WO2014175478A1 - 산소제거 장치를 구비한 이산화탄소 분리 회수 장치 - Google Patents

산소제거 장치를 구비한 이산화탄소 분리 회수 장치 Download PDF

Info

Publication number
WO2014175478A1
WO2014175478A1 PCT/KR2013/003516 KR2013003516W WO2014175478A1 WO 2014175478 A1 WO2014175478 A1 WO 2014175478A1 KR 2013003516 W KR2013003516 W KR 2013003516W WO 2014175478 A1 WO2014175478 A1 WO 2014175478A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
carbon dioxide
absorbent
oxygen
amine
Prior art date
Application number
PCT/KR2013/003516
Other languages
English (en)
French (fr)
Inventor
백일현
박기태
유정균
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2014175478A1 publication Critical patent/WO2014175478A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1431Pretreatment by other processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/869Multiple step processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to a carbon dioxide separation and recovery apparatus having a oxygen removal device capable of preventing deterioration of the absorbent by removing residual oxygen contained in the flue gas before entering the absorption tower for carbon dioxide separation recovery and its process method It is about.
  • Carbon Dioxide Capture & Storage (CCS) technology is a technology that isolates carbon dioxide from the atmosphere from carbon dioxide sources such as power plants, steel and cement plants due to the use of fossil fuels.
  • carbon dioxide capture technology is a core technology that accounts for 70 to 80% of the total cost.
  • Postcombustion technology, pre-combustion technology, and oxy-oxygen combustion technology (Oxy) I fuel combustion technology) (the latest development status of carbon dioxide capture technology Chang-Keun Lee, Industrial Chemistry Prospect, Vol. 12, No. 1, 2009).
  • Postcombustion technology is a technique for absorbing or reacting carbon dioxide (C0 2 ) from fossil fuel combustion in various solvents and precombustion technology is used for combustion.
  • the separation of carbon dioxide before is carried out by gasifying fossil fuels such as coal to convert it to C0 2 and hydrogen, and then to separate carbon dioxide (C0 2 ) from carbon dioxide (C0 2 ) / hydrogen () mixed gas.
  • It is a technique for easily capturing carbon dioxide (C0 2 ) in exhaust gas by combusting or burning a mixed gas.
  • Oxy-fuel combustion technology is a technology that facilitates the capture of carbon dioxide (C0 2 ) by burning only using oxygen instead of air when burning fossil fuel. Post-combustion capture is the most widely used of the above techniques.
  • Post combustion capture technology which captures carbon dioxide contained in flue gas after combustion, uses a method of absorbing, regenerating, and separating carbon dioxide using an absorbent.
  • the main research directions are focused on improvement of absorbent performance and process improvement.
  • This technology is already operating wet absorption technology and dry adsorption technology to supply carbon dioxide necessary for urea fertilizer production, automatic welding, carbonated drinks, etc., and the efficiency of wet absorption technology is high.
  • the representative process of the wet absorption technology is a capture process using an amine-based absorbent, which is a technology that has secured the technical reliability applied in the reforming process of the petrochemical process, but it is applied to the flue gas which is a combustion flue gas containing various pollutants.
  • Application requires improvements in absorbent performance and process.
  • the process using an amine-based absorbent is a chemical absorption process using an alkanolamine in which an amine and a hydroxyl group are bonded to an alkyl group as an absorbent to regenerate an absorption tower that selectively absorbs carbon dioxide from an inlet gas and an absorber that absorbs carbon dioxide. It is composed of stripping tower (heating regeneration tower) and auxiliary equipment.
  • Mono ethanol amine the most widely used amine absorbent, provides the cause of acidic carbon dioxide and acid-base neutralization reactions in alkaline aqueous solutions formed by unshared electrons of amine groups. (carbamate or bicarbonate) is decomposed and regenerated at about 110 to 130 ° C.
  • the amine absorbent may include DEA (diethanol amine), TEA (tr iethanolamine), MDEA (methyldi ethanol amine), DIPA (di iso-propanolamine) and AMP (2-amino-2-methyl-l-propanol). Idol has a lot of difference in absorption capacity and absorption rate of carbon dioxide according to the structural characteristics.
  • Ethylenedi amine tetraacet icacid, etc. is used.
  • other additives must be used, but additives added to prevent deterioration may incur additional operating costs and induce side effects in the entire absorption process.
  • a process of removing oxygen (Korean Patent 1038674) before absorbing carbon dioxide and the like before reaching a stripping column that undergoes a heat regeneration process has also been attempted.
  • oxidative degradation occurs already. Therefore, it is necessary to fundamentally block the absorbent deterioration by blocking the absorbent and oxygen beforehand.
  • a process of removing oxygen contained in the flue gas before reaching the absorption tower is performed so that oxygen is not absorbed simultaneously when carbon dioxide (C0 2 ) is absorbed by the amine-based absorbent in the absorption tower.
  • flue gas is the selective catalytic reduction
  • the present inventors Before reaching the (SCR) device, the present inventors have found that the oxygen elimination effect can be maximized by passing a catalytic combustor which removes oxygen through catalytic combustion in flue gas containing carbon dioxide and oxygen, thereby completing the present invention. .
  • the present invention provides a catalytic combustor for removing oxygen through catalytic combustion in a flue gas containing carbon dioxide and oxygen;
  • An optional catalytic reduction (SCR) device for removing NOx of flue gas that has passed through the catalytic combustor;
  • An electrostatic precipitator (EP) for removing dust of the flue gas passing through the selective catalytic reduction device;
  • Flue gas desulfurization to remove SOx of flue gas passed through the electrostatic precipitator (EP) FGD: Flue gas desulfuriation
  • a temperature dropping device for lowering the temperature of the flue gas passing through the flue gas desulfurization device (DCC: Direct Contacting Cooler);
  • DCC Direct Contacting Cooler
  • the flue gas and the amine-based absorber passed through the temperature lowering device is supplied, the supplied amine-based absorber absorbs carbon dioxide contained in the exhaust gas to produce a saturated carbon dioxide absorbent, the gas component unreacted with the amine-based absorber Absorption tower to discharge the
  • the catalyst in the catalytic burner is platinum (Pt), rhodium (Rh), palladium
  • a carbon dioxide separation and recovery apparatus having an oxygen removal apparatus using an oxidation catalyst selected from the group consisting of (Pd).
  • the present invention also provides a catalytic combustor, at least one selected from the group consisting of methane, ethane propane, butane, pentane nucleus, heptane, octane, nonane, decane, undecane, and dodecane as hydrocarbons.
  • a catalytic combustor at least one selected from the group consisting of methane, ethane propane, butane, pentane nucleus, heptane, octane, nonane, decane, undecane, and dodecane as hydrocarbons.
  • a carbon dioxide separation recovery device having an oxygen removal device.
  • the present invention also provides a carbon dioxide separation and recovery apparatus having an oxygen removal device using a regeneration method of directly heating and engraving a ceramic having a large surface area.
  • the present invention also provides a catalytic combustion apparatus comprising an SCR reactor activated by flue gas introduced into the reactor without reheating, and a reducing agent supply line for supplying NH 3 into the SCR reactor, wherein the activation temperature of the catalyst is Provided is a carbon dioxide separation recovery device having an oxygen removal device, which is set at 320 ° C.
  • the flue gas desulfurization apparatus uses a wet method, and absorbs so 2 in the gaseous phase by using an absorbent of water or an alkaline solution to dehydrate the alkaline components, reactions, and sludge produced.
  • a carbon dioxide separation rare water device having an oxygen removal device.
  • the present invention also provides a carbon dioxide separation and recovery apparatus having an oxygen removal device, wherein the temperature dropping device lowers the temperature of the flue gas discharged from the flue gas desulfurization device to 40 to 45 ° C. do.
  • the present invention also provides a carbon dioxide separation and recovery apparatus having an oxygen removal device using an amine absorbent used in the absorption tower.
  • the present invention also provides the amine absorbent is MEA (Monoethanol amine),
  • a carbon dioxide separation recovery device having an oxygen removal device, which is at least one selected.
  • the carbon dioxide separation and recovery apparatus including the oxygen removing device and the process method thereof according to the present invention remove dissolved oxygen in the flue gas through a catalytic combustion device. Accordingly, the dissolved oxygen is removed before the flue gas reaches the absorption tower to prevent oxidation of the absorbent and to solve the degradation caused by the oxidation.
  • FIG. 1 is a process conceptual diagram showing a carbon dioxide separation recovery process provided with an oxygen removing device of the present invention.
  • FIG. 2 is a conceptual diagram showing a catalytic combustion reaction.
  • FIG. 1 is a process conceptual diagram illustrating a carbon dioxide separation recovery process including an oxygen removing device.
  • the carbon dioxide separation and recovery apparatus including the oxygen removal device includes a combustor (1), a catalytic combustion device (2), a selective reduction catalyst device (3), an electrostatic precipitator (4), a flue gas desulfurization device (5), and The descent apparatus 6, the absorption tower 7, and the stripping tower 8.
  • the combustor 1 is combusted by injecting fossil fuels such as liquefied petroleum gas (LPG), liquefied natural gas (LNG), petroleum and coal and air containing excess oxygen to burn the combustion.
  • fossil fuels such as liquefied petroleum gas (LPG), liquefied natural gas (LNG), petroleum and coal and air containing excess oxygen to burn the combustion.
  • LPG liquefied petroleum gas
  • LNG liquefied natural gas
  • CO carbon monoxide
  • HC unburned carbon
  • fly ash which is a dust generated when incineration of coal dust as coal as a raw material of about 1,400 to l, 50 (rc), is directly discharged from the combustor.
  • the flue gas from which the fly ash is removed includes 0 2 , N 2 , which does not participate in the combustion reaction, and combustion byproducts C0 2 , N0 2 , NO, NOx, SOx, CO, HC, and the like. Is discharged and fed to the catalytic combustion device (2).
  • the catalytic combustion apparatus 2 performs a process of reacting incomplete combustion gas such as CO and NO with residual oxygen.
  • a combustion agent may be further injected into the catalytic combustor to remove residual oxygen.
  • hydrocarbons such as methane, ethane, propane, butane, pentane, nuclear coal, heptane, octane, nonane, decane, undecane, dodecane, and the like are injected into the combustor.
  • the selective catalytic reduction apparatus 3 removes NOx remaining in the flue gas.
  • the selective catalytic reduction apparatus 3 selectively reduces NOx in flue gas to nitrogen and water vapor by ammonia reaction while simultaneously passing flue gas and ammonia (NH 3 ) reducing agent in the catalyst layer.
  • the reaction scheme is as follows.
  • the catalyst is a flue gas supplied inside without reheating.
  • SCR reactor activated by the, and a reducing agent supply line for supplying N3 ⁇ 4 into the SCR reactor, the activation temperature of the catalyst is set to less than 320 ° C.
  • the dust contained in the flue gas from which NOx has been removed through the selective reduction catalyst device 3 is removed through the electrostatic precipitator 4.
  • the electrostatic precipitator 4 separates the dust in the flue gas by moving it to the wall surface of the apparatus by using an electrostatic force.
  • Flue gas from which dust has been removed through the electrostatic precipitator 4 is supplied to the flue gas desulfurization apparatus 5.
  • the flue gas desulfurization apparatus 5 removes SOx contained in the exhaust gas after combustion by using the principles of absorption, adsorption, oxidation, reduction, and the like.
  • the flue gas desulfurization apparatus (5) uses a wet method, and absorbs SO 2 in the gaseous phase by using an absorbent of water or an alkaline solution to dehydrate the alkaline components, reactions and fish sludge. It is a device for treatment and disposal or for the production of marketable by-products such as gypsum.
  • the flue gas from which SOx is removed is supplied to the silver degassing apparatus.
  • the temperature drop device lowers the temperature so that the carbon dioxide contained in the flue gas can be absorbed by the amine-based absorbent.
  • the silver lowering device 6 is to drop the temperature of the flue gas of 55 to 60 ° C from which the SOx discharged from the flue gas desulfurization apparatus 5 is removed to 40 to 45 ° C. give.
  • the temperature reduced flue gas and the absorbent are supplied to the absorption tower (7).
  • the absorbent supplied absorbs carbon dioxide contained in the mixed gas to produce a saturated carbon dioxide absorbent, and discharges the absorbent and uncoated gas components.
  • the absorbent used in the absorption tower 7 uses an amine heat absorber, and the absorbent is ME Monoethanol amine, DGA (Diglycolamine), MDEA (N-Me t hy). At least one selected from the group consisting of 1 diet hano 1 am i ne), DEACDiethanol amine), Triethanolamine (TEA), AMP (2—Amino 2—methyl 1-propanol), and PZ (Piperazine), DIPA (Diisopropanolamine) Use.
  • ME Monoethanol amine DGA (Diglycolamine), MDEA (N-Me t hy). At least one selected from the group consisting of 1 diet hano 1 am i ne), DEACDiethanol amine), Triethanolamine (TEA), AMP (2—Amino 2—methyl 1-propanol), and PZ (Piperazine), DIPA (Diisopropanolamine) Use.
  • the carbon dioxide saturated absorbent removed by discharging the gas component unreacted with the absorbent is preheated through a heat exchanger and then supplied to the stripping column 8.
  • the carbon dioxide supplied to the stripping column (8) is caused by the saturated energy absorbed by the thermal energy generated by the reboiler below the stripping column.
  • the carbon dioxide is stripped off and the absorbent is regenerated and fed back to the absorption tower (7).
  • FIG. 2 is a conceptual diagram showing a reaction of a catalytic combustion device.
  • the catalytic combustion device 2 uses a regeneration method of directly heating and cooling a ceramic having a large surface area.
  • the catalytic combustion device 2 After forcibly supplying flue gas discharged from the combustor 1 into the catalytic combustion device 2 using a press-fit blower (not shown), the catalytic combustion device 2 The flue gas supplied inside is preheated to a temperature close to the combustion chamber temperature by the heat storage material 30 at the inlet side of the catalytic combustion device 2. The preheated flue gas is oxidized and decomposed in a completely burned silver 750 to 80 CTC by an auxiliary burner 10 in the combustion chamber and treated as a harmless and odorless gas. The treated flue gas passes through the heat storage material 50 on the outlet side, and heats waste heat of high temperature to the heat storage material and is sensed to a predetermined temperature, and then enters the selective reduction catalyst device 3 through the exhaust pipe 40.
  • the catalyst 20 used in the catalytic combustion device 2 is used by supporting platinum (Pt), rhodium (Rd) and palladium (Pd).
  • Pt platinum
  • Rd rhodium
  • Pd palladium
  • metals of platinum and palladium are used as a catalyst for converting carbon monoxide (CO) into carbon dioxide (C0 2 ) and hydrocarbons (HC) into carbon dioxide (C0 2 ) and water (3 ⁇ 40).
  • Rhodium is NO (NOx)
  • the heat storage material is to use the waste heat of the flue gas as much as possible, and to use it for preheating the flue gas, and to maximize the recovery of the waste heat, without using a heat exchanger, a ceramic having a large surface area Direct heating and cooling heat storage
  • Combustor Catalytic combustion device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

이산화탄소 흡수제의 열화현상을 해결하기 위해 이산화탄소(CO2)가 흡수탑에서 아민계 흡수제에 흡수될 때 산소가 동시에 흡수되지 않도록, 연도가스에 포함된 산소를 흡수탑 도달 전에 제거하는 공정을 제공하고자 한다. 본 발명에 따른 이산화탄소 분리 회수 장치 및 그의 공정 방법은 촉매연소장치를 통해 연도가스 속의 용존 산소를 제거한다. 이에 따라, 연도가스가 흡수탑에 도달하기 전에 용존 산소가 제거됨으로써 흡수제 산화 작용이 방지되며, 산화 작용으로 인해 발생된 열화현상을 해결할 수 있다.

Description

【명세서】
【발명의 명칭】
산소제거 장치를 구비한 이산화탄소 분리 회수 장치
[기술분야】
<1> 본 발명은 이산화탄소 분리 회수를 위한 흡수탑에 들어가기 전 연도가스에 포함된 잔류 산소를 제거하여 흡수제의 열화 현상을 방지할 수 있는 산소제거 장치 를 구비한 이산화탄소 분리 회수 장치 및 그의 공정 방법에 관한 것이다.
【배경기술】
<2> 이산화탄소 포집 및 저장 (CCS; Carbon Dioxide Capture& Storage) 기술은 화 석연료 사용으로 인해 발전소, 철강, 시멘트 공장 등 이산화탄소 대량 배출원으로 부터 배출되는 이산화탄소를 대기 중으로부터 격리시키는 기술이다.
<3>
<4> CCS 기술 중 이산화탄소 포집기술은 전체 비용의 70내지 80%를 차지하는 핵 심 기술로 크게 연소 후 포집기술 (Postcombustion technology), 연소 전 포집기술 (Pre— combustion technology) 및 순산소 연소기술 (Oxy一 fuel combustion technology)로 구분 (이산화탄소 포집기술 최신 개발 현황 이창근, 공업화학 전망, 제 12권 제 1호, 2009)된다.
<5>
<6> 연소 후 포집기술 (Postcombustion technology)은 화석연료 연소에서 나온 이 산화탄소 (C02)를 여러 용매에 흡수시키거나 반웅시켜 제거하는 기술이며, 연소 전 포집기술 (Pre-combustion technology)은 연소 전에 이산화탄소를 분리해 내는 것으 로 석탄과 같은 화석연료를 가스화 시키는 과정을 통해 사전 처리하여 C02와 수소로 전환시킨 후에 이산화탄소 (C02)/수소 ( )흔합가스 중에서 이산화탄소 (C02)를 분리하 거나 또는 흔합가스를 연소시켜서 배기가스 중의 이산화탄소 (C02)를 용이하게 포집 하는 기술이다. 또한, 순 산소 연소기술 (Oxy-fuel combustion technology)은 화석 연료를 연소시킬 때 공기 대신 산소만을 이용하여 연소시켜 이산화탄소 (C02) 포집을 용이하게 하는 기술이다. 위 기술 중 연소 후 포집기술이 현재 가장 폭넓게 사용되 고 있다.
<7>
<8> 연소 후 연도가스에 포함된 이산화탄소를 포집하는 기술인 연소 후 포집기술 은 흡수제를 이용하여 이산화탄소를 흡수하고 재생하여 분리하는 방법을 사용하며, 주요 연구방향으로는 흡수제 성능향상과 이에 따른 공정 개선 등에 초점 이 맞추어 져 있다 . 이 기술은 이미 요소비료 생산, 자동용접, 탄산음료 등에 필요한 이산화 탄소를 공급하기 위하여 습식 흡수기술과 건식 흡착기술이 상용화되 어 가동되고 있 으며, 습식 흡수기술의 효율이 높은 편이다.
<9>
<10> 습식 흡수기술의 대표적 인 공정은 아민계 흡수제를 사용하는 포집공정으로 석유화학공정 중 개질공정에서 적용된 바 있는 기술적 신뢰성 이 확보된 기술이지 만 , 다양한 오염물이 포함된 연소 배가스인 연도가스에 적용하기 위해서는 흡수제 성능 및 공정 개선이 필요하다. 아민계 흡수제를 사용하는 공정은, 알킬기 에 아민 과 hydroxyl기 가 결합된 알칸올아민을 흡수제로 이용하는 화학흡수공정으로 크게 유입 가스로부터 이산화탄소를 선택적으로 흡수하는 흡수탑과 이산화탄소를 흡수한 흡수제를 재생하는 탈거탑 (가열 재생탑) 및 부대설비로 구성되어 있다.
<11>
<12> 아민계 흡수제로 가장 널리 이용되고 있는 MEA(mono ethanol amine)는 아민 기의 비공유 전자에 의하여 형성되는 알칼리성 이 수용액에서 산성 인 이산화탄소와 산 -염기 중화반웅의 원인을 제공하며, 생성된 염 (carbamate 또는 bicarbonate)은 약 110 내지 130°C에서 분해되 어 재생된다 . 이 밖에도 아민계 흡수제로는 구조에 따라 DEA(diethanol amine) , TEA(tr iethanolamine) , MDEA(methyldi ethanol amine) , DIPA(di iso-propanolamine) , AMP(2-amino-2-methyl-l-propanol ) 등이 있는데, 이돌 은 각각의 구조적 인 특성에 따라 이산화탄소의 흡수능과 흡수 속도 등에 많은 차이 를 보이고 있다 .
<13>
<14> 습식 흡수제를 이용한 분리 공정에서 가장 중요한 설계 인자로는 흡수제의 이산화탄소 제거 효율 및 속도를 들 수 있으나, 이 에 못지 않게 흡수제의 장치부식 및 흡수제의 열화에 대한 안정성도 중요한 설계 변수로서 흡수제 선정 시 반드시 고려해야 한다 . 이는 아민계 화합물이 다른 흡수제에 비해 상은 · 상압하에서 이산 화탄소와의 반웅성 이 우수하여 대용량으로 배출되는 배가스 내에 낮은 농도로 존재 하는 이산화탄소를 대기 압하에서 40 내지 50°C 은도 범위에서 분리하는데 높은 분 리 효율을 나타내지 만 , 산소가 존재할 경우 산소와 반웅하여 산화 분해 (Oxidat ive Degradat ion)되 면서 이산화탄소 흡수능이 낮아지는 문제점을 가지고 있기 때문이 다 .
<15> <16> 즉, 흡수제의 열화를 발생시키는 요인 중 하나는 주로 연소기에 공급된 과잉 산소 중 일부가 연소되지 않은 채 배가스 내에 잔류하는 산소 (02)가 수용액 중에 용 존하여 흡수제와 반웅하여 발생하며, 이를 흡수제의 산화성 열화 (oxidative degradation) 현상 (이산화탄소 흡수제의 열화특성, 김준한 외 2, Theories and Applications of Chem. Eng. , 2007, Vol. 13, No. 2)이라 한다.
<17>
<18> 이러한 습식 이산화탄소 회수 분리 공정에서 발생되는 열화 현상을 막기 위 하여 많은 연구가 진행 중이며, 주로 열화 방지제 (에틸렌디아민 테트라아세틱산,
Ethylenedi amine tetraacet icacid 등)를 사용한다. 이 경우 기타 첨가제를 반드시 사용해야 하지만, 열화 방지를 위해 투입되는 첨가제는 전체 흡수 공정에서 추가의 운전비용을 야기하고 부반웅을 유도할 수 있다. 이러한 문제를 해결하기 위해 흡수 제가 이산화탄소 등을 흡수한 뒤 가열 재생공정을 진행하는 탈거탑에 도달하기 전 에 산소를 제거 (한국 등록특허 1038674)하는 공정도 시도된바 있다. 그러나 잔류산 소가 흡수제와 반응한 뒤에는 이미 산화성 열화현상이 일어나므로, 흡수제와 산소 의 반웅올 사전에 차단함으로써 흡수제 열화를 근본적으로 차단할 필요가 있다.
<19>
【발명의 상세한 설명】
【기술적 과제】
<20> 이산화탄소 흡수제의 열화 현상을 해결하기 위해 이산화탄소 (C02)가 흡수탑 에서 아민계 흡수제에 흡수될 때 산소가 동시에 흡수되지 않도록, 연도가스에 포함 된 산소를 흡수탑 도달 전에 제거하는 공정을 제공하고자 한다.
【기술적 해결방법】
<21> 상기 목적을 해결하기 위하여 본 발명자들은 연도가스가 선택적 촉매환원
(SCR)장치에 도달하기 전에 이산화탄소와 산소가 포함된 연도가스에서 촉매연소를 통해 산소를 제거하는 촉매연소기를 통과하도록 함으로써, 산소제거 효과를 극대화 할 수 있음을 발견하여 본 발명을 완성하기에 이르렀다.
<22>
<23> 본 발명은, 이산화탄소와 산소가 포함된 연도가스에서 촉매연소를 통해 산소 를 제거하는 촉매연소기; 상기 촉매연소기를 통과한 연도가스의 NOx를 제거하는 선 택적 촉매환원 (SCR)장치; 상기 선택적 촉매환원 장치를 통과한 연도가스의 분진을 제거하는 전기집진기 (EP: Electrostatic Precipitator); 상기 전기집진기 (EP: Electrostatic Precipitator)를 통과한 연도가스의 SOx를 제거하는 연도가스 탈황 (FGD: Flue gas desulfuriation)장치; 상기 연도가스 탈황장치를 통과한 연도가스 의 온도를 낮춰주는 온도 강하 장치 (DCC: Direct Contacting Cooler); 상기 온도강 하장치를 통과한 연도가스와 아민계열 흡수제가 공급되며, 공급된 아민계열 흡수제 가 배가스 중에 포함된 이산화탄소를 흡수하여 이산화탄소 포화 흡수제를 생성하 며, 상기 아민계열 흡수제와 미반응한 가스 성분을 배출하는 흡수탑; 및 상기 이산 화탄소 포화 흡수제를 이산화탄소 및 흡수제로 분리하여 상기 아민계열 흡수제를 재생시키는 탈거탑을 포함하는, 산소제거 장치를 구비한 이산화탄소 분리 회수 장 치를 제공한다.
<24>
<25> 본 발명은 또한, 상기 촉매연소기에서 촉매는 백금 (Pt), 로듐 (Rh), 팔라듐
(Pd)로 이루어진 군으로 부터 선택되는 산화 촉매를 사용하는, 산소제거 장치를 구 비한 이산화탄소 분리 회수 장치를 제공한다.
<26>
<27> 본 발명은 또한, 상기 촉매연소기는, 연소제로 탄화수소인 메탄, 에탄 프로 판, 부탄, 펜탄 핵탄, 헵탄, 옥탄, 노난, 데칸, 운데칸, 및 도데칸으로 이루어진 군에서 선택된 1종 이상을 사용하는, 산소제거 장치를 구비한 이산화탄소 분리 회 수장치를 제공한다.
<28>
<29> 본 발명은 또한, 상기 촉매연소기는 표면적이 넓은 세라믹을 직접 가열 및 넁각하는 축열 (regeneration)방법을 사용하는, 산소제거 장치를 구비한 이산화탄소 분리 회수 장치를 제공한다.
<30>
<31> 본 발명은 또한, 상기 촉매연소기는 재가열 없이 내부로 들어온 연도가스에 의해 활성화 되는 SCR리액터와, 상기 SCR 리액터내로 NH3를 공급하기 위한 환원제 공급라인을 포함하고, 상기 촉매의 활성화 온도는 320°C으로 정해지는, 산소제거 장치를 구비한 이산화탄소 분리 회수 장치를 제공한다.
<32>
<33> 본 발명은 또한, 상기 연도가스 탈황장치는 습식법을 사용하며, 물 또는 알 칼리성 용액의 흡수제를 이용해 기상의 so2를 흡수하여 알칼리성분과 반웅, 생성된 슬러지 (Sludge)를 탈수처리 및 폐기하는, 산소제거 장치를 구비한 이산화탄소 분리 희수 장치를 제공한다.
<34> <35> 본 발명은 또한, 상기 온도 강하 장치는 연도가스 탈황장치에서 배출되는 연 도가스의 온도를 40 내지 45°C로 강하시켜주는, 산소제거 장치를 구비한 이산화탄 소 분리 회수 장치를 제공한다.
<36>
<37> 본 발명은 또한, 상기 흡수탑에 사용되는 흡수제는 아민계 흡수제를 사용하 는, 산소제거 장치를 구비한 이산화탄소 분리 회수 장치를 제공한다.
<38>
<39> 본 발명은 또한, 상기 아민계열 흡수제는 MEA(Monoethanol amine),
DGA(Diglycolamine) , MDEA(N-Methyldiethanolamine) , DEA(Diethanol amine) , TEA(Tr iethanolamine) , AMP(2ᅳ Amino 2-methyl 1-propanol ) , PZ(Piperazine) , DIPA(Diisopropanolamine)로 이루어지는 군으로부터 선택되는 1종 이상인, 산소제 거 장치를 구비한 이산화탄소 분리 회수 장치를 제공한다.
【유리한 효과】
<40> 본 발명에 따른 산소제거 장치를 구비한 이산화탄소 분리 회수 장치 및 그의 공정 방법은 촉매연소장치를 통해 연도가스 속의 용존 산소를 제거한다. 이에 따 라, 연도가스가 흡수탑에 도달하기 전에 용존 산소가 제거됨으로써 흡수제 산화 작 용이 방지되며 , 산화 작용으로 인해 발생된 열화현상을 해결할 수 있다.
【도면의 간단한 설명】
<41> 도 1은 본 발명의 산소제거 장치를 구비한 이산화탄소 분리 회수 공정을 나 타내는 공정개념도이다.
<42> 도 2는 촉매연소기 반웅을 도시하는 개념도이다.
【발명의 실시를 위한 형태】
<43> 이하 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실 시할 수 있을 정도로 바람직한 실시예를 도 1내지 도 2를 참조하여 상세하게 설명 하면 다음과 같다.
<44> 도 1은 산소제거 장치를 구비한 이산화탄소 분리 회수 공정을 나타내는 공정 개념도이다.
<45> 상기 산소제거 장치를 구비한 이산화탄소 분리 회수 장치는 연소기 (1), 촉매 연소장치 (2), 선택적 환원 촉매장치 (3), 전기집진기 (4), 연도가스 탈황장치 (5), 온 도강하장치 (6), 흡수탑 (7) 및 탈거탑 (8)을 포함한다.
<46> 상기 연소기 (1)에는 액화석유가스 (LPG), 액화천연가스 (LNG), 석유 및 석탄 등의 화석연료와 과잉산소가 포함된 공기가 주입되어 연소가 이루어지고, 그 연소 결과 석탄회 (fly ash), 이산화탄소 (C02), 질소산화물 (NOx), 황산화물 (SOx), 일산화 탄소 (CO), 미연탄소분 (HC) 둥의 부산물이 열과 함께 발생하고, 반웅하지 않은 질소 (N2)와 산소 (02)가 잔류하게 된다.
<47> 본 발명의 일 구현예에서는 석탄을 원료로 하는 미분탄을 약 1,400 내지 l,50(rc의 고은으로 소각시켰을 때 발생되는 먼지인 fly ash를 연소기에서 연도가 스와 분리시켜 직접 배출시킨다.
<48> 상기 fly ash를 제거시킨 연도가스에는연소반웅에 참여하지 않은 02, N2와 연소부산물인 C02, N02, NO, NOx, SOx, CO, HC 등이 포함되어 있으며 이는 연소기에 서 배출되어 촉매 연소장치 (2)로 공급된다.
<49> 상기 촉매 연소장치 (2)는 CO, NO 등 불완전 연소기체를 잔류 산소와 반웅시 키는 공정을 수행한다.
<50> 상기 연도가스에 포함된 CO와 NO는 촉매연소기에서 연소에 참여하지 않은 02 와 반웅하여 NO + (1/2)02→ N02, CO + (1/2)02→ C02, 4HC + 502→ 2H20 + 4C02로 변환되어 미반웅 성분인 N2, NOx, SOx, C02등과 함께 촉매연소기에서 배출되어 선택 적 촉매 환원 장치 (3)로 공급된다. 상기 NO + (1/2)02→ N02과정에는 미반웅 NOx 성분이 남게 되며, 상기 미반응 NOx성분도 다른 기체 성분과 함께 배출되어 선택적 촉매 환원 장치 (3)로 공급된다.
<51> 또한, 상기 촉매연소기에 추가로 연소제를 주입하여 잔류 산소를 제거할 수 도 있다. 본 발명의 일 구현예에서는 탄화수소인 메탄, 에탄, 프로판, 부탄, 펜 탄, 핵탄, 헵탄, 옥탄, 노난, 데칸, 운데칸, 도데칸 등과 같은 탄화수소를 연소제 로 주입한다.
<52> 상기 선택적 촉매 환원 장치 (3)는 연도가스 중에 잔류하는 NOx를 제거한다.
본 발명의 일 구현예에서 상기 선택적 촉매 환원 장치 (3)는 촉매층에서 연도가스와 암모니아 (NH3) 환원제를 동시에 통과시키면서 연도가스 내의 NOx를 암모니아의 반응 에 의해 질소와 수증기로 선택적 환원시키며 상기 암모니아의 반응식은 다음과 같 다.
<53> 4N0 + 4NH3 + 02→ 4N2 + 6H20
<54> 2N02 + 4NH3 + 02→ 3N2 + 6H20
<55> 본 발명의 일 구현예에서 상기 촉매는 재가열 없이 내부로 공급된 연도가스 에 의해 활성화 되는 SCR리액터와, 상기 SCR리액터내로 N¾를 공급하기 위한 환원제 공급라인을 포함하고, 상기 촉매의 활성화 온도는 320°C미만으로 정해진다.
<56> 상기 선택적 환원 촉매장치 (3)를 통해 NOx가 제거된 연도가스에 포함된 분진 은 상기 전기집진기 (4)를 통해 제거된다. 본 발명의 일 구현 예에서 상기 전기집진 기 (4)는 정전기력을 이용하여 연도가스 중의 먼지를 장치의 벽면으로 이동시켜 분 리한다.
<57> 상기 전기집진기 (4)를 통해 분진이 제거된 연도가스는 연도가스 탈황장치 (5) 로 공급된다. 상기 연도가스 탈황장치 (5)는 흡수 (Absorption), 흡착 (Adsorpt ion), 산화 (Oxydation), 환원 (Reduct ion)등의 원리를 이용해 연소 후 배기가스에 포함되 어 있는 SOx를 제거한다. 본 발명의 일 구현예에 있어서 상기 연도가스 탈황장치는 (5)는 습식법을 사용하며, 물 또는 알칼리성 용액의 흡수제를 이용해 기상의 S02를 흡수하여 알칼리성분과 반웅, 생선된 슬러지 (sludge)를 탈수처리 및 폐기하거나 석 고와 같이 시장성 있는 부산물올 생산하는 장치이다.
<58> 상기 연도가스 탈황장치 (5)를 통해 SOx가 제거된 연도가스는 은도 강하장치 로 공급된다. 상기 온도 강하 장치는 상기 연도가스에 포함된 이산화탄소가 아민계 흡수제에 흡수될 수 있도록 온도를 낮추어준다. 본 발명의 일 구현예에 있어서 상 기 은도 강하 장치 (6)는 연도가스 탈황장치 (5)에서 배출되는 SOx가 제거된 55내지 60°C의 연도가스의 온도를 40 내지 45°C로 강하시켜준다.
<59>
<60> 상기 온도강하된 연도가스 및 흡수제가 흡수탑 (7)으로 공급된다. 본 발명의 일 구현예에서 공급된 흡수제가 상기 흔합 가스 중에 포함된 이산화탄소를 흡수하 여 이산화탄소 포화 흡수제를 생성하며, 상기 흡수제와 미반웅한 가스 성분을 배출 한다.
<61> 본 발명의 일 구현예에 있어서 상기 흡수탑 (7)에 사용되는 흡수제는 아민계 열 흡수제를 사용하고, 상기 흡수제는 ME Monoethanol amine), DGA(Diglycolamine), MDEA ( N-Me t hy 1 d i e t hano 1 am i ne ), DEACDiethanol amine), TEA(Triethanolamine) , AMP(2— Amino 2— methyl 1-propanol) , 및 PZ(Piperazine) , DIPA(Diisopropanolamine) 등으로 이루어지는 군으로부터 선택되는 하나 이상을 사 용한다.
<62> 상기 흡수제와 미반응한 가스 성분을 배출하여 제거한 이산화탄소 포화 흡수 제는 열교환기를 통해 예열된 후 탈거탑 (8)으로 공급된다. 탈거탑 (8)으로 공급된 이산화탄소가 포화 흡수제가 탈거탑 하부의 리보일러에서 발생되는 열 에너지에 의 해 이산화탄소가 탈거되고 흡수제는 재생되어 다시 흡수탑 (7)으로 공급된다.
<63> 도 2는 촉매연소기의 반응을 도시한 개념도이다.
<64> 본 발명의 일 구현예에서 상기 촉매연소기 (2)는 표면적이 넓은 세라믹을 직 접 가열 및 냉각하는 축열 (regeneration)방법을 사용한다.
<65> 또한, 본 발명의 일 구현예에서 연소기 (1)에서 배출된 연도가스를 압입송풍 기 (미도시)를 이용하여 촉매 연소장치 (2) 내부로 강제 공급 후, 촉매연소장치 (2) 내부로 공급된 연도가스는 촉매 연소장치 (2)의 입구측에 있는 축열재 (30)에 의해 연소실 온도와 근접한 온도로 예열된다. 예열된 연도가스는 연소실에서 보조버너 (10)에 의해 완전 연소 은도 750 내지 80CTC에서 산화분해하여 무해무취한 가스로 처리된다. 처리된 연도가스는 출구측에 있는 축열재 (50)를 통과하면서 고온의 폐열 을 축열재에 방열하게 되어 일정온도로 넁각된 후 배기관 (40)을 통해 선택적 환원 촉매장치 (3)로 들어가게 된다.
<66> 본 발명의 일 구현예에서 상기 촉매 연소장치 (2)에 사용되는 촉매 (20)는 백 금 (Pt), 로듐 (Rd) 및 팔라듐 (Pd)을 담지하여 사용한다. 또한 상기 촉매 연소장치 (2)에서 일산화탄소 (CO)를 이산화탄소 (C02)로, 탄화수소 (HC)를 이산화탄소 (C02)와 물 (¾0)로 전환시키는 촉매로 백금, 팔라듐의 금속이 이용되며, 로듐은 NO(NOx)를
N2로 환원하는 반웅을 촉진시키는 촉매로 사용한다.
<67> 본 발명의 일 구현예에서 상기 축열재는 연도가스의 폐열을 최대한 희수하 여, 이를 연도가스 예열에 이용하는 것이며, 이 폐열 회수를 극대화하기 위해 열교 환기를 사용하지 않고, 표면적이 넓은 세라믹을 직접 가열 및 냉각하는 축열
(regeneration)방법을 사용한다. 상기 촉매연소기 (2)에서 일어나는 촉매연소 반응 을 통해 잔류하는 유독성 기체인 일산화탄소, 탄화수소 및 불완전산화된 질소산화 물을 산화시켜 안전한 기체로 전환함과 동시에 잔류산소를 제거함으로써, 후속 이 산화탄소 흡수공정에 산소가 포함되지 않도록 하는 효과를 가져올 수 있다.
<68>
<69> [부호의 설명]
<70> 1. 연소기 2. 촉매 연소장치
<71> 3. 선택적 환원 촉매장치 4.전기집진기
<72> 5. 연도가스 탈황장치 6. 온도강하장치
<73> 7. 흡수탑 7. 탈거탑
<74> 10. 보조버너 20. 촉매— 30. 입구측 축열재 40. 배기관
50. 출구측 축열재

Claims

【청구의 범위】
【청구항 11
이산화탄소와 산소가 포함된 연도가스에서 촉매 연소를 통해 산소를 제거하 는 촉매연소기 ;
상기 촉매연소기를 통과한 연도가스의 NOx를 제거하는 선택적 촉매환원 (SCR) 장치;
상기 선택적 촉매환원 장치를 통과한 연도가스의 분진을 제거하는 전기집진 기 (EP : Electrostatic Precipitator);
상기 전기집진기 (EP : Electrostatic Precipitator)를 통과한 연도가스의 SOx를 제거하는 연도가스 탈황 (FGD : Flue gas desulfuriation)장치;
상기 연도가스 탈황장치를 통과한 배가스의 은도를 낮춰주는 온도 강하 장치 (DCC : Direct Contacting Cooler);
상기 온도강하장치를 통과한 연도가스와 아민계열 흡수제가 공급되몌 공급 된 아민계열 흡수제가 배가스 중에 포함된 이산화탄소를 흡수하여 이산화탄소 포화 흡수제를 생성하며, 상기 아민계열 흡수제와 미반웅한 가스 성분을 배출하는 흡수 탑; 및
상기 이산화탄소 포화 흡수제를 이산화탄소 및 흡수제로 분리하여 상기 아민 계열 흡수제를 재생시키는 탈거탑을 포함하는,
산소제거 장치를 구비한 이산화탄소 분리 회수 장치 .
【청구항 2]
제 1항에 있어서,
상기 촉매연소기에서, 촉매는 백금 (Pt), 로듐 (Rh) 및 팔라듐 (Pd)로 이루어진 군으로부터 선택되는,
산소제거 장치를 구비한 이산화탄소 분리 회수장치 .
【청구항 3]
제 1항에 있어서,
상기 촉매연소기는, 연소제로 탄화수소인 메탄, 에탄, 프로판, 부탄, 펜탄, 핵탄, 헵탄, 옥탄, 노난, 데칸, 운데칸, 및 도데칸으로 이루어진 군에서 선택된 1 종 이상을 사용하는,
산소제거 장치를 구비한 이산화탄소 분리 회수장치 .
【청구항 4】
제 1항에 있어서, 丄丄 상기 촉매연소기는, 표면적이 넓은 세라믹을 직접 가열 및 넁각하는 축열
(regeneration)방법을 사용하는,
산소제거 장치를 구비한 이산화탄소 분리 회수장치 .
【청구항 5】
제 4항에 있어서,
상기 촉매연소기는 재가열 없이 내부로 들어온 연도가스에 의해 활성화 되는 SCR 리액터와, 상기 SCR 리액터내로 NH3를 공급하기 위한 환원제 공급라인을 포함하 고, 상기 촉매의 활성화 온도는 320°C 미만인,
산소제거 장치를 구비한 이산화탄소 분리 회수 장치 .
【청구항 6】
제 1항에 있어서,
상기 연도가스 탈황장치는 습식법을 사용하며, 물 또는 알칼리성 용액의 흡 수체를 이용해 기상의 S02를 흡수하여 알칼리 성분과 반웅, 생성된 술러지 (Sludge) 를 탈수처리 및 폐기하는,
산소제거 장치를 구비한 이산화탄소 분리 회수 장치
【청구항 7】
제 1항에 있어서,
상기 온도 강하 장치는 연도가스 탈황장치에서 배출되는 연도가스의 은도를 40내지 45°C로 강하시켜주는,
산소제거 장치를 구비한 이산화탄소 분리 회수 장치.
【청구항 8】
제 1항에 있어서,
상기 흡수탑에 사용되는 흡수제는 아민계열 흡수제를 사용하는,
산소제거 장치를 구비한 이산화탄소 분리 회수 장치 .
【청구항 9】
제 1항에 있어서,
상기 흡수제는 MEA(Monoethanolamine), DGA(Diglycolamine) , MDEA(N- Methyldiethanolamine) , DEA(Diethanolamine) , TEA(Tr iethanolamine) , AMP(2-½ino 2一 methyl 1-propanol) , PZ(Piperazine) , DIPA(Di isopropanolamine) 로 이루어진 군 으로부터 선택되는 1종 이상인,
산소제거 장치를 구비한 이산화탄소 분리 회수 장치.
PCT/KR2013/003516 2013-04-24 2013-04-24 산소제거 장치를 구비한 이산화탄소 분리 회수 장치 WO2014175478A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0045283 2013-04-24
KR20130045283A KR101485952B1 (ko) 2013-04-24 2013-04-24 산소제거 장치를 구비한 이산화탄소 분리 회수 장치

Publications (1)

Publication Number Publication Date
WO2014175478A1 true WO2014175478A1 (ko) 2014-10-30

Family

ID=51792035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003516 WO2014175478A1 (ko) 2013-04-24 2013-04-24 산소제거 장치를 구비한 이산화탄소 분리 회수 장치

Country Status (2)

Country Link
KR (1) KR101485952B1 (ko)
WO (1) WO2014175478A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155929A1 (de) * 2015-04-02 2016-10-06 Siemens Aktiengesellschaft Vorrichtung und verfahren zur abscheidung von kohlendioxid aus einem gasstrom
US20220314161A1 (en) * 2021-04-02 2022-10-06 Kabushiki Kaisha Toshiba Gas processing equipment and gas processing method, and carbon dioxide capture system and carbon dioxide capture method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248613B1 (ko) * 2019-07-29 2021-05-07 한국과학기술연구원 아민계 이산화탄소 흡착제용 금속산화물 촉매, 이를 포함하는 아민계 이산화탄소 흡착제 및 흡탈착 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019416A (ja) * 1999-06-10 2001-01-23 Praxair Technol Inc 酸素含有混合物からの二酸化炭素の回収方法及び装置
JP2005075683A (ja) * 2003-08-29 2005-03-24 Toshiba Corp 二酸化炭素回収装置
JP2011072887A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 二酸化炭素回収型発電システム
JP2011110480A (ja) * 2009-11-25 2011-06-09 Babcock Hitachi Kk 酸素燃焼システムの排ガス処理装置
JP2012091083A (ja) * 2010-10-25 2012-05-17 Babcock Hitachi Kk 二酸化炭素吸収装置を備えた火力発電プラント

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038674B1 (ko) 2009-01-22 2011-06-02 연세대학교 산학협력단 컬러 인식 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019416A (ja) * 1999-06-10 2001-01-23 Praxair Technol Inc 酸素含有混合物からの二酸化炭素の回収方法及び装置
JP2005075683A (ja) * 2003-08-29 2005-03-24 Toshiba Corp 二酸化炭素回収装置
JP2011072887A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 二酸化炭素回収型発電システム
JP2011110480A (ja) * 2009-11-25 2011-06-09 Babcock Hitachi Kk 酸素燃焼システムの排ガス処理装置
JP2012091083A (ja) * 2010-10-25 2012-05-17 Babcock Hitachi Kk 二酸化炭素吸収装置を備えた火力発電プラント

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155929A1 (de) * 2015-04-02 2016-10-06 Siemens Aktiengesellschaft Vorrichtung und verfahren zur abscheidung von kohlendioxid aus einem gasstrom
US20220314161A1 (en) * 2021-04-02 2022-10-06 Kabushiki Kaisha Toshiba Gas processing equipment and gas processing method, and carbon dioxide capture system and carbon dioxide capture method
CN115193222A (zh) * 2021-04-02 2022-10-18 株式会社东芝 气体处理装置及方法以及二氧化碳回收***及方法

Also Published As

Publication number Publication date
KR20140126956A (ko) 2014-11-03
KR101485952B1 (ko) 2015-01-26

Similar Documents

Publication Publication Date Title
US8728201B2 (en) Apparatus and method for removing carbon dioxide (CO2) from the flue gas of a furnace after the energy conversion
EP3166710B1 (en) Absorbent system and method for capturing co2 from gas streams
KR20150049835A (ko) 산소분리 장치를 구비한 이산화탄소 분리 회수 장치 및 이를 이용한 연도가스에서 이산화탄소 분리 회수 방법
RU2571142C2 (ru) Способ осаждения двуокиси углерода, а также газотурбинная установка с осаждением двуокиси углерода
JP2013517925A5 (ko)
AU2007260028B2 (en) Removal of carbon dioxide from flue gases
JP5525992B2 (ja) 二酸化炭素吸収装置を備えた火力発電プラント
KR20080099179A (ko) 연소 배기가스 중의 이산화 탄소의 감소를 위한 방법 및시스템
US8877150B1 (en) Single-step process for the simultaneous removal of CO2, SOx and NOx from a gas mixture
WO2011152547A1 (ja) 排ガス処理システム及び方法
CN102233238A (zh) 用于控制以及减少NOx排放物的***和方法
AU2013219141A1 (en) Method and system for CO2 capture from a stream and solvents used therein
TW201201898A (en) Chemical compounds for the removal of carbon dioxide from gases
CN104437051A (zh) 一种湿法脱硫脱硝***及方法
KR101485952B1 (ko) 산소제거 장치를 구비한 이산화탄소 분리 회수 장치
KR101038764B1 (ko) 이산화탄소 분리 회수 장치 및 그의 공정 방법
JP4838489B2 (ja) 二酸化窒素と二酸化炭素の除去方法及びその装置
CA2900011C (en) Exhaust gas treatment system and exhaust gas treatment method
US9987587B2 (en) Method and device for the treatment of a gas stream, in particular for the treatment of a natural gas stream
KR102391330B1 (ko) 배기 오염물질 저감장치
WO2022236324A1 (en) Methane and carbon dioxide reduction with integrated direct air capture systems
CN109925859B (zh) 一种工业烟气深度氧化脱硫脱硝的装置及工艺
KR20150030262A (ko) 이산화탄소를 흡수하기 위한 오존 및/또는 과산화수소를 갖는 아민 함유 세정액
US20110085955A1 (en) System and method for reducing no2 poisoning
KR20150036067A (ko) 니트로사민의 형성이 감소되는 이산화탄소 흡수용 세척 용액

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882773

Country of ref document: EP

Kind code of ref document: A1