WO2014183594A1 - 石材安装结构及安装石材的方法 - Google Patents

石材安装结构及安装石材的方法 Download PDF

Info

Publication number
WO2014183594A1
WO2014183594A1 PCT/CN2014/077220 CN2014077220W WO2014183594A1 WO 2014183594 A1 WO2014183594 A1 WO 2014183594A1 CN 2014077220 W CN2014077220 W CN 2014077220W WO 2014183594 A1 WO2014183594 A1 WO 2014183594A1
Authority
WO
WIPO (PCT)
Prior art keywords
stone
plate
fastening
arm
pressure
Prior art date
Application number
PCT/CN2014/077220
Other languages
English (en)
French (fr)
Inventor
谢晓斌
李震
Original Assignee
Xie Xiaobin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xie Xiaobin filed Critical Xie Xiaobin
Publication of WO2014183594A1 publication Critical patent/WO2014183594A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0801Separate fastening elements
    • E04F13/0803Separate fastening elements with load-supporting elongated furring elements between wall and covering elements
    • E04F13/081Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements
    • E04F13/0816Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements the additional fastening elements extending into the back side of the covering elements
    • E04F13/0819Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements the additional fastening elements extending into the back side of the covering elements inserted into grooves in the back side of the covering elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0801Separate fastening elements
    • E04F13/0803Separate fastening elements with load-supporting elongated furring elements between wall and covering elements
    • E04F13/0805Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and the wall
    • E04F13/0807Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and the wall adjustable perpendicular to the wall
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0801Separate fastening elements
    • E04F13/0803Separate fastening elements with load-supporting elongated furring elements between wall and covering elements
    • E04F13/081Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements
    • E04F13/0814Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements fixed by means of clamping action
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0801Separate fastening elements
    • E04F13/0803Separate fastening elements with load-supporting elongated furring elements between wall and covering elements
    • E04F13/081Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements
    • E04F13/0821Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements the additional fastening elements located in-between two adjacent covering elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/14Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass

Definitions

  • the invention relates to a building material installation structure and a mounting method, in particular to a thousand hanging stone installation structure and a method for installing stone. Background technique
  • the stone thousand hang is a construction process of the exterior wall of the building.
  • the process is to directly install the facing stone on the outer surface of the building structure through the connecting piece and the bolt, leaving a certain space between the stone and the structure.
  • the process eliminates the grouting process, not only shortens the construction period, reduces the building weight, improves the seismic performance, but also effectively prevents the penetration of the pigments such as saline and alkali in the grouting. Its appearance quality and decorative effect.
  • the installation method of the "back bolt structure” is roughly as follows: According to the design requirements, the column and the beam and the aluminum alloy connecting piece are installed, the back of the stone is punched, the back bolt and the aluminum alloy hanging piece are arranged, and the stone is placed by the cooperation of the hanging piece and the connecting piece. On the column and the beam, adjust the adjustment screw on the upper part of the aluminum alloy pendant to correct the position of the stone, fill the sealant at the stone joint, and complete the installation of the stone curtain wall.
  • this type of installation is the "installation" of the stone that is not fastened with the column and the beam.
  • the "mounting" of the stone hanging type, the "C” type pendant and the beam on the stone The cooperation between the upper "C” type connectors is the key to whether the stone can be effectively placed, and only each of the pendants on each stone can be well matched with the resting point of the connector, and each place Under the premise that the adjusting screws can effectively adjust the stone, the "installation” of the stone can be completed according to the design requirements. Therefore, it is required that the design gap between the pendant and the connector must cover all of the objective errors described below, otherwise it will not be implemented.
  • the anchor bolt has a depth or angle error in the fixing of the stone; there is an error in the parallelism between the pendant and the anchor bolt and the stone.
  • each stone unit is composed of a stone and multiple anchors and pendants, it must be combined with multiple joints or other points or faces on the beam, while the stone and the columns and beams are rigid materials. The process does not have the function of three-dimensional adjustment. In addition, the objective existence of the above error and its uncertainty and uncontrollability will inevitably lead to uncertainty in the results of the cooperation between the pendant on the stone and the connecting member on the beam. Smooth installation, treatment at the construction site maybe:
  • the aluminum alloy pendant and the aluminum alloy connecting piece are open-type "C" type structure, not closed structure.
  • the force-bearing structure is unstable and unreasonable, so it is easy to deform and not strong after bearing the weight load of the stone. When the load such as gravity is different, the deformation of the structure is also uncertain;
  • the anchor bolt does not completely enter the interior of the stone, and the anchor bolt is expanded inside the stone, and the anchor does not expand.
  • the anchor is in a cantilever state near the surface of the stone, and it is displaced and unstable when subjected to force.
  • one end receives the gravity of the stone near the expansion point of the anchor bolt, and the other end receives the bearing capacity of the connecting member at the upper portion of the "C" type structure of the pendant. That is to say, the stone gravity and bearing capacity are not on the same axis.
  • the generally used adjusting screw is a standard M6 bolt with a pitch of 1mm, and the profile wall thickness of the connecting piece is generally 4mm, so the adjusting screw is on the wall of the aluminum alloy connecting piece.
  • the effective stroke in the thickness is up to 3 inches of complete thread.
  • the surface area of a single stone board is not more than 1.5m 2 , and 1 m 2 is temporarily taken; the thickness is not less than 25mm, and the thickness is 25mm; the standard value of the stone's own weight is 28KN/m 3 , it is not difficult to calculate the single stone.
  • the weight is about 70KG.
  • the mounting post and the connecting member form a stuck state, that is, the longitudinal displacement of the two cannot occur.
  • the worker can still screw the adjusting screw. Because of the material relationship, only the frictional resistance between the aluminum alloy thread and the adjusting screw is not enough to resist the resistance between the hanging piece and the connecting piece.
  • the worker found that the stone did not have the expected displacement after the adjustment screw was turned the aluminum alloy thread in the pendant was broken. This adjustment of the stone can not be carried out, and the source of adjustment space and adjustment resistance can not be observed, can not be judged, the specific bearing point of the weight of the stone is also unknown.
  • the on-site handling method should be to remove the pendant and replace it.
  • the stone can not be effectively placed on the design requirements. Once it is affected by external forces such as vibration and collision, it will aggravate the damage of the stone caused by weak and unstable factors, eventually causing the stone to break and even fall. , There are security risks;
  • the stone installation method of the patent CN102535695 is basically the same as the above specification, except that a buffer component such as a spring or an elastic steel sheet is added between the two sets of C-type aluminum alloy pendants and the stone, which increases the flexibility of the stone curtain wall to a certain extent, but
  • a buffer component such as a spring or an elastic steel sheet is added between the two sets of C-type aluminum alloy pendants and the stone, which increases the flexibility of the stone curtain wall to a certain extent, but
  • the premise is that the weight of the stone is consistent, and the bearing capacity and resistance of each mounting point are the same. Otherwise, the safety and convenience of the stone fastening cannot be solved fundamentally. The above defects still exist.
  • the stone installation method of the patent CN102587549 is basically the same as the above specification, except that the long-shaped adjusting hole is arranged on the angled plate, and the adjusting angle piece is added on the side of the adjusting hanging piece, so that the stone can be adjusted in three dimensions, but the stone is not completely solved.
  • the above defects still exist in the security and convenience of solids.
  • the stone installation method of the patent CN201738542 is basically the same as the above specification, except that the C-shaped connecting piece on the beam is changed into an angle steel adapter, and a strip-shaped mounting hole and a positioning hole are arranged thereon, so that the stone can be three-dimensionally adjusted and side
  • the above defects are still present, but the problem of safety and convenience of stone fastening is not fundamentally solved.
  • the installation method of "component structure” is roughly as follows: According to the design requirements, the column and the beam and the connecting piece are installed, the edge of the stone is grooved, the special glue is filled and the stainless steel hanging piece is fastened, and the connecting piece of the stone and the beam is installed through the hanging piece, and finally The sealant is filled in the seam of the stone, and the installation of the stone curtain wall is completed.
  • the column and the beam with the same main structure have a certain horizontal, vertical and flatness error; there is an error in the position of the fastening point of the connecting member on the beam;
  • the epoxy resin type adhesive must be bonded between the stone and the stainless steel pendant.
  • the following basic conditions must be met:
  • the mixture is initially liquid and highly viscous and must be filled as soon as possible into the desired area. Because the mixture will soon start to gel and may "sudden" into a hard rubber-like gel, its hardness gradually increases and the viscosity gradually loses;
  • the aluminum alloy profile fluorocarbon spraying process requires a relatively high surface treatment of the profile before spraying, in addition to a series of standard procedures such as degreasing, washing, caustic washing, pickling, and pure water washing, more important.
  • the premise is: It must be operated in a factory with a certain standard of air humidity and cleanliness, that is, only the process can be controlled to obtain a certain result.
  • the air humidity and cleanliness are obviously uncontrollable. It is very difficult to make the surface of the stone and the pendant quite clean and dry, which will undoubtedly directly affect the special glue. Bonding quality;
  • the filling density of the special glue is different.
  • the special glue located in the lower hole of the stone is subjected to the weight of the stone, and the density is often larger than the upper slot of the stone.
  • Special glue inside; other parts will affect the compactness of the glue due to the operation space, viewing angle, etc. Therefore, the "tight" cannot be guaranteed; the hardware component may occur due to the position adjustment of the stone after the filling
  • the elastic deformation, as well as the uncertain external force, will cause disturbance to the steady state of the special glue, so "maintenance" cannot be guaranteed.
  • One end of the stainless steel pendant is the gravity point that bears the weight of the stone, and the other end is the bearing point that rests on the pallet, that is, the gravity and bearing capacity of the stone are not on the same axis.
  • this structure is also not a non-coaxial gravity and load-bearing stable rotational force structure similar to a triangular steel roof truss, which can effectively transfer load from different axial directions to a fixed bearing point.
  • the force of stone formation is equivalent to the weight of stone, but it is far away from the fulcrum. Therefore, the stone near the fulcrum will be more reactive than its own weight, and the part of the stone will be the part where the pendant and stone are bonded due to the edge. Slotting is just the weakest part of the stone, that is to say, the thickness is only less than one third of the original, the depth is the slotting depth of the pendant, so that the small natural stone should bear more than the weight of the whole stone.
  • the power of the force is obviously more likely to cause the risk of stone falling, cracking or even falling;
  • the complete stone curtain wall project is not just a plane arrangement of thousands of stones, but consists of many points, lines and faces, such as yin and yang corners, door and window openings, and interfaces with other finish materials, etc.
  • the stone seams must be filled with special sealant, so when all the stones are installed, they will become a whole.
  • the stone installation method of the patent CN102518235 is basically the same as the above specification, except that a limit code for preventing the side slip and the up and down jump of the pendant is added between the pallet and the pendant, and the saw blade and the adjusting bolt are arranged on the hanging seat to make the stone It is possible to adjust the front and rear and the up and down direction, but the premise is that there is no error between the stone and the component, otherwise the safety and convenience of the stone fastening cannot be solved fundamentally, and the above defects still exist.
  • the stone installation method of the patent CN101624850 is basically the same as the above specification, except that the stone end groove is changed into the stone side opening chute, so that the stone can be three-dimensionally adjusted, but the safety and convenience of the stone fastening are not fundamentally solved.
  • the above defects still exist, and the stone opening chute construction is more difficult, more susceptible to damage, and poor stability.
  • the stone installation method of the patent CN1737288 is basically the same as the above specification, except that the fixing between the pallet and the pendant is changed to the pressure plate form, and the safety and convenience of the stone fastening are not fundamentally solved, and the above defects still exist.
  • the stone installation method of the patent CN202152494 is basically the same as the above specification, but the adjustment screw is provided at the joint between the pallet and the upper pendant, and the safety and convenience of the stone fastening are not fundamentally solved, and the above defects still exist.
  • the installation method of "short groove structure” is roughly as follows: According to the design requirements, the column and the beam and the connecting piece are installed, the edge of the stone is grooved, the special glue is filled with the stainless steel butterfly back card, and the stone and the beam are passed through the butterfly back card. The connecting piece is fastened, and finally the sealing glue is filled in the seam of the stone, thereby completing the installation of the stone curtain wall.
  • the problem of installing the stone curtain wall in this way is basically the same as the above-mentioned "component structure", except that the center of gravity of the stone is on the same axis as the stress point carried by the pendant.
  • the "short trough" structure is a butterfly back card and a special glue, and the upper and lower stones are bonded together.
  • the gravity and the bearing capacity are on the same axis, the butterfly back card and the connecting member are components with certain elasticity. After the force is applied, there will still be some deformation, and the stone will have an outward force, which also has potential safety hazards.
  • the "short trough structure" of the upper stone's gravity load is completely carried by the lower stone.
  • stone is a natural material, its material uniformity is poor, the bending strength is large, and it is a brittle material. It is difficult to be found in the process of generation, opening and processing. It is difficult to be found; as a stone curtain wall, although It does not bear the load of the main structure, but it is subject to the load and action of its own weight, wind, earthquake and temperature. If the gravity load of the upper stone is added, the force of the stone in the lower part is extremely unstable. of.
  • Patent CN101787802 discloses a method for replacing the short-slot type of hanging stone. After the replacement, the installation method of the stone is basically the same as the above specification, except that the integrity of the stone curtain wall after the butterfly back card is cut is deteriorated, and the position of the stone is adjusted. Good refill In the case of glue, the quality of the glue is not guaranteed. The safety and convenience of the stone fastening are not fundamentally solved. The above defects still exist.
  • the stone fastening method of the patent CN102312541 is the same as the above specification, except that a slider, a bridge connecting piece, a corner wall connecting member and the like are added between the stone connecting piece and the keel, and three-dimensional adjustment can be realized when installing a single stone.
  • the adjustment of multiple stone materials is difficult, and the safety and convenience of stone fastening are not fundamentally solved. The above defects still exist.
  • the stone installation method of the patent CN102561638 is basically the same as the above specification, except that the mechanical property reinforcing block is bonded on the back side of the stone, so that the end of the stone does not need to be grooved, the stability of the stone itself is enhanced, but the safety problem of the stone fastening is not fundamentally solved.
  • the above defects still exist.
  • the effective bonding between the stone and the mechanical strength reinforcing block becomes particularly important. Otherwise, the above-mentioned error is easy to produce a single-sided tearing force on the rubber, which causes a new safety hazard such as degumming of the stone.
  • the stone installation structure of the invention has various important functions such as size definition, three-dimensional adjustment, bearing and fastening, and the following characteristics:
  • the second connection module can be used to firmly, stably and effectively pre-stress the stone connecting end of the stone and the frame;
  • the position adjustment of the stone can be realized in any direction of the X, Y and ⁇ axis at any installation point of the stone, which satisfies the requirements of the installation precision of the thousands of stones;
  • the second mounting module of the present invention is a dynamically generated fastening module having a stable pre-stressed structure.
  • Prestressing force is generally used to refer to the tensile stress of the tension zone under the external load during the formation of the material or other objects.
  • the pre-induced compressive stress constitutes the material. Or the prestressed structure of the object.
  • Techniques and processes for introducing compressive stresses into materials or articles to form stable pre-stressed structures are generally referred to as prestressing techniques.
  • a material or article having a pre-stressed structure is generally referred to as a pre-stressed material or a pre-stressed article.
  • the prestressed structure of a material or article can improve the performance of the material or article.
  • the use of materials or articles generally refers to an increase in their own rigidity, an increase in their own anti-vibration properties, and an increase in their own elastic strength, thereby increasing the durability of the material or article and its safety during use.
  • the prestressing technology has been used in ancient times, and it is a process in which the ancient Chinese used to improve the performance of living utensils and to reinforce the compensation of labor tools.
  • Such as barrel ferrules introduction of pre-stress
  • barrel ferrules introduction of pre-stress
  • prestressed structures have been greatly used in construction and other fields, and prestressed materials have also broken through the constraints of high-strength steels, and gradually become high-strength and light-weight.
  • the process of introducing compressive stress into a material or object under the action of external force is generally referred to as the process of generating pre-stress in the material or object.
  • any elastic material, under the action of external force can generate built-in pre-stress, and the external force acts as a process of pre-stressing of the elastic material.
  • the dynamic process generated by the pre-stressing of the elastic material is controlled by the foreign object to form a built-in pre-stressed stable structure of the material or object.
  • the invention uses an elastic fastening component to introduce a compressive stress by generating an external force by pressing the component, and uses the fastened component to control the dynamic process of the introduction of the compressive stress, and finally forms a stable integral of the compression component, the fastening component and the fastened component.
  • the pre-stressed structure thus completes and achieves the fastening effect of the stone. Due to the use of pre-stressed fastening components, the tightness, stability, safety and convenience of the stone fastening installation are also greatly enhanced.
  • the object of the invention is to solve the shortcomings of the current thousand-hanging stone technology, to provide an excitation and control of the dynamic generation process of the elastic material pre-stress, to form a stable pre-stressed structure, and to perform three-dimensional adjustment during the installation process, thereby greatly improving Stone installation accuracy stone installation structure.
  • the stone installation structure established by the invention can greatly enhance the firmness, accuracy, safety, convenience and ease of replacement of the installed stone.
  • the present invention implements a stone mounting structure including a building body and a stone material mounted on the building body, the mounting structure further including a mounting chassis, the stone material being adjusted to the chassis through the mounting chassis The position is set and tightened, and the position of the stone does not change during the fastening process.
  • the mounting chassis includes a frame, a first mounting module, and a second mounting module.
  • the frame includes a building body connecting end and a stone connecting end, and the building body connecting end is mounted on the building body through the first mounting module, and the stone is adjusted to the setting by the second mounting module The position is tightened and the position of the stone does not change during the fastening process.
  • the first mounting module includes at least one profiled steel connector, the first end of the profiled steel connector is fixed to the building body, and the second end of the profiled steel connector is provided with a slotted hole And connecting the building body connecting end of the frame through a bolt passing through the slotted hole.
  • a further improvement of the present invention is that the second mounting module includes a pressing assembly, a fastening assembly, and a fastened assembly, the fastened assembly being adjustably positionally secured to the frame, the compression assembly being positionally adjustable Fixed to the stone;
  • the position of the fastened component is adjustably fixed to the stone, and the position of the pressing component is adjustably fixed to the frame;
  • Compressing the fastening assembly by the engagement of the compression assembly with the fastened assembly generates pre-stressing and thereby fastening the fastened assembly, wherein:
  • the fastening assembly includes two arcuate arms symmetrically clamped on opposite sides of the fastened object, and the two arcuate arms are interposed to form an enclosure space, and the arcuate arm includes a first force arm and a connection a second force arm of the first force arm, a connection between the first force arm and the second force arm forms a slip end, and the first force arm is away from the second force arm Forming a compression end on the side, the second force arm forming a fastening end on a side away from the first force arm, and the pressure end of the first force arm receives the compression and cooperation of the compression component
  • the fastened object drives the first and second force arms to generate a pre-stress.
  • the pressing assembly comprises a stone connecting plate and a pressure block;
  • the stone connecting plate is fastened to the stone and placed on a first side of the first force arm, the bow arm The two sliding ends abut against the stone connecting plate;
  • the pressure block is disposed on the second side of the first force arm, and the two pressure receiving ends of the bow arm abut against the pressure block;
  • the fastening assembly includes a bottom plate and a wing plate formed on the bottom plate, the bottom plate is fastened to the stone connecting end of the frame; the two fastening ends of the arcuate arm abut against the two sides of the wing plate;
  • a slotted hole is formed in the bottom plate of the fastened component, and is fixed to the stone connecting end of the frame by a bolt penetrating the slotted hole, and the fastened component is Position adjustment in a first direction through the slotted hole;
  • the two fastening ends of the arcuate arms are adjusted in a second direction and a third direction on both sides of the wing by the enclosure space.
  • a further improvement of the present invention is that the first end of the stone connecting plate and the pressure block are fastened by a bolt, and the second end of the stone connecting plate is provided with a plurality of slot-shaped holes, and is inserted through the A bolt in the slotted hole is fixed to the stone.
  • a further improvement of the present invention is that the central portion of the pressing member is recessed inwardly to form a pressure portion that cooperates with the inner side of the two arcuate arms of the fastening assembly; the pressure portion of the pressing assembly is sandwiched between the two arcuate arms. Two of the bow arms The pressing end abuts against the pressure portion, and the two sliding ends of the arcuate arm abut against the surface of the stone connecting end of the frame, and the two ends of the pressing assembly are fixed to the stone connecting end of the frame;
  • the fastened component includes a bottom plate and a wing plate formed on the bottom plate, the first end of the bottom plate is bent to form a limiting portion, and a side surface of the stone material forms a limit for engaging the limiting portion a positioning slot, the limiting portion is engaged in the limiting slot, the second end of the bottom plate is fixed on the stone; the two fastening ends of the arcuate arm abut against the two sides of the wing Fastening the stone connecting end of the pressing assembly and the frame, the pressure portion pressing the two pressure receiving ends of the bow arm to be displaced toward the frame, the two sliding ends of the bow arm being at the frame Displacement of the stone connecting end surfaces away from each other, the two fastening ends of the arcuate arms being constrained by the wings, thereby driving the first force arm and the second force arm to generate a prestressed fastening Wing board.
  • the two ends of the pressing assembly are respectively provided with a slot-shaped hole and fastened to the stone connecting end of the frame by bolts penetrating in the slot-shaped hole, and the pressing component passes through the Positioning the slotted hole in a first direction;
  • the flap is adjusted in a second direction and a third direction by the enclosure space between the two fastening ends of the arcuate arm.
  • the second end of the bottom plate defines a slotted hole and is fixed to the stone by bolts penetrating the slotted hole.
  • the press assembly includes a case and a pressure block
  • the case includes a first side plate, a second side plate, and the first side plate and the second side plate, respectively.
  • a top plate and a bottom plate of the end a sliding space is formed in the inner portion of the box body; two sides of the first side plate respectively extend outward to form two connecting portions, and the box body is fastened to the stone through the connecting portion
  • the box is disposed on the first side of the first force arm, and the two sliding ends of the bow arm abut against the surface of the box, and the first side panel of the box defines a first pass a second through hole is formed in the second side plate of the box;
  • a first meandering block is disposed through the first through hole in the first side plate, and the first first block a first inclined surface is formed on one side, and a second side surface of the first circular block is formed with a screw hole penetrating the first inclined surface; and a second curved block is slidably disposed in the sliding
  • the second inclined surface is formed with a long slot extending through the second squat block, the top surface of the second squat block is coupled with a push bolt; the top surface of the box is provided with a third through hole, the push bolt Extending out of the box through the third through hole;
  • the first side of the pressure block is coupled with a fastening bolt, the fastening bolt extends through the second through hole and the long slot, and cooperates with the screw hole of the first ⁇ block to tight the pressure block Fixing the first squat block, the push bolt drives the second squat block to push against the displacement of the first squat block, thereby driving the pressure block to press the two pressure ends of the bow arm toward the Displacement of the casing, the two sliding ends of the arcuate arm are displaced away from each other on the outer surface of the second side panel of the casing;
  • the fastened component comprises a backing plate and a backing plate formed thereon a wing plate, the back plate is fastened to the stone connecting end of the frame;
  • the two fastening ends of the arcuate arm abut against the two sides of the wing, and the two fastening ends of the arcuate arm are constrained by the wing, thereby driving the first force arm and the first
  • the two arms generate pre-stressed fastening of the wings.
  • the first through hole and the second through hole are slotted holes, and the fastening bolt is positionally adjusted in a first direction through the slotted hole; Said enclosure space performs said first direction and Position adjustment in the third direction.
  • the back plate is formed with a slot-shaped hole on the left and right sides of the wing plate, and is fixed to the stone connecting end of the frame by a bolt penetrating in the slot-shaped hole.
  • the connecting portion of the casing is provided with a slotted hole, and is fixed to the stone by a bolt penetrating in the slotted hole.
  • the press assembly includes a case, a bottom plate and a pressure block
  • the case includes a first side plate, a second side plate, and the first side plate and the second side a top plate of the top of the plate, a sliding space is formed in the interior of the box;
  • the bottom of the box is connected to the bottom plate and fixed to the stone connecting end of the frame through the bottom plate;
  • a first side of the first force arm, the two sliding ends of the arcuate arm abut against the surface of the box body;
  • the first side plate of the box body defines a first through hole, the box body a second through hole is defined in the second side plate;
  • a first slanting block is disposed through the first through hole in the first side plate, and the first side of the first ⁇ shaped block forms a first inclined surface
  • the second side surface of the first ⁇ block is formed with a screw hole penetrating the first slope surface; and
  • a second ⁇ block is slidably disposed in the sliding space, the second
  • the first through hole and the second through hole are slotted holes, and the fastening bolt is positionally adjusted in a first direction through the slotted hole;
  • the enclosure space performs a position adjustment of a second direction and a third direction.
  • a slotted hole is defined in each of the two sides of the casing, and the bottom plate is fixed to the stone connecting end of the frame by a bolt passing through the slotted hole.
  • the back plate is formed with a slot-shaped hole on the left and right sides of the wing plate, and the back plate is fixed to the stone material by a bolt penetrating through the slot-shaped hole.
  • a further improvement of the present invention is that a side height adjusting plate is formed on a side of the back plate; a height adjusting bolt is screwed into a screw hole opened in an end portion of the height adjusting plate; and a bottom of the height adjusting bolt abuts the bottom plate Upper surface.
  • the pressing assembly includes a first stone connecting member, two pressure blocks and a pressing plate;
  • the first stone connecting member includes a first backing plate and a top plate and is tightly coupled by the first backing plate Secured to the lower stone, the top plate being placed on a first side of a first force arm of a first fastening assembly, the two sliding ends of the arcuate arms of the first fastening assembly abutting the top plate a lower surface;
  • a first pressure block is disposed on the second side of the first force arm, and the two pressure receiving ends of the arcuate arm of the first fastening component abut against the first pressure block;
  • the pressure plate is disposed on a first side of the first force arm of the second fastening component, the two sliding ends of the arcuate arm of the second fastening component abut the pressure plate; and the second pressure block Assume Placed on the second side of the first force arm of the second fastening component, the two pressure receiving ends of the arcuate arms of the second fastening
  • the fastened assembly includes a first wing and a second stone connector;
  • the second stone connector includes a second backing plate and a second wing formed on the backing plate, the first The two stone connecting members are fixed to the upper stone by the second backing plate;
  • the two fastening ends of the arcuate arms of the first fastening component abut the two sides of the first wing, the second Two fastening ends of the arcuate arms of the fastening assembly abut against both sides of the second wing;
  • the first wing plate and the pressure plate are formed on a box beam body, and are fastened to the stone connecting end of the frame by the box beam body;
  • a further improvement of the present invention is that the first end of the top plate forms a slotted hole and is fastened to the first pressure block by a bolt penetrating the slotted hole, and the first pressure block and the Positioning the first fastening component in a first direction through the slotted hole;
  • the two fastening ends of the arcuate arms of the first fastening component are adjusted in a second direction and a third direction on both sides of the first wing by the enclosure space;
  • the pressure plate forms a slotted hole and is fastened to the second pressure block by a bolt penetrating the slotted hole, and the second pressure block and the second fastening component pass through the pressure plate
  • the slotted hole is positionally adjusted along the first direction; the second wing passes through the enclosure space to perform a second direction and a between the two fastening ends of the arcuate arms of the second fastening component Position adjustment in the third direction.
  • a further improvement of the present invention is that the second end of the top plate is bent to form a first limiting plate, and the top of the lower stone is formed with a first limiting slot that cooperates with the first limiting plate, the first The limiting plate is engaged with the first limiting slot; the bottom end of the second backing plate is bent to form a second limiting plate, and the bottom portion of the upper stone is formed to cooperate with the second limiting plate a second limiting slot, the second limiting plate is engaged in the second limiting slot.
  • a further improvement of the present invention is that the first back plate and the second back plate are both provided with slot-shaped holes, and the first stone connecting piece and the second stone connecting piece are respectively disposed through the slot A bolt in the hole is fixed to the lower stone and the upper stone.
  • the pressure receiving ends of the arcuate arms are connected by an arcuate deformation zone.
  • the sliding end of the bow arm is formed into a circular arc surface or a sloped surface.
  • the thickness of the second force arm forms a thick to thin gradient from the sliding end to the fastening end.
  • a further improvement of the present invention is that the fastening end of the arcuate arm is provided with a pressing piece, and the pressing piece and the second force
  • the connecting portion of the arm is recessed inward to form a tablet position adjustment region.
  • the compressed end of the arcuate arm extends to form a rotational positioning rib
  • the pressing member is formed with a rotary positioning groove corresponding to the rotational positioning rib
  • the compression assembly cooperates with the fastening assembly to compress the fastening assembly to generate a pre-stress, the fastening assembly becomes a main control member for generating a pre-stress, and the fastening assembly is selected from an elastic material.
  • a stable pre-stress is formed inside the material and stored, and the fastening system and the compression assembly form a stable pre-stress and pre-stress feature fastening system, the beneficial effects including but not limited to:
  • the buffering effect of its sensitivity is also quite obvious.
  • the uneven internal stress is generated due to the poor thermal shock resistance of the material itself; during the installation and during use, due to the impact of external force that may be encountered When uneven internal stress is generated; due to design requirements, when multiple sets of fastening units are installed on the stone, local stress concentration may occur inside the steel.
  • the entire pre-stressed fastening unit can adjust the corresponding pre-stress by the deformation of the elastic material, thereby buffering the unbalanced internal stress that may occur, so as to well play the stone and even the entire structure.
  • Protective effects are also quite obvious.
  • the invention does not cause irregular pressing and surface deformation due to fastening to the stone, avoiding errors due to various components, errors in mounting the carrier, and errors in the stone itself. And the displacement of the workpiece caused by the above fastening process, etc., and inevitably lead to the destruction of the existing flatness of the stone and the self-balanced internal stress, which greatly enhances the safety of the entire stone fastening system and the ability to resist external forces.
  • the present invention compresses the fastened components by tightening the relevant bolts during the entire prestressed fastening process, thereby causing the fastening components to be prestressed, and in the specific operation, through the previous design module
  • the safety of the thousand-hanging stone of the invention is ensured by a reasonable fastening structure, which satisfies the technical links of the natural installation property of the stone, the gravity bearing structure, the three-dimensional adjustment structure and the adaptive structure of the on-site construction.
  • the three-dimensional adjustment of the stone is freely placed in the untightened state, and is completely free from any restrictions; and the setting of the three-dimensional adjustment space can completely cover the manufacture of the usual standard workpiece. Errors and component errors that are typically formed by standard construction.
  • the utility model of the installation chassis of the invention can meet the installation points randomly arranged on the upper and lower sides of the stone, in the longitudinal direction and the horizontal direction, and has no limitation on the structure of the corner or the profile of the stone or the building, and can be said to bring the designer and the engineer at the same time. Great Gospel.
  • the invention can greatly reduce the use of materials such as profiles and material cost savings on the basis of qualitative improvement of the safety and convenience of the prior art; in addition, the technical conditions are reduced and the whole process is controllable, Effectively avoiding rework and material scrapping, etc., is a significant contribution to time reduction and labor cost savings.
  • FIG. 1 is a side view showing the structure of a stone mounting structure system according to a first preferred embodiment of the present invention
  • FIG. 2 is a top plan view showing a stone mounting structure system according to a first preferred embodiment of the present invention
  • Figure 3 is a partial enlarged structural view of the A area of Figure 2;
  • FIG. 4 is a schematic view showing a connection structure of a stone material and a frame according to a first preferred embodiment of the present invention
  • Figure 5 is a schematic cross-sectional view of Figure 4.
  • Figure 6 is an exploded perspective view showing the connection structure of the stone material and the frame of Figure 4;
  • Figure 7 is a perspective view of the fastening assembly of Figure 4.
  • Figure 8 is a plan view showing the fastening assembly of Figure 4.
  • Figure 9 is a schematic structural view of the second mounting module of Figure 4.
  • Figure 10 is a schematic exploded view of Figure 9;
  • Figure 11 is a schematic view showing the connection structure of the stone and stone connecting plates in Figure 4.
  • Figure 12 is a schematic exploded view of Figure 11;
  • Figure 13 is a schematic view showing the compression deformation of the arc deformation zone of the fastening assembly of Figure 8;
  • FIG. 14 is a schematic view showing the principle of fastening a second mounting module according to a first preferred embodiment of the present invention.
  • Figure 15 is a side view showing the structure of a stone mounting structure system according to a second preferred embodiment of the present invention.
  • FIG. 16 is a top plan view showing a stone mounting structure system according to a second preferred embodiment of the present invention.
  • Figure 17 is a partial enlarged structural view of the B region of Figure 16;
  • Figure 18 is a schematic view showing the connection structure of a stone material and a frame according to a second preferred embodiment of the present invention.
  • Figure 19 is a schematic cross-sectional view of Figure 18;
  • Figure 20 is an exploded perspective view showing the connection structure of the stone material and the frame of Figure 18;
  • Figure 21 is a perspective view of the fastening assembly of Figure 18;
  • Figure 22 is a schematic structural view of the pressing assembly of Figure 18;
  • Figure 23 is a schematic structural view of the second mounting module of Figure 18;
  • Figure 24 is a schematic exploded view of Figure 23;
  • Figure 25 is a schematic view showing the structure of the fastening component of Figure 20;
  • Figure 26 is a schematic structural view of the stone material of Figure 20;
  • Figure 27 is a schematic view showing the connection structure of the fastening component and the stone material of Figure 20;
  • Figure 28 is a schematic exploded view of Figure 27;
  • Figure 29 is a side view showing the structure of a stone mounting structure system according to a third preferred embodiment of the present invention
  • Figure 30 is a top plan view showing a stone mounting structure system according to a third preferred embodiment of the present invention
  • Figure 31 is a partially enlarged schematic view showing a C area of Figure 30;
  • Figure 32 is a schematic view showing the connection structure of a stone material and a frame according to a third preferred embodiment of the present invention
  • Figure 33 is a schematic cross-sectional view of Figure 32;
  • Figure 34 is an exploded perspective view showing the connection structure of the stone material and the frame of Figure 32;
  • Figure 35 is a perspective view of the box body of Figure 32;
  • Figure 36 is a schematic structural view of the fastening assembly of Figure 32;
  • Figure 37 is a schematic view showing the structure of the pressure block of Figure 32;
  • FIG. 38 is a schematic exploded view of the second mounting module of FIG. 32;
  • Figure 39 is a schematic view showing the connection structure of the fastening component and the stone in Figure 34;
  • Figure 40 is a schematic exploded view of Figure 39;
  • FIG. 41 is a side view of a stone mounting structure system according to a fourth preferred embodiment of the present invention
  • FIG. 42 is a top plan view of a stone mounting structure system according to a fourth preferred embodiment of the present invention
  • FIG. 43 is a partial view of the D area of FIG. A schematic diagram of the enlarged structure
  • Figure 44 is a schematic view showing the connection structure of a stone material and a frame according to a fourth preferred embodiment of the present invention
  • Figure 45 is a schematic sectional view showing the structure of Figure 44;
  • Figure 46 is an exploded perspective view showing the connection structure of the stone material and the frame of Figure 44;
  • Figure 47 is a schematic structural view of the second mounting module of Figure 44;
  • Figure 48 is a schematic exploded view of Figure 47;
  • Figure 49 is a schematic view showing the connection structure of the fastening component and the stone in Figure 44;
  • Figure 50 is a schematic exploded view of Figure 49;
  • Figure 51 is a side elevational view showing a stone mounting structure system according to a fifth preferred embodiment of the present invention
  • Figure 52 is a top plan view showing a stone mounting structure system according to a fifth preferred embodiment of the present invention
  • Figure 54 is a schematic view showing the connection structure of a stone material and a frame according to a fifth preferred embodiment of the present invention
  • Figure 55 is a cross-sectional structural view of Figure 54;
  • Figure 56 is an exploded perspective view showing the connection structure of the stone material and the frame of Figure 54;
  • Figure 57 is a schematic view showing the connection structure of the box beam body and the frame in Figure 54;
  • Figure 58 is a schematic exploded view of Figure 57;
  • Figure 59 is a top plan view showing a box beam body according to a fifth preferred embodiment of the present invention.
  • Figure 60 is a side elevational view showing the box beam body of the fifth preferred embodiment of the present invention.
  • Figure 61 is a schematic view showing the connection structure of the first stone connecting member and the lower stone in Figure 54;
  • Figure 62 is a schematic exploded view of Figure 61;
  • Figure 63 is a schematic view showing the connection structure of the second stone connecting member and the upper stone in Figure 54;
  • Figure 64 is a schematic exploded view of Figure 63. detailed description The invention will now be further described in conjunction with specific embodiments.
  • the stone mounting structure of the present invention comprises a building body 3 and a stone 2 mounted on the building body 3, the mounting structure further comprising a mounting chassis 1
  • the mounting chassis 1 includes a frame 11, a first mounting module 12 and a second mounting module 13.
  • the frame 11 includes a building body connecting end 111 and a stone connecting end 112.
  • the frame 11 is a channel steel, the building body
  • the connecting end 111 is the web of the channel
  • the stone connecting end 112 is one of the wings of the channel
  • the connecting end 111 of the building body is mounted on the building main body 3 through the first mounting module 12, and the stone 2 is connected to the connecting end 112 of the stone.
  • FIG. 3 is a partially enlarged schematic view of the second mounting module 13.
  • the first mounting module 12 includes at least one steel connecting member.
  • the first end of the steel connecting member is fixed to the main body 3 of the building.
  • the second end of the steel connecting member is provided with a slotted hole 121 and is inserted through the slotted hole 121.
  • the building body connection end 111 of the frame 11 is bolted.
  • the second mounting module 13 includes a pressing assembly 131, a fastening assembly 132, and a fastened assembly 133.
  • the pressing assembly 131 cooperates with the fastening assembly 133 to compress the fastening assembly 132 to generate pre-stress and thereby be fastened.
  • the fastening component 133 is defined as follows in the embodiment for convenience of description: the center of gravity of the flap 1332 of the fastening component 133 is taken as the origin 0, as shown in Fig. 6, the horizontal mounting direction of the stone 2 is taken as the X-axis direction, and the stone is used.
  • the thickness direction of 2 is the Y-axis direction
  • the vertical mounting direction of the stone 2 is taken as the Z-axis direction
  • the X-axis is perpendicular to the Y-axis
  • the Z-axis is perpendicular to the plane formed by the X-axis and the Y-axis;
  • the fastening component 132 includes two arcuate arms symmetrically clamped on both sides of the object to be fastened, and the material thereof should be selected from materials having considerable strength and elasticity and toughness, such as metal.
  • Engineering plastic, polymer material, etc. an arcing arm 1320 is formed between the two arch arms, and the arcuate arm includes a first force arm 1321 and a second force arm 1322 connecting the first force arm 1321, the first force arm A sliding end 1323 is formed at the junction with the second force arm, and the sliding end 1323 is formed into a circular arc surface or a sloped surface to ensure less resistance during the slipping process; the first force arm 1321 is away from the second force One end of the arm 1322 defines a pressure receiving end 1324.
  • the pressure receiving end 1324 extends downward to form a rotating positioning edge 1326.
  • the second force arm 1322 forms a fastening end 1325 on a side away from the first force arm 1321.
  • a pressing piece 1327 is coupled to the solid end 1325.
  • the surface of the pressing piece 1327 is provided with an inverted tooth that cooperates with the surface of the wing plate 1332; and the connecting portion of the second force arm 3122 and the pressing piece 1327 is recessed inward to form a pressing piece position.
  • Adjustment zone 1328 through the tablet position adjustment zone 13 28 can achieve slight self-position adjustment of the pressing piece 1327 during the fastening process to make it more flatly attached to the wing plate 1332; the pressed end 1324 of the first force arm 1321 is pressed by the pressing assembly 131 and fastened
  • the object 133 drives the first force arm 1321 and the second force arm 1322 to generate a pre-stress.
  • the first force arm 1321 is a short straight arm
  • the second force arm 1322 is an arcuate arm
  • the thickness of the second force arm 1322 forms a thickness from the sliding end 1323 to the fastening end 1325.
  • the structure can ensure that the entire curved arm is fully and uniformly deformed, and is not easy to be broken; further, the two arched arms are connected between the two pressed ends 1324 by providing an arc-shaped deformation zone 1329, when the first force is When the pressed end 1324 of the arm 1321 is pressed, the arc-shaped deformation zone 1329 is pressed into a straight shape from the arc shape, and the compression deformation process of the arc-shaped deformation zone 1329 is shown in FIG. 13; the design of the arc-shaped deformation zone 1329 ensures tightness.
  • the fastening component 132 has a certain expansion space; the fastening component 132 is provided with a through hole in the Y-axis direction in a region where the two compression ends 1324 and the arc deformation zone 1329 are coupled to each other.
  • the compression assembly 131 includes a stone connecting plate 1311 and a pressure block 1312;
  • the connecting plate 1311 is fastened to the stone 2 and placed on the first side of the first force arm 1321, the two sliding ends 1323 of the arcuate arm abut against the stone connecting plate 1311; the pressure block 1312 is disposed at the second of the first force arm 1321.
  • the two pressure receiving ends 1324 of the arcuate arms abut against the pressure block 1312; the reinforcing stone plates are provided on both sides of the stone connecting plate 1311, and the cross section is U-shaped; the middle portion of the pressure block 1312 is provided with a through hole penetrating in the Y-axis direction, The central portion of the upper surface of the pressure block 1312 is coupled to the rotational positioning rib 1326 along the Z-axis direction. Two lengthwise rotational positioning grooves 13121 are provided.
  • the radius of the rotary positioning groove 13121 is equal to or slightly larger than the radius of the rotary positioning edge 1326, so that when the whole is tight During the fastening process of the solid assembly 132, the rotary positioning rib 1326 can be effectively positioned and rotated in the rotary positioning groove 13121, and the two sliding ends 1323 are only displaced in the X-axis direction on the surface of the stone connecting plate 1311.
  • the fastened component 133 includes a bottom plate 1331 and a wing plate 1332 formed on the bottom plate 1331.
  • the surface of the wing plate 1332 cooperates with the inverted tooth surface of the surface of the pressing piece 1327.
  • the bottom plate 1331 is fastened to the stone connecting end 112 of the frame 11; The two fastening ends 1325 abut against both sides of the flap 1332.
  • the stone connecting plate 1311 and the pressure block 1312 are fastened, and the pressure receiving block 1312 presses the two pressure receiving ends 1324 of the bow arms to the direction of the stone connecting plate 1311.
  • the two sliding ends 1323 of the bow arms occur on the second side surface of the stone connecting plate 1311.
  • the two fastening ends 1325 of the arcuate arms are constrained by the wings 1332 to urge the first and second force arms 1321 and 1322 to generate the pre-stressed fastening flaps 1332.
  • the two compression ends 1324 of the arcuate arms are displaced in the Y-axis direction under the compression of the pressure block 1312, and the rotation positioning ribs 1326 and the rotation positioning grooves 13121 are ensured.
  • the compression end 1324 does not shift in the X and Z directions during the movement, and the distance between the compression ends 1324 of the two arch arms is controllable during the fastening process, and the two sliding ends are simultaneously 1323 abuts against the displacement of the stone connecting plate 1311 in the X-axis direction, and the two fastening ends 1325 are displaced close to each other in the X-axis direction until they abut against the side of the flap 1332, so the two fastening ends 1325
  • the distance between the pressing pieces 1327 is also controllable, and the fastening point on the wing plate 1332 is also controllable; further pressing the two pressure receiving ends 1324 along the Y-axis direction by the pressure block 1312, thereby driving the two slips
  • the end 1323 continues away from
  • Two slot-shaped holes 1333 are formed in the bottom plate 1331 of the fastening component 133, and are fixed to the stone connecting end 112 of the frame 11 by bolts penetrating in the slot-shaped holes 1333, and are fastened by the fastening component 133 through the slot-shaped hole 1333 along the X Direction adjustment;
  • the two fastening ends 1325 of the arcuate arms are adjusted in the Y direction and the Z direction by the enclosing space 1320 on both sides of the flap 1332.
  • the mounting chassis 1 when assembling the stone 2, the mounting chassis 1 is first fixed and fixed on the building main body 3, and then the preset mounting position of the mounted stone 2 relative to the frame 11 in the mounting chassis 1 is determined, according to the preset mounting position in the frame.
  • the stone connecting end 112 of the 11 is positioned by the fastening component 133, and is fixed by the fastener 133 through the slotted hole 1333 to the preset position and fixed; the stone 2 and the stone connecting plate 131 can be manufactured and installed at the factory.
  • the stone connecting plate 1311 and the pressure block 1312 are pre-fastened by bolts, and the pressure block 1312 presses the two pressure receiving ends 1324 of the bow arms to the direction of the stone connecting plate 1311, and the two arms of the bow arms
  • the sliding end 1323 is displaced from the surface of the stone connecting plate 1311, and the two fastening ends 1325 of the arcuate arm are restricted by the wing plate 1332, thereby driving the first force arm 1321 and the second force arm 1322 to generate a pre-stress.
  • the fastening plate 1332 is fastened; at the same time, the two fastening ends 1325 of the arcuate arm are completely fastened by adjusting the position of the Y-axis direction and the Z-axis direction on both sides of the wing plate 1332 by the enclosure space 1320, thereby realizing the stone 2 in the preset installation position. of Properly seated.
  • the flap 1332 will play a key role: first the coordinate system origin 0 of the entire mounting system is placed at its center of gravity, and the positioning or dimensions of all components will be According to this design, the sizing function of the mounting chassis 1 is realized; when mounted in combination with the fastening unit 132, the flap 1332 will participate in the pre-stress fastening process as the main control member, while the fastening member is passed through the flap 1332.
  • the relative displacement in the enclosed space 1320 of 132 can realize the adjustment of the Y-axis and the Z-axis direction of the stone, that is, realize the three-dimensional adjustment function of the mounting chassis 1; finally, the installation is completed, and the gravity load of the stone 2 is also transferred to the installation through the flap 1332.
  • the chassis 1 realizes the bearing and fastening function of the mounting chassis 1.
  • the main structure is the same as that of the first embodiment, except that: the pressing member 131 is in the shape of an I-shape, and the two sides of the middle portion are recessed inwardly to form and tight.
  • the moving end 1323 is abutted against the surface of the stone connecting end 112 of the frame 11, the two ends of the pressing assembly 131 are fixed to the stone connecting end 112 of the frame 11;
  • the fastened component 133 includes a bottom plate 1331 and a wing plate 1332 formed on the bottom plate 1331.
  • the surface of the wing plate 1332 is matched with the inverted tooth pattern provided on the surface of the pressing piece 1327, and the bottom plate 1331 is
  • One end of the bottom portion of the stone material 2 is formed with a limiting groove 133.
  • the limiting portion 1333 is engaged with the limiting groove 21, and the second end of the bottom plate 1331 is engaged.
  • the two fastening ends 1325 of the arcuate arm abut against the two sides of the wing plate 1332; the second end of the bottom plate 1331 forms a slotted hole, and is fixed to the stone 2 by bolts penetrating in the slotted hole on.
  • the fastened component 133 and the stone 2 are assembled in the factory, and the special glue for the stone is filled in the limiting groove 21 to assist the bolt to fasten the fastened component 133 and the stone 2.
  • the flap 1332 will participate in the entire pre-stress fastening as the main control member, representing the fastened component 133 and the stone 2 being tightened.
  • the pressing assembly 131 and the stone connecting end 112 of the frame 11 are fastened.
  • the pressure portion 1311 presses the two pressure receiving ends 1324 of the bow arm toward the frame 11, and the two sliding ends 1323 of the bow arms are in the frame 11.
  • the surfaces of the stone connecting ends 112 are displaced away from each other, and the two fastening ends 1325 of the arcuate arms are constrained by the wings 1332, thereby driving the first force arms 1321 and the second force arms 1322 to generate the prestressed fastening wings 1332.
  • Each of the two ends of the pressing component 131 defines a slotted hole and is fastened to the stone connecting end 112 of the frame 11 by a bolt passing through the slotted hole, and the pressing component 131 is positionally adjusted in the X-axis direction through the slotted hole;
  • the flap 1332 adjusts the position in the Y-axis direction and the Z-axis direction between the two fastening ends 1325 of the arcuate arms by the enclosed space.
  • the main structure is the same as that of the first and second embodiments, and the pressing assembly 131 includes a case 1311 and a pressure block 1312.
  • the box body 1311 includes a first side plate 13111, a second side plate 13112, and a top plate 13113 and a bottom plate 13114 respectively connected to the ends of the first side plate 13111 and the second side plate 13112.
  • the inside of the box body is hollow to form a sliding space.
  • the two sides of the first side plate 13111 extend outwardly to form two connecting portions 13115, and the connecting portion 13115 of the box body 1311 is provided with a slot-shaped hole, and is fixed to the stone 2 by bolts penetrating in the slot-shaped hole;
  • the box body 1311 is disposed on the first side of the first force arm 1321, and the two sliding ends 1323 of the bow arm abut against the surface of the box body 1311.
  • the first side plate 13111 of the box body 1311 defines a first through hole, and the box body is second.
  • a first through hole is formed in the side plate 1312, and a first through hole 1313 is formed through the first through hole.
  • the first side plate 1311 defines a first inclined surface, and the first side is formed on the first side.
  • the second side surface of the squat block 1313 is formed with a first slope a second screw-shaped hole 1314 is slidably disposed in the sliding space, and the first side surface of the second ⁇ -shaped block 1314 is formed with a second inclined surface by the first inclined surface, and the second inclined surface is formed with a through-the-slope a long slot of the second block 1314, the top surface of the second block 1314 is coupled with a push bolt 1315; a top through hole is formed in the top surface of the box 1311, and the push bolt 1315 extends out of the box 1311 through the third through hole;
  • the first side of the pressure block 1312 is coupled with a fastening bolt 13121.
  • the fastening bolt 13121 extends through the second through hole and the long slot, and cooperates with the screw hole of the first ⁇ block 1313 to fasten the pressure block 1312 to the first ⁇ block.
  • the pushing bolt 1315 drives the second ⁇ -shaped block 1314 to push against the displacement of the first ⁇ -shaped block 1313, and then drives the pressure block 1312 to press the two pressure-receiving ends 1324 of the bow-shaped arm to the direction of the box body 1311, and the two sliding ends of the bow-shaped arm 1323 is displaced from each other on the outer surface of the second side plate 13112 of the box body 1311;
  • the fastened component 133 includes a back plate 1331 and a wing plate 1332 formed on the back plate 1331.
  • the back plate 1331 defines a slotted hole in the left and right sides of the wing plate 1332 and passes through the slot type. The hole is fastened to the stone connecting end 112 of the frame 11;
  • the two fastening ends 1325 of the arcuate arms abut against the two sides of the flap 1332, and the two fastening ends 1325 of the arcuate arms are constrained by the flaps 1332, thereby driving the first force arm 1321 and the second force arm 1322 to generate prestress.
  • the flap 1332 is fastened.
  • the first through hole and the second through hole are slot-shaped holes, and the fastening bolts are positionally adjusted in the X-axis direction through the slot-shaped holes; the flaps 1332 are passed through the enclosed space between the two fastening ends 1325 of the bow arms. Position adjustment in the Y-axis direction and the Z-axis direction.
  • a groove-shaped hole is formed in the bottom plate 1331 on the left and right sides of the flap 1332 of the fastening member 133, and is fixed to the stone connecting end 112 of the frame 11 by bolts penetrating in the slot-shaped hole.
  • the fastening component 132 is first placed outside the second side plate 1312 of the casing 1311, and the two sliding ends 1323 of the arcuate arm abut against the outer surface of the second side panel 13112.
  • the pressure block 1312 is placed on the inner side of the first force arm 1321.
  • the two pressure receiving ends 1324 of the arcuate arm abut against the upper surface of the pressure block 1312, and the first squat block 1313 is inserted into the first through hole.
  • the wing 1332 can pass the enclosure space 1320 in the Y-axis direction and the Z-axis direction.
  • Position adjustment after the position of the flap 1332 is fully adjusted, the push bolt 1315 is tightened, and the second shackle 1314 is driven to push the first shackle 1313 to be displaced inward in the Y-axis direction, at which time the flap 1332 is tightly tightened.
  • the position of the solid component 133 itself is no longer moved, that is, the relative displacement between the stone 2 and the chassis structure 1 is no longer occurred; and then the push bolt 1315 is tightened to tighten the pressure block 1312 and the fastened component 133 until the two arch arms are opposite
  • the plate 1332 forms a clamping force to the final completion of the system fastening.
  • the main structure is the same as that of the first, second and third embodiments, with the difference that: the pressing assembly 131 comprises a box 1311, a bottom plate 1316 and a pressure block 1312, the box body 1311 includes a first side plate 13111, a second side plate 13112, and a top plate 13113 connected to the top of the first side plate 13111 and the second side plate 13112.
  • the inside of the box body 1311 is hollow and has a slip.
  • the bottom of the box 1311 is connected to the bottom plate 1316.
  • the bottom plate 1316 on both sides of the box 1311 defines a slot-shaped hole.
  • the bottom plate 1316 is fixed to the stone connecting end 112 of the frame 11 by bolts penetrating in the slot-shaped hole.
  • the box 1311 is disposed on the first side of the first force arm 1321, and the two sliding ends 1323 of the bow arm abut against the surface of the box body 1311; the first side plate of the box body 1311 defines a first through hole, the box body A first through hole is formed in the second side plate 13112; a first through hole 1313 is disposed through the first through hole in the first side plate 1311, and a first side of the first first block 1313 forms a first inclined surface.
  • the first block 1313 a two-sided side surface is formed with a screw hole penetrating through the first sloped surface; and a second dome-shaped block 1314 is slidably disposed in the sliding space, and the first side surface of the second dome-shaped block 1314 is matched with the first sloped surface to form a second side
  • the inclined surface, the second inclined surface is formed with a long groove extending through the second ⁇ -shaped block 1314, the top surface of the second ⁇ -shaped block 1314 is coupled with a pushing bolt 1315; the top surface of the box body 1311 defines a third through hole, and the pushing bolt 1315 passes through the The three-way hole extends out of the box 1311;
  • the first side of the pressure block 1312 is coupled with a fastening bolt 13121.
  • the fastening bolt 13121 extends through the second through hole and the long slot, and cooperates with the screw hole of the first ⁇ block 1313 to fasten the pressure block 1312 to the first ⁇ block.
  • the pushing bolt 1315 drives the second ⁇ -shaped block 1314 to push against the displacement of the first ⁇ -shaped block 1313, and then drives the pressure block 1312 to press the two pressure-receiving ends 1324 of the bow-shaped arm to the direction of the box body 1311, and the two sliding ends of the bow-shaped arm 1323 is displaced from each other on the outer surface of the second side plate 13112 of the box body 1311;
  • the fastening component 133 includes a back plate 1331 and a wing plate 1332 formed on the back plate 1331.
  • the back plate 1331 defines a slotted hole on the left and right sides of the wing plate 1332, and the back plate 1331 passes through A bolt that is inserted into the slotted hole is fixed to the stone 2.
  • the two fastening ends 1325 of the arcuate arms abut against the two sides of the flap 1332, and the two fastening ends 1325 of the arcuate arms are constrained by the flaps 1332, thereby driving the first force arm 1321 and the second force arm 1322 to generate prestress.
  • the flap 1332 is fastened.
  • the first through hole and the second through hole are groove-shaped holes, and the fastening bolt 13121 is positionally adjusted in the X-axis direction by the groove-shaped hole; the wing plate 1332 is adjusted in the Y-axis direction and the Z-axis direction by the enclosed space 1320.
  • a vertically protruding height adjusting plate 13311 is formed on a side portion of the back plate 1331; a height adjusting bolt 13312 is screwed into a screw hole opened at an end of the height adjusting plate 13311 and the bottom of the height adjusting bolt 13312 is in contact with The upper surface of the bottom plate 1316.
  • the fastening component 132 When the stone 2 is installed, the fastening component 132 is first placed outside the second side plate 1312 of the casing 1311, and the two sliding ends 1323 of the arcuate arm abut against the outer surface of the second side plate 13112, and the pressure block 1312 is placed.
  • the fastening assembly 132, the second through hole, the long slot and the first through hole, and the screw hole of the first ⁇ block 1313 are fastened to the first ⁇ block 1313; the second ⁇ block 1314
  • the top surface is combined with a push bolt 1315 and the push bolt 1315 extends out of the box 1311 through the third through hole; then the stone 2 is moved to the vicinity of the fastening assembly 132, and the flap 1332 extends from the fastening end 1325 into the enclosed space.
  • the flap 1332 can be adjusted in the Y-axis direction and the Z-axis direction through the enclosure space 1320. After the position of the flap 1332 is fully adjusted, the push bolt 1315 is tightened to drive the second dome 1314. Pushing the first squat block 1313 to move inward in the Y-axis direction; further tightening the pressure block 1312 and the box body 1311, when the two arch arms form a certain clamping force on the flap 1332, suspend the pushing bolt 1315, and screw The height adjustment bolt 13312 adjusts the level of the stone 2, waiting for the stone After adjusting the position 2 in place and continue to tighten the bolt 1315 to advance to complete the fastening system.
  • the main structure is the same as that of the first, second, third and fourth embodiments, with the difference that: the pressing assembly 131 comprises a first stone connecting member 1311.
  • the first stone connecting member 1311 includes a first backing plate 13111 and a top plate 1312 and is fastened to the lower stone 22 by the first backing plate 13111.
  • the top plate 1312 is placed in a first tightness.
  • the first side of the arm 1321, the second sliding component 132, the two sliding ends 1323 of the arcuate arm abut against the pressure plate 1313; the second pressure block 1312, the first force arm disposed on the second fastening component 132
  • the second side of the 1321, the second fastening component 132, is arcuate The two ends pressed against the second pressure 1324 block 1312 ,;
  • the fastening component 133 includes a first wing plate 1332 and a second stone connector 1331;
  • the second stone connector includes a second back plate 13311 and a second wing 13312 formed on the back plate, the second stone connection
  • the piece 1331 is fixed to an upper stone 21 by the second back plate 13311;
  • the two fastening ends 1325 of the arcuate arms of the first fastening component 132 abut against the two sides of the first wing 1332, the second fastening component 132, the arcuate shape
  • the two fastening ends 1325 of the arm abut against the two sides of the second wing 13312;
  • the first wing plate 1332 and the pressure plate 1313 are formed in a box beam body 134, and fastened to the stone connecting end 112 of the frame 11 through the box beam body 134;
  • the top plate 13112 and the first pressure block 1312 are fastened, and the first pressure block 1312 presses the two pressure receiving ends 1324 of the arcuate arms of the first fastening component 132 to the top plate 1312, and the two arms of the first fastening component 132 are slid
  • the displacement end 1323 is displaced from each other at a lower surface of the top plate 13112.
  • the two fastening ends 1325 of the arcuate arms of the first fastening component 132 are constrained by the first wing plate 1332, thereby driving the first fastening component 132.
  • the force arm 1321 and the second force arm 1322 generate a pre-stressed fastening first wing 1332;
  • the fastening platen 1313 and the second pressure block 1312, the second pressure block 1312, the two compression ends 1324 of the arcuate arms that press the second fastening component 132 are displaced toward the pressure plate 1313, and the second fastening component 132 is arcuate.
  • the two sliding ends 1323 of the arm are displaced from each other at a surface of the pressing plate 1313.
  • the second fastening component 132 and the two fastening ends 1325 of the arcuate arms are restricted by the second wing 13312, thereby driving the second fastening component.
  • the first force arm 1321 and the second force arm 1322 generate a pre-stressed fastening second wing 13312.
  • the first end of the top plate 13112 forms a slotted hole and is tightly coupled to the first pressure block 1312 by a bolt penetrating the slotted hole Solid, and the first pressure block 1312 and the first fastening component 132 are positionally adjusted in the Y-axis direction through the slotted hole; the two fastening ends 1325 of the arcuate arm of the first fastening component 132 pass through the enclosure space 1320 at the first Position adjustment of the X-axis direction and the Z-axis direction on both sides of the flap 1332;
  • the pressing plate 1313 forms a slotted hole and is fastened by a bolt and a second pressure block 1312 which are bored in the slotted hole, and the second pressure block 1312 and the second fastening component 132 pass through the slotted hole of the pressure plate 1313.
  • the position adjustment is performed in the Y-axis direction; the second flap 13312 is adjusted in the X-axis direction and the Z-axis direction between the two fastening ends 1325 of the arcuate arms of the second fastening component 132 by the enclosure space 1320.
  • the second end of the top plate 13112 is bent to form a first limiting plate, and the top of the lower stone 22 is formed with a first limiting slot 221, which is matched with the first limiting plate 13113, and the first limiting plate 13113 is engaged in the first limiting slot 221;
  • the bottom end of the second backing plate 13311 is bent to form a second limiting plate 13313, and the bottom of the upper stone 21 forms a second limit corresponding to the second limiting plate 13313.
  • the slot 211 and the second limiting plate 13313 are engaged in the second limiting slot 211.
  • the first back plate 13111 and the second back plate 13311 are both provided with slot-shaped holes, and the first stone connecting member 1311 and the second stone connecting member 1331 are respectively fixed to the lower stone 22 and the upper portion by bolts penetrating in the slot-shaped holes. Stone 21 on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Finishing Walls (AREA)

Abstract

一种石材安装结构,包括建筑主体(3)以及安装于建筑主体(3)上的石材(2),安装结构还包括一安装底盘(1),石材(2)通过安装底盘(1)调节至设定位置并进行紧固,且在紧固过程中石材(2)的位置不发生改变。石材安装结构提供一种对弹性材料预应力动态产生过程的激发和控制,形成稳定的预应力结构,并可在安装过程中进行三维调节从而大幅度提高石材安装精确度,具有良好的牢固度、精准性、安全度、便捷性和易换性的特点。

Description

石材安装结构及安装石材的方法 技术领域
本发明涉及一种建材安装结构及安装方法,尤指一种千挂石材安装结构及安装石材的方 法。 背景技术
石材千挂是建筑外墙的一种施工工艺,该工艺是通过连接件和螺栓直接将饰面石材安装 于建筑结构的外表面, 石材与结构之间留出一定的空间。 该工艺与传统的湿作业工艺相比, 免除了灌浆工序, 不仅可以缩短工期、 减轻建筑物自重、 提高抗震性能, 而且还有效地防止 了灌浆中的盐碱等色素对石材的渗透污染, 提高其外观质量和装饰效果。
目前现行的国家规范 《国家建筑标准设计图集》 J103-2~7 "石材(框架)幕墙"中, 釆用 的标准千挂石材安装方式有背栓式、 元件式及短槽式结构。
其中"背栓式结构"的安装方式大致为: 根据设计要求安装立柱与横梁及铝合金连接件, 在石材背部打孔、设置背栓及铝合金挂件, 通过挂件与连接件的配合将石材搁置在立柱与横 梁上, 调节铝合金挂件上部的调整螺钉修正石材的位置, 石材留缝处填充密封胶, 至此完成 石材幕墙的安装。
可见这样的安装方式, 是石材并未与立柱和横梁实现紧固的"安装", 要实现这样"背栓 式"千挂石材搁置式的 "安装" , 石材上的 "C"型挂件与横梁上的 "C"型连接件之间的配合是石 材能否实现有效搁置的关键, 而只有在每一块石材上的每一个挂件与连接件的搁置点都能实 现良好地配合, 同时每一处调整螺钉都能够有效地对石材进行调节的前提下, 才能根据设计 要求完成石材的 "安装"。 因此这就要求挂件与连接件之间的设计留缝必须覆盖下述所有客观 存在的误差, 否则将无法实施。
首先对于建筑物现场的石材安装基层施工部分:主体结构的立柱与横梁出厂时的弯曲度 是存在误差的, 现场焊接安装时也会发生变形, 因此安装后必然存在水平、 垂直及平整度的 误差; 连接件在横梁上的紧固点的位置存在误差;
其次对于工厂内石材及五金配件的加工和组装部分: 石材的尺寸、厚薄及平整度存在误 差; 锚孔的直径、 深浅、 垂直度存在误差; 锚孔的定位及间距存在误差; 锚栓、 挂件与连接 件本身的精度存在误差;
最后对于建筑物现场石材安装部分: 锚栓在石材上的固定存在深浅或角度的误差; 挂件 与锚栓紧固后与石材的平行度存在误差等。
因为每个石材单元是由一块石材和多个锚栓及挂件所组成, 同时要与横梁上的多处连接 件或其他部位的点或面相结合, 而石材与立柱和横梁均为刚性材料, 安装的过程并不具备三 维调节的功能, 加之上述误差的客观存在及其不确定性与不可控, 势必导致石材上的挂件与 横梁上的连接件互相配合时结果的不确定, 而一旦两者无法顺利安装, 施工现场的处理方式 可能是:
( 1 )返工, 即将偏差较大的构件就地整改后重新安装, 比如在原先的孔位附近重新打 孔, 显然这对构件的应力再次进行了破坏, 且新开孔的牢度与稳定性同样是不确定的;
( 2 ) 更换, 即用新的构件更换无法安装的构件, 这无疑造成了浪费, 增加了安装的成 本;
( 3 )强行安装, 即工人在现场强行将挂件或连接件撬开进行安装, 其结果是构件变形、 状态不稳定, 且石材的三维调节更加困难。
"背栓式"千挂石材其他结构性问题还有:
1、 铝合金挂件与铝合金连接件均为开放式的 "C"型结构、 而非封闭式结构, 其受力结构 本就不稳定、 不合理, 因此承受石材重量荷载后易变形、 不牢固, 当重力等荷载不同时结构 的变形亦是不确定的;
2、 根据规范, 挂件和锚栓固定后与石材之间须留有一定空隙, 因此锚栓锚杆没有完全 进入石材内部, 而锚栓是在石材内部进行根部膨胀的, 锚杆并不膨胀, 锚杆与石材之间是有 空隙的, 所以锚杆在石材表面附近处于悬臂状态, 受力时是会发生位移的、 不稳定的。 另外, 对于锚栓与挂件这一组合体来说, 一端在锚栓的膨胀点附近受到的是石材的重力, 另一端在 挂件的 "C"型结构上部受到的是连接件的承载力, 也就是说石材重力与承载力不在同一轴线 上。然而在该组合体中也并没有类似于三角形钢屋架那样的非同轴重力与承载的稳定转力结 构, 可以将来自不同轴向的荷载通过构件有效地转移到固定的承载点上。 所以, 上述结构受 力后的结果是, 锚杆中部与石材面部的接触点成为了刚性的撬点, 其附近的石材极有可能出 现裂缝、 破碎甚至崩裂的危险, 同时石材的紧固点也会发生偏移, 引起整个结构的不稳定;
3、 在调整螺钉对石材的垂直度进行调整的过程中, 一般选用的调整螺钉为标准的 M6 螺栓, 螺距为 1mm, 连接件的型材壁厚一般为 4mm, 因此调整螺钉在铝合金连接件壁厚内 的有效行程最多为 3圏完整螺紋。 根据规范 JGJ133 , 单块石材板面面积不大于 1.5m2, 暂取 1 m2; 厚度不小于 25mm, 暂取 25mm; 石材的自重标准值取 28KN/m3, 不难计算出单块石 材的重量约为 70KG。 假定在石材上部设两个搁置与调整点, 且每个点挂件与连接件的配合 都很顺利, 调整螺钉也能自如地在连接件螺紋内转动, 这时, 石材重量的承载点将由挂件与 连接件的接触点, 转移至挂件与调整螺钉顶端的接触点。 试想, 如此重量的石材仅靠两个三 圏铝合金螺紋承载, 且螺紋与螺钉的实际接触面宽度小于 0.5mm, 显然不合理; 而且调节过 程中, 承受重载的调整螺钉同时还要在连接件的铝合金螺紋内往复运动, 毫无疑问螺钉的强 度与硬度是大于铝合金型材的, 因此调整螺钉在连接件螺紋内转动的过程中, 首先被磨损或 损坏的一定是铝合金螺紋,这样石材的承载点必然松动、不稳定,给整个结构带来安全隐患。
可是更多的情形是, 由于上述误差或其他因素导致, 安装后挂件与连接件之间形成卡死 状态, 即两者无法发生纵向相对位移。 然而此时工人依然可以拧动调整螺钉, 因为材质的关 系, 仅仅是铝合金螺紋与调整螺钉之间的摩擦阻力并不足以抵抗挂件与连接件之间的阻力。 于是, 当工人发现拧动调整螺钉后石材没有发生预想的位移时, 挂件内的铝合金螺紋已经被 破坏。 这样对石材的调整就无法进行, 而调整空间与调整阻力的来源根本无法观察、 无法判 断, 石材重量的具体承载点也不得而知。 当发生上述情况时现场的处理方式应该是, 将挂件拆下、 更换重装。 可如果不进行整改 而就此安装的话, 石材便不能实现设计要求的有效搁置, 一旦受到震动、 碰撞等外力影响, 即会加剧不牢固、 不稳定因素对石材的破坏, 最终引起石材碎裂乃至坠落, 存在安全隐患;
4、 安装后如果有局部石材需要更换, 将无法用相同的结构方式合理安装, 对日后的使 用及维护带来很大的麻烦;
5、 釆用两组铝合金件安装, 铝材用量较大, 且石材及构件返工报废的现象时有发生, 不仅增加了安装成本, 也与发展资源节约型的国民经济战略不符。
另外, 专利 CN102535695的石材安装方式与上述规范基本相同, 只是在两组 C型铝合 金挂件与石材之间增设了弹簧或弹性钢片等緩冲组件, 一定程度增加了石材幕墙的柔韧性, 但前提是石材重量一致、每个安装点的承重与阻力一致, 否则无法根本解决石材紧固的安全 性及便捷性问题, 上述缺陷依然存在。
专利 CN102587549的石材安装方式与上述规范基本相同, 只是在角形托板上设置长条 形调节孔, 在调整挂接件侧面增设调整角片, 以使石材可以进行三维调节, 但没有根本解决 石材紧固的安全性及便捷性问题, 上述缺陷依然存在。
专利 CN201738542的石材安装方式与上述规范基本相同, 只是将横梁上的 C型连接件 改为角钢转接件, 并在其上设置条形安装孔与定位孔, 以使石材可以进行三维调节和侧向定 位, 但没有根本解决石材紧固的安全性及便捷性问题, 上述缺陷依然存在。
"元件式结构"的安装方式大致为: 根据设计要求安装立柱与横梁及连接件, 在石材边缘 开槽、 填充专用胶与不锈钢挂件紧固, 通过挂件将石材与横梁的连接件实施安装, 最后在石 材留缝处填充密封胶, 至此完成石材幕墙的安装。
可见要实现"元件式 "千挂石材的可靠安装, 除了必须避免下述客观存在的误差以外, 专 用胶的有效填充——及时、 密实、 表面洁净千燥及填胶后的养护等, 将是整个结构牢固、 稳 定的关键。
首先对于石材安装基层: 与背栓式一样主体结构的立柱与横梁存在一定的水平、 垂直及 平整度误差; 连接件在横梁上的紧固点的位置存在误差;
其次对于石材及五金配件的加工:石材尺寸、厚薄及平整度存在误差;每个槽孔的宽度、 深浅、 垂直度存在误差; 槽孔定位存在误差; 挂件与托板等连接件本身的精度存在误差; 最后对于现场安装部分: 挂件在石材上的固定存在深浅或角度的误差; 石材与挂件间的 粘结存在不确定性(如下述)等。
根据规范, 石材与不锈钢挂件之间须用环氧树脂型专用胶黏结。 为了使专用胶能达到最 佳设计强度, 需同时具备以下基本条件:
时间——环氧胶一般为双组份, 从混合到固化是有一定时间限制的。 刚开始混合物基本 为液态、粘性较强, 必须尽快将其填充至需要的区域。 因为混合物很快会开始凝胶也可能 "突 变"成硬橡胶似的凝胶物, 其硬度逐渐增强, 同时粘性逐渐丧失;
环境——被粘结物的粘结表面必须相当的洁净、 千燥;
密实——为保证粘结效果, 专用胶的填充必须密实, 与被粘结物充分接触;
养护——专用胶填充后不能对其稳定状态进行任何千扰。 因为混合物开始固化后, 具备 强度的同时也会变脆, 抗剥离、 抗开裂、 抗冲击性能较差。 然而此时其固化过程并未结束, 需继续养护一段时间以达到其最终的反应强度。
然而在石材千挂工程具体实施过程中:
由于石材槽孔的清洁、 石材的吊装、 就位、 调整等因素, 专用胶难以做到随拌随用, 石 材上的若千个挂件的紧固点也很难做到同时填胶, 即"时间"无法保证。 结果是若千个挂件紧 固点内专用胶的状态各不相同, 有的粘性很强、 还未开始固化, 有的开始固化了、 粘性已经 降低, 而有的已基本固化、 没有粘性;
由于施工现场的特殊性, 受到地理、 气候、 设备、 时间等多方面因素的限制, "环境 "是 无法保证的。 例如铝合金型材氟碳喷涂工艺, 对喷涂前的型材表面处理要求是相当高的, 除 了要经过去油去污、 水洗、 碱洗、 酸洗、 纯水洗等一系列标准程序外, 更重要的前提是: 必 须在一个空气湿度、 洁净度有一定标准的、 环境可控的厂房内进行操作, 即只有过程可控才 能得到确定的结果。 然而在目前的石材千挂施工现场, 空气湿度和洁净度等等显然是不可控 的, 要做到石材与挂件的表面相当洁净、 千燥是非常困难的, 这无疑将直接影响到专用胶的 黏结质量;
还有, 石材上部和下部与挂件的粘结点处, 其专用胶的填充密实度是不同的, 位于石材 下部槽孔内的专用胶因承受石材自重, 其密实度往往会大于石材上部槽孔内的专用胶; 其他 一些部位由于操作空间、 可视角度等原因, 也会影响填胶的密实度, 因此"密实"无法保证; 由于填胶后还要对石材进行位置调整, 五金组件可能发生的弹性形变, 以及不确定的外 力等都会对专用胶的稳态造成千扰, 故"养护"亦无法保证。
可见石材与挂件间每个点的粘结状态是不确定的、 不可控的, 两者之间并未形成有效的 紧固, 这也导致石材具体的承载点是不确定的、 不可控的, 同时上述种种误差也是客观存在 的和不确定与不可控的, 所以整个结构的牢固性与稳定性也是不确定的,一旦受到震动、 碰 撞等外力影响, 很容易引起石材松动乃至坠落, 存在较大的安全隐患。
"元件式"千挂石材其他结构性问题还有:
1、 不锈钢挂件的一端为承受石材重量的重力点, 另一端则是搁置在托板上的承载点, 即石材重力与承载力不在同一轴线上。然而该结构也并非类似于三角形钢屋架那样的非同轴 重力与承载的稳定转力结构,可以将来自不同轴向的荷载通过构件有效地转移到固定的承载 点上。 相反, 挂件、 托板与连接件紧固后成为具有一定弹性的组件, 因此受力后会发生一定 的形变, 使挂件在与石材相连的部位产生向外的撬力, 而石材和挂件均为刚性材料, 专用胶 固化后也为脆性,都不具备緩冲性能,所以此形变产生的撬力很容易导致专用胶脱离、脆裂。 我们知道石材为天然材料, 其材质均匀性较差, 弯曲强度离散型大,属于脆性材料,在生成、 开釆、 加工过程中难免产生一些轻微的内伤, 很难被发现; 然而, 上述组件对石材形成的撬 力相当于石材的重量, 但距离支点较远, 因此距支点较近的石材受到的反作用力将大于其自 重,而石材受力的部位即挂件与石材粘结的部位,由于边缘开槽恰恰成为石材最薄弱的部位, 也就是说, 厚度只有原来的不到三分之一, 深度即挂件的开槽深度, 如此小面积的天然石材 要承受比整块石材的自重还要大的撬力, 显然更容易造成石材崩角、 碎裂甚至坠落的危险;
2、 安装后如果有局部石材需要更换, 将无法用相同的结构方式合理安装, 对日后的使 用及维护带来很大的麻烦;
3、 完整的石材幕墙工程并不仅仅是若千块石材的平面排布, 而是由许多点、 线、 面所 组成, 如阴阳角、 门窗洞口、 与其他饰面材质的交界面等等, 而且石材留缝处都要用专用密 封胶填充, 所以当所有石材都安装完毕后将成为一个整体。 再者, 石材与挂件之间、 挂件与 托板之间都几乎为刚性连接 , 没有任何緩冲余地, 因此若其中的某一块石材出现裂缝或不慎 被破坏, 受到影响的可能会是周边的若千石材甚至更多。
另外, 专利 CN102518235 的石材安装方式与上述规范基本相同, 只是在托板与挂件之 间增设了防止挂件侧滑和上下跳动的限位码, 挂座上设有锯齿片和调节螺栓, 以使石材可以 进行前后与上下方向的调节, 但前提是石材与构件均没有误差, 否则无法根本解决石材紧固 的安全性及便捷性问题, 上述缺陷依然存在。
专利 CN101624850的石材安装方式与上述规范基本相同, 只是将石材端部开槽改为石 材侧面开斜槽, 以使石材可以进行三维调节, 但没有根本解决石材紧固的安全性及便捷性问 题, 上述缺陷依然存在, 而且石材开斜槽施工难度更大, 更容易损坏、 稳定性差。
专利 CN1737288 的石材安装方式与上述规范基本相同, 只是将托板与挂件之间的固定 改为压板形式, 没有根本解决石材紧固的安全性及便捷性问题, 上述缺陷依然存在。
专利 CN202152494的石材安装方式与上述规范基本相同, 只是在托板与上挂件连接处 设有调整螺钉, 并没有根本解决石材紧固的安全性及便捷性问题, 上述缺陷依然存在。
"短槽式结构"的安装方式大致为: 根据设计要求安装立柱与横梁及连接件, 在石材边缘 开槽, 填充专用胶与不锈钢蝶形背卡紧固, 通过蝶形背卡将石材与横梁的连接件实施紧固, 最后在石材留缝处填充密封胶, 至此完成石材幕墙的安装。
用此方式安装石材幕墙存在的问题与上述 "元件式结构 "基本相同, 但有一点除外, 即石 材的重心与挂件承载的受力点位于同一轴线。 "短槽式"结构是通过蝶形背卡与专用胶, 同时 将上下两块石材粘结在一起, 虽然重力与承载力位于同一轴线, 但蝶形背卡与连接件为具有 一定弹性的组件, 受力后仍会发生一定形变, 对石材产生向外的撬力, 同样存在安全隐患。
更重要的是, "短槽式结构 "上部石材的重力荷载完全由下部石材来承载。 我们知道石材 为天然材料, 其材质均匀性较差, 弯曲强度离散型大, 属于脆性材料, 在生成、 开釆、 加工 过程中难免产生一些轻微的内伤,很难被发现;作为石材幕墙, 虽然不承担主体结构的荷载, 但它要承受自重、 风、 地震和温度等荷载和作用对它的影响, 如果再加上上部石材的重力荷 载, 那么处于下部的石材其受力状况是极不稳定的。 再者, 因为环氧胶和密封胶已经将整个 石材幕墙几乎连为一体,所以一旦下部石材出现破损 ,整个石材幕墙的稳定结构随之被破坏, 其结果是未知的, 发生危险的时间也是未知的。 因此, "短槽式结构 "中石材的抗震性能与建 筑主体是不匹配的, 虽然规范对此方式的高度使用范围有所限制, 但此限制并没有体现其安 全性的充分的科学依据。
另外, 专利 CN102080423 的石材安装方式与上述规范相同, 没有解决石材紧固的安全 性及便捷性问题, 上述缺陷依然存在。
专利 CN101787802公布了一种短槽式千挂石材的拆换方法, 拆换后石材的安装方式与 上述规范基本相同, 只是将蝶形背卡切割后石材幕墙的整体性变差, 且石材位置调整好再填 胶时, 填胶的质量是无法保证的, 没有根本解决石材紧固的安全性及便捷性问题, 上述缺陷 依然存在。
专利 CN102312541 的石材紧固方式与上述规范相同, 只是在石材连接件与龙骨之间增 设了滑块、 过桥连接件、 转角式连墙件等构件, 在进行单块石材安装时可实现三维调节, 但 多块石材安装时调节难度较大, 没有根本解决石材紧固的安全性及便捷性问题, 上述缺陷依 然存在。
专利 CN102561638 的石材安装方式与上述规范基本相同, 只是在石材背面粘接有力学 性能增强块, 这样石材端部不用开槽, 石材本身的稳定性增强, 但没有根本解决石材紧固的 安全性问题, 上述缺陷依然存在。 同时, 石材与力学性能增强块之间的有效粘接变得尤为重 要, 否则上述误差易产生对胶的单边撕扯力, 造成石材脱胶等新的安全隐患。
由于上述规范中的三种石材千挂结构及相关专利所公开的技术,都无法做到对石材有效 的三维调节, 同时对客观存在的各种误差宽容度较差, 因此在建筑转角部位的石材千挂结构 设计时, 往往釆用两块石材空缝或错缝的方式处理, 而无法单独使用带转角的整块石材进行 安装。 显然此类通过两块石材拼角的安装方式相对整块石材而言, 整体性与刚性较差, 遇到 外力或结构轻 4敫位移时两块石材容易碰撞而发生危险;如果石材的尺寸出现误差或安装时发 生偏差, 石材间的留缝难以对齐, 视觉效果较差。 故一旦可以实现单块石材进行建筑转角部 位的千挂, 不但石材幕墙的整体刚性增强了, 建筑立面设计的自由度也大大扩展, 而且施工 程序亦可得到筒化。
其他在国家标准《建筑幕墙》 GB T 21086, 行业标准《金属与石材幕墙工程技术规范》 JGJ 133等国家规范文件, 和专利 CN101424119等, 有关石材紧固安装的相关内容都有上述 类似的表述。 总而言之, 上述规范及专利中的石材千挂结构关于石材的紧固方式、 安装方式 及承载结构都有一定的缺陷, 且没有针对性的解决措施与技术方案, 因此相关的安全隐患始 终存在, 也成为一直困扰相关技术人员的一大难题。
然而随着时代的进步, 各行各业的专业技术都在不断更新, 人们对千挂石材的市场需求 也是有增无减, 可是能有效提升石材千挂安装安全性与便捷性的核心技术仍未解决, 各类有 关千挂石材的安全事故还时有发生。针对石材紧固这类严重影响产业升级,制约节能、环保、 高效的现代化发展的问题, 目前尚无比较合理的解决方式, 而本发明填补了此领域的空白。 发明内容
本发明的目的在于克服现有技术的缺陷, 而提供一种石材安装结构。 本发明中的石材安 装结构具有尺寸界定、 三维调节、 承载与紧固等多种重要功能及以下特性:
1、 牢固性: 可通过第二安装模块对石材与框架的石材连接端实施牢固、 稳定、 有效地 预应力紧固;
2、 精准性: 可于石材的任意安装点在 X、 Y、 Ζ轴三个方向实现对石材的位置调节, 满 足设计对千挂石材安装精准性的要求;
3、 安全性: 针对天然石材易脆的敏感性特征, 在多组第二安装模块同时对石材进行单 点独立预应力紧固时, 完全实现整体无扭曲、 无多余内应力紧固; 4、 便捷性: 通过前期设计模块的设定, 大大降低了现场操作的技术难度, 减少了操作 环节与内容, 同时所有零部件及组合件可实现工厂加工及预制, 不但可以大幅减少工期、 提 升质量, 而且对成本节约的贡献也相当可观;
5、 易换性: 安装后一旦发生石材破损等情况需要对石材进行更换时, 可通过松开相应 螺栓来解除预应力紧固, 从而轻松实现石材的局部单独更换。
本发明中的第二安装模块是一种动态生成的具有稳定预应力结构的紧固模块。
预应力 [prestressing force]—般是指材料制作中或其他物件形成过程中, 预先对其在外荷 载作用下的受拉区, 使用相应的技术和工艺引入的压应力, 预引的压应力构成材料或物件的 预应力结构。 在材料或物件中引入压应力, 形成稳定的预应力结构的技术和工艺一般统称为 预应力技术。 拥有预应力结构的材料或物件一般称为预应力材料或预应力物件。
众所周知, 材料或物件的预应力结构可以改善材料或物件的使用性能。 材料或物件的使 用性能一般是指其自身刚性的提高, 自身抗震动性能的提升, 自身弹性强度的增强, 从而增 加材料或物件的耐久性和在其使用过程中的安全性。
预应力技术古已有之, 乃中国古人籍此改善生活用具性能, 加固补偿劳作工具的一种工 艺。 如木桶套箍(引入预应力)可以耐久防漏等。 最近五十年, 随着预应力技术的不断突破, 预应力结构在建筑等领域获得了极大的应用, 而预应力材料也突破了高强度钢材等的制约, 逐步向强度高、 自重轻、 弹性膜量大的聚碳纤维和聚酯纤维类等非金属型转变。
但遗憾的是,预应力材料或物件至今的大部分应用依然还局限于改善材料和物件自身的 物理性能领域。 作为预应力材料, 其物理性能固然有显著加强, 但其内置的稳定的预应力结 构必有其应有使用的创新领域。
在外力的作用下, 材料或物件中引入压应力的过程, 一般称为材料或物件内置预应力的 产生过程。 一般而言, 任何弹性材料, 在外力的作用下, 都可产生内置预应力, 外力的作用 过程, 就是弹性材料内置预应力产生的过程。 对弹性材料内置预应力产生的动态过程用外物 实施控制, 就形成材料或物件的内置预应力的稳定结构。
本发明使用弹性紧固组件, 通过压迫组件产生外力对其引入压应力, 并使用被紧固组件 来控制压应力引入的动态过程, 最后形成压迫组件、 紧固组件和被紧固组件一体的稳定的预 应力结构, 从而完成和达到石材的紧固效果。 由于预应力紧固组件的使用, 石材紧固安装的 牢固度、 稳定度、 安全度和便利度也大大加强。
本发明的目的是解决目前千挂石材技术的不足,提供一种对弹性材料预应力动态产生过 程的激发和控制, 形成稳定的预应力结构, 并可在安装过程中进行三维调节从而大幅度提高 石材安装精确度的石材安装结构。 本发明建立的石材安装结构, 能够大大增强被安装石材的 安装的牢固度、 精准性、 安全度、 便捷性和易换性。
实现上述目的的技术方案是:
为解决上述技术问题, 本发明实现了一种石材安装结构, 包括建筑主体以及安装于所述 建筑主体上的石材, 所述安装结构还包括一安装底盘, 所述石材通过所述安装底盘调节至设 定位置并进行紧固, 且在紧固过程中所述石材的位置不发生改变。
本发明的进一步改进在于, 上述安装底盘包括框架、 第一安装模块以及第二安装模块, 所述框架包括一建筑主体连接端与一石材连接端,所述建筑主体连接端通过所述第一安装模 块安装于所述建筑主体上, 所述石材通过所述第二安装模块调节至设定位置并进行紧固, 且 在紧固过程中所述石材的位置不发生改变。
本发明的进一步改进在于, 上述第一安装模块包括至少一个型钢连接件, 所述型钢连接 件的第一端固接于所述建筑主体,所述型钢连接件的第二端开设有槽型孔并通过穿设于所述 槽型孔中的螺栓连接所述框架的建筑主体连接端。
本发明的进一步改进在于,上述第二安装模块包括压迫组件、紧固组件以及被紧固组件, 所述被紧固组件位置可调节地固定于所述框架上,所述压迫组件位置可调节地固定于所 述石材上;
或者, 所述被紧固组件位置可调节地固定于所述石材上, 所述压迫组件位置可调节地固 定于所述框架上;
通过所述压迫组件与被紧固组件的配合压迫所述紧固组件生成预应力进而紧固所述被 紧固组件, 其中:
所述紧固组件包括两个对称夹持于所述被紧固物体两侧的弓形臂, 两弓形臂之间夹设形 成一围合空间, 所述弓形臂包括一第一力臂与一连接所述第一力臂的第二力臂, 所述第一力 臂与所述第二力臂的连接处形成一滑移端,所述第一力臂于远离所述第二力臂的一侧形成一 受压端, 所述第二力臂于远离所述第一力臂的一侧形成一紧固端, 所述第一力臂的受压端接 受所述压迫组件的压迫并配合所述被紧固物体驱使所述第一力臂与第二力臂生成预应力。
本发明的进一步改进在于, 上述压迫组件包括一石材连接板和一压力块; 所述石材连接 板紧固于所述石材且置于所述第一力臂的第一侧,所述弓形臂的两滑移端抵靠于所述石材连 接板;所述压力块设置于所述第一力臂的第二侧,所述弓形臂的两受压端抵靠于所述压力块; 所述被紧固组件包括一底板和一形成于所述底板的翼板,所述底板紧固于所述框架的石 材连接端; 所述弓形臂的两紧固端抵靠于所述翼板两侧面;
紧固所述石材连接板与所述压力块,所述压力块压迫所述弓形臂的两受压端向所述石材 连接板方向位移, 所述弓形臂的两滑移端于所述石材连接板的表面发生相互远离的位移, 所 述弓形臂的两紧固端受到所述翼板的限位,从而驱使所述第一力臂与所述第二力臂生成预应 力紧固所述翼板。
本发明的进一步改进在于, 上述被紧固组件的底板上形成槽型孔, 并通过穿设于所述槽 型孔内的螺栓固定于所述框架的石材连接端,且所述被紧固组件通过所述槽型孔沿一第一方 向进行位置调整;
所述弓形臂的两紧固端通过所述围合空间在所述翼板两侧面进行一第二方向和一第三 方向的位置调整。
本发明的进一步改进在于, 通过一螺栓紧固所述石材连接板的第一端与所述压力块, 所 述石材连接板的第二端开设有复数个槽型孔,并通过穿设于所述槽型孔内的螺栓固定于所述 石材上。
本发明的进一步改进在于,上述压迫组件中部两侧向内凹陷形成与所述紧固组件两弓形 臂内侧配合的压力部; 所述压迫组件的压力部夹设于所述两弓形臂之间, 所述弓形臂的两受 压端抵靠于所述压力部, 且所述弓形臂的两滑移端抵靠于所述框架的石材连接端的表面, 所 述压迫组件的两端固定于所述框架的石材连接端;
所述被紧固组件包括一底板和一形成于所述底板的翼板,所述底板的第一端弯折形成一 限位部,所述石材的侧面形成与所述限位部配合的限位槽,所述限位部卡合于所述限位槽内, 所述底板的第二端固定于所述石材上; 所述弓形臂的两紧固端抵靠于所述翼板两侧面; 紧固所述压迫组件与所述框架的石材连接端,所述压力部压迫所述弓形臂的两受压端向 所述框架方向位移,所述弓形臂的两滑移端于所述框架的石材连接端表面发生相互远离的位 移, 所述弓形臂的两紧固端受到所述翼板的限位, 从而驱使所述第一力臂与所述第二力臂生 成预应力紧固所述翼板。
本发明的进一步改进在于,上述压迫组件的两端分别开设有一槽型孔并通过穿设于所述 槽型孔内的螺栓紧固于所述框架的石材连接端,且所述压迫组件通过所述槽型孔沿一第一方 向进行位置调整;
所述翼板在所述弓形臂的两紧固端之间通过所述围合空间进行一第二方向与一第三方 向的位置调整。
本发明的进一步改进在于, 上述底板的第二端形成一槽型孔, 并通过穿设于所述槽型孔 内的螺栓固定于所述石材。
本发明的进一步改进在于, 上述压迫组件包括一箱体和一压力块, 所述箱体包括一第一 侧板、 一第二侧板和分别连接于所述第一侧板和第二侧板端部的顶板和底板, 所述箱体内部 中空形成有一滑移空间; 第一侧板的两侧分别向外延伸形成两连接部, 所述箱体通过所述连 接部紧固于所述石材上; 所述箱体设置于所述第一力臂的第一侧, 所述弓形臂的两滑移端抵 靠于所述箱体的表面所述箱体第一侧板开设有一第一通孔,所述箱体第二侧板开设有一第二 通孔; 一第一锲形块, 通过所述第一通孔穿设于所述第一侧板, 所述第一锲形块的第一侧形 成一第一斜面, 且所述第一锲形块第二侧侧面形成有一与所述第一斜面贯通的螺孔; 以及一 第二锲形块, 滑设于所述滑移空间内, 所述第二锲形块的第一侧侧面配合所述第一斜面形成 有一第二斜面, 所述第二斜面形成有一贯穿所述第二锲形块的长槽, 所述第二锲形块的顶面 结合有一推进螺栓; 所述箱体顶面开设有一第三通孔, 所述推进螺栓通过所述第三通孔伸出 所述箱体外;
所述压力块的第一侧面结合有一紧固螺栓, 所述紧固螺栓贯穿所述第二通孔与所述长 槽, 并配合所述第一锲形块的螺孔将所述压力块紧固于所述第一锲形块, 推进螺栓驱动所述 第二锲形块推抵所述第一锲形块位移,进而带动所述压力块压迫所述弓形臂的两受压端向所 述箱体方向位移, 所述弓形臂的两滑移端于所述箱体第二侧板外表面发生相互远离的位移; 所述被紧固组件包括一背板和一形成于所述背板的翼板,所述背板紧固于所述框架的石 材连接端;
所述弓形臂的两紧固端抵靠于所述翼板两侧面,且所述弓形臂的两紧固端受到所述翼板 的限位, 从而驱使所述第一力臂与所述第二力臂生成预应力紧固所述翼板。
本发明的进一步改进在于, 上述第一通孔与所述第二通孔为槽型孔, 所述紧固螺栓通过 所述槽型孔沿一第一方向进行位置调整;所述翼板通过所述围合空间进行所述第一方向与一 第三方向的位置调整。
本发明的进一步改进在于, 上述背板在所述翼板左右两侧分别形成一槽型孔, 并通过穿 设于所述槽型孔内的螺栓固定于所述框架的石材连接端上。
本发明的进一步改进在于, 上述箱体的连接部上开设有槽型孔, 并通过穿设于所述槽型 孔内的螺栓固定于所述石材上。
本发明进一步改进在于, 上述压迫组件包括一箱体、 一底板和一压力块, 所述箱体包括 一第一侧板、 一第二侧板和连接于所述第一侧板和第二侧板顶部的顶板, 所述箱体内部中空 形成有一滑移空间;所述箱体的底部连接于所述底板上并通过所述底板固定于所述框架的石 材连接端; 所述箱体设置于所述第一力臂的第一侧, 所述弓形臂的两滑移端抵靠于所述箱体 的表面; 所述箱体第一侧板开设有一第一通孔, 所述箱体第二侧板开设有一第二通孔; 一第 一锲形块, 通过所述第一通孔穿设于所述第一侧板, 所述第一锲形块的第一侧形成一第一斜 面,且所述第一锲形块第二侧侧面形成有一与所述第一斜面贯通的螺孔;以及一第二锲形块, 滑设于所述滑移空间内, 所述第二锲形块的第一侧侧面配合所述第一斜面形成有一第二斜 面, 所述第二斜面形成有一贯穿所述第二锲形块的长槽, 所述第二锲形块的顶面结合有一推 进螺栓;所述箱体顶面开设有一第三通孔,所述推进螺栓通过所述第三通孔伸出所述箱体外; 所述压力块的第一侧面结合有一紧固螺栓, 所述紧固螺栓贯穿所述第二通孔与所述长 槽, 并配合所述第一锲形块的螺孔将所述压力块紧固于所述第一锲形块, 推进螺栓驱动所述 第二锲形块推抵所述第一锲形块位移,进而带动所述压力块压迫所述弓形臂的两受压端向所 述箱体方向位移, 所述弓形臂的两滑移端于所述箱体第二侧板外表面发生相互远离的位移; 所述被紧固组件包括一背板和形成于所述背板上的翼板, 所述背板紧固于所述石材上; 所述弓形臂的两紧固端抵靠于所述翼板两侧面,且所述弓形臂的两紧固端受到所述翼板 的限位, 从而驱使所述第一力臂与所述第二力臂生成预应力紧固所述翼板。
本发明的进一步改进在于, 上述第一通孔与所述第二通孔为槽型孔, 所述紧固螺栓通过 所述槽型孔沿一第一方向进行位置调整;所述翼板通过所述围合空间进行一第二方向与一第 三方向的位置调整。
本发明的进一步改进在于, 上述箱体两侧的底板上分别开设有一槽型孔, 所述底板通过 穿设于所述槽型孔内的螺栓固定于所述框架的石材连接端上。
本发明的进一步改进在于, 上述背板在所述翼板左右两侧分别形成一槽型孔, 所述背板 通过穿设于所述槽型孔内的螺栓固定于所述石材上。
本发明的进一步改进在于, 上述背板侧部形成一高度调节板; 一高度调节螺栓螺接于所 述高度调节板端部开设的一螺孔内且所述高度调节螺栓的底部抵触所述底板上表面。
本发明的进一步改进在于, 上述压迫组件包括一第一石材连接件、 两压力块和一压板; 所述第一石材连接件包括一第一背板和一顶板并通过所述第一背板紧固于一下部石材,所述 顶板置于一第一所述紧固组件的第一力臂的第一侧,所述第一紧固组件的弓形臂的两滑移端 抵靠于所述顶板下表面;一第一所述压力块设置于所述第一力臂的第二侧, 所述第一紧固组 件的弓形臂的两受压端抵靠于所述第一压力块;所述压板置于一第二所述紧固组件的第一力 臂的第一侧, 所述第二紧固组件的弓形臂的两滑移端抵靠于所述压板; 一第二所述压力块设 置于所述第二紧固组件的第一力臂的第二侧,所述第二紧固组件的弓形臂的两受压端抵靠于 所述第二压力块;
所述被紧固组件包括一第一翼板和一第二石材连接件;所述第二石材连接件包括一第二 背板和一形成于所述背板的第二翼板,所述第二石材连接件通过所述第二背板固定于一上部 所述石材上; 所述第一紧固组件的弓形臂的两紧固端抵靠所述第一翼板两侧面, 所述第二紧 固组件的弓形臂的两紧固端抵靠所述第二翼板两侧面;
所述第一翼板和所述压板形成于一箱梁体,并通过所述箱梁体紧固于所述框架的石材连 接端;
紧固所述顶板与所述第一压力块,所述第一压力块压迫所述第一紧固组件的弓形臂的两 受压端向所述顶板方向位移,所述第一紧固组件的弓形臂的两滑移端于所述顶板的下表面发 生相互远离的位移, 所述第一紧固组件弓形臂的两紧固端受到所述第一翼板的限位,从而驱 使所述第一紧固组件的第一力臂与所述第二力臂生成预应力紧固所述第一翼板;
紧固所述压板与所述第二压力块,所述第二压力块压迫所述第二紧固组件的弓形臂的两 受压端向所述压板方向位移,所述第二紧固组件的弓形臂的两滑移端于所述压板的表面发生 相互远离的位移, 所述第二紧固组件弓形臂的两紧固端受到所述第二翼板的限位, 从而驱使 所述第二紧固组件的第一力臂与所述第二力臂生成预应力紧固所述第二翼板。
本发明的进一步改进在于, 上述顶板的第一端形成槽型孔, 并通过穿设于所述槽型孔内 的螺栓与所述第一压力块紧固,且所述第一压力块和所述第一紧固组件通过所述槽型孔沿一 第一方向进行位置调整;
所述第一紧固组件的弓形臂的两紧固端通过所述围合空间在所述第一翼板两侧面进行 一第二方向和一第三方向的位置调整;
所述压板形成槽型孔, 并通过穿设于所述槽型孔内的螺栓与所述第二压力块紧固, 且所 述第二压力块和所述第二紧固组件通过所述压板的槽型孔沿所述第一方向进行位置调整; 所述第二翼板通过所述围合空间在所述第二紧固组件的弓形臂的两紧固端间进行一第 二方向和一第三方向的位置调整。
本发明的进一步改进在于, 上述顶板的第二端弯折形成一第一限位板, 所述下部石材顶 部形成与所述第一限位板配合的一第一限位槽, 所述第一限位板卡合于所述第一限位槽中; 所述第二背板的底端弯折形成一第二限位板,所述上部石材底部形成与所述第二限位板 配合的一第二限位槽, 所述第二限位板卡合于所述第二限位槽中。
本发明的进一步改进在于, 上述第一背板和所述第二背板都开设有槽型孔, 且所述第一 石材连接件和所述第二石材连接件分别通过穿设于所述槽型孔中的螺栓固定于所述下部石 材和上部石材上。
本发明的进一步改进在于, 上述弓形臂的受压端之间通过一弧形变形区连接。
本发明的进一步改进在于, 上述弓形臂的滑移端成圆弧面或斜面。
本发明的进一步改进在于,上述第二力臂的厚度自所述滑移端至所述紧固端形成一由厚 至薄的渐变。
本发明的进一步改进在于, 上述弓形臂的紧固端设有一压片, 且所述压片与所述第二力 臂的连接区域向内凹陷形成一压片位置调节区。
本发明的进一步改进在于, 上述弓形臂的受压端延伸形成有一旋转定位棱, 所述压迫组 件对应所述旋转定位棱形成有旋转定位槽。
本发明由于釆用了以上技术方案, 使其具有以下有益效果是:
在本发明的紧固组件中, 压迫组件配合被紧固组件一起压迫紧固组件生成预应力,被紧 固组件成为了生成预应力的一主控制件, 紧固组件选用的是弹性材料, 其在外力作用下, 材 料内部即形成稳定的预应力并储存起来, 与被紧固组件、压迫组件一起组成稳定的预应力和 预应力特征的紧固体系, 其有益效果包括但不限于:
1.预应力结构受到外界影响时, 其敏感性的緩冲作用也是相当明显的。 比如, 当被紧固 物体或其他部件突然受到环境温度影响,由于材料本身的热冲击性能差而产生分布不均的内 应力时; 在安装过程中以及使用过程中, 由于可能受到的外力撞击而产生分布不均的内应力 时; 因设计要求, 在石材上安装多组紧固单元时, 其内部也可能发生应力局部集中。 此时整 个预应力紧固单元都可以通过弹性材料的形变大小来调节相应的预应力大小,以此对可能发 生的不均衡内应力进行緩冲, 从而很好地起到对石材乃至整个结构的保护作用。
2. 在对石材的安装位置调整到位后, 直到实施最终紧固的过程中, 石材乃至整个紧固 单元本身是不移动的,而是通过压迫组件中的螺栓旋转,压迫紧固组件产生形变而实施紧固。 这样无疑避免了石材内应力的产生, 保持了预应力结构的稳定。 目前普遍釆用的此类紧固方 式大多是靠五金等手段直接紧固, 过程中被安装物无一例外都会产生位移, 而这又是被安装 物产生不均衡内应力的一大诱因。
3. 本发明在整个预应力紧固的实施过程中, 都不会产生由于紧固对石材造成不规则的 压迫和表面形变, 避免了由于各构件的误差、 安装载体的误差、 石材本身的误差, 以及上述 紧固过程产生的工件位移等因素, 而必然导致的石材既有的平整度和自身均衡的内应力的破 坏, 大大增强了整个石材紧固***的安全性和抵抗外力的能力。
4. 另外, 本发明在整个预应力紧固的实施过程中, 都是通过拧紧相关螺栓来压迫被紧 固组件进而使紧固组件产生预应力, 在具体操作时, 通过前期的设计模块中对各个组件原材 料的选择及几何形状的设计, 后期工人只需将相关螺栓拧紧到位即可得到预设的紧固力, 无 须受到操作力度等不确定因素的影响, 大大降低操作条件和技术要求。
本发明技术千挂石材的安全性是通过合理的紧固结构,满足石材天然属性的适配安装结 构、 重力承载结构、 三维调节结构及现场施工的适应性结构等技术环节来保障的。
本发明安装与紧固的过程完全不依赖石材专用胶, 故可忽略其使用的种种限制, 当然石 材专用胶仍可作为辅助粘合剂在石材组件工厂加工时选择使用。
本发明在千挂石材安装时, 对石材的三维调节是在未紧固状态下的自由放置式的调节, 完全不受任何限制; 且对三维调节空间的设置, 完全可以覆盖通常标准工件的制造误差以及 通常标准施工形成的构件误差。
本发明石材是在三维调节完全到位后, 最后实施单点、 独立预应力紧固的, 紧固的过程 石材的位置不再变动, 所以不仅在安装时不会令石材产生多余的内应力, 而且安装后对石材 可能受到的外力能起到一定的緩冲作用。 本发明安装底盘的釆用可以满足在石材的上下、 左右沿纵向、 横向任意设置安装点, 同 时对石材或建筑的转角、 异型等结构也没有任何限制, 可以说同时给设计师与工程师带来了 极大的福音。
本发明在对现有技术的安全性与便捷性有质的改进的基础上,还可大幅减少型材等材料 的使用, 及材料成本的节约; 另外, 操作技术条件的降低与全过程可控, 有效避免返工及材 料的报废等, 更是对时间缩短及人工成本节约的显著贡献。 附图说明
图 1为本发明第一较佳实施例的石材安装结构***侧视结构示意图;
图 2为本发明第一较佳实施例的石材安装结构***俯视结构示意图;
图 3为图 2的 A区域局部放大结构示意图;
图 4为本发明第一较佳实施例的石材与框架的连接结构示意图;
图 5为图 4的截面结构示意图;
图 6为图 4的石材与框架的连接结构分解示意图;
图 7为图 4中紧固组件立体示意图;
图 8为图 4中紧固组件平面示意图;
图 9为图 4中第二安装模块结构示意图;
图 10为图 9的分解结构示意图;
图 11为图 4中石材与石材连接板的连接结构示意图;
图 12为图 11的分解结构示意图;
图 13为图 8中紧固组件的弧形变形区受压变形示意图;
图 14为本发明第一较佳实施例的第二安装模块紧固过程原理示意图;
图 15为本发明第二较佳实施例的石材安装结构***侧视结构示意图;
图 16为本发明第二较佳实施例的石材安装结构***俯视结构示意图;
图 17为图 16的 B区域局部放大结构示意图;
图 18为本发明第二较佳实施例的石材与框架的连接结构示意图;
图 19为图 18的截面结构示意图;
图 20为图 18的石材与框架的连接结构分解示意图;
图 21为图 18中紧固组件立体示意图;
图 22为图 18中压迫组件结构示意图;
图 23为图 18中第二安装模块结构示意图;
图 24为图 23的分解结构示意图;
图 25为图 20中被紧固组件的结构示意图;
图 26为图 20中石材的结构示意图;
图 27为图 20中被紧固组件和石材的连接结构示意图;
图 28为图 27的分解结构示意图;
图 29为本发明第三较佳实施例的石材安装结构***侧视结构示意图; 图 30为本发明第三较佳实施例的石材安装结构***俯视结构示意图; 图 31为图 30的 C区域局部放大结构示意图;
图 32为本发明第三较佳实施例的石材与框架的连接结构示意图; 图 33为图 32的截面结构示意图;
图 34为图 32的石材与框架的连接结构分解示意图;
图 35为图 32中箱体立体示意图;
图 36为图 32中紧固组件结构示意图;
图 37为图 32中压力块结构示意图;
图 38为图 32中第二安装模块分解结构示意图;
图 39为图 34中被紧固组件与石材的连接结构示意图;
图 40为图 39的分解结构示意图;
图 41为本发明第四较佳实施例的石材安装结构***侧视结构示意图; 图 42为本发明第四较佳实施例的石材安装结构***俯视结构示意图; 图 43为图 42的 D区域局部放大结构示意图;
图 44为本发明第四较佳实施例的石材与框架的连接结构示意图; 图 45为图 44的截面结构示意图;
图 46为图 44的石材与框架的连接结构分解示意图;
图 47为图 44中第二安装模块结构示意图;
图 48为图 47的分解结构示意图;
图 49为图 44中被紧固组件与石材的连接结构示意图;
图 50为图 49的分解结构示意图;
图 51为本发明第五较佳实施例的石材安装结构***侧视结构示意图; 图 52为本发明第五较佳实施例的石材安装结构***俯视结构示意图; 图 53为图 51的 E区域局部放大结构示意图;
图 54为本发明第五较佳实施例的石材与框架的连接结构示意图; 图 55为图 54的截面结构示意图;
图 56为图 54的石材与框架的连接结构分解示意图;
图 57为图 54中箱梁体与框架连接结构示意图;
图 58为图 57的分解结构示意图;
图 59为本发明第五较佳实施例箱梁体的俯视结构示意图;
图 60为本发明第五较佳实施例箱梁体的侧视结构示意图;
图 61为图 54中第一石材连接件与下部石材的连接结构示意图; 图 62为图 61的分解结构示意图;
图 63为图 54中第二石材连接件与上部石材的连接结构示意图; 图 64为图 63的分解结构示意图。 具体实施方式 下面结合具体实施例对本发明作进一步说明。
参阅图 1、 2所示, 在本发明的第一较佳实施例中, 本发明的石材安装结构包括建筑主 体 3以及安装于建筑主体 3上的石材 2, 安装结构还包括一安装底盘 1 , 安装底盘 1包括框 架 11、 第一安装模块 12以及第二安装模块 13 , 框架 11包括一建筑主体连接端 111与一石 材连接端 112, 在本实施例中, 框架 11为一槽钢, 建筑主体连接端 111为该槽钢的腹板, 石材连接端 112为该槽钢的其中一翼板; 建筑主体连接端 111通过第一安装模块 12安装于 建筑主体 3上, 石材 2连接于石材连接端 112, 并通过第二安装模块 13调节至设定位置并 进行紧固, 且在紧固过程中石材 2的位置不发生改变, 图 3为第二安装模块 13的局部放大 示意图。
第一安装模块 12 包括至少一个型钢连接件, 型钢连接件的第一端固接于建筑主体 3 , 型钢连接件的第二端开设有槽型孔 121并通过穿设于槽型孔 121中的螺栓连接框架 11的建 筑主体连接端 111。
请参阅图 6, 第二安装模块 13包括一压迫组件 131、 一紧固组件 132以及一被紧固组件 133 , 压迫组件 131配合被紧固组件 133压迫紧固组件 132生成预应力进而紧固被紧固组件 133 , 为便于描述现在该实施例中作以下定义: 以被紧固组件 133的翼板 1332的重心为原点 0如图 6, 以石材 2的水平安装方向作为 X轴方向, 以石材 2的厚度方向作为 Y轴方向,以 石材 2的垂直安装方向作为 Z轴方向, 且 X轴垂直于所述 Y轴, Z轴垂直于 X轴与 Y轴构 成的平面; 其中:
配合图 7~10所示, 紧固组件 132包括两个对称夹持于被紧固物体两侧的弓形臂, 其材 料应选用具有相当强度, 同时兼具一定弹性与韧性的材料, 如金属、 工程塑料、 高分子材料 等; 两弓形臂之间夹设形成一围合空间 1320, 弓形臂包括一第一力臂 1321与一连接第一力 臂 1321的第二力臂 1322,第一力臂与第二力臂的连接处形成一滑移端 1323 ,该滑移端 1323 成圆弧面或斜面可以在保证在滑移过程中产生的阻力更小; 第一力臂 1321于远离第二力臂 1322的一侧形成一受压端 1324, 该受压端 1324向下延伸形成有一旋转定位棱 1326; 第二 力臂 1322于远离第一力臂 1321 的一侧形成一紧固端 1325, 紧固端 1325上结合有一压片 1327,压片 1327的表面设有与翼板 1332的表面配合的倒齿^;且第二力臂 3122与压片 1327 的连接区域向内凹陷形成一压片位置调节区 1328, 通过该压片位置调节区 1328可在紧固过 程中实现压片 1327微小的自身位置调节, 以使其更平整地贴附翼板 1332; 第一力臂 1321 的受压端 1324接受压迫组件 131的压迫并配合被紧固物体 133驱使第一力臂 1321与第二力 臂 1322生成预应力。在本实施例中第一力臂 1321为一短直臂, 第二力臂 1322为一弧形臂, 且第二力臂 1322的厚度自滑移端 1323至紧固端 1325形成一由厚至薄的渐变, 该种结构可 以保证整个弧形臂充分和均匀形变, 不易折断; 进一步的, 两弓形臂在两受压端 1324之间 通过设置一弧形变形区 1329进行连接, 当第一力臂 1321的受压端 1324受压时, 弧形变形 区 1329 自弧形被压迫成为直线型, 弧形变形区 1329的受压变形过程请参阅图 13; 弧形变 形区 1329的设计保证了紧固组件 132具有一定的延展空间; 紧固组件 132于两受压端 1324 及弧形变形区 1329相互结合的区域沿 Y轴方向贯穿设有一通孔。
配合图 4~6、 9~12所示, 压迫组件 131包括一石材连接板 1311和一压力块 1312; 石材 连接板 1311紧固于石材 2且置于第一力臂 1321的第一侧, 弓形臂的两滑移端 1323抵靠于 石材连接板 1311; 压力块 1312设置于第一力臂 1321的第二侧, 弓形臂的两受压端 1324抵 靠于压力块 1312; 石材连接板 1311两侧设有加强翼板, 截面呈 U型; 压力块 1312的中部 设有一 Y轴方向贯穿的通孔,同时压力块 1312的上表面中部沿 Z轴方向配合旋转定位棱 1326 设置了两条通长的旋转定位槽 13121 , 该旋转定位槽 13121的半径等于或略大于旋转定位棱 1326的半径, 这样当整个紧固组件 132在实施紧固过程中, 旋转定位棱 1326可以有效地在 旋转定位槽 13121内定位与进行转动, 两滑移端 1323才会在石材连接板 1311的表面仅沿 X 轴方向位移。
被紧固组件 133包括一底板 1331和一形成于底板 1331的翼板 1332, 翼板 1332表面与 压片 1327表面的倒齿紋配合, 底板 1331紧固于框架 11的石材连接端 112; 弓形臂的两紧 固端 1325抵靠于翼板 1332两侧面。
紧固石材连接板 1311与压力块 1312, 压力块 1312压迫弓形臂的两受压端 1324向石材 连接板 1311方向位移, 弓形臂的两滑移端 1323于石材连接板 1311的第二侧表面发生相互 远离的位移, 弓形臂的两紧固端 1325受到翼板 1332的限位, 从而驱使第一力臂 1321与第 二力臂 1322生成预应力紧固翼板 1332。 下面配合图 14来进一步说明整个紧固过程的工作 原理, 弓形臂的两受压端 1324在压力块 1312的压迫作用下沿 Y轴方向位移,通过旋转定位 棱 1326与旋转定位槽 13121的配合保证了受压端 1324在移动过程中不发生 X、 Z轴方向上 的偏移,两个弓形臂受压端 1324之间的距离在紧固过程中是可控不变的,同时两滑移端 1323 抵靠于石材连接板 1311沿 X轴方向发生相互远离的位移, 而两紧固端 1325沿 X轴方向发 生相互靠近的位移直至抵靠于翼板 1332的侧面, 因此两紧固端 1325的压片 1327间的距离 也是可控的, 其在翼板 1332上的紧固位置点也是可控的; 进一步通过压力块 1312压迫两受 压端 1324沿 Y轴方向上位移, 进而驱使两滑移端 1323沿 X轴方向继续远离, 而两紧固端 1325此时抵靠于翼板 1332的侧面并由此受到限位, 第一力臂 1321及第二力臂 1322由此发 生形变并生成预应力, 至此第二安装模块 13达到紧固状态, 翼板 1332获得紧固。 同样的, 当预应力需要解除时, 只要将螺栓松开, 弓形臂的形变会恢复到之前未紧固状态, 此时预应 力自动消失, 整个紧固***模块的部件都是可逆的、 无损耗的和再次重复使用的, 不仅节约 了成本, 同时也非常环保。
被紧固组件 133底板 1331上形成两槽型孔 1333 , 并通过穿设于槽型孔 1333 内的螺栓 固定于框架 11的石材连接端 112,且被紧固组件 133通过槽型孔 1333沿 X方向进行位置调 整;
弓形臂的两紧固端 1325通过围合空间 1320在翼板 1332两侧面进行 Y方向和 Z方向的 位置调整。
本实施例在装配石材 2时, 首先将安装底盘 1定位固定于建筑主体 3上, 然后确定被安 装石材 2相对于安装底盘 1中框架 11的预设安装位置,根据该预设安装位置在框架 11的石 材连接端 112定位被紧固组件 133 , 被紧固件 133通过槽型孔 1333进行 X方向的调节至预 设位置后固定; 石材 2与石材连接板 131的制作与安装均可在工厂内完成, 先在加工好的石 材背面根据设计要求设置锚孔, 将锚栓与石材 2实施锚固, 然后通过锚栓和螺帽将石材连接 板 131与石材 2实施紧固; 在紧固之前, 可对石材连接板 131进行 X轴方向的调整, 一方面 可以调节两组锚栓存在的误差, 更重要的是保证石材连接板 131突出石材 2的宽度必须满足 设计要求, 将石材 2设置于预设安装位置, 之后将压力块 1312抵靠第一力臂 1321内侧并将 两紧固端 1325搁置于被紧固件 133翼板 1332的两侧; 在保证石材 2不移动的基础上, 通过 螺栓预紧固石材连接板 1311与压力块 1312, 压力块 1312压迫弓形臂的两受压端 1324向石 材连接板 1311方向位移, 弓形臂的两滑移端 1323于石材连接板 1311的表面发生相互远离 的位移, 弓形臂的两紧固端 1325受到翼板 1332的限位, 从而驱使第一力臂 1321与第二力 臂 1322生成预应力预紧固翼板 1332; 同时弓形臂的两紧固端 1325通过围合空间 1320在翼 板 1332两侧面进行 Y轴方向和 Z轴方向的位置调整后完全紧固, 实现石材 2在预设安装位 置的精确固定。
在翼板 1332与石材 2和紧固组件 132的安装过程中, 翼板 1332将起到关键作用: 首先 整个安装***的坐标系原点 0设置在它的重心处, 所有构配件的定位或尺寸将据此进行设 计, 即实现安装底盘 1的尺寸界定功能; 在与紧固单元 132组合安装时, 翼板 1332将作为 主控制件参与预应力紧固的过程, 同时通过翼板 1332在紧固组件 132的围合空间 1320中的 相对位移, 可实现石材 Y轴与 Z轴方向的调整, 即实现安装底盘 1的三维调节功能; 最后 安装完成, 石材 2的重力荷载也是通过翼板 1332转移至安装底盘 1 , 实现了安装底盘 1的 承载与紧固功能。
参阅图 15-22所示, 在本发明的第二较佳实施例中, 其主要结构与第一实施例相同, 区 别在于: 压迫组件 131呈工字型, 中部两侧向内凹陷形成与紧固组件 132两弓形臂内侧配合 的压力部 1311; 压迫组件 131的压力部 1311夹设于两弓形臂之间, 弓形臂的两受压端 1324 抵靠于压力部 1311 , 且弓形臂的两滑移端 1323抵靠于框架 11的石材连接端 112的表面, 压迫组件 131的两端固定于框架 11的石材连接端 112;
请参阅图 25-28所示, 被紧固组件 133 包括一底板 1331和一形成于底板 1331的翼板 1332, 翼板 1332表面与压片 1327表面设有的倒齿紋配合, 底板 1331的第一端弯折形成一 L形的限位部 1333 , 石材 2的侧面形成与限位部 1333配合的限位槽 21 , 限位部 1333卡合 于限位槽 21内, 底板 1331的第二端固定于石材 2上; 弓形臂的两紧固端 1325抵靠于翼板 1332两侧面; 底板 1331的第二端形成一槽型孔, 并通过穿设于槽型孔内的螺栓固定于石材 2上。
被紧固组件 133和石材 2在工厂内组装, 需在限位槽 21 内填充石材专用胶, 以辅助螺 栓对被紧固组件 133与石材 2实施紧固。 在后续紧固过程中, 翼板 1332将代表紧固后的被 紧固组件 133和石材 2作为主控制件参与整个预应力紧固。
请参阅图 21-24, 紧固压迫组件 131与框架 11的石材连接端 112, 压力部 1311压迫弓 形臂的两受压端 1324向框架 11方向位移, 弓形臂的两滑移端 1323于框架 11的石材连接端 112表面发生相互远离的位移, 弓形臂的两紧固端 1325受到翼板 1332的限位, 从而驱使第 一力臂 1321与第二力臂 1322生成预应力紧固翼板 1332。
压迫组件 131 的两端分别开设有一槽型孔并通过穿设于槽型孔内的螺栓紧固于框架 11 的石材连接端 112, 且压迫组件 131通过槽型孔沿 X轴方向进行位置调整; 翼板 1332在弓形臂的两紧固端 1325之间通过围合空间进行 Y轴方向与 Z轴方向的位 置调整。
参阅图 29-38所示, 在本发明的第三较佳实施例中, 其主要结构与第一、 二实施例相同, 区别在予.压迫组件 131包括一箱体 1311和一压力块 1312,箱体 1311包括一第一侧板 13111、 一第二侧板 13112和分别连接于第一侧板 13111和第二侧板 13112端部的顶板 13113和底板 13114, 箱体内部中空形成有一滑移空间; 第一侧板 13111的两侧分别向外延伸形成两连接 部 13115, 箱体 1311的连接部 13115上开设有槽型孔, 并通过穿设于槽型孔内的螺栓固定 于石材 2上; 箱体 1311设置于第一力臂 1321的第一侧, 弓形臂的两滑移端 1323抵靠于箱 体 1311表面, 箱体 1311第一侧板 13111开设有一第一通孔, 箱体第二侧板 13112开设有一 第二通孔; 一第一锲形块 1313 , 通过第一通孔穿设于第一侧板 13111 , 第一锲形块 1313第 一侧形成一第一斜面, 且第一锲形块 1313第二侧侧面形成有一与第一斜面贯通的螺孔; 以 及一第二锲形块 1314, 滑设于滑移空间内, 第二锲形块 1314的第一侧侧面配合第一斜面形 成有一第二斜面, 第二斜面形成有一贯穿第二锲形块 1314的长槽, 第二锲形块 1314顶面结 合有一推进螺栓 1315; 箱体 1311顶面开设有一第三通孔, 推进螺栓 1315通过第三通孔伸 出箱体 1311外;
压力块 1312的第一侧面结合有一紧固螺栓 13121 , 紧固螺栓 13121贯穿第二通孔与长 槽, 并配合第一锲形块 1313的螺孔将压力块 1312紧固于第一锲形块 1313 , 推进螺栓 1315 驱动第二锲形块 1314推抵第一锲形块 1313位移, 进而带动压力块 1312压迫弓形臂的两受 压端 1324向箱体 1311方向位移, 弓形臂的两滑移端 1323于箱体 1311第二侧板 13112外表 面发生相互远离的位移;
请参阅图 39-40, 被紧固组件 133包括一背板 1331和一形成于背板 1331的翼板 1332, 背板 1331在翼板 1332左右两侧分别形成一槽型孔并通过该槽型孔紧固于框架 11的石材连 接端 112;
弓形臂的两紧固端 1325抵靠于翼板 1332两侧面, 且弓形臂的两紧固端 1325受到翼板 1332的限位, 从而驱使第一力臂 1321与第二力臂 1322生成预应力紧固翼板 1332。
其中, 第一通孔与第二通孔为槽型孔, 紧固螺栓通过槽型孔沿 X轴方向进行位置调整; 翼板 1332在弓形臂的两紧固端 1325之间通过围合空间进行 Y轴方向与 Z轴方向的位置调 整。
被紧固组件 133的翼板 1332左右两侧的底板 1331上分别形成一槽型孔,并通过穿设于 槽型孔内的螺栓固定于框架 11的石材连接端 112上。
请参阅图 29~36, 安装石材 2时, 首先将紧固组件 132置于箱体 1311第二侧板 13112 外侧, 弓形臂的两滑移端 1323抵靠于第二侧板 13112的外表面, 将压力块 1312置于第一力 臂 1321的内侧, 弓形臂的两受压端 1324抵靠于压力块 1312的上表面, 将第一锲形块 1313 穿设于第一通孔中, 在滑移空间中调整第二锲形块 1314的位置使第一斜面与第二斜面相互 抵靠, 且第一通孔、 长槽以及第二通孔同轴, 使螺栓贯穿紧固组件 132、 第二通孔、 长槽与 第一通孔, 并配合第一锲形块 1313的螺孔将压力块 1312紧固于第一锲形块 1313; 第二锲 形块 1314的顶面结合有一推进螺栓 1315且推进螺栓 1315通过第三通孔伸出箱体 1311夕卜; 然后将石材 2移动至紧固组件 132附近, 翼板 1332 自紧固端 1325之间伸入围合空间 1320 中, 此时翼板 1332可通过该围合空间 1320进行 Y轴方向与 Z轴方向的位置调整, 待翼板 1332的位置完全调整到位后, 拧紧推进螺栓 1315, 驱动第二锲形块 1314推抵第一锲形块 1313沿 Y轴方向向内位移, 此时翼板 1332与被紧固组件 133本身的位置不再移动, 即石材 2与底盘结构 1之间也不再发生相对位移; 进而继续拧紧推进螺栓 1315紧固压力块 1312与 被紧固组件 133 , 直至两弓形臂对翼板 1332形成夹持力至最终完成***紧固。
参阅图 41-48所示, 在本发明的第四较佳实施例中, 其主要结构与第一、 二、 三实施例 相同, 区别在于: 压迫组件 131包括一箱体 1311、 一底板 1316和一压力块 1312, 箱体 1311 包括一第一侧板 13111、 一第二侧板 13112和连接于第一侧板 13111和第二侧板 13112顶部 的顶板 13113 , 箱体 1311 内部中空形成有一滑移空间; 箱体 1311 的底部连接于底板 1316 上, 箱体 1311两侧的底板 1316上分别开设有一槽型孔, 底板 1316通过穿设于槽型孔内的 螺栓固定于框架 11的石材连接端 112上; 箱体 1311设置于第一力臂 1321的第一侧, 弓形 臂的两滑移端 1323抵靠于箱体 1311的表面; 箱体 1311第一侧板开设有一第一通孔, 箱体 1311第二侧板 13112开设有一第二通孔; 一第一锲形块 1313 , 通过第一通孔穿设于第一侧 板 13111 , 第一锲形块 1313的第一侧形成一第一斜面, 且第一锲形块 1313第二侧侧面形成 有一与第一斜面贯通的螺孔; 以及一第二锲形块 1314,滑设于滑移空间内,第二锲形块 1314 的第一侧侧面配合第一斜面形成有一第二斜面, 第二斜面形成有一贯穿第二锲形块 1314的 长槽, 第二锲形块 1314的顶面结合有一推进螺栓 1315; 箱体 1311顶面开设有一第三通孔, 推进螺栓 1315通过第三通孔伸出箱体 1311外;
压力块 1312的第一侧面结合有一紧固螺栓 13121 , 紧固螺栓 13121贯穿第二通孔与长 槽, 并配合第一锲形块 1313的螺孔将压力块 1312紧固于第一锲形块 1313 , 推进螺栓 1315 驱动第二锲形块 1314推抵第一锲形块 1313位移, 进而带动压力块 1312压迫弓形臂的两受 压端 1324向箱体 1311方向位移, 弓形臂的两滑移端 1323于箱体 1311第二侧板 13112外表 面发生相互远离的位移;
请参阅图 46-50, 被紧固组件 133包括一背板 1331和形成于背板 1331上的翼板 1332, 背板 1331在翼板 1332左右两侧分别形成一槽型孔, 背板 1331通过穿设于该槽型孔内的螺 栓固定于石材 2上。
弓形臂的两紧固端 1325抵靠于翼板 1332两侧面, 且弓形臂的两紧固端 1325受到翼板 1332的限位, 从而驱使第一力臂 1321与第二力臂 1322生成预应力紧固翼板 1332。
第一通孔与第二通孔为槽型孔, 紧固螺栓 13121通过槽型孔沿 X轴方向进行位置调整; 翼板 1332通过围合空间 1320进行 Y轴方向与 Z轴方向的位置调整。
请参阅图 44-46, 背板 1331侧部形成一垂直突出的高度调节板 13311; —高度调节螺栓 13312螺接于高度调节板 13311端部开设的一螺孔内且高度调节螺栓 13312的底部抵触底板 1316上表面。
安装石材 2时, 首先将紧固组件 132置于箱体 1311第二侧板 13112外侧, 弓形臂的两 滑移端 1323抵靠于第二侧板 13112的外表面, 将压力块 1312置于第一力臂 1321的内侧, 弓形臂的两受压端 1324抵靠于压力块 1312的上表面, 将第一锲形块 1313穿设于第一通孔 中, 在滑移空间中调整第二锲形块 1314的位置使第一斜面与第二斜面相互抵靠, 且第一通 孔、 长槽以及第二通孔同轴, 使紧固螺栓 13121贯穿紧固组件 132、 第二通孔、 长槽与第一 通孔, 并配合第一锲形块 1313的螺孔将压力块 1312紧固于第一锲形块 1313; 第二锲形块 1314的顶面结合有一推进螺栓 1315且推进螺栓 1315通过第三通孔伸出箱体 1311外; 然后 将石材 2移动至紧固组件 132附近,翼板 1332自两紧固端 1325之间伸入围合空间 1320中, 此时翼板 1332可通过该围合空间 1320进行 Y轴方向与 Z轴方向的位置调整, 待翼板 1332 的位置完全调整到位后, 拧紧推进螺栓 1315, 驱动第二锲形块 1314推抵第一锲形块 1313 沿 Y轴方向向内位移; 进而紧固压力块 1312与箱体 1311 , 待两弓形臂对翼板 1332形成一 定夹持力时, 暂停拧紧推进螺栓 1315, 通过拧动高度调节螺栓 13312调整石材 2的水平度, 待石材 2的位置调整到位后, 继续拧紧推进螺栓 1315至完成***紧固。
参阅图 51-60所示, 在本发明的第五较佳实施例中, 其主要结构与第一、 二、 三、 四实 施例相同, 区别在于: 压迫组件 131包括一第一石材连接件 1311、 两压力块 1312和一压板 1313; 第一石材连接件 1311 包括一第一背板 13111和一顶板 13112并通过第一背板 13111 紧固于一下部石材 22, 顶板 13112置于一第一紧固组件 132的第一力臂的第一侧, 第一紧 固组件 132的弓形臂的两滑移端 1323抵靠于顶板 13112下表面;一第一压力块 1312设置于 第一紧固组件 132第一力臂 1321的第二侧,第一紧固组件 132的弓形臂的两受压端 1324抵 靠于第一压力块 1312; 压板 1313置于一第二紧固组件 132,的第一力臂 1321的第一侧, 第 二紧固组件 132,的弓形臂的两滑移端 1323抵靠于压板 1313; —第二压力块 1312,设置于第 二紧固组件 132,的第一力臂 1321 的第二侧, 第二紧固组件 132,的弓形臂的两受压端 1324 抵靠于第二压力块 1312,;
被紧固组件 133包括一第一翼板 1332和一第二石材连接件 1331; 第二石材连接件包括 一第二背板 13311和一形成于背板的第二翼板 13312, 第二石材连接件 1331通过第二背板 13311固定于一上部石材 21上; 第一紧固组件 132的弓形臂的两紧固端 1325抵靠第一翼板 1332两侧面, 第二紧固组件 132,的弓形臂的两紧固端 1325抵靠第二翼板 13312两侧面; 第一翼板 1332和压板 1313形成于一箱梁体 134, 并通过箱梁体 134紧固于框架 11的 石材连接端 112;
紧固顶板 13112与第一压力块 1312, 第一压力块 1312压迫第一紧固组件 132的弓形臂 的两受压端 1324向顶板 13112方向位移,第一紧固组件 132的弓形臂的两滑移端 1323于顶 板 13112的下表面发生相互远离的位移, 第一紧固组件 132弓形臂的两紧固端 1325受到第 一翼板 1332的限位, 从而驱使第一紧固组件 132的第一力臂 1321与第二力臂 1322生成预 应力紧固第一翼板 1332;
紧固压板 1313与第二压力块 1312,, 第二压力块 1312,压迫第二紧固组件 132,的弓形臂 的两受压端 1324向压板 1313方向位移, 第二紧固组件 132,的弓形臂的两滑移端 1323于压 板 1313的表面发生相互远离的位移,第二紧固组件 132,弓形臂的两紧固端 1325受到第二翼 板 13312的限位,从而驱使第二紧固组件 132,的第一力臂 1321与第二力臂 1322生成预应力 紧固第二翼板 13312。
顶板 13112的第一端形成槽型孔, 并通过穿设于槽型孔内的螺栓与第一压力块 1312紧 固, 且第一压力块 1312和第一紧固组件 132通过槽型孔沿 Y轴方向进行位置调整; 第一紧固组件 132的弓形臂的两紧固端 1325通过围合空间 1320在第一翼板 1332两侧 面进行 X轴方向和 Z轴方向的位置调整;
压板 1313形成槽型孔, 并通过穿设于槽型孔内的螺栓与第二压力块 1312,紧固, 且第二 压力块 1312,和第二紧固组件 132,通过压板 1313的槽型孔沿 Y轴方向进行位置调整; 第二翼板 13312通过围合空间 1320在第二紧固组件 132,的弓形臂的两紧固端 1325间进 行 X轴方向和 Z轴方向的位置调整。
请参阅图 61-64, 顶板 13112的第二端弯折形成一第一限位板, 下部石材 22顶部形成与 第一限位板 13113配合的一第一限位槽 221 , 第一限位板 13113卡合于第一限位槽 221中; 第二背板 13311的底端弯折形成一第二限位板 13313 , 上部石材 21底部形成与第二限 位板 13313配合的一第二限位槽 211 , 第二限位板 13313卡合于第二限位槽 211中。
第一背板 13111和第二背板 13311都开设有槽型孔, 且第一石材连接件 1311和第二石 材连接件 1331分别通过穿设于槽型孔中的螺栓固定于下部石材 22和上部石材 21上。
以上结合附图实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明 对本发明做出种种变化例。 因而, 实施例中的某些细节不应构成对本发明的限定, 本发明将 以所附权利要求书界定的范围作为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种石材安装结构, 包括建筑主体以及安装于所述建筑主体上的石材, 其特征在于, 所述安装结构还包括一安装底盘, 所述石材通过所述安装底盘调节至设定位置并进行紧固, 且在紧固过程中所述石材的位置不发生改变。
2.如权利要求 1所述的石材安装结构, 其特征在于: 所述安装底盘包括框架、 第一安装 模块以及第二安装模块, 所述框架包括一建筑主体连接端与一石材连接端, 所述建筑主体连 接端通过所述第一安装模块安装于所述建筑主体上,所述石材通过所述第二安装模块调节至 设定位置并进行紧固, 且在紧固过程中所述石材的位置不发生改变。
3.如权利要求 2所述的石材安装结构, 其特征在于: 所述第一安装模块包括至少一个型 钢连接件, 所述型钢连接件的第一端固接于所述建筑主体, 所述型钢连接件的第二端开设有 槽型孔并通过穿设于所述槽型孔中的螺栓连接所述框架的建筑主体连接端。
4.如权利要求 2所述的石材安装结构, 其特征在于: 所述第二安装模块包括压迫组件、 紧固组件以及被紧固组件,
所述被紧固组件位置可调节地固定于所述框架上,所述压迫组件位置可调节地固定于所 述石材上;
或者, 所述被紧固组件位置可调节地固定于所述石材上, 所述压迫组件位置可调节地固 定于所述框架上;
通过所述压迫组件与被紧固组件的配合压迫所述紧固组件生成预应力进而紧固所述被 紧固组件, 其中:
所述紧固组件包括两个对称夹持于所述被紧固物体两侧的弓形臂,两弓形臂之间夹设形 成一围合空间, 所述弓形臂包括一第一力臂与一连接所述第一力臂的第二力臂, 所述第一力 臂与所述第二力臂的连接处形成一滑移端,所述第一力臂于远离所述第二力臂的一侧形成一 受压端, 所述第二力臂于远离所述第一力臂的一侧形成一紧固端, 所述第一力臂的受压端接 受所述压迫组件的压迫并配合所述被紧固物体驱使所述第一力臂与第二力臂生成预应力。
5. 如权利要求 4所述的石材安装结构, 其特征在于: 所述压迫组件包括一石材连接板 和一压力块; 所述石材连接板紧固于所述石材且置于所述第一力臂的第一侧, 所述弓形臂的 两滑移端抵靠于所述石材连接板; 所述压力块设置于所述第一力臂的第二侧, 所述弓形臂的 两受压端抵靠于所述压力块;
所述被紧固组件包括一底板和一形成于所述底板的翼板,所述底板紧固于所述框架的石 材连接端; 所述弓形臂的两紧固端抵靠于所述翼板两侧面;
紧固所述石材连接板与所述压力块,所述压力块压迫所述弓形臂的两受压端向所述石材 连接板方向位移, 所述弓形臂的两滑移端于所述石材连接板的表面发生相互远离的位移, 所 述弓形臂的两紧固端受到所述翼板的限位,从而驱使所述第一力臂与所述第二力臂生成预应 力紧固所述翼板。
6. 如权利要求 5所述的石材安装结构, 其特征在于:
所述被紧固组件的底板上形成槽型孔,并通过穿设于所述槽型孔内的螺栓固定于所述框 架的石材连接端, 且所述被紧固组件通过所述槽型孔沿一第一方向进行位置调整; 所述弓形臂的两紧固端通过所述围合空间在所述翼板两侧面进行一第二方向和一第三 方向的位置调整。
7. 如权利要求 6 所述的石材安装结构, 其特征在于: 通过一螺栓紧固所述石材连接板 的第一端与所述压力块, 所述石材连接板的第二端开设有复数个槽型孔, 并通过穿设于所述 槽型孔内的螺栓固定于所述石材上。
8. 如权利要求 4所述的石材安装结构, 其特征在于: 所述压迫组件中部两侧向内凹陷 形成与所述紧固组件两弓形臂内侧配合的压力部;所述压迫组件的压力部夹设于所述两弓形 臂之间, 所述弓形臂的两受压端抵靠于所述压力部, 且所述弓形臂的两滑移端抵靠于所述框 架的石材连接端的表面, 所述压迫组件的两端固定于所述框架的石材连接端;
所述被紧固组件包括一底板和一形成于所述底板的翼板,所述底板的第一端弯折形成一 限位部,所述石材的侧面形成与所述限位部配合的限位槽,所述限位部卡合于所述限位槽内, 所述底板的第二端固定于所述石材上; 所述弓形臂的两紧固端抵靠于所述翼板两侧面; 紧固所述压迫组件与所述框架的石材连接端,所述压力部压迫所述弓形臂的两受压端向 所述框架方向位移,所述弓形臂的两滑移端于所述框架的石材连接端表面发生相互远离的位 移, 所述弓形臂的两紧固端受到所述翼板的限位, 从而驱使所述第一力臂与所述第二力臂生 成预应力紧固所述翼板。
9. 如权利要求 8 所述的石材安装结构, 其特征在于: 所述压迫组件的两端分别开设有 一槽型孔并通过穿设于所述槽型孔内的螺栓紧固于所述框架的石材连接端,且所述压迫组件 通过所述槽型孔沿一第一方向进行位置调整;
所述翼板在所述弓形臂的两紧固端之间通过所述围合空间进行一第二方向与一第三方 向的位置调整。
10. 如权利要求 9所述的石材安装结构,其特征在于:所述底板的第二端形成一槽型孔, 并通过穿设于所述槽型孔内的螺栓固定于所述石材。
11. 如权利要求 4所述的石材安装结构, 其特征在于: 所述压迫组件包括一箱体和一压 力块, 所述箱体包括一第一侧板、 一第二侧板和分别连接于所述第一侧板和第二侧板端部的 顶板和底板, 所述箱体内部中空形成有一滑移空间; 第一侧板的两侧分别向外延伸形成两连 接部,所述箱体通过所述连接部紧固于所述石材上;所述箱体设置于所述第一力臂的第一侧, 所述弓形臂的两滑移端抵靠于所述箱体的表面; 所述箱体第一侧板开设有一第一通孔, 所述 箱体第二侧板开设有一第二通孔; 一第一锲形块, 通过所述第一通孔穿设于所述第一侧板, 所述第一锲形块的第一侧形成一第一斜面,且所述第一锲形块第二侧侧面形成有一与所述第 一斜面贯通的螺孔; 以及一第二锲形块, 滑设于所述滑移空间内, 所述第二锲形块的第一侧 侧面配合所述第一斜面形成有一第二斜面,所述第二斜面形成有一贯穿所述第二锲形块的长 槽, 所述第二锲形块的顶面结合有一推进螺栓; 所述箱体顶面开设有一第三通孔, 所述推进 螺栓通过所述第三通孔伸出所述箱体外;
所述压力块的第一侧面结合有一紧固螺栓, 所述紧固螺栓贯穿所述第二通孔与所述长 槽, 并配合所述第一锲形块的螺孔将所述压力块紧固于所述第一锲形块, 推进螺栓驱动所述 第二锲形块推抵所述第一锲形块位移,进而带动所述压力块压迫所述弓形臂的两受压端向所 述箱体方向位移, 所述弓形臂的两滑移端于所述箱体第二侧板外表面发生相互远离的位移; 所述被紧固组件包括一背板和一形成于所述背板的翼板,所述背板紧固于所述框架的石 材连接端;
所述弓形臂的两紧固端抵靠于所述翼板两侧面,且所述弓形臂的两紧固端受到所述翼板 的限位, 从而驱使所述第一力臂与所述第二力臂生成预应力紧固所述翼板。
12. 如权利要求 11 所述的石材安装结构, 其特征在于: 所述第一通孔与所述第二通孔 为槽型孔, 所述紧固螺栓通过所述槽型孔沿一第一方向进行位置调整; 所述翼板通过所述围 合空间进行所述第一方向与一第三方向的位置调整。
13. 如权利要求 12 所述的石材安装结构, 其特征在于: 所述背板在所述翼板左右两侧 分别形成一槽型孔, 并通过穿设于所述槽型孔内的螺栓固定于所述框架的石材连接端上。
14. 如权利要求 13 所述的石材安装结构, 其特征在于: 所述箱体的连接部上开设有槽 型孔, 并通过穿设于所述槽型孔内的螺栓固定于所述石材上。
15. 如权利要求 4所述的石材安装结构, 其特征在于: 所述压迫组件包括一箱体、 一底 板和一压力块, 所述箱体包括一第一侧板、 一第二侧板和连接于所述第一侧板和第二侧板顶 部的顶板, 所述箱体内部中空形成有一滑移空间; 所述箱体的底部连接于所述底板上并通过 所述底板固定于所述框架的石材连接端; 所述箱体设置于所述第一力臂的第一侧, 所述弓形 臂的两滑移端抵靠于所述箱体的表面; 所述箱体第一侧板开设有一第一通孔, 所述箱体第二 侧板开设有一第二通孔; 一第一锲形块, 通过所述第一通孔穿设于所述第一侧板, 所述第一 锲形块的第一侧形成一第一斜面,且所述第一锲形块第二侧侧面形成有一与所述第一斜面贯 通的螺孔; 以及一第二锲形块, 滑设于所述滑移空间内, 所述第二锲形块的第一侧侧面配合 所述第一斜面形成有一第二斜面, 所述第二斜面形成有一贯穿所述第二锲形块的长槽, 所述 第二锲形块的顶面结合有一推进螺栓; 所述箱体顶面开设有一第三通孔, 所述推进螺栓通过 所述第三通孔伸出所述箱体外;
所述压力块的第一侧面结合有一紧固螺栓, 所述紧固螺栓贯穿所述第二通孔与所述长 槽, 并配合所述第一锲形块的螺孔将所述压力块紧固于所述第一锲形块, 推进螺栓驱动所述 第二锲形块推抵所述第一锲形块位移,进而带动所述压力块压迫所述弓形臂的两受压端向所 述箱体方向位移, 所述弓形臂的两滑移端于所述箱体第二侧板外表面发生相互远离的位移; 所述被紧固组件包括一背板和形成于所述背板上的翼板, 所述背板紧固于所述石材上; 所述弓形臂的两紧固端抵靠于所述翼板两侧面,且所述弓形臂的两紧固端受到所述翼板 的限位, 从而驱使所述第一力臂与所述第二力臂生成预应力紧固所述翼板。
16. 如权利要求 15 所述的石材安装结构, 其特征在于: 所述第一通孔与所述第二通孔 为槽型孔, 所述紧固螺栓通过所述槽型孔沿一第一方向进行位置调整; 所述翼板通过所述围 合空间进行一第二方向与一第三方向的位置调整。
17. 如权利要求 16 所述的石材安装结构, 其特征在于: 所述箱体两侧的底板上分别开 设有一槽型孔, 所述底板通过穿设于所述槽型孔内的螺栓固定于所述框架的石材连接端上。
18. 如权利要求 17所述的石材安装结构, 其特征在于: 所述背板在所述翼板左右两侧 分别形成一槽型孔, 所述背板通过穿设于所述槽型孔内的螺栓固定于所述石材上。
19. 如权利要求 18 所述的石材安装结构, 其特征在于: 所述背板侧部形成一高度调节 板;一高度调节螺栓螺接于所述高度调节板端部开设的一螺孔内且所述高度调节螺栓的底部 抵触所述底板上表面。
20. 如权利要求 4所述的石材安装结构, 其特征在于: 所述压迫组件包括一第一石材连 接件、 两压力块和一压板; 所述第一石材连接件包括一第一背板和一顶板并通过所述第一背 板紧固于一下部石材, 所述顶板置于一第一所述紧固组件的第一力臂的第一侧, 所述第一紧 固组件的弓形臂的两滑移端抵靠于所述顶板下表面;一第一所述压力块设置于所述第一力臂 的第二侧, 所述第一紧固组件的弓形臂的两受压端抵靠于所述第一压力块; 所述压板置于一 第二所述紧固组件的第一力臂的第一侧,所述第二紧固组件的弓形臂的两滑移端抵靠于所述 压板; 一第二所述压力块设置于所述第二紧固组件的第一力臂的第二侧, 所述第二紧固组件 的弓形臂的两受压端^ I氏靠于所述第二压力块;
所述被紧固组件包括一第一翼板和一第二石材连接件;所述第二石材连接件包括一第二 背板和一形成于所述背板的第二翼板,所述第二石材连接件通过所述第二背板固定于一上部 所述石材上; 所述第一紧固组件的弓形臂的两紧固端抵靠所述第一翼板两侧面, 所述第二紧 固组件的弓形臂的两紧固端抵靠所述第二翼板两侧面;
所述第一翼板和所述压板形成于一箱梁体,并通过所述箱梁体紧固于所述框架的石材连 接端;
紧固所述顶板与所述第一压力块,所述第一压力块压迫所述第一紧固组件的弓形臂的两 受压端向所述顶板方向位移,所述第一紧固组件的弓形臂的两滑移端于所述顶板的下表面发 生相互远离的位移, 所述第一紧固组件弓形臂的两紧固端受到所述第一翼板的限位,从而驱 使所述第一紧固组件的第一力臂与所述第二力臂生成预应力紧固所述第一翼板;
紧固所述压板与所述第二压力块,所述第二压力块压迫所述第二紧固组件的弓形臂的两 受压端向所述压板方向位移,所述第二紧固组件的弓形臂的两滑移端于所述压板的表面发生 相互远离的位移, 所述第二紧固组件弓形臂的两紧固端受到所述第二翼板的限位, 从而驱使 所述第二紧固组件的第一力臂与所述第二力臂生成预应力紧固所述第二翼板。
21. 如权利要求 20所述的石材安装结构, 其特征在于:
所述顶板的第一端形成槽型孔,并通过穿设于所述槽型孔内的螺栓与所述第一压力块紧 固, 且所述第一压力块和所述第一紧固组件通过所述槽型孔沿一第一方向进行位置调整; 所述第一紧固组件的弓形臂的两紧固端通过所述围合空间在所述第一翼板两侧面进行 一第二方向和一第三方向的位置调整;
所述压板形成槽型孔, 并通过穿设于所述槽型孔内的螺栓与所述第二压力块紧固, 且所 述第二压力块和所述第二紧固组件通过所述压板的槽型孔沿所述第一方向进行位置调整; 所述第二翼板通过所述围合空间在所述第二紧固组件的弓形臂的两紧固端间进行一第 二方向和一第三方向的位置调整。
22. 如权利要求 21所述的石材安装结构, 其特征在于:
所述顶板的第二端弯折形成一第一限位板,所述下部石材顶部形成与所述第一限位板配 合的一第一限位槽, 所述第一限位板卡合于所述第一限位槽中; 所述第二背板的底端弯折形成一第二限位板,所述上部石材底部形成与所述第二限位板 配合的一第二限位槽, 所述第二限位板卡合于所述第二限位槽中。
23. 如权利要求 22 所述的石材安装结构, 其特征在于: 所述第一背板和所述第二背板 都开设有槽型孔,且所述第一石材连接件和所述第二石材连接件分别通过穿设于所述槽型孔 中的螺栓固定于所述下部石材和上部石材上。
24.如权利要求 4~23中任一项所述的石材安装结构, 其特征在于: 所述弓形臂的受压端 之间通过一弧形变形区连接。
25. 如权利要求 4~23 中任一项所述的石材安装结构, 其特征在于: 所述弓形臂的滑移 端成圆弧面或斜面。
26如权利要求 4~23中任一项所述的石材安装结构, 其特征在于所述第二力臂的厚度自 所述滑移端至所述紧固端形成一由厚至薄的渐变。
27. 如权利要求 4~23 中任一项所述的石材安装结构, 其特征在于所述弓形臂的紧固端 设有一压片, 且所述压片与所述第二力臂的连接区域向内凹陷形成一压片位置调节区。
28. 如权利要求 4~23 中任一项所述的石材安装结构, 其特征在于所述弓形臂的受压端 延伸形成有一旋转定位棱, 所述压迫组件对应所述旋转定位棱形成有旋转定位槽。
29.—种应用权利要求 1~23中任一项所述的石材安装结构的对石材进行安装的方法。
PCT/CN2014/077220 2013-05-16 2014-05-12 石材安装结构及安装石材的方法 WO2014183594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310180899.5 2013-05-16
CN201310180899.5A CN103306453B (zh) 2013-05-16 2013-05-16 石材安装结构及安装石材的方法

Publications (1)

Publication Number Publication Date
WO2014183594A1 true WO2014183594A1 (zh) 2014-11-20

Family

ID=49132135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077220 WO2014183594A1 (zh) 2013-05-16 2014-05-12 石材安装结构及安装石材的方法

Country Status (2)

Country Link
CN (1) CN103306453B (zh)
WO (1) WO2014183594A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760811A1 (fr) * 2019-07-03 2021-01-06 Fixinox Mecanisme pour coupler mecaniquement des panneaux de facade

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103306453B (zh) * 2013-05-16 2017-02-08 一禾科技发展(上海)有限公司 石材安装结构及安装石材的方法
CN103362283A (zh) * 2013-07-22 2013-10-23 一禾科技发展(上海)有限公司 石材安装结构及安装石材的方法
CN103334564B (zh) * 2013-07-22 2015-11-25 一禾科技发展(上海)有限公司 墙砖安装结构及安装墙砖的方法
DE102015009726A1 (de) * 2015-03-13 2016-09-15 Manfred Woschko Mechanische Befestigung einer Metallverbundplatte
CN115366270A (zh) * 2021-05-17 2022-11-22 深圳华大生命科学研究院 分割装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048266A1 (de) * 2005-10-27 2007-05-03 Kaba Gilgen Ag Glasflügel für türen, tore, wände und fenster
CN2900682Y (zh) * 2006-01-23 2007-05-16 陈吉轩 弹性相嵌组合扣件
CN201162321Y (zh) * 2007-08-23 2008-12-10 深圳金粤幕墙装饰工程有限公司 一种石材幕墙的固定装置
CN201843237U (zh) * 2010-11-09 2011-05-25 苏州柯利达建筑装饰工程有限公司 波纹形铝板幕墙***
CN103306453A (zh) * 2013-05-16 2013-09-18 一禾科技发展(上海)有限公司 石材安装结构及安装石材的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE714846A (zh) * 1968-05-08 1968-09-30
KR20070020117A (ko) * 2007-01-29 2007-02-16 김종성 외장재 고정용 앵커볼트
CN201531075U (zh) * 2009-11-13 2010-07-21 苏州金螳螂幕墙有限公司 一种用于背栓式石材幕墙的固定装置
CN101949200B (zh) * 2010-09-26 2011-12-07 霍学朝 一种建筑墙面板安装用可调式定位部件
CN103015542B (zh) * 2012-12-20 2015-04-15 山东万鑫建设有限公司 现浇发泡外墙外保温施工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048266A1 (de) * 2005-10-27 2007-05-03 Kaba Gilgen Ag Glasflügel für türen, tore, wände und fenster
CN2900682Y (zh) * 2006-01-23 2007-05-16 陈吉轩 弹性相嵌组合扣件
CN201162321Y (zh) * 2007-08-23 2008-12-10 深圳金粤幕墙装饰工程有限公司 一种石材幕墙的固定装置
CN201843237U (zh) * 2010-11-09 2011-05-25 苏州柯利达建筑装饰工程有限公司 波纹形铝板幕墙***
CN103306453A (zh) * 2013-05-16 2013-09-18 一禾科技发展(上海)有限公司 石材安装结构及安装石材的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760811A1 (fr) * 2019-07-03 2021-01-06 Fixinox Mecanisme pour coupler mecaniquement des panneaux de facade
BE1027398B1 (fr) * 2019-07-03 2021-02-01 Fixinox Mécanisme pour coupler mécaniquement des panneaux de façade

Also Published As

Publication number Publication date
CN103306453B (zh) 2017-02-08
CN103306453A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2014183594A1 (zh) 石材安装结构及安装石材的方法
WO2015010493A1 (zh) 墙砖安装结构及安装墙砖的方法
WO2015010495A1 (zh) 石材安装结构及安装石材的方法
WO2014183595A1 (zh) 隐框玻璃幕墙安装结构及安装隐框玻璃幕墙的方法
US7805894B2 (en) Construction connectors incorporating hardware
JP6968375B2 (ja) 型枠ユニットおよびコンクリート構造物施工方法
WO2015010496A1 (zh) 墙砖安装结构及安装墙砖的方法
CN109025145B (zh) 预制外墙挂板的可调型连接节点构造及其施工方法
WO2015010494A1 (zh) 铝合金门窗框及其安装方法
KR100620253B1 (ko) 거푸집설치용 거푸집판넬 및 그 제조방법
TWM633086U (zh) 金屬建材的簡易拆換裝置(一)
CN111206695B (zh) 一种墙体保温板的安装结构及安装方法
CN210947537U (zh) 一种饰面板干挂件
KR20060107256A (ko) 건축물의 플랫 플레이트와 기둥의 접합부 보강 시스템
JP2009155857A (ja) 建築物の制振構造及び目地部材
CN106968373B (zh) 超高坐式全玻幕墙安装用玻璃夹具及安装方法
WO2014183604A1 (zh) 防逃逸玻璃幕墙的安装结构及安装防逃逸玻璃幕墙的方法
CN221119024U (zh) 一种金属复合饰面板快速可逆挂装墙面骨架***
CN220747367U (zh) 一种精制钢幕墙
CN212358647U (zh) 一种全装配干法连接墙板体系锚板连接组件
CN218814660U (zh) 建筑吊顶结构
KR102615298B1 (ko) 부착성능이 향상된 고하중용 열교 차단형 외단열시스템 및 그 시공방법
CN212176408U (zh) 一种墙面板材结构
JP5008116B2 (ja) 木造建築物における柱梁接合構造及びその柱梁接合構造に使用される柱梁接合用金具
CN109736184B (zh) 一种波形钢腹板组合桥主梁与桥台连接件及其安装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797571

Country of ref document: EP

Kind code of ref document: A1