JP2014213236A - Method for manufacturing spun yarn-reinforced porous hollow fiber membrane - Google Patents

Method for manufacturing spun yarn-reinforced porous hollow fiber membrane Download PDF

Info

Publication number
JP2014213236A
JP2014213236A JP2013090708A JP2013090708A JP2014213236A JP 2014213236 A JP2014213236 A JP 2014213236A JP 2013090708 A JP2013090708 A JP 2013090708A JP 2013090708 A JP2013090708 A JP 2013090708A JP 2014213236 A JP2014213236 A JP 2014213236A
Authority
JP
Japan
Prior art keywords
spun yarn
hollow fiber
fiber membrane
nozzle
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013090708A
Other languages
Japanese (ja)
Other versions
JP5737319B2 (en
Inventor
波形 和彦
Kazuhiko Namigata
和彦 波形
孝利 佐藤
Takatoshi Sato
孝利 佐藤
正崇 近藤
Masataka Kondo
正崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2013090708A priority Critical patent/JP5737319B2/en
Priority to PCT/JP2014/061326 priority patent/WO2014175282A1/en
Publication of JP2014213236A publication Critical patent/JP2014213236A/en
Application granted granted Critical
Publication of JP5737319B2 publication Critical patent/JP5737319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D11/00Other features of manufacture
    • D01D11/06Coating with spinning solutions or melts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a spun yarn-reinforced porous hollow fiber membrane which is a porous hollow fiber membrane having the whole or part of a spun yarn embedded within the membrane, and which is improved in mechanical strength without impairment of the original function of the porous hollow fiber membrane and is reduced in the defective rate thereof.SOLUTION: A spun yarn-reinforced porous hollow fiber membrane is manufactured in such a manner that, when wet spinning or dry-wet spinning is carried out by discharging a core liquid from an inner nozzle of double annular nozzles and a spinning dope from an outer nozzle thereof, a spun yarn is simultaneously fed from a spun yarn introduction pipe into the outer nozzle for discharging the spinning dope.

Description

本発明は、紡績糸強化多孔質中空糸膜の製造方法に関する。さらに詳しくは、機械的強度の点ですぐれた紡績糸強化多孔質中空糸膜の製造方法に関する。   The present invention relates to a method for producing a spun yarn-reinforced porous hollow fiber membrane. More specifically, the present invention relates to a method for producing a spun yarn reinforced porous hollow fiber membrane excellent in mechanical strength.

多孔質中空糸膜は、膜ロ過による浄水処理、廃水処理、除湿あるいは加湿を行う際などさまざまな分野で用いられている。   Porous hollow fiber membranes are used in various fields such as water purification treatment by membrane filtration, wastewater treatment, dehumidification or humidification.

膜ロ過による浄水処理や廃水処理は、これまでの凝集沈殿のロ過方式と比較し、運転の維持や管理が容易であり、処理水質も良好であることから、近年水処理分野で幅広く用いられている。例えば活性汚泥処理と膜分離処理を組み合わせたメンブレンリアクター法〔MBR〕の膜分離処理に用いられる膜としては、高強度、耐久性、耐薬品性が要求されることから、特許文献1〜2に記載されている熱誘起相分離法によって調製されるポリフッ化ビニリデン〔PVDF〕膜が使用されることが多い。   Water purification and wastewater treatment using membrane filtration has been widely used in the water treatment field in recent years because it is easier to maintain and manage operation and has better quality compared to conventional filtration methods for coagulation and precipitation. It has been. For example, as a membrane used for membrane separation treatment of the membrane reactor method [MBR] combining activated sludge treatment and membrane separation treatment, high strength, durability and chemical resistance are required. Polyvinylidene fluoride [PVDF] membranes prepared by the described thermally induced phase separation method are often used.

しかしながら、熱誘起相分離法によって調製されるPVDF膜は、強度が8〜22MPa程度であり、またこのうち実用されているものは11MPa程度のものが多いというように、高い強度は示すものの、非溶媒誘起相分離法で調製された膜と比較して、必ずしも十分な強度を有しているものとはいえない。また、熱誘起相分離法は工程が複雑であり、多くの溶剤を用いた洗浄が必要であることから高コストで環境にやさしいものとはいい難いといった側面を有する。   However, the PVDF membrane prepared by the thermally induced phase separation method has a strength of about 8 to 22 MPa, and among them, many are about 11 MPa in practical use. Compared with a membrane prepared by a solvent-induced phase separation method, it cannot necessarily be said to have sufficient strength. In addition, the thermally induced phase separation method has a complicated process and requires cleaning with a large number of solvents, so that it is difficult to say that it is expensive and environmentally friendly.

一方、非溶媒誘起相分離法を用いて調製されるポリスルホンやPVDF等を樹脂ケース内に接着剤を用いて固定した構造の膜モジュール(膜面積約10〜100m2)も廃水処理や浄水処理に多く使用されている。このような膜モジュールには毎分数10L〜数100Lといった量の水が供給されて使用される。その際、定期的に流量回復を目的とした薬品洗浄や搖動洗浄などが施されることから、使用時あるいは洗浄時に中空糸膜が破断する場合がある。 On the other hand, a membrane module (membrane area of about 10 to 100 m 2 ) with a structure in which polysulfone, PVDF, etc. prepared using a non-solvent induced phase separation method are fixed in a resin case with an adhesive is also used for wastewater treatment and water purification treatment. Many are used. Such a membrane module is supplied with water in an amount of several tens of liters to several hundreds of liters per minute. At that time, since the chemical cleaning or the peristaltic cleaning for the purpose of recovering the flow rate is periodically performed, the hollow fiber membrane may be broken at the time of use or cleaning.

また、中空糸膜方式で除湿あるいは加湿を行う方法は、メンテナンスフリーであるばかりではなく、駆動に電源を必要とはしないなど多くの利点を有している。このような除湿膜あるいは加湿膜としては、ポリイミド、ポリスルホン、ポリフェニルスルホンといった膜形成性樹脂材料が用いられている(特許文献3等)。これらの材料を用いた除湿膜は、多くの産業分野で用いられているものの、多孔質であるために膜の絶対強度が弱く、用途によっては多量の気体を流して使用されるために使用時に中空糸膜が破断するといった問題がみられる。一方、加湿膜についても、近年では燃料電池スタックの隔膜の加湿に多く用いられているが、この場合にも例えば車載用途において4000NL/分程度の多量の空気が流れることから、その機械的強度との関係で中空糸膜切れといった問題がある。   Further, the method of dehumidifying or humidifying by the hollow fiber membrane method is not only maintenance-free, but also has many advantages such as not requiring a power source for driving. As such a dehumidifying film or humidifying film, a film-forming resin material such as polyimide, polysulfone, or polyphenylsulfone is used (Patent Document 3, etc.). Although dehumidifying membranes using these materials are used in many industrial fields, they are porous, so the absolute strength of the membrane is weak. There is a problem that the hollow fiber membrane is broken. On the other hand, in recent years, humidification membranes are often used for humidification of diaphragms of fuel cell stacks. Therefore, there is a problem that the hollow fiber membrane is broken.

このような多孔質中空糸膜の中空糸膜切れを防止し、機械的強度を向上させる手段として補強材としての紡績糸を膜中に埋没させた多孔質膜が提案されている(特許文献4)。ここで、紡績糸を中空糸膜中に埋没させる方法としては、紡糸原液中に補強材を混合して公知の二重環状ノズルを用いる製造方法によって多孔質中空糸膜を製造する方法が考えられる。しかしながら、かかる方法では紡績糸等の補強材内部に含まれる空気がノズル内部の紡糸原液中に徐々に蓄積され、紡糸時にその気泡を巻き込む結果として、後記比較例に示される如く膜形状の変形やピンホールの発生、ひいては膜の切断が発生してしまうといった問題が生じてしまう。   A porous membrane in which spun yarn as a reinforcing material is embedded in the membrane has been proposed as means for preventing the hollow fiber membrane from being broken and improving the mechanical strength (Patent Document 4). ). Here, as a method for embedding the spun yarn in the hollow fiber membrane, a method for producing a porous hollow fiber membrane by a production method using a known double annular nozzle by mixing a reinforcing material in the spinning dope can be considered. . However, in such a method, air contained in the reinforcing material such as spun yarn is gradually accumulated in the spinning dope inside the nozzle, and as a result of entraining the bubbles during spinning, the deformation of the film shape or There arises a problem that pinholes are generated, and hence the film is cut.

特許第5,062,798号公報Japanese Patent No. 5,062,798 特開2008−105016号公報JP 2008-105016 A 特開2004−290751号公報Japanese Patent Application Laid-Open No. 2004-290751 特開2002−166141号公報JP 2002-166141 A

本発明の目的は、紡績糸の全部または一部を膜中に埋没させた多孔質中空糸膜であって、多孔質中空糸膜本来の機能を損なうことなく機械的強度を向上させるとともに、その不良割合を低減せしめた紡績糸強化多孔質中空糸膜の製造方法を提供することにある。   An object of the present invention is a porous hollow fiber membrane in which all or a part of the spun yarn is embedded in the membrane, and improves the mechanical strength without impairing the original function of the porous hollow fiber membrane. An object of the present invention is to provide a method for producing a spun yarn-reinforced porous hollow fiber membrane with a reduced defect rate.

かかる本発明の目的は、二重環状ノズルの内側ノズルより芯液を、またその外側ノズルより紡糸原液を吐出させ湿式紡糸または乾湿式紡糸するに際し、外側ノズル内部に紡績糸を紡績糸導入パイプより供給することによって紡績糸強化多孔質中空糸膜を製造することによって達成される。   The object of the present invention is to discharge the core liquid from the inner nozzle of the double annular nozzle and the spinning raw liquid from the outer nozzle to perform wet spinning or dry wet spinning. This is achieved by producing a spun yarn reinforced porous hollow fiber membrane by feeding.

本発明方法によれば、紡績糸パイプを用いて紡績糸を紡糸原液に供給することによって紡績糸強化多孔質中空糸膜の製造が行われるので、短繊維の集合体である紡績糸中、すなわち繊維と繊維の間に含まれる空気は紡績糸導入パイプ中を通って外部に排出されることから紡糸原液中に巻き込まれることがなく、その結果紡績糸中の空気を原因とする紡糸不良あるいは得られる中空糸膜の不良を回避せしめるといった効果を奏する。   According to the method of the present invention, since a spun yarn reinforced porous hollow fiber membrane is produced by supplying spun yarn to a spinning dope using a spun yarn pipe, the spun yarn that is an aggregate of short fibers, that is, The air contained between the fibers passes through the spun yarn introduction pipe and is discharged to the outside, so that it is not caught in the spinning dope. The effect of avoiding the defect of the hollow fiber membrane to be produced is exhibited.

本発明に係る紡績糸強化多孔質中空糸膜の製造方法に用いられる二重環状ノズルの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the double annular nozzle used for the manufacturing method of the spun yarn reinforced porous hollow fiber membrane which concerns on this invention.

紡績糸強化多孔質中空糸膜の製造は、二重環状ノズルの内側ノズルより芯液を、またその外側ノズルより紡糸原液を吐出させるにあたり、外側ノズル内部に紡績糸を紡績糸導入パイプより供給することによって行われる。   The spun yarn reinforced porous hollow fiber membrane is manufactured by supplying spun yarn into the outer nozzle from the spun yarn introduction pipe when discharging the core liquid from the inner nozzle of the double annular nozzle and the spinning solution from the outer nozzle. Is done by.

二重環状ノズルとしては、従来から用いられている公知のもの、すなわち所望の中空糸膜サイズに応じた径を有する内側ノズルと外側ノズルとが二重となるように配置されているものであれば特に制限なく用いることができる。本発明においては、好ましくは図1に例示されるように、紡糸原液導入口6、内側ノズル2、中空糸膜前駆体吐出口7が設けられた環状体3よりなる二重環状ノズル1が用いられる。このノズル態様においては、中空糸膜前駆体吐出口7を有する環状体3が二重環状ノズル1の外側ノズルを構成しており、中空糸膜前駆体吐出口7と内側ノズル2の先端部とが所望の膜厚を有する中空糸膜前駆体を形成し得る二重管状となるように配置されている。   As the double annular nozzle, a known one that has been used conventionally, that is, an inner nozzle and an outer nozzle having a diameter corresponding to a desired hollow fiber membrane size are arranged so as to be double. It can be used without particular limitation. In the present invention, as exemplified in FIG. 1, a double annular nozzle 1 comprising an annular body 3 provided with a spinning solution introduction port 6, an inner nozzle 2, and a hollow fiber membrane precursor discharge port 7 is used. It is done. In this nozzle mode, the annular body 3 having the hollow fiber membrane precursor discharge port 7 constitutes the outer nozzle of the double annular nozzle 1, and the hollow fiber membrane precursor discharge port 7 and the tip of the inner nozzle 2 Are arranged so as to form a double tube that can form a hollow fiber membrane precursor having a desired film thickness.

外側ノズル(環状体)3内部には、紡績糸9を紡糸原液に導入するための紡績糸導入パイプ4が外側ノズル3の側面部を貫通した状態で配置される。紡績糸導入パイプ4は、外側ノズル3の外部に位置する一端が外側ノズル3の上部よりも上方となり、かつ他端が外側ノズル3内部に位置するように外側ノズル3側面部を貫通させて設けられる。これは紡績糸導入パイプ4の外側ノズル3の外部に位置する一端が外側ノズル内紡糸原液の液面よりも下方に位置してしまうと、紡糸原液が紡績糸導入パイプ4の紡績糸導入口から溢れ出してしまうようになるためである。   Inside the outer nozzle (annular body) 3, a spun yarn introduction pipe 4 for introducing the spun yarn 9 into the spinning dope is disposed in a state of penetrating the side surface portion of the outer nozzle 3. The spun yarn introduction pipe 4 is provided by penetrating the side surface of the outer nozzle 3 so that one end located outside the outer nozzle 3 is located above the upper portion of the outer nozzle 3 and the other end is located inside the outer nozzle 3. It is done. This is because if the one end of the spun yarn introduction pipe 4 located outside the outer nozzle 3 is positioned below the level of the spinning solution in the outer nozzle, the spinning dope is fed from the spun yarn introduction port of the spun yarn introduction pipe 4. This is because it will overflow.

紡績糸導入パイプ4としては、その内径が紡績糸の外径(太さ)の1.5〜2.0倍、好ましくは1.6〜1.8倍のものが用いられる。紡糸原液は外側ノズル(図1では環状体3)内で加圧されているため、紡績糸導入パイプ4の内径がこれより小さいと紡績糸より排出された空気が適宜排出されず、気泡がノズル内部に留まって、結果的に紡糸不良あるいは得られる中空糸膜の不良につながってしまうこととなり、一方紡績糸導入パイプ4の内径がこれより大きいと紡糸原液が紡績糸導入パイプを逆流して外側ノズル外部に漏れ出してしまう場合がある。紡績糸導入パイプ4の長さについては紡績糸の太さ、紡績糸導入パイプの径および紡糸原液の粘度によって紡糸原液の留まる位置が変わることから特に限定されないが、一般には紡績糸の外径(太さ)の約200〜250倍、好ましくは約220〜230倍のものが用いられる。   As the spun yarn introduction pipe 4, one having an inner diameter of 1.5 to 2.0 times, preferably 1.6 to 1.8 times the outer diameter (thickness) of the spun yarn is used. Since the spinning dope is pressurized in the outer nozzle (annular body 3 in FIG. 1), if the inner diameter of the spun yarn introduction pipe 4 is smaller than this, the air discharged from the spun yarn is not properly discharged, and bubbles are generated in the nozzle. If the inner diameter of the spun yarn introduction pipe 4 is larger than this, the spinning dope will flow backward through the spun yarn introduction pipe and will be outside as a result. It may leak out of the nozzle. The length of the spun yarn introduction pipe 4 is not particularly limited because the position where the spinning stock solution stays varies depending on the thickness of the spun yarn, the diameter of the spun yarn introduction pipe, and the viscosity of the spinning stock solution, but generally the outer diameter of the spun yarn ( The thickness is about 200 to 250 times, preferably about 220 to 230 times.

以上の構成よりなる二重環状ノズルを用い、内側ノズル2に芯液導入口5から供給される芯液を、外側ノズル3に紡糸原液を充填、加圧し、紡績糸導入パイプ4より紡績糸を外側ノズル3内部に供給しながら紡糸原液を吐出させることによって、紡績糸の全部または一部を埋没させた多孔質中空糸膜の前駆体である中空糸膜前駆体を湿式紡糸法または乾湿式紡糸法によって得ることができる。図1においては、紡績糸導入パイプ4は1本のみ用いられているが、紡績糸導入パイプ4を複数本用いることも可能であり、一般的には1〜8本の紡績糸導入パイプ4を等配置して二重環状ノズルに装備するような態様も含まれる。   Using the double annular nozzle having the above-described configuration, the inner nozzle 2 is filled with the core liquid supplied from the core liquid inlet 5 and the outer nozzle 3 is filled with the spinning raw liquid and pressurized, and the spun yarn is fed from the spun yarn introduction pipe 4. A hollow fiber membrane precursor, which is a precursor of a porous hollow fiber membrane in which all or a part of the spun yarn is buried, is discharged by wet spinning or dry-wet spinning by discharging the spinning stock solution while supplying the inside of the outer nozzle 3. Can be obtained by law. In FIG. 1, only one spun yarn introduction pipe 4 is used. However, a plurality of spun yarn introduction pipes 4 can be used. Generally, 1 to 8 spun yarn introduction pipes 4 are provided. A mode in which the two annular nozzles are arranged in equal positions is also included.

紡績糸としては、一般的に用いられている紡績糸であれば特に制限なく用いることができ、好ましくはポリエチレンテレフタレート〔PET〕、ポリフェニレンサルファイド〔PPS〕などの紡績糸が用いられ、具体的にはその外径が0.1〜0.5mm、好ましくは0.25〜0.35mmであるものが用いられる。   The spun yarn can be used without particular limitation as long as it is a commonly used spun yarn, and preferably spun yarn such as polyethylene terephthalate [PET] or polyphenylene sulfide [PPS] is used. Those having an outer diameter of 0.1 to 0.5 mm, preferably 0.25 to 0.35 mm are used.

紡糸原液は、中空糸膜の製造材料および溶媒を含む。中空糸膜の製造材料としては、公知の中空糸膜形成材料(ポリマー)のいずれも用いることができ、例えば酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、再生セルロースまたはこれらの混合物等のセルロース系材料、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリフッ化ビニリデン系樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリアラミド樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等の疎水性ポリマーが挙げられる。また、膜形成性樹脂の可溶性溶媒としてはアルコールやジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒が好んで用いられる。また、芯液としては水あるいは膜形成樹脂の非溶媒などが用いられる。   The spinning dope contains a material for producing a hollow fiber membrane and a solvent. As a manufacturing material of the hollow fiber membrane, any of known hollow fiber membrane-forming materials (polymers) can be used, for example, cellulose-based materials such as cellulose acetate, cellulose propionate, cellulose butyrate, regenerated cellulose, or a mixture thereof, Examples thereof include hydrophobic polymers such as polysulfone resins, polyethersulfone resins, polyvinylidene fluoride resins, polyacrylonitrile resins, polyimide resins, polyaramid resins, polypropylene resins, and polyethylene resins. As a soluble solvent for the film-forming resin, an aprotic polar solvent such as alcohol, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone is preferably used. As the core liquid, water or a non-solvent of a film-forming resin is used.

紡績糸9は、中空糸膜全長にわたって紡績糸の全部または一部を埋没させるといった観点より、好ましくは芯液および紡糸原液を吐出させる前に中空糸膜前駆体吐出口からノズル外部へ予め出しておく。また、芯液および紡糸原液は、不要な空気の混入を防ぐといった観点から、好ましくは真空引きを行ったうえで用いられる。   From the viewpoint of burying all or part of the spun yarn over the entire length of the hollow fiber membrane, the spun yarn 9 is preferably discharged from the hollow fiber membrane precursor outlet to the outside of the nozzle in advance before discharging the core solution and the spinning stock solution. deep. Further, the core solution and the spinning dope are preferably used after evacuation from the viewpoint of preventing unnecessary air from entering.

紡績糸は、好ましくは紡績糸断面の50容積%以上、さらに好ましくは60容積%以上、特に好ましくは70容積%以上を中空糸膜中に埋没させ、さらに機能層(被処理物接触側)ではない側の中空糸膜表面からみて中空糸膜膜厚の90%を超えない位置に配置させることにより、透過性能、分離性能を高く保ちつつ力学的特性をさらに向上させることができる。   The spun yarn preferably has 50% by volume or more of the cross section of the spun yarn, more preferably 60% by volume or more, and particularly preferably 70% by volume or more embedded in the hollow fiber membrane. By disposing at a position that does not exceed 90% of the hollow fiber membrane thickness when viewed from the hollow fiber membrane surface on the non-side, the mechanical properties can be further improved while keeping the permeation performance and separation performance high.

紡績糸強化多孔質中空糸膜は、湿式紡糸法または乾湿式紡糸法によって紡糸された紡績糸強化多孔質中空糸膜前駆体を凝固液を用いた凝固、洗浄、乾燥を行うことによって製造される。   A spun yarn reinforced porous hollow fiber membrane is produced by coagulating, washing, and drying a spun yarn reinforced porous hollow fiber membrane precursor spun by a wet spinning method or a dry wet spinning method using a coagulating liquid. .

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
図1に示される二重環状ノズル1(外側ノズル内径1.15mm、内側ノズル外径0.6mm、内径0.4mm)用い、この紡績糸導入口8より紡績糸(外径:0.2mm)を紡績糸導入パイプ(管内径:紡績糸外径の1.67倍、管長さ:紡績糸外径の225倍)内部に通し、外側ノズル3と内側ノズル2の間隙より紡績糸9であるPETを予め約1m程度出した状態で、内側ノズル2から芯液としての水を、また外側ノズル3から紡糸原液を加圧して吐出させ、これを水温50℃の水(凝固液)中で凝固させ、紡績糸強化中空糸前駆体を得た。ここで、紡糸原液としては、ポリエーテルイミド20重量%、ジメチルアセトアミド80重量%からなるものが用いられ、この紡糸原液および水(芯液)は、それぞれ真空ポンプで12時間真空引きし、気泡を含まない状態に調整して用いられた。かかる紡糸工程では紡糸中に中空糸が切れることなく、切断による不良率は0%であった。また、紡糸後の二重環状ノズル1を分解して観察したところ、紡糸原液内に気泡は確認されなかった。
Example Using the double annular nozzle 1 shown in FIG. 1 (outer nozzle inner diameter 1.15 mm, inner nozzle outer diameter 0.6 mm, inner diameter 0.4 mm), the spun yarn (outer diameter: 0.2 mm) was spun from the spun yarn inlet 8. Pass through the inside of the yarn introduction pipe (pipe inner diameter: 1.67 times the spun yarn outer diameter, pipe length: 225 times the spun yarn outer diameter), and the PET, which is the spun yarn 9, is about 1 m from the gap between the outer nozzle 3 and the inner nozzle 2 in advance. In a state where the water is discharged, the water as the core liquid is discharged from the inner nozzle 2 and the spinning stock solution is pressurized and discharged from the outer nozzle 3, which is coagulated in water (coagulating liquid) at a water temperature of 50 ° C. to strengthen the spun yarn. A hollow fiber precursor was obtained. Here, as the spinning dope, a solution comprising 20% by weight of polyetherimide and 80% by weight of dimethylacetamide was used, and the spinning dope and water (core solution) were each evacuated with a vacuum pump for 12 hours to remove bubbles. It was used after adjusting to a state that does not contain. In this spinning process, the hollow fiber was not broken during spinning, and the defect rate due to cutting was 0%. In addition, when the double annular nozzle 1 after spinning was disassembled and observed, no bubbles were observed in the spinning dope.

紡績糸強化中空糸前駆体は、水温45℃の洗浄槽内にて洗浄を行い、次いで121℃、1時間の高圧滅菌処理を行った後、庫内温度40℃の乾燥炉内に入れ、12時間以上乾燥処理を行うことにより、湿式紡糸法による紡績糸強化多孔質ポリエーテルイミド中空糸膜を得た。多孔質中空糸膜のピンホール検査および断面寸法検査を実施したところ、いずれの中空糸膜もピンホールや変形などは発生しておらず、不良率は0%であった。得られた多孔質ポリエーテルイミド中空糸膜は、外径1000μm、内径700μmであり、25℃における水蒸気透過速度は0.36g/cm2/分/MPa、純水透過速度は0g/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ27MPaであった。 The spun yarn reinforced hollow fiber precursor was washed in a washing tank with a water temperature of 45 ° C., then subjected to high-pressure sterilization treatment at 121 ° C. for 1 hour, and then placed in a drying furnace with a chamber temperature of 40 ° C. By performing a drying treatment for more than an hour, a spun yarn reinforced porous polyetherimide hollow fiber membrane was obtained by a wet spinning method. When a pinhole inspection and a cross-sectional dimension inspection were performed on the porous hollow fiber membrane, no pinhole or deformation occurred in any of the hollow fiber membranes, and the defect rate was 0%. The obtained porous polyetherimide hollow fiber membrane has an outer diameter of 1000 μm, an inner diameter of 700 μm, a water vapor transmission rate at 25 ° C. of 0.36 g / cm 2 / min / MPa, and a pure water transmission rate of 0 g / cm 2 / hour. / MPa, the air permeation rate was 0 ml / cm 2 / min / MPa. Further, a tensile test was conducted at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated to be 27 MPa.

比較例
実施例において、紡績糸を紡績糸導入口8ではなく、紡績原液導入口6からノズル内部に導入して外側ノズル3と内側ノズル2の間隙より紡績糸9であるPETを予め約1m程度出した状態とし、中空糸膜前駆体を得た。かかる紡糸工程では、1回の紡糸に対して1度の膜切れと2箇所のピンホール(芯液が膜の外側に吹き出す)が発生した。また紡糸後の二重環状ノズルを分解して観察した結果、紡糸原液内に多数の気泡が確認され、この気泡によって不良が発生したことが判明した。
Comparative Example In the embodiment, the spun yarn is introduced into the nozzle not from the spun yarn introduction port 8 but from the spinning dope introduction port 6, and the PET as the spun yarn 9 is about 1 m in advance through the gap between the outer nozzle 3 and the inner nozzle 2. A hollow fiber membrane precursor was obtained in the extended state. In such a spinning process, one film break and two pinholes (core liquid blows out to the outside of the film) occurred for one spinning. Also, as a result of disassembling and observing the double annular nozzle after spinning, it was found that a large number of bubbles were found in the spinning dope, and defects were caused by these bubbles.

1 二重環状ノズル
2 内側ノズル
3 外側ノズル(環状体)
4 紡績糸導入パイプ
5 芯液導入口
6 紡糸原液導入口
7 中空糸膜前駆体吐出口
8 紡績糸導入口
9 紡績糸
1 Double annular nozzle 2 Inner nozzle 3 Outer nozzle (annular body)
4 Spinning yarn introduction pipe 5 Core fluid introduction port 6 Spinning stock solution introduction port 7 Hollow fiber membrane precursor discharge port 8 Spinning yarn introduction port 9 Spinning yarn

本発明は、紡績糸強化多孔質中空糸膜の製造方法に関する。さらに詳しくは、機械的強度の点ですぐれた紡績糸強化多孔質中空糸膜の製造方法に関する。   The present invention relates to a method for producing a spun yarn-reinforced porous hollow fiber membrane. More specifically, the present invention relates to a method for producing a spun yarn reinforced porous hollow fiber membrane excellent in mechanical strength.

多孔質中空糸膜は、膜ロ過による浄水処理、廃水処理、除湿あるいは加湿を行う際などさまざまな分野で用いられている。   Porous hollow fiber membranes are used in various fields such as water purification treatment by membrane filtration, wastewater treatment, dehumidification or humidification.

膜ロ過による浄水処理や廃水処理は、これまでの凝集沈殿のロ過方式と比較し、運転の維持や管理が容易であり、処理水質も良好であることから、近年水処理分野で幅広く用いられている。例えば活性汚泥処理と膜分離処理を組み合わせたメンブレンリアクター法〔MBR〕の膜分離処理に用いられる膜としては、高強度、耐久性、耐薬品性が要求されることから、特許文献1〜2に記載されている熱誘起相分離法によって調製されポリフッ化ビニリデン〔PVDF〕膜が使用されることが多い。 Water purification and wastewater treatment using membrane filtration has been widely used in the water treatment field in recent years because it is easier to maintain and manage operation and has better quality compared to conventional filtration methods for coagulation and precipitation. It has been. For example, as a membrane used for membrane separation treatment of the membrane reactor method [MBR] combining activated sludge treatment and membrane separation treatment, high strength, durability and chemical resistance are required. the listed polyvinylidene fluoride prepared by thermally induced phase separation method [PVDF] membrane is often used.

しかしながら、熱誘起相分離法によって調製されPVDF膜は、強度が8〜22MPa程度であり、またこのうち実用されているものは11MPa程度のものが多いというように、ある程度の強度は示すものの、非溶媒誘起相分離法で調製された膜と比較して、必ずしも十分な強度を有しているものとはいえない。また、熱誘起相分離法は工程が複雑であり、多くの溶剤を用いた洗浄が必要であることから高コストで環境にやさしいものとはいい難いといった側面を有する。 However, the PVDF membrane prepared by the thermally induced phase separation method has a strength of about 8 to 22 MPa, and among them, many are about 11 MPa in practical use, although some strength is shown, Compared with a membrane prepared by a non-solvent induced phase separation method, it does not necessarily have sufficient strength. In addition, the thermally induced phase separation method has a complicated process and requires cleaning with a large number of solvents, so that it is difficult to say that it is expensive and environmentally friendly.

一方、非溶媒誘起相分離法を用いて調製されポリスルホンやPVDF等を樹脂ケース内に接着剤を用いて固定した構造の膜モジュール(膜面積約10〜100m2)も廃水処理や浄水処理に多く使用されている。このような膜モジュールには毎分数10L〜数100Lといった量の水が供給されて使用される。その際、定期的に流量回復を目的とした薬品洗浄や搖動洗浄などが施されることから、使用時あるいは洗浄時に中空糸膜が破断する場合がある。 On the other hand, the non-solvent induced phase separation method Polysulfone and PVDF or the like which is prepared using a membrane module (membrane area of about 10 to 100 m 2) of the fixed structure with an adhesive in the resin case to wastewater treatment and water purification Many are used. Such a membrane module is supplied with water in an amount of several tens of liters to several hundreds of liters per minute. At that time, since the chemical cleaning or the peristaltic cleaning for the purpose of recovering the flow rate is periodically performed, the hollow fiber membrane may be broken at the time of use or cleaning.

また、中空糸膜方式で除湿あるいは加湿を行う方法は、メンテナンス不要であるばかりではなく、駆動に電源を必要とはしないなど多くの利点を有している。このような除湿膜あるいは加湿膜としては、ポリイミド、ポリスルホン、ポリフェニルスルホンといった膜形成性樹脂材料が用いられている(例えば特許文献3)。これらの材料を用いた除湿膜は、多くの産業分野で用いられているものの、多孔質であるために膜の絶対強度が弱く、用途によっては多量の気体を流して使用されるために使用時に中空糸膜が破断するといったおそれがある。一方、加湿膜についても、近年では燃料電池スタックの隔膜の加湿に多く用いられているが、この場合にも例えば車載用途において4000NL/分程度の多量の空気が流れることから、その機械的強度との関係で中空糸膜切れといったおそれがある。 Moreover, the method of dehumidifying or humidifying by the hollow fiber membrane system has many advantages such as not requiring maintenance and not requiring a power source for driving. As such a dehumidifying film or humidifying film, a film-forming resin material such as polyimide, polysulfone, or polyphenylsulfone is used ( for example, Patent Document 3 ). Although dehumidifying membranes using these materials are used in many industrial fields, they are porous, so the absolute strength of the membrane is weak. There is a possibility that the hollow fiber membrane is broken. On the other hand, in recent years, humidification membranes are often used to humidify diaphragms of fuel cell stacks, but in this case as well, for example, a large amount of air of about 4000 NL / min flows in in-vehicle applications. Therefore, there is a risk of the hollow fiber membrane being cut.

このような多孔質中空糸膜の中空糸膜切れを防止し、機械的強度を向上させる手段として補強材としての紡績糸を膜中に埋没させた多孔質膜が提案されている(特許文献4)。ここで、紡績糸を中空糸膜中に埋没させる方法としては、紡糸原液中に補強材を混合して公知の二重環状ノズルを用いる製造方法によって多孔質中空糸膜を製造する方法が考えられる。しかしながら、かかる方法では紡績糸等の補強材内部に含まれる空気がノズル内部の紡糸原液中に徐々に蓄積され、紡糸時にその気泡を巻き込む結果として、後記比較例に示される如く膜形状の変形やピンホールの発生、ひいては膜の切断が発生してしまうといったおそれがあるA porous membrane in which spun yarn as a reinforcing material is embedded in the membrane has been proposed as means for preventing the hollow fiber membrane from being broken and improving the mechanical strength (Patent Document 4). ). Here, as a method for embedding the spun yarn in the hollow fiber membrane, a method for producing a porous hollow fiber membrane by a production method using a known double annular nozzle by mixing a reinforcing material in the spinning dope can be considered. . However, the air contained within the reinforcement of the spun yarn, etc. in such a way is gradually accumulated in the spinning dope inside the nozzle, as a result of involving the bubbles during spinning, the deformation of the film shape as shown in later comparative example occurrence of and pinholes, there is a fear such turn cutting the film occurs.

特許第5,062,798号公報Japanese Patent No. 5,062,798 特開2008−105016号公報JP 2008-105016 A 特開2004−290751号公報Japanese Patent Application Laid-Open No. 2004-290751 特開2002−166141号公報JP 2002-166141 A

本発明の目的は、紡績糸の全部または一部を膜中に埋没させた多孔質中空糸膜であって、多孔質中空糸膜本来の機能を損なうことなく機械的強度を向上させるとともに、その不良割合を低減せしめた紡績糸強化多孔質中空糸膜の製造方法を提供することにある。   An object of the present invention is a porous hollow fiber membrane in which all or a part of the spun yarn is embedded in the membrane, and improves the mechanical strength without impairing the original function of the porous hollow fiber membrane. An object of the present invention is to provide a method for producing a spun yarn-reinforced porous hollow fiber membrane with a reduced defect rate.

かかる本発明の目的は、二重環状ノズルの内側ノズルより芯液を、またその外側ノズルより紡糸原液をそれぞれ吐出させ、湿式紡糸または乾湿式紡糸するに際し、紡糸原液を吐出させる外側ノズル内部に紡績糸を紡績糸導入パイプより同時に供給することによって紡績糸強化多孔質中空糸膜を製造する方法によって達成される。 The object of the present invention is to discharge the core liquid from the inner nozzle of the double annular nozzle and the spinning stock solution from the outer nozzle, respectively, and perform spinning inside the outer nozzle that discharges the spinning stock solution when performing wet spinning or dry-wet spinning. This is achieved by a method for producing a spun yarn-reinforced porous hollow fiber membrane by simultaneously supplying yarn from a spun yarn introduction pipe.

本発明方法によれば、紡績糸パイプを用いて同時に紡績糸を紡糸原液に供給することによって紡績糸強化多孔質中空糸膜の製造が行われるので、短繊維の集合体である紡績糸中、すなわち繊維と繊維の間に含まれる空気は紡績糸導入パイプ中を通って外部に排出されることから紡糸原液中に巻き込まれることがなく、その結果紡績糸中の空気を原因とする紡糸不良あるいは得られる中空糸膜の不良を回避せしめるといった効果を奏する。 According to the method of the present invention, since a spun yarn reinforced porous hollow fiber membrane is produced by simultaneously supplying spun yarn to a spinning dope using a spun yarn pipe, the spun yarn which is an aggregate of short fibers, That is, the air contained between the fibers is discharged outside through the spun yarn introduction pipe, so that it is not caught in the spinning dope, and as a result, the spinning failure caused by the air in the spun yarn or There exists an effect of avoiding the defect of the obtained hollow fiber membrane.

本発明に係る紡績糸強化多孔質中空糸膜の製造方法に用いられる二重環状ノズルの一例を示す概略半裁断面図である。1 is a schematic half-cut sectional view showing an example of a double annular nozzle used in a method for producing a spun yarn-reinforced porous hollow fiber membrane according to the present invention.

紡績糸強化多孔質中空糸膜の製造は、二重環状ノズルの内側ノズルより芯液を、またその外側ノズルより紡糸原液をそれぞれ吐出させるにあたり、紡糸原液を吐出させる外側ノズル内部に紡績糸を紡績糸導入パイプより同時に供給することによって行われる。 Production of spun yarn reinforced porous hollow fiber membrane, spun core liquid from the inside nozzle of the double annular nozzle, also Upon each ejecting spinning solution from the outer nozzle, the spun yarn inside outer nozzle for discharging the spinning dope It is performed by supplying simultaneously from the yarn introduction pipe.

二重環状ノズルとしては、従来から用いられている公知のもの、すなわち所望の中空糸膜サイズに応じた径を有する内側ノズルと外側ノズルとが二重となるように配置されているものであれば特に制限なく用いることができる。本発明においては、好ましくは図1に例示されるように、紡糸原液導入口6、内側ノズル2、中空糸膜状物吐出口7が設けられた環状体3よりなる二重環状ノズル1が用いられる。このノズル態様においては、中空糸膜状物吐出口7を有する環状体3が二重環状ノズル1の外側ノズルを構成しており、中空糸膜状物吐出口7と内側ノズル2の先端部とが所望の膜厚を有する中空糸膜状物を形成し得る二重管状となるように配置されている。 As the double annular nozzle, a known one that has been used conventionally, that is, an inner nozzle and an outer nozzle having a diameter corresponding to a desired hollow fiber membrane size are arranged so as to be double. It can be used without particular limitation. In the present invention, preferably as illustrated in Figure 1, a spinning dope inlet 6, the inner nozzle 2, the double annular nozzle 1 in which the hollow fiber membrane-like material discharge opening 7 is formed of an annular body 3 is provided with It is done. In this nozzle embodiment, annular body 3 having a hollow fiber membrane-like material discharge opening 7 constitutes the outer nozzle of the double annular nozzle 1, and the tip portion of the hollow fiber membrane-like material discharge opening 7 and the inner nozzle 2 Are arranged so as to form a double tubular shape capable of forming a hollow fiber membrane having a desired film thickness.

外側ノズル(環状体)3内部には、紡績糸9を紡糸原液に導入するための紡績糸導入パイプ4が外側ノズル3の側面部を貫通した状態で配置される。紡績糸導入パイプ4は、外側ノズル3の外部に位置する一端が外側ノズル3の上部よりも上方に位置し、かつ他端が外側ノズル3内部に位置するように外側ノズル3側面部を貫通させて設けられる。これは紡績糸導入パイプ4の外側ノズル3の外部に位置する一端が外側ノズル内紡糸原液の液面よりも下方に位置してしまうと、紡糸原液が紡績糸導入パイプ4の紡績糸導入口から溢れ出してしまうようになるためである。 Inside the outer nozzle (circular body) 3 are disposed in a state in which the spun yarn introduction pipe 4 for introducing the spun yarn 9 in the spinning solution is passed through the side portion of the outer nozzle 3. The spun yarn introduction pipe 4 penetrates the side surface of the outer nozzle 3 so that one end located outside the outer nozzle 3 is located above the upper portion of the outer nozzle 3 and the other end is located inside the outer nozzle 3. Provided. This is because if the one end of the spun yarn introduction pipe 4 located outside the outer nozzle 3 is positioned below the level of the spinning solution in the outer nozzle, the spinning dope is fed from the spun yarn introduction port of the spun yarn introduction pipe 4. This is because it will overflow.

紡績糸導入パイプ4としては、その内径が紡績糸の外径(太さ)の1.5〜2.0倍、好ましくは1.6〜1.8倍のものが用いられる。紡糸原液は外側ノズル(図1では環状体3)内で加圧されているため、紡績糸導入パイプ4の内径がこれより小さいと紡績糸より排出された空気が適宜排出されず、気泡がノズル内部に留まって、結果的に紡糸不良あるいは得られる中空糸膜の不良につながってしまうこととなり、一方紡績糸導入パイプ4の内径がこれより大きいと紡糸原液が紡績糸導入パイプを逆流して外側ノズル外部に漏れ出してしまう場合がある。紡績糸導入パイプ4の長さについては紡績糸の太さ、紡績糸導入パイプの径および紡糸原液の粘度によって紡糸原液の留まる位置が変わることから特に限定されないが、一般には紡績糸の外径(太さ)の約200〜250倍、好ましくは約220〜230倍のものが用いられる。   As the spun yarn introduction pipe 4, one having an inner diameter of 1.5 to 2.0 times, preferably 1.6 to 1.8 times the outer diameter (thickness) of the spun yarn is used. Since the spinning dope is pressurized in the outer nozzle (annular body 3 in FIG. 1), if the inner diameter of the spun yarn introduction pipe 4 is smaller than this, the air discharged from the spun yarn is not properly discharged, and bubbles are generated in the nozzle. If the inner diameter of the spun yarn introduction pipe 4 is larger than this, the spinning dope will flow backward through the spun yarn introduction pipe and will be outside as a result. It may leak out of the nozzle. The length of the spun yarn introduction pipe 4 is not particularly limited because the position where the spinning stock solution stays varies depending on the thickness of the spun yarn, the diameter of the spun yarn introduction pipe, and the viscosity of the spinning stock solution, but generally the outer diameter of the spun yarn ( The thickness is about 200 to 250 times, preferably about 220 to 230 times.

以上の構成よりなる二重環状ノズルを用い、内側ノズル2に芯液導入口5から供給される芯液を、外側ノズル3に紡糸原液を充填、加圧し、紡績糸導入パイプ4より紡績糸を外側ノズル3内部に供給しながら紡糸原液を同時に吐出させることによって、紡績糸の全部または一部を埋没させた多孔質中空糸膜を湿式紡糸法または乾湿式紡糸法によって得ることができる。図1においては、紡績糸導入パイプ4は1本のみ用いられているが、紡績糸導入パイプ4を複数本用いることも可能であり、一般的には1〜8本の紡績糸導入パイプ4を円周上等配置して二重環状ノズルに装備するような態様も含まれる。 Using the double annular nozzle having the above-described configuration, the inner nozzle 2 is filled with the core liquid supplied from the core liquid inlet 5 and the outer nozzle 3 is filled with the spinning raw liquid and pressurized, and the spun yarn is fed from the spun yarn introduction pipe 4. A porous hollow fiber membrane in which all or part of the spun yarn is buried can be obtained by a wet spinning method or a dry-wet spinning method by simultaneously discharging the spinning stock solution while supplying it to the inside of the outer nozzle 3. In FIG. 1, only one spun yarn introduction pipe 4 is used. However, a plurality of spun yarn introduction pipes 4 can be used. Generally, 1 to 8 spun yarn introduction pipes 4 are provided. manner as to equip the double annular nozzle disposed circumferentially above the like are also included.

紡績糸としては、一般的に用いられている紡績糸であれば特に制限なく用いることができ、好ましくはポリエチレンテレフタレートポリフェニレンサルファイドなどの紡績糸が用いられ、具体的にはその外径が0.1〜0.5mm、好ましくは0.25〜0.35mmであるものが用いられる。 The spun yarn can be used without particular limitation as long as it is a commonly used spun yarn, and preferably spun yarn such as polyethylene terephthalate and polyphenylene sulfide is used, and specifically the outer diameter thereof is 0.1 to Those having a thickness of 0.5 mm, preferably 0.25 to 0.35 mm are used.

紡糸原液は、中空糸膜の製造材料および溶媒を含む。中空糸膜の製造材料としては、公知の中空糸膜形成材料(ポリマー)のいずれも用いることができ、例えば酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、再生セルロースまたはこれらの混合物等のセルロース系材料、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリフッ化ビニリデン系樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリアラミド樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等の疎水性ポリマーが挙げられる。また、膜形成性樹脂の可溶性溶媒としてはアルコールやジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒が好んで用いられる。また、芯液としては水あるいは膜形成樹脂の非溶媒などが用いられる。   The spinning dope contains a material for producing a hollow fiber membrane and a solvent. As a manufacturing material of the hollow fiber membrane, any of known hollow fiber membrane-forming materials (polymers) can be used, for example, cellulose-based materials such as cellulose acetate, cellulose propionate, cellulose butyrate, regenerated cellulose, or a mixture thereof, Examples thereof include hydrophobic polymers such as polysulfone resins, polyethersulfone resins, polyvinylidene fluoride resins, polyacrylonitrile resins, polyimide resins, polyaramid resins, polypropylene resins, and polyethylene resins. As a soluble solvent for the film-forming resin, an aprotic polar solvent such as alcohol, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone is preferably used. As the core liquid, water or a non-solvent of a film-forming resin is used.

紡績糸9は、中空糸膜全長にわたって紡績糸の全部または一部を埋没させるといった観点より、好ましくは芯液および紡糸原液を吐出させる前に中空糸膜状物吐出口からノズル外部へ予め出しておく。また、芯液および紡糸原液は、不要な空気の混入を防ぐといった観点から、好ましくは真空引きを行ったうえで用いられる。 Spun yarn 9, from the viewpoint to bury all or part of the spun yarn across the hollow fiber membranes entire length, and preferably pre-out of the hollow fiber membrane material discharge port prior to eject the core liquid and the spinning solution to the nozzle outside deep. Further, the core solution and the spinning dope are preferably used after evacuation from the viewpoint of preventing the mixing of unnecessary air.

紡績糸は、好ましくは紡績糸断面の50容積%以上、さらに好ましくは60容積%以上、特に好ましくは70容積%以上を中空糸膜中に埋没させ、さらに機能層(被処理物接触側)ではない側の中空糸膜表面からみて中空糸膜膜厚の90%を超えない位置に配置させることにより、透過性能、分離性能を高く保ちつつ力学的特性をさらに向上させることができる。   The spun yarn preferably has 50% by volume or more of the cross section of the spun yarn, more preferably 60% by volume or more, and particularly preferably 70% by volume or more embedded in the hollow fiber membrane. By disposing at a position that does not exceed 90% of the hollow fiber membrane thickness when viewed from the hollow fiber membrane surface on the non-side, the mechanical properties can be further improved while keeping the permeation performance and separation performance high.

紡績糸強化多孔質中空糸膜は、湿式紡糸法または乾湿式紡糸法によって紡糸された紡績糸強化多孔質中空糸膜状物を凝固液を用いた凝固、洗浄、乾燥を行うことによって製造される。 Yarn reinforced porous hollow fiber membrane, wet spinning or coagulation spun yarn reinforced porous hollow fiber membrane-like material is spun by a dry-wet spinning method using a coagulating liquid, washing is manufactured by performing a drying .

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
図1に示される二重環状ノズル1(外側ノズル内径1.15mm、内側ノズル外径0.6mm、内径0.4mm)用い、この紡績糸導入口8より紡績糸(外径:0.2mm)を紡績糸導入パイプ(管内径:紡績糸外径の1.67倍、管長さ:紡績糸外径の225倍)内部に通し、外側ノズル3と内側ノズル2の間隙より紡績糸9であるポリエチレンテレフタレート紡績糸を予め約1m程度出した状態で、内側ノズル2から芯液としての水を、また外側ノズル3から紡糸原液をそれぞれ加圧して吐出させ、これを水温50℃の水(凝固液)中で凝固させ、紡績糸強化中空糸膜状物を得た。ここで、紡糸原液としては、ポリエーテルイミド20重量%、ジメチルアセトアミド80重量%からなるものが用いられ、この紡糸原液および水(芯液)は、それぞれ真空ポンプで12時間真空引きし、気泡を含まない状態に調製して用いられた。かかる紡糸工程では紡糸中に中空糸が切れることなく、切断による不良率は0%であった。また、紡糸後の二重環状ノズル1を分解して観察したところ、紡糸原液内に気泡は確認されなかった。
Example Using the double annular nozzle 1 shown in FIG. 1 (outer nozzle inner diameter 1.15 mm, inner nozzle outer diameter 0.6 mm, inner diameter 0.4 mm), the spun yarn (outer diameter: 0.2 mm) was spun from the spun yarn inlet 8. A polyethylene terephthalate spun yarn as the spun yarn 9 is passed through the inside of the yarn introduction pipe (tube inner diameter: 1.67 times the spun yarn outer diameter, tube length: 225 times the spun yarn outer diameter) through the gap between the outer nozzle 3 and the inner nozzle 2. in a state of out beforehand about 1 m, the water as a core solution from the inside nozzle 2, also respectively ejected by pressurizing the spinning solution from the outer nozzle 3, which was coagulated in a water temperature 50 ° C. water (coagulating liquid) As a result, a spun yarn-reinforced hollow fiber membrane was obtained. Here, as the spinning dope, a solution comprising 20% by weight of polyetherimide and 80% by weight of dimethylacetamide was used, and the spinning dope and water (core solution) were each evacuated with a vacuum pump for 12 hours to remove bubbles. It was prepared and used in a free state. In this spinning process, the hollow fiber was not broken during spinning, and the defect rate due to cutting was 0%. In addition, when the double annular nozzle 1 after spinning was disassembled and observed, no bubbles were observed in the spinning dope.

得られた紡績糸強化中空糸膜状物は、水温45℃の洗浄槽内にて洗浄を行い、次いで121℃、1時間の高圧滅菌処理を行った後、庫内温度40℃の乾燥炉内に入れ、12時間以上乾燥処理を行うことにより、湿式紡糸法による紡績糸強化多孔質ポリエーテルイミド中空糸膜を得た。多孔質中空糸膜のピンホール検査および断面寸法検査を実施したところ、いずれの中空糸膜もピンホールや変形などは発生しておらず、不良率は0%であった。得られた多孔質ポリエーテルイミド中空糸膜は、外径1000μm、内径700μmであり、25℃における水蒸気透過速度は0.36g/cm2/分/MPa、純水透過速度は0g/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ27MPaであった。 The obtained spun yarn reinforced hollow fiber membrane was washed in a washing tank having a water temperature of 45 ° C. and then subjected to high-pressure sterilization treatment for 121 hours at 121 ° C. And dried for 12 hours or more to obtain a spun yarn reinforced porous polyetherimide hollow fiber membrane by a wet spinning method. When a pinhole inspection and a cross-sectional dimension inspection were performed on the porous hollow fiber membrane, no pinhole or deformation occurred in any of the hollow fiber membranes, and the defect rate was 0%. The obtained porous polyetherimide hollow fiber membrane has an outer diameter of 1000 μm, an inner diameter of 700 μm, a water vapor transmission rate at 25 ° C. of 0.36 g / cm 2 / min / MPa, and a pure water transmission rate of 0 g / cm 2 / hour. / MPa, the air permeation rate was 0 ml / cm 2 / min / MPa. Further, a tensile test was conducted at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated to be 27 MPa.

比較例
実施例において、紡績糸を紡績糸導入口8ではなく、紡績原液導入口6からノズル内部に導入して外側ノズル3と内側ノズル2の間隙より紡績糸9であるポリエチレンテレフタレート紡績糸を予め約1m程度出した状態とし、中空糸膜状物を得た。かかる紡糸工程では、1回の紡糸に対して1度の膜切れと2箇所のピンホール(芯液が膜の外側に吹き出す)が発生した。また紡糸後の二重環状ノズルを分解して観察した結果、紡糸原液内に多数の気泡が確認され、この気泡によって不良が発生したことが判明した。
Comparative Example In the embodiment, the spun yarn is introduced into the nozzle not from the spun yarn introduction port 8 but from the spinning dope introduction port 6, and the polyethylene terephthalate spun yarn which is the spun yarn 9 is previously introduced from the gap between the outer nozzle 3 and the inner nozzle 2. A hollow fiber membrane- like product was obtained with about 1 m protruding. In such a spinning process, one film break and two pinholes (core liquid blows out to the outside of the film) occurred for one spinning. Also, as a result of disassembling and observing the double annular nozzle after spinning, it was found that a large number of bubbles were found in the spinning dope, and defects were caused by these bubbles.

1 二重環状ノズル
2 内側ノズル
3 外側ノズル(環状体)
4 紡績糸導入パイプ
5 芯液導入口
6 紡糸原液導入口
7 中空糸膜状物出口
8 紡績糸導入口
9 紡績糸
1 Double annular nozzle 2 Inner nozzle 3 Outer nozzle (annular body)
4 Spinning yarn introduction pipe 5 Core fluid introduction port 6 Spinning stock solution introduction port 7 Hollow fiber membrane- like material outlet 8 Spinning yarn introduction port 9 Spinning yarn

紡糸原液は、中空糸膜の製造材料および溶媒を含む。中空糸膜の製造材料としては、公知の中空糸膜形成材料(ポリマー)のいずれも用いることができ、例えば酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、再生セルロースまたはこれらの混合物等のセルロース系材料、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリフッ化ビニリデン系樹脂、ポリアクリロニトリル樹脂、ポリエーテルイミド樹脂、アラミド樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等の疎水性ポリマーが挙げられる。また、膜形成性樹脂の可溶性溶媒としてはアルコールやジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒が好んで用いられる。また、芯液としては水あるいは膜形成樹脂の非溶媒などが用いられる。 The spinning dope contains a material for producing a hollow fiber membrane and a solvent. As a manufacturing material of the hollow fiber membrane, any of known hollow fiber membrane-forming materials (polymers) can be used, for example, cellulose-based materials such as cellulose acetate, cellulose propionate, cellulose butyrate, regenerated cellulose, or a mixture thereof, Examples thereof include hydrophobic polymers such as polysulfone resins, polyethersulfone resins, polyvinylidene fluoride resins, polyacrylonitrile resins, polyetherimide resins, aramid resins , polypropylene resins, and polyethylene resins. As a soluble solvent for the film-forming resin, an aprotic polar solvent such as alcohol, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone is preferably used. As the core liquid, water or a non-solvent of a film-forming resin is used.

Claims (7)

二重環状ノズルの内側ノズルより芯液を、またその外側ノズルより紡糸原液を吐出させ、湿式紡糸または乾湿式紡糸するに際し、外側ノズル内部に紡績糸を紡績糸導入パイプより供給することを特徴とする紡績糸強化多孔質中空糸膜の製造方法。   The core liquid is discharged from the inner nozzle of the double annular nozzle, and the spinning raw liquid is discharged from the outer nozzle, and when performing wet spinning or dry wet spinning, the spun yarn is supplied from the spun yarn introduction pipe into the outer nozzle. A method for producing a spun yarn reinforced porous hollow fiber membrane. 紡績糸導入パイプの内径が、紡績糸の外径の1.5〜2.0倍である請求項1記載の紡績糸強化多孔質中空糸膜の製造方法。   The method for producing a spun yarn-reinforced porous hollow fiber membrane according to claim 1, wherein an inner diameter of the spun yarn introduction pipe is 1.5 to 2.0 times an outer diameter of the spun yarn. 紡績糸導入パイプの長さが、紡績糸の外径の200〜250倍である請求項1記載の紡績糸強化多孔質中空糸膜の製造方法。   The method for producing a spun yarn-reinforced porous hollow fiber membrane according to claim 1, wherein the spun yarn introduction pipe has a length of 200 to 250 times the outer diameter of the spun yarn. 芯液および紡糸原液が、真空引きされたものである請求項1記載の紡績糸強化多孔質中空糸膜の製造方法。   The method for producing a spun yarn-reinforced porous hollow fiber membrane according to claim 1, wherein the core solution and the spinning dope are evacuated. 湿式紡糸または乾湿式紡糸するに先立ち、紡績糸を順次紡績糸導入パイプおよび内側ノズルと外側ノズルとの間隙より二重環状ノズルの外側に導入せしめる請求項1記載の紡績糸強化多孔質中空糸膜の製造方法。   2. The spun yarn-reinforced porous hollow fiber membrane according to claim 1, wherein the spun yarn is sequentially introduced to the outside of the double annular nozzle through a spun yarn introduction pipe and a gap between the inner nozzle and the outer nozzle prior to wet spinning or dry / wet spinning. Manufacturing method. 外側ノズルおよび内側ノズルよりなる二重環状ノズルに紡績糸導入パイプが装備され、該紡績糸導入パイプの外側ノズルの外部に位置する一端が外側ノズルの上部よりも上方となり、かつ該紡績糸導入パイプの他端が外側ノズル内部に位置するように紡績糸導入パイプが外側ノズル側面部を貫通させて設けられた、請求項1乃至5のいずれかの請求項に記載の紡績糸強化多孔質中空糸膜の製造方法に用いられる二重環状ノズル。   A spun yarn introduction pipe is equipped on a double annular nozzle composed of an outer nozzle and an inner nozzle, and one end of the spun yarn introduction pipe located outside the outer nozzle is above the upper portion of the outer nozzle, and the spun yarn introduction pipe The spun yarn-reinforced porous hollow fiber according to any one of claims 1 to 5, wherein a spun yarn introduction pipe is provided through the side surface of the outer nozzle so that the other end of the spun yarn is positioned inside the outer nozzle. A double annular nozzle used in a method for producing a membrane. 請求項1乃至5のいずれかの請求項に記載の紡績糸強化多孔質中空糸膜の製造方法によって製造された紡績糸強化多孔質中空糸膜。   A spun yarn-reinforced porous hollow fiber membrane produced by the method for producing a spun yarn-reinforced porous hollow fiber membrane according to any one of claims 1 to 5.
JP2013090708A 2013-04-23 2013-04-23 Method for producing spun yarn reinforced porous hollow fiber membrane Active JP5737319B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013090708A JP5737319B2 (en) 2013-04-23 2013-04-23 Method for producing spun yarn reinforced porous hollow fiber membrane
PCT/JP2014/061326 WO2014175282A1 (en) 2013-04-23 2014-04-22 Process for producing porous hollow-fiber membrane reinforced with spun yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013090708A JP5737319B2 (en) 2013-04-23 2013-04-23 Method for producing spun yarn reinforced porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2014213236A true JP2014213236A (en) 2014-11-17
JP5737319B2 JP5737319B2 (en) 2015-06-17

Family

ID=51791853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090708A Active JP5737319B2 (en) 2013-04-23 2013-04-23 Method for producing spun yarn reinforced porous hollow fiber membrane

Country Status (2)

Country Link
JP (1) JP5737319B2 (en)
WO (1) WO2014175282A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167414A (en) * 1981-04-03 1982-10-15 Ube Ind Ltd Production of polyimide hollow fiber
JP2003245528A (en) * 2002-02-26 2003-09-02 Mitsubishi Rayon Co Ltd Method for manufacturing fiber reinforced porous hollow fiber membrane
JP2006088148A (en) * 2004-09-20 2006-04-06 Para Ltd Hollow fiber membrane having excellent water permeability
WO2009142279A1 (en) * 2008-05-21 2009-11-26 三菱レイヨン株式会社 Hollow porous membrane and process for producing the same
JP2012200635A (en) * 2011-03-24 2012-10-22 Toray Ind Inc Method for producing composite hollow fiber membrane
JP2012530594A (en) * 2009-06-26 2012-12-06 ビーエル・テクノロジーズ・インコーポレイテッド Hollow fiber membrane reinforced with non-braided fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167414A (en) * 1981-04-03 1982-10-15 Ube Ind Ltd Production of polyimide hollow fiber
JP2003245528A (en) * 2002-02-26 2003-09-02 Mitsubishi Rayon Co Ltd Method for manufacturing fiber reinforced porous hollow fiber membrane
JP2006088148A (en) * 2004-09-20 2006-04-06 Para Ltd Hollow fiber membrane having excellent water permeability
WO2009142279A1 (en) * 2008-05-21 2009-11-26 三菱レイヨン株式会社 Hollow porous membrane and process for producing the same
JP2012530594A (en) * 2009-06-26 2012-12-06 ビーエル・テクノロジーズ・インコーポレイテッド Hollow fiber membrane reinforced with non-braided fabric
JP2012200635A (en) * 2011-03-24 2012-10-22 Toray Ind Inc Method for producing composite hollow fiber membrane

Also Published As

Publication number Publication date
WO2014175282A1 (en) 2014-10-30
JP5737319B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
KR102508012B1 (en) Hollow fiber membrane module and operation method thereof
JP5798680B2 (en) Pressurized hollow fiber membrane module
WO2014175281A1 (en) Process for manufacturing fiber-reinforced porous hollow fiber membrane
CN113117535A (en) Preparation method of homogeneous continuous fiber reinforced hollow fiber membrane and hollow fiber membrane prepared by same
WO2009125598A1 (en) Hydrophilic polyethersulfone filtration membrane, method for production thereof, and stock solution of production of membrane
JP2012200635A (en) Method for producing composite hollow fiber membrane
JP2016010792A (en) Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride
JP5811738B2 (en) Method for repairing hollow fiber membrane module and hollow fiber membrane module
JP5737319B2 (en) Method for producing spun yarn reinforced porous hollow fiber membrane
KR20150001513A (en) Hollow Fiber Membrane and Method for Manufacturing The Same
JP5772867B2 (en) Fiber reinforced porous hollow fiber membrane
WO2013125681A1 (en) Hollow fiber type semipermeable membrane, process for manufacturing same, module and water treatment process
KR101321362B1 (en) High strength membrane and method of manufacturing the same
JP2015205258A (en) Fiber reinforced porous hollow fiber membrane and production method of the same
KR102087507B1 (en) Composition of flexible PPS porous hollow fiber having symmetric structure, flexible PPS porous hollow fiber membrane having symmetric structure and Manufacturing method thereof
CN110575761B (en) Fiber-reinforced PVDF ultrafiltration membrane and application thereof in municipal sewage and industrial wastewater
JP2013248589A (en) Method for producing fiber reinforced porous hollow fiber membrane
JP6888940B2 (en) Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
CN110685023A (en) Spinneret cleaning device and method
KR100485619B1 (en) Hollow Fiber Membrane Module Manufacture Device and Manufacture Method
KR101723904B1 (en) Preparation Method of Hollow Fiber Membrane With Improved Processing Efficiency And Manufacturing System Thereof
JP2018075523A (en) Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
KR20160056656A (en) Hollow Fiber Membrane Improved Modulus, Preparation Method Thereof and Water Treatment Module Comprising The Same
KR20160034743A (en) Water Treatment Module With Reduced Fracture Rate And Method For Preparation Thereof
KR101226400B1 (en) Tubular braid and Composite Hollow Fiber Membrane using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5737319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250