WO2014175282A1 - Process for producing porous hollow-fiber membrane reinforced with spun yarn - Google Patents

Process for producing porous hollow-fiber membrane reinforced with spun yarn Download PDF

Info

Publication number
WO2014175282A1
WO2014175282A1 PCT/JP2014/061326 JP2014061326W WO2014175282A1 WO 2014175282 A1 WO2014175282 A1 WO 2014175282A1 JP 2014061326 W JP2014061326 W JP 2014061326W WO 2014175282 A1 WO2014175282 A1 WO 2014175282A1
Authority
WO
WIPO (PCT)
Prior art keywords
spun yarn
fiber membrane
nozzle
hollow fiber
spinning
Prior art date
Application number
PCT/JP2014/061326
Other languages
French (fr)
Japanese (ja)
Inventor
波形 和彦
孝利 佐藤
正崇 近藤
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Publication of WO2014175282A1 publication Critical patent/WO2014175282A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D11/00Other features of manufacture
    • D01D11/06Coating with spinning solutions or melts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor

Definitions

  • the present invention relates to a method for producing a spun yarn reinforced porous hollow fiber membrane. More specifically, the present invention relates to a method for producing a spun yarn reinforced porous hollow fiber membrane excellent in mechanical strength.
  • Porous hollow fiber membranes are used in various fields such as water purification treatment by membrane filtration, wastewater treatment, dehumidification or humidification.
  • PVDF membranes prepared by thermally induced phase separation have a strength of about 8-22 MPa, and among them, many are about 11 MPa in practical use, although some strength is shown, Compared with a membrane prepared by a non-solvent induced phase separation method, it does not necessarily have sufficient strength.
  • the thermally induced phase separation method has a complicated process and requires cleaning with a large number of solvents, so that it is difficult to say that it is expensive and environmentally friendly.
  • a membrane module membrane area of about 10 to 100 m 2
  • a structure in which polysulfone, PVDF, etc., prepared using a non-solvent-induced phase separation method are fixed in a resin case with an adhesive is also used for wastewater treatment and water purification treatment. Many are used.
  • Such a membrane module is supplied with water in an amount of several tens of liters to several hundreds of liters per minute. At that time, since the chemical cleaning or peristaltic cleaning for the purpose of recovering the flow rate is periodically performed, the hollow fiber membrane may be broken during use or cleaning.
  • the method of dehumidifying or humidifying by the hollow fiber membrane method has many advantages such as not requiring maintenance but not requiring a power source for driving.
  • a dehumidifying film or humidifying film a film-forming resin material such as polyimide, polysulfone, or polyphenylsulfone is used (for example, Patent Document 3).
  • dehumidifying membranes using these materials are used in many industrial fields, they are porous, so the absolute strength of the membrane is weak. There is a possibility that the hollow fiber membrane is broken.
  • a porous membrane in which spun yarn as a reinforcing material is embedded in the membrane has been proposed as means for preventing the hollow fiber membrane from being broken and improving the mechanical strength (Patent Document 4).
  • a method for embedding the spun yarn in the hollow fiber membrane a method for producing a porous hollow fiber membrane by a production method using a known double annular nozzle by mixing a reinforcing material in the spinning dope can be considered.
  • the air contained in the reinforcing material such as spun yarn is gradually accumulated in the spinning dope inside the nozzle, and as a result of entraining the bubbles during spinning, the film shape is deformed as shown in the comparative example described later. Or pinholes, and therefore, the membrane may be cut.
  • An object of the present invention is a porous hollow fiber membrane in which all or a part of the spun yarn is embedded in the membrane, and improves the mechanical strength without impairing the original function of the porous hollow fiber membrane.
  • An object of the present invention is to provide a method for producing a spun yarn-reinforced porous hollow fiber membrane with a reduced defect rate.
  • the object of the present invention is to discharge the core liquid from the inner nozzle of the double annular nozzle and the spinning stock solution from the outer nozzle, respectively, and perform spinning inside the outer nozzle that discharges the spinning stock solution when performing wet spinning or dry-wet spinning. This is achieved by a method for producing a spun yarn-reinforced porous hollow fiber membrane by simultaneously supplying yarn from a spun yarn introduction pipe.
  • a spun yarn reinforced porous hollow fiber membrane is produced by simultaneously supplying spun yarn to a spinning dope using a spun yarn pipe, the spun yarn which is an aggregate of short fibers, That is, the air contained between the fibers is discharged outside through the spun yarn introduction pipe, so that it is not caught in the spinning dope, and as a result, the spinning failure caused by the air in the spun yarn or There exists an effect of avoiding the defect of the obtained hollow fiber membrane.
  • FIG. 1 is a schematic half-cut sectional view showing an example of a double annular nozzle used in a method for producing a spun yarn-reinforced porous hollow fiber membrane according to the present invention.
  • the core liquid is discharged from the inner nozzle of the double annular nozzle, and the spinning solution is discharged from the outer nozzle, and the spun yarn is spun inside the outer nozzle that discharges the spinning solution. It is performed by supplying simultaneously from the yarn introduction pipe.
  • the double annular nozzle a known one that has been used conventionally, that is, an inner nozzle and an outer nozzle having a diameter corresponding to a desired hollow fiber membrane size are arranged so as to be double. It can be used without particular limitation.
  • a double annular nozzle 1 comprising an annular body 3 provided with a spinning dope 6, an inner nozzle 2 and a hollow fiber membrane discharge port 7 is preferably used. It is done.
  • the annular body 3 having the hollow fiber membrane discharge port 7 constitutes the outer nozzle of the double annular nozzle 1, and the hollow fiber membrane discharge port 7 and the tip of the inner nozzle 2 Are arranged so as to form a double tubular shape capable of forming a hollow fiber membrane having a desired film thickness.
  • a spun yarn introduction pipe 4 for introducing the spun yarn 9 into the spinning dope is disposed in a state of penetrating the side surface portion of the outer nozzle 3.
  • the spun yarn introduction pipe 4 penetrates the side surface of the outer nozzle 3 so that one end located outside the outer nozzle 3 is located above the upper portion of the outer nozzle 3 and the other end is located inside the outer nozzle 3.
  • the spinning dope is fed from the spun yarn introduction port of the spun yarn introduction pipe 4. This is because it will overflow.
  • the spun yarn introduction pipe 4 has an inner diameter of 1.5 to 2.0 times, preferably 1.6 to 1.8 times the outer diameter (thickness) of the spun yarn. Since the spinning dope is pressurized in the outer nozzle (annular body 3 in FIG. 1), if the inner diameter of the spun yarn introduction pipe 4 is smaller than this, the air discharged from the spun yarn is not properly discharged, and bubbles are generated in the nozzle. If the inner diameter of the spun yarn introduction pipe 4 is larger than this, the spinning dope will flow backward through the spun yarn introduction pipe and will be outside as a result. It may leak out of the nozzle.
  • the length of the spun yarn introduction pipe 4 is not particularly limited because the position of the spinning stock solution changes depending on the thickness of the spun yarn, the diameter of the spun yarn introduction pipe, and the viscosity of the spinning stock solution, but generally the outer diameter of the spun yarn ( The thickness is about 200 to 250 times, preferably about 220 to 230 times.
  • the inner nozzle 2 is filled with the core liquid supplied from the core liquid inlet 5 and the outer nozzle 3 is filled with the spinning raw liquid and pressurized, and the spun yarn is fed from the spun yarn introduction pipe 4.
  • a porous hollow fiber membrane in which all or part of the spun yarn is buried can be obtained by a wet spinning method or a dry-wet spinning method by simultaneously discharging the spinning stock solution while supplying it to the inside of the outer nozzle 3.
  • FIG. 1 only one spun yarn introduction pipe 4 is used, but a plurality of spun yarn introduction pipes 4 can be used. Generally, 1 to 8 spun yarn introduction pipes 4 are provided.
  • a mode in which a double annular nozzle is arranged on the circumference and equidisposed is also included.
  • the spun yarn can be used without particular limitation as long as it is a commonly used spun yarn, and a spun yarn such as polyethylene terephthalate or polyphenylene sulfide is preferably used.
  • the outer diameter is 0.1 to Those having a thickness of 0.5 mm, preferably 0.25 to 0.35 mm are used.
  • the spinning dope includes a material for producing a hollow fiber membrane and a solvent.
  • a manufacturing material of the hollow fiber membrane any of known hollow fiber membrane-forming materials (polymers) can be used, for example, cellulose-based materials such as cellulose acetate, cellulose propionate, cellulose butyrate, regenerated cellulose, or a mixture thereof, Examples thereof include hydrophobic polymers such as polysulfone resins, polyethersulfone resins, polyvinylidene fluoride resins, polyacrylonitrile resins, polyimide resins, polyaramid resins, polypropylene resins, and polyethylene resins.
  • an aprotic polar solvent such as alcohol, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone is preferably used.
  • the core liquid water or a non-solvent of a film-forming resin is used.
  • the spun yarn 9 is preferably discharged in advance from the hollow fiber membrane discharge port to the outside of the nozzle before discharging the core solution and the spinning stock solution. deep. Further, the core solution and the spinning dope are preferably used after evacuation from the viewpoint of preventing the mixing of unnecessary air.
  • the spun yarn preferably has 50% by volume or more of the cross section of the spun yarn, more preferably 60% by volume or more, particularly preferably 70% by volume or more embedded in the hollow fiber membrane, and the functional layer (workpiece contact side)
  • the mechanical properties can be further improved while keeping the permeation performance and separation performance high.
  • a spun yarn reinforced porous hollow fiber membrane is produced by coagulating, washing, and drying a spun yarn reinforced porous hollow fiber membrane spun by a wet spinning method or a dry wet spinning method using a coagulating liquid. .
  • a polyethylene terephthalate spun yarn as the spun yarn 9 is passed through the inside of the yarn introduction pipe (tube inner diameter: 1.67 times the outer diameter of the spun yarn, pipe length: 225 times the outer diameter of the spun yarn) through the gap between the outer nozzle 3 and the inner nozzle 2.
  • the obtained spun yarn reinforced hollow fiber membrane was washed in a washing tank with a water temperature of 45 ° C., then subjected to high-pressure sterilization treatment at 121 ° C. for 1 hour, and then in a drying furnace with an internal temperature of 40 ° C. And dried for 12 hours or longer to obtain a spun yarn reinforced porous polyetherimide hollow fiber membrane by a wet spinning method.
  • a pinhole inspection and a cross-sectional dimension inspection were performed on the porous hollow fiber membrane, none of the hollow fiber membranes had pinholes or deformation, and the defect rate was 0%.
  • the obtained porous polyetherimide hollow fiber membrane has an outer diameter of 1000 ⁇ m, an inner diameter of 700 ⁇ m, a water vapor transmission rate at 25 ° C.
  • the spun yarn was introduced into the nozzle from the spinning dope introduction port 6 instead of the spun yarn introduction port 8, and the polyethylene terephthalate spun yarn, which is the spun yarn 9, was previously obtained from the gap between the outer nozzle 3 and the inner nozzle 2.
  • a hollow fiber membrane was obtained with about 1 m protruding.
  • one film break and two pinholes core liquid blows out to the outside of the film
  • a large number of bubbles were confirmed in the spinning dope, and it was found that defects occurred due to the bubbles.

Abstract

When a core liquid and a spinning dope are ejected from the inner nozzle and outer nozzle, respectively, of a double-wall annular nozzle to conduct wet spinning or dry/wet spinning, a spun yarn is simultaneously supplied through a spun yarn introduction pipe to the inside of the outer nozzle from which the spinning dope is ejected, thereby producing a spun-yarn-reinforced porous hollow-fiber membrane. By this method, a spun-yarn-reinforced porous hollow-fiber membrane is produced in which the spun yarn has been partly or wholly buried and which retains the functions inherent in the porous hollow-fiber membrane, has improved mechanical strength, and is reduced in rejection rate.

Description

紡績糸強化多孔質中空糸膜の製造方法Method for producing spun yarn reinforced porous hollow fiber membrane
 本発明は、紡績糸強化多孔質中空糸膜の製造方法に関する。さらに詳しくは、機械的強度の点ですぐれた紡績糸強化多孔質中空糸膜の製造方法に関する。 The present invention relates to a method for producing a spun yarn reinforced porous hollow fiber membrane. More specifically, the present invention relates to a method for producing a spun yarn reinforced porous hollow fiber membrane excellent in mechanical strength.
 多孔質中空糸膜は、膜ロ過による浄水処理、廃水処理、除湿あるいは加湿を行う際などさまざまな分野で用いられている。 Porous hollow fiber membranes are used in various fields such as water purification treatment by membrane filtration, wastewater treatment, dehumidification or humidification.
 膜ロ過による浄水処理や廃水処理は、これまでの凝集沈殿のロ過方式と比較し、運転の維持や管理が容易であり、処理水質も良好であることから、近年水処理分野で幅広く用いられている。例えば活性汚泥処理と膜分離処理を組み合わせたメンブレンリアクター法〔MBR〕の膜分離処理に用いられる膜としては、高強度、耐久性、耐薬品性が要求されることから、特許文献1~2に記載されている熱誘起相分離法によって調製されたポリフッ化ビニリデン〔PVDF〕膜が使用されることが多い。 Water purification and wastewater treatment using membrane filtration has been widely used in the water treatment field in recent years because it is easier to maintain and manage operation and has better quality compared to conventional filtration methods for coagulation and precipitation. It has been. For example, as a membrane used for membrane separation treatment of the membrane reactor method [MBR] combining activated sludge treatment and membrane separation treatment, high strength, durability, and chemical resistance are required. Polyvinylidene fluoride [PVDF] membranes prepared by the thermally induced phase separation method described are often used.
 しかしながら、熱誘起相分離法によって調製されたPVDF膜は、強度が8~22MPa程度であり、またこのうち実用されているものは11MPa程度のものが多いというように、ある程度の強度は示すものの、非溶媒誘起相分離法で調製された膜と比較して、必ずしも十分な強度を有しているものとはいえない。また、熱誘起相分離法は工程が複雑であり、多くの溶剤を用いた洗浄が必要であることから高コストで環境にやさしいものとはいい難いといった側面を有する。 However, PVDF membranes prepared by thermally induced phase separation have a strength of about 8-22 MPa, and among them, many are about 11 MPa in practical use, although some strength is shown, Compared with a membrane prepared by a non-solvent induced phase separation method, it does not necessarily have sufficient strength. In addition, the thermally induced phase separation method has a complicated process and requires cleaning with a large number of solvents, so that it is difficult to say that it is expensive and environmentally friendly.
 一方、非溶媒誘起相分離法を用いて調製されたポリスルホンやPVDF等を樹脂ケース内に接着剤を用いて固定した構造の膜モジュール(膜面積約10~100m2)も廃水処理や浄水処理に多く使用されている。このような膜モジュールには毎分数10L~数100Lといった量の水が供給されて使用される。その際、定期的に流量回復を目的とした薬品洗浄や搖動洗浄などが施されることから、使用時あるいは洗浄時に中空糸膜が破断する場合がある。 On the other hand, a membrane module (membrane area of about 10 to 100 m 2 ) with a structure in which polysulfone, PVDF, etc., prepared using a non-solvent-induced phase separation method are fixed in a resin case with an adhesive, is also used for wastewater treatment and water purification treatment. Many are used. Such a membrane module is supplied with water in an amount of several tens of liters to several hundreds of liters per minute. At that time, since the chemical cleaning or peristaltic cleaning for the purpose of recovering the flow rate is periodically performed, the hollow fiber membrane may be broken during use or cleaning.
 また、中空糸膜方式で除湿あるいは加湿を行う方法は、メンテナンス不要であるばかりではなく、駆動に電源を必要とはしないなど多くの利点を有している。このような除湿膜あるいは加湿膜としては、ポリイミド、ポリスルホン、ポリフェニルスルホンといった膜形成性樹脂材料が用いられている(例えば特許文献3)。これらの材料を用いた除湿膜は、多くの産業分野で用いられているものの、多孔質であるために膜の絶対強度が弱く、用途によっては多量の気体を流して使用されるために使用時に中空糸膜が破断するといったおそれがある。一方、加湿膜についても、近年では燃料電池スタックの隔膜の加湿に多く用いられているが、この場合にも例えば車載用途において4000NL/分程度の多量の空気が流れることから、その機械的強度との関係で中空糸膜切れといったおそれがある。 Also, the method of dehumidifying or humidifying by the hollow fiber membrane method has many advantages such as not requiring maintenance but not requiring a power source for driving. As such a dehumidifying film or humidifying film, a film-forming resin material such as polyimide, polysulfone, or polyphenylsulfone is used (for example, Patent Document 3). Although dehumidifying membranes using these materials are used in many industrial fields, they are porous, so the absolute strength of the membrane is weak. There is a possibility that the hollow fiber membrane is broken. On the other hand, in recent years, humidification membranes are often used to humidify diaphragms of fuel cell stacks, but in this case as well, for example, a large amount of air of about 4000 NL / min flows in in-vehicle applications. Therefore, there is a risk of the hollow fiber membrane being cut.
 このような多孔質中空糸膜の中空糸膜切れを防止し、機械的強度を向上させる手段として補強材としての紡績糸を膜中に埋没させた多孔質膜が提案されている(特許文献4)。ここで、紡績糸を中空糸膜中に埋没させる方法としては、紡糸原液中に補強材を混合して公知の二重環状ノズルを用いる製造方法によって多孔質中空糸膜を製造する方法が考えられる。しかしながら、かかる方法では紡績糸等の補強材の内部に含まれる空気がノズル内部の紡糸原液中に徐々に蓄積され、紡糸時にその気泡を巻き込む結果として、後記比較例に示される如く膜形状の変形やピンホールの発生、ひいては膜の切断が発生してしまうといったおそれがある。 A porous membrane in which spun yarn as a reinforcing material is embedded in the membrane has been proposed as means for preventing the hollow fiber membrane from being broken and improving the mechanical strength (Patent Document 4). ). Here, as a method for embedding the spun yarn in the hollow fiber membrane, a method for producing a porous hollow fiber membrane by a production method using a known double annular nozzle by mixing a reinforcing material in the spinning dope can be considered. . However, in such a method, the air contained in the reinforcing material such as spun yarn is gradually accumulated in the spinning dope inside the nozzle, and as a result of entraining the bubbles during spinning, the film shape is deformed as shown in the comparative example described later. Or pinholes, and therefore, the membrane may be cut.
特許第5,062,798号公報Japanese Patent No. 5,062,798 特開2008-105016号公報JP 2008-105016 A 特開2004-290751号公報Japanese Patent Application Laid-Open No. 2004-290751 特開2002-166141号公報JP 2002-166141 A
 本発明の目的は、紡績糸の全部または一部を膜中に埋没させた多孔質中空糸膜であって、多孔質中空糸膜本来の機能を損なうことなく機械的強度を向上させるとともに、その不良割合を低減せしめた紡績糸強化多孔質中空糸膜の製造方法を提供することにある。 An object of the present invention is a porous hollow fiber membrane in which all or a part of the spun yarn is embedded in the membrane, and improves the mechanical strength without impairing the original function of the porous hollow fiber membrane. An object of the present invention is to provide a method for producing a spun yarn-reinforced porous hollow fiber membrane with a reduced defect rate.
 かかる本発明の目的は、二重環状ノズルの内側ノズルより芯液を、またその外側ノズルより紡糸原液をそれぞれ吐出させ、湿式紡糸または乾湿式紡糸するに際し、紡糸原液を吐出させる外側ノズル内部に紡績糸を紡績糸導入パイプより同時に供給することによって紡績糸強化多孔質中空糸膜を製造する方法によって達成される。 The object of the present invention is to discharge the core liquid from the inner nozzle of the double annular nozzle and the spinning stock solution from the outer nozzle, respectively, and perform spinning inside the outer nozzle that discharges the spinning stock solution when performing wet spinning or dry-wet spinning. This is achieved by a method for producing a spun yarn-reinforced porous hollow fiber membrane by simultaneously supplying yarn from a spun yarn introduction pipe.
 本発明方法によれば、紡績糸パイプを用いて同時に紡績糸を紡糸原液に供給することによって紡績糸強化多孔質中空糸膜の製造が行われるので、短繊維の集合体である紡績糸中、すなわち繊維と繊維の間に含まれる空気は紡績糸導入パイプ中を通って外部に排出されることから紡糸原液中に巻き込まれることがなく、その結果紡績糸中の空気を原因とする紡糸不良あるいは得られる中空糸膜の不良を回避せしめるといった効果を奏する。 According to the method of the present invention, since a spun yarn reinforced porous hollow fiber membrane is produced by simultaneously supplying spun yarn to a spinning dope using a spun yarn pipe, the spun yarn which is an aggregate of short fibers, That is, the air contained between the fibers is discharged outside through the spun yarn introduction pipe, so that it is not caught in the spinning dope, and as a result, the spinning failure caused by the air in the spun yarn or There exists an effect of avoiding the defect of the obtained hollow fiber membrane.
本発明に係る紡績糸強化多孔質中空糸膜の製造方法に用いられる二重環状ノズルの一例を示す概略半裁断面図である。1 is a schematic half-cut sectional view showing an example of a double annular nozzle used in a method for producing a spun yarn-reinforced porous hollow fiber membrane according to the present invention.
 紡績糸強化多孔質中空糸膜の製造は、二重環状ノズルの内側ノズルより芯液を、またその外側ノズルより紡糸原液をそれぞれ吐出させるにあたり、紡糸原液を吐出させる外側ノズル内部に紡績糸を紡績糸導入パイプより同時に供給することによって行われる。 In the production of the spun yarn reinforced porous hollow fiber membrane, the core liquid is discharged from the inner nozzle of the double annular nozzle, and the spinning solution is discharged from the outer nozzle, and the spun yarn is spun inside the outer nozzle that discharges the spinning solution. It is performed by supplying simultaneously from the yarn introduction pipe.
 二重環状ノズルとしては、従来から用いられている公知のもの、すなわち所望の中空糸膜サイズに応じた径を有する内側ノズルと外側ノズルとが二重となるように配置されているものであれば特に制限なく用いることができる。本発明においては、好ましくは図1に例示されるように、紡糸原液導入口6、内側ノズル2、中空糸膜状物吐出口7が設けられた環状体3よりなる二重環状ノズル1が用いられる。このノズル態様においては、中空糸膜状物吐出口7を有する環状体3が二重環状ノズル1の外側ノズルを構成しており、中空糸膜状物吐出口7と内側ノズル2の先端部とが所望の膜厚を有する中空糸膜状物を形成し得る二重管状となるように配置されている。 As the double annular nozzle, a known one that has been used conventionally, that is, an inner nozzle and an outer nozzle having a diameter corresponding to a desired hollow fiber membrane size are arranged so as to be double. It can be used without particular limitation. In the present invention, as illustrated in FIG. 1, a double annular nozzle 1 comprising an annular body 3 provided with a spinning dope 6, an inner nozzle 2 and a hollow fiber membrane discharge port 7 is preferably used. It is done. In this nozzle mode, the annular body 3 having the hollow fiber membrane discharge port 7 constitutes the outer nozzle of the double annular nozzle 1, and the hollow fiber membrane discharge port 7 and the tip of the inner nozzle 2 Are arranged so as to form a double tubular shape capable of forming a hollow fiber membrane having a desired film thickness.
 外側ノズル(環状体)3内部には、紡績糸9を紡糸原液中に導入するための紡績糸導入パイプ4が外側ノズル3の側面部を貫通した状態で配置される。紡績糸導入パイプ4は、外側ノズル3の外部に位置する一端が外側ノズル3の上部よりも上方に位置し、かつ他端が外側ノズル3内部に位置するように外側ノズル3側面部を貫通させて設けられる。これは紡績糸導入パイプ4の外側ノズル3の外部に位置する一端が外側ノズル内紡糸原液の液面よりも下方に位置してしまうと、紡糸原液が紡績糸導入パイプ4の紡績糸導入口から溢れ出してしまうようになるためである。 Inside the outer nozzle (annular body) 3, a spun yarn introduction pipe 4 for introducing the spun yarn 9 into the spinning dope is disposed in a state of penetrating the side surface portion of the outer nozzle 3. The spun yarn introduction pipe 4 penetrates the side surface of the outer nozzle 3 so that one end located outside the outer nozzle 3 is located above the upper portion of the outer nozzle 3 and the other end is located inside the outer nozzle 3. Provided. This is because if the one end of the spun yarn introduction pipe 4 located outside the outer nozzle 3 is positioned below the level of the spinning solution in the outer nozzle, the spinning dope is fed from the spun yarn introduction port of the spun yarn introduction pipe 4. This is because it will overflow.
 紡績糸導入パイプ4としては、その内径が紡績糸の外径(太さ)の1.5~2.0倍、好ましくは1.6~1.8倍のものが用いられる。紡糸原液は外側ノズル(図1では環状体3)内で加圧されているため、紡績糸導入パイプ4の内径がこれより小さいと紡績糸より排出された空気が適宜排出されず、気泡がノズル内部に留まって、結果的に紡糸不良あるいは得られる中空糸膜の不良につながってしまうこととなり、一方紡績糸導入パイプ4の内径がこれより大きいと紡糸原液が紡績糸導入パイプを逆流して外側ノズル外部に漏れ出してしまう場合がある。紡績糸導入パイプ4の長さについては紡績糸の太さ、紡績糸導入パイプの径および紡糸原液の粘度によって紡糸原液の留まる位置が変わることから特に限定されないが、一般には紡績糸の外径(太さ)の約200~250倍、好ましくは約220~230倍のものが用いられる。 The spun yarn introduction pipe 4 has an inner diameter of 1.5 to 2.0 times, preferably 1.6 to 1.8 times the outer diameter (thickness) of the spun yarn. Since the spinning dope is pressurized in the outer nozzle (annular body 3 in FIG. 1), if the inner diameter of the spun yarn introduction pipe 4 is smaller than this, the air discharged from the spun yarn is not properly discharged, and bubbles are generated in the nozzle. If the inner diameter of the spun yarn introduction pipe 4 is larger than this, the spinning dope will flow backward through the spun yarn introduction pipe and will be outside as a result. It may leak out of the nozzle. The length of the spun yarn introduction pipe 4 is not particularly limited because the position of the spinning stock solution changes depending on the thickness of the spun yarn, the diameter of the spun yarn introduction pipe, and the viscosity of the spinning stock solution, but generally the outer diameter of the spun yarn ( The thickness is about 200 to 250 times, preferably about 220 to 230 times.
 以上の構成よりなる二重環状ノズルを用い、内側ノズル2に芯液導入口5から供給される芯液を、外側ノズル3に紡糸原液を充填、加圧し、紡績糸導入パイプ4より紡績糸を外側ノズル3内部に供給しながら紡糸原液を同時に吐出させることによって、紡績糸の全部または一部を埋没させた多孔質中空糸膜を湿式紡糸法または乾湿式紡糸法によって得ることができる。図1においては、紡績糸導入パイプ4は1本のみ用いられているが、紡績糸導入パイプ4を複数本用いることも可能であり、一般的には1~8本の紡績糸導入パイプ4を円周上等配置して二重環状ノズルに装備するような態様も含まれる。 Using the double annular nozzle having the above-described configuration, the inner nozzle 2 is filled with the core liquid supplied from the core liquid inlet 5 and the outer nozzle 3 is filled with the spinning raw liquid and pressurized, and the spun yarn is fed from the spun yarn introduction pipe 4. A porous hollow fiber membrane in which all or part of the spun yarn is buried can be obtained by a wet spinning method or a dry-wet spinning method by simultaneously discharging the spinning stock solution while supplying it to the inside of the outer nozzle 3. In FIG. 1, only one spun yarn introduction pipe 4 is used, but a plurality of spun yarn introduction pipes 4 can be used. Generally, 1 to 8 spun yarn introduction pipes 4 are provided. A mode in which a double annular nozzle is arranged on the circumference and equidisposed is also included.
 紡績糸としては、一般的に用いられている紡績糸であれば特に制限なく用いることができ、好ましくはポリエチレンテレフタレート、ポリフェニレンサルファイドなどの紡績糸が用いられ、具体的にはその外径が0.1~0.5mm、好ましくは0.25~0.35mmであるものが用いられる。 The spun yarn can be used without particular limitation as long as it is a commonly used spun yarn, and a spun yarn such as polyethylene terephthalate or polyphenylene sulfide is preferably used. Specifically, the outer diameter is 0.1 to Those having a thickness of 0.5 mm, preferably 0.25 to 0.35 mm are used.
 紡糸原液は、中空糸膜の製造材料および溶媒を含む。中空糸膜の製造材料としては、公知の中空糸膜形成材料(ポリマー)のいずれも用いることができ、例えば酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、再生セルロースまたはこれらの混合物等のセルロース系材料、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリフッ化ビニリデン系樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリアラミド樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等の疎水性ポリマーが挙げられる。また、膜形成性樹脂の可溶性溶媒としてはアルコールやジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒が好んで用いられる。また、芯液としては水あるいは膜形成樹脂の非溶媒などが用いられる。 The spinning dope includes a material for producing a hollow fiber membrane and a solvent. As a manufacturing material of the hollow fiber membrane, any of known hollow fiber membrane-forming materials (polymers) can be used, for example, cellulose-based materials such as cellulose acetate, cellulose propionate, cellulose butyrate, regenerated cellulose, or a mixture thereof, Examples thereof include hydrophobic polymers such as polysulfone resins, polyethersulfone resins, polyvinylidene fluoride resins, polyacrylonitrile resins, polyimide resins, polyaramid resins, polypropylene resins, and polyethylene resins. As the soluble solvent for the film-forming resin, an aprotic polar solvent such as alcohol, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone is preferably used. As the core liquid, water or a non-solvent of a film-forming resin is used.
 紡績糸9は、中空糸膜全長にわたって紡績糸の全部または一部を埋没させるといった観点より、好ましくは芯液および紡糸原液を吐出させる前に中空糸膜状物吐出口からノズル外部へ予め出しておく。また、芯液および紡糸原液は、不要な空気の混入を防ぐといった観点から、好ましくは真空引きを行ったうえで用いられる。 From the viewpoint of burying all or part of the spun yarn over the entire length of the hollow fiber membrane, the spun yarn 9 is preferably discharged in advance from the hollow fiber membrane discharge port to the outside of the nozzle before discharging the core solution and the spinning stock solution. deep. Further, the core solution and the spinning dope are preferably used after evacuation from the viewpoint of preventing the mixing of unnecessary air.
 紡績糸は、好ましくは紡績糸断面の50容積%以上、さらに好ましくは60容積%以上、特に好ましくは70容積%以上を中空糸膜中に埋没させ、さらに機能層(被処理物接触側)ではない側の中空糸膜表面からみて中空糸膜膜厚の90%を超えない位置に配置させることにより、透過性能、分離性能を高く保ちつつ力学的特性をさらに向上させることができる。 The spun yarn preferably has 50% by volume or more of the cross section of the spun yarn, more preferably 60% by volume or more, particularly preferably 70% by volume or more embedded in the hollow fiber membrane, and the functional layer (workpiece contact side) By disposing at a position that does not exceed 90% of the hollow fiber membrane thickness when viewed from the hollow fiber membrane surface on the non-side, the mechanical properties can be further improved while keeping the permeation performance and separation performance high.
 紡績糸強化多孔質中空糸膜は、湿式紡糸法または乾湿式紡糸法によって紡糸された紡績糸強化多孔質中空糸膜状物を凝固液を用いた凝固、洗浄、乾燥を行うことによって製造される。 A spun yarn reinforced porous hollow fiber membrane is produced by coagulating, washing, and drying a spun yarn reinforced porous hollow fiber membrane spun by a wet spinning method or a dry wet spinning method using a coagulating liquid. .
 次に、実施例について本発明を説明する。 Next, the present invention will be described with reference to examples.
 実施例
 図1に示される二重環状ノズル1(外側ノズル内径1.15mm、内側ノズル外径0.6mm、内径0.4mm)用い、この紡績糸導入口8より紡績糸(外径:0.2mm)を紡績糸導入パイプ(管内径:紡績糸外径の1.67倍、管長さ:紡績糸外径の225倍)内部に通し、外側ノズル3と内側ノズル2の間隙より紡績糸9であるポリエチレンテレフタレート紡績糸を予め約1m程度出した状態で、内側ノズル2から芯液としての水を、また外側ノズル3から紡糸原液をそれぞれ加圧して吐出させ、これを水温50℃の水(凝固液)中で凝固させ、紡績糸強化中空糸膜状物を得た。ここで、紡糸原液としては、ポリエーテルイミド20重量%、ジメチルアセトアミド80重量%からなるものが用いられ、この紡糸原液および水(芯液)は、それぞれ真空ポンプで12時間真空引きし、気泡を含まない状態に調製して用いられた。かかる紡糸工程では紡糸中に中空糸が切れることなく、切断による不良率は0%であった。また、紡糸後の二重環状ノズル1を分解して観察したところ、紡糸原液内に気泡は確認されなかった。
Example Using the double annular nozzle 1 shown in FIG. 1 (outer nozzle inner diameter 1.15 mm, inner nozzle outer diameter 0.6 mm, inner diameter 0.4 mm), the spun yarn (outer diameter: 0.2 mm) was spun from the spun yarn inlet 8. A polyethylene terephthalate spun yarn as the spun yarn 9 is passed through the inside of the yarn introduction pipe (tube inner diameter: 1.67 times the outer diameter of the spun yarn, pipe length: 225 times the outer diameter of the spun yarn) through the gap between the outer nozzle 3 and the inner nozzle 2. With about 1 m in advance, water as the core liquid is discharged from the inner nozzle 2 and the spinning dope is discharged from the outer nozzle 3 and is coagulated in water (coagulating liquid) at a water temperature of 50 ° C. A spun yarn-reinforced hollow fiber membrane was obtained. Here, as the spinning dope, a solution comprising 20% by weight of polyetherimide and 80% by weight of dimethylacetamide is used, and the spinning dope and water (core solution) are each evacuated with a vacuum pump for 12 hours to remove bubbles. It was prepared and used in a free state. In this spinning process, the hollow fiber was not broken during spinning, and the defect rate due to cutting was 0%. Further, when the double annular nozzle 1 after spinning was disassembled and observed, no bubbles were confirmed in the spinning dope.
 得られた紡績糸強化中空糸膜状物は、水温45℃の洗浄槽内にて洗浄を行い、次いで121℃、1時間の高圧滅菌処理を行った後、庫内温度40℃の乾燥炉内に入れ、12時間以上乾燥処理を行うことにより、湿式紡糸法による紡績糸強化多孔質ポリエーテルイミド中空糸膜を得た。多孔質中空糸膜のピンホール検査および断面寸法検査を実施したところ、いずれの中空糸膜もピンホールや変形などは発生しておらず、不良率は0%であった。得られた多孔質ポリエーテルイミド中空糸膜は、外径1000μm、内径700μmであり、25℃における水蒸気透過速度は0.36g/cm2/分/MPa、純水透過速度は0g/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ27MPaであった。 The obtained spun yarn reinforced hollow fiber membrane was washed in a washing tank with a water temperature of 45 ° C., then subjected to high-pressure sterilization treatment at 121 ° C. for 1 hour, and then in a drying furnace with an internal temperature of 40 ° C. And dried for 12 hours or longer to obtain a spun yarn reinforced porous polyetherimide hollow fiber membrane by a wet spinning method. When a pinhole inspection and a cross-sectional dimension inspection were performed on the porous hollow fiber membrane, none of the hollow fiber membranes had pinholes or deformation, and the defect rate was 0%. The obtained porous polyetherimide hollow fiber membrane has an outer diameter of 1000 μm, an inner diameter of 700 μm, a water vapor transmission rate at 25 ° C. of 0.36 g / cm 2 / min / MPa, and a pure water transmission rate of 0 g / cm 2 / hour. / MPa, the air permeation rate was 0 ml / cm 2 / min / MPa. Further, a tensile test was conducted at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated to be 27 MPa.
 比較例
 実施例において、紡績糸を紡績糸導入口8ではなく、紡績原液導入口6からノズル内部に導入して外側ノズル3と内側ノズル2の間隙より紡績糸9であるポリエチレンテレフタレート紡績糸を予め約1m程度出した状態とし、中空糸膜状物を得た。かかる紡糸工程では、1回の紡糸に対して1度の膜切れと2箇所のピンホール(芯液が膜の外側に吹き出す)が発生した。また紡糸後の二重環状ノズルを分解して観察した結果、紡糸原液内に多数の気泡が確認され、この気泡によって不良が発生したことが判明した。
Comparative Example In the example, the spun yarn was introduced into the nozzle from the spinning dope introduction port 6 instead of the spun yarn introduction port 8, and the polyethylene terephthalate spun yarn, which is the spun yarn 9, was previously obtained from the gap between the outer nozzle 3 and the inner nozzle 2. A hollow fiber membrane was obtained with about 1 m protruding. In such a spinning process, one film break and two pinholes (core liquid blows out to the outside of the film) occurred for one spinning. Further, as a result of disassembling and observing the double annular nozzle after spinning, a large number of bubbles were confirmed in the spinning dope, and it was found that defects occurred due to the bubbles.
 1  二重環状ノズル
 2  内側ノズル
 3  外側ノズル(環状体)
 4  紡績糸導入パイプ
 5  芯液導入口
 6  紡糸原液導入口
 7  中空糸膜状物吐出口
 8  紡績糸導入口
 9  紡績糸
1 Double annular nozzle 2 Inner nozzle 3 Outer nozzle (annular body)
4 Spinning yarn introduction pipe 5 Core fluid introduction port 6 Spinning stock solution introduction port 7 Hollow fiber membrane discharge port 8 Spinning yarn introduction port 9 Spinning yarn

Claims (6)

  1.  二重環状ノズルの内側ノズルより芯液を、またその外側ノズルより紡糸原液をそれぞれ吐出させ、湿式紡糸または乾湿式紡糸するに際し、紡糸原液を吐出させる外側ノズル内部に紡績糸を紡績糸導入パイプより同時に供給することを特徴とする紡績糸強化多孔質中空糸膜の製造方法。 The core liquid is discharged from the inner nozzle of the double annular nozzle, and the spinning stock solution is discharged from the outer nozzle. When performing wet spinning or dry wet spinning, the spun yarn is discharged from the spinning yarn introduction pipe inside the outer nozzle that discharges the spinning raw solution. A method for producing a spun yarn-reinforced porous hollow fiber membrane, characterized by being supplied simultaneously.
  2.  紡績糸の外径の1.5~2.0倍の内径を有する紡績糸導入パイプが用いられた請求項1記載の紡績糸強化多孔質中空糸膜の製造方法。 The method for producing a spun yarn-reinforced porous hollow fiber membrane according to claim 1, wherein a spun yarn introduction pipe having an inner diameter of 1.5 to 2.0 times the outer diameter of the spun yarn is used.
  3.  紡績糸の外径の200~250倍の長さを有する紡績糸導入パイプが用いられた請求項1記載の紡績糸強化多孔質中空糸膜の製造方法。 The method for producing a spun yarn-reinforced porous hollow fiber membrane according to claim 1, wherein a spun yarn introduction pipe having a length 200 to 250 times the outer diameter of the spun yarn is used.
  4.  芯液および紡糸原液が真空引きされて用いられる請求項1記載の紡績糸強化多孔質中空糸膜の製造方法。 The method for producing a spun yarn-reinforced porous hollow fiber membrane according to claim 1, wherein the core solution and the spinning dope are evacuated.
  5.  紡績糸を中空糸膜状物吐出口からノズル外部に予め出しておき、芯液および紡績原液を吐出させる請求項1記載の紡績糸強化多孔質中空糸膜の製造方法。 The method for producing a spun yarn-reinforced porous hollow fiber membrane according to claim 1, wherein the spun yarn is previously discharged from the hollow fiber membrane discharge port to the outside of the nozzle, and the core solution and the spinning stock solution are discharged.
  6.  外側ノズルおよび内側ノズルよりなる二重環状ノズルに紡績糸導入パイプが装備され、該紡績糸導入パイプの外側ノズル外部に位置する一端が外側ノズルの上部よりも上方に位置し、かつ該紡績糸導入パイプの他端が外側ノズル内部に位置するように紡績糸導入パイプが外側ノズル側面部を貫通させて設けられた、請求項1乃至5のいずれかの請求項に記載の紡績糸強化多孔質中空糸膜の製造方法に用いられる二重環状ノズル。 A spun yarn introduction pipe is equipped on a double annular nozzle composed of an outer nozzle and an inner nozzle, one end located outside the outer nozzle of the spun yarn introduction pipe is located above the upper part of the outer nozzle, and the spun yarn introduction The spun yarn-reinforced porous hollow according to any one of claims 1 to 5, wherein the spun yarn introduction pipe is provided through the side surface of the outer nozzle so that the other end of the pipe is positioned inside the outer nozzle. A double annular nozzle used in a method for producing a yarn membrane.
PCT/JP2014/061326 2013-04-23 2014-04-22 Process for producing porous hollow-fiber membrane reinforced with spun yarn WO2014175282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-090708 2013-04-23
JP2013090708A JP5737319B2 (en) 2013-04-23 2013-04-23 Method for producing spun yarn reinforced porous hollow fiber membrane

Publications (1)

Publication Number Publication Date
WO2014175282A1 true WO2014175282A1 (en) 2014-10-30

Family

ID=51791853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061326 WO2014175282A1 (en) 2013-04-23 2014-04-22 Process for producing porous hollow-fiber membrane reinforced with spun yarn

Country Status (2)

Country Link
JP (1) JP5737319B2 (en)
WO (1) WO2014175282A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167414A (en) * 1981-04-03 1982-10-15 Ube Ind Ltd Production of polyimide hollow fiber
JP2003245528A (en) * 2002-02-26 2003-09-02 Mitsubishi Rayon Co Ltd Method for manufacturing fiber reinforced porous hollow fiber membrane
JP2006088148A (en) * 2004-09-20 2006-04-06 Para Ltd Hollow fiber membrane having excellent water permeability
WO2009142279A1 (en) * 2008-05-21 2009-11-26 三菱レイヨン株式会社 Hollow porous membrane and process for producing the same
JP2012200635A (en) * 2011-03-24 2012-10-22 Toray Ind Inc Method for producing composite hollow fiber membrane
JP2012530594A (en) * 2009-06-26 2012-12-06 ビーエル・テクノロジーズ・インコーポレイテッド Hollow fiber membrane reinforced with non-braided fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167414A (en) * 1981-04-03 1982-10-15 Ube Ind Ltd Production of polyimide hollow fiber
JP2003245528A (en) * 2002-02-26 2003-09-02 Mitsubishi Rayon Co Ltd Method for manufacturing fiber reinforced porous hollow fiber membrane
JP2006088148A (en) * 2004-09-20 2006-04-06 Para Ltd Hollow fiber membrane having excellent water permeability
WO2009142279A1 (en) * 2008-05-21 2009-11-26 三菱レイヨン株式会社 Hollow porous membrane and process for producing the same
JP2012530594A (en) * 2009-06-26 2012-12-06 ビーエル・テクノロジーズ・インコーポレイテッド Hollow fiber membrane reinforced with non-braided fabric
JP2012200635A (en) * 2011-03-24 2012-10-22 Toray Ind Inc Method for producing composite hollow fiber membrane

Also Published As

Publication number Publication date
JP2014213236A (en) 2014-11-17
JP5737319B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5798680B2 (en) Pressurized hollow fiber membrane module
WO2014175281A1 (en) Process for manufacturing fiber-reinforced porous hollow fiber membrane
CN113117535A (en) Preparation method of homogeneous continuous fiber reinforced hollow fiber membrane and hollow fiber membrane prepared by same
WO2009125598A1 (en) Hydrophilic polyethersulfone filtration membrane, method for production thereof, and stock solution of production of membrane
JP2012200635A (en) Method for producing composite hollow fiber membrane
JP2016010792A (en) Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride
KR20150001513A (en) Hollow Fiber Membrane and Method for Manufacturing The Same
KR100750289B1 (en) Preparation method of fouling-resistant multi-channel hollow fiber membrane
JP5737319B2 (en) Method for producing spun yarn reinforced porous hollow fiber membrane
WO2013125681A1 (en) Hollow fiber type semipermeable membrane, process for manufacturing same, module and water treatment process
JP5772867B2 (en) Fiber reinforced porous hollow fiber membrane
CN110575761B (en) Fiber-reinforced PVDF ultrafiltration membrane and application thereof in municipal sewage and industrial wastewater
KR102087507B1 (en) Composition of flexible PPS porous hollow fiber having symmetric structure, flexible PPS porous hollow fiber membrane having symmetric structure and Manufacturing method thereof
KR101380550B1 (en) Pvdf porous hollow fiber membrane and manufacturing method thereof
KR101885255B1 (en) Porous Membrane and Method for Manufacturing The Same
CN113244790A (en) Self-reinforced hollow fiber ultrafiltration membrane and preparation method and application thereof
JP2013248589A (en) Method for producing fiber reinforced porous hollow fiber membrane
JP6888940B2 (en) Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
JP2015221400A (en) Manufacturing method of hollow fiber membrane for ultrafiltration membrane
KR101689440B1 (en) Dry Hollow Fiber Membrane, Preparation Method Thereof and Water Treatment Module Comprising The Same
JP2018075523A (en) Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
KR20160056656A (en) Hollow Fiber Membrane Improved Modulus, Preparation Method Thereof and Water Treatment Module Comprising The Same
KR101723904B1 (en) Preparation Method of Hollow Fiber Membrane With Improved Processing Efficiency And Manufacturing System Thereof
KR101226400B1 (en) Tubular braid and Composite Hollow Fiber Membrane using the same
KR20160034743A (en) Water Treatment Module With Reduced Fracture Rate And Method For Preparation Thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787988

Country of ref document: EP

Kind code of ref document: A1