WO2014180242A1 - 一种显示屏薄膜及其制备方法、节能方法 - Google Patents

一种显示屏薄膜及其制备方法、节能方法 Download PDF

Info

Publication number
WO2014180242A1
WO2014180242A1 PCT/CN2014/075829 CN2014075829W WO2014180242A1 WO 2014180242 A1 WO2014180242 A1 WO 2014180242A1 CN 2014075829 W CN2014075829 W CN 2014075829W WO 2014180242 A1 WO2014180242 A1 WO 2014180242A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz glass
carbon nanotube
layer
incident light
glass layer
Prior art date
Application number
PCT/CN2014/075829
Other languages
English (en)
French (fr)
Inventor
孙玮
韩正渭
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14794448.2A priority Critical patent/EP3061602B1/en
Priority to ES14794448.2T priority patent/ES2667403T3/es
Priority to US15/030,980 priority patent/US9791769B2/en
Publication of WO2014180242A1 publication Critical patent/WO2014180242A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/1525Deposition methods from the vapour phase by cvd by atmospheric CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam

Definitions

  • the invention relates to an optical film energy-saving technology, in particular to a display film, a preparation method thereof and an energy-saving method. Background technique
  • the screens of large-screen mobile terminals are basically more than 4 inches.
  • Most manufacturers need at least 1500mAh batteries to barely maintain the mobile terminal's use for one day, while flat-panel computers need to be equipped with higher-capacity batteries.
  • the existing materials of the battery limit the continuous increase of the capacity, and therefore, in order to save energy, it can be optimized on the screen display of these electronic products.
  • the brightness of the screen is an important part of the energy consumption of the electronic product.
  • the standby and the screen display consume about 40% of the power. Therefore, it is necessary to optimize the brightness of the screen one by one to reduce the display brightness, but this method is disadvantageous to the user.
  • a good screen display can make the user's eyes more comfortable to watch and use the product, so the brightness cannot be lowered a lot. Therefore, energy saving needs to be realized by new technology. Summary of the invention
  • an embodiment of the present invention provides a display screen film and preparation thereof Method, energy saving method.
  • the embodiment of the invention provides a display film comprising: a quartz glass layer and a directional carbon nanotube layer; wherein
  • the aligned carbon nanotube layer located above the quartz glass layer, includes a directionally grown carbon nanotube configured to refract all incident light by the directionally grown carbon nanotubes;
  • the quartz glass layer is configured to grow an aligned carbon nanotube layer; and absorb incident light such that the incident light all reaches the aligned carbon nanotube layer.
  • the embodiment of the invention further provides a method for preparing a display screen film, the method comprising: growing an oriented carbon nanotube layer on a quartz glass layer;
  • the quartz glass layer absorbs incident light and causes the incident light to all reach the aligned carbon nanotube layer; the aligned carbon nanotube layer refracts all incident light.
  • the oriented carbon nanotube layer is grown on the quartz glass layer by hydrogen-free chemical vapor deposition.
  • the orientation direction of the carbon nanotubes is shifted by 90. ⁇ 15. .
  • the growing the aligned carbon nanotube layer on the quartz glass layer is: vertically growing carbon nanotubes for refracting all incident light on the quartz glass layer.
  • the gap size between the carbon nanotubes ranges from 400 to 700 nm.
  • the carbon nanotubes have a diameter ranging from 20 to 80 nm.
  • the embodiment of the invention further provides a method for saving energy of a display screen, the method comprising: growing an oriented carbon nanotube layer on a quartz glass layer;
  • Display screen film provided by embodiment of the present invention, preparation method thereof, and energy saving method, in quartz
  • An oriented carbon nanotube layer is grown on the glass layer such that the quartz glass layer can absorb the incident light and the incident light reaches the aligned carbon nanotube layer, and the aligned carbon nanotube layer can refract all the incident light absorbed by the quartz glass layer, thereby enabling The light is transmitted through the film and is emitted almost vertically, saving energy.
  • FIG. 1 is a schematic structural diagram of a display film of an embodiment of the present invention.
  • FIG. 2 is a view showing the effect of the display film of the embodiment of the present invention.
  • FIG. 3 is a comparison diagram of a display film applied to a display screen according to an embodiment of the present invention. detailed description
  • the basic idea of the embodiments of the present invention is: growing an oriented carbon nanotube layer on a quartz glass layer; forming the quartz glass layer with the aligned carbon nanotube layer to form an energy-saving display film, and attaching to The display screen surface enables the quartz glass layer to absorb incident light from the display screen surface and cause the incident light to all reach the aligned carbon nanotube layer; correspondingly, the aligned carbon nanotube layer refracts all incident light to pass the light through the film Shooted almost vertically.
  • the directionally grown carbon nanotubes are vertically grown, which can reduce the refracted light loss of incident light at different angles; the quartz glass layer can ensure that all incident light from the display screen is absorbed to reach the aligned carbon nanotube layer.
  • the quartz glass layer has a strong transmission enhancement effect, so that light emitted from the surface of the display screen passes through the quartz glass layer and reaches between the pores of the carbon nanotube without loss.
  • the display screen may be a liquid crystal display.
  • the display film provided by the embodiment of the present invention includes: a quartz glass layer 11 and an oriented carbon nanotube layer 12;
  • the aligned carbon nanotube layer 12 is located above the quartz glass layer 11 and includes at least one carbon nanotube grown in orientation for refracting all incident light by the at least one carbon nanotube grown in a direction;
  • the quartz glass layer 11 is for growing the aligned carbon nanotube layer 12; and absorbing incident light such that the incident light all reaches the aligned carbon nanotube layer 12.
  • the embodiment of the present invention further provides a method for preparing the film, specifically comprising the steps of: growing an oriented carbon nanotube layer on the quartz glass layer; the quartz glass layer absorbing incident light and The incident light all reaches the aligned carbon nanotube layer; the aligned carbon nanotube layer refracts all of the incident light.
  • the growth of the aligned carbon nanotube layer on the quartz glass layer may be carried out by a hydrogen-free chemical vapor deposition method; the growth is vertical growth on the quartz glass layer.
  • ferrocene Fe (C 5 3 ⁇ 4 ) 2 is used as a catalyst
  • acetylene is used as a carbon source
  • nitrogen is used as a carrier gas
  • the ratio of the amount of catalyst to the carbon source is lg:100 mL / min
  • the existing quartz glass layer is used as a substrate, placed in a multi-temperature zone horizontal column reactor, a quartz tube is used as a reaction chamber, and nitrogen (carrier gas) and acetylene (carbon source) are separately prepared at the two nozzles of the reaction furnace.
  • furnace temperature when the reaction temperature is 700 ⁇ 800 ° C, put nitrogen and acetylene, nitrogen
  • the flow rate is 100 ⁇ 300mL / min, the flow rate of acetylene is 40 ⁇ lOOmL / min;
  • the microstructure of the aligned carbon nanotube layer can be observed by scanning electron microscopy.
  • the orientation growth direction is shifted to 90.
  • the carbon source is removed first, then the carrier gas is removed, and the temperature is lowered.
  • the quartz glass layer with the aligned carbon nanotube layer is taken out.
  • the direction-growth direction of the directionally grown carbon nanotubes is shifted by 90. ⁇ 15 ° ;
  • These carbon nanotubes are arranged in a directional manner on the substrate, and the ordered arrangement of the individual carbon nanotubes is equidistantly arranged; a narrow gap is formed between the individual carbon nanotubes, and the gap size ranges from 400 to 700 nm, just Corresponding to the wavelength range of visible light; the diameter of the carbon nanotubes ranges from 20 to 80 nm.
  • the action effect diagram of the display screen provided by the embodiment of the present invention is as shown in FIG. 2, and the specific description is as follows:
  • the emitted light 21 of the display screen 20 passes through the quartz glass layer 22 to reach the lower surface of the aligned carbon nanotube layer, the oriented carbon nanometer
  • the small gap between the vertically grown individual carbon nanotubes 23 included in the tube layer is like a myriad of "traps", after which the light is refracted multiple times, and the near-vertical light is output on the upper surface of the aligned carbon nanotube layer.
  • the film has a certain guiding effect on the light emitted by the screen.
  • the film is formed by a quartz glass layer 22 in which carbon nanotubes 23 are vertically grown, and the film is attached to the surface of the display screen 20 as a display film.
  • FIG. 3 (a) A comparison diagram of a display film applied to a display screen according to an embodiment of the present invention is shown in FIG.
  • Figure 3 (b) in the absence of film, the display surface emits an omnidirectionality 180.
  • the guiding action is such that the light emitted through the upper surface of the film changes into a smaller range of the screen panel of the near vertical display. In this way, when the screen brightness is reduced to 1/3, the energy saving effect can be achieved while ensuring no reduction in brightness, thereby improving the endurance of the mobile terminal.
  • the growth of the aligned carbon nanotube layer on the quartz glass layer can utilize the electrical and magnetic properties of the carbon nanotube itself to induce the growth direction thereof, such as a polymer induced orientation method, an electric field induced orientation method, Magnetic field induced orientation method and the like.

Abstract

本发明公开了一种显示屏薄膜及其制备方法、节能方法,其中显示屏薄膜包括:定向碳纳米管层,位于石英玻璃层的上方,包括定向生长的碳纳米管,配置为通过所述定向生长的碳纳米管折射全部入射光;石英玻璃层,用于生长定向碳纳米管层;还用于吸收入射光,使入射光全部到达定向碳纳米管层。

Description

一种显示屏薄膜及其制备方法、 节能方法 技术领域
本发明涉及光学薄膜节能技术, 尤其涉及一种显示屏薄膜及其制备方 法、 节能方法。 背景技术
当前电子消费品的发展已经进入到了大显示屏、 智能时代, 就用户对 移动终端如手机的使用来说, 已经不再局限于通话和短信这些方式, 更多、 更丰富的应用都在移动终端的其他功能上, 例如: 看视频、 拍照、 刷微博、 聊天、 导航等。 那么, 对于大显示屏的移动终端来说, 用户的视觉效果更 好, 获取的信息量也会增大, 但其续航能力就成为了移动终端性能中最重 要的指标。
目前, 大显示屏移动终端的屏幕基本都在 4英寸以上, 大部分厂商至 少需要配 1500mAh以上的电池, 才能勉强维持移动终端一天的使用, 而平 板电脑就需要配更高容量的电池。 但电池现有的材料, 限制了容量的持续 升高, 因此, 为了节能, 可以在这些电子产品的屏幕显示上做优化。
屏幕的亮度是电子产品耗能的重要部分, 其待机与屏显会消耗 40%左 右的电量, 因此, 需要对屏幕的亮度进行优化一一降低显示亮度, 但这种 方法对用户是不利的, 良好的屏幕显示, 才能让用户的眼睛更为舒服的观 看和使用产品, 所以不能将亮度调低很多, 如此以来, 节能就需要通过新 技术来实现。 发明内容
为解决上述技术问题, 本发明实施例提供了一种显示屏薄膜及其制备 方法、 节能方法。
本发明实施例提供了一种显示屏薄膜, 该薄膜包括: 石英玻璃层、 定 向碳纳米管层; 其中,
所述定向碳纳米管层, 位于石英玻璃层的上方, 包括定向生长的碳纳 米管, 配置为通过所述定向生长的碳纳米管折射全部入射光;
所述石英玻璃层, 配置为生长定向碳纳米管层; 以及吸收入射光, 使所 述入射光全部到达定向碳纳米管层。
本发明实施例还提供了一种显示屏薄膜的制备方法, 该方法包括: 在石英玻璃层上生长定向碳纳米管层;
所述石英玻璃层吸收入射光并使入射光全部到达定向碳纳米管层; 所 述定向碳纳米管层折射全部入射光。
上述方案中, 釆用无氢化学汽相淀积法在石英玻璃层上生长定向碳纳 米管层。
上述方案中, 所述碳纳米管的定向生长方向偏移范围为 90。 ± 15。 。 上述方案中, 所述在石英玻璃层上生长定向碳纳米管层为: 在石英玻 璃层上垂直生长用于折射全部入射光的碳纳米管。
上述方案中, 所述碳纳米管之间的空隙尺寸范围为 400~700nm。
上述方案中, 所述碳纳米管的直径尺寸范围为 20~80nm。
本发明实施例又提供了一种显示屏薄膜的节能方法, 该方法包括: 在石英玻璃层上生长定向碳纳米管层;
将生长有定向碳纳米管层的所述石英玻璃层形成显示屏薄膜, 并贴附 于所述显示屏表面; 所述石英玻璃层吸收来自显示屏表面的入射光, 并使 入射光全部到达定向碳纳米管层; 所述定向碳纳米管层折射全部入射光, 使光线通过显示屏薄膜后垂直射出。
本发明实施例所提供的显示屏薄膜及其制备方法、 节能方法, 在石英 玻璃层上生长定向碳纳米管层, 以使石英玻璃层能吸收入射光并使入射光 全部到达定向碳纳米管层, 且定向碳纳米管层能折射石英玻璃层吸收的全 部入射光, 从而能使光线通过薄膜后近乎垂直射出, 节省能耗。
将生长有定向碳纳米管层的所述石英玻璃层形成节能的显示屏薄膜, 并贴附于所述显示屏表面; 使得石英玻璃层能吸收来自显示屏表面的入射 光, 并使入射光全部到达定向碳纳米管层; 相应的, 定向碳纳米管层折射 全部入射光, 使光线通过薄膜后近乎垂直射出; 如此, 能在保证不降低亮 度的同时, 达到节能的效果, 进而提高移动终端的续航能力。 附图说明
图 1为本发明实施例显示屏薄膜的组成结构示意图;
图 2为本发明实施例显示屏薄膜的作用效果图;
图 3为本发明实施例显示屏薄膜应用到显示屏的对比图。 具体实施方式
目前人们对电子产品的使用越来越频繁, 电池容量是其续航能力的根 源, 当前的电池开发技术都集中在蓄电池的材料上, 然而新材料的突破又 有其自身的瓶颈。 如果换个角度, 考虑将光线原本的全向性 180° 可视角度 改变成近乎垂直屏幕面板的较小范围内, 那么,在降低屏幕亮度至 1/3的情 况下, 还能让用户继续保持垂直视角一样的亮度, 这样一来, 就可以从另 一路径达到电子产品节能的效果。
基于上述考虑, 本发明实施例的基本思路是: 在石英玻璃层上生长定 向碳纳米管层; 将生长有定向碳纳米管层的所述石英玻璃层形成节能的显 示屏薄膜, 并贴附于所述显示屏表面; 使得石英玻璃层能吸收来自显示屏 表面的入射光, 并使入射光全部到达定向碳纳米管层; 相应的, 定向碳纳 米管层折射全部入射光, 使光线通过薄膜后近乎垂直射出。 其中, 定向生长的碳纳米管为垂直生长, 可以减少不同角度入射光的 折射光损耗; 所述石英玻璃层能保证将吸收到的来自显示屏的入射光全部 到达定向碳纳米管层。
这里, 石英玻璃层具有较强的透射增强效应, 所以, 从显示屏表面发 出的光线通过石英玻璃层, 到达碳纳米管的孔隙之间, 是没有损耗的。
这里, 所述显示屏可以为液晶显示屏。
本发明实施例提供的显示屏薄膜, 如图 1所示, 包括: 石英玻璃层 11、 定向碳纳米管层 12; 其中,
所述定向碳纳米管层 12, 位于石英玻璃层 11的上方, 包括定向生长的 至少一个碳纳米管, 用于通过定向生长的所述至少一个碳纳米管折射全部 入射光;
所述石英玻璃层 11, 用于生长定向碳纳米管层 12; 以及吸收入射光, 使所述入射光全部到达定向碳纳米管层 12。
对应图 1 所示的显示屏薄膜, 本发明实施例还提供了该薄膜的制备方 法, 具体包括如下步骤: 在石英玻璃层上生长定向碳纳米管层; 所述石英 玻璃层吸收入射光并使所述入射光全部到达定向碳纳米管层; 所述定向碳 纳米管层折射全部所述入射光。
这里, 所述在石英玻璃层上生长定向碳纳米管层可釆用无氢化学汽相 淀积法; 所述生长为在石英玻璃层上垂直生长。
举个具体例子来说, 以二茂铁 Fe ( C5¾ ) 2为催化剂, 乙炔为碳源, 氮 气为载气, 催化剂的量和碳源的流量比为 lg:100mL / min左右; 载气和碳 源的流量比为 N2:C2H2 = 2:1到 4:1, 气体的总流量不超过 300mL / min;
将现有的石英玻璃层作为基底, 放入多温区卧式柱体反应炉, 石英管 作为反应室, 在反应炉的两个管口分别准备好氮气(载气)和乙炔(碳源); 升炉温, 当反应温度为 700 ~ 800°C的时候, 放入氮气和乙炔, 氮气的 流量为 100 ~ 300mL/min, 乙炔的流量为 40 ~ lOOmL/min;
定向碳纳米管层的组织形貌可用扫描电镜观察分析, 当生长的定向碳 纳米管层形成定向生长方向偏移范围为 90。 ± 15° 的柱状时,先退去碳源, 再退载气, 开始降温; 降至常温, 取出生长好定向碳纳米管层的石英玻璃 层。
其中, 定向生长的碳纳米管的定向生长方向偏移范围为 90。 ± 15° ; 这些碳纳米管有方向性地在基底排列, 各个碳纳米管之间有序排列如等距 排列; 各个碳纳米管之间形成狭长的空隙, 空隙尺寸范围为 400~700nm, 正好对应于可见光的波长范围; 碳纳米管的直径尺寸范围为 20~80nm。
本发明实施例提供的显示屏薄膜的作用效果图如图 2所示, 具体说明 如下: 当显示屏 20的发射光线 21通过石英玻璃层 22到达定向碳纳米管层 的下表面时, 定向碳纳米管层所包括的垂直生长的各个碳纳米管 23之间的 小空隙如同无数个 "陷阱", 使光线在其中经过多次折射后, 在定向碳纳米 管层的上表面输出近乎垂直方向的光线, 如此, 这种薄膜对屏幕发出的光 线具有一定的导向作用。 其中, 所述薄膜由垂直生长有碳纳米管 23的石英 玻璃层 22形成, 该薄膜贴附于显示屏 20表面可作为显示屏薄膜。
本发明实施例显示屏薄膜应用到显示屏的对比图, 如图 3所示。如图 3 ( a )所示, 在无膜的情况下, 显示屏表面发射出全向性 180。 可视角度的 光线; 如图 3 ( b )所述, 在有膜的情况下, 显示屏表面发出的光线通过图 1所示结构的薄膜后,由于薄膜对显示屏表面发出的光线具有一定的导向作 用, 使得经由薄膜上表面发出的光线改变成近乎垂直显示屏的屏幕面板的 较小范围内。 这样, 在降低屏幕亮度至 1/3的情况下, 能在保证不降低亮度 的同时, 达到节能的效果, 进而提高移动终端的续航能力。
另外, 在石英玻璃层上生长定向碳纳米管层可以利用碳纳米管本身的 电、 磁等性质来诱导其生长方向, 如高分子诱导取向法、 电场诱导取向法、 磁场诱导取向法等。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种显示屏薄膜, 所述薄膜包括: 石英玻璃层、 定向碳纳米管层; 其中,
所述定向碳纳米管层, 位于石英玻璃层的上方, 包括定向生长的碳纳 米管, 配置为通过定向生长的所述碳纳米管折射全部入射光;
所述石英玻璃层, 配置为生长定向碳纳米管层; 以及吸收入射光, 使所 述入射光全部到达定向碳纳米管层。
2、 一种显示屏薄膜的制备方法, 所述方法包括:
在石英玻璃层上生长定向碳纳米管层;
所述石英玻璃层吸收入射光, 并使所述入射光全部到达定向碳纳米管 层;
所述定向碳纳米管层折射全部所述入射光。
3、 根据权利要求 2所述的方法, 其中, 釆用无氢化学汽相淀积法在石 英玻璃层上生长定向碳纳米管层。
4、 根据权利要求 2所述的方法, 其中, 所述碳纳米管的定向生长方向 偏移范围为 90。 ± 15° 。
5、 根据权利要求 2或 3所述的方法, 其中, 所述在石英玻璃层上生长 定向碳纳米管层为: 在石英玻璃层上垂直生长用于折射全部入射光的碳纳 米管。
6、 根据权利要求 2或 3所述的方法, 其中, 所述碳纳米管之间的空隙 尺寸范围为 400~700nm。
7、 根据权利要求 2或 3所述的方法, 其中, 所述碳纳米管的直径尺寸 范围为 20~80nm。
8、 一种显示屏薄膜的节能方法, 所述方法包括:
在石英玻璃层上生长定向碳纳米管层; 将生长有定向碳纳米管层的所述石英玻璃层形成显示屏薄膜, 并贴附 于所述显示屏表面;
所述石英玻璃层吸收来自显示屏表面的入射光, 并使入射光全部到达 定向碳纳米管层; 所述定向碳纳米管层折射全部入射光, 使光线通过显示 屏薄膜后垂直射出。
9、 根据权利要求 8所述的方法, 其中, 釆用无氢化学汽相淀积法在石 英玻璃层上生长定向碳纳米管层。
10、 根据权利要求 8或 9所述的方法, 其中, 所述在石英玻璃层上生 长定向碳纳米管层为: 在石英玻璃层上垂直生长用于折射全部入射光的碳 纳米管。
PCT/CN2014/075829 2013-10-24 2014-04-21 一种显示屏薄膜及其制备方法、节能方法 WO2014180242A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14794448.2A EP3061602B1 (en) 2013-10-24 2014-04-21 Display screen film and preparation method therefor, and energy saving method
ES14794448.2T ES2667403T3 (es) 2013-10-24 2014-04-21 Protección para pantalla de visualización y procedimiento para su preparación y procedimiento de ahorro de energía
US15/030,980 US9791769B2 (en) 2013-10-24 2014-04-21 Display screen film, preparation method therefor and energy saving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310507766.4 2013-10-24
CN201310507766.4A CN104553160B (zh) 2013-10-24 2013-10-24 一种显示屏薄膜及其制备方法、节能方法

Publications (1)

Publication Number Publication Date
WO2014180242A1 true WO2014180242A1 (zh) 2014-11-13

Family

ID=51866705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075829 WO2014180242A1 (zh) 2013-10-24 2014-04-21 一种显示屏薄膜及其制备方法、节能方法

Country Status (5)

Country Link
US (1) US9791769B2 (zh)
EP (1) EP3061602B1 (zh)
CN (1) CN104553160B (zh)
ES (1) ES2667403T3 (zh)
WO (1) WO2014180242A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199870B2 (en) 2012-05-22 2015-12-01 Corning Incorporated Electrostatic method and apparatus to form low-particulate defect thin glass sheets
US9296614B1 (en) 2014-11-12 2016-03-29 Corning Incorporated Substrate such as for use with carbon nanotubes
US9422187B1 (en) 2015-08-21 2016-08-23 Corning Incorporated Laser sintering system and method for forming high purity, low roughness silica glass
US11036184B2 (en) 2016-12-07 2021-06-15 FEHR et Cie SA Method of fabrication of a black watch dial, and said black watch dial

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4235232A3 (en) * 2017-03-14 2023-12-27 Magic Leap, Inc. Waveguides with light absorbing films and processes for forming the same
CN110282974B (zh) * 2019-06-28 2020-12-29 华南理工大学 定向排布磁性碳纤维石墨烯复合膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204679A1 (en) * 2005-03-11 2006-09-14 3M Innovative Properties Company Polymerizable compositions comprising nanoparticles
US20070082218A1 (en) * 2005-10-07 2007-04-12 Eternal Chemical Co., Ltd. Brightness enhancement film
US20070254146A1 (en) * 2006-04-26 2007-11-01 Eternal Chemical Co., Ltd. Brightness enhancement film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089938A1 (en) * 1998-06-19 2001-04-11 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
CN1543399B (zh) * 2001-03-26 2011-02-23 艾考斯公司 含碳纳米管的涂层
JP4817296B2 (ja) * 2006-01-06 2011-11-16 独立行政法人産業技術総合研究所 配向カーボンナノチューブ・バルク集合体ならびにその製造方法および用途
CN101360387B (zh) * 2007-08-03 2012-06-13 富葵精密组件(深圳)有限公司 柔性电路板基膜、柔性电路板基板及柔性电路板
CN102321323B (zh) * 2011-05-27 2013-08-28 清华大学 透明碳纳米管复合膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204679A1 (en) * 2005-03-11 2006-09-14 3M Innovative Properties Company Polymerizable compositions comprising nanoparticles
US20070082218A1 (en) * 2005-10-07 2007-04-12 Eternal Chemical Co., Ltd. Brightness enhancement film
US20070254146A1 (en) * 2006-04-26 2007-11-01 Eternal Chemical Co., Ltd. Brightness enhancement film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, XIANFENG ET AL.: "Patterned Growth of Well-aligned Carbon Nanotube Arrays on Quartz Substrates by Chemical Vapor Deposition", JOURNAL OF INORGANIC MATERIALS, vol. 3, no. 18, 31 May 2003 (2003-05-31), pages 163 - 167, XP008181176 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199870B2 (en) 2012-05-22 2015-12-01 Corning Incorporated Electrostatic method and apparatus to form low-particulate defect thin glass sheets
US9296614B1 (en) 2014-11-12 2016-03-29 Corning Incorporated Substrate such as for use with carbon nanotubes
US9422187B1 (en) 2015-08-21 2016-08-23 Corning Incorporated Laser sintering system and method for forming high purity, low roughness silica glass
US11036184B2 (en) 2016-12-07 2021-06-15 FEHR et Cie SA Method of fabrication of a black watch dial, and said black watch dial

Also Published As

Publication number Publication date
US20160259235A1 (en) 2016-09-08
CN104553160B (zh) 2018-02-06
EP3061602B1 (en) 2018-03-07
EP3061602A4 (en) 2016-11-02
US9791769B2 (en) 2017-10-17
CN104553160A (zh) 2015-04-29
ES2667403T3 (es) 2018-05-10
EP3061602A1 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2014180242A1 (zh) 一种显示屏薄膜及其制备方法、节能方法
Zhang et al. Synthesis, microstructure, and growth mechanism of dendrite ZnO nanowires
Jiang et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications
Coskun et al. Optimization of silver nanowire networks for polymer light emitting diode electrodes
Hikmet et al. Polarized-Light-Emitting Quantum-Rod Diodes.
Leonardy et al. Structural features of SnO2 nanowires and raman spectroscopy analysis
JP5243481B2 (ja) カーボンナノチューブフィルムの製造方法
JP5059833B2 (ja) カーボンナノチューブ構造体
Hsieh et al. Electroluminescence from ZnO/Si-nanotips light-emitting diodes
JP2013509352A (ja) 導電性金属酸化物膜および光起電装置
WO2020124766A1 (zh) 可弯折盖板及柔性显示装置
JP2010116318A (ja) カーボンナノチューブ構造体の引伸し方法
JP2010116317A (ja) カーボンナノチューブ構造体
JP2016038490A (ja) 表示パネル、表示モジュール、及び電子機器
Cheng et al. Au plasmonics in a WS2-Au-CuInS2 photocatalyst for significantly enhanced hydrogen generation
Zhao et al. Interfacial self-assembly of monolayer Mg-doped NiO honeycomb structured thin film with enhanced performance for gas sensing
TW201351223A (zh) 觸摸屏及顯示裝置
Yu et al. Investigation of light transmission and scattering properties in silver nanowire mesh transparent electrodes
KR20130036300A (ko) 투명 전극 및 이의 제조 방법
Yang et al. Metal-induced solid-phase crystallization of amorphous TiO2 thin films
Wu et al. Localized surface plasmon resonance in graphene nanomesh with Au nanostructures
Li et al. Self-catalytic synthesis, structures, and properties of high-quality tetrapod-shaped ZnO nanostructures
Mohammadimasoudi et al. Hybrid fluorescent layer emitting polarized light
Wang et al. General in situ chemical etching synthesis of ZnO nanotips array
JP2007242340A (ja) 透明導電性基板及びその製造方法並びにその製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030980

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014794448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014794448

Country of ref document: EP