WO2014175209A1 - Gas purification device and gas purifying method - Google Patents

Gas purification device and gas purifying method Download PDF

Info

Publication number
WO2014175209A1
WO2014175209A1 PCT/JP2014/061147 JP2014061147W WO2014175209A1 WO 2014175209 A1 WO2014175209 A1 WO 2014175209A1 JP 2014061147 W JP2014061147 W JP 2014061147W WO 2014175209 A1 WO2014175209 A1 WO 2014175209A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
porous ceramic
water
fired body
ceramic fired
Prior art date
Application number
PCT/JP2014/061147
Other languages
French (fr)
Japanese (ja)
Inventor
宏介 富樫
森 幸治
剛志 大田
Original Assignee
小松精練株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013092927A external-priority patent/JP6162467B2/en
Priority claimed from JP2013092928A external-priority patent/JP6118168B2/en
Priority claimed from JP2013180276A external-priority patent/JP6232679B2/en
Application filed by 小松精練株式会社 filed Critical 小松精練株式会社
Publication of WO2014175209A1 publication Critical patent/WO2014175209A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/025Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with wetted adsorbents; Chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2065Ammonium hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/408Alkaline earth metal or magnesium compounds of barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/608Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/61Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/70Organic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0266Other waste gases from animal farms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • B01D2258/0291Flue gases from waste incineration plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Definitions

  • the present invention relates to a gas purification device, a gas purification method, a waste treatment device, and a drying treatment device.
  • This application is filed in Japanese Patent Application No. 2013-092927 filed in Japan on April 25, 2013, Japanese Patent Application No. 2013-092928 filed in Japan on April 25, 2013, and in Japan on August 2, 2013. The priority is claimed based on Japanese Patent Application No. 2013-161805 and Japanese Patent Application No. 2013-180276 filed in Japan on August 30, 2013, the contents of which are incorporated herein by reference.
  • Undesirable odorous substances such as ammonia, methyl mercaptan, hydrogen sulfide, trimethylamine, acetic acid, methane, and dust, harmful substances, and dust are generated from kitchen waste, sewage sludge, poultry and sewage from poultry farms and pig farms, etc. There are things to do.
  • the generated unnecessary substances are removed by various methods. As a method for removing unnecessary substances at low cost, there is a method in which slag and clay are mixed, an acidic substance or a basic substance is supported on a fired ceramic porous body, and a gas containing unnecessary substances is passed through the ceramic porous body.
  • Patent Document 1 Known (Patent Document 1).
  • Patent Document 2 As a method for treating sludge generated in a sewage treatment plant, a household / large-scale septic tank, or a treatment plant of a food factory, the sludge is carbonized using a continuous carbonization device to produce fuel, fertilizer, and water purification. Disclosed is a method for making powder coal that can be used as an agent and a soil conditioner.
  • Patent Document 3 organic sludge discharged from sewers is heat-treated at a temperature of 400 ° C. to 800 ° C. and in a state where the outside air blocking property is enhanced (ie, low oxygen state, reducing atmosphere). A method of obtaining sludge carbide is disclosed.
  • Patent Document 4 sludge discharged from a rural settlement wastewater treatment facility, a sewage treatment plant, an organic wastewater treatment facility, etc. is carbonized at 450 to 550 ° C. using a rotary kiln type carbonization furnace, and the resulting carbide is deodorized. Use as an agent is disclosed.
  • Patent Document 5 organic waste such as sludge is heated in a low oxygen state to generate carbides, malodorous substances in the gas discharged at that time are treated with a platinum precious metal catalyst, microbubbles.
  • a method of removing by at least one of ozone treatment used and plasma treatment using high-temperature plasma has been proposed.
  • Patent Document 6 a drying process is performed for the purpose of reducing the volume of organic waste containing water such as garbage, food processing residue, and sewage sludge, preventing spoilage, and recycling.
  • Patent Document 6 describes using a bag filter to remove fine powder contained in steam exhausted during a drying process.
  • Patent Document 7 discloses a method for deodorizing malodorous components contained in gas discharged during sludge drying treatment by mixing microorganisms containing enzymes into sludge and the like, fermenting organic sludge, and deodorizing the cooling tower.
  • a method of using cooling water as a deodorizing fluid for scrubbers and a method of decomposing and removing odor components and water-soluble harmful substances by adding microorganisms containing enzymes to the cooling water are described.
  • Patent Document 8 describes a method of using ozone to remove malodorous components contained in the gas discharged during sludge drying.
  • Patent Document 9 also describes a bag filter, a bag filter filter cloth to which an alkali agent such as slaked lime is attached, and a catalyst deodorizing device such as platinum.
  • Japanese Patent No. 4063316 JP-A-6-128576 Japanese Patent Laid-Open No. 2000-80386 JP 2006-63105 A JP 2013-43149 A JP 2006-17335 A JP 2010-236731 A JP 2008-104986 A JP 2009-66563 A
  • Patent Document 4 did not provide sufficient deodorization properties.
  • the unnecessary substance removing method described in Patent Document 5 is expensive and impractical.
  • an object of the present invention is to provide a gas purification device, a gas purification method, and a waste treatment device that can sufficiently remove unnecessary substances in a gas at low cost.
  • Another object of the present invention is to provide a drying apparatus capable of sufficiently removing unnecessary substances generated during heat treatment for drying waste, particularly unnecessary substances contained in exhaust gas, at low cost. To do.
  • the present invention has the following configuration.
  • the first purifier having two or more spraying means for spraying water on the gas, and the second purifying part having an adsorbing means made of a porous ceramic fired body for purifying the gas are provided.
  • a gas purification apparatus in which a purification unit and the second purification unit are connected.
  • [3A] The gas purification according to [1A] or [2A], wherein the porous ceramic fired body is obtained by mixing the raw materials for the porous ceramic fired body and then firing without drying. apparatus.
  • [4A] The gas purification apparatus according to any one of [1A] to [3A], wherein the porous ceramic fired body is a granular material.
  • the second purification unit includes water supply means for supplying water to the porous ceramic fired body.
  • the water supplied by the water supply unit includes at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant.
  • [7A] A gas purification method comprising a first purification step of spraying water from two or more locations in a gas and a second purification step of purifying the gas with a porous ceramic fired body.
  • [8A] The gas purification method according to [7A], wherein the second purification step is performed after the first purification step.
  • [9A] The gas purification method according to [7A] or [8A], wherein the porous ceramic fired body is obtained by mixing raw materials for a porous ceramic fired body and firing without drying.
  • [11A] The gas purification method according to [10A], wherein water supplied to the fired porous ceramic body contains at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant.
  • a spray that includes a heating unit that heats organic waste containing moisture and a gas purification unit that purifies gas discharged from the heating unit, and the gas purification unit sprays water on the gas.
  • a waste treatment apparatus comprising at least one of a means and an adsorption means made of a fired porous ceramic body for purifying the gas.
  • the gas purification unit includes both the spraying means and the adsorption means.
  • the gas purification unit includes both the spraying unit and the adsorbing unit, and the adsorbing unit is disposed downstream of the spraying unit.
  • [4B] The waste according to [2B] or [3B], wherein the porous ceramic fired body is obtained by firing the porous ceramic fired body raw material and then drying without drying. Processing equipment.
  • [5B] The waste treatment apparatus according to any one of [2B] to [4B], wherein the porous ceramic fired body is a granular material.
  • [6B] The water according to any one of [2B] to [5B], wherein the water supplied by the spraying means includes at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant. Waste treatment equipment.
  • this invention has the following structures.
  • a heating unit that dries organic waste containing moisture and a gas purification unit that purifies the gas discharged from the heating unit, and the gas purification unit is configured to supply water to the gas from a plurality of directions.
  • a drying treatment apparatus comprising at least one of spraying means for spraying and adsorption means made of a fired porous ceramic body for purifying the gas.
  • the gas purification unit includes both the spraying unit and the adsorption unit.
  • the adsorption unit is disposed on the downstream side of the spray unit in a gas flow.
  • [4C] The drying treatment according to [2C] or [3C], in which the porous ceramic fired body is obtained by firing the porous ceramic fired body raw material without being dried. apparatus.
  • [5C] The drying apparatus according to any one of [2C] to [4C], wherein the porous ceramic fired body is a granular material.
  • [6C] The water according to any one of [2C] to [5C], wherein the water supplied by the spraying means includes at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant. Drying processing equipment.
  • the waste treatment apparatus of the present invention can reduce the volume of organic waste containing water, and the waste treatment apparatus that suppresses the emission of malodorous substances generated at that time can be made relatively inexpensive. Can be provided. Therefore, introduction is easy even in small and medium-sized factories, waste treatment plants, sewage treatment plants, pig farms and poultry farms, and the odor environment in the region can be improved.
  • unnecessary substances generated during the heat treatment for drying waste particularly unnecessary substances contained in the exhaust gas, can be sufficiently removed at low cost.
  • the gas purification apparatus of this embodiment is an apparatus for purifying a gas containing at least one unnecessary substance selected from the group consisting of malodorous substances, harmful substances, and dust, and includes a first purification unit and a downstream side of the first purification unit.
  • cleaning part provided in is comprised.
  • the first purification unit has two or more spraying means for spraying water onto a gas containing unnecessary substances.
  • the spraying means is not particularly limited as long as water can be sprayed, and examples thereof include a spray nozzle and a jet nozzle.
  • the direction of the tip of each spray means is preferably different.
  • the spray pattern of the water supplied from the spray means is preferably annular, planar or strip-shaped in order to increase the contact area with the gas.
  • the water sprayed by the spraying means may contain at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
  • the dust contained in an unnecessary substance can be captured in water, and the water-soluble component of a malodorous substance and a harmful substance is made into water. Can be melted.
  • the first purification unit has two or more spraying means, water can be sprayed from two or more locations.
  • gas passes through the space where water droplets that are disorderly and turbulently fly at various speeds in various directions can increase the chance of contact between the gas and water. More components can be captured.
  • discharging and discarding the water that has captured at least one of the dust and the water-soluble component from the first purification unit at least one of the dust and the water-soluble component can be removed from the gas.
  • the sprayed water may be collected and supplied again to the spraying means using a circulation pump.
  • a certain amount of sprayed water may be stored, and the gas supplied to the first purification unit may be bubbled through the stored water to capture unnecessary substances. In this case, the gas that has passed through the stored water comes into contact with the sprayed water.
  • cleaning part in this embodiment is equipped with the adsorption
  • cleaning part is not specifically limited, Since a contact opportunity with gas increases, it is preferable to arrange
  • the porous ceramic fired body constituting the adsorbing means has pores in the micrometer order and pores in the nanometer order. Moreover, what has these pores connected is preferable. More specifically, the pores formed in the porous ceramic fired body have nanometer-order pores having a pore diameter of 1 nm or more and less than 1000 nm and micrometer-order pores having a pore diameter of 1 ⁇ m or more and less than 1000 ⁇ m. . Further, it may have pores in the order of millimeters outside this range, and pores of other sizes. For example, it may have pores in the millimeter order of 1 mm or more and less than 100 mm.
  • the pore diameter of the pores can be adjusted by combining the type of raw material of the fired porous ceramic body and the firing conditions.
  • the pore diameter refers to the major diameter of the pores.
  • the pore diameter of millimeter-order pores is a value measured using a scale after cutting a porous ceramic fired body (cut along the thickness direction in the case of a plate-like material).
  • the pore diameter of nanometer-order pores and micrometer-order pore diameters are measured using an electron microscope after cutting a porous ceramic fired body (cut in the thickness direction in the case of a plate-like material). Value.
  • the porous ceramic fired body has pores in the micrometer order and pores in the nanometer order, it becomes easy to obtain a preferable apparent density and saturated water content described later. For this reason, the contact area with the gas increases, and the performance of removing unnecessary substances becomes higher.
  • the porous ceramic fired body is preferably obtained by mixing the raw materials for the porous ceramic fired body and then firing without drying.
  • drying refers to an operation for setting the moisture content to 1% by mass or less.
  • a large amount of water contained in the mixture evaporates in a short time during firing, and the porous ceramic fired body is cracked. Due to the cracks at the time of firing, heat is transferred to the inside of the obtained porous ceramic fired body, and pores of the order of micrometers or nanometer size can be formed more.
  • water supplied to the porous ceramic fired body, acidic substances contained in the water, and unnecessary substances in the gas enter the porous ceramic fired body.
  • the removal performance can be improved.
  • the size of the crack in the porous ceramic fired body can be adjusted by the composition of the mixture, the firing speed, the firing time, and the like.
  • the water content can also be determined by the same method as the water content of organic waste described later.
  • the shape of the porous ceramic fired body may be any of a plate-like material, a columnar material, a spherical material, a massive material, and a granular material. Granules are preferred because they can easily increase body contact opportunities.
  • the particle diameter of the porous ceramic sintered body is preferably 5 cm or less, more preferably 3 cm or less. If the particle size of the porous ceramic sintered body is equal to or less than the above upper limit, the chances of contact with unnecessary substances can be increased. On the other hand, the particle diameter of the porous ceramic fired body is preferably 1 mm or more and more preferably 5 mm or more because resistance to gas flow is reduced.
  • the granular material of the fired porous ceramic body may be obtained by preparing granular materials of various sizes and blending them at an arbitrary ratio.
  • the particle diameter is a value measured by sieving.
  • a granular material having a size of more than 5 mm and not more than 10 mm means a particle that passes through a sieve having an opening of 10 mm and cannot pass through a sieve having an opening of 5 mm.
  • the long side of the granular material may be measured with a caliper or the like to obtain the particle diameter.
  • the porous ceramic fired body preferably has an apparent density of 0.3 to 1.5 g / ml.
  • the upper limit of the apparent density is more preferably 1.1 g / ml or less, and more preferably 0.8 g / ml or less.
  • the above-mentioned apparent density is the bulk density (g) determined from the dry soil mass (g) measured by the three-phase distribution / volumetric weight (actual volume method) in “Soil Standard Analysis / Measurement Method” (Hakutosha). Provisional specific gravity, g / ml).
  • the unit of the apparent density when the porous ceramic fired body is large is “g / cm 3 ” based on the measurement method described in Examples.
  • the fired porous ceramic body preferably has a saturated moisture content of 15 to 100% by mass. About the minimum of saturation moisture content, it is more preferable that it is 30 mass% or more.
  • the saturated moisture content is within the above range, the pores in the porous ceramic fired body increase while maintaining the strength of the porous ceramic fired body. Therefore, the surface area of the porous ceramic fired body is increased, and the chance of contact with unnecessary substances in the gas can be increased.
  • the saturated moisture content of the porous ceramic fired body is larger than the above upper limit value, the porosity of the porous ceramic fired body is large, and when the saturated moisture content is smaller than the lower limit value, the porosity is small and the saturated water content It can be considered that there is a correlation between the rate and the porosity.
  • the saturated water content of the porous ceramic fired body can be regarded as the porosity of the porous ceramic fired body.
  • the porous ceramic fired body may carry at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
  • acidic substances, basic substances, and surfactants include the following.
  • the acidic substance include inorganic compounds such as titanium oxide, silicon dioxide, aluminum sulfate, ammonium chloride, and zinc chloride, and organic compounds such as carboxyl group-containing compounds such as acrylic acid, sulfonic acid group-containing compounds, and phosphoric acid compounds. It is done.
  • the basic substance include inorganic compounds such as zinc oxide, magnesium oxide and barium oxide, and organic compounds such as polyamine compounds, dicyandiamide compounds and quaternary ammonium compounds.
  • amphoteric substances such as zinc oxide and aluminum oxide become basic substances when the target substance to be treated is an acidic substance, and become acidic substances when the target substance to be treated is a basic substance. Therefore, in the present invention, the amphoteric substance is included in the acidic substance or the basic substance.
  • Surfactants include anionic surfactants such as carboxylates, sulfates, sulfonates and phosphates, cationic surfactants such as amine salts and quaternary ammonium salts, and fatty acid ethylene oxide.
  • Examples include polyethylene glycol type nonionic surfactants such as adducts, polyhydric alcohol type nonionic surfactants such as fatty acid esters of glycerol, betaine type, amino acid type, and imidazoline type amphoteric surfactants. These surfactants can be used singly or in combination of two or more.
  • the acidic substance, basic substance, and surfactant preferably have no odor.
  • amphoteric surfactants preferably have a high purity with 10 or more carbon atoms in the alkyl moiety.
  • a plurality of acidic substances, basic substances, and surfactants may be used in combination, but when an acidic substance and a basic substance are used in combination, a uniform surfactant or the like is used so that they do not bond. It is preferable to maintain a dispersed state.
  • the porous ceramic fired body manufacturing method of this example is prepared by mixing raw materials for a porous ceramic fired body to prepare a mixture (hereinafter, simply referred to as “mixture”) (mixing step), and molding the mixture.
  • a molded body is produced (molding step), and the molded body is fired to obtain a porous ceramic fired body (firing step).
  • the mixing step is a step of obtaining a mixture by mixing raw materials including clay.
  • the thing containing a foaming agent and clay is preferable, for example, and the thing containing a foaming agent, organic sludge, and clay is more preferable.
  • a foaming agent and clay irregularities in the order of millimeters and micrometers can be formed on the surface of large pores in the order of millimeters, pores in the order of micrometers, or porous ceramic fired bodies.
  • organic sludge more micrometer-order pores and even smaller nanometer-order pores can be formed.
  • a porous ceramic fired body obtained by firing such a mixture has pores in which the pores communicate with each other.
  • by adding diatomaceous earth it has pores such as micrometer order derived from diatomaceous earth.
  • a foaming agent foams at the time of baking For example, well-known foaming agents for ceramics, such as calcium carbonate, silicon carbide, magnesium carbonate, and slag, can be used. Of these foaming agents, slag is preferred.
  • the slag is not particularly limited.
  • slag is generated at the time of cast iron such as blast furnace slag generated during metal refining, municipal waste melting slag generated when melting municipal waste, sewage sludge melting slag generated when sewage sludge is melted, and ductile cast iron. Examples include glassy slag such as cast iron slag.
  • a stable foamed state can be obtained because of its stable composition, and cast iron slag having a foaming ratio of about 1.5 to 2 times that of other slags is obtained. More preferred.
  • the cast iron slag contains components such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , FeO, MgO, MnO, K 2 O, Na 2 O, and the obtained porous ceramic fired body is a base. It has excellent acid substance removability without having to carry a separate substance.
  • the blending amount of slag in the blend can be determined in consideration of the moldability of the mixture. For example, it is preferably 80% by weight or less, more preferably 20 to 75% by weight, and even more preferably 30 to 65% by weight. . Within the above range, the moldability of the mixture can be smoothly and smoothly formed, and the apparent density and porosity (saturated water content) of the porous ceramic fired body can be adjusted to a suitable range.
  • Organic sludge is sludge containing an organic substance as a main component. Any organic sludge can be used, and activated sludge derived from wastewater treatment such as sewage or factory is particularly preferable.
  • the activated sludge is discharged from a wastewater treatment facility using the activated sludge method through a coagulation / dehydration process.
  • pores on the order of micrometers can be efficiently formed, and pores on the order of nanometers can be formed.
  • nanometer-order pores the apparent density of the porous ceramic fired body can be reduced, the porosity (saturated water content) can be further increased, and the chance of contact with unnecessary substances can be increased.
  • activated sludge derived from wastewater treatment which has been positioned as waste, can be used as a raw material.
  • the water content of the organic sludge is, for example, preferably 10 to 90% by mass, and more preferably 65 to 85% by mass. If it is in the said range, while obtaining a homogeneous mixture, it is easy to maintain favorable moldability.
  • the content of the organic substance in the organic sludge is not particularly limited.
  • the content of the organic substance (organic substance content) in the solid content of the organic sludge is preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the larger the organic content the easier it is to form micrometer-order pores, and nanometer-order pores.
  • the organic content is a value obtained from the following formula (1) by measuring the ash content (mass%) of the sludge after drying at a carbonization temperature of 700 ° C. according to JIS M8812-1993.
  • the average particle diameter of the organic sludge is preferably 1 to 5 ⁇ m, more preferably 1 to 3 ⁇ m. Since organic sludge is burned off by firing and pores are formed there, pores on the order of micrometers can be formed more easily as the average particle size is smaller, and pores on the order of nanometers can be formed.
  • the average particle diameter is a volume-based median diameter (volume 50% diameter) measured by a particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.).
  • the content of organic sludge in the mixture can be determined in consideration of the moldability of the mixture, for example, preferably 1 to 60% by mass, more preferably 5 to 40% by mass, and 5 to 30% by mass. Further preferred.
  • the mixture has appropriate fluidity and plasticity within the above range, the moldability is improved, and the molding can be smoothly performed without closing the molding apparatus.
  • pores on the order of millimeters decrease when the moisture content exceeds 30% by mass.
  • Clay is a mineral material that exhibits clay-like properties that are commonly used as ceramic raw materials.
  • known materials used for ceramics can be used, and it is composed of mineral composition such as quartz, feldspar, clay, etc., and the constituent mineral is mainly kaolinite, halloysite, montmorillonite, illite, bentonite, pyrophyllite. The thing containing is preferable. Examples of such clays include cocoon clay. Clay can be blended alone or in combination of two or more. The components contained in these clays are also effective in removing malodorous and toxic substances contained in the gas.
  • the clay content in the mixture can be determined in consideration of the strength and formability required for the porous ceramic fired body. For example, it is preferably 5 to 60% by mass, more preferably 5 to 50% by mass, and 10 to 40%. More preferred is mass%. If it is in the above-mentioned range, the moldability of the mixture can be smoothly formed without sacrificing, and the strength of the fired porous ceramic body can be made sufficient.
  • the mixture may contain an optional component as long as the effects of the present invention are not impaired.
  • optional components include naphthalene-based fluidizing agents such as Mighty 2000WH (trade name, manufactured by Kao Corporation), and melamine-based fluidizing agents such as Melment F-10 (trade name, manufactured by Showa Denko KK).
  • Polycarboxylic acid fluidizers such as Darex Super 100pH (trade name, manufactured by Grace Chemicals Co., Ltd.), antibacterial agents such as silver, copper and zinc, deodorizers such as ammonium chloride and zinc chloride, zeolite, apatite, etc.
  • Adsorbents, strength improvers such as carbon fibers having a length of 1 mm to 5 cm, basalt fibers, rock wool, and metal aluminum.
  • the blending amount of the optional component is preferably determined in the range of 0.01 to 10% by mass, for example. For example, it may be determined in the range of 5 to 10% by mass.
  • water may be blended as appropriate for the purpose of adjusting the fluidity of the mixture, etc. It is not necessary to add water. Moreover, when there is much water
  • a high-melting glass particulate filler having a melting temperature of 900 ° C. or higher is more preferable. By using particles of high melting point glass, moisture adjustment is possible while maintaining pores formed in the fired porous ceramic body. High melting point glass and fly ash can also be used as a strength improver.
  • the particle diameter of the high melting point glass or tile particles is preferably 0.1 to 5 mm. If the particle diameter is less than 0.1 mm, the formation of pores in the porous ceramic fired body may be insufficient. If the pores are not sufficiently formed, the removal performance of unnecessary substances contained in the gas and the durability of the porous ceramic fired body may be deteriorated. If the particle diameter is more than 5 mm, the moldability may be reduced, or the metal fitting at the extrusion port may be damaged during molding.
  • clinker ash and fly ash are discharged from the thermal power plant and are preferable from the viewpoint of effective utilization of waste.
  • the content of the high melting point glass, tile particles, fly ash and clinker ash in the mixture may be appropriately selected according to the intended fluidity of the composition without departing from the purpose of the present invention.
  • the amount is preferably 3 to 40 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass in total of the raw materials other than glass, roof tile, fly ash and clinker ash.
  • the mixing apparatus used for a mixing process is not specifically limited, A well-known mixing apparatus can be used.
  • the mixing apparatus include a kneader such as a mix muller (manufactured by Toshin Kogyo Co., Ltd.), a kneader (manufactured by Moriyama Co., Ltd.), a mixer (manufactured by Nippon Ceramics Co., Ltd.), and the like.
  • the forming step is a step of forming the mixture obtained in the mixing step into an arbitrary shape.
  • a known molding method can be used as the molding method, and can be determined in consideration of the properties of the mixture and the desired shape of the molded body.
  • a molding machine is used to perform extrusion molding to obtain a molded body such as a plate, granule, or columnar shape including pellets, etc., and a mixture is filled into a mold of any shape and molded. Examples thereof include a method of obtaining a body, a method of extruding, stretching or rolling a mixture, and then cutting it into an arbitrary dimension.
  • the molding machine include a vacuum clay molding machine, a flat plate press molding machine, and a flat plate extrusion molding machine. Among these, a vacuum clay molding machine is preferable.
  • the moisture content of the mixture before firing is preferably more than 1% by mass, more preferably 5% by mass or more, further preferably 10% by mass or more, and particularly preferably 20% by mass or more. . If the water content of the mixture is below the lower limit, unnecessary substances may not easily enter the porous ceramic fired body obtained. On the other hand, the moisture content of the mixture before firing is preferably 45% by mass or less, and more preferably 30% by mass or less. If the water content of the mixture exceeds the upper limit, moldability may be impaired.
  • the firing step is a step of firing the molded body (firing operation) and firing clay and the like to obtain a porous ceramic fired body. As described above, it is preferable to fire the molded body without drying. A porous ceramic fired body obtained by firing without mixing after mixing raw materials has a higher performance of removing unnecessary substances. Moreover, when not drying, the productivity of a porous ceramic fired body can also be improved.
  • the molded body may be naturally dried or may be dried by being treated in a hot air drying oven at 50 to 220 ° C. for an arbitrary time. It is good also considering the moisture content of a molded object as 1 mass% or less by drying. In addition, the moisture content of the formed body can be obtained by the same method as the moisture content of the organic waste.
  • the firing operation is not particularly limited, and a known method can be used. Examples thereof include a method of firing at an arbitrary temperature using a continuous sintering furnace such as a roller hearth kiln or a batch sintering furnace such as a shuttle kiln. Among these, it is preferable to use a continuous sintering furnace for the firing operation from the viewpoint of productivity or efficiency of the drying treatment.
  • the firing temperature maximum temperature reached
  • the firing temperature can be determined according to the properties of the mixture, and is, for example, 850 ° C. to 1200 ° C. If it is more than the said lower limit, most organic substances in organic sludge will volatilize and it will reduce weight. If it exceeds the above upper limit value, vitrification of the entire structure of the porous ceramic fired body proceeds and the pores may be blocked.
  • a porous ceramic fired body having pores in the micrometer order and pores in the nanometer order can be obtained by the above manufacturing method.
  • the porous ceramic fired body obtained in the firing process is crushed and ground with a hammer mill, biaxial rotary crushing, jet mill, ball mill, edge runner mill, etc., to obtain a porous ceramic fired body granule be able to.
  • the obtained granular material is sieved to an arbitrary particle size as necessary.
  • Clay or slag used as a raw material when producing a porous ceramic fired body contains a metal oxide or the like, and this metal oxide functions as an acidic component or a basic component in the fired body.
  • the acidic component of the porous ceramic fired body can adsorb a basic component, and the basic component of the porous ceramic fired body can adsorb the acidic component.
  • the second purification unit preferably includes a water supply means for supplying water to the porous ceramic fired body.
  • a water supply means for supplying water to the porous ceramic fired body.
  • the water supply means include spray nozzles, jet nozzles, perforated pipes and plate-like objects.
  • the water that has passed through the porous ceramic fired body may be supplied again to the water supply means using a pump or the like.
  • the water supplied by the water supply means may include at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
  • a suction fan or a blower fan for flowing gas into the gas purification device may be installed.
  • a demister that captures mist in the gas may be installed. It is preferable to provide a cooling means for cooling the gas sent from the heating part in the middle or at the end of the pipe for sending the gas to the first or second purification part.
  • cooling means examples include a heat exchanger using a cooling medium such as water, and specific examples include a tube type, a plate type, and a regenerative type.
  • a thermometer and a densitometer may be installed without departing from the object of the present invention.
  • the gas purification method of the present invention is a gas purification method for purifying gas containing unnecessary substances, and includes a first purification step and a second purification step.
  • the first purification step is a step of spraying water from two or more locations in the gas.
  • the dust contained in the gas can be mainly captured by the water, and the water-soluble components of the malodorous substances and harmful substances can be dissolved.
  • gas can be passed through a space where water droplets that are disorderly and rapidly turbulent in various directions exist. Therefore, the chance of contact of water with dust and water-soluble components in the gas can be increased. Therefore, the removal performance of dust and water-soluble components is enhanced, and the removal rate of soot and water-soluble components in the gas is improved as compared with conventional water spraying and gas bubbling with stored water.
  • the first purification process does not remove the soot, and if the gas does not contain water-soluble components, The water-soluble component is not removed in one purification process.
  • the water sprayed in the first purification step may contain at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
  • acidic substances, basic substances, and surfactants When acidic substances, basic substances, and surfactants are added to water, in addition to dust and water-soluble components, water-insoluble and sparingly soluble basic substances, acidic substances, oil-based components, and neutral components Etc. can be removed.
  • the acidic substance, the basic substance, and the surfactant the same substances as those supported on the porous ceramic fired body can be used.
  • flavor for masking, a chelating agent, an antibacterial agent, a catalyst, etc. to water in the range which does not deviate from the objective of this invention.
  • the treatment temperature in the first purification step may be arbitrarily set in consideration of the temperature of the gas to be purified, the solubility of the components contained in the gas, the vapor pressure, and the like.
  • the second purification step is a step of capturing a part of unnecessary substances by passing the gas that has passed through the first purification step through the porous ceramic fired body and purifying the gas with the porous ceramic fired body.
  • unnecessary substances are physically adsorbed on the surface of the porous ceramic fired body and removed.
  • the basic component in the gas is mainly ionically adsorbed and removed by the acidic component in the porous ceramic fired body, and the basic component in the porous ceramic fired body is mainly used in the gas. Acidic components are ionized and removed.
  • the second purification step it is preferable to supply water to the porous ceramic fired body because the removal rate of unnecessary substances increases. Moreover, it is preferable to contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant in the water supplied to the porous ceramic fired body.
  • an acidic substance, a basic substance, and a surfactant the same substances as those supported on the porous ceramic fired body can be used.
  • the acidic substance or the like is included in the water supplied to the porous ceramic fired body, unnecessary substances can be further removed without supporting the acidic substance or the like on the porous ceramic fired body.
  • dust and water-soluble components contained in the gas can be removed with a high removal rate by spraying water from two or more locations in the gas. Further, by passing a gas through the porous ceramic fired body, unnecessary substances contained in the gas can be physically adsorbed on the surface of the porous ceramic fired body. Since the porous ceramic fired body has a large surface area, the amount of adsorption of unnecessary substances is large. Moreover, the acidic component and the basic component contained in the gas can be chemically adsorbed to the porous ceramic fired body. Therefore, unnecessary substances in the gas can be removed sufficiently.
  • the gas purification device has a simple structure and is low in cost. Etc., and the local environment can be easily and inexpensively improved.
  • first purification units and second purification units may be arranged according to the amount and type of malodorous substances, harmful substances, and dust contained in the gas.
  • two second purification units are provided, and one of the second purification units supplies water containing an acidic substance to the porous ceramic fired body to remove the basic substance in the gas, and the other second purification unit In the section, water containing a basic substance may be supplied to the fired porous ceramic body to remove the acidic substance in the gas.
  • the first purification unit, the second purification unit, the second purification unit, and the first purification unit may be arranged in this order.
  • the waste treatment apparatus of the present invention includes a heating unit that heats organic waste containing moisture, and a gas purification unit that purifies gas discharged from the heating unit.
  • Organic waste containing water is discharged from sludge, poultry, hog raising, and cattle farms discharged from rural wastewater treatment facilities, sewage treatment plants, organic wastewater treatment facilities such as dyeing plants, food factories, and paper mills. Although it is not particularly limited, it may be excrement, waste material discharged from a food processing plant, leftover food from a restaurant, and the like.
  • a dehydrator such as a filter press, belt press, and centrifugal dehydration so that the water content is 100% by mass or less.
  • heating part heats and carbonizes the organic waste containing a water
  • the carbide obtained by carbonizing the organic waste has a large calorific value and is suitable as a fuel.
  • the form of the heating unit is not particularly limited, and may be, for example, one that heats in a sealed state or one that heats in an open state.
  • Specific examples of the heating unit include a continuous heating furnace such as a rotary kiln and a roller hearth kiln, and a fractional heating furnace such as a shuttle kiln.
  • a continuous heating furnace is preferable from the viewpoint of productivity. More specifically, what is known as a heating device for sludge and the like is preferable.
  • a volatile organic solvent recovery device using induction heating described in JP 2010-75783 A can be used as the heating unit. It is also possible to use the rotary kiln or the like as a heating unit in combination with induction heating. When organic waste is heat-treated by the heating unit, at least one unnecessary substance selected from the group consisting of malodorous substances, harmful substances and dust is often generated.
  • the gas purification part in this invention is equipped with at least one of the spraying means which sprays water on the said gas, and the adsorption means made from the porous ceramic sintered body which purifies the said gas.
  • the gas purification unit may include both the spray unit and the adsorption unit, or may include only one of the spray unit and the adsorption unit. In terms of a high gas purification rate, it is preferable that both the spraying means and the adsorbing means are provided, and the adsorbing means is disposed downstream of the spraying means. Further, the spraying means and the adsorption means may each be one or plural.
  • the spraying means is not particularly limited as long as water can be sprayed, and examples thereof include a spray nozzle and a jet nozzle.
  • the spray pattern of the water supplied from the spray means is preferably annular, planar or strip-shaped in order to increase the contact area with the gas.
  • the water sprayed by the spraying means may contain at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
  • the number of spraying means is preferably two or more. If there are two or more spraying means, water can be sprayed from two or more places, and gas can be passed through a space in which water droplets that are disorderly and turbulently fly in various directions exist. Thereby, the contact opportunity of gas and water can be increased, and mainly dust and water-soluble components can be captured more by water. Furthermore, in order to increase the chance of contact between gas and water, it is preferable that the spray directions of the two or more spraying means are different from each other.
  • a part of the water sprayed by the spraying means may be collected and supplied again to the spraying means using a circulation pump.
  • a certain amount of sprayed water may be stored, and the gas discharged from the heating unit may be bubbled through the stored water to capture unnecessary substances.
  • the water sprayed from the spraying means is brought into contact with the gas that has passed through the stored water.
  • the arrangement of the adsorption means is not particularly limited, it is preferable to arrange the adsorption means in a direction that is not parallel to the gas traveling direction because the chance of contact with the gas increases. Furthermore, it is more preferable that the adsorbing means is layered and arranged perpendicular to the gas traveling direction. A plurality of layered adsorption means may be arranged. When a plurality of layered adsorption means are arranged, an air layer may be formed between the layers of the adsorption means, or another gas purification unit may be arranged. Further, the adsorption means may be filled with a porous ceramic fired body except for the portion where the water supply means is installed.
  • the porous ceramic fired body constituting the adsorption means can be the same as the porous ceramic fired body of the adsorption means used in the gas purification means.
  • Water supply means In the case where the gas purification unit includes a porous ceramic fired body, it is preferable to further include water supply means for supplying water to the porous ceramic fired body.
  • the water supply means can be the same as the water supply means in the second purification section of the gas purification means described above.
  • a suction fan or a blower fan for flowing gas into the waste treatment apparatus may be installed.
  • a demister that captures mist in the gas may be installed. It is preferable to provide a cooling means for cooling the gas sent from the heating unit in the middle or at the end of the pipe for sending the gas from the heating unit to the gas purification unit. By cooling the gas sent from the heating unit, the solubility of water-soluble components in malodorous substances and the like in water increases in the spraying means, and the performance of removing unwanted substances such as malodorous substances is further improved.
  • cooling means examples include a heat exchanger using a cooling medium such as water, and specific examples include a tube type, a plate type, and a regenerative type.
  • a thermometer and a densitometer may be installed without departing from the object of the present invention.
  • the waste processing method using the waste processing apparatus 1 includes a heating process and a gas purification process.
  • the heating step is a step of heating and carbonizing the organic waste containing moisture.
  • the heating temperature in a heating process can be made into arbitrary temperature, 100 degreeC or more is preferable. When the heating temperature is less than 100 ° C., it takes time to reduce the volume of sludge and the like, resulting in low productivity.
  • the heating temperature is preferably 250 ° C. or higher. If heating temperature is 250 degreeC or more, the organic waste containing a water
  • the heating temperature is preferably 1500 ° C. or less, and more preferably 950 ° C. or less.
  • the degree of volume reduction does not change compared to the amount of energy used for the heat treatment, which is disadvantageous in terms of cost.
  • moisture content can be easily used as a fuel.
  • Organic waste containing water such as sludge heat-treated at 950 ° C. or less has a large calorific value and can be preferably used as fuel.
  • the carbide obtained by heat treatment at a low temperature has a larger calorific value than the carbide heat-treated at a high temperature, and more specifically, the heating temperature is more preferably 600 ° C. or less.
  • the heating temperature is more preferably 600 ° C. or less.
  • the odor becomes stronger as the heating temperature becomes lower. This is because if heating is performed at a high temperature, unnecessary substances contained in the gas discharged from the heating section are also thermally decomposed to reduce the amount of unnecessary substances in the gas, but if the heating temperature is lowered, the heat of unnecessary substances is reduced. Since the amount of decomposition decreases, unnecessary substances contained in the gas increase.
  • discharge of unnecessary substances can be suppressed even when organic waste is heated at a low temperature of 600 ° C. or lower.
  • the atmosphere inside a heating part at the time of a heating is a reducing atmosphere. Furthermore, since the organic waste can be easily pyrolyzed, it is preferable to set the atmosphere so that the limit oxygen concentration, which is the oxygen concentration necessary for the combustible to continue to burn, does not substantially exceed.
  • the gas purification step is a step of performing at least one of spraying water on the gas generated in the heating step by the spraying means and passing the gas generated in the heating process through the porous ceramic fired body of the adsorption means.
  • the dust can be trapped in water mainly by spraying water on the gas.
  • water-soluble components among harmful substances can be dissolved in water.
  • the gas is sprayed randomly and at high speed in various directions from two or more locations in the gas.
  • the water to be sprayed may contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant.
  • acidic substances, basic substances, and surfactants are added to water, in addition to dust and water-soluble components, water-insoluble and sparingly soluble basic substances, acidic substances, oil-based components, and neutral components Etc. can be removed.
  • the acidic substance, the basic substance, and the surfactant the same substances as those supported on the porous ceramic fired body can be used.
  • flavor for masking, a chelating agent, an antibacterial agent, a catalyst, etc. to water in the range which does not deviate from the objective of this invention.
  • the temperature at the time of water spraying may be arbitrarily set in consideration of the temperature of the gas to be purified, the solubility of the components contained in the gas, the vapor pressure, and the like.
  • the basic component in the gas is mainly ionically adsorbed and removed by the acidic component in the porous ceramic fired body, and the basic component in the porous ceramic fired body is mainly used in the gas. Acidic components are ionized and removed.
  • the porous ceramic fired body When purifying the gas with the porous ceramic fired body, it is preferable to supply water to the porous ceramic fired body because the removal rate of unnecessary substances increases. Moreover, it is preferable to contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant in the water supplied to the porous ceramic fired body. As the acidic substance, the basic substance, and the surfactant, the same substances as those supported on the porous ceramic fired body can be used. When the acidic substance or the like is included in the water supplied to the porous ceramic fired body, unnecessary substances can be further removed without supporting the acidic substance or the like on the porous ceramic fired body.
  • one adsorbing means supplies water containing an acidic substance to the porous ceramic fired body to mainly remove basic substances in the gas.
  • Water containing the substance may be supplied to the fired porous ceramic body to remove mainly the acidic substance in the gas.
  • the drying treatment apparatus of the present invention includes a heating unit that dries organic waste containing moisture, and a gas purification unit that purifies the gas discharged from the heating unit.
  • organic waste containing water As organic waste containing water, it is discharged from sludge, poultry, hog raising, and cattle farms discharged from rural wastewater treatment facilities, sewage treatment plants, organic wastewater treatment facilities such as dyeing plants, food factories, and paper mills. Although it is not particularly limited, it may be, for example, excreted urine, scraps discharged from a food processing plant, and leftovers from restaurants. As the sludge, either undigested sludge or digested sludge can be used. These organic wastes are preferably those that have been subjected to a dehydration treatment by a dehydrator such as a filter press, a belt press, and centrifugal dehydration to have a water content of 100% by mass or less.
  • a dehydrator such as a filter press, a belt press, and centrifugal dehydration to have a water content of 100% by mass or less.
  • Heating part heats and dries organic waste containing moisture.
  • at least one unnecessary substance selected from the group consisting of malodorous substances, harmful substances and dust is often generated.
  • heating part you may use a well-known dryer, and it is not specifically limited.
  • hot air is blown directly into the drying furnace, steam or oil is used as the heating medium, and the heating medium is passed through the outer periphery of the drying furnace or a plurality of heating tubes arranged in the drying furnace, indirectly.
  • the thing etc. which dry the organic waste containing water are mentioned.
  • an electric heater or the like may be used instead of steam or oil.
  • the drying method may be either a continuous method or a batch method, but a continuous method is preferred from the viewpoint of the efficiency of the drying process.
  • a dryer what is used for processes, such as sludge, is preferable.
  • examples thereof include dryers described in JP-A-2006-17335, JP-A-2012-233599, JP-A-2012-037211, JP-A-2010-236731, and JP-A-2013-46882.
  • a volatile organic solvent recovery device using induction heating described in JP 2010-75783 A can be used as the heating unit.
  • dryers include continuous tube heat transfer dryer inner tube rotary manufactured by Okawara Manufacturing Co., Ltd., rotary dryer with crushing and stirring blades, super rotary dryer, rotary aeration dryer, funnel through, Yamamoto Giken Co., Ltd. Company double drum dryer, rotary coil dryer, etc.
  • Gas Purification Department As the gas purification unit in the drying treatment apparatus of the present invention, the same gas purification unit used in the above-described waste treatment apparatus can be used.
  • a pipe for discharging processed gas from the gas purification unit in order to send gas from the heating unit to the gas purification unit, and to send gas in the gas purification unit, it is possible to appropriately install a pipe for discharging processed gas from the gas purification unit.
  • a suction fan or a blower fan that sends and discharges gas, a demister that captures mist in the gas, a filter that captures dust, a cyclone, and the like may be provided in the middle or at the end of the pipe. It is preferable to provide a cooling means for cooling the gas sent from the heating unit in the middle or at the end of the pipe for sending the gas from the heating unit to the gas purification unit.
  • the cooling means include a heat exchanger using a cooling medium such as water, and specific examples include a tube type, a plate type, and a regenerative type.
  • the tube type includes a double tube type, a shell and tube type, a spiral type, and the like.
  • Various instruments such as a thermometer and a densitometer may be installed without departing from the object of the present invention.
  • the dry processing method using the said dry processing apparatus has a heating process and a gas purification process.
  • the heating step is a step of heating and drying organic waste containing moisture.
  • the heating temperature in a heating process can be made into arbitrary temperature, 60 degreeC or more is preferable. When the heating temperature is less than 60 ° C., it takes time to reduce the volume of sludge and the like, and the efficiency of the drying process is lowered.
  • the heating temperature is preferably 100 ° C. or higher. If heating temperature is 100 degreeC or more, the organic waste containing a water
  • the heating temperature in the drying furnace is preferably 400 ° C. or lower, and more preferably 300 ° C. or lower. More preferably, it is less than 200 degreeC. If the heating temperature exceeds the upper limit, there is a risk of ignition if there is a large amount of oxygen in the drying furnace, and organic waste may be carbonized in a reduced state.
  • 400 degreeC or more may be sufficient as the blowing temperature of the hot air to blow, but 700 degrees C or less is preferable as an upper limit.
  • the temperature of the heat medium is preferably 100 ° C.
  • organic waste such as sludge is preferably stirred and dried uniformly.
  • the dried product obtained by the heating process is reduced in volume, it can be easily transported and the transportation cost can be reduced. Also, the storage space is small and the storage cost can be reduced. In addition, the waste containing water can be prevented from decaying and can be stored easily. In addition, the dried product has a large calorific value and can be used as a fuel.
  • the dried product can be used as organic sludge which is one of the raw materials of the porous ceramic fired body described above.
  • the moisture content of the dried product obtained by the heating step is 1 to 30% by mass, more preferably 3 to 15% by mass. Below the lower limit, there is a risk of excessive energy costs and time for drying.
  • Moisture content (% by mass) of dried product (mass of dried product (g) ⁇ mass of dried state (g)) / mass of dried product (g) ⁇ 100 (3)
  • the gas purification step is a step of performing at least one of spraying water on the gas generated in the heating step by the spraying means and passing the gas generated in the heating step through the porous ceramic fired body of the adsorption means.
  • the water to be sprayed may contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant.
  • an acidic substance, a basic substance, and a surfactant When acidic substances, basic substances, and surfactants are added to water, in addition to dust and water-soluble components, water-insoluble and sparingly soluble basic substances, acidic substances, oil-based components, and neutral components Etc. can be removed.
  • the acidic substance, the basic substance, and the surfactant the same substances as those supported on the porous ceramic fired body can be used.
  • a masking fragrance, a chelating agent, an antibacterial agent, a catalyst, and the like may be added to the water to be sprayed without departing from the object of the present invention.
  • those that are dried in the heating process compared to those that are carbonized in the reduced state, have a large amount of gas discharged in the heating process, and there are a variety of components contained in the gas, so there is no odor after the purification process.
  • the use of a fragrance or the like for masking in the gas purification process is effective because it eliminates the aversion from such an odor.
  • the temperature at the time of water spraying may be arbitrarily set in consideration of the temperature of the gas to be purified, the solubility of the components contained in the gas, the vapor pressure, and the like.
  • the basic component in the gas is mainly ionically adsorbed and removed by the acidic component in the porous ceramic fired body, and the basic component in the porous ceramic fired body is mainly used in the gas. Acidic components are ionized and removed.
  • the porous ceramic fired body When purifying the gas with the porous ceramic fired body, it is preferable to supply water to the porous ceramic fired body because the removal rate of unnecessary substances increases. Moreover, it is preferable to contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant in the water supplied to the porous ceramic fired body. As the acidic substance, the basic substance, and the surfactant, the same substances as those supported on the porous ceramic fired body can be used. When the acidic substance or the like is included in the water supplied to the porous ceramic fired body, unnecessary substances can be further removed without supporting the acidic substance or the like on the porous ceramic fired body.
  • water supplied to the porous ceramic fired body may contain a flavoring agent for masking, a chelating agent, an antibacterial agent, a catalyst, and the like.
  • a flavoring agent for masking for masking
  • a chelating agent for chelating agents
  • an antibacterial agent for preventing odors from the gas.
  • water supplied to the porous ceramic fired body may contain a flavoring agent for masking, a chelating agent, an antibacterial agent, a catalyst, and the like.
  • those that are dried in the heating process compared to those that are carbonized in the reduced state, have a large amount of gas discharged in the heating process, and there are a variety of components contained in the gas, so there is no odor after the purification process.
  • the use of a fragrance or the like for masking in the gas purification process is effective because it eliminates the aversion from such an odor.
  • one adsorbing means supplies water containing an acidic substance to the porous ceramic fired body to mainly remove basic substances in the gas.
  • Water containing the substance may be supplied to the fired porous ceramic body to remove mainly the acidic substance in the gas.
  • the drying treatment apparatus of the present invention unnecessary substances in the gas generated when the organic waste containing moisture is heated by the heating unit are used as at least one of the adsorbing means such as the spraying means and the porous ceramic fired body. Can be removed by one. By these means, unnecessary substances can be sufficiently removed at low cost. Therefore, introduction is easy even in small and medium-sized factories, waste treatment plants, sewage treatment plants, pig farms and poultry farms, and the odor environment in the region can be improved. Since the dry matter obtained by drying the organic waste containing water by the drying treatment apparatus of the present invention is reduced in volume, the cost for transportation and storage can be reduced. Further, the dried product can be used as a beneficial material such as a fuel, a deodorizing agent, and a soil improving material.
  • Manufacture example A1 Manufacture of a porous ceramic fired body 20 mass parts of roof tiles are added to 50 mass parts of slag, 25 mass parts of organic sludge, and 25 mass parts of clay (total 100 mass parts). Using Shinto Kogyo Co., Ltd.) to obtain a plastic mixture (mixing step). Next, the mixture was extruded into a cylindrical shape having a diameter of 1.5 cm using a vacuum kneader and then cut into a length of 3 cm to obtain a cylindrical shaped body (water content: 15% by mass). The molded body was subsequently fired in a continuous sintering furnace without using a drying step under a firing condition of a firing temperature of 1050 ° C.
  • the continuous sintering furnace a roller hearth kiln (effective length of the sintering furnace: total length 15 m, the sintering furnace was divided into zones 1 to 10 each having a length of 1.5 m) was used.
  • the fired porous ceramic body obtained by firing was a mixture of granular materials and lumps having a major axis of about 3 cm to 10 cm with fine cracks.
  • the obtained porous ceramic fired bodies were pulverized with a hammer mill. Next, using a sieve, it was sieved to a size of more than 5 mm and 10 mm or less to obtain a granular material of a fired porous ceramic body.
  • the resulting porous ceramic fired body was confirmed to have micrometer-order pores and nanometer-order pores. In particular, many pore diameters of 1 to 30 ⁇ m and 200 to 500 nm were observed. In addition, the apparent density of the fired porous ceramic body was 0.7 g / ml, the saturated water content was 43% by mass, and communication between pores was also confirmed.
  • the raw material of the porous ceramic sintered body used in the above production example is specifically as follows.
  • Organic sludge As the organic sludge, the activated sludge discharged from the wastewater treatment facility by the activated sludge method of the dyeing factory ( Komatsu Seiren Co., Ltd.) through the coagulation / dehydration process was used.
  • the activated sludge had an organic content (based on solid content) of 83% by mass and a water content of 85% by mass.
  • Sakaime clay As the clay, Sakaime clay (Gifu Prefecture) was used.
  • the cast iron slag was used as a foaming agent.
  • the cast iron slag is a ductile iron slag SiO 2, Al 2 O 3, CaO, Fe 2 O 3, FeO, MgO, MnO, K 2 O, the Na 2 O as main components.
  • Example A1 As shown in FIG. 1, the gas purification device 11 in Example A1 includes a first purification unit 110 and a second purification unit 120.
  • cleaning part 110 shall have the spray nozzle 112 attached to each of the side surface 111a of the tank 111, and the upper surface 111b. Moreover, in the 1st purification
  • the second purification unit 120 includes a tank 122a having one porous ceramic fired body layer 121a (adsorption means), a tank 122b having five layers of porous ceramic fired body layers 121b (adsorption means) inside, and 5
  • the porous ceramic fired body layer 121c (adsorption means) is provided as a tank 122c.
  • the tank 122 a is connected to the upper part of the tank 111.
  • the porous ceramic fired body layers 121a, 121b, and 121c are each configured by filling the mesh-shaped container with the porous ceramic fired bodies obtained in Production Example A1, and are perpendicular to the gas flow. Arranged.
  • a spray nozzle 123a that sprays water on the upper surface of the porous ceramic fired body layer 121a is provided inside the tank 122a, and a demister 124a made of nonwoven fabric that captures and removes mist is disposed above the spray nozzle 123a.
  • a non-woven demister that captures and removes mist. 124b was provided above the spray nozzle 123b.
  • a discharge pipe 125b for discharging the accumulated water was attached to the lower part of the tank 122b.
  • a spray nozzle 123c for spraying water on the upper surface of the uppermost porous ceramic fired body layer 121c.
  • a non-woven demister that captures and removes mist. 124c was provided above the spray nozzle 123c.
  • a discharge pipe 125c for discharging the accumulated water was attached to the lower part of the tank 122c.
  • the gas purification device 11 includes a pipe 131a and a pump 132a for supplying water accumulated at the bottom of the tank 111 to the spray nozzle 123a, and a pipe for supplying water accumulated at the bottom of the tank 122b to the spray nozzle 123b.
  • 131b and a pump 132b, and a pipe 131c and a pump 132c for supplying water accumulated in the bottom of the tank 122c to the spray nozzle 123c are provided.
  • a pipe 134b and a pump 135b for supplying the chemical liquid tank 133b and the chemical liquid A put in the chemical liquid tank 133b to the pipe 131b, and a chemical liquid B put in the chemical liquid tank 133c and the chemical liquid tank 133c are connected to the pipe 131c.
  • a pipe 134c and a pump 135c for supplying to the pipe are provided.
  • the upper part of the tank 122a and the lower part of the tank 122b were connected by the pipe 141
  • the upper part of the tank 122b and the lower part of the tank 122c were connected by the pipe 142
  • the pipe 143 was attached to the upper part of the tank 122c.
  • a blower fan 144 a is attached to the pipe 141
  • a blower fan 144 b is attached to the pipe 142
  • an exhaust fan 144 c is attached to the pipe 143.
  • the gas discharged from the firing furnace was deodorized using the gas purification device 11.
  • the gas discharged from the baking furnace is passed through the introduction pipe 114 and supplied to the tank 111 of the first purification unit 110 at a gas supply rate of 3 m 3 / min, and water is supplied to the gas inside the tank 111.
  • Tap water supplied from the pipe 116 was sprayed in a full circle spray pattern using the spray nozzle 112. Thereby, gas can be allowed to pass through the space where water droplets turbulently flying at random and in various directions exist.
  • the gas discharged from the upper part of the tank 111 was introduced into the tank 122a and passed through the porous ceramic fired body layer 121a.
  • the porous ceramic fired body layer 121a was sprayed with part of the water accumulated at the bottom of the tank 111 and tap water supplied from the water supply pipe 136a.
  • unnecessary substances were removed by physical adsorption on the surface of the fired porous ceramic body.
  • the basic components in the gas are mainly adsorbed and removed by the acidic components contained in the fired porous ceramic fired body, and the acidic components in the gas are mainly adsorbed and removed by the basic components contained in the porous ceramic fired body.
  • the gas that passed through the porous ceramic fired body layer 121a was passed through the demister 124a to capture the mist, and then introduced into the lower portion of the tank 122b through the pipe 141 using the blower fan 144a.
  • the gas introduced into the tank 122b was passed through the five porous ceramic fired body layers 121b. At that time, using the pipe 131b, the pump 132b, and the spray nozzle 123b, water accumulated at the bottom of the tank 122b and tap water supplied from the water supply pipe 136b were sprayed onto the porous ceramic fired body layer 121b. Further, the chemical liquid A placed in the chemical liquid tank 133b was supplied to the pipe 131b using the pipe 134b and the pump 135b.
  • the tank 122b has a main role of removing basic substances, oily substances, and neutral components, and the chemical solution A is an aqueous solution of an acidic substance, a nonionic surfactant, and an anionic surfactant.
  • Part of the sprayed water and chemical liquid A passes through the five porous ceramic fired body layers 121b and drops and accumulates at the bottom of the tank 122b, and a part of the accumulated water and chemical liquid is discharged from the discharge pipe 125b. It is discharged using.
  • the gas that passed through the porous ceramic fired body layer 121b was passed through the demister 124b to capture the mist, and then introduced into the lower part of the tank 122c through the pipe 142 using the blower fan 144b.
  • the gas introduced into the tank 122c was passed through the five porous ceramic fired body layers 121c. At that time, using the pipe 131c, the pump 132c, and the spray nozzle 123c, water accumulated at the bottom of the tank 122c and tap water supplied from the water supply pipe 136c were sprayed onto the porous ceramic fired body layer 121c. Further, the chemical solution B placed in the chemical solution tank 133c was supplied to the piping 131c using the piping 134c and the pump 135c.
  • the tank 122c has a main role of removing acidic components, and the chemical solution B is an aqueous solution of a basic substance.
  • Part of the sprayed water and chemical solution B passes through the five porous ceramic fired body layers 121c and drops and accumulates at the bottom of the tank 122c, and a part of the accumulated water and chemical solution is discharged from the discharge pipe 125c. It is discharged using.
  • the gas that passed through the porous ceramic fired body layer 121c was passed through the demister 124c to capture the mist, and then discharged to the outside of the tank 122c through the pipe 143 using the exhaust fan 144c.
  • the deodorizing performance of malodorous substances contained in the gas in Example A1 was evaluated by the following method. That is, the concentrations of propionic acid, normal butyric acid, normal valeric acid, isovaleric acid, and sulfur oxide (all of which are malodorous substances) contained in the gas were measured according to Environmental Agency Notification No. 9 of 1972. . The measurement results are shown in Table 1. Moreover, the evaluator sniffed and evaluated the smell of the gas before entering the gas purification apparatus 11 and the gas that passed through the gas purification apparatus 11. The evaluation results are shown in Table 1.
  • Example A1 when a little fragrance
  • Manufacturing example B1 Manufacture of a porous ceramic fired body 20 mass parts of roof tiles are added to 50 mass parts of slag, 25 mass parts of organic sludge, and 25 mass parts of clay (total 100 mass parts), Using Shinto Kogyo Co., Ltd.) to obtain a plastic mixture (mixing step). Next, the mixture was extruded into a cylindrical shape having a diameter of 1.5 cm using a vacuum kneader and then cut into a length of 3 cm to obtain a cylindrical shaped body (water content: 15% by mass). The molded body was subsequently fired in a continuous sintering furnace without using a drying step under a firing condition of a firing temperature of 1050 ° C.
  • the continuous sintering furnace a roller hearth kiln (effective length of the sintering furnace: total length 15 m, the sintering furnace was divided into zones 1 to 10 each having a length of 1.5 m) was used.
  • the fired porous ceramic body obtained by firing was a mixture of granular materials and lumps having a major axis of about 3 cm to 10 cm with fine cracks.
  • the obtained porous ceramic fired bodies were pulverized with a hammer mill. Next, using a sieve, it was sieved to a size of more than 5 mm and 10 mm or less to obtain a granular material of a fired porous ceramic body.
  • the resulting porous ceramic fired body was confirmed to have micrometer-order pores and nanometer-order pores. In particular, many pore diameters of 1 to 30 ⁇ m and 200 to 500 nm were observed. In addition, the apparent density of the fired porous ceramic body was 0.7 g / ml, the saturated water content was 43% by mass, and communication between pores was also confirmed.
  • the raw material of the porous ceramic sintered body used in the above production example is specifically as follows. The same organic sludge, clay, slag and roof tile as those used in Production Example A1 were used.
  • the physical property values of the porous ceramic fired body were measured by the following methods. Confirmation of pore diameter, measurement of apparent density, saturation moisture content, and confirmation of presence / absence of communication between pores were measured by the same method as in Production Example A1.
  • Example B1 As shown in FIG. 2, the waste treatment apparatus 21 in Example B1 includes a heating unit 210 using a rotary kiln, a first purification unit 220, a second purification unit 230, and a third purification unit 240. It was supposed to be.
  • the first purification means 220 has the spray nozzle 22 attached to the side surface 221a of the tank 221.
  • a circulation pump 223 and a pipe 224 that circulate the water accumulated at the bottom of the tank 221 and supply the water to the spray nozzle 222 again are provided.
  • the discharge pipe 225 which discharges the water collected in the lower part of the tank 221 was attached.
  • the 2nd purification means 230 shall be equipped with the tank 231 provided with the porous ceramic sintered body layer 232 of one layer.
  • the tank 231 was connected to the upper part of the tank 221.
  • the porous ceramic fired body layer 232 is configured by filling the mesh-shaped container with the granular material of the porous ceramic fired body obtained in Production Example B1 with a thickness of about 2.5 cm, and is perpendicular to the gas flow. Arranged to be.
  • a spray nozzle 233 for spraying water is provided on the upper surface of the porous ceramic fired body layer 232 inside the tank 231, and a non-woven fabric demister 234 for capturing and removing mist is disposed above the spray nozzle 233.
  • a circulation pump 235 and a pipe 236 that circulate the water accumulated at the bottom of the tank 231 and supply the water to the spray nozzle 233 again are provided.
  • the third purification means 240 is a tank 241 having spray nozzles 242a, 242b, and 242c attached thereto.
  • the spray nozzle 242 a was attached to the side surface 241 a of the tank 241, and the spray nozzles 242 b and 242 c were attached to the upper surface 241 b of the tank 241.
  • the spray nozzle 242b sprays water directly below, and the spray nozzle 242c sprays water diagonally below.
  • a non-woven fabric demister 244 for capturing and removing mist was provided above the spray nozzle 242c.
  • the discharge pipe 243 which discharges a part of water collected in the lower part of the tank 221 was attached.
  • the third purification means 240 includes a chemical liquid tank 247 and a pipe 248 and a pump 249 for supplying the chemical liquid contained in the chemical liquid tank 247 to the spray nozzle 242c.
  • the upper part of the heating unit 210 and the upper part of the tank 221 were connected by a pipe 251
  • the upper part of the tank 231 and the upper part of the tank 241 were connected by a pipe 252
  • the pipe 253 was attached to the upper part of the tank 241.
  • a blower fan 264 a is attached to the pipe 251
  • a blower fan 264 b is attached to the pipe 252
  • an exhaust fan 264 c is attached to the pipe 253.
  • the sludge is heated by the heating unit 210 and the gas discharged from the heating unit 210 is purified by the first purification unit 220, the second purification unit 230, and the third purification unit 240. .
  • the sludge was heat-treated at 450 to 500 ° C. by the heating unit 210.
  • the heating unit 210 is heated in a state where the combustible material (sludge) does not substantially exceed the limit oxygen concentration that is an oxygen concentration necessary for continuing combustion, and the organic matter in the sludge is thermally decomposed.
  • the sludge was carbonized by the heat treatment.
  • the obtained carbide had a lower calorific value of 23000 kJ / kg (5350 kcal / kg) (analysis method: JIS M8814) and had a calorific value sufficient for use as a fuel.
  • the gas discharged from the heating unit 210 was introduced into the tank 221 at a gas supply rate of 3 m 3 / min through the pipe 251 using the blower fan 264a.
  • tap water supplied from the water supply pipe 224 a was sprayed onto the gas inside the tank 221 using a spray nozzle 222 in a full circle spray pattern.
  • the gas discharged from the upper part of the tank 221 was introduced into the tank 231 and passed through the porous ceramic fired body layer 232.
  • the circulation pump 235 and the pipe 236 the water accumulated in the bottom of the tank 221 and the tap water supplied from the water supply pipe 236a are supplied to the spray nozzle 233, and the porous ceramic fired body layer is supplied from the spray nozzle 233.
  • 232 was sprayed with tap water.
  • the gas that passed through the porous ceramic fired body layer 232 was passed through the demister 234 to capture the mist, and then introduced into the upper portion of the tank 241 through the pipe 252 using the blower fan 264b.
  • tap water supplied from the water supply pipe 246a was sprayed on the gas introduced into the tank 241 in a full circle spray pattern using the spray nozzles 242a and 242b.
  • the chemical solution stored in the chemical solution tank 247 was supplied to the spray nozzle 242c via the pipe 248 and the pump 249, and the chemical solution was sprayed in a full circle spray pattern using the spray nozzle 242c.
  • the chemical solution was water to which zinc chloride, ammonium chloride and a surfactant were added.
  • a part of the water accumulated at the bottom of the tank 241 was returned to the spray nozzles 242a and 242b, and the remaining water was discarded through the discharge pipe 243.
  • the gas that passed through the tank 241 was passed through the demister 244 to capture the mist, and was then discharged to the outside of the tank 241 through the pipe 252 using the exhaust fan 264c.
  • Example B1 The deodorizing performance of malodorous substances and the like in Example B1 was evaluated by the following method. That is, the concentrations of propionic acid, normal butyric acid, normal valeric acid, isovaleric acid, and sulfur oxide (all of which are malodorous substances) contained in the gas were measured according to Environmental Agency Notification No. 9 of 1972. . The measurement results are shown in Table 2. Moreover, the tester conducted a sensory test on the odor of the gas. The evaluation results are shown in Table 2. Note that the gas sampling locations were the pipe 251, the pipe 252, and the pipe 253.
  • Example B1 As shown in Table 2, in the waste treatment apparatus 21, the malodorous substance contained in the gas discharged from the heating unit was sufficiently removed by the gas purification unit. Moreover, in Example B1, when a little fragrance
  • the continuous sintering furnace a roller hearth kiln (effective length of the sintering furnace: total length 15 m, the sintering furnace was divided into zones 1 to 10 each having a length of 1.5 m) was used.
  • the fired porous ceramic body obtained by firing was a mixture of cracked granular materials having a major axis of about 3 cm to 10 cm and a lump.
  • the obtained porous ceramic fired bodies were pulverized with a hammer mill. Next, using a sieve, it was sieved to a size of more than 5 mm and 10 mm or less to obtain a granular material of a fired porous ceramic body.
  • the resulting porous ceramic fired body was confirmed to have micrometer-order pores and nanometer-order pores. In particular, many pore diameters of 1 to 30 ⁇ m and 200 to 500 nm were observed. In addition, the apparent density of the fired porous ceramic body was 0.7 g / ml, the saturated water content was 43% by mass, and communication between pores was also confirmed.
  • Example C1 As shown in FIG. 3, the drying treatment apparatus 31 in Example C1 includes a heating unit 360 using a batch dryer, and a first gas purification unit 310 and a second gas purification unit 320 as gas purification units. It was.
  • the first gas purification unit 310 is configured such that a spray nozzle 312 (a spraying means) is attached to each of the side surface 311a and the top surface 311b of the tank 311.
  • a circulation pump 313 that circulates water accumulated at the bottom of the tank 311 and supplies the water to the spray nozzle 312 again is provided.
  • a pipe 340 for introducing a gas was connected to the upper part of the tank 311, and a discharge pipe 315 for discharging the accumulated water was attached to the lower part of the tank 311.
  • the second gas purification unit 320 includes a tank 322a including one porous ceramic fired body layer 321a (adsorption means), a tank 322b including five porous ceramic fired body layers 321b (adsorption means) inside, A tank 322c provided with five layers of porous ceramic fired body layers 321c (adsorption means) is provided.
  • the tank 322 a was connected to the upper part of the tank 311.
  • the porous ceramic fired body layers 321a, 321b, and 321c are each configured by filling the mesh-like container with the porous ceramic fired bodies obtained in Production Example C1, and are perpendicular to the gas flow. Arranged.
  • a spray nozzle 323a that sprays water on the upper surface of the porous ceramic fired body layer 321a is provided inside the tank 322a, and a non-woven demister 324a that captures and removes mist is disposed above the spray nozzle 323a.
  • a spray nozzle 323b for spraying water on the upper surface of the uppermost porous ceramic fired body layer 321b.
  • a nonwoven fabric demister that captures and removes mist. 324b was provided above the spray nozzle 323b.
  • a discharge pipe 325b for discharging accumulated water was attached to the lower part of the tank 322b.
  • a spray nozzle 323c for spraying water on the upper surface of the uppermost porous ceramic fired body layer 321c.
  • a non-woven demister that captures and removes mist. 324c was provided above the spray nozzle 323c.
  • a discharge pipe 325c for discharging the accumulated water was attached to the lower part of the tank 322c.
  • the drying processing device 31 supplies the water accumulated in the bottom of the tank 311 to the spray nozzle 323a, the pipe 331a and the pump 332a, the water supply pipe 336a, and the water accumulated in the bottom of the tank 322b to the spray nozzle 323b.
  • a pipe 331b, a pump 332b for supplying, a water supply pipe 336b, and a pipe 331c, a pump 332c, and a water supply pipe 336c for supplying water accumulated at the bottom of the tank 322c to the spray nozzle 323c are provided.
  • the chemical liquid tank 333a and the chemical liquid tank 333a for supplying the chemical liquid A put in the chemical liquid tank 333a to the pipe 331a and the pump 335a, and the chemical liquid tank 333b and the chemical liquid B put in the chemical liquid tank 333b are connected to the pipe 331b.
  • the chemical liquid tanks 333a and 333b were not filled with the chemical liquids A and B, respectively.
  • the upper part of the tank 322a and the lower part of the tank 322b were connected by the pipe 341
  • the upper part of the tank 322b and the lower part of the tank 322c were connected by the pipe 342
  • the pipe 343 was attached to the upper part of the tank 322c.
  • a blower fan 344 a is attached to the pipe 341
  • a blower fan 344 b is attached to the pipe 342
  • an exhaust fan 344 c is attached to the pipe 343.
  • the upper part of the heating unit 360 and the upper part of the tank 311 were connected by a pipe 340.
  • a blower fan 344 d is attached to the pipe 340.
  • the organic sludge used as the raw material of the porous ceramic fired body was used as the organic waste, and the heating unit 360 was indirectly heated using the steam as the heat medium (drying furnace temperature 110 ° C.).
  • the moisture content of the dried organic sludge dried in the heating section was 35% by mass, and the volume was reduced.
  • the gas discharged from the heating unit 360 was purified using the first gas purification unit 310 and the second gas purification unit 320. Specifically, the gas discharged from the heating unit 360 is passed through the pipe 340 and supplied to the tank 311 of the first gas purification unit 310 at a gas supply rate of 3 m 3 / min. Water supplied from the supply pipe 316 was sprayed in a full circle spray pattern using the spray nozzle 312.
  • the gas discharged from the upper part of the tank 311 was introduced into the tank 322a and passed through the porous ceramic fired body layer 321a.
  • the porous ceramic fired body layer 321a was sprayed with a part of the water accumulated at the bottom of the tank 311 and the water supplied from the water supply pipe 336a.
  • unnecessary substances were removed by physical adsorption on the surface of the porous ceramic fired body.
  • the basic components in the gas are mainly adsorbed and removed by the acidic components contained in the fired porous ceramic fired body, and the acidic components in the gas are mainly adsorbed and removed by the basic components contained in the porous ceramic fired body.
  • the gas that passed through the porous ceramic fired body layer 321a was passed through the demister 324a to capture the mist, and then introduced into the lower part of the tank 322b through the pipe 341 using the blower fan 344a.
  • the gas introduced into the tank 322b was passed through the five porous ceramic fired body layers 321b.
  • the water accumulated at the bottom of the tank 322b and the water supplied from the water supply pipe 336b were sprayed onto the porous ceramic fired body layer 321b using the pipe 331b, the 3 pump 332b, and the spray nozzle 323b.
  • Part of the sprayed water passes through the five porous ceramic fired body layers 321b and falls to the bottom of the tank 322b and accumulates, and part of the accumulated water is discharged using the discharge pipe 325b.
  • the gas that passed through the porous ceramic fired body layer 321b was passed through the demister 324b to capture the mist, and then introduced into the lower portion of the tank 322c through the pipe 342 using the blower fan 344b.
  • the gas introduced into the tank 322c was passed through the five porous ceramic fired body layers 321c.
  • water accumulated in the bottom of the tank 322c (the chemical C is applied to the porous ceramic fired body layer in the porous ceramic fired body layer 321c).
  • Sprayed and dropped and accumulated) and chemical C placed in the chemical tank 333c were sprayed.
  • the chemical solution C placed in the chemical solution tank 333c was supplied to the piping 331c using the piping 334c and the pump 335c.
  • the tank 322c has a main role of removing basic substances.
  • the chemical solution C uses acidic substances zinc chloride and ammonium chloride (zinc chloride: ammonium chloride 30: 1 (mass ratio)), and the concentration of acidic substances (total amount of zinc chloride and ammonium chloride) in the chemical liquid C is The acidic substance was added to water so that it might become 2 mass%. Part of the sprayed water and chemical C passes through the five porous ceramic fired body layers 321c and drops and accumulates at the bottom of the tank 322c, and a part of the accumulated water and chemical C is a discharge pipe. It is discharged using 325c.
  • the water accumulated at the bottom of the tank 322c and the medicine B supplied from the chemical liquid tank 333c are sprayed and supplied from the spray nozzle 323c to the porous ceramic fired body tank 321c.
  • the gas that passed through the porous ceramic fired body layer 321c was passed through the demister 324c to capture the mist, and then discharged to the outside of the tank 322c through the pipe 343 using the exhaust fan 344c.
  • the gas was sampled from the pipe 340 and the pipe 343, and ammonia, acetic acid, methyl mercaptan, hydrogen sulfide, amines, and acetaldehyde were respectively detected as gas detector tubes (stocks).
  • Evaluation was carried out by measuring the concentration (ppm) using each number of suctions once (100 ml).
  • the sensory test which an evaluator sniffs the smell of each sample was also implemented.
  • the water content of the organic sludge dried in the heating unit was 5% by mass, and the volume was reduced.
  • Table 3 shows the evaluation results of Examples C1 and C2.
  • Example C1 and Example C2 As shown in Table 3, in the evaluation by the gas detection tube, the use of the drying treatment device 31 sufficiently removes malodorous substances and the like contained in the gas discharged from the heating section in both Example C1 and Example C2. It was. On the other hand, in the sensory test, the odor was weakened but still remained. Then, in Example C1 and Example C2, when 2 mass% of fragrance
  • Example C3 Waste was treated in the same manner as in Example C1 except that a heat exchanger was installed on the upstream side of the blower fan 344d in the pipe 340 as a cooling means for the gas sent from the heating unit 360.
  • a heat exchanger a shell and tube type using water as a cooling medium was used.
  • a gas detector tube was installed as in Example C1. Used to measure the concentration (ppm).
  • the evaluation results of Example C3 are shown in Table 4.
  • concentration of the piping 340 in Table 4 is the same as the data of the piping 340 of Example C1 of Table 3.
  • the gas purification apparatus and the gas purification method of the present invention unnecessary substances in the gas can be sufficiently removed at low cost.
  • the waste treatment apparatus of the present invention can reduce the volume of organic waste containing water, and the waste treatment apparatus that suppresses the emission of malodorous substances generated at that time can be made relatively inexpensive. Can be provided. Therefore, introduction is easy even in small and medium-sized factories, waste treatment plants, sewage treatment plants, pig farms and poultry farms, and the odor environment in the region can be improved.
  • unnecessary substances generated during heat treatment for drying waste, particularly unnecessary substances contained in exhaust gas can be sufficiently removed at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

Provided are the following: a gas purification device capable of sufficiently removing unnecessary substances from a gas at a low cost; a gas purifying method; a waste treatment device; and a drying treatment device. This gas purification device (1) is provided with a first purification unit (10) having at least two spray means for spraying water to a gas, and a second purification unit (20) provided with a porous ceramic sintered body-type adsorption means for purifying a gas. The first purification unit (10) and the second purification unit (20) are connected.

Description

ガス浄化装置及びガス浄化方法Gas purification device and gas purification method
 本発明は、ガス浄化装置、ガス浄化方法、廃棄物処理装置及び乾燥処理装置に関するものである。 本願は、2013年4月25日に日本に出願された特願2013-092927号、2013年4月25日に日本に出願された特願2013-092928号、2013年8月2日に日本に出願された特願2013-161805号及び2013年8月30日に日本に出願された特願2013-180276号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a gas purification device, a gas purification method, a waste treatment device, and a drying treatment device. This application is filed in Japanese Patent Application No. 2013-092927 filed in Japan on April 25, 2013, Japanese Patent Application No. 2013-092928 filed in Japan on April 25, 2013, and in Japan on August 2, 2013. The priority is claimed based on Japanese Patent Application No. 2013-161805 and Japanese Patent Application No. 2013-180276 filed in Japan on August 30, 2013, the contents of which are incorporated herein by reference.
 生ごみ、下水汚泥、養鶏・養豚場等の糞尿、ゴミ焼却炉等から、アンモニア、メチルメルカプタン、硫化水素、トリメチルアミン、酢酸、メタン、煤塵等の悪臭物質、有害物質、煤塵等の不要物質が発生することがある。発生した不要物質は様々な方法によって除去されている。
 不要物質を低コストで除去する方法として、スラグと粘土を混合し、焼成したセラミックス多孔質体に酸性物質や塩基性物質を担持させ、そのセラミックス多孔質体に不要物質を含むガスを通す方法が知られている(特許文献1)。
Undesirable odorous substances such as ammonia, methyl mercaptan, hydrogen sulfide, trimethylamine, acetic acid, methane, and dust, harmful substances, and dust are generated from kitchen waste, sewage sludge, poultry and sewage from poultry farms and pig farms, etc. There are things to do. The generated unnecessary substances are removed by various methods.
As a method for removing unnecessary substances at low cost, there is a method in which slag and clay are mixed, an acidic substance or a basic substance is supported on a fired ceramic porous body, and a gas containing unnecessary substances is passed through the ceramic porous body. Known (Patent Document 1).
 生ごみ、下水汚泥、養鶏・養豚場等の糞尿等の、水分を含む有機性廃棄物を処理する方法については様々な方法が知られている。
 例えば、特許文献2には、下水処理場、家庭用・大型浄化槽あるいは食品工場の処理場に発生する汚泥の処理方法として、連続炭化装置を用いて汚泥を炭化して、燃料、肥料、水浄化剤、土壌改良剤として用いることができる紛炭にする方法が開示されている。
 特許文献3には、下水道などから排出される有機性汚泥を400℃~800℃の温度で、かつ、外気遮断性を高めた状態(すなわち、低酸素状態、還元性雰囲気)で加熱処理して、汚泥炭化物を得る方法が開示されている。
Various methods are known for treating organic waste containing water, such as garbage, sewage sludge, and manure from chicken farms and pig farms.
For example, in Patent Document 2, as a method for treating sludge generated in a sewage treatment plant, a household / large-scale septic tank, or a treatment plant of a food factory, the sludge is carbonized using a continuous carbonization device to produce fuel, fertilizer, and water purification. Disclosed is a method for making powder coal that can be used as an agent and a soil conditioner.
In Patent Document 3, organic sludge discharged from sewers is heat-treated at a temperature of 400 ° C. to 800 ° C. and in a state where the outside air blocking property is enhanced (ie, low oxygen state, reducing atmosphere). A method of obtaining sludge carbide is disclosed.
 しかしながら、特許文献2、3に記載の方法で有機性廃棄物を処理した場合には、加熱処理時に悪臭物質等の不要物質が発生するため、改善が求められていた。
 特許文献4には、農村集落排水処理施設、下水処理場、有機排水処理施設等から排出される汚泥を、ロータリーキルン式の炭化炉を用い、450~550℃で炭化し、得られた炭化物を脱臭剤として用いることが開示されている。
 特許文献5では、汚泥等の有機性廃棄物を低酸素状態で加熱して炭化物を生成し、その際に排出されるガス中の悪臭物質を、白金貴金属触媒を用いた触媒処理、マイクロバブルを用いたオゾン処理、高温プラズマを用いたプラズマ処理の少なくとも1つによって除去する方法が提案されている。
However, when organic waste is treated by the methods described in Patent Documents 2 and 3, an unnecessary substance such as a malodorous substance is generated during the heat treatment, and thus improvement has been demanded.
In Patent Document 4, sludge discharged from a rural settlement wastewater treatment facility, a sewage treatment plant, an organic wastewater treatment facility, etc. is carbonized at 450 to 550 ° C. using a rotary kiln type carbonization furnace, and the resulting carbide is deodorized. Use as an agent is disclosed.
In Patent Document 5, organic waste such as sludge is heated in a low oxygen state to generate carbides, malodorous substances in the gas discharged at that time are treated with a platinum precious metal catalyst, microbubbles. There has been proposed a method of removing by at least one of ozone treatment used and plasma treatment using high-temperature plasma.
 特許文献6では、生ごみ、食品加工残渣、下水汚泥等の水を含む有機性廃棄物の減容化や腐敗防止、さらには再資源化等を目的として乾燥処理が行われている。特許文献6で乾燥処理時に排気される蒸気の中に含まれる微粉を除去するためバグフィルタを用いることが記載されている。
 また、特許文献7には、汚泥乾燥処理時に排出されるガス中に含まれる悪臭成分を脱臭する方法として、酵素を含む微生物を汚泥等に混合し有機汚泥を発酵させて脱臭する方法、クーリングタワーの冷却水をスクラバの脱臭流体として用いる方法、冷却水に酵素を含む微生物を添加することにより臭気成分や水溶性有害物質を分解除去する方法が記載されている。
 また、特許文献8には、汚泥乾燥時に排出されるガス中に含まれる悪臭成分を除去するためにオゾンを用いる方法が記載されている。
 また、特許文献9には、バグフィルタ、消石灰等のアルカリ剤を付着させたバグフィルタ用ろ布、白金等の触媒脱臭装置を用いるものも記載されている。
In Patent Document 6, a drying process is performed for the purpose of reducing the volume of organic waste containing water such as garbage, food processing residue, and sewage sludge, preventing spoilage, and recycling. Patent Document 6 describes using a bag filter to remove fine powder contained in steam exhausted during a drying process.
Patent Document 7 discloses a method for deodorizing malodorous components contained in gas discharged during sludge drying treatment by mixing microorganisms containing enzymes into sludge and the like, fermenting organic sludge, and deodorizing the cooling tower. A method of using cooling water as a deodorizing fluid for scrubbers and a method of decomposing and removing odor components and water-soluble harmful substances by adding microorganisms containing enzymes to the cooling water are described.
Patent Document 8 describes a method of using ozone to remove malodorous components contained in the gas discharged during sludge drying.
Patent Document 9 also describes a bag filter, a bag filter filter cloth to which an alkali agent such as slaked lime is attached, and a catalyst deodorizing device such as platinum.
特許第4063316号公報Japanese Patent No. 4063316 特開平6-128576号公報JP-A-6-128576 特開2000-80386号公報Japanese Patent Laid-Open No. 2000-80386 特開2006-63105号公報JP 2006-63105 A 特開2013-43149号公報JP 2013-43149 A 特開2006-17335号公報JP 2006-17335 A 特開2010-236731号公報JP 2010-236731 A 特開2008-104986号公報JP 2008-104986 A 特開2009-66563号公報JP 2009-66563 A
 しかし、特許文献1に記載のガス浄化方法では、不要物質の除去が不充分であり、さらなる除去性能の向上が求められていた。 However, in the gas purification method described in Patent Document 1, unnecessary substances are not sufficiently removed, and further improvement in removal performance has been demanded.
 また、特許文献4に記載の汚泥の炭化物では、充分な脱臭性が得られなかった。特許文献5に記載の不要物質除去方法では、高コストであり、実用的ではなかった。 Further, the sludge carbide described in Patent Document 4 did not provide sufficient deodorization properties. The unnecessary substance removing method described in Patent Document 5 is expensive and impractical.
 特許文献6に記載の方法では、微粉を除去することができても、悪臭成分の除去は充分でない。
 また、特許文献7に記載の方法では、微生物や酵素の活性を上げるための温度管理が煩雑である。また、微生物を殺さず、酵素を失活させないためにも、乾燥温度を抑えなくてはならないため、乾燥処理の効率が低下する。さらに、悪臭成分の除去の即効性が小さく、クーリングタワーを用いた悪臭成分の除去も充分ではない。
 また、特許文献8に記載の方法では、処理後の排出ガスの中にオゾンの残留物やオゾンにより分解され生成された有害物質が混入するおそれがあり、これらの対策を行うためのコストが嵩み、好ましくない。
 また、特許文献9に記載の方法では、触媒脱臭装置を300℃程度に加熱する必要があるためランニングコストが高くなり、さらに、白金等の貴金属触媒のコストもかかる。
In the method described in Patent Document 6, even if fine powder can be removed, removal of malodorous components is not sufficient.
Further, in the method described in Patent Document 7, temperature management for increasing the activity of microorganisms and enzymes is complicated. Moreover, since the drying temperature must be suppressed in order not to kill the microorganisms and inactivate the enzyme, the efficiency of the drying process decreases. Furthermore, the immediate effect of removing malodorous components is small, and the removal of malodorous components using a cooling tower is not sufficient.
Further, in the method described in Patent Document 8, there is a possibility that ozone residues and harmful substances generated by decomposition by ozone may be mixed in the exhaust gas after treatment, and the cost for taking these measures is high. However, it is not preferable.
Further, in the method described in Patent Document 9, the catalyst deodorizing apparatus needs to be heated to about 300 ° C., so that the running cost is increased, and further, the cost of a noble metal catalyst such as platinum is also increased.
 そこで、本発明は、ガス中の不要物質を低コストで充分に除去できるガス浄化装置及びガス浄化方法及び廃棄物処理装置を提供することを課題とする。 Therefore, an object of the present invention is to provide a gas purification device, a gas purification method, and a waste treatment device that can sufficiently remove unnecessary substances in a gas at low cost.
 また、本発明は、廃棄物の乾燥のための加熱処理時に発生する不要物質、特に、排気ガス中に含まれる不要物を、低コストで充分に除去できる乾燥処理装置を提供することを目的とする。 Another object of the present invention is to provide a drying apparatus capable of sufficiently removing unnecessary substances generated during heat treatment for drying waste, particularly unnecessary substances contained in exhaust gas, at low cost. To do.
 上記課題を解決するために、本発明は以下の構成を有する。
[1A] ガスに水を噴霧する噴霧手段を2個以上有する第1浄化部と、ガスを浄化する多孔質セラミックス焼成体製の吸着手段を備えた第2浄化部とを具備し、前記第1浄化部と前記第2浄化部とが接続されている、ガス浄化装置。
[2A] 前記第1浄化部の下流側に前記第2浄化部が配置されている、[1A]に記載のガス浄化装置。
[3A] 前記多孔質セラミックス焼成体が、多孔質セラミックス焼成体用原料が混合された後、乾燥されずに焼成されて得られたものである、[1A]または[2A]に記載のガス浄化装置。
[4A] 前記多孔質セラミックス焼成体が粒状物である、[1A]~[3A]のいずれか1項に記載のガス浄化装置。
[5A] 前記第2浄化部が、前記多孔質セラミックス焼成体に水を供給する水供給手段を備える、[1A]~[4A]のいずれか1項に記載のガス浄化装置。
[6A] 前記水供給手段で供給される水が、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含む、[5A]に記載のガス浄化装置。
In order to solve the above problems, the present invention has the following configuration.
[1A] The first purifier having two or more spraying means for spraying water on the gas, and the second purifying part having an adsorbing means made of a porous ceramic fired body for purifying the gas are provided. A gas purification apparatus in which a purification unit and the second purification unit are connected.
[2A] The gas purification device according to [1A], wherein the second purification unit is disposed downstream of the first purification unit.
[3A] The gas purification according to [1A] or [2A], wherein the porous ceramic fired body is obtained by mixing the raw materials for the porous ceramic fired body and then firing without drying. apparatus.
[4A] The gas purification apparatus according to any one of [1A] to [3A], wherein the porous ceramic fired body is a granular material.
[5A] The gas purification apparatus according to any one of [1A] to [4A], wherein the second purification unit includes water supply means for supplying water to the porous ceramic fired body.
[6A] The gas purification device according to [5A], wherein the water supplied by the water supply unit includes at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant.
[7A] ガス中に2か所以上から水を噴霧する第1浄化工程と、ガスを多孔質セラミックス焼成体で浄化する第2浄化工程とを有する、ガス浄化方法。
[8A] 前記第1浄化工程の後に前記第2浄化工程をおこなう、[7A]に記載のガス浄化方法。
[9A] 前記多孔質セラミックス焼成体として、多孔質セラミックス焼成体用原料を混合した後、乾燥せずに焼成して得たものを用いる、[7A]または[8A]に記載のガス浄化方法。
[10A] 前記第2浄化工程では、前記多孔質セラミックス焼成体に水を供給する、[7A]~[9A]のいずれか1項に記載のガス浄化方法。
[11A] 前記多孔質セラミックス焼成体に供給する水に、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含有させる、[10A]に記載のガス浄化方法。
[7A] A gas purification method comprising a first purification step of spraying water from two or more locations in a gas and a second purification step of purifying the gas with a porous ceramic fired body.
[8A] The gas purification method according to [7A], wherein the second purification step is performed after the first purification step.
[9A] The gas purification method according to [7A] or [8A], wherein the porous ceramic fired body is obtained by mixing raw materials for a porous ceramic fired body and firing without drying.
[10A] The gas purification method according to any one of [7A] to [9A], wherein in the second purification step, water is supplied to the porous ceramic fired body.
[11A] The gas purification method according to [10A], wherein water supplied to the fired porous ceramic body contains at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant.
 また、上記課題を解決するために、本発明は以下の構成を有する。
[1B] 水分を含む有機性廃棄物を加熱する加熱部と、該加熱部から排出されるガスを浄化するガス浄化部とを具備し、前記ガス浄化部が、前記ガスに水を噴霧する噴霧手段、及び、前記ガスを浄化する多孔質セラミックス焼成体製の吸着手段の少なくとも一方を備える、廃棄物処理装置。
[2B] 前記ガス浄化部が、前記噴霧手段と前記吸着手段の両方を備える請求項12に記載の廃棄物処理装置。
[3B] 前記ガス浄化部が、前記噴霧手段と前記吸着手段の両方を備え、前記噴霧手段の下流側に前記吸着手段が配置されている、[2B]に記載の廃棄物処理装置。
[4B] 前記多孔質セラミックス焼成体が、多孔質セラミックス焼成体用原料が混合された後、乾燥されずに焼成されて得られたものである、[2B]または[3B]に記載の廃棄物処理装置。
[5B] 前記多孔質セラミックス焼成体が粒状物である、[2B]~[4B]のいずれか1項に記載の廃棄物処理装置。
[6B] 前記噴霧手段で供給される水が、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含む、[2B]~[5B]のいずれか1項に記載の廃棄物処理装置。
Moreover, in order to solve the said subject, this invention has the following structures.
[1B] A spray that includes a heating unit that heats organic waste containing moisture and a gas purification unit that purifies gas discharged from the heating unit, and the gas purification unit sprays water on the gas. A waste treatment apparatus comprising at least one of a means and an adsorption means made of a fired porous ceramic body for purifying the gas.
[2B] The waste treatment apparatus according to claim 12, wherein the gas purification unit includes both the spraying means and the adsorption means.
[3B] The waste treatment apparatus according to [2B], wherein the gas purification unit includes both the spraying unit and the adsorbing unit, and the adsorbing unit is disposed downstream of the spraying unit.
[4B] The waste according to [2B] or [3B], wherein the porous ceramic fired body is obtained by firing the porous ceramic fired body raw material and then drying without drying. Processing equipment.
[5B] The waste treatment apparatus according to any one of [2B] to [4B], wherein the porous ceramic fired body is a granular material.
[6B] The water according to any one of [2B] to [5B], wherein the water supplied by the spraying means includes at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant. Waste treatment equipment.
 また、上記課題を解決するために、本発明は以下の構成を有する。
[1C] 水分を含む有機性廃棄物を乾燥する加熱部と、該加熱部から排出されるガスを浄化するガス浄化部とを具備し、前記ガス浄化部が、前記ガスに複数の方向から水を噴霧する噴霧手段、及び、前記ガスを浄化する多孔質セラミックス焼成体製の吸着手段のうち、少なくとも一方を備える、乾燥処理装置。
[2C] 前記ガス浄化部が、前記噴霧手段と前記吸着手段の両方を備える[1C]に記載の乾燥処理装置。
[3C] 前記吸着手段が、ガスの流れにおいて前記噴霧手段の下流側に配置されている、[2C]に記載の乾燥処理装置。
[4C] 前記多孔質セラミックス焼成体が、多孔質セラミックス焼成体用原料が混合された後、乾燥されずに焼成されて得られたものである、[2C]又は[3C]に記載の乾燥処理装置。
[5C] 前記多孔質セラミックス焼成体が粒状物である、[2C]~[4C]のいずれか1項に記載の乾燥処理装置。
[6C] 前記噴霧手段で供給される水が、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含む、[2C]~[5C]のいずれか1項に記載の乾燥処理装置。
Moreover, in order to solve the said subject, this invention has the following structures.
[1C] A heating unit that dries organic waste containing moisture and a gas purification unit that purifies the gas discharged from the heating unit, and the gas purification unit is configured to supply water to the gas from a plurality of directions. A drying treatment apparatus comprising at least one of spraying means for spraying and adsorption means made of a fired porous ceramic body for purifying the gas.
[2C] The drying processing apparatus according to [1C], wherein the gas purification unit includes both the spraying unit and the adsorption unit.
[3C] The drying processing apparatus according to [2C], wherein the adsorption unit is disposed on the downstream side of the spray unit in a gas flow.
[4C] The drying treatment according to [2C] or [3C], in which the porous ceramic fired body is obtained by firing the porous ceramic fired body raw material without being dried. apparatus.
[5C] The drying apparatus according to any one of [2C] to [4C], wherein the porous ceramic fired body is a granular material.
[6C] The water according to any one of [2C] to [5C], wherein the water supplied by the spraying means includes at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant. Drying processing equipment.
 本発明のガス浄化装置及びガス浄化方法によれば、ガス中の不要物質を低コストで充分に除去できる。 According to the gas purification apparatus and the gas purification method of the present invention, unnecessary substances in the gas can be sufficiently removed at low cost.
 また、本発明の廃棄物処理装置は、水分を含む有機性廃棄物を減容化することができ、かつ、その際に発生する悪臭物質の排出を抑えた廃棄物処理装置を比較的安価に提供することができる。従って、中小規模の工場、廃棄物処理場、汚水処理場、養豚・養鶏場などであっても導入が容易であり、地域の臭気環境を向上させることができる。 In addition, the waste treatment apparatus of the present invention can reduce the volume of organic waste containing water, and the waste treatment apparatus that suppresses the emission of malodorous substances generated at that time can be made relatively inexpensive. Can be provided. Therefore, introduction is easy even in small and medium-sized factories, waste treatment plants, sewage treatment plants, pig farms and poultry farms, and the odor environment in the region can be improved.
 また、本発明の乾燥処理装置によれば、廃棄物の乾燥のための加熱処理時に発生する不要物質、特に、排気ガス中に含まれる不要物を、低コストで充分に除去できる。 Moreover, according to the drying treatment apparatus of the present invention, unnecessary substances generated during the heat treatment for drying waste, particularly unnecessary substances contained in the exhaust gas, can be sufficiently removed at low cost.
本発明のガス浄化装置の一例を示す模式図である。It is a schematic diagram which shows an example of the gas purification apparatus of this invention. 本発明の廃棄物装置の一例を示す模式図である。It is a schematic diagram which shows an example of the waste apparatus of this invention. 本発明の乾燥処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the drying processing apparatus of this invention.
(ガス浄化装置)
 以下、本発明の一実施形態のガス浄化装置について説明する。
 本実施形態のガス浄化装置は、悪臭物質、有害物質及び煤塵よりなる群から選ばれる少なくとも1つの不要物質を含むガスを浄化する装置であり、第1浄化部と、第1浄化部の下流側に設けられた第2浄化部とを具備する。
(Gas purification device)
Hereinafter, the gas purification apparatus of one Embodiment of this invention is demonstrated.
The gas purification apparatus of this embodiment is an apparatus for purifying a gas containing at least one unnecessary substance selected from the group consisting of malodorous substances, harmful substances, and dust, and includes a first purification unit and a downstream side of the first purification unit. The 2nd purification | cleaning part provided in is comprised.
<第1浄化部>
 第1浄化部は、不要物質を含むガスに水を噴霧する噴霧手段を2個以上有する。噴霧手段としては、水を噴霧できれば特に限定されず、例えば、スプレーノズルやジェットノズルなどが挙げられる。ガスと水との接触機会を高めるためには、各々の噴霧手段の先端の方向が異なることが好ましい。
 噴霧手段から供給される水の噴霧パターンは、ガスとの接触面積を大きくするために、環状、面状または帯状が好ましい。
 後述するように、噴霧手段で噴霧される水には、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種が含まれてもよい。
<First purification unit>
The first purification unit has two or more spraying means for spraying water onto a gas containing unnecessary substances. The spraying means is not particularly limited as long as water can be sprayed, and examples thereof include a spray nozzle and a jet nozzle. In order to increase the chance of contact between gas and water, the direction of the tip of each spray means is preferably different.
The spray pattern of the water supplied from the spray means is preferably annular, planar or strip-shaped in order to increase the contact area with the gas.
As will be described later, the water sprayed by the spraying means may contain at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
 第1浄化部では、噴霧手段を用いてガス中に水を噴霧することにより、不要物質に含まれる煤塵を水に捕捉させることができ、悪臭物質及び有害物質のうちの水溶性成分を水に溶け込ませることができる。特に、第1浄化部は噴霧手段を2個以上有するため、2ヵ所以上から水を噴霧させることができる。これにより、様々な方向に無秩序に且つ高速に乱れ飛ぶ水滴が存在する空間中にガスが通過することになるため、ガスと水の接触機会を増加させることができ、水によって主に煤塵及び水溶性成分をより捕捉できる。
 煤塵及び水溶性成分の少なくとも一方を捕捉した水を第1浄化部から排出して廃棄することにより、ガスから煤塵及び水溶性成分の少なくとも一方を除去できる。
In the 1st purification | cleaning part, by spraying water in gas using a spray means, the dust contained in an unnecessary substance can be captured in water, and the water-soluble component of a malodorous substance and a harmful substance is made into water. Can be melted. In particular, since the first purification unit has two or more spraying means, water can be sprayed from two or more locations. As a result, gas passes through the space where water droplets that are disorderly and turbulently fly at various speeds in various directions can increase the chance of contact between the gas and water. More components can be captured.
By discharging and discarding the water that has captured at least one of the dust and the water-soluble component from the first purification unit, at least one of the dust and the water-soluble component can be removed from the gas.
 第1浄化部では、噴霧した水を回収し、循環ポンプを用いて、再び、噴霧手段に供給しても構わない。
 また、第1浄化部では、噴霧した水を一定量貯水し、その貯水された水に、第1浄化部に供給されるガスを通し、バブリングさせて、不要物質を捕捉してもよい。この場合、貯水された水を通過したガスは、噴霧した水に接触することになる。
In the first purification unit, the sprayed water may be collected and supplied again to the spraying means using a circulation pump.
In the first purification unit, a certain amount of sprayed water may be stored, and the gas supplied to the first purification unit may be bubbled through the stored water to capture unnecessary substances. In this case, the gas that has passed through the stored water comes into contact with the sprayed water.
<第2浄化部>
 本実施形態における第2浄化部は、第1浄化部を経たガスを浄化する多孔質セラミックス焼成体製の吸着手段を備える。また、第2浄化部は、不要物質の除去率が高くなることから、多孔質セラミックス焼成体に水を供給するための水供給手段を有することが好ましい。
<Second purification section>
The 2nd purification | cleaning part in this embodiment is equipped with the adsorption | suction means made from a porous ceramic sintered body which purify | cleans the gas which passed through the 1st purification | cleaning part. Moreover, since the removal rate of an unnecessary substance becomes high, it is preferable that a 2nd purification | cleaning part has a water supply means for supplying water to a porous ceramic sintered body.
[吸着手段]
 第2浄化部における吸着手段の配置は特に限定されないが、ガスとの接触機会が増えることから、ガスの進行方向に対して平行でない方向に配置することが好ましい。さらには、吸着手段を層状とし、ガスの進行方向に対して垂直に配置することがより好ましい。また、層状の吸着手段は複数配置してもよい。層状の吸着手段を複数配置した場合には、吸着手段の層と層の間に空気層を形成してもよいし、他のガス浄化手段を配置してもよい。
 また、第2浄化部においては、水供給手段が設置されている部分を除いて、多孔質セラミックス焼成体で充填してもよい。
[Adsorption means]
Although the arrangement | positioning of the adsorption | suction means in a 2nd purification | cleaning part is not specifically limited, Since a contact opportunity with gas increases, it is preferable to arrange | position in the direction which is not parallel with the advancing direction of gas. Furthermore, it is more preferable that the adsorbing means is layered and arranged perpendicular to the gas traveling direction. A plurality of layered adsorption means may be arranged. When a plurality of layered adsorption means are arranged, an air layer may be formed between the layers of the adsorption means, or other gas purification means may be arranged.
Moreover, in the 2nd purification | cleaning part, you may fill with a porous ceramic sintered body except the part in which the water supply means is installed.
 吸着手段を構成する多孔質セラミックス焼成体は、マイクロメートルオーダーの気孔及びナノメートルオーダーの気孔を有するものである。また、これらの気孔が連通しているものが好ましい。
 より具体的には、多孔質セラミックス焼成体に形成されている気孔の大きさが、孔径1nm以上1000nm未満のナノメートルオーダーの気孔及び孔径1μm以上1000μm未満のマイクロメートルオーダーの気孔を有するものである。また、この範囲以外のミリメートルオーダーの気孔、またそれ以外の大きさの気孔を有していてもよい。例えば、1mm以上100mm未満のミリメートルオーダーの気孔を有していてもよい。
The porous ceramic fired body constituting the adsorbing means has pores in the micrometer order and pores in the nanometer order. Moreover, what has these pores connected is preferable.
More specifically, the pores formed in the porous ceramic fired body have nanometer-order pores having a pore diameter of 1 nm or more and less than 1000 nm and micrometer-order pores having a pore diameter of 1 μm or more and less than 1000 μm. . Further, it may have pores in the order of millimeters outside this range, and pores of other sizes. For example, it may have pores in the millimeter order of 1 mm or more and less than 100 mm.
 気孔の孔径は、多孔質セラミックス焼成体の原料の種類や、焼成条件を組み合わせることにより調節できる。気孔の孔径とは、気孔の長径を指す。ミリメートルオーダーの気孔の孔径は、多孔質セラミックス焼成体をカット(板状物の場合はその厚さ方向に沿ってカット)し、スケールを用いて測定される値である。ナノメートルオーダーの気孔の孔径及びマイクロメートルオーダーの気孔の孔径は、多孔質セラミックス焼成体をカット(板状物の場合はその厚さ方向に沿ってカット)し、電子顕微鏡を用いて測定される値である。 The pore diameter of the pores can be adjusted by combining the type of raw material of the fired porous ceramic body and the firing conditions. The pore diameter refers to the major diameter of the pores. The pore diameter of millimeter-order pores is a value measured using a scale after cutting a porous ceramic fired body (cut along the thickness direction in the case of a plate-like material). The pore diameter of nanometer-order pores and micrometer-order pore diameters are measured using an electron microscope after cutting a porous ceramic fired body (cut in the thickness direction in the case of a plate-like material). Value.
 多孔質セラミックス焼成体がマイクロメートルオーダーの気孔及びナノメートルオーダーの気孔を有すると、後述する好ましい見かけ密度や飽和含水率にしやすくなる。そのため、ガスとの接触面積が増加して、不要物質の除去性能がより高くなる。 When the porous ceramic fired body has pores in the micrometer order and pores in the nanometer order, it becomes easy to obtain a preferable apparent density and saturated water content described later. For this reason, the contact area with the gas increases, and the performance of removing unnecessary substances becomes higher.
 多孔質セラミックス焼成体は、多孔質セラミックス焼成体用原料を混合した後、乾燥せずに焼成して得たものであることが好ましい。ここでいう「乾燥」とは、含水率を1質量%以下にする操作のことである。
 乾燥せずに焼成することにより、焼成時に、混合物に含まれる水分が短時間で大量に蒸発し、多孔質セラミックス焼成体に亀裂が入る。この焼成時の亀裂により、得られる多孔質セラミックス焼成体の内部にまで、焼成時に熱が伝わり、マイクロメートルオーダーの気孔やナノメートルサイズの気孔をより形成できる。さらに、得られた多孔質セラミックス焼成体の亀裂を通して、多孔質セラミックス焼成体に供給される水や水に含まれる酸性物質等、さらにはガス中の不要物質が多孔質セラミックス焼成体の内部に入り込みやすくなり、さらに除去性能を向上できる。
 多孔質セラミックス焼成体の亀裂の大きさは、混合物の組成、焼成速度、焼成時間等により調整できる。
 なお、含水率は、後述する有機性廃棄物の含水率と同様の方法でもとめることができる。
The porous ceramic fired body is preferably obtained by mixing the raw materials for the porous ceramic fired body and then firing without drying. The term “drying” as used herein refers to an operation for setting the moisture content to 1% by mass or less.
By firing without drying, a large amount of water contained in the mixture evaporates in a short time during firing, and the porous ceramic fired body is cracked. Due to the cracks at the time of firing, heat is transferred to the inside of the obtained porous ceramic fired body, and pores of the order of micrometers or nanometer size can be formed more. Further, through the cracks in the obtained porous ceramic fired body, water supplied to the porous ceramic fired body, acidic substances contained in the water, and unnecessary substances in the gas enter the porous ceramic fired body. The removal performance can be improved.
The size of the crack in the porous ceramic fired body can be adjusted by the composition of the mixture, the firing speed, the firing time, and the like.
The water content can also be determined by the same method as the water content of organic waste described later.
 多孔質セラミックス焼成体の形状は、板状物、柱状物、球状物、塊状物、粒状物のいずれであってもよいが、ガスの流れに対する抵抗を小さくし、かつ、ガスと多孔質セラミックス焼成体の接触機会を容易に増やせることから、粒状物が好ましい。
 多孔質セラミックス焼成体の粒状物の粒子径は5cm以下であることが好ましく、3cm以下であることがより好ましい。多孔質セラミックス焼成体の粒状物の粒子径が前記上限値以下であれば、不要物質との接触機会をより多くできる。
 一方、多孔質セラミックス焼成体の粒状物の粒子径は、ガスの流れに対して抵抗が小さくなることから、1mm以上であることが好ましく、5mm以上であることがより好ましい。
The shape of the porous ceramic fired body may be any of a plate-like material, a columnar material, a spherical material, a massive material, and a granular material. Granules are preferred because they can easily increase body contact opportunities.
The particle diameter of the porous ceramic sintered body is preferably 5 cm or less, more preferably 3 cm or less. If the particle size of the porous ceramic sintered body is equal to or less than the above upper limit, the chances of contact with unnecessary substances can be increased.
On the other hand, the particle diameter of the porous ceramic fired body is preferably 1 mm or more and more preferably 5 mm or more because resistance to gas flow is reduced.
 多孔質セラミックス焼成体の粒状物は、様々な大きさの粒状物を用意し、任意の割合で配合して得てもよい。なお、粒子径は篩分けにより測定される値であり、例えば5mm超10mm以下の粒状物とは、目開き10mmの篩を通過し、目開き5mmの篩を通過できないものを意味する。
 なお、粒状物が大きく篩の入手が困難な場合は、粒状物の長辺をノギス等で測定し、粒子径としてもよい。
The granular material of the fired porous ceramic body may be obtained by preparing granular materials of various sizes and blending them at an arbitrary ratio. The particle diameter is a value measured by sieving. For example, a granular material having a size of more than 5 mm and not more than 10 mm means a particle that passes through a sieve having an opening of 10 mm and cannot pass through a sieve having an opening of 5 mm.
In addition, when the granular material is large and it is difficult to obtain a sieve, the long side of the granular material may be measured with a caliper or the like to obtain the particle diameter.
 多孔質セラミックス焼成体は、見かけ密度が0.3~1.5g/mlであることが好ましい。見かけ密度の上限については、1.1g/ml以下であることがより好ましく、0.8g/ml以下であることがより好ましい。上記範囲内であれば、多孔質セラミックス焼成体の強度を保ちつつ、多孔質セラミックス焼成体内の気孔が多くなる。そのため、多孔質セラミックス焼成体の表面積が大きくなり、ガス中の不要物質との接触機会を増大させることができる。
 上記の見かけ密度は、「土壌標準分析・測定法」(博友社)の中の三相分布・容積重(実容積法)にて測定される乾土質量(g)より求められる容積重(仮比重、g/ml)である。
 なお、多孔質セラミックス焼成体が大きいときの見かけ密度の単位は、実施例で説明する測定方法より、「g/cm」となる。
The porous ceramic fired body preferably has an apparent density of 0.3 to 1.5 g / ml. The upper limit of the apparent density is more preferably 1.1 g / ml or less, and more preferably 0.8 g / ml or less. Within the above range, the pores in the fired porous ceramic body increase while maintaining the strength of the fired porous ceramic body. Therefore, the surface area of the porous ceramic fired body is increased, and the chance of contact with unnecessary substances in the gas can be increased.
The above-mentioned apparent density is the bulk density (g) determined from the dry soil mass (g) measured by the three-phase distribution / volumetric weight (actual volume method) in “Soil Standard Analysis / Measurement Method” (Hakutosha). Provisional specific gravity, g / ml).
In addition, the unit of the apparent density when the porous ceramic fired body is large is “g / cm 3 ” based on the measurement method described in Examples.
 多孔質セラミックス焼成体は、飽和含水率が15~100質量%であることが好ましい。飽和含水率の下限については、30質量%以上であることがより好ましい。飽和含水率が上記の範囲内であれば、多孔質セラミックス焼成体の強度を保ちつつ、多孔質セラミックス焼成体内の気孔が多くなる。そのため、多孔質セラミックス焼成体の表面積が大きくなり、ガス中の不要物質との接触機会を増大させることができる。
 なお、多孔質セラミックス焼成体の飽和含水率が前記上限値より大きいと、多孔質セラミックス焼成体の気孔率が大きく、また、飽和含水率が前記下限値より小さいと、気孔率が小さく、飽和含水率と気孔率には相関関係があるとみなすことができる。例えば、多孔質セラミックス焼成体の飽和含水率は、多孔質セラミックス焼成体の気孔率とみなすこともできる。
The fired porous ceramic body preferably has a saturated moisture content of 15 to 100% by mass. About the minimum of saturation moisture content, it is more preferable that it is 30 mass% or more. When the saturated moisture content is within the above range, the pores in the porous ceramic fired body increase while maintaining the strength of the porous ceramic fired body. Therefore, the surface area of the porous ceramic fired body is increased, and the chance of contact with unnecessary substances in the gas can be increased.
When the saturated moisture content of the porous ceramic fired body is larger than the above upper limit value, the porosity of the porous ceramic fired body is large, and when the saturated moisture content is smaller than the lower limit value, the porosity is small and the saturated water content It can be considered that there is a correlation between the rate and the porosity. For example, the saturated water content of the porous ceramic fired body can be regarded as the porosity of the porous ceramic fired body.
 また、多孔質セラミックス焼成体には、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種が担持されてもよい。
 具体的な酸性物質、塩基性物質、界面活性剤としては、以下のものが挙げられる。
 酸性物質としては、酸化チタン、二酸化けい素、硫酸アルミニウム、塩化アンモニウム、塩化亜鉛などの無機化合物、アクリル酸などのカルボキシル基含有化合物やスルホン酸基含有化合物、リン酸系化合物などの有機化合物が挙げられる。
 塩基性物質としては、酸化亜鉛、酸化マグネシウムおよび酸化バリウム等の無機化合物、ポリアミン系化合物、ジシアンジアミド系化合物、第四級アンモニウム系化合物などの有機化合物が挙げられる。
 なお、酸化亜鉛や酸化アルミニウムなどの両性物質は、処理の対象物質が酸性物質である場合には塩基性物質となり、処理の対象物質が塩基性物質の場合には酸性物質となる。従って、本発明においては、両性物質は、酸性物質又は塩基性物質に包含される。
 界面活性剤としては、カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩などのアニオン界面活性剤、アミン塩型、第4級アンモニウム塩型などのカチオン系界面活性剤、脂肪酸エチレンオキサイド付加物などのポリエチレングリコール型の非イオン界面活性剤、グリセロールの脂肪酸エステルなどの多価アルコール型の非イオン界面活性剤、ベタイン型、アミノ酸型、イミダゾリン型両性界面活性剤が挙げられる。これらの界面活性剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
 前記の酸性物質、塩基性物質、界面活性剤は臭いを有さないものが好ましく、例えば、両性界面活性剤ではアルキル部の炭素数が10以上で、純度の高いものが好ましい。
 酸性物質、塩基性物質、界面活性剤は、複数のものを組み合わせて使用してもよいが、酸性物質と塩基性物質を併用する場合にはこれらが結合しないように界面活性剤等で均一な分散状態を保つようにすることが好ましい。
The porous ceramic fired body may carry at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
Specific examples of acidic substances, basic substances, and surfactants include the following.
Examples of the acidic substance include inorganic compounds such as titanium oxide, silicon dioxide, aluminum sulfate, ammonium chloride, and zinc chloride, and organic compounds such as carboxyl group-containing compounds such as acrylic acid, sulfonic acid group-containing compounds, and phosphoric acid compounds. It is done.
Examples of the basic substance include inorganic compounds such as zinc oxide, magnesium oxide and barium oxide, and organic compounds such as polyamine compounds, dicyandiamide compounds and quaternary ammonium compounds.
Note that amphoteric substances such as zinc oxide and aluminum oxide become basic substances when the target substance to be treated is an acidic substance, and become acidic substances when the target substance to be treated is a basic substance. Therefore, in the present invention, the amphoteric substance is included in the acidic substance or the basic substance.
Surfactants include anionic surfactants such as carboxylates, sulfates, sulfonates and phosphates, cationic surfactants such as amine salts and quaternary ammonium salts, and fatty acid ethylene oxide. Examples include polyethylene glycol type nonionic surfactants such as adducts, polyhydric alcohol type nonionic surfactants such as fatty acid esters of glycerol, betaine type, amino acid type, and imidazoline type amphoteric surfactants. These surfactants can be used singly or in combination of two or more.
The acidic substance, basic substance, and surfactant preferably have no odor. For example, amphoteric surfactants preferably have a high purity with 10 or more carbon atoms in the alkyl moiety.
A plurality of acidic substances, basic substances, and surfactants may be used in combination, but when an acidic substance and a basic substance are used in combination, a uniform surfactant or the like is used so that they do not bond. It is preferable to maintain a dispersed state.
 多孔質セラミックス焼成体の製造方法の一例について説明する。ただし、多孔質セラミックス焼成体の製造方法は、下記例の製造方法に限定されるものではない。
 本例の多孔質セラミックス焼成体の製造方法は、多孔質セラミックス焼成体用の原料を混合して混合物(以下、単に「混合物」ということがある)を調製し(混合工程)、該混合物を成形して成形体を作製し(成形工程)、該成形体を焼成して多孔質セラミックス焼成体を得る(焼成工程)方法である。
An example of a method for producing a porous ceramic fired body will be described. However, the manufacturing method of a porous ceramic fired body is not limited to the manufacturing method of the following example.
The porous ceramic fired body manufacturing method of this example is prepared by mixing raw materials for a porous ceramic fired body to prepare a mixture (hereinafter, simply referred to as “mixture”) (mixing step), and molding the mixture. Thus, a molded body is produced (molding step), and the molded body is fired to obtain a porous ceramic fired body (firing step).
 混合工程は、粘土を含む原料を混合して混合物を得る工程である。
 混合物としては、例えば、発泡剤と粘土とを含むものが好ましく、発泡剤、有機汚泥及び粘土を含むものがより好ましい。また、珪藻土を配合してもよい。発泡剤と粘土を用いることで大きなミリメートルオーダーの気孔やマイクロメートルオーダーの気孔また多孔質セラミックス焼成体の表面にミリメートルオーダー、マイクロメートルオーダーの凹凸を形成することができる。さらに、有機汚泥を用いることでより多くのマイクロメートルオーダーの気孔と、さらに小さなナノメートルオーダーの気孔を形成することができる。このような混合物を焼成して得られた多孔質セラミックス焼成体は、相互の気孔が連通した孔を有するものとなる。さらに、珪藻土を加えることで、珪藻土由来のマイクロメートルオーダー等の気孔を有するものとなる。
The mixing step is a step of obtaining a mixture by mixing raw materials including clay.
As a mixture, the thing containing a foaming agent and clay is preferable, for example, and the thing containing a foaming agent, organic sludge, and clay is more preferable. Moreover, you may mix | blend diatomaceous earth. By using a foaming agent and clay, irregularities in the order of millimeters and micrometers can be formed on the surface of large pores in the order of millimeters, pores in the order of micrometers, or porous ceramic fired bodies. Furthermore, by using organic sludge, more micrometer-order pores and even smaller nanometer-order pores can be formed. A porous ceramic fired body obtained by firing such a mixture has pores in which the pores communicate with each other. Furthermore, by adding diatomaceous earth, it has pores such as micrometer order derived from diatomaceous earth.
 発泡剤は、焼成時に発泡するものであり、例えば、炭酸カルシウム、炭化ケイ素、炭酸マグネシウム、スラグ等の公知のセラミックス用の発泡剤を用いることができる。これら発泡剤の中でも、スラグが好ましい。スラグは、特に限定されず、例えば、金属精錬時に発生する高炉スラグ、都市ゴミの溶融時に発生する都市ゴミ溶融スラグ、下水汚泥の溶融時に発生する下水汚泥溶融スラグ、ダクタイル鋳鉄等の鋳鉄時に発生する鋳鉄スラグ等のガラス質スラグ等が挙げられ、中でも、組成が安定しているため安定した発泡状態が得られると共に、他のスラグに比べ1.5~2倍程度の発泡率である鋳鉄スラグがより好ましい。
 また、鋳鉄スラグは、SiO、Al、CaO、Fe、FeO、MgO、MnO、KO、NaOなどの成分を含み、得られる多孔質セラミックス焼成体は、塩基性物質を別途担持させなくとも優れた酸性物質除去性を有している。
A foaming agent foams at the time of baking, For example, well-known foaming agents for ceramics, such as calcium carbonate, silicon carbide, magnesium carbonate, and slag, can be used. Of these foaming agents, slag is preferred. The slag is not particularly limited. For example, slag is generated at the time of cast iron such as blast furnace slag generated during metal refining, municipal waste melting slag generated when melting municipal waste, sewage sludge melting slag generated when sewage sludge is melted, and ductile cast iron. Examples include glassy slag such as cast iron slag. Among them, a stable foamed state can be obtained because of its stable composition, and cast iron slag having a foaming ratio of about 1.5 to 2 times that of other slags is obtained. More preferred.
The cast iron slag contains components such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , FeO, MgO, MnO, K 2 O, Na 2 O, and the obtained porous ceramic fired body is a base. It has excellent acid substance removability without having to carry a separate substance.
 配合物中のスラグの配合量は、混合物の成形性を勘案して決定することができ、例えば、80質量%以下が好ましく、20~75質量%がより好ましく、30~65質量%がさらに好ましい。上記範囲内であれば、混合物の成形性を損なわず、かつ円滑に成形できると共に、多孔質セラミックス焼成体の見かけ密度、気孔率(飽和含水率)を好適な範囲にすることができる。 The blending amount of slag in the blend can be determined in consideration of the moldability of the mixture. For example, it is preferably 80% by weight or less, more preferably 20 to 75% by weight, and even more preferably 30 to 65% by weight. . Within the above range, the moldability of the mixture can be smoothly and smoothly formed, and the apparent density and porosity (saturated water content) of the porous ceramic fired body can be adjusted to a suitable range.
 有機汚泥は、主成分として有機物を含有する汚泥である。有機汚泥は、任意のものを用いることができ、下水や工場等の排水処理に由来する活性汚泥が特に好ましい。活性汚泥は、活性汚泥法を用いた排水処理設備から、凝集・脱水工程を経て排出される。このような有機汚泥を用いることで、マイクロメートルオーダーの気孔を効率的に形成でき、さらに、ナノメートルオーダーの気孔を形成できる。ナノメートルオーダーの気孔が形成されることで、多孔質セラミックス焼成体の見かけ密度を小さく、気孔率(飽和含水率)をより高めることができ、不要物質との接触機会を増加させることができる。さらに、廃棄物の位置付けであった排水処理由来の活性汚泥を原料として利用することができる。
 有機汚泥の含水率は、例えば、10~90質量%が好ましく、65~85質量%がより好ましい。上記範囲内であれば、均質な混合物が得られると共に、良好な成形性を維持しやすい。
Organic sludge is sludge containing an organic substance as a main component. Any organic sludge can be used, and activated sludge derived from wastewater treatment such as sewage or factory is particularly preferable. The activated sludge is discharged from a wastewater treatment facility using the activated sludge method through a coagulation / dehydration process. By using such organic sludge, pores on the order of micrometers can be efficiently formed, and pores on the order of nanometers can be formed. By forming nanometer-order pores, the apparent density of the porous ceramic fired body can be reduced, the porosity (saturated water content) can be further increased, and the chance of contact with unnecessary substances can be increased. Furthermore, activated sludge derived from wastewater treatment, which has been positioned as waste, can be used as a raw material.
The water content of the organic sludge is, for example, preferably 10 to 90% by mass, and more preferably 65 to 85% by mass. If it is in the said range, while obtaining a homogeneous mixture, it is easy to maintain favorable moldability.
 有機汚泥中の有機物の含有量は、特に限定されないが、例えば、有機汚泥の固形分中の有機物の含有量(有機物含有量)として70質量%以上が好ましく、80質量%以上がより好ましい。前記有機物含有量が多いほど、マイクロメートルオーダーの気孔を容易に形成でき、さらに、ナノメートルオーダーの気孔を形成できる。なお、有機物含有量は、乾燥後の汚泥をJIS M8812-1993に準じ、炭化温度700℃で灰分(質量%)を測定し、下記(1)式により求まる値である。 The content of the organic substance in the organic sludge is not particularly limited. For example, the content of the organic substance (organic substance content) in the solid content of the organic sludge is preferably 70% by mass or more, and more preferably 80% by mass or more. The larger the organic content, the easier it is to form micrometer-order pores, and nanometer-order pores. The organic content is a value obtained from the following formula (1) by measuring the ash content (mass%) of the sludge after drying at a carbonization temperature of 700 ° C. according to JIS M8812-1993.
 有機物含有量(質量%)=100(質量%)-灰分(質量%)  ・・・(1) Organic matter content (% by mass) = 100 (% by mass) -ash content (% by mass) (1)
 有機汚泥の平均粒子径は、好ましくは1~5μm、より好ましくは1~3μmとされる。有機汚泥は、焼成により焼失し、その部分に気孔を形成するため、平均粒子径が小さいほど、マイクロメートルオーダーの気孔を容易に形成でき、さらに、ナノメートルオーダーの気孔を形成できる。なお、平均粒子径は、粒度分布測定装置(LA-920、株式会社堀場製作所製)により測定される体積基準のメディアン径(体積50%径)である。 The average particle diameter of the organic sludge is preferably 1 to 5 μm, more preferably 1 to 3 μm. Since organic sludge is burned off by firing and pores are formed there, pores on the order of micrometers can be formed more easily as the average particle size is smaller, and pores on the order of nanometers can be formed. The average particle diameter is a volume-based median diameter (volume 50% diameter) measured by a particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.).
 混合物中の有機汚泥の含有量は、混合物の成形性等を勘案して決定することができ、例えば、1~60質量%が好ましく、5~40質量%がより好ましく、5~30質量%がさらに好ましい。有機汚泥の含水量が65質量%以上の場合では、上記範囲内であれば混合物は適度な流動性と可塑性とを備え、成形性が向上し、成形装置を閉塞することなく円滑に成形できる。また、含水率が35質量%未満の有機汚泥の場合は、30質量%を上回ると、ミリメートルオーダーの気孔が少なくなる。 The content of organic sludge in the mixture can be determined in consideration of the moldability of the mixture, for example, preferably 1 to 60% by mass, more preferably 5 to 40% by mass, and 5 to 30% by mass. Further preferred. When the water content of the organic sludge is 65% by mass or more, the mixture has appropriate fluidity and plasticity within the above range, the moldability is improved, and the molding can be smoothly performed without closing the molding apparatus. In addition, in the case of organic sludge having a moisture content of less than 35% by mass, pores on the order of millimeters decrease when the moisture content exceeds 30% by mass.
 粘土は、一般的に窯業原料として用いられる粘土状の性状を示す鉱物材料である。
 粘土は、セラミックスに用いられる公知のものを用いることができ、石英、長石、粘土系等の鉱物組成で構成され、構成鉱物はカオリナイトを主とし、ハロイサイト、モンモリロナイト、イライト、ベントナイト、パイロフィライトを含むものが好ましい。このような粘土としては、例えば、蛙目粘土等が挙げられる。粘土は、1種単独で又は2種以上を適宜組み合わせて配合できる。これらの粘土に含まれる成分もガスに含まれる悪臭物質、有害物質の除去に効果を発揮する。
Clay is a mineral material that exhibits clay-like properties that are commonly used as ceramic raw materials.
As clay, known materials used for ceramics can be used, and it is composed of mineral composition such as quartz, feldspar, clay, etc., and the constituent mineral is mainly kaolinite, halloysite, montmorillonite, illite, bentonite, pyrophyllite. The thing containing is preferable. Examples of such clays include cocoon clay. Clay can be blended alone or in combination of two or more. The components contained in these clays are also effective in removing malodorous and toxic substances contained in the gas.
 混合物中の粘土の含有量は、多孔質セラミックス焼成体に求める強度や成形性等を勘案して決定でき、例えば、5~60質量%が好ましく、5~50質量%がより好ましく、10~40質量%がさらに好ましい。上記範囲内であれば混合物の成形性を損なわず、かつ円滑に成形できると共に、多孔質セラミックス焼成体の強度を充分なものにできる。 The clay content in the mixture can be determined in consideration of the strength and formability required for the porous ceramic fired body. For example, it is preferably 5 to 60% by mass, more preferably 5 to 50% by mass, and 10 to 40%. More preferred is mass%. If it is in the above-mentioned range, the moldability of the mixture can be smoothly formed without sacrificing, and the strength of the fired porous ceramic body can be made sufficient.
 混合物は、本発明の効果を阻害しない範囲で、任意成分を含有してもよい。任意成分としては、例えば、マイティ2000WH(商品名、花王株式会社製)等のナフタリン系の流動化剤、メルメントF-10(商品名、昭和電工株式会社製)等のメラミン系の流動化剤、ダーレックススーパー100pH(商品名、グレースケミカルズ株式会社製)等のポリカルボン酸系の流動化剤、銀、銅、亜鉛等の抗菌剤、塩化アンモニウム、塩化亜鉛等の消臭剤、ゼオライト、アパタイト等の吸着剤、長さが1mm~5cmの炭素繊維、バサルト繊維、ロックウールなどの強度向上剤、また、金属アルミニウム等が挙げられる。
 混合物に任意成分を配合する場合、任意成分の配合量は、例えば、0.01~10質量%の範囲で決定することが好ましい。また、例えば、5~10質量%の範囲で決定してもよい。
The mixture may contain an optional component as long as the effects of the present invention are not impaired. Examples of optional components include naphthalene-based fluidizing agents such as Mighty 2000WH (trade name, manufactured by Kao Corporation), and melamine-based fluidizing agents such as Melment F-10 (trade name, manufactured by Showa Denko KK). Polycarboxylic acid fluidizers such as Darex Super 100pH (trade name, manufactured by Grace Chemicals Co., Ltd.), antibacterial agents such as silver, copper and zinc, deodorizers such as ammonium chloride and zinc chloride, zeolite, apatite, etc. Adsorbents, strength improvers such as carbon fibers having a length of 1 mm to 5 cm, basalt fibers, rock wool, and metal aluminum.
When the optional component is blended in the mixture, the blending amount of the optional component is preferably determined in the range of 0.01 to 10% by mass, for example. For example, it may be determined in the range of 5 to 10% by mass.
 また、成形性の観点より、混合物の流動性の調整等を目的として、適宜、水を配合してもよいが、有機汚泥が好適な配合比で配合されている場合には、混合工程にて水を添加しなくてもよい。
 また、水分が多い場合には、例えば、ガラス、瓦等の破砕物や、フライアッシュ、クリンカーアッシュなどの破砕物を含むことが好ましい。特に瓦の破砕物を配合することにより、過剰な水分を吸収し、配合物の流動性を調整でき、成形性を向上させることができる。
 ガラスを用いる場合には、好ましくは、溶融温度が900℃以上の高融点ガラスの粒子状フィラーがより好ましい。高融点ガラスの粒子を用いることで、多孔質セラミックス焼成体に形成される気孔を維持しながら水分調整が可能である。また、高融点ガラスやフライアッシュは強度向上剤としても用いることができる。
In addition, from the viewpoint of moldability, water may be blended as appropriate for the purpose of adjusting the fluidity of the mixture, etc. It is not necessary to add water.
Moreover, when there is much water | moisture content, it is preferable that crushed materials, such as glass and roof tiles, and crushed materials, such as a fly ash and a clinker ash, are included. In particular, by blending crushed tiles, excess moisture can be absorbed, the fluidity of the blend can be adjusted, and the moldability can be improved.
When glass is used, preferably, a high-melting glass particulate filler having a melting temperature of 900 ° C. or higher is more preferable. By using particles of high melting point glass, moisture adjustment is possible while maintaining pores formed in the fired porous ceramic body. High melting point glass and fly ash can also be used as a strength improver.
 高融点ガラスや瓦の粒子の粒子径は、0.1~5mmが好ましい。粒子径が0.1mm未満であると、多孔質セラミックス焼成体における気孔の形成が不充分になるおそれがある。気孔の形成が不充分であると、ガス中に含まれる不要物質の除去性能、多孔質セラミックス焼成体の耐久性が低下することがある。
 粒子径が5mm超であると、成形性が低下したり、成形時に押出し口の金具が破損したりするおそれがある。
The particle diameter of the high melting point glass or tile particles is preferably 0.1 to 5 mm. If the particle diameter is less than 0.1 mm, the formation of pores in the porous ceramic fired body may be insufficient. If the pores are not sufficiently formed, the removal performance of unnecessary substances contained in the gas and the durability of the porous ceramic fired body may be deteriorated.
If the particle diameter is more than 5 mm, the moldability may be reduced, or the metal fitting at the extrusion port may be damaged during molding.
 また、クリンカーアッシュやフライアッシュは、火力発電所から排出されるものであって、廃棄物の有効活用の観点より好ましい。 Also, clinker ash and fly ash are discharged from the thermal power plant and are preferable from the viewpoint of effective utilization of waste.
 混合物中の高融点ガラス、瓦の粒子、フライアッシュ、クリンカーアッシュの含有量は、本発明の目的を逸脱しない範囲で配合物の目的とする流動性にあわせて適宜選択すればよいが、高融点ガラスや瓦、フライアッシュ、クリンカーアッシュ以外の原料の合計100質量部に対し、3~40質量部が好ましく、10~30質量部がより好ましい。 The content of the high melting point glass, tile particles, fly ash and clinker ash in the mixture may be appropriately selected according to the intended fluidity of the composition without departing from the purpose of the present invention. The amount is preferably 3 to 40 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass in total of the raw materials other than glass, roof tile, fly ash and clinker ash.
 混合工程に用いられる混合装置は特に限定されず、公知の混合装置を用いることができる。
 混合装置としては、例えば、ミックスマラー(東新工業株式会社製)等の混練機や、ニーダー(株式会社モリヤマ製)、混合機(日陶科学株式会社製)等が挙げられる。
The mixing apparatus used for a mixing process is not specifically limited, A well-known mixing apparatus can be used.
Examples of the mixing apparatus include a kneader such as a mix muller (manufactured by Toshin Kogyo Co., Ltd.), a kneader (manufactured by Moriyama Co., Ltd.), a mixer (manufactured by Nippon Ceramics Co., Ltd.), and the like.
 成形工程は、混合工程で得られた混合物を任意の形状に成形する工程である。
 成形方法は、公知の成形方法を用いることができ、混合物の性状や所望する成形体の形状を勘案して決定することができる。具体的な成形方法としては、成形機を用いて、押し出し成形し、ペレットなどを含めた板状、粒状又は柱状等の成形体を得る方法、混合物を任意の形状の型枠に充填して成形体を得る方法、あるいは、混合物を押し出し、延伸又は圧延した後、任意の寸法に切断する方法等が挙げられる。
 成形機としては、真空土練成形機、平板プレス成形機、平板押出し成形機等が挙げられ、中でも、真空土練成形機が好ましい。
The forming step is a step of forming the mixture obtained in the mixing step into an arbitrary shape.
A known molding method can be used as the molding method, and can be determined in consideration of the properties of the mixture and the desired shape of the molded body. As a specific molding method, a molding machine is used to perform extrusion molding to obtain a molded body such as a plate, granule, or columnar shape including pellets, etc., and a mixture is filled into a mold of any shape and molded. Examples thereof include a method of obtaining a body, a method of extruding, stretching or rolling a mixture, and then cutting it into an arbitrary dimension.
Examples of the molding machine include a vacuum clay molding machine, a flat plate press molding machine, and a flat plate extrusion molding machine. Among these, a vacuum clay molding machine is preferable.
 焼成前の混合物の含水率は1質量%超であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましく、20質量%以上であることが特に好ましい。混合物の含水率が前記下限値を下回ると、得られる多孔質セラミックス焼成体の内部に不要物質が入り込みにくくなることがある。
一方、焼成前の混合物の含水率は45質量%以下であることが好ましく、30質量%以下であることがより好ましい。混合物の含水率が前記上限値を超えると、成形性が損なわれるおそれがある。
The moisture content of the mixture before firing is preferably more than 1% by mass, more preferably 5% by mass or more, further preferably 10% by mass or more, and particularly preferably 20% by mass or more. . If the water content of the mixture is below the lower limit, unnecessary substances may not easily enter the porous ceramic fired body obtained.
On the other hand, the moisture content of the mixture before firing is preferably 45% by mass or less, and more preferably 30% by mass or less. If the water content of the mixture exceeds the upper limit, moldability may be impaired.
 焼成工程は、成形体を焼成し(焼成操作)、粘土等を焼成して多孔質セラミックス焼成体を得る工程である。
 上述したように、成形体を乾燥せずに焼成することが好ましい。原料を混合した後、乾燥せずに焼成して得た多孔質セラミックス焼成体は、不要物質の除去性能がより高くなる。また、乾燥しない場合には、多孔質セラミックス焼成体の生産性を向上させることもできる。
The firing step is a step of firing the molded body (firing operation) and firing clay and the like to obtain a porous ceramic fired body.
As described above, it is preferable to fire the molded body without drying. A porous ceramic fired body obtained by firing without mixing after mixing raw materials has a higher performance of removing unnecessary substances. Moreover, when not drying, the productivity of a porous ceramic fired body can also be improved.
 成形体を乾燥する場合には、成形体を自然乾燥してもよいし、50~220℃の熱風乾燥炉で任意の時間処理して乾燥してもよい。乾燥により、成形体の含水率を1質量%以下としてもよい。なお、形成体の含水率も有機性廃棄物の含水率と同様の方法で求めることができる。 In the case of drying the molded body, the molded body may be naturally dried or may be dried by being treated in a hot air drying oven at 50 to 220 ° C. for an arbitrary time. It is good also considering the moisture content of a molded object as 1 mass% or less by drying. In addition, the moisture content of the formed body can be obtained by the same method as the moisture content of the organic waste.
 焼成操作は特に限定されず、公知の方法を用いることができる。例えば、ローラーハースキルン等の連続式焼結炉、シャトルキルン等の回分式焼結炉を用い、任意の温度で焼成する方法が挙げられる。中でも、焼成操作には、生産性又は乾燥処理の効率の観点から連続式焼結炉を用いることが好ましい。
 焼成温度(最高到達温度)は、混合物の性状等に応じて決定でき、例えば、850℃~1200℃とされる。上記下限値以上であれば、有機汚泥中の有機物の大部分が揮発して減量する。上記上限値超であると、多孔質セラミックス焼成体の組織全体のガラス化が進み、気孔が閉塞するおそれがある。
 上記の製造方法によりマイクロメートルオーダーの気孔及びナノメートルオーダーの気孔を有する多孔質セラミックス焼成体が得られる。
The firing operation is not particularly limited, and a known method can be used. Examples thereof include a method of firing at an arbitrary temperature using a continuous sintering furnace such as a roller hearth kiln or a batch sintering furnace such as a shuttle kiln. Among these, it is preferable to use a continuous sintering furnace for the firing operation from the viewpoint of productivity or efficiency of the drying treatment.
The firing temperature (maximum temperature reached) can be determined according to the properties of the mixture, and is, for example, 850 ° C. to 1200 ° C. If it is more than the said lower limit, most organic substances in organic sludge will volatilize and it will reduce weight. If it exceeds the above upper limit value, vitrification of the entire structure of the porous ceramic fired body proceeds and the pores may be blocked.
A porous ceramic fired body having pores in the micrometer order and pores in the nanometer order can be obtained by the above manufacturing method.
 焼成工程の後、粒状物としたい場合には、必要に応じて、任意の大きさに多孔質セラミックス焼成体を破砕する破砕工程を有してもよい。破砕工程では、焼成工程で得られた多孔質セラミックス焼成体をハンマーミル、二軸回転式破砕、ジェットミル、ボールミル、エッジランナーミル等で破砕、粉砕し、多孔質セラミックス焼成体の粒状物を得ることができる。得られた粒状物は必要に応じ任意の粒子径になるように篩分けする。 When it is desired to form a granular material after the firing step, it may have a crushing step for crushing the porous ceramic fired body into an arbitrary size as necessary. In the crushing process, the porous ceramic fired body obtained in the firing process is crushed and ground with a hammer mill, biaxial rotary crushing, jet mill, ball mill, edge runner mill, etc., to obtain a porous ceramic fired body granule be able to. The obtained granular material is sieved to an arbitrary particle size as necessary.
 多孔質セラミックス焼成体を製造する際に原料として用いられる粘土あるいはスラグには金属酸化物等が含まれ、この金属酸化物が焼成体において酸性成分または塩基性成分として機能する。この多孔質セラミックス焼成体の酸性成分は塩基性成分を吸着可能であり、多孔質セラミックス焼成体の塩基性成分は酸性成分を吸着可能である。 Clay or slag used as a raw material when producing a porous ceramic fired body contains a metal oxide or the like, and this metal oxide functions as an acidic component or a basic component in the fired body. The acidic component of the porous ceramic fired body can adsorb a basic component, and the basic component of the porous ceramic fired body can adsorb the acidic component.
[水供給手段]
 第2浄化部には、多孔質セラミックス焼成体に水を供給するための水供給手段を備えることが好ましい。多孔質セラミックス焼成体に水を供給すると、ガス中の成分が多孔質セラミックス焼成体の塩基性成分、酸性成分等と接触しやすくなり、ガス中の不要物質を除去しやすくなる。
 水供給手段としては、スプレーノズル、ジェットノズル、孔の開いたパイプやプレート状物等が挙げられる。孔の開いたパイプやプレート状物の場合には、多孔質セラミックス焼成体の上方に配置することが好ましい。
 第2浄化部が水供給手段を備える場合には、ポンプ等を用いて、多孔質セラミックス焼成体を通過した水を再び水供給手段に供給してもよい。
 後述するように、水供給手段で供給される水には、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種が含まれてもよい。
[Water supply means]
The second purification unit preferably includes a water supply means for supplying water to the porous ceramic fired body. When water is supplied to the porous ceramic fired body, components in the gas easily come into contact with basic components, acidic components, etc. of the porous ceramic fired body, and it becomes easy to remove unnecessary substances in the gas.
Examples of the water supply means include spray nozzles, jet nozzles, perforated pipes and plate-like objects. In the case of a pipe or plate having a hole, it is preferably arranged above the porous ceramic fired body.
In the case where the second purification unit includes water supply means, the water that has passed through the porous ceramic fired body may be supplied again to the water supply means using a pump or the like.
As will be described later, the water supplied by the water supply means may include at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
<他の構成>
 上記ガス浄化装置においては、ガスをガス浄化装置内に流すための吸引ファンや送風ファンが設置されてもよい。また、ガス中のミストを捕捉するデミスターが設置されてもよい。
 第1又は第2の浄化部にガスを送るための配管の途中又は末端には、加熱部から送られるガスを冷却する冷却手段を設けることが好ましい。加熱部から送られるガスを冷却することにより、噴霧手段において、悪臭物質等のうちの水溶性成分の水への溶解度が増し、悪臭物質等の不要物の除去性能がさらに向上する。冷却手段としては、水等の冷却媒を用いた熱交換器が挙げられ、具体的にはチューブ式、プレート式、再生式等が挙げられる。
 また、本発明の目的を逸脱しない範囲で、温度計や濃度計等の各種計器が設置されてもよい。
<Other configurations>
In the gas purification device, a suction fan or a blower fan for flowing gas into the gas purification device may be installed. Moreover, a demister that captures mist in the gas may be installed.
It is preferable to provide a cooling means for cooling the gas sent from the heating part in the middle or at the end of the pipe for sending the gas to the first or second purification part. By cooling the gas sent from the heating unit, the solubility of water-soluble components in malodorous substances and the like in water increases in the spraying means, and the performance of removing unwanted substances such as malodorous substances is further improved. Examples of the cooling means include a heat exchanger using a cooling medium such as water, and specific examples include a tube type, a plate type, and a regenerative type.
Various instruments such as a thermometer and a densitometer may be installed without departing from the object of the present invention.
(ガス浄化方法)
 本発明のガス浄化方法の一実施形態について説明する。
 本発明のガス浄化方法は、不要物質を含むガスを浄化するガス浄化方法であって、第1浄化工程と第2浄化工程とを有する。
(Gas purification method)
An embodiment of the gas purification method of the present invention will be described.
The gas purification method of the present invention is a gas purification method for purifying gas containing unnecessary substances, and includes a first purification step and a second purification step.
<第1浄化工程>
 第1浄化工程は、前記ガス中に2か所以上から水を噴霧する工程である。
 ガス中に水を噴霧すると、主に、ガス中に含まれる煤塵を水に捕捉させることができ、また、悪臭物質及び有害物質のうちの水溶性成分を溶け込ませることができる。さらに、2ヵ所以上から噴霧することにより、様々な方向に無秩序に且つ高速に乱れ飛ぶ水滴が存在する空間中にガスを通すことができる。そのため、ガス中の煤塵及び水溶性成分と水の接触の機会を増大させることができる。したがって、粉塵及び水溶性成分の除去性能が高くなり、従来のスプレーによる水の噴霧、貯め水でのガスのバブリングに比べても、ガス中の煤塵及び水溶性成分の除去率が向上する。
 なお、当然のことではあるが、ガス中に煤塵が含まれない場合には、第1浄化工程で煤塵が除去されることはなく、ガス中に水溶性成分が含まれない場合には、第1浄化工程で水溶性成分が除去されることはない。
<First purification process>
The first purification step is a step of spraying water from two or more locations in the gas.
When water is sprayed into the gas, the dust contained in the gas can be mainly captured by the water, and the water-soluble components of the malodorous substances and harmful substances can be dissolved. Furthermore, by spraying from two or more locations, gas can be passed through a space where water droplets that are disorderly and rapidly turbulent in various directions exist. Therefore, the chance of contact of water with dust and water-soluble components in the gas can be increased. Therefore, the removal performance of dust and water-soluble components is enhanced, and the removal rate of soot and water-soluble components in the gas is improved as compared with conventional water spraying and gas bubbling with stored water.
Of course, if the gas does not contain soot, the first purification process does not remove the soot, and if the gas does not contain water-soluble components, The water-soluble component is not removed in one purification process.
 第1浄化工程において噴霧する水には、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含有させてもよい。酸性物質、塩基性物質、界面活性剤を水に添加した場合には、煤塵及び水溶性成分に加えて、水に不溶性、難溶性の、塩基性物質、酸性物質、油系成分、中性成分等を除去することも可能になる。
 酸性物質、塩基性物質、界面活性剤としては、多孔質セラミックス焼成体に担持されるものと同様のものを用いることができる。
 また、本発明の目的を逸脱しない範囲で、水には、マスキングのための香料、キレート剤、抗菌剤、触媒等を添加してもよい。
The water sprayed in the first purification step may contain at least one selected from the group consisting of acidic substances, basic substances, and surfactants. When acidic substances, basic substances, and surfactants are added to water, in addition to dust and water-soluble components, water-insoluble and sparingly soluble basic substances, acidic substances, oil-based components, and neutral components Etc. can be removed.
As the acidic substance, the basic substance, and the surfactant, the same substances as those supported on the porous ceramic fired body can be used.
Moreover, you may add the fragrance | flavor for masking, a chelating agent, an antibacterial agent, a catalyst, etc. to water in the range which does not deviate from the objective of this invention.
 第1浄化工程における処理温度は、浄化処理されるガスの温度、ガスに含まれる成分の溶解度や蒸気圧などを勘案し任意に設定すればよい。 The treatment temperature in the first purification step may be arbitrarily set in consideration of the temperature of the gas to be purified, the solubility of the components contained in the gas, the vapor pressure, and the like.
<第2浄化工程>
 第2浄化工程は、第1浄化工程を経たガスを多孔質セラミックス焼成体に通し、ガスを多孔質セラミックス焼成体で浄化して不要物質の一部を捕捉する工程である。
 第2浄化工程では、具体的には、不要物質を多孔質セラミックス焼成体の表面に物理吸着させて除去する。また、多孔質セラミックス焼成体中の酸性成分により、主に、ガス中の塩基性成分をイオン的に吸着して除去し、多孔質セラミックス焼成体中の塩基性成分により、主に、ガス中の酸性成分をイオン的に吸着して除去する。
<Second purification process>
The second purification step is a step of capturing a part of unnecessary substances by passing the gas that has passed through the first purification step through the porous ceramic fired body and purifying the gas with the porous ceramic fired body.
In the second purification step, specifically, unnecessary substances are physically adsorbed on the surface of the porous ceramic fired body and removed. In addition, the basic component in the gas is mainly ionically adsorbed and removed by the acidic component in the porous ceramic fired body, and the basic component in the porous ceramic fired body is mainly used in the gas. Acidic components are ionized and removed.
 第2浄化工程では、不要物質の除去率が高くなることから、多孔質セラミックス焼成体に水を供給することが好ましい。
 また、多孔質セラミックス焼成体に供給する水の中に、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含有させることが好ましい。酸性物質、塩基性物質、界面活性剤としては、多孔質セラミックス焼成体に担持されるものと同様のものを用いることができる。
 多孔質セラミックス焼成体に供給する水の中に、前記酸性物質等を含ませた場合には、前記酸性物質等を多孔質セラミックス焼成体に担持させなくても、不要物質をより除去できる。大きな表面積を有する多孔質セラミックス焼成体中に、水と共に前記酸性物質等を通過させれば、ガス中の各成分と酸性物質等との接触機会が増え、また、新しい酸性成分等が多孔質セラミックス焼成体中に供給されるため、不要物質の除去性能がより高くなるものと考えられる。
In the second purification step, it is preferable to supply water to the porous ceramic fired body because the removal rate of unnecessary substances increases.
Moreover, it is preferable to contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant in the water supplied to the porous ceramic fired body. As the acidic substance, the basic substance, and the surfactant, the same substances as those supported on the porous ceramic fired body can be used.
When the acidic substance or the like is included in the water supplied to the porous ceramic fired body, unnecessary substances can be further removed without supporting the acidic substance or the like on the porous ceramic fired body. If the acidic substance and the like are passed together with water in the porous ceramic fired body having a large surface area, the chance of contact between each component in the gas and the acidic substance increases, and a new acidic component or the like becomes porous ceramic. Since it is supplied into the fired body, it is considered that the removal performance of unnecessary substances becomes higher.
(作用効果)
 上記ガス浄化装置及びガス浄化方法では、ガス中に2ヵ所以上から水を噴霧することにより、ガスに含まれる粉塵及び水溶性成分を高い除去率で除去できる。また、多孔質セラミックス焼成体にガスを通すことにより、ガスに含まれる不要物質を多孔質セラミックス焼成体の表面に物理吸着させることができる。多孔質セラミックス焼成体は表面積が大きいため、不要物質の吸着量が多い。また、多孔質セラミックス焼成体に、ガスに含まれる酸性成分及び塩基性成分を化学吸着させることができる。したがって、ガス中の不要物質を充分に除去できる
 また、上記ガス浄化装置は簡素な構成で低コストであり、中小規模の工場、廃棄物処理場、汚水処理場、養豚・養鶏場、ごみ焼却場等においても容易に導入でき、地域の環境を容易に且つ安価に改善できる。
(Function and effect)
In the gas purification apparatus and the gas purification method, dust and water-soluble components contained in the gas can be removed with a high removal rate by spraying water from two or more locations in the gas. Further, by passing a gas through the porous ceramic fired body, unnecessary substances contained in the gas can be physically adsorbed on the surface of the porous ceramic fired body. Since the porous ceramic fired body has a large surface area, the amount of adsorption of unnecessary substances is large. Moreover, the acidic component and the basic component contained in the gas can be chemically adsorbed to the porous ceramic fired body. Therefore, unnecessary substances in the gas can be removed sufficiently. The gas purification device has a simple structure and is low in cost. Etc., and the local environment can be easily and inexpensively improved.
(他の実施形態)
 なお、本発明は、上記実施形態に限定されない。
 例えば、ガスに含まれる悪臭物質、有害物質、煤塵の量や種類に応じて、第1浄化部と第2浄化部を複数配置してもよい。例えば、第2浄化部を2つ具備し、一方の第2浄化部では、酸性物質を含む水を多孔質セラミックス焼成体に供給してガス中の塩基性物質を除去し、他方の第2浄化部では、塩基性物質を含む水を多孔質セラミックス焼成体に供給してガス中の酸性物質を除去してもよい。
 また、第1浄化部→第2浄化部→第2浄化部→第1浄化部の順で配置してもよい。
 また、第1浄化部の上流側に第2浄化部を配置してもよい。ただし、ガス浄化率が高い点では、第1浄化部の下流側に第2浄化部を配置することが好ましい。
 また、上記ガス浄化装置に他のガス浄化装置を任意に組み合わせてもよい。
(Other embodiments)
In addition, this invention is not limited to the said embodiment.
For example, a plurality of first purification units and second purification units may be arranged according to the amount and type of malodorous substances, harmful substances, and dust contained in the gas. For example, two second purification units are provided, and one of the second purification units supplies water containing an acidic substance to the porous ceramic fired body to remove the basic substance in the gas, and the other second purification unit In the section, water containing a basic substance may be supplied to the fired porous ceramic body to remove the acidic substance in the gas.
Alternatively, the first purification unit, the second purification unit, the second purification unit, and the first purification unit may be arranged in this order.
Moreover, you may arrange | position a 2nd purification | cleaning part in the upstream of a 1st purification | cleaning part. However, in terms of a high gas purification rate, it is preferable to arrange the second purification unit downstream of the first purification unit.
Further, another gas purification device may be arbitrarily combined with the gas purification device.
 (廃棄物処理装置)
 次に、本発明の廃棄物処理装置について説明する。
 本発明の廃棄物処理装置は、水分を含む有機性廃棄物を加熱する加熱部と、該加熱部から排出されるガスを浄化するガス浄化部とを具備する。
 水分を含む有機性廃棄物としては、農村集落排水処理施設、下水処理場、染色工場・食品工場・製紙工場などの有機排水処理施設等から排出される汚泥、養鶏、養豚、養牛場から排出される糞尿、食品加工場から排出される端材、飲食店から出される残飯などが挙げられるが、特に限定されるものではない。汚泥は、未消化汚泥、消化汚泥のいずれも用いることができる。
 これらの有機性廃棄物は、フィルタープレス、ベルトプレス、遠心脱水等の脱水機によって脱水処理が施され、含水率が100質量%以下とされたものが好ましい。
(Waste treatment equipment)
Next, the waste disposal apparatus of the present invention will be described.
The waste treatment apparatus of the present invention includes a heating unit that heats organic waste containing moisture, and a gas purification unit that purifies gas discharged from the heating unit.
Organic waste containing water is discharged from sludge, poultry, hog raising, and cattle farms discharged from rural wastewater treatment facilities, sewage treatment plants, organic wastewater treatment facilities such as dyeing plants, food factories, and paper mills. Although it is not particularly limited, it may be excrement, waste material discharged from a food processing plant, leftover food from a restaurant, and the like. As the sludge, either undigested sludge or digested sludge can be used.
These organic wastes are preferably dehydrated by a dehydrator such as a filter press, belt press, and centrifugal dehydration so that the water content is 100% by mass or less.
(加熱部)
 加熱部は、水分を含む有機性廃棄物を加熱して炭化させるものである。有機性廃棄物を炭化することによって得られる炭化物は、発熱量が大きく燃料として好適である。
 加熱部の形態は特に限定されず、例えば、密閉状態で加熱するもの、開放状態で加熱するもののいずれであってもよい。
 加熱部の具体例としては、例えば、ロータリーキルン、ローラーハースキルン等の連続式加熱炉、シャトルキルン等の分回式加熱炉が挙げられる。中でも、生産性の観点からは、連続式加熱炉が好ましい。
 より具体的には、汚泥等の加熱装置として知られているものが好ましく、例えば、特開平8-155419号公報に記載の熱処理装置、特開2000-80386号公報に記載の回転炉、特開2006-63105号公報に記載の炭化装置、特開2013-43149号公報に記載の加熱炉などが挙げられる。また、特開2010-75783号公報に記載の誘導加熱を利用した揮発性有機溶剤回収装置を加熱部として用いることができる。また、上記のロータリーキルン等に誘導加熱を組み合わせて加熱部として用いることも可能である。
 加熱部によって有機性廃棄物を加熱処理した際には、悪臭物質、有害物質及び煤塵よりなる群から選ばれる少なくとも1つの不要物質を生じることが多い。
(Heating part)
A heating part heats and carbonizes the organic waste containing a water | moisture content. The carbide obtained by carbonizing the organic waste has a large calorific value and is suitable as a fuel.
The form of the heating unit is not particularly limited, and may be, for example, one that heats in a sealed state or one that heats in an open state.
Specific examples of the heating unit include a continuous heating furnace such as a rotary kiln and a roller hearth kiln, and a fractional heating furnace such as a shuttle kiln. Among these, a continuous heating furnace is preferable from the viewpoint of productivity.
More specifically, what is known as a heating device for sludge and the like is preferable. For example, a heat treatment device described in JP-A-8-155419, a rotary furnace described in JP-A-2000-80386, Examples thereof include a carbonization apparatus described in JP-A-2006-63105 and a heating furnace described in JP-A-2013-43149. In addition, a volatile organic solvent recovery device using induction heating described in JP 2010-75783 A can be used as the heating unit. It is also possible to use the rotary kiln or the like as a heating unit in combination with induction heating.
When organic waste is heat-treated by the heating unit, at least one unnecessary substance selected from the group consisting of malodorous substances, harmful substances and dust is often generated.
(ガス浄化部)
 本発明におけるガス浄化部は、前記ガスに水を噴霧する噴霧手段、及び、前記ガスを浄化する多孔質セラミックス焼成体製の吸着手段の少なくとも一方を備える。
 具体的に、ガス浄化部は、噴霧手段と吸着手段の両方を備えてもよいし、噴霧手段と吸着手段の一方のみを備えてもよい。ガス浄化率が高い点では、噴霧手段と吸着手段の両方を備え、噴霧手段の下流側に吸着手段が配置されることが好ましい。
 また、噴霧手段及び吸着手段は、各々、1個でもよいし、複数個でもよい。
(Gas Purification Department)
The gas purification part in this invention is equipped with at least one of the spraying means which sprays water on the said gas, and the adsorption means made from the porous ceramic sintered body which purifies the said gas.
Specifically, the gas purification unit may include both the spray unit and the adsorption unit, or may include only one of the spray unit and the adsorption unit. In terms of a high gas purification rate, it is preferable that both the spraying means and the adsorbing means are provided, and the adsorbing means is disposed downstream of the spraying means.
Further, the spraying means and the adsorption means may each be one or plural.
<噴霧手段>
 噴霧手段を用いてガス中に水を噴霧することにより、不要物質に含まれる煤塵を水に捕捉させることができ、悪臭物質及び有害物質のうちの水溶性成分を水に溶け込ませることができる。
 噴霧手段としては、水を噴霧できれば特に限定されず、例えば、スプレーノズルやジェットノズルなどが挙げられる。
 噴霧手段から供給される水の噴霧パターンは、ガスとの接触面積を大きくするために、環状、面状または帯状が好ましい。
 後述するように、噴霧手段で噴霧される水には、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種が含まれてもよい。
<Spraying means>
By spraying water into the gas using the spraying means, dust contained in unnecessary substances can be captured in water, and water-soluble components of malodorous substances and harmful substances can be dissolved in water.
The spraying means is not particularly limited as long as water can be sprayed, and examples thereof include a spray nozzle and a jet nozzle.
The spray pattern of the water supplied from the spray means is preferably annular, planar or strip-shaped in order to increase the contact area with the gas.
As will be described later, the water sprayed by the spraying means may contain at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
 噴霧手段は2個以上であることが好ましい。噴霧手段が2個以上であれば、2ヵ所以上から水を噴霧させることができ、様々な方向に無秩序に且つ高速に乱れ飛ぶ水滴が存在する空間中にガスを通過させることができる。これにより、ガスと水の接触機会を増加させることができ、水によって主に煤塵及び水溶性成分をより捕捉できる。
 さらに、ガスと水との接触機会を高めるためには、2個以上の噴霧手段の水の噴霧方向は、各々、異なることが好ましい。
The number of spraying means is preferably two or more. If there are two or more spraying means, water can be sprayed from two or more places, and gas can be passed through a space in which water droplets that are disorderly and turbulently fly in various directions exist. Thereby, the contact opportunity of gas and water can be increased, and mainly dust and water-soluble components can be captured more by water.
Furthermore, in order to increase the chance of contact between gas and water, it is preferable that the spray directions of the two or more spraying means are different from each other.
 噴霧手段によって噴霧した水の一部を回収し、循環ポンプを用いて、再び、噴霧手段に供給しても構わない。
 また、噴霧した水を一定量貯水し、その貯水された水に、加熱部から排出されたガスを通し、バブリングさせて、不要物質を捕捉してもよい。この場合、貯水された水を通過したガスに、噴霧手段から噴霧した水を接触させることになる。
A part of the water sprayed by the spraying means may be collected and supplied again to the spraying means using a circulation pump.
Alternatively, a certain amount of sprayed water may be stored, and the gas discharged from the heating unit may be bubbled through the stored water to capture unnecessary substances. In this case, the water sprayed from the spraying means is brought into contact with the gas that has passed through the stored water.
<吸着手段>
 吸着手段の配置は特に限定されないが、ガスとの接触機会が増えることから、ガスの進行方向に対して平行でない方向に配置することが好ましい。さらには、吸着手段を層状とし、ガスの進行方向に対して垂直に配置することがより好ましい。また、層状の吸着手段は複数配置してもよい。層状の吸着手段を複数配置した場合には、吸着手段の層と層の間に空気層を形成してもよいし、他のガス浄化部を配置してもよい。
 また、吸着手段においては、水供給手段が設置されている部分を除いて、多孔質セラミックス焼成体で充填してもよい。
<Adsorption means>
Although the arrangement of the adsorption means is not particularly limited, it is preferable to arrange the adsorption means in a direction that is not parallel to the gas traveling direction because the chance of contact with the gas increases. Furthermore, it is more preferable that the adsorbing means is layered and arranged perpendicular to the gas traveling direction. A plurality of layered adsorption means may be arranged. When a plurality of layered adsorption means are arranged, an air layer may be formed between the layers of the adsorption means, or another gas purification unit may be arranged.
Further, the adsorption means may be filled with a porous ceramic fired body except for the portion where the water supply means is installed.
 吸着手段を構成する多孔質セラミックス焼成体は、上述のガス浄化手段で用いた吸着手段の多孔質セラミックス焼成体と同様のものを使用できる。 The porous ceramic fired body constituting the adsorption means can be the same as the porous ceramic fired body of the adsorption means used in the gas purification means.
[水供給手段]
 ガス浄化部が多孔質セラミックス焼成体を具備する場合には、多孔質セラミックス焼成体に水を供給するための水供給手段をさらに具備することが好ましい。水供給手段は、上述のガス浄化手段の第2浄化部における水供給手段と同様のものを使用できる。
[Water supply means]
In the case where the gas purification unit includes a porous ceramic fired body, it is preferable to further include water supply means for supplying water to the porous ceramic fired body. The water supply means can be the same as the water supply means in the second purification section of the gas purification means described above.
<他の構成>
 上記廃棄物処理装置においては、ガスを廃棄物処理装置内に流すための吸引ファンや送風ファンが設置されてもよい。また、ガス中のミストを捕捉するデミスターが設置されてもよい。
 加熱部からガス浄化部にガスを送るための配管の途中又は末端には、加熱部から送られるガスを冷却する冷却手段を設けることが好ましい。加熱部から送られるガスを冷却することにより、噴霧手段において、悪臭物質等のうちの水溶性成分の水への溶解度が増し、悪臭物質等の不要物の除去性能がさらに向上する。冷却手段としては、水等の冷却媒を用いた熱交換器が挙げられ、具体的にはチューブ式、プレート式、再生式等が挙げられる。
 また、本発明の目的を逸脱しない範囲で、温度計や濃度計等の各種計器が設置されてもよい。
<Other configurations>
In the waste treatment apparatus, a suction fan or a blower fan for flowing gas into the waste treatment apparatus may be installed. Moreover, a demister that captures mist in the gas may be installed.
It is preferable to provide a cooling means for cooling the gas sent from the heating unit in the middle or at the end of the pipe for sending the gas from the heating unit to the gas purification unit. By cooling the gas sent from the heating unit, the solubility of water-soluble components in malodorous substances and the like in water increases in the spraying means, and the performance of removing unwanted substances such as malodorous substances is further improved. Examples of the cooling means include a heat exchanger using a cooling medium such as water, and specific examples include a tube type, a plate type, and a regenerative type.
Various instruments such as a thermometer and a densitometer may be installed without departing from the object of the present invention.
(廃棄物処理方法)
 上記廃棄物処理装置1を用いた廃棄物処理方法は、加熱工程とガス浄化工程とを有する。
(Waste treatment method)
The waste processing method using the waste processing apparatus 1 includes a heating process and a gas purification process.
 加熱工程は、水分を含む有機性廃棄物を加熱して炭化させる工程である。
 加熱工程における加熱温度は、任意の温度にすることができるが、100℃以上が好ましい。加熱温度が前記100℃未満では、汚泥等の減容化に時間を要し、生産性が低くなる。また、加熱温度は、好ましくは250℃以上である。加熱温度が250℃以上であれば、水分を含む有機性廃棄物を容易に炭化することができる。
The heating step is a step of heating and carbonizing the organic waste containing moisture.
Although the heating temperature in a heating process can be made into arbitrary temperature, 100 degreeC or more is preferable. When the heating temperature is less than 100 ° C., it takes time to reduce the volume of sludge and the like, resulting in low productivity. The heating temperature is preferably 250 ° C. or higher. If heating temperature is 250 degreeC or more, the organic waste containing a water | moisture content can be carbonized easily.
 また、加熱温度は1500℃以下が好ましく、950℃以下がより好ましい。加熱温度が前記上限値を超えると、加熱処理に用いられるエネルギー量に比べ、減容化の程度が変わらず、コストの点で不利である。
 また、950℃以下であれば、水分を含む有機性廃棄物を炭化して得た炭化物を燃料として容易に用いることができる。950℃以下で加熱処理した汚泥等の水分を含む有機性廃棄物は、大きな発熱量を持ち、燃料として好ましく用いることができる。
 また、低温で加熱処理して得た炭化物は、高温で加熱処理した炭化物よりも発熱量が大きくなり、具体的には、加熱温度が600℃以下であることがより好ましい。
 通常、加熱温度が低温になるほど臭気が強くなる。これは、高温で加熱すれば、加熱部から排出されるガス中に含まれる不要物質も熱分解されてガス中の不要物質の量が減少するが、加熱温度が低くなれば、不要物質の熱分解量が減るため、ガス中に含まれる不要物質が増加する。しかし、本発明の廃棄物処理装置では、600℃以下の低温で有機性廃棄物を加熱しても、不要物質の排出を抑制することができる。
 また、加熱時における加熱部の内部の雰囲気は、還元性雰囲気であることが好ましい。
さらには、有機性廃棄物を容易に熱分解できることから、可燃物が燃焼を継続するために必要な酸素濃度である限界酸素濃度をおおむね上回らない程度の雰囲気とすることが好ましい。
The heating temperature is preferably 1500 ° C. or less, and more preferably 950 ° C. or less. When the heating temperature exceeds the upper limit, the degree of volume reduction does not change compared to the amount of energy used for the heat treatment, which is disadvantageous in terms of cost.
Moreover, if it is 950 degrees C or less, the carbide | carbonized_material obtained by carbonizing the organic waste containing a water | moisture content can be easily used as a fuel. Organic waste containing water such as sludge heat-treated at 950 ° C. or less has a large calorific value and can be preferably used as fuel.
Further, the carbide obtained by heat treatment at a low temperature has a larger calorific value than the carbide heat-treated at a high temperature, and more specifically, the heating temperature is more preferably 600 ° C. or less.
Usually, the odor becomes stronger as the heating temperature becomes lower. This is because if heating is performed at a high temperature, unnecessary substances contained in the gas discharged from the heating section are also thermally decomposed to reduce the amount of unnecessary substances in the gas, but if the heating temperature is lowered, the heat of unnecessary substances is reduced. Since the amount of decomposition decreases, unnecessary substances contained in the gas increase. However, in the waste treatment apparatus of the present invention, discharge of unnecessary substances can be suppressed even when organic waste is heated at a low temperature of 600 ° C. or lower.
Moreover, it is preferable that the atmosphere inside a heating part at the time of a heating is a reducing atmosphere.
Furthermore, since the organic waste can be easily pyrolyzed, it is preferable to set the atmosphere so that the limit oxygen concentration, which is the oxygen concentration necessary for the combustible to continue to burn, does not substantially exceed.
 ガス浄化工程は、加熱工程で発生したガスに水を噴霧手段によって噴霧すること、加熱工程で発生したガスを吸着手段の多孔質セラミックス焼成体に通すことの少なくとも一方をおこなう工程である。 The gas purification step is a step of performing at least one of spraying water on the gas generated in the heating step by the spraying means and passing the gas generated in the heating process through the porous ceramic fired body of the adsorption means.
 加熱工程で発生したガス中に煤塵、悪臭物質及び有害物質として水溶性成分が含まれる場合、ガスに水を噴霧することによって、主に、煤塵を水に捕捉させることができ、また、悪臭物質及び有害物質のうちの水溶性成分を水に溶け込ませることができる。
 前記ガスに水を噴射する場合には、前記ガス中に2か所以上から、様々な方向に無秩序に且つ高速に噴霧することが好ましい。このように水を噴射すると、ガス中の煤塵及び水溶性成分と水の接触の機会を増大させることができる。そのため、粉塵及び水溶性成分の除去性能が高くなる。
When water-soluble components are included in the gas generated in the heating process as dust, malodorous substances and harmful substances, the dust can be trapped in water mainly by spraying water on the gas. In addition, water-soluble components among harmful substances can be dissolved in water.
When water is injected into the gas, it is preferable that the gas is sprayed randomly and at high speed in various directions from two or more locations in the gas. When water is injected in this manner, the chance of contact of water with dust and water-soluble components in the gas can be increased. Therefore, the removal performance of dust and a water-soluble component becomes high.
 噴霧する水には、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含有させてもよい。酸性物質、塩基性物質、界面活性剤を水に添加した場合には、煤塵及び水溶性成分に加えて、水に不溶性、難溶性の、塩基性物質、酸性物質、油系成分、中性成分等を除去することも可能になる。
 酸性物質、塩基性物質、界面活性剤としては、多孔質セラミックス焼成体に担持されるものと同様のものを用いることができる。
 また、本発明の目的を逸脱しない範囲で、水には、マスキングのための香料、キレート剤、抗菌剤、触媒等を添加してもよい。
The water to be sprayed may contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant. When acidic substances, basic substances, and surfactants are added to water, in addition to dust and water-soluble components, water-insoluble and sparingly soluble basic substances, acidic substances, oil-based components, and neutral components Etc. can be removed.
As the acidic substance, the basic substance, and the surfactant, the same substances as those supported on the porous ceramic fired body can be used.
Moreover, you may add the fragrance | flavor for masking, a chelating agent, an antibacterial agent, a catalyst, etc. to water in the range which does not deviate from the objective of this invention.
 水噴霧の際の温度は、浄化処理されるガスの温度、ガスに含まれる成分の溶解度や蒸気圧などを勘案し任意に設定すればよい。 The temperature at the time of water spraying may be arbitrarily set in consideration of the temperature of the gas to be purified, the solubility of the components contained in the gas, the vapor pressure, and the like.
 加熱工程で発生したガスを多孔質セラミックス焼成体に通した際には、不要物質を多孔質セラミックス焼成体の表面に物理吸着させて除去する。また、多孔質セラミックス焼成体中の酸性成分により、主に、ガス中の塩基性成分をイオン的に吸着して除去し、多孔質セラミックス焼成体中の塩基性成分により、主に、ガス中の酸性成分をイオン的に吸着して除去する。 When the gas generated in the heating process is passed through the porous ceramic fired body, unnecessary substances are physically adsorbed on the surface of the porous ceramic fired body and removed. In addition, the basic component in the gas is mainly ionically adsorbed and removed by the acidic component in the porous ceramic fired body, and the basic component in the porous ceramic fired body is mainly used in the gas. Acidic components are ionized and removed.
 ガスを多孔質セラミックス焼成体で浄化する場合には、不要物質の除去率が高くなることから、多孔質セラミックス焼成体に水を供給することが好ましい。
 また、多孔質セラミックス焼成体に供給する水の中に、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含有させることが好ましい。酸性物質、塩基性物質、界面活性剤としては、多孔質セラミックス焼成体に担持されるものと同様のものを用いることができる。
 多孔質セラミックス焼成体に供給する水の中に、前記酸性物質等を含ませた場合には、前記酸性物質等を多孔質セラミックス焼成体に担持させなくても、不要物質をより除去できる。大きな表面積を有する多孔質セラミックス焼成体中に、水と共に前記酸性物質等を通過させれば、ガス中の各成分と酸性物質等との接触機会が増え、また、新しい酸性成分等が多孔質セラミックス焼成体中に供給されるため、不要物質の除去性能がより高くなるものと考えられる。
When purifying the gas with the porous ceramic fired body, it is preferable to supply water to the porous ceramic fired body because the removal rate of unnecessary substances increases.
Moreover, it is preferable to contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant in the water supplied to the porous ceramic fired body. As the acidic substance, the basic substance, and the surfactant, the same substances as those supported on the porous ceramic fired body can be used.
When the acidic substance or the like is included in the water supplied to the porous ceramic fired body, unnecessary substances can be further removed without supporting the acidic substance or the like on the porous ceramic fired body. If the acidic substance and the like are passed together with water in the porous ceramic fired body having a large surface area, the chance of contact between each component in the gas and the acidic substance increases, and a new acidic component or the like becomes porous ceramic. Since it is supplied into the fired body, it is considered that the removal performance of unnecessary substances becomes higher.
 吸着手段を2つ具備する場合、一方の吸着手段では、酸性物質を含む水を多孔質セラミックス焼成体に供給して主にガス中の塩基性物質を除去し、他方の吸着手段では、塩基性物質を含む水を多孔質セラミックス焼成体に供給して主にガス中の酸性物質を除去してもよい。 When two adsorbing means are provided, one adsorbing means supplies water containing an acidic substance to the porous ceramic fired body to mainly remove basic substances in the gas. Water containing the substance may be supplied to the fired porous ceramic body to remove mainly the acidic substance in the gas.
(作用効果)
 上記廃棄物処理装置では、加熱部によって有機性廃棄物を加熱した際に発生したガス中の不要物質を、水の噴霧及び多孔質セラミックス焼成体による吸着の少なくとも一方によって除去する。そのため、不要物質を低コストで充分に除去できる。
 また、本発明の廃棄物処理装置によって有機性廃棄物を炭化した炭化物は、燃料、脱臭剤、土壌改良材等に利用することができ、廃棄物を有益物として使用することができる。
(Function and effect)
In the waste treatment apparatus, unnecessary substances in the gas generated when the organic waste is heated by the heating unit are removed by at least one of spraying water and adsorption by the porous ceramic fired body. Therefore, unnecessary substances can be sufficiently removed at low cost.
Moreover, the carbide | carbonized_material which carbonized the organic waste by the waste processing apparatus of this invention can be utilized for a fuel, a deodorizing agent, a soil improvement material, etc., and a waste can be used as a profitable thing.
 (乾燥処理装置)
 次に、本発明の乾燥処理装置について説明する。
 本発明の乾燥処理装置は、水分を含む有機性廃棄物を乾燥する加熱部と、該加熱部から排出されるガスを浄化するガス浄化部とを具備する。
(Dry processing equipment)
Next, the drying apparatus of the present invention will be described.
The drying treatment apparatus of the present invention includes a heating unit that dries organic waste containing moisture, and a gas purification unit that purifies the gas discharged from the heating unit.
(水分を含む有機性廃棄物)
 水分を含む有機性廃棄物としては、農村集落排水処理施設、下水処理場、染色工場・食品工場・製紙工場等の有機排水処理施設等から排出される汚泥、養鶏、養豚、養牛場から排出される糞尿、食品加工場から排出される端材、飲食店から出される残飯等が挙げられるが、特に限定されるものではない。汚泥は、未消化汚泥、消化汚泥のいずれも用いることができる。
 これらの有機性廃棄物は、フィルタープレス、ベルトプレス、遠心脱水等の脱水機によって脱水処理が施されて、含水率が100質量%以下にされたものが好ましい。
 なお、有機性廃棄物の含水率の算出は、「産業廃棄物に含まれる金属等の検定方法」、公布日:昭和48年02月17日、環境庁告示13号、第一の表の備考の規定に準じて行われる。具体的には、有機性廃棄物の含水率は、下記(2)式により求められる。
 有機性廃棄物の含水率(質量%)=(乾燥前の質量(g)-絶乾状態質量(g))/乾燥前の質量(g)×100 ・・・(2)
(Organic waste containing water)
As organic waste containing water, it is discharged from sludge, poultry, hog raising, and cattle farms discharged from rural wastewater treatment facilities, sewage treatment plants, organic wastewater treatment facilities such as dyeing plants, food factories, and paper mills. Although it is not particularly limited, it may be, for example, excreted urine, scraps discharged from a food processing plant, and leftovers from restaurants. As the sludge, either undigested sludge or digested sludge can be used.
These organic wastes are preferably those that have been subjected to a dehydration treatment by a dehydrator such as a filter press, a belt press, and centrifugal dehydration to have a water content of 100% by mass or less.
Calculation of moisture content of organic waste is based on “Method for testing metals contained in industrial waste”, promulgation date: February 17, 1973, Environmental Agency Notification No. 13, Remarks in Table 1 This is done in accordance with the provisions of Specifically, the water content of the organic waste is obtained by the following equation (2).
Water content of organic waste (mass%) = (mass before drying (g) −mass in an absolutely dry state (g)) / mass before drying (g) × 100 (2)
(加熱部)
 加熱部は、水分を含む有機性廃棄物を加熱して乾燥させるものである。
 また、加熱部によって有機性廃棄物を加熱処理した際には、悪臭物質、有害物質及び煤塵よりなる群から選ばれる少なくとも1つの不要物質を生じることが多い。
(Heating part)
A heating part heats and dries organic waste containing moisture.
In addition, when organic waste is heat-treated by the heating unit, at least one unnecessary substance selected from the group consisting of malodorous substances, harmful substances and dust is often generated.
 加熱部としては、公知の乾燥機を用いてもよく、特に限定されるものではない。例えば、熱風を乾燥炉内に直接吹き込むものや、蒸気やオイル等を熱媒体として用い、乾燥炉の外周や乾燥炉内に複数配置された加熱管の内部に前記熱媒体を通し、間接的に水を含む有機性廃棄物を乾燥するもの等が挙げられる。また、蒸気やオイル等に代えて電気ヒーター等を用いたものであってもよい。
 乾燥の方式としては、連続式、バッチ式いずれであってもよいが、乾燥処理の効率の観点からは、連続式が好ましい。
As a heating part, you may use a well-known dryer, and it is not specifically limited. For example, hot air is blown directly into the drying furnace, steam or oil is used as the heating medium, and the heating medium is passed through the outer periphery of the drying furnace or a plurality of heating tubes arranged in the drying furnace, indirectly. The thing etc. which dry the organic waste containing water are mentioned. Further, an electric heater or the like may be used instead of steam or oil.
The drying method may be either a continuous method or a batch method, but a continuous method is preferred from the viewpoint of the efficiency of the drying process.
 乾燥機としては、汚泥等の処理に用いられるものが好ましい。例えば、特開2006-17335号公報、特開2012-233599号公報、特開2012-037211号公報、特開2010-236731号公報、特開2013-46882号公報に記載の乾燥機が挙げられる。
 また、特開2010-75783号公報に記載の誘導加熱を利用した揮発性有機溶剤回収装置を加熱部として用いることもできる。また、上記の乾燥機等に誘導加熱を組み合わせて加熱部として用いることも可能である。
 市販されている乾燥機としては、株式会社大川原製作所製の連続式伝導伝熱乾燥機インナーチューブロータリー、破砕撹拌翼付回転乾燥装置スーパーロータリードライヤー、回転型通気乾燥装置ロートスルーや、山本技研工業株式会社のダブルドラムドライヤー、ロータリーコイルドライヤー等が挙げられる。
As a dryer, what is used for processes, such as sludge, is preferable. Examples thereof include dryers described in JP-A-2006-17335, JP-A-2012-233599, JP-A-2012-037211, JP-A-2010-236731, and JP-A-2013-46882.
Also, a volatile organic solvent recovery device using induction heating described in JP 2010-75783 A can be used as the heating unit. Moreover, it is also possible to use it as a heating part combining induction heating with said dryer.
Commercially available dryers include continuous tube heat transfer dryer inner tube rotary manufactured by Okawara Manufacturing Co., Ltd., rotary dryer with crushing and stirring blades, super rotary dryer, rotary aeration dryer, funnel through, Yamamoto Giken Co., Ltd. Company double drum dryer, rotary coil dryer, etc.
(ガス浄化部)
 本発明の乾燥処理装置におけるガス浄化部は、上述の廃棄物処理装置で用いたガス浄化部と同様のものを使用できる。
(Gas Purification Department)
As the gas purification unit in the drying treatment apparatus of the present invention, the same gas purification unit used in the above-described waste treatment apparatus can be used.
<他の構成>
 本発明の乾燥処理装置には、加熱部からガス浄化部にガスを送るため、ガス浄化部内でガスを送るため、ガス浄化部から処理済みのガスを排出するための配管を適宜設置することができる。
 該配管の途中又は末端には、ガスを送ったり排出したりする吸引ファンや送風ファン、ガス中のミストを捕捉するデミスター、煤塵を捕捉するフィルターやサイクロン等が設けられてもよい。
 加熱部からガス浄化部にガスを送るための配管の途中又は末端には、加熱部から送られるガスを冷却する冷却手段を設けることが好ましい。加熱部から送られるガスを冷却することにより、噴霧手段において、悪臭物質等のうちの水溶性成分の水への溶解度が増し、悪臭物質等の不要物の除去性能がさらに向上する。冷却手段としては、水等の冷却媒を用いた熱交換器が挙げられ、具体的にはチューブ式、プレート式、再生式等が挙げられる。
チューブ式では、二重管式、シェルアンドチューブ式、スパイラル式等が挙げられる。
 また、本発明の目的を逸脱しない範囲で、温度計や濃度計等の各種計器が設置されてもよい。
<Other configurations>
In the drying processing apparatus of the present invention, in order to send gas from the heating unit to the gas purification unit, and to send gas in the gas purification unit, it is possible to appropriately install a pipe for discharging processed gas from the gas purification unit. it can.
A suction fan or a blower fan that sends and discharges gas, a demister that captures mist in the gas, a filter that captures dust, a cyclone, and the like may be provided in the middle or at the end of the pipe.
It is preferable to provide a cooling means for cooling the gas sent from the heating unit in the middle or at the end of the pipe for sending the gas from the heating unit to the gas purification unit. By cooling the gas sent from the heating unit, the solubility of water-soluble components in malodorous substances and the like in water increases in the spraying means, and the performance of removing unwanted substances such as malodorous substances is further improved. Examples of the cooling means include a heat exchanger using a cooling medium such as water, and specific examples include a tube type, a plate type, and a regenerative type.
The tube type includes a double tube type, a shell and tube type, a spiral type, and the like.
Various instruments such as a thermometer and a densitometer may be installed without departing from the object of the present invention.
(乾燥処理方法)
 上記乾燥処理装置を用いた乾燥処理方法は、加熱工程とガス浄化工程とを有する。
(Drying method)
The dry processing method using the said dry processing apparatus has a heating process and a gas purification process.
<加熱工程>
 加熱工程は、水分を含む有機性廃棄物を加熱して乾燥させる工程である。
 加熱工程における加熱温度は、任意の温度にすることができるが、60℃以上が好ましい。加熱温度が前記60℃未満では、汚泥等の減容化に時間を要し、乾燥処理の効率が低下する。また、加熱温度は、好ましくは100℃以上である。加熱温度が100℃以上であれば、水分を含む有機性廃棄物を容易に乾燥することができる。
<Heating process>
The heating step is a step of heating and drying organic waste containing moisture.
Although the heating temperature in a heating process can be made into arbitrary temperature, 60 degreeC or more is preferable. When the heating temperature is less than 60 ° C., it takes time to reduce the volume of sludge and the like, and the efficiency of the drying process is lowered. The heating temperature is preferably 100 ° C. or higher. If heating temperature is 100 degreeC or more, the organic waste containing a water | moisture content can be dried easily.
 また、乾燥炉内の加熱温度は400℃以下が好ましく、300℃以下がより好ましい。
さらに好ましくは200℃未満である。加熱温度が前記上限値を超えると、乾燥炉内に酸素が多いと発火するおそれがあり、また、還元状態では有機性廃棄物が炭化するおそれがある。なお、乾燥工程において、乾燥炉内に熱風を吹き込む方法を用いる場合には、吹き込む熱風の吹き込み温度は、上記の400℃以上であってもよいが、上限としては700℃以下が好ましい。
 また、蒸気やオイル等を熱媒体として用い、乾燥炉の外周や乾燥炉内に複数配置された加熱管の内部に前記熱媒体を通す場合の熱媒体の温度は100℃以上が好ましくい。上限は特にないが、エネルギー効率や安全性等の観点より200℃以下が好ましい。
 また、加熱工程においては、汚泥等の有機性廃棄物は撹拌等がなされ、均一に乾燥が行うものが好ましい。
Further, the heating temperature in the drying furnace is preferably 400 ° C. or lower, and more preferably 300 ° C. or lower.
More preferably, it is less than 200 degreeC. If the heating temperature exceeds the upper limit, there is a risk of ignition if there is a large amount of oxygen in the drying furnace, and organic waste may be carbonized in a reduced state. In addition, when using the method which blows a hot air in a drying furnace in a drying process, 400 degreeC or more may be sufficient as the blowing temperature of the hot air to blow, but 700 degrees C or less is preferable as an upper limit.
Further, the temperature of the heat medium is preferably 100 ° C. or higher when steam, oil, or the like is used as the heat medium and the heat medium is passed through the outer periphery of the drying furnace or a plurality of heating tubes arranged in the drying furnace. Although there is no upper limit in particular, 200 degrees C or less is preferable from viewpoints, such as energy efficiency and safety.
In the heating step, organic waste such as sludge is preferably stirred and dried uniformly.
 加熱工程によって得られる乾燥物は、減容化されているため運搬が容易で運搬費用が削減され、また、保管スペースも少なく済み保管費用も軽減できる。また、水を含む廃棄物の腐敗も抑制することができ保管も容易である。また、乾燥物は発熱量が大きく燃料としても用いることが可能である。また、有機性廃棄物が有機汚泥の場合には、当該乾燥物を先に説明を行った多孔質セラミックス焼成体の原料の一つである有機汚泥としても用いることができる。
 加熱工程によって得られる乾燥物の含水率は1~30質量%、より好ましくは、3~15質量%がよい。
 上記下限値以下では、乾燥にかかるエネルギーコストや時間がかかり過ぎるおそれがある。また、上記上限値超では、運搬コスト、保管コストの削減効果が小さくなったり、燃料としては水分が多く使用できなかったりするおそれがある。
 なお、乾燥物の含水率の算出は、先に説明を行った有機性廃棄物の含水率と同様の方法で測定され、前記(1)式に準じて求められる。具体的には、乾燥物の含水率は、下記(3)式により求められる。
 乾燥物の含水率(質量%)=(乾燥物の質量(g)-絶乾状態質量(g))/乾燥物の質量(g)×100 ・・・(3)
Since the dried product obtained by the heating process is reduced in volume, it can be easily transported and the transportation cost can be reduced. Also, the storage space is small and the storage cost can be reduced. In addition, the waste containing water can be prevented from decaying and can be stored easily. In addition, the dried product has a large calorific value and can be used as a fuel. When the organic waste is organic sludge, the dried product can be used as organic sludge which is one of the raw materials of the porous ceramic fired body described above.
The moisture content of the dried product obtained by the heating step is 1 to 30% by mass, more preferably 3 to 15% by mass.
Below the lower limit, there is a risk of excessive energy costs and time for drying. If the value exceeds the upper limit, the effect of reducing the transportation cost and the storage cost may be reduced, or the fuel may contain a lot of moisture and may not be used.
In addition, calculation of the moisture content of a dry matter is measured by the method similar to the moisture content of the organic waste demonstrated previously, and is calculated | required according to said (1) Formula. Specifically, the moisture content of the dried product is obtained by the following equation (3).
Moisture content (% by mass) of dried product = (mass of dried product (g) −mass of dried state (g)) / mass of dried product (g) × 100 (3)
<ガス浄化工程>
 ガス浄化工程は、加熱工程で発生したガスに水を噴霧手段によって噴霧すること、加熱工程で発生したガスを吸着手段の多孔質セラミックス焼成体に通すことの少なくとも一方を行う工程である。
<Gas purification process>
The gas purification step is a step of performing at least one of spraying water on the gas generated in the heating step by the spraying means and passing the gas generated in the heating step through the porous ceramic fired body of the adsorption means.
[噴霧手段]
 加熱工程で発生したガス中に煤塵、悪臭物質及び有害物質として水溶性成分が含まれる場合、ガスに水を噴霧することによって、主に、煤塵を水に捕捉させることができ、また、悪臭物質及び有害物質のうちの水溶性成分を水に溶け込ませることができる。
 前記ガスに水を噴射する場合には、前記ガス中に2か所以上から高速に噴霧することが好ましい。このように水を噴霧することにより、水滴が様々な方向に無秩序に且つ高速に移動し、ガス中の煤塵及び水溶性成分と水の接触の機会を増大させることができる。そのため、粉塵及び水溶性成分の除去性能が高くなる。
[Spraying means]
When water-soluble components are included in the gas generated in the heating process as dust, malodorous substances and harmful substances, the dust can be trapped in water mainly by spraying water on the gas. In addition, water-soluble components among harmful substances can be dissolved in water.
When water is injected into the gas, it is preferable to spray the gas at a high speed from two or more locations. By spraying water in this way, water droplets move randomly and at high speed in various directions, and the chance of contact of water with dust and water-soluble components in the gas can be increased. Therefore, the removal performance of dust and a water-soluble component becomes high.
 噴霧する水には、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含有させてもよい。酸性物質、塩基性物質、界面活性剤を水に添加した場合には、煤塵及び水溶性成分に加えて、水に不溶性、難溶性の、塩基性物質、酸性物質、油系成分、中性成分等を除去することも可能になる。
 酸性物質、塩基性物質、界面活性剤としては、多孔質セラミックス焼成体に担持されるものと同様のものを用いることができる。
The water to be sprayed may contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant. When acidic substances, basic substances, and surfactants are added to water, in addition to dust and water-soluble components, water-insoluble and sparingly soluble basic substances, acidic substances, oil-based components, and neutral components Etc. can be removed.
As the acidic substance, the basic substance, and the surfactant, the same substances as those supported on the porous ceramic fired body can be used.
 また、本発明の目的を逸脱しない範囲で、噴霧する水には、マスキングのための香料、キレート剤、抗菌剤、触媒等を添加してもよい。特に、還元状態で炭化処理を行うものに比べ、加熱工程で乾燥を行うものは、加熱工程で排出されるガス量も多く、ガスに含まれる成分も多種にわたるため、浄化工程後も悪臭ではないものの、違和感のある臭いがあることがあるため、ガス浄化工程にてマスキングのために香料等の利用はこのような臭いによる嫌悪感を解消し、効果的である。 In addition, a masking fragrance, a chelating agent, an antibacterial agent, a catalyst, and the like may be added to the water to be sprayed without departing from the object of the present invention. In particular, those that are dried in the heating process, compared to those that are carbonized in the reduced state, have a large amount of gas discharged in the heating process, and there are a variety of components contained in the gas, so there is no odor after the purification process. However, since there may be an unpleasant odor, the use of a fragrance or the like for masking in the gas purification process is effective because it eliminates the aversion from such an odor.
 水噴霧の際の温度は、浄化処理されるガスの温度、ガスに含まれる成分の溶解度や蒸気圧等を勘案し任意に設定すればよい。 The temperature at the time of water spraying may be arbitrarily set in consideration of the temperature of the gas to be purified, the solubility of the components contained in the gas, the vapor pressure, and the like.
[吸着手段]
 加熱工程で発生したガスを多孔質セラミックス焼成体に通した際には、不要物質を多孔質セラミックス焼成体の表面に物理吸着させて除去する。また、多孔質セラミックス焼成体中の酸性成分により、主に、ガス中の塩基性成分をイオン的に吸着して除去し、多孔質セラミックス焼成体中の塩基性成分により、主に、ガス中の酸性成分をイオン的に吸着して除去する。
[Adsorption means]
When the gas generated in the heating process is passed through the porous ceramic fired body, unnecessary substances are physically adsorbed on the surface of the porous ceramic fired body and removed. In addition, the basic component in the gas is mainly ionically adsorbed and removed by the acidic component in the porous ceramic fired body, and the basic component in the porous ceramic fired body is mainly used in the gas. Acidic components are ionized and removed.
 ガスを多孔質セラミックス焼成体で浄化する場合には、不要物質の除去率が高くなることから、多孔質セラミックス焼成体に水を供給することが好ましい。
 また、多孔質セラミックス焼成体に供給する水の中に、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含有させることが好ましい。酸性物質、塩基性物質、界面活性剤としては、多孔質セラミックス焼成体に担持されるものと同様のものを用いることができる。
 多孔質セラミックス焼成体に供給する水の中に、前記酸性物質等を含ませた場合には、前記酸性物質等を多孔質セラミックス焼成体に担持させなくても、不要物質をより除去できる。大きな表面積を有する多孔質セラミックス焼成体中に、水と共に前記酸性物質等を通過させれば、ガス中の各成分と酸性物質等との接触機会が増え、また、新しい酸性成分等が多孔質セラミックス焼成体中に供給されるため、不要物質の除去性能がより高くなるものと考えられる。
When purifying the gas with the porous ceramic fired body, it is preferable to supply water to the porous ceramic fired body because the removal rate of unnecessary substances increases.
Moreover, it is preferable to contain at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant in the water supplied to the porous ceramic fired body. As the acidic substance, the basic substance, and the surfactant, the same substances as those supported on the porous ceramic fired body can be used.
When the acidic substance or the like is included in the water supplied to the porous ceramic fired body, unnecessary substances can be further removed without supporting the acidic substance or the like on the porous ceramic fired body. If the acidic substance and the like are passed together with water in the porous ceramic fired body having a large surface area, the chance of contact between each component in the gas and the acidic substance increases, and a new acidic component or the like becomes porous ceramic. Since it is supplied into the fired body, it is considered that the removal performance of unnecessary substances becomes higher.
 多孔質セラミックス焼成体に供給する水には、酸性物質等の他、マスキングのための香料、キレート剤、抗菌剤、触媒等を添加してもよい。特に、還元状態で炭化処理を行うものに比べ、加熱工程で乾燥を行うものは、加熱工程で排出されるガス量も多く、ガスに含まれる成分も多種にわたるため、浄化工程後も悪臭ではないものの、違和感のある臭いがあることがあるため、ガス浄化工程にてマスキングのために香料等の利用はこのような臭いによる嫌悪感を解消し、効果的である。 In addition to acidic substances, water supplied to the porous ceramic fired body may contain a flavoring agent for masking, a chelating agent, an antibacterial agent, a catalyst, and the like. In particular, those that are dried in the heating process, compared to those that are carbonized in the reduced state, have a large amount of gas discharged in the heating process, and there are a variety of components contained in the gas, so there is no odor after the purification process. However, since there may be an unpleasant odor, the use of a fragrance or the like for masking in the gas purification process is effective because it eliminates the aversion from such an odor.
 吸着手段を2つ具備する場合、一方の吸着手段では、酸性物質を含む水を多孔質セラミックス焼成体に供給して主にガス中の塩基性物質を除去し、他方の吸着手段では、塩基性物質を含む水を多孔質セラミックス焼成体に供給して主にガス中の酸性物質を除去してもよい。 When two adsorbing means are provided, one adsorbing means supplies water containing an acidic substance to the porous ceramic fired body to mainly remove basic substances in the gas. Water containing the substance may be supplied to the fired porous ceramic body to remove mainly the acidic substance in the gas.
(作用効果)
 本発明の乾燥処理装置によれば、加熱部によって水分を含む有機性廃棄物を加熱した際に発生したガス中の不要物質を、噴霧手段及び多孔質セラミックス焼成体等による吸着手段のうち、少なくとも一方によって除去できる。これら手段により、不要物質を低コストで充分に除去できる。従って、中小規模の工場、廃棄物処理場、汚水処理場、養豚・養鶏場等であっても導入が容易であり、地域の臭気環境を向上させることができる。
 本発明の乾燥処理装置によって水分を含む有機性廃棄物を乾燥して得た乾燥物は、減容化されているため、輸送や保管に係るコストを軽減できる。また、該乾燥物は、燃料、脱臭剤、土壌改良材等の有益物として利用できる。
(Function and effect)
According to the drying treatment apparatus of the present invention, unnecessary substances in the gas generated when the organic waste containing moisture is heated by the heating unit are used as at least one of the adsorbing means such as the spraying means and the porous ceramic fired body. Can be removed by one. By these means, unnecessary substances can be sufficiently removed at low cost. Therefore, introduction is easy even in small and medium-sized factories, waste treatment plants, sewage treatment plants, pig farms and poultry farms, and the odor environment in the region can be improved.
Since the dry matter obtained by drying the organic waste containing water by the drying treatment apparatus of the present invention is reduced in volume, the cost for transportation and storage can be reduced. Further, the dried product can be used as a beneficial material such as a fuel, a deodorizing agent, and a soil improving material.
 以下、本発明について実施例を示してより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
(製造例A1)多孔質セラミックス焼成体の製造
 スラグ50質量部、有機汚泥25質量部、粘土25質量部(合計100質量部)に対し、瓦20質量部を添加し、これらを、ミックスマラー(新東工業株式会社製)を用いて混合し、可塑状態の混合物を得た(混合工程)。
 次いで、真空土練成形機で上記混合物を直径1.5cmの円柱状に押し出し、次いで、長さ3cmに切断して円柱状の成形体(含水率15質量%)を得た。その成形体を、乾燥工程を経ずに引き続き、連続式焼結炉を用いて、焼成温度1050℃、焼成温度での滞留時間7分間の焼成条件にて焼成した(焼成工程)。連続式焼結炉としては、ローラーハースキルン(焼結炉の有効長:全長15m、焼結炉を各1.5mのゾーン1~10に分割)を用いた。焼成によって得られた多孔質セラミックス焼成体は細かな亀裂が入った長径が3cm~10cm程度の粒状物と塊状物が混在したものであった。
 得られた多孔質セラミックス焼成体の粒状物及び塊状物をハンマーミルで粉砕した。次に、篩を用いて、5mm超10mm以下のものに篩分けして、多孔質セラミックス焼成体の粒状物を得た。得られた多孔質セラミックス焼成体の粒状物は、マイクロメートルオーダーの気孔とナノメートルオーダーの気孔が確認された。特に孔径が1μm~30μm及び200nm~500nmのものが多く観察された。また、多孔質セラミックス焼成体の見かけ密度は0.7g/ml、飽和含水率は43質量%であり、気孔同士の連通も確認された。
(Manufacture example A1) Manufacture of a porous ceramic fired body 20 mass parts of roof tiles are added to 50 mass parts of slag, 25 mass parts of organic sludge, and 25 mass parts of clay (total 100 mass parts). Using Shinto Kogyo Co., Ltd.) to obtain a plastic mixture (mixing step).
Next, the mixture was extruded into a cylindrical shape having a diameter of 1.5 cm using a vacuum kneader and then cut into a length of 3 cm to obtain a cylindrical shaped body (water content: 15% by mass). The molded body was subsequently fired in a continuous sintering furnace without using a drying step under a firing condition of a firing temperature of 1050 ° C. and a residence time of 7 minutes at the firing temperature (firing step). As the continuous sintering furnace, a roller hearth kiln (effective length of the sintering furnace: total length 15 m, the sintering furnace was divided into zones 1 to 10 each having a length of 1.5 m) was used. The fired porous ceramic body obtained by firing was a mixture of granular materials and lumps having a major axis of about 3 cm to 10 cm with fine cracks.
The obtained porous ceramic fired bodies were pulverized with a hammer mill. Next, using a sieve, it was sieved to a size of more than 5 mm and 10 mm or less to obtain a granular material of a fired porous ceramic body. The resulting porous ceramic fired body was confirmed to have micrometer-order pores and nanometer-order pores. In particular, many pore diameters of 1 to 30 μm and 200 to 500 nm were observed. In addition, the apparent density of the fired porous ceramic body was 0.7 g / ml, the saturated water content was 43% by mass, and communication between pores was also confirmed.
<使用原料>
 なお、上記製造例で用いた多孔質セラミックス焼成体の原料は、具体的には次のものである。
<Raw materials>
In addition, the raw material of the porous ceramic sintered body used in the above production example is specifically as follows.
[有機汚泥]
 有機汚泥としては、染色工場(小松精練株式会社)の活性汚泥法による排水処理設備から凝集・脱水工程を経て排出された活性汚泥を用いた。この活性汚泥の有機物含有量(対固形分)は83質量%、含水率は85質量%であった。
[Organic sludge]
As the organic sludge, the activated sludge discharged from the wastewater treatment facility by the activated sludge method of the dyeing factory (Komatsu Seiren Co., Ltd.) through the coagulation / dehydration process was used. The activated sludge had an organic content (based on solid content) of 83% by mass and a water content of 85% by mass.
[粘土]
 粘土としては、蛙目粘土(岐阜県)を用いた。
[clay]
As the clay, Sakaime clay (Gifu Prefecture) was used.
[スラグ]
 発泡剤として、鋳鉄スラグを用いた。この鋳鉄スラグは、SiO、Al、CaO、Fe、FeO、MgO、MnO、KO、NaOを主成分とするダクタイル鋳鉄スラグである。
[Slag]
Cast iron slag was used as a foaming agent. The cast iron slag is a ductile iron slag SiO 2, Al 2 O 3, CaO, Fe 2 O 3, FeO, MgO, MnO, K 2 O, the Na 2 O as main components.
[瓦]
 住宅用の瓦として使用された後、廃棄されたものを粉砕した粒子径0.1mm~1.2mmのものを用いた。
[tile]
After being used as a roof tile for a house, a discarded one having a particle diameter of 0.1 mm to 1.2 mm was used.
<物性の測定・確認>
 多孔質セラミックス焼成体の物性値は以下の方法により測定した。
<Measurement and confirmation of physical properties>
The physical property values of the porous ceramic fired body were measured by the following methods.
[孔径の確認]
 多孔質セラミックス焼成体のマイクロメートルオーダーの気孔及びナノメートルオーダーの気孔の確認は、電子顕微鏡(SEMEDX Type H形、日立サイエンスシステムズ製)を用い、30倍~10000倍で観察した。
[Check hole diameter]
Confirmation of micrometer-order pores and nanometer-order pores in the fired porous ceramics was performed using an electron microscope (SEMEDX Type H type, manufactured by Hitachi Science Systems) at 30 to 10,000 times.
[見かけ密度]
 多孔質セラミックス焼成体が粒状物のものの場合は、「土壌標準分析・測定法」(博友社)の中の三相分布・容積重(実容積法)にて測定される乾土質量(g)より求められる容積重(仮比重、g/ml)を見かけ密度とした。
 また、多孔質セラミックス焼成体の粒状物が測定容器と比べ大きい場合には、サンプルを直方体にカットし、サンプルの外形寸法をノギスにより測定し体積を求めた。カットしたサンプルを絶乾状態にし、電子天秤にて質量を測定(絶乾状態質量)し、下記(4)式により見かけ密度を算出した。
 見かけ密度(g/cm)=[絶乾状態質量(g)]/[体積(cm)] ・・・(4)
[Apparent density]
When the porous ceramic fired body is granular, dry soil mass (g) measured by the three-phase distribution / volumetric weight (actual volume method) in “Soil Standard Analysis / Measurement Method” (Hakutosha) ) To obtain the apparent density (provisional specific gravity, g / ml).
Moreover, when the granular material of the porous ceramic fired body was larger than the measurement container, the sample was cut into a rectangular parallelepiped, and the external dimensions of the sample were measured with calipers to determine the volume. The cut sample was completely dried, the mass was measured with an electronic balance (mass dried), and the apparent density was calculated by the following equation (4).
Apparent density (g / cm 3 ) = [absolutely dry mass (g)] / [volume (cm 3 )] (4)
[飽和含水率]
 多孔質セラミックス焼成体を、水に60分間浸漬し、水中から取り出し、直ちに質量を測定(飽和含水状態質量)し、下記(5)式により飽和含水率を求めた。飽和含水率の測定を試料数(N)=10について行い、平均値を求めた。
 飽和含水率(質量%)=[(飽和含水状態質量-絶乾状態質量)/絶乾状態質量]×100・・・(5)
[Saturated water content]
The porous ceramic fired body was immersed in water for 60 minutes, removed from the water, immediately measured for mass (saturated moisture content mass), and the saturated moisture content was determined by the following equation (5). The saturation moisture content was measured for the number of samples (N) = 10, and the average value was obtained.
Saturated water content (mass%) = [(saturated water content mass−absolute dry mass) / absolute dry mass] × 100 (5)
[気孔同士の連通の有無の確認]
 多孔質セラミックス焼成体における気孔同士の連通の有無の確認は、得られた多孔質セラミックス焼成体を水に浸漬し、充分に吸水させた後に切断または潰し、その断面を観察することで確認した。多孔質セラミックス焼成体の内部に、満遍なく水分が分布・保水されている場合、気孔同士が連通していると判断した。多孔質セラミックス焼成体の内部に水分が行き渡っていない場合には、個々の気孔又は孔隙が独立しており、気孔同士が連通していない又は連通が不充分であると判断した。
[Check for communication between pores]
Confirmation of the presence or absence of communication between pores in the porous ceramic fired body was confirmed by immersing the obtained porous ceramic fired body in water, sufficiently absorbing water, cutting or crushing, and observing the cross section. When moisture was evenly distributed and retained in the porous ceramic fired body, it was judged that the pores communicated with each other. When moisture did not spread inside the porous ceramic fired body, it was determined that the individual pores or pores were independent and the pores were not in communication or inadequate communication.
(実施例A1)
 図1に示すように、実施例A1におけるガス浄化装置11は、第1浄化部110と第2浄化部120とを具備するものとした。
(Example A1)
As shown in FIG. 1, the gas purification device 11 in Example A1 includes a first purification unit 110 and a second purification unit 120.
 第1浄化部110は、槽111の側面111a及び上面111bの各々にスプレーノズル112が取り付けられたものとした。また、第1浄化部110においては、槽111の底部に溜まった水を循環して、再度、スプレーノズル112に供給する循環ポンプ113を設けた。また、槽111の上部にガスを導入する導入管114を接続し、槽111の下部に溜まった水を排出する排出管115を取り付けた。 The 1st purification | cleaning part 110 shall have the spray nozzle 112 attached to each of the side surface 111a of the tank 111, and the upper surface 111b. Moreover, in the 1st purification | cleaning part 110, the circulation pump 113 which circulates the water collected at the bottom part of the tank 111 and supplies it to the spray nozzle 112 again was provided. In addition, an introduction pipe 114 for introducing gas was connected to the upper part of the tank 111, and a discharge pipe 115 for discharging water accumulated in the lower part of the tank 111 was attached.
 第2浄化部120は、1層の多孔質セラミックス焼成体層121a(吸着手段)を備える槽122aと、5層の多孔質セラミックス焼成体層121b(吸着手段)を内部に備える槽122bと、5層の多孔質セラミックス焼成体層121c(吸着手段)を内部に備える槽122cとを備えるものとした。槽122aは、槽111の上部に連結した。
 多孔質セラミックス焼成体層121a,121b,121cは、各々、製造例A1で得た多孔質セラミックス焼成体の粒状物をメッシュ状容器に充填することにより構成され、ガスの流れに対して垂直になるように配置した。
 また、槽122aの内部には、多孔質セラミックス焼成体層121aの上面に水を噴霧するスプレーノズル123aが設けられ、スプレーノズル123aの上方には、ミストを捕捉して除去する不織布製のデミスター124aが設けられた。
 槽122bの内部には、最上層の多孔質セラミックス焼成体層121bの上面に水を噴霧するスプレーノズル123bが設けられ、スプレーノズル123bの上方には、ミストを捕捉して除去する不織布製のデミスター124bが設けられた。槽122bの下部には、溜まった水を排出する排出管125bを取り付けた。
 槽122cの内部には、最上層の多孔質セラミックス焼成体層121cの上面に水を噴霧するスプレーノズル123cが設けられ、スプレーノズル123cの上方には、ミストを捕捉して除去する不織布製のデミスター124cが設けられた。槽122cの下部には、溜まった水を排出する排出管125cを取り付けた。
The second purification unit 120 includes a tank 122a having one porous ceramic fired body layer 121a (adsorption means), a tank 122b having five layers of porous ceramic fired body layers 121b (adsorption means) inside, and 5 The porous ceramic fired body layer 121c (adsorption means) is provided as a tank 122c. The tank 122 a is connected to the upper part of the tank 111.
The porous ceramic fired body layers 121a, 121b, and 121c are each configured by filling the mesh-shaped container with the porous ceramic fired bodies obtained in Production Example A1, and are perpendicular to the gas flow. Arranged.
In addition, a spray nozzle 123a that sprays water on the upper surface of the porous ceramic fired body layer 121a is provided inside the tank 122a, and a demister 124a made of nonwoven fabric that captures and removes mist is disposed above the spray nozzle 123a. Was provided.
Inside the tank 122b, there is provided a spray nozzle 123b for spraying water on the upper surface of the uppermost porous ceramic fired body layer 121b. Above the spray nozzle 123b, a non-woven demister that captures and removes mist. 124b was provided. A discharge pipe 125b for discharging the accumulated water was attached to the lower part of the tank 122b.
Inside the tank 122c, there is provided a spray nozzle 123c for spraying water on the upper surface of the uppermost porous ceramic fired body layer 121c. Above the spray nozzle 123c, a non-woven demister that captures and removes mist. 124c was provided. A discharge pipe 125c for discharging the accumulated water was attached to the lower part of the tank 122c.
 また、ガス浄化装置11は、槽111の底部に溜まった水をスプレーノズル123aに供給するための配管131a及びポンプ132aと、槽122bの底部に溜まった水をスプレーノズル123bに供給するための配管131b及びポンプ132bと、槽122cの底部に溜まった水をスプレーノズル123cに供給するための配管131c及びポンプ132cを具備するものとした。また、薬液タンク133bと薬液タンク133bの内部に入れられた薬液Aを配管131bに供給するための配管134b及びポンプ135bと、薬液タンク133cと薬液タンク133cの内部に入れられた薬液Bを配管131cに供給するための配管134c及びポンプ135cとを具備するものとした。
 また、槽122aの上部と槽122bの下部とを配管141で接続し、槽122bの上部と槽122cの下部とを配管142で接続し、槽122cの上部に配管143を取り付けた。配管141には送風ファン144aを取り付け、配管142には送風ファン144bを取り付け、配管143には排気ファン144cを取り付けた。
In addition, the gas purification device 11 includes a pipe 131a and a pump 132a for supplying water accumulated at the bottom of the tank 111 to the spray nozzle 123a, and a pipe for supplying water accumulated at the bottom of the tank 122b to the spray nozzle 123b. 131b and a pump 132b, and a pipe 131c and a pump 132c for supplying water accumulated in the bottom of the tank 122c to the spray nozzle 123c are provided. Further, a pipe 134b and a pump 135b for supplying the chemical liquid tank 133b and the chemical liquid A put in the chemical liquid tank 133b to the pipe 131b, and a chemical liquid B put in the chemical liquid tank 133c and the chemical liquid tank 133c are connected to the pipe 131c. A pipe 134c and a pump 135c for supplying to the pipe are provided.
Moreover, the upper part of the tank 122a and the lower part of the tank 122b were connected by the pipe 141, the upper part of the tank 122b and the lower part of the tank 122c were connected by the pipe 142, and the pipe 143 was attached to the upper part of the tank 122c. A blower fan 144 a is attached to the pipe 141, a blower fan 144 b is attached to the pipe 142, and an exhaust fan 144 c is attached to the pipe 143.
 本例では、製造例A1の多孔質セラミックス焼成体を製造する際に、焼成炉から排出されたガスを、ガス浄化装置11を用いて脱臭した。
 具体的には、焼成炉から排出されたガスを導入管114に通して、第1浄化部110の槽111にガス供給速度3m/分で供給し、槽111の内部のガスに、水供給管116から供給した水道水を、スプレーノズル112を用いて充円形状のスプレーパターンで噴霧した。これにより、様々な方向に無秩序に且つ高速に乱れ飛ぶ水滴が存在する空間中にガスを通すことができる。槽111の底部に溜まった水の一部は、循環ポンプ113を用いて、再度、スプレーノズル112から槽111の内部に噴霧し、残りは排出管115から廃棄した。これにより、第1浄化部110において、主に、ガスに含まれる煤塵及び水溶性成分を除去した。
In this example, when the porous ceramic fired body of Production Example A1 was produced, the gas discharged from the firing furnace was deodorized using the gas purification device 11.
Specifically, the gas discharged from the baking furnace is passed through the introduction pipe 114 and supplied to the tank 111 of the first purification unit 110 at a gas supply rate of 3 m 3 / min, and water is supplied to the gas inside the tank 111. Tap water supplied from the pipe 116 was sprayed in a full circle spray pattern using the spray nozzle 112. Thereby, gas can be allowed to pass through the space where water droplets turbulently flying at random and in various directions exist. A part of the water accumulated at the bottom of the tank 111 was sprayed again from the spray nozzle 112 into the tank 111 using the circulation pump 113, and the rest was discarded from the discharge pipe 115. Thereby, in the 1st purification | cleaning part 110, the dust and water-soluble component which were mainly contained in gas were removed.
 次いで、槽111の上部から排出させたガスを、槽122aに導入し、多孔質セラミックス焼成体層121aに通した。その際、配管131a、ポンプ132a及びスプレーノズル123aを用いて、多孔質セラミックス焼成体層121aに、槽111の底部に溜まった水の一部と、水供給管136aから供給した水道水を噴霧した。
 槽122aでは、不要物質を多孔質セラミックス焼成体の表面に物理吸着させて除去した。また、焼成体多孔質セラミックス焼成体に含まれる酸性成分により主にガス中の塩基性成分を吸着除去し、多孔質セラミックス焼成体に含まれる塩基性成分により主にガス中の酸性成分を吸着除去した。
 多孔質セラミックス焼成体層121aを通過したガスをデミスター124aに通してミストを捕捉した後、送風ファン144aを用い、配管141に通して槽122bの下部に導入した。
Next, the gas discharged from the upper part of the tank 111 was introduced into the tank 122a and passed through the porous ceramic fired body layer 121a. At that time, using the pipe 131a, the pump 132a, and the spray nozzle 123a, the porous ceramic fired body layer 121a was sprayed with part of the water accumulated at the bottom of the tank 111 and tap water supplied from the water supply pipe 136a. .
In the tank 122a, unnecessary substances were removed by physical adsorption on the surface of the fired porous ceramic body. Also, the basic components in the gas are mainly adsorbed and removed by the acidic components contained in the fired porous ceramic fired body, and the acidic components in the gas are mainly adsorbed and removed by the basic components contained in the porous ceramic fired body. did.
The gas that passed through the porous ceramic fired body layer 121a was passed through the demister 124a to capture the mist, and then introduced into the lower portion of the tank 122b through the pipe 141 using the blower fan 144a.
 槽122bに導入したガスを、5層の多孔質セラミックス焼成体層121bに通した。その際、配管131b,ポンプ132b及びスプレーノズル123bを用いて、多孔質セラミックス焼成体層121bに、槽122bの底部に溜まった水と、水供給管136bから供給した水道水を噴霧した。また、薬液タンク133bに入れられた薬液Aを配管134b及びポンプ135bを用いて配管131bに供給した。槽122bは、塩基性物質と油性物質、中性成分の除去を主な役割とするものであり、薬液Aは、酸性物質とノニオン系界面活性剤とアニオン系界面活性剤の水溶液とした。
 なお、噴霧された水及び薬液Aの一部は、5層の多孔質セラミックス焼成体層121bを通過し、槽122bの底部に落下して溜まり、溜まった水及び薬液の一部は排出管125bを用いて排出される。
 多孔質セラミックス焼成体層121bを通過したガスをデミスター124bに通してミストを捕捉した後、送風ファン144bを用い、配管142に通して槽122cの下部に導入した。
The gas introduced into the tank 122b was passed through the five porous ceramic fired body layers 121b. At that time, using the pipe 131b, the pump 132b, and the spray nozzle 123b, water accumulated at the bottom of the tank 122b and tap water supplied from the water supply pipe 136b were sprayed onto the porous ceramic fired body layer 121b. Further, the chemical liquid A placed in the chemical liquid tank 133b was supplied to the pipe 131b using the pipe 134b and the pump 135b. The tank 122b has a main role of removing basic substances, oily substances, and neutral components, and the chemical solution A is an aqueous solution of an acidic substance, a nonionic surfactant, and an anionic surfactant.
Part of the sprayed water and chemical liquid A passes through the five porous ceramic fired body layers 121b and drops and accumulates at the bottom of the tank 122b, and a part of the accumulated water and chemical liquid is discharged from the discharge pipe 125b. It is discharged using.
The gas that passed through the porous ceramic fired body layer 121b was passed through the demister 124b to capture the mist, and then introduced into the lower part of the tank 122c through the pipe 142 using the blower fan 144b.
 槽122cに導入したガスを、5層の多孔質セラミックス焼成体層121cに通した。その際、配管131c,ポンプ132c及びスプレーノズル123cを用いて、多孔質セラミックス焼成体層121cに、槽122cの底部に溜まった水と、水供給管136cから供給した水道水を噴霧した。また、薬液タンク133cに入れられた薬液Bを配管134c及びポンプ135cを用いて配管131cに供給した。槽122cは、酸性成分の除去を主な役割とするものであり、薬液Bは、塩基性物質の水溶液とした。
 なお、噴霧された水及び薬液Bの一部は、5層の多孔質セラミックス焼成体層121cを通過し、槽122cの底部に落下して溜まり、溜まった水及び薬液の一部は排出管125cを用いて排出される。
 多孔質セラミックス焼成体層121cを通過したガスをデミスター124cに通してミストを捕捉した後、排気ファン144cを用い、配管143に通して槽122cの外部に放出した。
The gas introduced into the tank 122c was passed through the five porous ceramic fired body layers 121c. At that time, using the pipe 131c, the pump 132c, and the spray nozzle 123c, water accumulated at the bottom of the tank 122c and tap water supplied from the water supply pipe 136c were sprayed onto the porous ceramic fired body layer 121c. Further, the chemical solution B placed in the chemical solution tank 133c was supplied to the piping 131c using the piping 134c and the pump 135c. The tank 122c has a main role of removing acidic components, and the chemical solution B is an aqueous solution of a basic substance.
Part of the sprayed water and chemical solution B passes through the five porous ceramic fired body layers 121c and drops and accumulates at the bottom of the tank 122c, and a part of the accumulated water and chemical solution is discharged from the discharge pipe 125c. It is discharged using.
The gas that passed through the porous ceramic fired body layer 121c was passed through the demister 124c to capture the mist, and then discharged to the outside of the tank 122c through the pipe 143 using the exhaust fan 144c.
 実施例A1におけるガス中に含まれる悪臭物質等の脱臭性能について、以下の方法により評価した。
 すなわち、ガスに含まれるプロピオン酸、ノルマル酪酸、ノルマル吉草酸、イソ吉草酸、硫黄酸化物(これらはいずれも悪臭物質である。)の濃度を、昭和47年環境庁告示第9号に従って測定した。測定結果を表1に示す。
 また、ガス浄化装置11に入る前のガス、ガス浄化装置11を経たガスの臭いを、評価者が嗅いで評価した。評価結果を表1に示す。
The deodorizing performance of malodorous substances contained in the gas in Example A1 was evaluated by the following method.
That is, the concentrations of propionic acid, normal butyric acid, normal valeric acid, isovaleric acid, and sulfur oxide (all of which are malodorous substances) contained in the gas were measured according to Environmental Agency Notification No. 9 of 1972. . The measurement results are shown in Table 1.
Moreover, the evaluator sniffed and evaluated the smell of the gas before entering the gas purification apparatus 11 and the gas that passed through the gas purification apparatus 11. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ガス浄化装置11を用いることにより、焼成炉から排出されたガスに含まれる悪臭物質を充分に除去できた。
 また、実施例A1において、薬液タンク133cに香料を少し添加したところ、不快な悪臭は全く感じず、香料の良い香りが感じられた。
As shown in Table 1, by using the gas purification device 11, malodorous substances contained in the gas discharged from the firing furnace could be sufficiently removed.
Moreover, in Example A1, when a little fragrance | flavor was added to the chemical | medical solution tank 133c, an unpleasant bad odor was not felt at all, and the fragrance with a favorable fragrance | flavor was felt.
(製造例B1)多孔質セラミックス焼成体の製造
 スラグ50質量部、有機汚泥25質量部、粘土25質量部(合計100質量部)に対し、瓦20質量部を添加し、これらを、ミックスマラー(新東工業株式会社製)を用いて混合し、可塑状態の混合物を得た(混合工程)。
 次いで、真空土練成形機で上記混合物を直径1.5cmの円柱状に押し出し、次いで、長さ3cmに切断して円柱状の成形体(含水率15質量%)を得た。その成形体を、乾燥工程を経ずに引き続き、連続式焼結炉を用いて、焼成温度1050℃、焼成温度での滞留時間7分間の焼成条件にて焼成した(焼成工程)。連続式焼結炉としては、ローラーハースキルン(焼結炉の有効長:全長15m、焼結炉を各1.5mのゾーン1~10に分割)を用いた。焼成によって得られた多孔質セラミックス焼成体は細かな亀裂が入った長径が3cm~10cm程度の粒状物と塊状物が混在したものであった。
 得られた多孔質セラミックス焼成体の粒状物及び塊状物をハンマーミルで粉砕した。次に、篩を用いて、5mm超10mm以下のものに篩分けして、多孔質セラミックス焼成体の粒状物を得た。得られた多孔質セラミックス焼成体の粒状物は、マイクロメートルオーダーの気孔とナノメートルオーダーの気孔が確認された。特に孔径が1μm~30μm及び200nm~500nmのものが多く観察された。また、多孔質セラミックス焼成体の見かけ密度は0.7g/ml、飽和含水率は43質量%であり、気孔同士の連通も確認された。
(Manufacturing example B1) Manufacture of a porous ceramic fired body 20 mass parts of roof tiles are added to 50 mass parts of slag, 25 mass parts of organic sludge, and 25 mass parts of clay (total 100 mass parts), Using Shinto Kogyo Co., Ltd.) to obtain a plastic mixture (mixing step).
Next, the mixture was extruded into a cylindrical shape having a diameter of 1.5 cm using a vacuum kneader and then cut into a length of 3 cm to obtain a cylindrical shaped body (water content: 15% by mass). The molded body was subsequently fired in a continuous sintering furnace without using a drying step under a firing condition of a firing temperature of 1050 ° C. and a residence time of 7 minutes at the firing temperature (firing step). As the continuous sintering furnace, a roller hearth kiln (effective length of the sintering furnace: total length 15 m, the sintering furnace was divided into zones 1 to 10 each having a length of 1.5 m) was used. The fired porous ceramic body obtained by firing was a mixture of granular materials and lumps having a major axis of about 3 cm to 10 cm with fine cracks.
The obtained porous ceramic fired bodies were pulverized with a hammer mill. Next, using a sieve, it was sieved to a size of more than 5 mm and 10 mm or less to obtain a granular material of a fired porous ceramic body. The resulting porous ceramic fired body was confirmed to have micrometer-order pores and nanometer-order pores. In particular, many pore diameters of 1 to 30 μm and 200 to 500 nm were observed. In addition, the apparent density of the fired porous ceramic body was 0.7 g / ml, the saturated water content was 43% by mass, and communication between pores was also confirmed.
<使用原料>
 なお、上記製造例で用いた多孔質セラミックス焼成体の原料は、具体的には次のものである。有機汚泥、粘土、スラグ及び瓦は製造例A1と同様のものを用いた。
<Raw materials>
In addition, the raw material of the porous ceramic sintered body used in the above production example is specifically as follows. The same organic sludge, clay, slag and roof tile as those used in Production Example A1 were used.
<物性の測定・確認>
 多孔質セラミックス焼成体の物性値は以下の方法により測定した。孔径の確認、見かけ密度の測定、飽和含水率、気孔同士の連通の有無の確認は製造例A1と同様の方法により測定した。
<Measurement and confirmation of physical properties>
The physical property values of the porous ceramic fired body were measured by the following methods. Confirmation of pore diameter, measurement of apparent density, saturation moisture content, and confirmation of presence / absence of communication between pores were measured by the same method as in Production Example A1.
(実施例B1)
 図2に示すように、実施例B1における廃棄物処理装置21は、ロータリーキルンを用いた加熱部210と、第1浄化手段220と、第2浄化手段230と、第3浄化手段240とを具備するものとした。
(Example B1)
As shown in FIG. 2, the waste treatment apparatus 21 in Example B1 includes a heating unit 210 using a rotary kiln, a first purification unit 220, a second purification unit 230, and a third purification unit 240. It was supposed to be.
 第1浄化手段220は、槽221の側面221aにスプレーノズル22が取り付けられたものとした。また、第1浄化手段220においては、槽221の底部に溜まった水を循環して、再度、スプレーノズル222に供給する循環ポンプ223及び配管224を設けた。また、槽221の下部に溜まった水を排出する排出管225を取り付けた。 The first purification means 220 has the spray nozzle 22 attached to the side surface 221a of the tank 221. In the first purification means 220, a circulation pump 223 and a pipe 224 that circulate the water accumulated at the bottom of the tank 221 and supply the water to the spray nozzle 222 again are provided. Moreover, the discharge pipe 225 which discharges the water collected in the lower part of the tank 221 was attached.
 第2浄化手段230は、1層の多孔質セラミックス焼成体層232を備える槽231を備えるものとした。槽231は、槽221の上部に連結した。多孔質セラミックス焼成体層232は、製造例B1で得た多孔質セラミックス焼成体の粒状物をメッシュ状容器に厚さ約2.5cmで充填することにより構成され、ガスの流れに対して垂直になるように配置した。また、槽231の内部には、多孔質セラミックス焼成体層232の上面に水を噴霧するスプレーノズル233が設けられ、スプレーノズル233の上方には、ミストを捕捉して除去する不織布製のデミスター234が設けられた。
 また、第2浄化手段230においては、槽231の底部に溜まった水を循環して、再度、スプレーノズル233に供給する循環ポンプ235及び配管236を設けた。
The 2nd purification means 230 shall be equipped with the tank 231 provided with the porous ceramic sintered body layer 232 of one layer. The tank 231 was connected to the upper part of the tank 221. The porous ceramic fired body layer 232 is configured by filling the mesh-shaped container with the granular material of the porous ceramic fired body obtained in Production Example B1 with a thickness of about 2.5 cm, and is perpendicular to the gas flow. Arranged to be. In addition, a spray nozzle 233 for spraying water is provided on the upper surface of the porous ceramic fired body layer 232 inside the tank 231, and a non-woven fabric demister 234 for capturing and removing mist is disposed above the spray nozzle 233. Was provided.
In the second purification means 230, a circulation pump 235 and a pipe 236 that circulate the water accumulated at the bottom of the tank 231 and supply the water to the spray nozzle 233 again are provided.
 第3浄化手段240は、槽241にスプレーノズル242a,242b,242cが取り付けられたものとした。スプレーノズル242aは、槽241の側面241aに取り付けられ、スプレーノズル242b,242cは、槽241の上面241bに取り付けられた。スプレーノズル242bは、真下に水を噴霧し、スプレーノズル242cは、斜め下に水を噴霧するものとした。
 スプレーノズル242cの上方には、ミストを捕捉して除去する不織布製のデミスター244が設けられた。また、第3浄化手段240においては、槽221の下部に溜まった水の一部を排出する排出管243を取り付けた。また、槽241の底部に溜まった水の一部を循環して、再度、スプレーノズル242a,242bに供給する循環ポンプ245及び配管246を設けた。
 また、第3浄化手段240は、薬液タンク247と薬液タンク247の内部に入れられた薬液をスプレーノズル242cに供給するための配管248及びポンプ249を具備するものとした。
The third purification means 240 is a tank 241 having spray nozzles 242a, 242b, and 242c attached thereto. The spray nozzle 242 a was attached to the side surface 241 a of the tank 241, and the spray nozzles 242 b and 242 c were attached to the upper surface 241 b of the tank 241. The spray nozzle 242b sprays water directly below, and the spray nozzle 242c sprays water diagonally below.
Above the spray nozzle 242c, a non-woven fabric demister 244 for capturing and removing mist was provided. Moreover, in the 3rd purification means 240, the discharge pipe 243 which discharges a part of water collected in the lower part of the tank 221 was attached. In addition, a circulation pump 245 and a pipe 246 that circulate a part of the water accumulated in the bottom of the tank 241 and supply the spray nozzles 242a and 242b again are provided.
The third purification means 240 includes a chemical liquid tank 247 and a pipe 248 and a pump 249 for supplying the chemical liquid contained in the chemical liquid tank 247 to the spray nozzle 242c.
 また、加熱部210の上部と槽221の上部とを配管251で接続し、槽231の上部と槽241の上部とを配管252で接続し、槽241の上部に配管253を取り付けた。配管251には送風ファン264aを取り付け、配管252には送風ファン264bを取り付け、配管253には排気ファン264cを取り付けた。 Also, the upper part of the heating unit 210 and the upper part of the tank 221 were connected by a pipe 251, the upper part of the tank 231 and the upper part of the tank 241 were connected by a pipe 252, and the pipe 253 was attached to the upper part of the tank 241. A blower fan 264 a is attached to the pipe 251, a blower fan 264 b is attached to the pipe 252, and an exhaust fan 264 c is attached to the pipe 253.
 本例の廃棄物処理装置21では、加熱部210で汚泥を加熱し、第1浄化手段220と第2浄化手段230と第3浄化手段240とによって、加熱部210から排出されたガスを浄化した。
 具体的には、加熱部210によって、汚泥を450~500℃で加熱処理した。加熱部210は、可燃物(汚泥)が燃焼を継続するために必要な酸素濃度である限界酸素濃度を概ね上回らない程度の状態で加熱され、汚泥中の有機物が熱分解されるものとした。加熱処理により汚泥は炭化された。得られた炭化物の低位発熱量は23000kJ/kg(5350kcal/kg)(分析方法:JIS M8814)であり、燃料として用いるのに充分な発熱量を有していた。
 次いで、加熱部210から排出されたガスを、送風ファン264aを用い、配管251に通して槽221にガス供給速度3m/分で導入した。
 次いで、槽221の内部のガスに、水供給管224aから供給した水道水を、スプレーノズル222を用いて充円形状のスプレーパターンで噴霧した。槽221の底部に溜まった水の一部は、循環ポンプ223及び配管224を用いて、再度、スプレーノズル222から槽221の内部に噴霧し、残りの水は排出管225を通して廃棄した。これにより、第1浄化手段220において、主に、ガスに含まれる煤塵及び水溶性成分を除去した。
In the waste treatment apparatus 21 of this example, the sludge is heated by the heating unit 210 and the gas discharged from the heating unit 210 is purified by the first purification unit 220, the second purification unit 230, and the third purification unit 240. .
Specifically, the sludge was heat-treated at 450 to 500 ° C. by the heating unit 210. The heating unit 210 is heated in a state where the combustible material (sludge) does not substantially exceed the limit oxygen concentration that is an oxygen concentration necessary for continuing combustion, and the organic matter in the sludge is thermally decomposed. The sludge was carbonized by the heat treatment. The obtained carbide had a lower calorific value of 23000 kJ / kg (5350 kcal / kg) (analysis method: JIS M8814) and had a calorific value sufficient for use as a fuel.
Next, the gas discharged from the heating unit 210 was introduced into the tank 221 at a gas supply rate of 3 m 3 / min through the pipe 251 using the blower fan 264a.
Next, tap water supplied from the water supply pipe 224 a was sprayed onto the gas inside the tank 221 using a spray nozzle 222 in a full circle spray pattern. A part of the water accumulated at the bottom of the tank 221 was sprayed again into the tank 221 from the spray nozzle 222 using the circulation pump 223 and the pipe 224, and the remaining water was discarded through the discharge pipe 225. Thereby, in the 1st purification | cleaning means 220, the dust and water-soluble component which were mainly contained in gas were removed.
 次いで、槽221の上部から排出させたガスを、槽231に導入し、多孔質セラミックス焼成体層232に通した。その際、循環ポンプ235及び配管236を用いて、槽221の底部に溜まった水と、水供給管236aから供給した水道水をスプレーノズル233に供給し、スプレーノズル233から多孔質セラミックス焼成体層232に水道水を噴霧した。
 多孔質セラミックス焼成体層232を通過したガスをデミスター234に通してミストを捕捉した後、送風ファン264bを用い、配管252に通して槽241の上部に導入した。
Next, the gas discharged from the upper part of the tank 221 was introduced into the tank 231 and passed through the porous ceramic fired body layer 232. At that time, using the circulation pump 235 and the pipe 236, the water accumulated in the bottom of the tank 221 and the tap water supplied from the water supply pipe 236a are supplied to the spray nozzle 233, and the porous ceramic fired body layer is supplied from the spray nozzle 233. 232 was sprayed with tap water.
The gas that passed through the porous ceramic fired body layer 232 was passed through the demister 234 to capture the mist, and then introduced into the upper portion of the tank 241 through the pipe 252 using the blower fan 264b.
 次いで、槽241に導入したガスに、水供給管246aから供給した水道水を、スプレーノズル242a,242bを用いて充円形状のスプレーパターンで噴霧した。また、薬液タンク247に入れられた薬液を、配管248及びポンプ249を介してスプレーノズル242cに供給し、スプレーノズル242cを用いて薬液を充円形状のスプレーパターンで噴霧した。薬液は、塩化亜鉛と塩化アンモニウムと界面活性剤を添加した水とした。
 また、循環ポンプ245及び配管246を用いて、槽241の底部に溜まった水の一部をスプレーノズル242a,242bに返送し、残りの水を排出管243に通して廃棄した。
 槽241を通過したガスをデミスター244に通してミストを捕捉した後、排気ファン264cを用い、配管252に通して槽241の外部に放出した。
Next, tap water supplied from the water supply pipe 246a was sprayed on the gas introduced into the tank 241 in a full circle spray pattern using the spray nozzles 242a and 242b. Further, the chemical solution stored in the chemical solution tank 247 was supplied to the spray nozzle 242c via the pipe 248 and the pump 249, and the chemical solution was sprayed in a full circle spray pattern using the spray nozzle 242c. The chemical solution was water to which zinc chloride, ammonium chloride and a surfactant were added.
Further, using the circulation pump 245 and the pipe 246, a part of the water accumulated at the bottom of the tank 241 was returned to the spray nozzles 242a and 242b, and the remaining water was discarded through the discharge pipe 243.
The gas that passed through the tank 241 was passed through the demister 244 to capture the mist, and was then discharged to the outside of the tank 241 through the pipe 252 using the exhaust fan 264c.
 実施例B1における悪臭物質等の脱臭性能について、以下の方法により評価した。
 すなわち、ガスに含まれるプロピオン酸、ノルマル酪酸、ノルマル吉草酸、イソ吉草酸、硫黄酸化物(これらはいずれも悪臭物質である。)の濃度を、昭和47年環境庁告示第9号に従って測定した。測定結果を表2に示す。
 また、ガスの臭いについて試験者が官能試験した。評価結果を表2に示す。
 なお、ガスのサンプリング箇所は、配管251、配管252、配管253とした。
The deodorizing performance of malodorous substances and the like in Example B1 was evaluated by the following method.
That is, the concentrations of propionic acid, normal butyric acid, normal valeric acid, isovaleric acid, and sulfur oxide (all of which are malodorous substances) contained in the gas were measured according to Environmental Agency Notification No. 9 of 1972. . The measurement results are shown in Table 2.
Moreover, the tester conducted a sensory test on the odor of the gas. The evaluation results are shown in Table 2.
Note that the gas sampling locations were the pipe 251, the pipe 252, and the pipe 253.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、廃棄物処理装置21では、加熱部から排出されたガスに含まれる悪臭物質を、ガス浄化部によって充分に除去できた。
 また、実施例B1において、薬液タンク247に香料を少し添加したところ、不快な悪臭は全く感じず、香料の良い香りが感じられた。
As shown in Table 2, in the waste treatment apparatus 21, the malodorous substance contained in the gas discharged from the heating unit was sufficiently removed by the gas purification unit.
Moreover, in Example B1, when a little fragrance | flavor was added to the chemical | medical solution tank 247, an unpleasant bad odor was not felt at all, and the fragrance with a favorable fragrance | flavor was felt.
(製造例C1)多孔質セラミックス焼成体の製造
 スラグ50質量部、有機汚泥25質量部、粘土25質量部(合計100質量部)に対し、瓦20質量部を添加し、これらを、ミックスマラー(新東工業株式会社製)を用いて混合し、可塑状態の混合物を得た(混合工程)。
 次いで、真空土練成形機で上記混合物を直径1.5cmの円柱状に押し出し、次いで、長さ3cmに切断して円柱状の成形体(含水率15質量%)を得た。その成形体を、乾燥工程を経ずに引き続き、連続式焼結炉を用いて、焼成温度1050℃、焼成温度での滞留時間7分間の焼成条件にて焼成した(焼成工程)。連続式焼結炉としては、ローラーハースキルン(焼結炉の有効長:全長15m、焼結炉を各1.5mのゾーン1~10に分割)を用いた。焼成によって得られた多孔質セラミックス焼成体は、亀裂が入った、長径3cm~10cm程度の粒状物と塊状物が混在したものであった。
 得られた多孔質セラミックス焼成体の粒状物及び塊状物をハンマーミルで粉砕した。次に、篩を用いて、5mm超10mm以下のものに篩分けして、多孔質セラミックス焼成体の粒状物を得た。得られた多孔質セラミックス焼成体の粒状物は、マイクロメートルオーダーの気孔とナノメートルオーダーの気孔が確認された。特に孔径が1μm~30μm及び200nm~500nmのものが多く観察された。また、多孔質セラミックス焼成体の見かけ密度は0.7g/ml、飽和含水率は43質量%であり、気孔同士の連通も確認された。
(Production Example C1) Production of Porous Ceramic Fired Body 20 parts by weight of roof tile is added to 50 parts by weight of slag, 25 parts by weight of organic sludge, and 25 parts by weight of clay (total 100 parts by weight). Using Shinto Kogyo Co., Ltd.) to obtain a plastic mixture (mixing step).
Next, the mixture was extruded into a cylindrical shape having a diameter of 1.5 cm using a vacuum kneader and then cut into a length of 3 cm to obtain a cylindrical shaped body (water content: 15% by mass). The molded body was subsequently fired in a continuous sintering furnace without using a drying step under a firing condition of a firing temperature of 1050 ° C. and a residence time of 7 minutes at the firing temperature (firing step). As the continuous sintering furnace, a roller hearth kiln (effective length of the sintering furnace: total length 15 m, the sintering furnace was divided into zones 1 to 10 each having a length of 1.5 m) was used. The fired porous ceramic body obtained by firing was a mixture of cracked granular materials having a major axis of about 3 cm to 10 cm and a lump.
The obtained porous ceramic fired bodies were pulverized with a hammer mill. Next, using a sieve, it was sieved to a size of more than 5 mm and 10 mm or less to obtain a granular material of a fired porous ceramic body. The resulting porous ceramic fired body was confirmed to have micrometer-order pores and nanometer-order pores. In particular, many pore diameters of 1 to 30 μm and 200 to 500 nm were observed. In addition, the apparent density of the fired porous ceramic body was 0.7 g / ml, the saturated water content was 43% by mass, and communication between pores was also confirmed.
<使用原料>
 なお、上記製造例で用いた多孔質セラミックス焼成体の原料は、有機汚泥、粘土、スラグ及び瓦は、製造例A1と同様のものを用いた。
<Raw materials>
In addition, as the raw material of the porous ceramic fired body used in the above production example, the same organic sludge, clay, slag, and roof tile as those in Production Example A1 were used.
<物性の測定・確認>
 多孔質セラミックス焼成体の物性値は、孔径の確認、見かけ密度の測定、飽和含水率、及び、気孔同士の連通の有無の確認について、製造例A1と同様の方法により測定した。
<Measurement and confirmation of physical properties>
The physical property values of the fired porous ceramic body were measured by the same method as in Production Example A1 for confirmation of pore diameter, measurement of apparent density, saturation moisture content, and confirmation of presence / absence of communication between pores.
(実施例C1)
 図3に示すように、実施例C1における乾燥処理装置31は、バッチ式乾燥機を用いた加熱部360と、ガス浄化部として第1ガス浄化部310及び第2ガス浄化部320を具備するものとした。
(Example C1)
As shown in FIG. 3, the drying treatment apparatus 31 in Example C1 includes a heating unit 360 using a batch dryer, and a first gas purification unit 310 and a second gas purification unit 320 as gas purification units. It was.
 第1ガス浄化部310は、槽311の側面311a及び上面311bの各々にスプレーノズル312(噴霧手段)が取り付けられたものとした。また、第1ガス浄化部310においては、槽311の底部に溜まった水を循環して、再度、スプレーノズル312に供給する循環ポンプ313を設けた。また、槽311の上部にガスを導入する配管340を接続し、槽311の下部に溜まった水を排出する排出管315を取り付けた。 The first gas purification unit 310 is configured such that a spray nozzle 312 (a spraying means) is attached to each of the side surface 311a and the top surface 311b of the tank 311. In the first gas purification unit 310, a circulation pump 313 that circulates water accumulated at the bottom of the tank 311 and supplies the water to the spray nozzle 312 again is provided. A pipe 340 for introducing a gas was connected to the upper part of the tank 311, and a discharge pipe 315 for discharging the accumulated water was attached to the lower part of the tank 311.
 第2ガス浄化部320は、1層の多孔質セラミックス焼成体層321a(吸着手段)を備える槽322aと、5層の多孔質セラミックス焼成体層321b(吸着手段)を内部に備える槽322bと、5層の多孔質セラミックス焼成体層321c(吸着手段)を内部に備える槽322cとを備えるものとした。槽322aは、槽311の上部に連結した。
 多孔質セラミックス焼成体層321a,321b,321cは、各々、製造例C1で得た多孔質セラミックス焼成体の粒状物をメッシュ状容器に充填することにより構成され、ガスの流れに対して垂直になるように配置した。
 また、槽322aの内部には、多孔質セラミックス焼成体層321aの上面に水を噴霧するスプレーノズル323aが設けられ、スプレーノズル323aの上方には、ミストを捕捉して除去する不織布製のデミスター324aが設けられた。
 槽322bの内部には、最上層の多孔質セラミックス焼成体層321bの上面に水を噴霧するスプレーノズル323bが設けられ、スプレーノズル323bの上方には、ミストを捕捉して除去する不織布製のデミスター324bが設けられた。槽322bの下部には、溜まった水を排出する排出管325bを取り付けた。
 槽322cの内部には、最上層の多孔質セラミックス焼成体層321cの上面に水を噴霧するスプレーノズル323cが設けられ、スプレーノズル323cの上方には、ミストを捕捉して除去する不織布製のデミスター324cが設けられた。槽322cの下部には、溜まった水を排出する排出管325cを取り付けた。
The second gas purification unit 320 includes a tank 322a including one porous ceramic fired body layer 321a (adsorption means), a tank 322b including five porous ceramic fired body layers 321b (adsorption means) inside, A tank 322c provided with five layers of porous ceramic fired body layers 321c (adsorption means) is provided. The tank 322 a was connected to the upper part of the tank 311.
The porous ceramic fired body layers 321a, 321b, and 321c are each configured by filling the mesh-like container with the porous ceramic fired bodies obtained in Production Example C1, and are perpendicular to the gas flow. Arranged.
Further, a spray nozzle 323a that sprays water on the upper surface of the porous ceramic fired body layer 321a is provided inside the tank 322a, and a non-woven demister 324a that captures and removes mist is disposed above the spray nozzle 323a. Was provided.
Inside the tank 322b, there is provided a spray nozzle 323b for spraying water on the upper surface of the uppermost porous ceramic fired body layer 321b. Above the spray nozzle 323b, a nonwoven fabric demister that captures and removes mist. 324b was provided. A discharge pipe 325b for discharging accumulated water was attached to the lower part of the tank 322b.
Inside the tank 322c, there is provided a spray nozzle 323c for spraying water on the upper surface of the uppermost porous ceramic fired body layer 321c. Above the spray nozzle 323c, a non-woven demister that captures and removes mist. 324c was provided. A discharge pipe 325c for discharging the accumulated water was attached to the lower part of the tank 322c.
 また、乾燥処理装置31は、槽311の底部に溜まった水をスプレーノズル323aに供給するための配管331a及びポンプ332a、水供給管336aと、槽322bの底部に溜まった水をスプレーノズル323bに供給するための配管331b及びポンプ332b、水供給管336bと、槽322cの底部に溜まった水をスプレーノズル323cに供給するための配管331c及びポンプ332c、水供給管336cを具備するものとした。
 また、薬液タンク333aと薬液タンク333aの内部に入れられた薬液Aを配管331aに供給するための配管334a及びポンプ335aと、薬液タンク333bと薬液タンク333bの内部に入れられた薬液Bを配管331bに供給するための配管334b及びポンプ335bと、薬液タンク333cと薬液タンク333cの内部に入れられた薬液Cを配管331cに供給するための配管334c及びポンプ335cとを具備するものとした。今回は薬液タンク333a、333bには、それぞれ薬液A、Bを入れなかった。
 また、槽322aの上部と槽322bの下部とを配管341で接続し、槽322bの上部と槽322cの下部とを配管342で接続し、槽322cの上部に配管343を取り付けた。配管341には送風ファン344aを取り付け、配管342には送風ファン344bを取り付け、配管343には排気ファン344cを取り付けた。
 また、加熱部360の上部と槽311の上部とを配管340で接続した。配管340には送風ファン344dを取り付けた。
Further, the drying processing device 31 supplies the water accumulated in the bottom of the tank 311 to the spray nozzle 323a, the pipe 331a and the pump 332a, the water supply pipe 336a, and the water accumulated in the bottom of the tank 322b to the spray nozzle 323b. A pipe 331b, a pump 332b for supplying, a water supply pipe 336b, and a pipe 331c, a pump 332c, and a water supply pipe 336c for supplying water accumulated at the bottom of the tank 322c to the spray nozzle 323c are provided.
Also, the chemical liquid tank 333a and the chemical liquid tank 333a for supplying the chemical liquid A put in the chemical liquid tank 333a to the pipe 331a and the pump 335a, and the chemical liquid tank 333b and the chemical liquid B put in the chemical liquid tank 333b are connected to the pipe 331b. A pipe 334b and a pump 335b, and a pipe 334c and a pump 335c for supplying the chemical C stored in the chemical tank 333c and the chemical tank C to the pipe 331c. At this time, the chemical liquid tanks 333a and 333b were not filled with the chemical liquids A and B, respectively.
Moreover, the upper part of the tank 322a and the lower part of the tank 322b were connected by the pipe 341, the upper part of the tank 322b and the lower part of the tank 322c were connected by the pipe 342, and the pipe 343 was attached to the upper part of the tank 322c. A blower fan 344 a is attached to the pipe 341, a blower fan 344 b is attached to the pipe 342, and an exhaust fan 344 c is attached to the pipe 343.
Moreover, the upper part of the heating unit 360 and the upper part of the tank 311 were connected by a pipe 340. A blower fan 344 d is attached to the pipe 340.
 本例では、多孔質セラミックス焼成体の原料として用いた有機汚泥を有機性廃棄物として用い、加熱部360で蒸気を熱媒体として用いて、間接的に加熱(乾燥炉内温度110℃)した。加熱部で乾燥された有機汚泥の乾燥物の含水率は35質量%となり、減容された。
加熱部360から排出されたガスを、第1ガス浄化部310と第2ガス浄化部320を用いて浄化した。
 具体的には、加熱部360から排出されたガスを配管340に通して、第1ガス浄化部310の槽311にガス供給速度3m/分で供給し、槽311の内部のガスに、水供給管316から供給した水を、スプレーノズル312を用いて充円形状のスプレーパターンで噴霧した。これにより、様々な方向に無秩序に且つ高速に乱れ飛ぶ水滴が存在する空間中にガスを通すことができる。槽311の底部に溜まった水の一部は、循環ポンプ313を用い、配管314を通じて、再度、スプレーノズル312から槽311の内部に噴霧し、残りは排出管315から廃棄した。これにより、第1ガス浄化部310において、主に、ガスに含まれる煤塵及び水溶性成分を除去した。
 なお、薬液タンク317の内部に入れられた薬液Dを、配管318及びポンプ319により、配管314に供給することもできるが、今回は薬液タンク317には、薬液Dを入れなかった。
In this example, the organic sludge used as the raw material of the porous ceramic fired body was used as the organic waste, and the heating unit 360 was indirectly heated using the steam as the heat medium (drying furnace temperature 110 ° C.). The moisture content of the dried organic sludge dried in the heating section was 35% by mass, and the volume was reduced.
The gas discharged from the heating unit 360 was purified using the first gas purification unit 310 and the second gas purification unit 320.
Specifically, the gas discharged from the heating unit 360 is passed through the pipe 340 and supplied to the tank 311 of the first gas purification unit 310 at a gas supply rate of 3 m 3 / min. Water supplied from the supply pipe 316 was sprayed in a full circle spray pattern using the spray nozzle 312. Thereby, gas can be allowed to pass through the space where water droplets turbulently flying at random and in various directions exist. A part of the water accumulated at the bottom of the tank 311 was sprayed again into the tank 311 from the spray nozzle 312 through the pipe 314 using the circulation pump 313, and the rest was discarded from the discharge pipe 315. Thereby, in the 1st gas purification part 310, the dust and water-soluble component which were mainly contained in gas were removed.
The chemical solution D placed in the chemical solution tank 317 can be supplied to the pipe 314 by the pipe 318 and the pump 319, but this time, the chemical solution D was not put in the chemical solution tank 317.
 次いで、槽311の上部から排出させたガスを、槽322aに導入し、多孔質セラミックス焼成体層321aに通した。その際、配管331a、ポンプ332a及びスプレーノズル323aを用いて、多孔質セラミックス焼成体層321aに、槽311の底部に溜まった水の一部と、水供給管336aから供給した水を噴霧した。
 槽322aでは、不要物質を多孔質セラミックス焼成体の表面に物理吸着させて除去した。また、焼成体多孔質セラミックス焼成体に含まれる酸性成分により主にガス中の塩基性成分を吸着除去し、多孔質セラミックス焼成体に含まれる塩基性成分により主にガス中の酸性成分を吸着除去した。
 多孔質セラミックス焼成体層321aを通過したガスをデミスター324aに通してミストを捕捉した後、送風ファン344aを用い、配管341に通して槽322bの下部に導入した。
Next, the gas discharged from the upper part of the tank 311 was introduced into the tank 322a and passed through the porous ceramic fired body layer 321a. At that time, using the pipe 331a, the pump 332a, and the spray nozzle 323a, the porous ceramic fired body layer 321a was sprayed with a part of the water accumulated at the bottom of the tank 311 and the water supplied from the water supply pipe 336a.
In the tank 322a, unnecessary substances were removed by physical adsorption on the surface of the porous ceramic fired body. Also, the basic components in the gas are mainly adsorbed and removed by the acidic components contained in the fired porous ceramic fired body, and the acidic components in the gas are mainly adsorbed and removed by the basic components contained in the porous ceramic fired body. did.
The gas that passed through the porous ceramic fired body layer 321a was passed through the demister 324a to capture the mist, and then introduced into the lower part of the tank 322b through the pipe 341 using the blower fan 344a.
 槽322bに導入したガスを、5層の多孔質セラミックス焼成体層321bに通した。その際、配管331b,3ポンプ332b及びスプレーノズル323bを用いて、多孔質セラミックス焼成体層321bに、槽322bの底部に溜まった水と、水供給管336bから供給した水を噴霧した。
 なお、噴霧された水の一部は、5層の多孔質セラミックス焼成体層321bを通過し、槽322bの底部に落下して溜まり、溜まった水の一部は排出管325bを用いて排出される。
 多孔質セラミックス焼成体層321bを通過したガスをデミスター324bに通してミストを捕捉した後、送風ファン344bを用い、配管342に通して槽322cの下部に導入した。
The gas introduced into the tank 322b was passed through the five porous ceramic fired body layers 321b. At that time, the water accumulated at the bottom of the tank 322b and the water supplied from the water supply pipe 336b were sprayed onto the porous ceramic fired body layer 321b using the pipe 331b, the 3 pump 332b, and the spray nozzle 323b.
Part of the sprayed water passes through the five porous ceramic fired body layers 321b and falls to the bottom of the tank 322b and accumulates, and part of the accumulated water is discharged using the discharge pipe 325b. The
The gas that passed through the porous ceramic fired body layer 321b was passed through the demister 324b to capture the mist, and then introduced into the lower portion of the tank 322c through the pipe 342 using the blower fan 344b.
 槽322cに導入したガスを、5層の多孔質セラミックス焼成体層321cに通した。その際、配管331c、配管334c、ポンプ332c、ポンプ335c及びスプレーノズル323cを用いて、多孔質セラミックス焼成体層321cに、槽322cの底部に溜まった水(薬液Cを多孔質セラミックス焼成体層に噴霧し、落下し溜まったもの)と、薬液タンク333cに入れられた薬液Cを噴霧した。なお、薬液タンク333cに入れられた薬液Cは配管334c及びポンプ335cを用いて配管331cに供給した。槽322cは、塩基性物質の除去を主な役割とするものである。薬液Cとしては、酸性物質である塩化亜鉛と塩化アンモニウム(塩化亜鉛:塩化アンモニウム30:1(質量比))を用い、薬液C中の酸性物質(塩化亜鉛と塩化アンモニウムの合計量)の濃度が2質量%となるように酸性物質を水に添加した。
 なお、噴霧された水及び薬液Cの一部は、5層の多孔質セラミックス焼成体層321cを通過し、槽322cの底部に落下して溜まり、溜まった水及び薬液Cの一部は排出管325cを用いて排出される。そして、槽322cの底に溜まった水と薬液タンク333cから供給される薬剤Bがスプレーノズル323cから多孔質セラミックス焼成体槽321cに噴霧され、供給される。
 多孔質セラミックス焼成体層321cを通過したガスをデミスター324cに通してミストを捕捉した後、排気ファン344cを用い、配管343に通して槽322cの外部に放出した。
The gas introduced into the tank 322c was passed through the five porous ceramic fired body layers 321c. At that time, using the pipe 331c, the pipe 334c, the pump 332c, the pump 335c, and the spray nozzle 323c, water accumulated in the bottom of the tank 322c (the chemical C is applied to the porous ceramic fired body layer in the porous ceramic fired body layer 321c). Sprayed and dropped and accumulated) and chemical C placed in the chemical tank 333c were sprayed. The chemical solution C placed in the chemical solution tank 333c was supplied to the piping 331c using the piping 334c and the pump 335c. The tank 322c has a main role of removing basic substances. The chemical solution C uses acidic substances zinc chloride and ammonium chloride (zinc chloride: ammonium chloride 30: 1 (mass ratio)), and the concentration of acidic substances (total amount of zinc chloride and ammonium chloride) in the chemical liquid C is The acidic substance was added to water so that it might become 2 mass%.
Part of the sprayed water and chemical C passes through the five porous ceramic fired body layers 321c and drops and accumulates at the bottom of the tank 322c, and a part of the accumulated water and chemical C is a discharge pipe. It is discharged using 325c. Then, the water accumulated at the bottom of the tank 322c and the medicine B supplied from the chemical liquid tank 333c are sprayed and supplied from the spray nozzle 323c to the porous ceramic fired body tank 321c.
The gas that passed through the porous ceramic fired body layer 321c was passed through the demister 324c to capture the mist, and then discharged to the outside of the tank 322c through the pipe 343 using the exhaust fan 344c.
 実施例C1におけるガス中に含まれる悪臭物質等の脱臭性能について、配管340、配管343からガスをサンプリングし、アンモニア、酢酸、メチルメルカプタン、硫化水素、アミン類、アセトアルデヒドを、それぞれ気体検知管(株式会社ガステック製、アンモニア:No.3L及びNo.3M、酢酸:No.81、メチルメルカプタン:No.70L、硫化水素:No.4LB、アミン類:No.180L及び180、アセトアルデヒド:92及び92L。各吸引回数1回。100ml)を用いて濃度(ppm)を測定することにより評価を行った。
 また、評価者がそれぞれのサンプルの臭いを嗅いで行う、官能試験も実施した。
 なお、加熱部で乾燥された有機汚泥の含水率は5質量%であり、減容された。
Regarding the deodorizing performance of malodorous substances contained in the gas in Example C1, the gas was sampled from the pipe 340 and the pipe 343, and ammonia, acetic acid, methyl mercaptan, hydrogen sulfide, amines, and acetaldehyde were respectively detected as gas detector tubes (stocks). Company Gastec, ammonia: No. 3L and No. 3M, acetic acid: No. 81, methyl mercaptan: No. 70L, hydrogen sulfide: No. 4LB, amines: No. 180L and 180, acetaldehyde: 92 and 92L. Evaluation was carried out by measuring the concentration (ppm) using each number of suctions once (100 ml).
Moreover, the sensory test which an evaluator sniffs the smell of each sample was also implemented.
The water content of the organic sludge dried in the heating unit was 5% by mass, and the volume was reduced.
(実施例C2)
 有機性廃棄物として、実施例C1で用いた有機汚泥100質量部に消臭剤(塩化亜鉛:塩化アンモニウム=30:1(質量比))を0.3質量部追加した以外は実施例C1と同様にして廃棄物を処理した。
 加熱部で乾燥された有機汚泥の含水率は5質量%であり、減容された。
 また、ガス中に含まれる悪臭物質等の脱臭性能について、実施例C1と同様に評価を行った。
(Example C2)
As an organic waste, Example C1 and Example C1 except that 0.3 part by mass of a deodorant (zinc chloride: ammonium chloride = 30: 1 (mass ratio)) was added to 100 parts by mass of the organic sludge used in Example C1. The waste was treated in the same way.
The water content of the organic sludge dried in the heating section was 5% by mass, and the volume was reduced.
Moreover, it evaluated similarly to Example C1 about the deodorizing performance of the malodorous substance etc. which are contained in gas.
 上記実施例C1,C2の評価結果を、表3に示す。 Table 3 shows the evaluation results of Examples C1 and C2.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
(※)実施例C1のアミン類の濃度については、1/2(50ml)吸引で測定した場合もスケールオーバーしたが、おおよそ240ppmと推定された。 (*) The concentration of the amines of Example C1 was estimated to be approximately 240 ppm although it was overscaled when measured by 1/2 (50 ml) suction.
 表3に示すように、気体検知管による評価では、乾燥処理装置31を用いることにより、実施例C1、実施例C2ともに、加熱部から排出されたガスに含まれる悪臭物質等が充分に除去された。
 一方、官能試験では、臭いは弱まったものの、依然、残っていた。そこで、実施例C1、実施例C2において、薬液タンク333cに香料を2質量%添加したところ、官能試験で感じられる臭いが全く感じられなくなり、香料の良い香りが感じられた。特に、有機汚泥に消臭剤を添加した実施例C2では、顕著に高い消臭効果が確認された。
As shown in Table 3, in the evaluation by the gas detection tube, the use of the drying treatment device 31 sufficiently removes malodorous substances and the like contained in the gas discharged from the heating section in both Example C1 and Example C2. It was.
On the other hand, in the sensory test, the odor was weakened but still remained. Then, in Example C1 and Example C2, when 2 mass% of fragrance | flavor was added to the chemical | medical solution tank 333c, the odor felt by the sensory test was not felt at all, and the good fragrance of the fragrance was felt. In particular, in Example C2 in which a deodorant was added to organic sludge, a remarkably high deodorizing effect was confirmed.
(実施例C3)
 配管340における送風ファン344dの上流側に、加熱部360から送られるガスの冷却手段として熱交換器を設置する以外は、実施例C1と同様にして廃棄物を処理した。熱交換器は、冷却媒に水を用いたシェルアンドチューブ式のものを用いた。
 熱交換器設置前後における悪臭物質等の脱臭性能の違いを評価するために、槽311内のガス中に含まれるアンモニア、硫化水素、アミン類、アセトアルデヒドについて、実施例C1と同様に気体検知管を用いて濃度(ppm)を測定した。
 上記実施例C3の評価結果を、表4に示す。なお、表4における配管340の濃度は、表3の実施例C1の配管340のデータと同じものである。
(Example C3)
Waste was treated in the same manner as in Example C1 except that a heat exchanger was installed on the upstream side of the blower fan 344d in the pipe 340 as a cooling means for the gas sent from the heating unit 360. As the heat exchanger, a shell and tube type using water as a cooling medium was used.
In order to evaluate the difference in the deodorizing performance of malodorous substances before and after installing the heat exchanger, for the ammonia, hydrogen sulfide, amines, and acetaldehyde contained in the gas in the tank 311, a gas detector tube was installed as in Example C1. Used to measure the concentration (ppm).
The evaluation results of Example C3 are shown in Table 4. In addition, the density | concentration of the piping 340 in Table 4 is the same as the data of the piping 340 of Example C1 of Table 3.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 その結果、熱交換器を設置することにより、槽311における各悪臭物質の除去性能がさらに向上することが確認された。 As a result, it was confirmed that the performance of removing each malodorous substance in the tank 311 was further improved by installing the heat exchanger.
 本発明のガス浄化装置及びガス浄化方法によれば、ガス中の不要物質を低コストで充分に除去できる。
 また、本発明の廃棄物処理装置は、水分を含む有機性廃棄物を減容化することができ、かつ、その際に発生する悪臭物質の排出を抑えた廃棄物処理装置を比較的安価に提供することができる。従って、中小規模の工場、廃棄物処理場、汚水処理場、養豚・養鶏場などであっても導入が容易であり、地域の臭気環境を向上させることができる。
 また、本発明の乾燥処理装置によれば、廃棄物の乾燥のための加熱処理時に発生する不要物質、特に、排気ガス中に含まれる不要物を、低コストで充分に除去できる。
According to the gas purification apparatus and the gas purification method of the present invention, unnecessary substances in the gas can be sufficiently removed at low cost.
In addition, the waste treatment apparatus of the present invention can reduce the volume of organic waste containing water, and the waste treatment apparatus that suppresses the emission of malodorous substances generated at that time can be made relatively inexpensive. Can be provided. Therefore, introduction is easy even in small and medium-sized factories, waste treatment plants, sewage treatment plants, pig farms and poultry farms, and the odor environment in the region can be improved.
Moreover, according to the drying treatment apparatus of the present invention, unnecessary substances generated during heat treatment for drying waste, particularly unnecessary substances contained in exhaust gas, can be sufficiently removed at low cost.
 11 ガス浄化装置
 110 第1浄化部
 111 槽
 111a 側面
 111b 上面
 112 スプレーノズル
 113 ポンプ
 114 導入管
 115 排出管
 116 水供給管
 120 第2浄化部
 121a,121b,121c 多孔質セラミックス焼成体層
 122a,122b,122c 槽
 123a,123b,123c スプレーノズル
 124a,124b,124c デミスター
 125b,125c 排出管
 131a,131b,131c 配管
 132a,132b,132c ポンプ
 133b,133c 薬液タンク
 134b,134c 配管
 135b,135c ポンプ
 136a,136b,136c 水供給管
 141,142,143 配管
 144a,144b 送風ファン
 144c 排気ファン
 21 廃棄物処理装置
 210 加熱部
 220 第1浄化手段
 221 槽
 221a 側面
 222 スプレーノズル
 223 循環ポンプ
 224 配管
 224a 水供給管
 225 排出管
 230 第2浄化手段
 231 槽
 232 多孔質セラミックス焼成体層
 233 スプレーノズル
 234 デミスター
 235 循環ポンプ
 236 配管
 236a 水供給管
 240 第3浄化手段
 241 槽
 241a 上面
 241b 側面
 242a,242b,242c スプレーノズル
 243 排出管
 244 デミスター
 245 循環ポンプ
 246 配管
 246a 水供給管
 247 薬液タンク
 248 配管
 249 ポンプ
 251,252,253 配管
 264a,264b 送風ファン
 264c 排気ファン
 31 乾燥処理装置
 310 第1ガス浄化部
 311 槽
 311a 側面
 311b 上面
 312 スプレーノズル
 313 循環ポンプ
 314 配管
 315 排出管
 316 水供給管
 317 薬液タンク
 318 配管
 319 ポンプ
 320 第2ガス浄化部
 321a,321b,321c 多孔質セラミックス焼成体層
 322a,322b,322c 槽
 323a,323b,323c スプレーノズル
 324a,324b,324c デミスター
 325b,325c 排出管
 331a,331b,331c 配管
 332a,332b,332c ポンプ
 333a,333b、333c 薬液タンク
 334a,334b、334c 配管
 335a,335b,335c ポンプ
 336a,336b,336c 水供給管
 340 配管
 341,342,343 配管
 344a,344b,344d 送風ファン
 344c 排気ファン
 360 加熱部
DESCRIPTION OF SYMBOLS 11 Gas purification apparatus 110 1st purification | cleaning part 111 Tank 111a Side surface 111b Upper surface 112 Spray nozzle 113 Pump 114 Introduction pipe 115 Discharge pipe 116 Water supply pipe 120 2nd purification | cleaning part 121a, 121b, 121c Porous ceramic sintered body layer 122a, 122b, 122c tank 123a, 123b, 123c spray nozzle 124a, 124b, 124c demister 125b, 125c discharge pipe 131a, 131b, 131c pipe 132a, 132b, 132c pump 133b, 133c chemical liquid tank 134b, 134c pipe 135b, 135c pump 136a, 136b, 136b, 136c Water supply pipes 141, 142, 143 Piping 144a, 144b Blower fan 144c Exhaust fan 21 Waste treatment device 210 Heating unit 220 First purification Means 221 Tank 221a Side face 222 Spray nozzle 223 Circulation pump 224 Pipe 224a Water supply pipe 225 Discharge pipe 230 Second purification means 231 Tank 232 Porous ceramic fired body layer 233 Spray nozzle 234 Demister 235 Circulation pump 236 Pipe 236a Water supply pipe 240 3 Purification means 241 Tank 241a Upper surface 241b Side surface 242a, 242b, 242c Spray nozzle 243 Discharge pipe 244 Demister 245 Circulation pump 246 Pipe 246a Water supply pipe 247 Chemical liquid tank 248 Pipe 249 Pump 251, 252, 253 Pipe Exhaust fan 264a, 264b Fan 31 Drying processing device 310 First gas purification unit 311 Tank 311a Side surface 311b Upper surface 312 Spray nozzle 313 Circulation pump 31 Piping 315 Discharge pipe 316 Water supply pipe 317 Chemical liquid tank 318 Piping 319 Pump 320 Second gas purification unit 321a, 321b, 321c Porous ceramic fired body layer 322a, 322b, 322c Tank 323a, 323b, 323c Spray nozzle 324a, 324b, 324b Demister 325b, 325c Discharge pipe 331a, 331b, 331c Pipe 332a, 332b, 332c Pump 333a, 333b, 333c Chemical liquid tank 334a, 334b, 334c Pipe 335a, 335b, 335c Pump 336a, 336b, 340c Pipe 336a, 334c , 343 Piping 344a, 344b, 344d Blower fan 344c Exhaust fan 360 Heating unit

Claims (23)

  1.  ガスに水を噴霧する噴霧手段を2個以上有する第1浄化部と、ガスを浄化する多孔質セラミックス焼成体製の吸着手段を備えた第2浄化部とを具備し、前記第1浄化部と前記第2浄化部とが接続されている、ガス浄化装置。 A first purification unit having two or more spraying means for spraying water on the gas; and a second purification unit comprising an adsorption means made of a porous ceramic fired body for purifying the gas, A gas purification apparatus connected to the second purification unit.
  2.  前記第1浄化部の下流側に前記第2浄化部が配置されている、請求項1に記載のガス浄化装置。 The gas purification device according to claim 1, wherein the second purification unit is disposed downstream of the first purification unit.
  3.  前記多孔質セラミックス焼成体が、多孔質セラミックス焼成体用原料が混合された後、乾燥されずに焼成されて得られたものである、請求項1または2に記載のガス浄化装置。 The gas purification apparatus according to claim 1 or 2, wherein the porous ceramic fired body is obtained by firing a porous ceramic fired body raw material and then firing without drying.
  4.  前記多孔質セラミックス焼成体が粒状物である、請求項1~3のいずれか1項に記載のガス浄化装置。 The gas purification apparatus according to any one of claims 1 to 3, wherein the porous ceramic fired body is a granular material.
  5.  前記第2浄化部が、前記多孔質セラミックス焼成体に水を供給する水供給手段を備える、請求項1~4のいずれか1項に記載のガス浄化装置。 The gas purification device according to any one of claims 1 to 4, wherein the second purification unit includes water supply means for supplying water to the porous ceramic fired body.
  6.  前記水供給手段で供給される水が、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含む、請求項5に記載のガス浄化装置。 The gas purification device according to claim 5, wherein the water supplied by the water supply means includes at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant.
  7.  ガス中に2か所以上から水を噴霧する第1浄化工程と、ガスを多孔質セラミックス焼成体で浄化する第2浄化工程とを有する、ガス浄化方法。 A gas purification method comprising: a first purification step of spraying water into gas from two or more locations; and a second purification step of purifying the gas with a porous ceramic fired body.
  8.  前記第1浄化工程の後に前記第2浄化工程をおこなう、請求項7に記載のガス浄化方法。 The gas purification method according to claim 7, wherein the second purification step is performed after the first purification step.
  9.  前記多孔質セラミックス焼成体として、多孔質セラミックス焼成体用原料を混合した後、乾燥せずに焼成して得たものを用いる、請求項7または8に記載のガス浄化方法。 The gas purification method according to claim 7 or 8, wherein the porous ceramic fired body is obtained by mixing raw materials for a porous ceramic fired body and firing without drying.
  10.  前記第2浄化工程では、前記多孔質セラミックス焼成体に水を供給する、請求項7~9のいずれか1項に記載のガス浄化方法。 The gas purification method according to any one of claims 7 to 9, wherein, in the second purification step, water is supplied to the porous ceramic fired body.
  11.  前記多孔質セラミックス焼成体に供給する水に、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含有させる、請求項10に記載のガス浄化方法。 The gas purification method according to claim 10, wherein water supplied to the fired porous ceramic body contains at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
  12.  水分を含む有機性廃棄物を加熱する加熱部と、該加熱部から排出されるガスを浄化するガス浄化部とを具備し、
     前記ガス浄化部が、前記ガスに水を噴霧する噴霧手段、及び、前記ガスを浄化する多孔質セラミックス焼成体製の吸着手段の少なくとも一方を備える、廃棄物処理装置。
    A heating unit that heats organic waste containing water, and a gas purification unit that purifies the gas discharged from the heating unit,
    The waste treatment apparatus, wherein the gas purification unit includes at least one of spraying means for spraying water on the gas and adsorption means made of a porous ceramic fired body for purifying the gas.
  13.  前記ガス浄化部が、前記噴霧手段と前記吸着手段の両方を備える請求項12に記載の廃棄物処理装置。 The waste treatment apparatus according to claim 12, wherein the gas purification unit includes both the spraying means and the adsorption means.
  14.  前記噴霧手段の下流側に前記吸着手段が配置されている、請求項13に記載の廃棄物処理装置。 The waste treatment apparatus according to claim 13, wherein the adsorption means is disposed downstream of the spray means.
  15.  前記多孔質セラミックス焼成体が、多孔質セラミックス焼成体用原料が混合された後、乾燥されずに焼成されて得られたものである、請求項13または14に記載の廃棄物処理装置。 The waste treatment apparatus according to claim 13 or 14, wherein the porous ceramic fired body is obtained by firing a porous ceramic fired body raw material and then firing without drying.
  16.  前記多孔質セラミックス焼成体が粒状物である、請求項13~15のいずれか1項に記載の廃棄物処理装置。 The waste treatment apparatus according to any one of claims 13 to 15, wherein the porous ceramic fired body is a granular material.
  17.  前記噴霧手段で供給される水が、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含む、請求項13~16のいずれか1項に記載の廃棄物処理装置。 The waste treatment apparatus according to any one of claims 13 to 16, wherein the water supplied by the spray means includes at least one selected from the group consisting of acidic substances, basic substances, and surfactants.
  18.  水分を含む有機性廃棄物を加熱する加熱部と、該加熱部から排出されるガスを浄化するガス浄化部とを具備し、
     前記ガス浄化部が、前記ガスに複数の方向から水を噴霧する噴霧手段、及び、前記ガスを浄化する多孔質セラミックス焼成体製の吸着手段のうち、少なくとも一方を備える、乾燥処理装置。
    A heating unit that heats organic waste containing water, and a gas purification unit that purifies the gas discharged from the heating unit,
    The drying processing apparatus, wherein the gas purification unit includes at least one of spraying means for spraying water from a plurality of directions to the gas and adsorption means made of a porous ceramic fired body for purifying the gas.
  19.  前記ガス浄化部が、前記噴霧手段と前記吸着手段の両方を備える請求項18に記載の乾燥処理装置。 The drying treatment apparatus according to claim 18, wherein the gas purification unit includes both the spraying means and the adsorption means.
  20.  前記吸着手段が、ガスの流れにおいて前記噴霧手段の下流側に配置されている、請求項19に記載の乾燥処理装置。 20. The drying processing apparatus according to claim 19, wherein the adsorption unit is disposed on the downstream side of the spray unit in a gas flow.
  21.  前記多孔質セラミックス焼成体が、多孔質セラミックス焼成体用原料が混合された後、乾燥されずに焼成されて得られたものである、請求項19又は20に記載の乾燥処理装置。 21. The drying treatment apparatus according to claim 19 or 20, wherein the porous ceramic fired body is obtained by firing a porous ceramic fired body raw material and then firing without drying.
  22.  前記多孔質セラミックス焼成体が粒状物である、請求項19~21のいずれか1項に記載の乾燥処理装置。 The drying apparatus according to any one of claims 19 to 21, wherein the porous ceramic fired body is a granular material.
  23.  前記噴霧手段で供給される水が、酸性物質、塩基性物質、界面活性剤からなる群から選ばれる少なくとも1種を含む、請求項19~22のいずれか1項に記載の乾燥処理装置。 The drying treatment apparatus according to any one of claims 19 to 22, wherein the water supplied by the spray means includes at least one selected from the group consisting of an acidic substance, a basic substance, and a surfactant.
PCT/JP2014/061147 2013-04-25 2014-04-21 Gas purification device and gas purifying method WO2014175209A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013092927A JP6162467B2 (en) 2013-04-25 2013-04-25 Gas purification device and gas purification method
JP2013-092928 2013-04-25
JP2013092928A JP6118168B2 (en) 2013-04-25 2013-04-25 Waste treatment equipment
JP2013-092927 2013-04-25
JP2013-161805 2013-08-02
JP2013161805 2013-08-02
JP2013-180276 2013-08-30
JP2013180276A JP6232679B2 (en) 2013-08-02 2013-08-30 Drying processing apparatus and organic waste processing method

Publications (1)

Publication Number Publication Date
WO2014175209A1 true WO2014175209A1 (en) 2014-10-30

Family

ID=51791785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061147 WO2014175209A1 (en) 2013-04-25 2014-04-21 Gas purification device and gas purifying method

Country Status (1)

Country Link
WO (1) WO2014175209A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104906940A (en) * 2015-07-09 2015-09-16 广西武鸣广文环保设备有限公司 Flue gas cleaning system of household garbage incinerator
CN106237757A (en) * 2016-08-29 2016-12-21 四川绵竹三佳饲料有限责任公司 Dust pelletizing system in DCP granulation
CN106944454A (en) * 2017-02-15 2017-07-14 长安大学 A kind of rubbish medical refuse burning flyash harmless disposal method and device
CN106984151A (en) * 2017-05-05 2017-07-28 南京工大开元环保科技有限公司 A kind of sewage plant foul waste gas abatement equipment and processing method
CN108499321A (en) * 2018-04-21 2018-09-07 邓建凯 A kind of environmental protecting device for steel production
CN108905576A (en) * 2018-07-24 2018-11-30 福州闽创环保科技有限公司 A kind of VOCs treatment technique
CN109621671A (en) * 2018-12-14 2019-04-16 国联汽车动力电池研究院有限责任公司 A kind of molten-salt electrolysis exhaust gas treating method and processing system
CN112262001A (en) * 2018-06-13 2021-01-22 株式会社加来野制作所 Pyrolysis device
TWI742810B (en) * 2020-08-19 2021-10-11 湯鈺婷 Oil gas purification device
CN115212679A (en) * 2022-07-25 2022-10-21 广东工业大学 Ammonia-containing odor gas and washing liquid recycling system and method based on anaerobic ammonia oxidation
US20230321587A1 (en) * 2022-04-07 2023-10-12 The United States Of America, As Represented By The Secretary Of Agriculture System for removing ammonia, dust and pathogens from air within an animal rearing/sheltering facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528710A (en) * 1978-08-19 1980-02-29 Hokuetsu Tanso Kogyo Kk Deodorizing method
JPS6344921A (en) * 1986-08-13 1988-02-25 Nisshin Oil Mills Ltd:The Method for deodorizing exhaust gas
WO2007077924A1 (en) * 2005-12-28 2007-07-12 Kinji Takeuchi Method of deodorization
JP2010069423A (en) * 2008-09-19 2010-04-02 Tokushu Denkyoku Kk Deodorization system, deodorization apparatus, and deodorization method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528710A (en) * 1978-08-19 1980-02-29 Hokuetsu Tanso Kogyo Kk Deodorizing method
JPS6344921A (en) * 1986-08-13 1988-02-25 Nisshin Oil Mills Ltd:The Method for deodorizing exhaust gas
WO2007077924A1 (en) * 2005-12-28 2007-07-12 Kinji Takeuchi Method of deodorization
JP2010069423A (en) * 2008-09-19 2010-04-02 Tokushu Denkyoku Kk Deodorization system, deodorization apparatus, and deodorization method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104906940A (en) * 2015-07-09 2015-09-16 广西武鸣广文环保设备有限公司 Flue gas cleaning system of household garbage incinerator
CN106237757A (en) * 2016-08-29 2016-12-21 四川绵竹三佳饲料有限责任公司 Dust pelletizing system in DCP granulation
CN106944454A (en) * 2017-02-15 2017-07-14 长安大学 A kind of rubbish medical refuse burning flyash harmless disposal method and device
CN106984151A (en) * 2017-05-05 2017-07-28 南京工大开元环保科技有限公司 A kind of sewage plant foul waste gas abatement equipment and processing method
CN108499321A (en) * 2018-04-21 2018-09-07 邓建凯 A kind of environmental protecting device for steel production
EP3808464A4 (en) * 2018-06-13 2021-08-25 Kabushiki Kaisha Kakuno Seisakusho Pyrolysis apparatus
JP7176720B2 (en) 2018-06-13 2022-11-22 株式会社加来野製作所 Pyrolyzer
JP2021181035A (en) * 2018-06-13 2021-11-25 株式会社加来野製作所 Pyrolysis apparatus
CN112262001A (en) * 2018-06-13 2021-01-22 株式会社加来野制作所 Pyrolysis device
CN108905576B (en) * 2018-07-24 2021-04-16 福州闽创环保科技有限公司 Organic waste gas treatment process
CN108905576A (en) * 2018-07-24 2018-11-30 福州闽创环保科技有限公司 A kind of VOCs treatment technique
CN109621671A (en) * 2018-12-14 2019-04-16 国联汽车动力电池研究院有限责任公司 A kind of molten-salt electrolysis exhaust gas treating method and processing system
TWI742810B (en) * 2020-08-19 2021-10-11 湯鈺婷 Oil gas purification device
US20230321587A1 (en) * 2022-04-07 2023-10-12 The United States Of America, As Represented By The Secretary Of Agriculture System for removing ammonia, dust and pathogens from air within an animal rearing/sheltering facility
US11986768B2 (en) * 2022-04-07 2024-05-21 The United States Of America, As Represented By The Secretary Of Agriculture System for removing ammonia, dust and pathogens from air within an animal rearing/sheltering facility
CN115212679A (en) * 2022-07-25 2022-10-21 广东工业大学 Ammonia-containing odor gas and washing liquid recycling system and method based on anaerobic ammonia oxidation
CN115212679B (en) * 2022-07-25 2023-09-22 广东工业大学 Ammonia-containing odor based on anaerobic ammonia oxidation and washing liquid circulation regeneration system and method thereof

Similar Documents

Publication Publication Date Title
WO2014175209A1 (en) Gas purification device and gas purifying method
Xu et al. Ceramsite obtained from water and wastewater sludge and its characteristics affected by (Fe2O3+ CaO+ MgO)/(SiO2+ Al2O3)
CN103601526B (en) The method of the firing porous haydite of a kind of medical refuse burning flyash microwave
JP4063316B2 (en) Deodorization method
CN110655339A (en) Process method for preparing ceramsite by sludge and inorganic solid waste
CN106076042A (en) Bed mud carbonization potting tail gas multistage purification processing system is gushed in lake, river
CN105819887A (en) Preparation method of non-sintered ceramsite with ammonia nitrogen adsorption function
JP6118168B2 (en) Waste treatment equipment
CN101579599A (en) Novel process for treating fermentation waste gas of amino acid by utilizing biofilter
CN105509061A (en) Domestic refuse suspension-type combustion carbonization pyrolysis system and treatment technique thereof
CN100340505C (en) Simultaneous sludge method during cement production
JP6162467B2 (en) Gas purification device and gas purification method
CN104058564B (en) A kind of sewage sludge sintering soilless culture substrate processing method
JP6232679B2 (en) Drying processing apparatus and organic waste processing method
JP6417597B2 (en) Deodorizing apparatus and deodorizing method
CN204151210U (en) A kind of sewage sludge sintering soilless culture substrate treatment system
KR20110070930A (en) Waste water sludge fuel
JPH08197095A (en) Treatment of sewage sludge and treated sewage sludge
KR100810126B1 (en) Activated carbon body having air cleaning function and the manufacture method thereof
KR100687627B1 (en) Method for solidifying sewage sludge
CN106396328A (en) Zero-emission treatment method for garbage odor and sludge carbonization odor
JP2003210931A (en) Method for deodorization treatment
JP2004132689A (en) Heat recovery and recycling method and system for waste activated carbon
CN204522741U (en) Smoke treatment apparatus for cremation of refuse
KR101858528B1 (en) Purification agent for treating livestock waste materials method and zero discharge method for treating livestock wastewater using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787785

Country of ref document: EP

Kind code of ref document: A1