ja) * 2015-01-15 2016-07-21 三菱重工業株式会社 接着構造体とその製造方法及び接着状態検出方法
WO2019172178A1 (ja) * 2018-03-08 2019-09-12 三菱重工業株式会社 評価方法及び評価システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2529674B (en) * 2014-08-28 2019-07-10 Silixa Ltd Flexible Substrate Fiber Optic Sensing Mat For Distributed Acoustic Sensing
CN106404065B (zh) * 2016-10-09 2019-05-07 山东大学 一种复合材料封装的光纤光栅传感器及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505920A (ja) * 1994-09-30 1998-06-09 ユナイテッド テクノロジーズ コーポレイション 圧縮により波長可変としたファイバグレーティング
JP2000501176A (ja) 1995-11-21 2000-02-02 ユナイテッド テクノロジーズ コーポレイション 光ファイバグレーティングセンサを用いた複合構造体樹脂硬化モニタ
JP2005164938A (ja) * 2003-12-02 2005-06-23 Fujikura Ltd 光ファイバとその製造方法、光ファイバの製造装置及び光コネクタ
JP2006352053A (ja) * 2005-05-20 2006-12-28 Noritsu Koki Co Ltd レーザ発光装置
JP2013007680A (ja) * 2011-06-24 2013-01-10 Nippon Sheet Glass Co Ltd 硬化状態測定装置および硬化状態測定方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015842A (en) * 1989-06-01 1991-05-14 United Technologies Corporation High density fiber optic damage detection system
US5281388A (en) * 1992-03-20 1994-01-25 Mcdonnell Douglas Corporation Resin impregnation process for producing a resin-fiber composite
US5265475A (en) * 1992-05-08 1993-11-30 Rockwell International Corporation Fiber optic joint sensor
US5399854A (en) * 1994-03-08 1995-03-21 United Technologies Corporation Embedded optical sensor capable of strain and temperature measurement using a single diffraction grating
US5828059A (en) 1996-09-09 1998-10-27 Udd; Eric Transverse strain measurements using fiber optic grating based sensors
JPH11300951A (ja) 1998-04-24 1999-11-02 Canon Inc インクジェット記録ヘッド及びその製造方法
JP2000079693A (ja) 1998-06-26 2000-03-21 Canon Inc インクジエットプリントヘッド及びその製造方法
EP1057638B1 (en) 1999-06-04 2007-01-31 Canon Kabushiki Kaisha Liquid discharge head and liquid discharge apparatus
JP2000343706A (ja) 1999-06-04 2000-12-12 Canon Inc インクジェット記録ヘッド及びその製造方法
JP2001296110A (ja) 2000-04-17 2001-10-26 Ntt Advanced Technology Corp 貼り付け型光ファイバセンサ
US6720550B2 (en) * 2000-06-22 2004-04-13 Sandia National Laboratories Sensor assembly
JP2002219108A (ja) * 2001-01-25 2002-08-06 Computer Convenience:Kk 光学式バリストカルジオグラフ
JP3647400B2 (ja) 2001-08-21 2005-05-11 Tdk株式会社 複合光学素子
JP4027258B2 (ja) 2003-04-18 2007-12-26 本田技研工業株式会社 接着部の剥離検査方法
CA2584376C (en) * 2004-10-15 2012-10-02 Morgan Research Corporation Embeddable polarimetric fiber optic sensor and method for monitoring of structures
US7359586B2 (en) 2004-11-12 2008-04-15 Gennadii Ivtsenkov Fiber optic strain sensor and associated data acquisition system
DE102007008464B4 (de) * 2007-02-19 2012-01-05 Hottinger Baldwin Messtechnik Gmbh Optischer Dehnungsmessstreifen
JP5354497B2 (ja) 2009-07-10 2013-11-27 ニューブレクス株式会社 分布型光ファイバ圧力センサシステム
JP2011185790A (ja) 2010-03-09 2011-09-22 Ihi Corp 積層材料の層間剥離検出方法及び光ファイバセンサの埋込方法
CN102841052A (zh) 2011-06-24 2012-12-26 日本板硝子株式会社 固化度测定装置和固化度测定方法
JP6258860B2 (ja) * 2011-11-15 2018-01-10 ホッティンゲル・バルドヴィン・メステクニーク・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング 湾曲した表面のためのfbg延びセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505920A (ja) * 1994-09-30 1998-06-09 ユナイテッド テクノロジーズ コーポレイション 圧縮により波長可変としたファイバグレーティング
JP2000501176A (ja) 1995-11-21 2000-02-02 ユナイテッド テクノロジーズ コーポレイション 光ファイバグレーティングセンサを用いた複合構造体樹脂硬化モニタ
JP2005164938A (ja) * 2003-12-02 2005-06-23 Fujikura Ltd 光ファイバとその製造方法、光ファイバの製造装置及び光コネクタ
JP2006352053A (ja) * 2005-05-20 2006-12-28 Noritsu Koki Co Ltd レーザ発光装置
JP2013007680A (ja) * 2011-06-24 2013-01-10 Nippon Sheet Glass Co Ltd 硬化状態測定装置および硬化状態測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOBUHIRA TANAKA ET AL.: "Simultaneous Measurement of Strain and Temperature Using Birefringence Effect of an FBG Sensor", DAI 9 KAI THE MATERIALS AND PROCESSING CONFERENCE, no. 01-26, 2 November 2001 (2001-11-02), pages 33 - 34, XP008181826 *
NOBUHIRA TANAKA ET AL.: "Strain Measurement by the Smart Patch Using FBG Sensors", DAI 43 KAI PROCEEDINGS OF THE JSASS/JSME STRUCTURES CONFERENCE, 1 August 2001 (2001-08-01), pages 209 - 212, XP008181827 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114194A1 (ja) * 2015-01-15 2016-07-21 三菱重工業株式会社 接着構造体とその製造方法及び接着状態検出方法
JPWO2016114194A1 (ja) * 2015-01-15 2017-11-02 三菱重工業株式会社 接着構造体とその製造方法及び接着状態検出方法
EP3211399A4 (en) * 2015-01-15 2017-11-29 Mitsubishi Heavy Industries, Ltd. Bonded structure, method for manufacturing same, and bonding state detection method
US10345515B2 (en) 2015-01-15 2019-07-09 Mitsubishi Heavy Industries, Ltd. Bonded structure, method for manufacturing the same, and bonding state detection method
WO2019172178A1 (ja) * 2018-03-08 2019-09-12 三菱重工業株式会社 評価方法及び評価システム
JP2019158403A (ja) * 2018-03-08 2019-09-19 三菱重工業株式会社 評価方法及び評価システム
US11181360B2 (en) 2018-03-08 2021-11-23 Mitsubishi Heavy Industries, Ltd. Evaluating method and evaluation system

Also Published As

Publication number Publication date
CN105143853A (zh) 2015-12-09
EP3001178A1 (en) 2016-03-30
US20160069793A1 (en) 2016-03-10
JP6174132B2 (ja) 2017-08-02
BR112015026520B1 (pt) 2020-12-08
RU2644613C2 (ru) 2018-02-13
BR112015026520A2 (pt) 2017-07-25
RU2015143136A (ru) 2017-06-23
EP3001178A4 (en) 2017-01-11
US10145786B2 (en) 2018-12-04
CA2909484C (en) 2019-08-20
CA2909484A1 (en) 2014-11-20
CN105143853B (zh) 2019-01-04
JPWO2014185119A1 (ja) 2017-02-23
EP3001178B1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
KR101859783B1 (ko) 복합재-금속 조인트를 갖는 복합재 구조물과 그 제조방법
JP5777789B1 (ja) 人工欠陥材料及びfrp構造体の製造方法
US9186756B2 (en) Repair method and repair structure for honeycomb sandwich structural body
CN108535101B (zh) 一种复合材料层合板层间拉伸强度的测量方法
US20090239018A1 (en) Prepreg peel ply for continuously forming composite material
JP6174132B2 (ja) 接着構造体及び接着状態検出方法
EP2070694B1 (en) Composite panel and method of manufacturing the same
US10086569B2 (en) Method of making a composite sandwich structure
US9776386B2 (en) Manufacturing method of partially cured composite components
EP2589484A1 (en) Method for producing molded body
US20230415448A1 (en) Honeycomb core sandwich panels
JP2008006814A (ja) プリフォームの製造方法およびプリフォーム並びに繊維強化プラスチック桁材
EP2835252A1 (en) Tooling and method for consolidating highly integrated composite structures
US9689262B2 (en) Thermographic inspection system for composite wind turbine blade
US10345515B2 (en) Bonded structure, method for manufacturing the same, and bonding state detection method
JP6083248B2 (ja) 繊維強化熱可塑性樹脂一体化構造体の製造方法
JP4576422B2 (ja) 2つの異なる熱硬化性基材で予め含浸された構造
US8668857B1 (en) High quality out-of-autoclave composites
US10000046B2 (en) Methods for creating thick laminate structures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021967.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516958

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2909484

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014797172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14784600

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015026520

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015143136

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015026520

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151019