WO2014171518A2 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2014171518A2
WO2014171518A2 PCT/JP2014/060968 JP2014060968W WO2014171518A2 WO 2014171518 A2 WO2014171518 A2 WO 2014171518A2 JP 2014060968 W JP2014060968 W JP 2014060968W WO 2014171518 A2 WO2014171518 A2 WO 2014171518A2
Authority
WO
WIPO (PCT)
Prior art keywords
volume
secondary battery
carbonate
ion secondary
fluorine
Prior art date
Application number
PCT/JP2014/060968
Other languages
English (en)
French (fr)
Other versions
WO2014171518A3 (ja
Inventor
加藤 有光
野口 健宏
佐々木 英明
牧子 高橋
恵美子 藤井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015512526A priority Critical patent/JP6500775B2/ja
Publication of WO2014171518A2 publication Critical patent/WO2014171518A2/ja
Publication of WO2014171518A3 publication Critical patent/WO2014171518A3/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery, specifically a lithium ion secondary battery, and more particularly to an electrolyte for a secondary battery, a lithium ion secondary battery using the same, and a method for manufacturing the same.
  • Lithium secondary batteries are widely used for portable electronic devices and personal computers. Lithium secondary batteries are required to have improved safety such as flame retardancy, and secondary batteries using an electrolytic solution containing a phosphate ester compound or a cyclic carbonate have been proposed as described in the following documents. .
  • Patent Document 1 discloses a secondary battery using an electrolytic solution composed of a phosphoric ester compound, a halogenated cyclic carbonate, a chain carbonate, and a lithium salt. Patent Document 1 shows that the use of this electrolytic solution can improve safety, and the irreversible capacity can be reduced by a combination of a carbon negative electrode and an electrolytic solution.
  • Patent Document 2 discloses an electrolyte for an alkali metal ion secondary battery containing a solution of fluoroethylene carbonate, an alkali metal dissolved therein, and propylene carbonate. By using this electrolyte, a secondary battery is disclosed. It has been shown that irreversible capacity loss and battery efficiency reduction can be suppressed.
  • Patent Document 3 shows that by mixing a phosphate ester, high safety can be ensured even when lithium metal is deposited on the negative electrode.
  • Patent Document 4 discloses a secondary battery using an electrolytic solution containing a phosphate ester, a cyclic carbonate, and either a vinylene carbonate compound or a vinylethylene carbonate compound.
  • Patent Document 5 discloses a secondary battery having an electrolytic solution containing a phosphoric ester containing fluorine.
  • Patent Document 6 and Patent Document 7 include the formula R 1 O— (R 2 O) n —R 3 (R 1 , R 3 : an alkyl group having 1 to 8 carbon atoms which may be substituted with a halogen atom, R 2 : an alkylene group having 1 to 8 carbon atoms which may be substituted with a halogen atom, provided that at least one of R 1 , R 2 and R 3 must be substituted with a halogen atom, 1 ⁇ n ⁇
  • Patent Document 6 and Patent Document 7 disclose that a phosphate ester is contained in an electrolytic solution, but there is no description regarding a fluorinated phosphate ester.
  • an operating potential of 5 V class can be realized by using, as an active material, a spinel compound in which Mn of lithium manganate is substituted with Ni or the like.
  • a spinel compound such as LiNi 0.5 Mn 1.5 O 4 exhibits a potential plateau in a region of 4.5 V or higher.
  • Mn exists in a tetravalent state, and the operating potential is defined by oxidation and reduction of Ni 2+ ⁇ ⁇ Ni 4+ instead of oxidation reduction of Mn 3+ ⁇ ⁇ Mn 4+ .
  • LiNi 0.5 Mn 1.5 O 4 has a capacity of 130 mAh / g or more and an average operating voltage of 4.6 V or more with respect to metallic lithium. Although the capacity is smaller than LiCoO 2 , the energy density of the battery is higher than LiCoO 2 . For these reasons, LiNi 0.5 Mn 1.5 O 4 is promising as a future positive electrode material.
  • ethylene carbonate has a very large dielectric constant of 90, and is known to have a great effect of ionizing lithium salt to generate ions that carry electricity.
  • ethylene carbonate has a high melting point of 37 ° C. and is a solid at the operating temperature of the battery alone, it can cause lithium ions to become difficult to move at low temperatures, and can precipitate and affect the characteristics.
  • propylene carbonate has a fairly large dielectric constant of 65 and a melting point of ⁇ 49 ° C., so it does not precipitate even at low temperatures, and can maintain the ionization of lithium salts and the mobility of ions. There is.
  • propylene carbonate reacts with carbon used as a general negative electrode material to degrade the negative electrode or generate gas.
  • the positive electrode active material there are 4V class materials such as LiMn 2 O 4 or LiCoO 2 as disclosed in Patent Documents 1 to 7 described above. Further, as disclosed in Patent Document 8, when a spinel compound such as LiNi 0.5 Mn 1.5 O 4 is used as a positive electrode active material, a higher operating voltage can be obtained. However, under a high operating voltage, the reaction between the PC and the negative electrode is more likely to proceed. Since gas is generated by this reaction, there are problems in practical use such as an increase in the internal pressure of the cell in a cycle operation and swelling of the laminate cell. In addition, there is a problem that capacity and cycle characteristics are reduced due to decomposition of the electrolytic solution and deterioration of the negative electrode.
  • An object of the present invention is to provide a lithium secondary battery excellent in low temperature characteristics and suppressed in gas generation.
  • a lithium ion secondary battery having a positive electrode and a negative electrode capable of occluding and releasing lithium, and a non-aqueous electrolyte containing lithium ions
  • the non-aqueous electrolyte is propylene carbonate
  • a fluorinated cyclic carbonate represented by the general formula (1), and Containing one or more selected from fluorine-containing phosphate esters and fluorinated chain ethers Containing one or more selected from fluorine-containing phosphate esters and fluorinated chain ethers
  • the content of the propylene carbonate is 1% by volume to 50% by volume in the nonaqueous electrolytic solvent
  • the content of the fluorinated cyclic carbonate is 0.1% by volume to 10% by volume in the nonaqueous electrolytic solvent.
  • the present invention relates to a lithium ion secondary battery.
  • a to D are each independently a hydrogen atom, a fluorine atom, or a substituted or unsubstituted alkyl group, and at least one of A to D is a fluorine atom or a fluorine-containing alkyl group. is there. ]
  • the present invention it is possible to provide a lithium ion secondary battery that has excellent low-temperature characteristics and gas generation is suppressed.
  • the lithium secondary battery of the present embodiment has a positive electrode, a negative electrode, and an electrolytic solution containing a nonaqueous electrolytic solvent.
  • the nonaqueous electrolytic solvent is one or more selected from propylene carbonate (hereinafter also referred to as PC), a fluorinated cyclic carbonate represented by the above formula (1), and a fluorine-containing phosphate ester and a fluorinated chain ether. Is included.
  • a positive electrode active material that operates at a 4 V class for example, an average operating potential of 3.6 to 3.8 V: a potential with respect to lithium
  • a positive electrode active material that operates at a potential of 5 V or higher may be used.
  • the negative electrode active material preferably contains carbon.
  • the nonaqueous electrolyte (hereinafter also referred to as “electrolytic solution” or “nonaqueous electrolytic solution”) includes a supporting salt and a nonaqueous electrolytic solvent, and the nonaqueous electrolytic solvent is represented by propylene carbonate, the above formula (1). Fluorinated cyclic carbonate, and at least one selected from fluorine-containing phosphate esters and fluorinated chain ethers are included.
  • the nonaqueous electrolytic solvent includes propylene carbonate (PC).
  • PC propylene carbonate
  • the content rate of PC contained in a nonaqueous electrolytic solvent is not restrict
  • the content of PC in the nonaqueous electrolytic solvent is 1% by volume or more, the effect of increasing the ionization of the lithium salt is further improved, and it is more preferably 5% by volume or more.
  • propylene carbonate (PC) may react with carbon to cause deterioration of the negative electrode or generate gas, it is generally difficult to use PC as a nonaqueous electrolytic solvent.
  • the reaction between PC and carbon is suppressed in the nonaqueous electrolytic solvent of the present invention, the reaction with the negative electrode containing carbon is reduced if the PC content in the nonaqueous electrolytic solvent is 50% by volume or less. can do.
  • the content of PC is more preferably 40% by volume or less in the nonaqueous electrolytic solvent, and further preferably 30% by volume or less.
  • the nonaqueous electrolytic solvent contains a fluorinated cyclic carbonate represented by the following formula (1).
  • A, B, C and D are each independently a hydrogen atom, a fluorine atom, or a substituted or unsubstituted alkyl group, and A, B, At least one of C and D is a fluorine atom or a fluorine-containing alkyl group.
  • the carbon number of the alkyl group represented by A, B, C, or D is preferably 1 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • the carbon number of the alkyl group is 4 or less, the increase in the viscosity of the electrolytic solution is suppressed, and the electrolytic solution can easily penetrate into the pores in the electrode and the separator, and the ion conductivity is improved. This is because the current value becomes favorable in the discharge characteristics.
  • the fluorine-containing alkyl group represents an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and the number and position of substitution of fluorine atoms are arbitrary.
  • at least one of A to D is preferably a fluorine atom or a fluorine-containing alkyl group in which 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms. .
  • a to D are fluorine atoms or fluorine-containing alkyl groups
  • a to D are fluorine atoms or fluorine atoms in which 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms.
  • a containing alkyl group is also preferred.
  • a to D may have a substituent in addition to the fluorine atom.
  • substituents include an amino group, a carboxy group, a hydroxy group, a cyano group, and a halogen atom (for example, a chlorine atom, a bromine atom). ) At least one selected from the group consisting of: In addition, said carbon number is the concept also including a substituent.
  • fluorinated cyclic carbonate examples include compounds in which some or all of the hydrogen atoms such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) are substituted with fluorine atoms.
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • PC propylene carbonate
  • PC butylene carbonate
  • the content of the fluorinated cyclic carbonate contained in the nonaqueous electrolytic solvent is not particularly limited, but is preferably from 0.1% by volume to 10% by volume in the nonaqueous electrolytic solvent.
  • the effect which suppresses reaction of PC and a negative electrode improves more that the content rate in the nonaqueous electrolytic solvent of a fluorinated cyclic carbonate is 0.1 volume% or more. Further, when the content of the fluorinated cyclic carbonate in the nonaqueous electrolytic solvent is 10% by volume or less, gas generation due to the decomposition reaction of the fluorinated cyclic carbonate itself can be reduced.
  • the content of the fluorinated cyclic carbonate in the nonaqueous electrolytic solvent is more preferably 1% by volume or more, further preferably 1.5% by volume or more, and particularly preferably 2% by volume or more.
  • the content of the fluorinated cyclic carbonate in the nonaqueous electrolytic solvent is more preferably 5% by volume or less.
  • the content of the fluorinated cyclic carbonate with respect to propylene carbonate (PC) is preferably 2% by volume or more, and more preferably 4% by volume or more. Moreover, it is preferable that the content rate of the fluorinated cyclic carbonate with respect to PC is 40 volume% or less, and 20 volume% or less is still more preferable.
  • the non-aqueous electrolytic solvent is selected from the fluorine-containing phosphate ester represented by the following formula (2) and the fluorinated chain ether represented by the following formula (4) in addition to the fluorinated cyclic carbonate. May be included, and may include two or more. Hereinafter, each compound will be described.
  • the nonaqueous electrolytic solvent can contain a fluorine-containing phosphate ester represented by the following formula (2).
  • R 1 , R 2 and R 3 each independently represents an alkyl group or a fluorine-containing alkyl group, and at least one of R 1 , R 2 and R 3 is a fluorine-containing alkyl group.
  • the fluorine-containing alkyl group is an alkyl group having at least one fluorine atom.
  • R 1 , R 2 and R 3 each independently have 1 to 3 carbon atoms.
  • At least one of R 1 , R 2 and R 3 is preferably a fluorine-containing alkyl group in which 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms.
  • all of R 1 , R 2 and R 3 are fluorine-containing alkyl groups, and 50% or more of the hydrogen atoms of the unsubstituted alkyl group to which R 1 , R 2 and R 3 correspond are substituted with fluorine atoms.
  • it is a fluorine-containing alkyl group.
  • the ratio of fluorine atoms in the substituent containing a hydrogen atom in the fluorine-containing alkyl group is more preferably 55% or more.
  • Fluorine-containing phosphate ester is a solvent with low flammability and low reactivity. Although it does not specifically limit as a fluorine-containing phosphate ester, For example, phosphoric acid tris (trifluoromethyl), phosphoric acid tris (trifluoroethyl), phosphoric acid tris (tetrafluoropropyl), phosphoric acid tris (pentafluoropropyl) , Tris phosphate (heptafluorobutyl), tris phosphate (octafluoropentyl) and the like.
  • fluorine-containing phosphate ester examples include trifluoroethyldimethyl phosphate, bis (trifluoroethyl) methyl phosphate, bistrifluoroethylethyl phosphate, pentafluoropropyldimethyl phosphate, heptafluorobutyldimethyl phosphate, Trifluoroethylmethyl ethyl phosphate, pentafluoropropylmethyl ethyl phosphate, heptafluorobutylmethyl ethyl phosphate, trifluoroethyl methyl propyl phosphate, pentafluoropropyl methyl propyl phosphate, heptafluorobutyl methyl propyl phosphate, phosphoric acid Trifluoroethylmethylbutyl, pentafluoropropylmethylbutyl phosphate, heptafluorobutylmethylbutyl phosphat
  • Examples of tris (tetrafluoropropyl) phosphate include tris (2,2,3,3-tetrafluoropropyl) phosphate.
  • Examples of tris (pentafluoropropyl) phosphate include tris (2,2,3,3,3-pentafluoropropyl) phosphate.
  • Examples of tris (trifluoroethyl) phosphate include tris (2,2,2-trifluoroethyl) phosphate (hereinafter also abbreviated as TTFEP).
  • Examples of tris phosphate (heptafluorobutyl) include tris phosphate (1H, 1H-heptafluorobutyl).
  • trisphosphate examples include trisphosphate (1H, 1H, 5H-octafluoropentyl).
  • trisphosphate examples include trisphosphate (1H, 1H, 5H-octafluoropentyl).
  • tris (2,2,2-trifluoroethyl) phosphate represented by the following formula (3) is preferable because it has a high effect of suppressing decomposition of the electrolyte solution at a high potential.
  • a fluorine-containing phosphate ester can be used individually by 1 type or in combination of 2 or more types.
  • the content of the fluorine-containing phosphate ester contained in the nonaqueous electrolytic solvent is not particularly limited, but is generally 0% by volume or more and 95% by volume or less in the nonaqueous electrolytic solvent, and 10% by volume or more and 95%. Volume% or less is preferable, 15 volume% or more and 80 volume% or less are more preferable, and 20 volume% or more and 70 volume% or less are more preferable.
  • the content of the fluorine-containing phosphate ester in the nonaqueous electrolytic solvent is 10% by volume or more, the effect of increasing the voltage resistance is further improved.
  • the ion conductivity of electrolyte solution improves that the content rate in the nonaqueous electrolytic solvent of fluorine-containing phosphate ester is 95 volume% or less, and the charging / discharging rate of a battery becomes more favorable.
  • the nonaqueous electrolytic solvent can contain a fluorinated chain ether.
  • Fluorinated chain ether is preferably used when a positive electrode that has high oxidation resistance and operates at a high potential is used. As a result, it is possible to improve the capacity maintenance rate of the charge / discharge cycle and reduce gas generation.
  • the fluorinated chain ether is not particularly limited.
  • fluorinated chain ether examples include 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, 1,1,2, 2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 1H, 1H, 2'H, 3H-decafluorodipropyl ether, 1,1,1,2,3,3-hexafluoropropyl-2 , 2-difluoroethyl ether, isopropyl-1,1,2,2-tetrafluoroethyl ether, propyl-1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl-2 , 2,3,3-tetrafluoropropyl ether (TFETFPE), 1H, 1H, 5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether 1H, 1H, 2′H
  • 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether 1H, 1H, 2′H, 3H-decafluoro Dipropyl ether, 1H, 1H, 2′H-perfluorodipropyl ether, ethyl nonafluorobutyl ether and the like are preferable.
  • the chain ether has the effect of reducing the viscosity of the electrolytic solution in the same manner as the chain carbonate. Therefore, for example, a chain ether can be used in place of a chain carbonate or carboxylic acid ester, and can also be used in combination with a chain carbonate or carboxylic acid ester.
  • the fluorinated chain ether is preferably represented by the following formula (4).
  • n 1, 2, 3, 4, 5 or 6
  • m 1, 2, 3 or 4
  • l is any integer from 0 to 2n + 1
  • k Is an integer from 0 to 2m + 1
  • at least one of l and k is an integer of 1 or more.
  • the fluorinated chain ether represented by the formula (4), if the amount of fluorine substitution is small, the fluorinated chain ether reacts with the positive electrode having a high potential, so that the capacity retention rate of the battery is reduced or gas is generated. Sometimes. On the other hand, if the amount of fluorine substitution is too large, the compatibility of the fluorinated chain ether with other solvents may decrease, or the boiling point of the fluorinated chain ether may decrease.
  • the fluorine substitution amount is preferably 10% or more and 90% or less, more preferably 20% or more and 85% or less, and further preferably 30% or more and 80% or more. That is, it is preferable that l, m, and n in Expression (4) satisfy the following relational expression.
  • the content of the fluorinated chain ether is not particularly limited, but is preferably 0.1% by volume or more and 70% by volume or less in the nonaqueous electrolytic solvent.
  • the content of the fluorinated chain ether in the nonaqueous electrolytic solvent is 0.1% by volume or more, the viscosity of the electrolytic solution can be lowered and the conductivity can be increased. Moreover, the effect which improves oxidation resistance is acquired.
  • the content of the fluorinated chain ether in the nonaqueous electrolytic solvent is 70% by volume or less, it is possible to keep the conductivity of the electrolytic solution high and to ensure the compatibility of the electrolytic solution. Can do.
  • the content of the fluorinated chain ether in the nonaqueous electrolytic solvent is more preferably 1% by volume or more, further preferably 5% by volume or more, and particularly preferably 10% by volume or more.
  • the content of the fluorinated chain ether in the nonaqueous electrolytic solvent is more preferably 65% by volume or less, further preferably 60% by volume or less, and particularly preferably 55% by volume or less.
  • Fluorinated chain ethers may be used singly or in combination of two or more.
  • the nonaqueous electrolytic solvent may contain the following in addition to the above.
  • the nonaqueous electrolytic solvent may contain a fluorinated diether compound having low flammability and low reactivity.
  • R 1 O— (R 2 O) n —R 3 R 1 O— (R 2 O) n —R 3 (5)
  • R 1 and R 3 are each independently an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom, and R 2 is substituted with a fluorine atom.
  • R 1 and R 3 are fluorine-containing alkyl groups such as trifluoromethyl, trifluoroethyl, tetrafluoropropyl, pentafluoropropyl and heptafluorobutyl.
  • the fluorine substitution position is arbitrary, and examples thereof include 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, and the like. Although it can, it is not limited to these.
  • the number of carbon atoms of R 2 is more preferably 1 or more and 3 or less.
  • Examples include methylene, ethylene, 1,2-propylene, 1,3-propylene, butylene and their fluorine substituents.
  • ethylene, 1,2-propylene and 1,3-propylene are preferred.
  • R 2 is an unsubstituted alkylene group.
  • n is preferably 1 or 2, and more preferably 1.
  • the fluorinated diether compound is more preferably a compound represented by the following formula (6).
  • the content in the nonaqueous electrolytic solvent is not particularly limited, but is, for example, 0.1% by volume or more, more preferably 0.5% by volume or more, and further preferably It is 0.9 volume% or more.
  • the upper limit of the content rate can be appropriately changed depending on the content of the fluorine-containing phosphate ester and the content of other organic solvents, and is typically 90% by volume or less, preferably 50% by volume or less. It is.
  • the content of the fluorinated diether compound may be relatively small. Therefore, in a preferred embodiment, the content of the fluorinated diether compound is preferably 20% by volume, more preferably 10% by volume or less.
  • the non-aqueous electrolyte can further contain a cyclic carbonate or a chain carbonate.
  • Cyclic carbonates and chain carbonates are suitable for mixing with fluorine-containing phosphate esters because of their high voltage resistance and electrical conductivity.
  • cyclic carbonate other than propylene carbonate examples include, but are not limited to, ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), and the like.
  • Cyclic carbonates can be used singly or in combination of two or more.
  • the content in the nonaqueous electrolytic solvent is preferably 0.1% by volume or more, preferably 5% by volume from the viewpoints of increasing the dissociation degree of the supporting salt and increasing the conductivity of the electrolytic solution.
  • the above is more preferable, 10% by volume or more is further preferable, and 15% by volume or more is particularly preferable.
  • the content of the cyclic carbonate in the nonaqueous electrolytic solvent is preferably 70% by volume or less, more preferably 50% by volume or less, and further preferably 40% by volume or less.
  • the chain carbonate is not particularly limited, and examples thereof include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dipropyl carbonate (DPC).
  • the chain carbonate includes a fluorinated chain carbonate.
  • a fluorinated chain carbonate for example, a part or all of hydrogen atoms such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC) and the like are substituted with fluorine atoms. Examples include compounds having a structure.
  • examples of the fluorinated chain carbonate include bis (fluoroethyl) carbonate, 3-fluoropropyl methyl carbonate, 3,3,3-trifluoropropyl methyl carbonate, and 2,2,2-trifluoro.
  • a chain carbonate can be used individually by 1 type or in combination of 2 or more types.
  • Chain carbonate has the advantage of low viscosity when the number of carbon atoms of the substituent added to the “—OCOO—” structure is small. On the other hand, if the number of carbon atoms is too large, the viscosity of the electrolytic solution may increase and the conductivity of Li ions may decrease. For these reasons, the total number of carbon atoms of the two substituents added to the “—OCOO—” structure of the chain carbonate is preferably 2 or more and 6 or less. Further, when the substituent added to the “—OCOO—” structure contains a fluorine atom, the oxidation resistance of the electrolytic solution is improved. For these reasons, the chain carbonate is preferably a fluorinated chain carbonate represented by the following formula (7).
  • n 1, 2 or 3
  • m 1, 2 or 3
  • l is any integer from 0 to 2n + 1
  • k is any from 0 to 2m + 1
  • at least one of l and k is an integer of 1 or more.
  • the fluorinated chain carbonate represented by the formula (7) if the amount of fluorine substitution is small, the capacity retention rate of the battery is lowered or gas is generated due to the reaction of the fluorinated chain carbonate with the positive electrode of high potential. Sometimes. On the other hand, if the amount of fluorine substitution is too large, the compatibility of the chain carbonate with other solvents may decrease, or the boiling point of the chain carbonate may decrease.
  • the fluorine substitution amount is preferably 1% or more and 90% or less, more preferably 5% or more and 85% or less, and further preferably 10% or more and 80% or less. That is, it is preferable that l, m, and n in Expression (7) satisfy the following relational expression.
  • Chain carbonate has the effect of lowering the viscosity of the electrolytic solution, and can increase the conductivity of the electrolytic solution.
  • the content in the nonaqueous electrolytic solvent is preferably 0.1% by volume or more, more preferably 0.5% by volume or more, and further preferably 1.0% by volume or more. preferable.
  • the content of the chain carbonate in the nonaqueous electrolytic solvent is preferably 90% by volume or less, more preferably 80% by volume or less, and further preferably 70% by volume or less.
  • the content in the nonaqueous electrolytic solvent is not particularly limited, but is preferably 0.1% by volume or more and 70% by volume or less.
  • the content of the fluorinated chain carbonate in the nonaqueous electrolytic solvent is 0.1% by volume or more, the viscosity of the electrolytic solution can be lowered and the conductivity can be increased. Moreover, the effect which improves oxidation resistance is acquired. Further, when the content of the fluorinated chain carbonate in the nonaqueous electrolytic solvent is 70% by volume or less, the conductivity of the electrolytic solution can be kept high.
  • the content of the fluorinated chain carbonate in the nonaqueous electrolytic solvent is more preferably 1% by volume or more, further preferably 5% by volume or more, and particularly preferably 10% by volume or more.
  • the content of the fluorinated chain carbonate in the nonaqueous electrolytic solvent is more preferably 65% by volume or less, further preferably 60% by volume or less, and particularly preferably 55% by volume or less.
  • nonaqueous electrolytic solvent may contain a carboxylic acid ester.
  • the carboxylate ester is not particularly limited, and examples thereof include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, and methyl formate.
  • the carboxylic acid ester also includes a fluorinated carboxylic acid ester. Examples of the fluorinated carboxylic acid ester include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, or formic acid.
  • Examples thereof include compounds having a structure in which part or all of the hydrogen atoms of methyl are substituted with fluorine atoms.
  • Specific examples of the fluorinated carboxylic acid ester include, for example, ethyl pentafluoropropionate, ethyl 3,3,3-trifluoropropionate, methyl 2,2,3,3-tetrafluoropropionate, and acetic acid.
  • the carboxylic acid esters include ethyl propionate, methyl acetate, methyl 2,2,3,3-tetrafluoropropionate, 2,2,3,3 trifluoroacetic acid. -Tetrafluoropropyl is preferred.
  • Carboxylic acid esters have the effect of reducing the viscosity of the electrolytic solution in the same manner as chain carbonates. Therefore, for example, the carboxylic acid ester can be used in place of the chain carbonate, and can also be used in combination with the chain carbonate.
  • the chain carboxylic acid ester has a feature that the viscosity is low when the number of carbon atoms of the substituent added to the “—COO—” structure is small, but the boiling point tends to be low.
  • the chain carboxylic acid ester having a low boiling point may be vaporized when the battery is operated at a high temperature.
  • the total number of carbon atoms of the two substituents added to the “—COO—” structure of the chain carboxylic acid ester is preferably 3 or more and 8 or less.
  • the chain carboxylic acid ester is preferably a fluorinated chain carboxylic acid ester represented by the following formula (8).
  • n 1, 2, 3 or 4
  • m 1, 2, 3 or 4
  • l is any integer from 0 to 2n + 1
  • k is 0 to 2m + 1.
  • at least one of l and k is an integer of 1 or more.
  • the fluorinated chain carboxylic acid ester represented by the formula (8) when the amount of fluorine substitution is small, the capacity retention rate of the battery is lowered due to the reaction of the fluorinated chain carboxylic acid ester with the positive electrode of high potential, Gas may be generated. On the other hand, if the amount of fluorine substitution is too large, the compatibility of the chain carboxylic acid ester with other solvents may decrease, or the boiling point of the fluorinated chain carboxylic acid ester may decrease.
  • the fluorine substitution amount is preferably 1% or more and 90% or less, more preferably 10% or more and 85% or less, and further preferably 20% or more and 80% or less. That is, it is preferable that l, m, and n in Expression (8) satisfy the following relational expression.
  • the content in the nonaqueous electrolytic solvent is preferably 0.1 volume or more, more preferably 0.2 volume% or more, further preferably 0.5 volume% or more, and 1 volume% or more. Is particularly preferred.
  • the content of the carboxylic acid ester in the nonaqueous electrolytic solvent is preferably 50% by volume or less, more preferably 20% by volume or less, still more preferably 15% by volume or less, and particularly preferably 10% by volume or less.
  • the content in the nonaqueous electrolytic solvent is not particularly limited, but is preferably 0.1% by volume or more and 50% by volume or less.
  • the content of the fluorinated chain carboxylic acid ester in the nonaqueous electrolytic solvent is 0.1% by volume or more, the viscosity of the electrolytic solution can be lowered and the conductivity can be increased. Moreover, the effect which improves oxidation resistance is acquired.
  • the content of the fluorinated chain carboxylic acid ester in the nonaqueous electrolytic solvent is 50% by volume or less, the conductivity of the electrolytic solution can be kept high, and the compatibility of the electrolytic solution is ensured. Can do.
  • the content of the fluorinated chain carboxylic acid ester in the nonaqueous electrolytic solvent is more preferably 1% by volume or more, further preferably 5% by volume or more, and particularly preferably 10% by volume or more.
  • the content of the fluorinated chain carboxylic acid ester in the nonaqueous electrolytic solvent is more preferably 45% by volume or less, further preferably 40% by volume or less, and particularly preferably 35% by volume or less.
  • the nonaqueous electrolytic solvent may contain an alkylene biscarbonate represented by the following formula (9). Since the oxidation resistance of the alkylene biscarbonate is equal to or slightly higher than that of the chain carbonate, the voltage resistance of the electrolytic solution can be improved.
  • R 4 and R 6 each independently represents a substituted or unsubstituted alkyl group.
  • R 5 represents a substituted or unsubstituted alkylene group.
  • the alkyl group includes linear or branched ones, preferably having 1 to 6 carbon atoms, and more preferably having 1 to 4 carbon atoms.
  • the alkylene group is a divalent saturated hydrocarbon group, including a linear or branched chain group, preferably having 1 to 4 carbon atoms, and more preferably 1 to 3 carbon atoms. .
  • alkylene biscarbonate represented by the formula (9) examples include 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) ethane, 1,2-bis (methoxycarbonyloxy).
  • Examples include propane and 1-ethoxycarbonyloxy-2-methoxycarbonyloxyethane. Of these, 1,2-bis (methoxycarbonyloxy) ethane is preferred.
  • the content in the nonaqueous electrolytic solvent is preferably 0.1% by volume or more, more preferably 0.5% by volume or more, still more preferably 1% by volume or more, and 1.5% by volume.
  • the above is particularly preferable.
  • the content of the alkylene biscarbonate in the nonaqueous electrolytic solvent is preferably 70% by volume or less, more preferably 60% by volume or less, further preferably 50% by volume or less, and particularly preferably 40% by volume or less.
  • Alkylene biscarbonate is a material with a low dielectric constant. Therefore, for example, it can be used in place of the chain carbonate, or can be used in combination with the chain carbonate.
  • the nonaqueous electrolytic solvent can contain a chain ether.
  • the chain ether is not particularly limited, and examples thereof include 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME).
  • the chain ether has the effect of reducing the viscosity of the electrolytic solution, like the chain carbonate. Therefore, for example, a chain ether can be used in place of a chain carbonate or carboxylic acid ester, and can also be used in combination with a chain carbonate or carboxylic acid ester.
  • the number of carbon atoms is preferably 4 or more and 10 or less.
  • Nonaqueous electrolytic solvents can include, for example, ⁇ -lactones such as ⁇ -butyrolactone, cyclic ethers such as tetrahydrofuran or 2-methyltetrahydrofuran, and the like. Moreover, what substituted some hydrogen atoms of these materials by the fluorine atom may be included.
  • Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 Examples thereof include lithium salts such as SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiB 10 Cl 10 .
  • Other examples of the supporting salt include lower aliphatic lithium carboxylate carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and the like.
  • the supporting salt can be used alone or in combination of two or more.
  • an ion conductive polymer can be added to the nonaqueous electrolytic solvent.
  • the ion conductive polymer include polyethers such as polyethylene oxide and polypropylene oxide, and polyolefins such as polyethylene and polypropylene.
  • the ion conductive polymer include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, and polyvinyl chloride.
  • An ion conductive polymer can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use the polymer containing the various monomers which comprise the said polymer.
  • an electrolyte solution additive may be added to the nonaqueous electrolytic solvent as necessary.
  • the positive electrode of the lithium secondary battery according to the present embodiment can use a 4V class material such as LiMn 2 O 4 or LiCoO 2 as disclosed in Patent Documents 1 to 6 described above.
  • LiM1O 2 (M1 is at least one element selected from the group consisting of Mn, Fe, Co, and Ni, and a part of M1 may be substituted with Mg, Al, or Ti)
  • LiMn Lithium such as 2-x M2 x O 4 (M2 is at least one element selected from the group consisting of Mg, Al, Co, Ni, Fe and B, and 0 ⁇ x ⁇ 0.4).
  • Containing complex oxides, olivine type materials represented by LiFePO 4 and the like can also be used.
  • a positive electrode active material that can occlude or release lithium ions at a potential of 4.5 V or more with respect to lithium metal.
  • a positive electrode active material a material in which at least a charge curve of the charge / discharge curve has a region of 4.5 V or more with respect to lithium metal at least in part can be used. That is, an active material having at least a region of 4.5 V or more with respect to lithium metal only in the charge curve, or at least a region of 4.5 V or more with respect to lithium metal in both the charge curve and the discharge curve Can be used.
  • the charge / discharge current can be set to 5 mA / g per mass of the positive electrode active material, the charge end voltage can be set to 5.2V, and the discharge end voltage can be set to 3V.
  • positive electrode active materials examples include spinel materials, layered materials, and olivine materials.
  • materials operates; a part of Mn of LiMn 2 O 4 with increased substitution to life with another element, LiM1 x Mn 2-x- y M2 y O 4 (M1 is Ni, Fe, Co, Cr, and Cu At least one selected, 0.4 ⁇ x ⁇ 1.1, M2 is at least one selected from Li, Al, B, Mg, Si and transition metals, and 0 ⁇ y ⁇ 0. 5)); and those obtained by substituting a part of oxygen of these materials with fluorine or chlorine.
  • a material represented by the following formula (10) is particularly preferable.
  • Y is at least one selected from Li, B, Na, Al, Mg, Ti, Si, K and Ca, and Z is at least one of F and Cl. ]
  • the layered material is represented by a general formula LiMO 2 , specifically, LiCoO 2 , LiNi 1-x M x O 2 (0.05 ⁇ x ⁇ 0.3, where M is an element containing at least Co or Al. there. material represented by), Li (Ni x Co y Mn 2-x-y) O 2 (0.1 ⁇ x ⁇ 0.7,0 ⁇ y ⁇ 0.5), Li (M 1-z And a material represented by Mn z ) O 2 (0.33 ⁇ z ⁇ 0.7, M is at least one of Li, Co, and Ni).
  • LiMO 2 specifically, LiCoO 2 , LiNi 1-x M x O 2 (0.05 ⁇ x ⁇ 0.3, where M is an element containing at least Co or Al. there. there. material represented by), Li (Ni x Co y Mn 2-x-y) O 2 (0.1 ⁇ x ⁇ 0.7,0 ⁇ y ⁇ 0.5), Li (M 1-z And a material represented by Mn z ) O 2 (0.33 ⁇
  • a material represented by the following formula (11) is particularly preferable.
  • Li (Li x M 1-x -z Mn z) O 2 (11) [In formula (11), 0 ⁇ x ⁇ 0.3, 0.3 ⁇ z ⁇ 0.7, and M is at least one of Co and Ni. ]
  • X in the formula (11) is preferably 0 ⁇ x ⁇ 0.2.
  • the olivine-based material has the general formula: LiMPO 4 (M is a transition metal) Specifically, LiFePO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4 may be mentioned. Those in which a part of these transition metals is replaced with another element or the oxygen part is replaced with fluorine can also be used. From the viewpoint of high energy density, a material represented by LiMPO 4 (M is at least one of Co and Ni) operating at a high potential is preferable.
  • NASICON type lithium transition metal silicon composite oxide, and the like can be used.
  • the positive electrode active material that operates at the above high potential may be used in combination with other normal positive electrode active materials, but the content of the positive electrode active material that operates at the above high potential in the entire positive electrode active material is 60% by mass.
  • the above is preferable, 80% by mass or more is more preferable, and 90% by mass or more is further preferable.
  • the specific surface areas of the positive electrode active material is, for example, 0.01 ⁇ 5m 2 / g, preferably 0.05 ⁇ 4m 2 / g, more preferably 0.1 ⁇ 3m 2 / g, 0.2 ⁇ 2m 2 / g is more preferable.
  • the contact area with the electrolytic solution can be adjusted to an appropriate range. That is, when the specific surface area is 0.01 m 2 / g or more, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced.
  • the specific surface area can be measured by a usual BET specific surface area measurement method.
  • the center particle size of the positive electrode active material is preferably 0.01 to 50 ⁇ m, more preferably 0.02 to 40 ⁇ m. By setting the particle size to 0.02 ⁇ m or more, elution of constituent elements of the positive electrode active material can be further suppressed, and deterioration due to contact with the electrolytic solution can be further suppressed. In addition, when the particle size is 50 ⁇ m or less, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced.
  • the central particle diameter is 50% cumulative diameter D 50 (median diameter), and can be measured by a laser diffraction / scattering particle size distribution analyzer.
  • the same negative electrode binder can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of binding force and energy density which are in a trade-off relationship.
  • binders other than polyvinylidene fluoride (PVdF) vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene,
  • PVdF polyvinylidene fluoride
  • Examples include polyethylene, polyimide, and polyamideimide.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the positive electrode current collector aluminum, nickel, silver, and alloys thereof are preferable.
  • the shape include foil, flat plate, and mesh.
  • a positive electrode is obtained by dispersing and kneading the above active material together with a conductive material and a binder in a solvent such as N-methyl-2-pyrrolidone (NMP), and applying this onto a positive electrode current collector.
  • NMP N-methyl-2-pyrrolidone
  • a negative electrode will not be specifically limited if the negative electrode active material contains the material which can occlude and discharge
  • the negative electrode active material is not particularly limited.
  • a carbon material (a) that can occlude and release lithium ions a metal (b) that can be alloyed with lithium, or a metal that can occlude and release lithium ions.
  • An oxide (c) etc. are mentioned, It is preferable that a carbon material (a) is included.
  • the carbon material (a) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the carbon material (a) can be used alone or in combination with other substances. When used in combination, the carbon material (a) is preferably in the range of 2% by mass to 80% by mass in the negative electrode active material, for example, in the range of 2% by mass to 30% by mass.
  • the metal (b) a metal mainly composed of Al, Si, Pb, Sn, Zn, Cd, Sb, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, La, or the like, or these Two or more kinds of alloys, or an alloy of these metals or alloys and lithium can be used.
  • silicon (Si) is preferably included as the metal (b).
  • the metal (b) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass to 90% by mass in the negative electrode active material, and is 20% by mass to 50% by mass. The following range is more preferable.
  • silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used as the metal oxide (c).
  • silicon oxide is preferably included as the metal oxide (c). This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved.
  • the metal oxide (c) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass or more and 90% by mass or less in the negative electrode active material, and is 40% by mass or more and 70% by mass. More preferably, it is in the range of mass% or less.
  • metal oxide (c) examples include, for example, LiFe 2 O 3 , WO 2 , MoO 2 , SiO, SiO 2 , CuO, SnO, SnO 2 , Nb 3 O 5 , Li x Ti 2-x O 4. (1 ⁇ x ⁇ 4/3), PbO 2 , Pb 2 O 5 and the like.
  • the negative electrode active material examples include metal sulfide (d) that can occlude and release lithium ions.
  • Metal sulfide as (d) are, for example, SnS and FeS 2 or the like.
  • the negative electrode active material for example, metallic lithium or lithium alloy, polyacene or polythiophene, or Li 5 (Li 3 N), Li 7 MnN 4 , Li 3 FeN 2 , Li 2.5 Co 0. Examples thereof include lithium nitride such as 5 N or Li 3 CoN.
  • the above negative electrode active materials can be used singly or in combination of two or more.
  • the negative electrode active material may include a carbon material (a), a metal (b), and a metal oxide (c).
  • this negative electrode active material will be described.
  • the amorphous metal oxide (c) can suppress the volume expansion of the carbon material (a) and the metal (b), and can suppress the decomposition of the electrolytic solution. This mechanism is presumed to have some influence on the film formation on the interface between the carbon material (a) and the electrolytic solution due to the amorphous structure of the metal oxide (c).
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal oxide (c) does not have an amorphous structure, a peak specific to the metal oxide (c) is observed, but all or part of the metal oxide (c) is amorphous. In the case of having a structure, the intrinsic peak of the metal oxide (c) is broad and observed.
  • the metal oxide (c) is preferably a metal oxide constituting the metal (b).
  • the metal (b) and the metal oxide (c) are preferably silicon (Si) and silicon oxide (SiO), respectively.
  • the metal (b) is preferably dispersed entirely or partially in the metal oxide (c).
  • the metal (b) is preferably dispersed entirely or partially in the metal oxide (c).
  • the volume expansion of the whole negative electrode can be further suppressed, and the decomposition of the electrolytic solution can also be suppressed.
  • all or part of the metal (b) is dispersed in the metal oxide (c) because it is observed with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement.
  • the cross section of the sample containing the metal (b) particles is observed, the oxygen concentration of the metal (b) particles dispersed in the metal oxide (c) is measured, and the metal (b) particles are configured. It can be confirmed that the metal being used is not an oxide.
  • each carbon material (a), metal (b), and metal oxide (c) with respect to the total of the carbon material (a), metal (b), and metal oxide (c) is these are preferably 2 to 80% by mass, 5 to 90% by mass, and 5 to 90% by mass, respectively.
  • the content rate of each carbon material (a), a metal (b), and a metal oxide (c) with respect to the sum total of a carbon material (a), a metal (b), and a metal oxide (c), respectively More preferably, they are 2 mass% or more and 30 mass% or less, 20 mass% or more and 50 mass% or less, and 40 mass% or more and 70 mass% or less.
  • a negative electrode active material in which all or part of the metal oxide (c) has an amorphous structure and all or part of the metal (b) is dispersed in the metal oxide (c) is disclosed in, for example, It can be produced by the method disclosed in 2004-47404. That is, by performing a CVD process on the metal oxide (c) in an atmosphere containing an organic gas such as methane gas, the metal (b) in the metal oxide (c) is nanoclustered and the surface is a carbon material (a ) Can be obtained. Moreover, the said negative electrode active material is producible also by mixing a carbon material (a), a metal (b), and a metal oxide (c) by mechanical milling.
  • the carbon material (a), the metal (b), and the metal oxide (c) are not particularly limited, but particulate materials can be used.
  • the average particle diameter of the metal (b) may be smaller than the average particle diameter of the carbon material (a) and the average particle diameter of the metal oxide (c). In this way, the metal (b) having a large volume change during charging and discharging has a relatively small particle size, and the carbon material (a) and the metal oxide (c) having a small volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed.
  • the average particle diameter of the metal (b) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the average particle diameter of a metal oxide (c) is 1/2 or less of the average particle diameter of a carbon material (a), and the average particle diameter of a metal (b) is an average of a metal oxide (c). It is preferable that it is 1/2 or less of a particle diameter. Furthermore, the average particle diameter of the metal oxide (c) is 1 ⁇ 2 or less of the average particle diameter of the carbon material (a), and the average particle diameter of the metal (b) is the average particle diameter of the metal oxide (c). It is more preferable that it is 1/2 or less.
  • the average particle diameter of the silicon oxide (c) is set to 1/2 or less of the average particle diameter of the graphite (a), and the average particle diameter of the silicon (b) is the average particle of the silicon oxide (c). It is preferable to make it 1/2 or less of the diameter. More specifically, the average particle diameter of silicon (b) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer.
  • PVdF polyvinylidene fluoride
  • Polymerized rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be mentioned.
  • the content of the negative electrode binder is preferably in the range of 1 to 30% by mass, more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the content is preferably in the range of 1 to 30% by mass, more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the negative electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, and alloys thereof are preferable from the viewpoint of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the secondary battery may be composed of a combination of a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte as its configuration.
  • the separator include a woven fabric, a nonwoven fabric, a polyolefin polymer such as polyethylene and polypropylene, a polyimide, a porous polymer film such as a porous polyvinylidene fluoride film, or an ion conductive polymer electrolyte film. These can be used alone or in combination.
  • Examples of the shape of the battery include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.
  • the electrodes and the separator are laminated in a planar shape, and there is no portion with a small R (region close to the winding core of the wound structure or region corresponding to the folded portion of the flat wound structure). Therefore, when an active material having a large volume change associated with charging / discharging is used, it is less likely to be adversely affected by the volume change of the electrode associated with charging / discharging than a battery having a wound structure.
  • the battery outer package examples include stainless steel, iron, aluminum, titanium, alloys thereof, and plated products thereof.
  • the plating for example, nickel plating can be used.
  • a laminate film is preferable as the outer package.
  • Examples of the metal foil layer on the resin base layer of the laminate film include aluminum, aluminum alloy, and titanium foil.
  • Examples of the material for the heat-welded layer of the laminate film include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate.
  • the resin base material layer and the metal foil layer of the laminate film are not limited to one layer, but may be two or more layers. From the viewpoint of versatility and cost, an aluminum laminate film is preferable.
  • the lithium secondary battery according to the present embodiment includes a positive electrode current collector 3 made of a metal such as an aluminum foil, and a positive electrode active material layer 1 containing a positive electrode active material provided thereon. And a negative electrode current collector 4 made of a metal such as copper foil and a negative electrode active material layer 2 containing a negative electrode active material provided thereon.
  • the positive electrode and the negative electrode are laminated via a separator 5 made of a nonwoven fabric or a polypropylene microporous film so that the positive electrode active material layer 1 and the negative electrode active material layer 2 face each other.
  • This electrode pair is accommodated in a container formed of exterior bodies 6 and 7 such as an aluminum laminate film.
  • a positive electrode tab 9 is connected to the positive electrode current collector 3, and a negative electrode tab 8 is connected to the negative electrode current collector 4, and these tabs are drawn out of the container.
  • An electrolytic solution is injected into the container and sealed. It can also be set as the structure where the electrode group by which the several electrode pair was laminated
  • PC propylene carbonate
  • EC ethylene carbonate
  • FPE 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether
  • TTFEP tris phosphate (2,2,2-trifluoroethyl)
  • DMC dimethyl carbonate
  • FEC fluoroethylene carbonate
  • FPC 3,3,3-trifluoropropylene carbonate
  • Example 1-1 LiNi 0.5 Mn 1.5 O 4 (90% by mass) as a positive electrode active material, polyvinylidene fluoride (PVdF) (5% by mass) as a binder, and carbon black (5% by mass) as a conductive agent ) And were mixed into a positive electrode mixture.
  • This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode slurry.
  • This positive electrode slurry was uniformly applied to one side of an aluminum current collector having a thickness of 20 ⁇ m. The thickness of the coating film was adjusted so that the initial charge capacity per unit area was 2.5 mAh / cm 2 . After drying, a positive electrode was produced by compression molding with a roll press.
  • Artificial graphite was used as the negative electrode active material. Artificial graphite was dispersed in PVDF dissolved in N-methylpyrrolidone to prepare a negative electrode slurry. The mass ratio of the negative electrode active material and the binder was 90/10. This negative electrode slurry was uniformly coated on a 10 ⁇ m thick Cu current collector. The thickness of the coating film was adjusted so that the initial charge capacity was 3.0 mAh / cm 2 . After drying, a negative electrode was produced by compression molding with a roll press.
  • the positive electrode and the negative electrode cut out to 3 cm ⁇ 3 cm were arranged so as to face each other with a separator interposed therebetween.
  • a separator a microporous polypropylene film having a thickness of 25 ⁇ m was used.
  • PC propylene carbonate
  • TFETFPE 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether
  • TFEP tris phosphate (2,2,2-trifluoro
  • ethyl) (TTFEP) ethyl)
  • DMC dimethyl carbonate
  • the above positive electrode, negative electrode, separator, and electrolytic solution were placed in a laminate outer package, the laminate was sealed, and a lithium secondary battery was produced.
  • the positive electrode and the negative electrode were connected to a tab and electrically connected from the outside of the laminate.
  • This lithium secondary battery was charged at 100 mA, and after the upper limit voltage reached 4.8 V, it was charged at a constant voltage until the total charging time reached 2.5 hours. Thereafter, discharging was performed at a constant current until the lower limit voltage was 3 V at 100 mA. This charging / discharging was repeated 100 times. This charging / discharging was implemented in a 45 degreeC thermostat.
  • the amount of gas generation was evaluated by measuring the change in cell volume before and after the charge / discharge cycle.
  • the cell volume was measured using the Archimedes method, and the gas generation amount was calculated by examining the difference before and after the charge / discharge cycle. Although not shown here, the amount of gas generated was very large when FEC was not added.
  • Example 1-2 A lithium secondary battery was produced in the same manner as in Example 1-1 except that fluoroethylene carbonate (FEC) was added so as to have a volume ratio of 3 in the above solvent composition, and the amount of gas generated was measured.
  • FEC fluoroethylene carbonate
  • Example 1-3 A lithium secondary battery was produced in the same manner as in Example 1-1 except that fluoroethylene carbonate (FEC) was added so as to have a volume ratio of 5 in the above solvent composition, and the amount of gas generated was measured.
  • FEC fluoroethylene carbonate
  • Example 1-4 A lithium secondary battery was produced in the same manner as in Example 1-1 except that fluoroethylene carbonate (FEC) was added so as to have a volume ratio of 10 in the above solvent composition, and the amount of gas generated was measured.
  • FEC fluoroethylene carbonate
  • FIG. 2 shows the amount of gas generated in the charge / discharge cycle depending on the amount of fluoroethylene carbonate (FEC) that is a fluorinated cyclic carbonate (Examples 1-1 to 1-4).
  • FEC fluoroethylene carbonate
  • Examples 1-1 to 1-4 fluorinated cyclic carbonate
  • FPC 3,3,3-trifluoropropylene carbonate
  • a lithium secondary battery was produced in the same manner as in Example 2-1 except that the amount was 10 vol%, and the amount of gas generated was measured and found to be 0.42 cc.
  • Example 2-1 and Example 2-2 gas generation was suppressed by the addition of FPC.
  • the content of FPC in the electrolyte solution seems to have an optimum amount in the vicinity of 2% by volume. Moreover, it is thought that gas generation can be satisfactorily suppressed when the content ratio (volume ratio) of FPC to PC is in the vicinity of 5% to 33%.
  • a lithium secondary battery was prepared, and the amount of gas generated after 300 cycles of 45 ° C. charge / discharge cycles was measured to be 0.17 cc.
  • Example 3-1 According to the comparison between Example 3-1 and Example 3-2, the amount of gas generation is smaller when TTFEP is added, and further gas generation suppression effect can be obtained by mixing the fluorine-containing phosphate ester. It was. It can be said that the effect of suppressing the generation of gas is good when the content (volume ratio) of FEC to PC is around 7%. Further, when 2% by volume and 3% by volume of FEC were compared, the amount of gas was 2% by volume of FEC, and the effect of suppressing gas generation was better in the vicinity of 2% by volume with respect to the electrolyte.
  • the same lithium secondary battery as in this example was manufactured, charged at 45 ° C. with a constant current of 50 mA to 4.75 V, charged with constant voltage for 2.5 hours, and then discharged to 3.0 V. It was. After charging again under the same conditions, the battery was discharged at 50 mA at 25 mA to 3.0 V. The discharge capacity at this time was measured and found to be 56 mAh.
  • a lithium secondary battery was produced in the same manner as described above, and the gas generation amount was measured after 50 cycles of 45 ° C. charge / discharge cycles.
  • Example 4-1 the discharge capacity at 25 ° C. was measured in the same manner as in Example 4-1. As a result, it was 55 mAh.
  • Example 4-1 gas generation is suppressed.
  • Example 4-1 in which the electrolyte contained more PC, gas generation was further suppressed, and the battery capacity was equal to or greater than Example 4-2 in which a part of the PC was replaced with EC. .
  • Comparative Examples B-1 to B-3 when the composition of the electrolytic solvent did not include PC, the resistance of the electrode increased and the battery did not operate. Further, in Comparative Example C, when the composition of the electrolytic solvent containing EC without including PC was used, the gas generation amount was larger than that in each of the above Examples.
  • the lithium secondary battery of the present embodiment is a secondary battery in which good characteristics at low temperatures can be expected and gas generation is suppressed, and all industrial fields that require a power source, and transportation, storage, and storage of electrical energy. It can be used in the industrial field related to supply. Specifically, it can be used for a power source of a mobile device, a power source of a moving / transport medium, a backup power source, a solar power generation, a wind power generation, and a power storage facility for storing power generated by the power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 リチウムの吸蔵放出が可能な正極および負極と、リチウムイオンを含有する非水電解質とを有するリチウムイオン二次電池であって、 前記非水電解質は プロピレンカーボネート、 一般式(1)で示されるフッ素化環状カーボネート、並びに、 フッ素含有リン酸エステルおよびフッ素化鎖状エーテルから選択される1種以上 を含有し、 前記プロピレンカーボネートの含有率は非水電解溶媒中1体積%以上50体積%以下であり、前記フッ素化環状カーボネートの含有率は非水電解溶媒中0.1体積%以上10体積%以下であることを特徴とするリチウムイオン二次電池に関する。本発明によれば、低温特性に優れ、ガス発生が抑制された二次電池を提供することができる。[式(1)中、AからDは、それぞれ独立に、水素原子、フッ素原子、または、置換もしくは無置換のアルキル基であり、AからDの少なくとも1つはフッ素原子またはフッ素含有アルキル基である。]

Description

リチウムイオン二次電池
 本発明は、二次電池、詳細にはリチウムイオン二次電池に関し、より詳細には、二次電池用電解液、これを用いたリチウムイオン二次電池およびその製造方法に関するものである。
 リチウム二次電池は、携帯型電子機器やパソコン等の用途に広く利用されている。リチウム二次電池には難燃性等の安全性の向上が求められ、以下の文献に記載されるようにリン酸エステル化合物や環状カーボネートを含む電解液を用いた二次電池が提案されている。
 特許文献1には、リン酸エステル化合物と、ハロゲンを含有する環状炭酸エステルと、鎖状炭酸エステルと、リチウム塩とからなる電解液を用いた二次電池が開示されている。特許文献1には、この電解液を用いることで安全性を高めることができることや、炭素負極と電解液の組み合わせで不可逆容量を低減できることが示されている。
 また、特許文献2には、フルオロエチレンカーボネート、これに溶解したアルカリ金属、及びプロピレンカーボネートの溶液を含むアルカリ金属イオン二次電池用の電解質が開示され、この電解質を用いることによって、二次電池の不可逆容量損失及び電池の効率低下を抑制することができることが示されている。
 特許文献3には、リン酸エステルを混合させることによって、負極にリチウム金属が析出した場合においても高い安全性を確保することができることが示されている。
 特許文献4には、リン酸エステルと、環状カーボネートと、ビニレンカーボネート化合物またはビニルエチレンカーボネート化合物のいずれかと、を含む電解液を使った二次電池が開示されている。
 特許文献5においては、フッ素を含有するリン酸エステルを含む電解液を有する二次電池が開示されている。
 特許文献6および特許文献7には、式RO-(RO)-R(R、R:ハロゲン原子で置換されていてもよい炭素数1~8のアルキル基、R:ハロゲン原子で置換されていてもよい炭素数1~8のアルキレン基、ただしR、RおよびRの内少なくとも一つはハロゲン原子で置換されていなくてはならない、1≦n≦4)で表されるグリコールジエーテルを含有する電解液を用いた二次電池が開示されている。さらに、特許文献6および特許文献7には、リン酸エステルを電解液に含有させることが開示されているが、フッ素化リン酸エステルに関する記載はない。
 また、リチウム二次電池においては、安全性が求められる一方で、電池のエネルギー密度の向上が重要な技術的課題となっている。
 リチウム二次電池のエネルギー密度を高める方法としては幾つかの方法が考えられるが、その中でも電池の動作電位を上昇させることが有効である。従来のコバルト酸リチウムやマンガン酸リチウムを正極活物質として用いたリチウム二次電池では、動作電位は何れも4V級(平均動作電位=3.6~3.8V:対リチウム電位)となる。これは、CoイオンもしくはMnイオンの酸化還元反応(Co3+←→Co4+もしくはMn3+←→Mn4+)によって発現電位が規定されるためである。
 これに対し、たとえばマンガン酸リチウムのMnをNi等により置換したスピネル化合物を活物質として用いることにより、5V級の動作電位を実現できることが知られている。具体的には、特許文献8のように、LiNi0.5Mn1.5等のスピネル化合物が4.5V以上の領域に電位プラトーを示すことが知られている。こうしたスピネル化合物において、Mnは4価の状態で存在し、Mn3+←→Mn4+の酸化還元に代わってNi2+←→Ni4+の酸化還元によって動作電位が規定される。
 LiNi0.5Mn1.5は容量が130mAh/g以上であり、平均動作電圧は金属リチウムに対して4.6V以上である。容量としてはLiCoOより小さいものの、電池のエネルギー密度はLiCoOよりも高い。このような理由からLiNi0.5Mn1.5は、将来の正極材料として有望である。
特許第3961597号明細書 特表2001-501355号公報 特許第3821495号明細書 特許第4187965号明細書 特開2008-021560号公報 特開2001-023691号公報 特開2001-085056号公報 特開2009-123707号公報
J.Electrochem.Soc.,vol.144,204(1997)
 前述の環状カーボネートのなかで、エチレンカーボネート(EC)は誘電率が90と非常に大きく、リチウム塩を電離させ電気を運ぶイオンを生成する効果が大きいことが知られている。しかし、エチレンカーボネートは融点が37℃と高く、単体では電池の使用温度で固体であることから、低温でリチウムイオンが移動しにくくなる原因になる可能性や、析出して特性に影響する可能性が予想された。これに対し、プロピレンカーボネート(PC)は誘電率が65とかなり大きく、融点が-49℃であることから、低温でも析出することはなく、リチウム塩の電離とイオンの移動性を維持できる可能性がある。
 しかし、プロピレンカーボネートは一般的な負極材料として用いられる炭素と反応して、負極電極を劣化させたり、ガスを発生させたりすることが知られている。
 一方、正極活物質としては、上述の特許文献1~7に開示されているように、LiMnあるいはLiCoOなどの4V級の材料がある。また、特許文献8に開示されているように、LiNi0.5Mn1.5等のスピネル化合物等を正極活物質として用いると、より高い動作電圧が得られる。しかし、高い動作電圧下では、PCと負極の反応がより進行しやすくなってしまう。この反応によってガスが発生するため、サイクル動作においてセルの内圧が高くなったり、ラミネートセルの膨れが生じたりする等、実使用上の問題が生じる。また、電解液の分解と負極電極の劣化により、容量やサイクル特性が低下するという問題もあった。
 本発明は、低温特性に優れ、ガス発生が抑制されたリチウム二次電池を提供することを目的とする。
 本発明の一態様は、
 リチウムの吸蔵放出が可能な正極および負極と、リチウムイオンを含有する非水電解質とを有するリチウムイオン二次電池であって、
 前記非水電解質は
  プロピレンカーボネート、
  一般式(1)で示されるフッ素化環状カーボネート、並びに、
  フッ素含有リン酸エステルおよびフッ素化鎖状エーテルから選択される1種以上
を含有し、
 前記プロピレンカーボネートの含有率は非水電解溶媒中1体積%以上50体積%以下であり、前記フッ素化環状カーボネートの含有率は非水電解溶媒中0.1体積%以上10体積%以下であることを特徴とするリチウムイオン二次電池に関する。
Figure JPOXMLDOC01-appb-C000004
[式(1)中、AからDは、それぞれ独立に、水素原子、フッ素原子、または、置換もしくは無置換のアルキル基であり、AからDの少なくとも1つはフッ素原子またはフッ素含有アルキル基である。]
 本発明によれば、低温特性に優れ、ガス発生が抑制されたリチウムイオン二次電池を提供することができる。
本実施形態に係る二次電池の断面構造を示す図である。 本発明の実施例における、充放電サイクル後のガス発生量を示すグラフである。
 本実施形態のリチウム二次電池は、正極と、負極と、非水電解溶媒を含む電解液とを有する。非水電解溶媒は、プロピレンカーボネート(以下、PCとも記載)、上記式(1)で表されるフッ素化環状カーボネート、並びに、フッ素含有リン酸エステルおよびフッ素化鎖状エーテルから選択される1種以上を含んでいる。本実施形態のリチウム二次電池において、4V級(例えば、平均動作電位が3.6~3.8V:対リチウム電位)で動作する正極活物質を用いてもよく、また、リチウムに対して4.5V以上の電位で動作する正極活物質を用いてもよい。負極活物質としては炭素を含むことが好ましい。
 (電解液)
 非水電解質(以下、「電解液」または「非水電解液」とも記載する)は、支持塩および非水電解溶媒を含み、非水電解溶媒はプロピレンカーボネート、上記式(1)で表されるフッ素化環状カーボネート、並びに、フッ素含有リン酸エステルおよびフッ素化鎖状エーテルから選択される1種以上を含む。
 本実施形態において、非水電解溶媒はプロピレンカーボネート(PC)を含む。非水電解溶媒に含まれるPCの含有率は、特に制限されるものではないが、非水電解溶媒中1体積%以上50体積%以下であることが好ましい。PCの非水電解溶媒中の含有率が1体積%以上であるとリチウム塩の電離を高める効果がより向上し、5体積%以上であることがより好ましい。プロピレンカーボネート(PC)は炭素と反応し負極電極の劣化やガスを発生させる可能性があるため、一般に、PCを非水電解溶媒に用いることは困難とされている。しかし、本発明の非水電解溶媒においてはPCと炭素との反応が抑制されるため、非水電解溶媒中のPCの含有率が50体積%以下であれば炭素を含む負極との反応を少なくすることができる。PCの含有率は、非水電解溶媒中40体積%以下がより好ましく、30体積%以下がさらに好ましい。
 本実施形態において、非水電解溶媒は下記式(1)で表されるフッ素化環状カーボネートを含む。
Figure JPOXMLDOC01-appb-C000005
 式(1)で表されるフッ素化環状カーボネートにおいて、A、B、CおよびDは、それぞれ独立に、水素原子、フッ素原子、または、置換もしくは無置換のアルキル基であって、A、B、CおよびDの少なくとも1つはフッ素原子またはフッ素含有アルキル基である。
 式(1)において、A、B、CまたはDで表されるアルキル基の炭素数は、1以上4以下であることが好ましく、1以上3以下であることがより好ましい。アルキル基の炭素数が4以下であると、電解液の粘度の増加が抑えられ、電解液が電極やセパレータ内の細孔に浸み込み易くなるとともに、イオン伝導性が向上し、電池の充放電特性において電流値が良好になるためである。
 フッ素含有アルキル基とは、少なくともひとつの水素原子がフッ素原子で置換されたアルキル基を表し、フッ素原子の置換数および位置は任意である。本実施形態において、AからDの少なくとも1つは、フッ素原子、または、対応する無置換のアルキル基が有する水素原子の50%以上がフッ素原子に置換されたフッ素含有アルキル基であることが好ましい。また、AからDの全てがフッ素原子またはフッ素含有アルキル基であり、このAからDが、フッ素原子、または対応する無置換のアルキル基の水素原子の50%以上がフッ素原子に置換されたフッ素含有アルキル基であることも好ましい。フッ素原子の含有率が多いと、耐電圧性がより向上し、リチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合でも、サイクル後における電池容量の劣化をより低減することできるからである。
 また、AからDは、フッ素原子の他に置換基を有していても良く、置換基としては、アミノ基、カルボキシ基、ヒドロキシ基、シアノ基、およびハロゲン原子(例えば、塩素原子、臭素原子)からなる群より選ばれる少なくとも1種が挙げられる。なお、上記の炭素数は置換基も含む概念である。
 フッ素化環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の一部または全部の水素原子をフッ素原子に置換した化合物等を挙げることができる。例えば、エチレンカーボネート(EC)の水素の1つをフッ素に置換した4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、2つをフッ素に置換した(cisまたはtrans)4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4つをフッ素に置換した4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、また、プロピレンカーボネート(PC)の水素の1つをフッ素に置換した4-フルオロメチル-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オンや4-フルオロ-4-メチル-1,3-ジオキソラン-2-オン、3つをフッ素に置換した3,3,3-トリフルオロプロピレンカーボネート(FPC)等が挙げられる。
 非水電解溶媒に含まれるフッ素化環状カーボネートの含有率は、特に制限されるものではないが、非水電解溶媒中0.1体積%以上10体積%以下が好ましい。フッ素化環状カーボネートの非水電解溶媒中の含有率が0.1体積%以上であると、PCと負極の反応を抑制する効果がより向上する。また、フッ素化環状カーボネートの非水電解溶媒中の含有率が10体積%以下であると、フッ素化環状カーボネート自体の分解反応によるガス発生を少なくできる。フッ素化環状カーボネートの非水電解溶媒中の含有率は、1体積%以上がより好ましく、1.5体積%以上がさらに好ましく、2体積%以上が特に好ましい。また、フッ素化環状カーボネートの非水電解溶媒中の含有率は、5体積%以下がより好ましい。
 また、プロピレンカーボネート(PC)に対するフッ素化環状カーボネートの含有率は、2体積%以上であることが好ましく、4体積%以上がより好ましい。また、PCに対するフッ素化環状カーボネートの含有率は、40体積%以下であることが好ましく、20体積%以下がさらに好ましい。
 本実施形態において、非水電解溶媒は、上記フッ素化環状カーボネートに加え、下記式(2)で表されるフッ素含有リン酸エステルおよび下記式(4)で表されるフッ素化鎖状エーテルから選ばれる少なくとも一種を含み、二種以上を含んでも良い。以下、各化合物について説明する。
 本実施形態において、非水電解溶媒は、下記式(2)で表されるフッ素含有リン酸エステルを含むことができる。
Figure JPOXMLDOC01-appb-C000006
[式(2)において、R、R、Rは、それぞれ独立に、アルキル基またはフッ素含有アルキル基を示し、R、RおよびRの少なくとも1つがフッ素含有アルキル基である。]
 フッ素含有アルキル基とは、少なくとも1つのフッ素原子を有するアルキル基である。式(2)において、R、RおよびRの炭素数は、それぞれ独立に、1~3であることが好ましい。R、RおよびRの少なくとも1つは、対応する無置換のアルキル基が有する水素原子の50%以上がフッ素原子に置換されたフッ素含有アルキル基であることが好ましい。また、R、RおよびRの全てがフッ素含有アルキル基であり、このR、RおよびRが対応する無置換のアルキル基の水素原子の50%以上がフッ素原子に置換されたフッ素含有アルキル基であることがより好ましい。フッ素原子の含有率が多いと、耐電圧性がより向上し、リチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合でも、サイクル後における電池容量の劣化をより低減することできるからである。また、フッ素含有アルキル基における水素原子を含む置換基中のフッ素原子の比率は55%以上がより好ましい。
 フッ素含有リン酸エステルは引火性が低く、また反応性が低い溶媒である。フッ素含有リン酸エステルとしては、特に限定されないが、例えば、リン酸トリス(トリフルオロメチル)、リン酸トリス(トリフルオロエチル)、リン酸トリス(テトラフルオロプロピル)、リン酸トリス(ペンタフルオロプロピル)、リン酸トリス(ヘプタフルオロブチル)、リン酸トリス(オクタフルオロペンチル)等が挙げられる。また、フッ素含有リン酸エステルとしては、例えば、リン酸トリフルオロエチルジメチル、リン酸ビス(トリフルオロエチル)メチル、リン酸ビストリフルオロエチルエチル、リン酸ペンタフルオロプロピルジメチル、リン酸ヘプタフルオロブチルジメチル、リン酸トリフルオロエチルメチルエチル、リン酸ペンタフルオロプロピルメチルエチル、リン酸ヘプタフルオロブチルメチルエチル、リン酸トリフルオロエチルメチルプロピル、リン酸ペンタフルオロプロピルメチルプロピル、リン酸ヘプタフルオロブチルメチルプロピル、リン酸トリフルオロエチルメチルブチル、リン酸ペンタフルオロプロピルメチルブチル、リン酸ヘプタフルオロブチルメチルブチル、リン酸トリフルオロエチルジエチル、リン酸ペンタフルオロプロピルジエチル、リン酸ヘプタフルオロブチルジエチル、リン酸トリフルオロエチルエチルプロピル、リン酸ペンタフルオロプロピルエチルプロピル、リン酸ヘプタフルオロブチルエチルプロピル、リン酸トリフルオロエチルエチルブチル、リン酸ペンタフルオロプロピルエチルブチル、リン酸ヘプタフルオロブチルエチルブチル、リン酸トリフルオロエチルジプロピル、リン酸ペンタフルオロプロピルジプロピル、リン酸ヘプタフルオロブチルジプロピル、リン酸トリフルオロエチルプロピルブチル、リン酸ペンタフルオロプロピルプロピルブチル、リン酸ヘプタフルオロブチルプロピルブチル、リン酸トリフルオロエチルジブチル、リン酸ペンタフルオロプロピルジブチル、リン酸ヘプタフルオロブチルジブチル等が挙げられる。リン酸トリス(テトラフルオロプロピル)としては、例えば、リン酸トリス(2,2,3,3-テトラフルオロプロピル)が挙げられる。リン酸トリス(ペンタフルオロプロピル)としては、例えば、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)が挙げられる。リン酸トリス(トリフルオロエチル)としては、例えば、リン酸トリス(2,2,2-トリフルオロエチル)(以下、TTFEPとも略す)等が挙げられる。リン酸トリス(ヘプタフルオロブチル)としては、例えば、リン酸トリス(1H,1H-ヘプタフルオロブチル)等が挙げられる。リン酸トリス(オクタフルオロペンチル)としては、例えば、リン酸トリス(1H,1H,5H-オクタフルオロペンチル)等が挙げられる。これらの中でも、高電位における電解液分解の抑制効果が高いことから、下記式(3)で表されるリン酸トリス(2,2,2-トリフルオロエチル)(TTFEP)が好ましい。フッ素含有リン酸エステルは、一種を単独でまたは二種以上を併用して用いることができる。
Figure JPOXMLDOC01-appb-C000007
 非水電解溶媒に含まれるフッ素含有リン酸エステルの含有率は、特に制限されるものではないが、非水電解溶媒中、一般には0体積%以上95体積%以下であり、10体積%以上95体積%以下が好ましく、15体積%以上80体積%以下がより好ましく、20体積%以上70体積%以下がさらに好ましい。フッ素含有リン酸エステルの非水電解溶媒中の含有率が10体積%以上であると、耐電圧性を高める効果がより向上する。また、フッ素含有リン酸エステルの非水電解溶媒中の含有率が95体積%以下であると、電解液のイオン伝導性が向上して電池の充放電レートがより良好になる。
 本実施形態において、非水電解溶媒はフッ素化鎖状エーテルを含むことができる。
 フッ素化鎖状エーテルは、耐酸化性が高く、高電位で動作する正極を使用する場合に好ましく用いられる。その結果、充放電サイクルの容量維持率の向上やガス発生を低減することができる。
 フッ素化鎖状エーテルとしては、特に制限されるものではないが、例えば、1,2-エトキシエタン(DEE)またはエトキシメトキシエタン(EME)の一部または全部の水素原子をフッ素原子で置換した構造を有する化合物等が挙げられる。また、フッ素化鎖状エーテルとしては、具体的には、例えば、2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、1,1,1,2,3,3-ヘキサフルオロプロピル-2,2-ジフルオロエチルエーテル、イソプロピル-1,1,2,2-テトラフルオロエチルエーテル、プロピル-1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル(TFETFPE)、1H,1H,5H-パーフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、1H-パーフルオロブチル-1H-パーフルオロエチルエーテル、メチルパーフルオロペンチルエーテル、メチルパーフルオロへキシルエーテル、メチル-1,1,3,3,3-ペンタフルオロ-2-(トリフルオロメチル)プロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピル-2,2,2-トリフルオロエチルエーテル、エチルノナフルオロブチルエーテル、エチル-1,1,2,3,3,3-ヘキサフルオロプロピルエーテル、1H,1H,5H-オクタフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、ヘプタフルオロプロピル1,2,2,2‐テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル、エチルノナフルオロブチルエーテル、メチルノナフルオロブチルエーテル等が挙げられる。これらの中でも、耐電圧と沸点などの観点から、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、エチルノナフルオロブチルエーテル等が好ましい。
 鎖状エーテルは、鎖状カーボネートと同様に電解液の粘度を低減する効果がある。したがって、例えば、鎖状エーテルは、鎖状カーボネート、カルボン酸エステルの代わりに使用することが可能であり、また、鎖状カーボネート、カルボン酸エステルと併用することも可能である。
 鎖状エーテルは、炭素数が小さい場合、沸点が低くなる傾向があるため、電池の高温動作時に気化してしまう場合がある。一方、炭素数が大きすぎると、鎖状エーテルの粘度が高くなって、電解液の導電性が下がる場合がある。したがって、炭素数は4以上10以下であることが好ましい。このような理由から、本実施形態において、フッ素化鎖状エーテルは下記式(4)で表されることが好ましい。
 C2n+1-l-O-C2m+1-kk   (4)
 [式(4)中、nは1、2、3、4、5または6であり、mは1、2、3または4であり、lは0から2n+1までのいずれかの整数であり、kは0から2m+1までのいずれかの整数であり、lおよびkのうち少なくとも一方は1以上の整数である。]
 式(4)で示されるフッ素化鎖状エーテルにおいて、フッ素置換量が少ないと、フッ素化鎖状エーテルが高電位の正極と反応することにより電池の容量維持率が低下したり、ガスが発生したりする場合がある。一方、フッ素置換量が多すぎると、フッ素化鎖状エーテルの他の溶媒との相溶性が低下したり、フッ素化鎖状エーテルの沸点が下がったりする場合がある。このような理由から、フッ素置換量は、10%以上90%以下であることが好ましく、20%以上85%以下であることがさらに好ましく、30%以上80%以上であることがさらに好ましい。つまり、式(4)のl、m、nが以下の関係式を満たすことが好ましい。
 0.1≦(l+k)/(2n+2m+2)≦0.9
 また、フッ素化鎖状エーテルの含有率は、特に制限されるものではないが、非水電解溶媒中0.1体積%以上70体積%以下が好ましい。フッ素化鎖状エーテルの非水電解溶媒中の含有率が0.1体積%以上であると、電解液の粘度を下げることができ、導電性を高めることができる。また、耐酸化性を高める効果が得られる。また、フッ素化鎖状エーテルの非水電解溶媒中の含有率が70体積%以下であると、電解液の導電性を高く保つことが可能であり、また、電解液の相溶性を確保することができる。また、フッ素化鎖状エーテルの非水電解溶媒中の含有率は、1体積%以上がより好ましく、5体積%以上がさらに好ましく、10体積%以上が特に好ましい。また、フッ素化鎖状エーテルの非水電解溶媒中の含有率は、65体積%以下がより好ましく、60体積%以下がさらに好ましく、55体積%以下が特に好ましい。
 フッ素化鎖状エーテルは、一種を単独で、または二種以上を組み合わせて使用してもよい。
 本実施形態において、非水電解溶媒は、上記以外に以下のものを含んでいても良い。
 非水電解溶媒は、引火性が低く反応性も低いフッ素化ジエーテル化合物を含んでも良い。
 式(5):
  RO-(RO)-R   (5)
で表されるフッ素化ジエーテル化合物において、RおよびRは、それぞれ独立して、フッ素原子で置換されていてもよい炭素数1~4のアルキル基であり、Rはフッ素原子で置換されていてもよい炭素数1~4のアルキレン基であり、ただしR、RおよびRに含まれる水素原子の少なくとも一つはフッ素原子で置換されている。
 RおよびRの炭素数は、1以上3以下がより好ましい。好ましい実施形態において、RおよびRはフッ素含有アルキル基であり、例えばトリフルオロメチル、トリフルオロエチル、テトラフルオロプロピル、ペンタフルオロプロピルおよびヘプタフルオロブチル等を挙げることができる。フッ素の置換位置は任意であり、例えば2,2,2-トリフルオロエチル、2,2,3,3-テトラフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル等を挙げることができるがこれらに限定されない。
 Rの炭素数は、1以上3以下がより好ましい。例えばメチレン、エチレン、1,2-プロピレン、1,3-プロピレン、ブチレンおよびそれらのフッ素置換基を挙げることができる。特に、エチレン、1,2-プロピレンおよび1,3-プロピレンが好ましい。また、好ましい実施形態において、Rは無置換のアルキレン基である。nは、好ましくは1または2であり、さらに好ましくは1である。
 フッ素化ジエーテル化合物は、下記式(6)で表される化合物であることがより好ましい。
 CFCHOCHCHOCHCF   (6)
 フッ素化ジエーテル化合物を含有する場合、非水電解溶媒中の含有率は、特に限定されるものではないが、例えば、0.1体積%以上、より好ましくは0.5体積%以上、さらに好ましくは0.9体積%以上である。一方、含有率の上限については、フッ素含有リン酸エステルの含有量および他の有機溶媒の含有量により適宜変更することが可能であり、典型的には90体積%以下、好ましくは50体積%以下である。フッ素化ジエーテル化合物の含有量は、比較的少量でもよく、従って、好ましい実施形態において、フッ素化ジエーテル化合物の含有量は、好ましくは20体積%、より好ましくは10体積%以下である。
 非水電解液は、環状カーボネートまたは鎖状カーボネートをさらに含むことができる。
 環状カーボネートは比誘電率が大きいため、添加により支持塩の解離性が向上し、十分な導電性を付与しやすくなる。また、鎖状カーボネートは、粘度が小さいため、添加により電解液の粘度が下がるので、電解液におけるイオン移動度が向上するという利点がある。また、環状カーボネートおよび鎖状カーボネートは、耐電圧性および導電率が高いことから、フッ素含有リン酸エステルとの混合に適している。
 プロピレンカーボネート以外の環状カーボネートとしては、特に制限されるものではないが、例えば、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)等を挙げることができる。
 環状カーボネートは、一種を単独でまたは二種以上を併用して用いることができる。
 環状カーボネートを含有する場合、非水電解溶媒中の含有率は、支持塩の解離度を高める効果と電解液の導電性を高める効果の観点から、0.1体積%以上が好ましく、5体積%以上がより好ましく、10体積%以上がさらに好ましく、15体積%以上が特に好ましい。また、環状カーボネートの非水電解溶媒中の含有率は、同様の観点から、70体積%以下が好ましく、50体積%以下がより好ましく、40体積%以下がさらに好ましい。
 鎖状カーボネートとしては、特に制限されるものではないが、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等を挙げることができる。また、鎖状カーボネートは、フッ素化鎖状カーボネートを含む。フッ素化鎖状カーボネートとしては、例えば、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等の一部または全部の水素原子をフッ素原子に置換した構造を有する化合物等を挙げることができる。フッ素化鎖状カーボネートとしては、より具体的には、例えば、ビス(フルオロエチル)カーボネート、3-フルオロプロピルメチルカーボネート、3,3,3-トリフルオロプロピルメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2,2-トリフルオロエチルエチルカーボネート、モノフルオロメチルメチルカーボネート、メチル2,2,3,3,テトラフルオロプロピルカーボネート、エチル2,2,3,3,テトラフルオロプロピルカーボネート、ビス(2,2,3,3,テトラフルオロプロピル)カーボネート、ビス(2,2,2トリフルオロエチル)カーボネート、1-モノフルオロエチルエチルカーボネート、1-モノフルオロエチルメチルカーボネート、2-モノフルオロエチルメチルカーボネート、ビス(1-モノフルオロエチル)カーボネート、ビス(2-モノフルオロエチル)カーボネート、ビス(モノフルオロメチル)カーボネート等が挙げられる。これらの中でも、ジメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、モノフルオロメチルメチルカーボネート、メチル2,2,3,3,テトラフルオロプロピルカーボネート等が耐電圧性と導電率の観点から好ましい。鎖状カーボネートは、一種を単独でまたは二種以上を併用して用いることができる。
 鎖状カーボネートは、「-OCOO-」構造に付加する置換基の炭素数が小さい場合、粘度が低いという利点がある。一方、炭素数が大きすぎると、電解液の粘度が高くなってLiイオンの導電性が下がる場合がある。このような理由から、鎖状カーボネートの「-OCOO-」構造に付加する2つの置換基の総炭素数は2以上6以下であることが好ましい。また、「-OCOO-」構造に付加する置換基がフッ素原子を含有する場合、電解液の耐酸化性が向上する。このような理由から、鎖状カーボネートは下記式(7)で表されるフッ素化鎖状カーボネートであることが好ましい。
 C2n+1-l-OCOO-C2m+1-kk   (7)
 [式(7)中、nは1、2または3であり、mは1、2または3であり、lは0から2n+1までのいずれかの整数であり、kは0から2m+1までのいずれかの整数であり、lおよびkの少なくとも一方は1以上の整数である。]
 式(7)で示されるフッ素化鎖状カーボネートにおいて、フッ素置換量が少ないと、フッ素化鎖状カーボネートが高電位の正極と反応することにより電池の容量維持率が低下したり、ガスが発生したりする場合がある。一方、フッ素置換量が多すぎると、鎖状カーボネートの他の溶媒との相溶性が低下したり、鎖状カーボネートの沸点が下がったりする場合がある。このような理由から、フッ素置換量は、1%以上90%以下であることが好ましく、5%以上85%以下であることがより好ましく、10%以上80%以下であることがさらに好ましい。つまり、式(7)のl、m、nが以下の関係式を満たすことが好ましい。
 0.01≦(l+k)/(2n+2m+2)≦0.9   
 鎖状カーボネートは、電解液の粘度を下げる効果があり、電解液の導電率を高めることができる。これらの観点から、鎖状カーボネートを含有する場合、非水電解溶媒中の含有量は、0.1体積%以上が好ましく、0.5体積%以上がより好ましく、1.0体積%以上がさらに好ましい。また、鎖状カーボネートの非水電解溶媒中の含有率は、90体積%以下が好ましく、80体積%以下がより好ましく、70体積%以下がさらに好ましい。
 また、フッ素化鎖状カーボネートを含有する場合、非水電解溶媒中の含有率は、特に制限されるものではないが、0.1体積%以上70体積%以下が好ましい。フッ素化鎖状カーボネートの非水電解溶媒中の含有率が0.1体積%以上であると、電解液の粘度を下げることができ、導電性を高めることができる。また、耐酸化性を高める効果が得られる。また、フッ素化鎖状カーボネートの非水電解溶媒中の含有率が70体積%以下であると、電解液の導電性を高く保つことが可能である。また、フッ素化鎖状カーボネートの非水電解溶媒中の含有率は、1体積%以上がより好ましく、5体積%以上がさらに好ましく、10体積%以上が特に好ましい。また、フッ素化鎖状カーボネートの非水電解溶媒中の含有率は、65体積%以下がより好ましく、60体積%以下がさらに好ましく、55体積%以下が特に好ましい。
 また、非水電解溶媒は、カルボン酸エステルを含んでもよい。
 カルボン酸エステルとしては、特に制限されるものではないが、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、ギ酸メチル等が挙げられる。また、カルボン酸エステルは、フッ素化カルボン酸エステルも含み、フッ素化カルボン酸エステルとしては、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、またはギ酸メチルの一部または全部の水素原子をフッ素原子で置換した構造を有する化合物等が挙げられる。また、フッ素化カルボン酸エステルとしては、具体的には、例えば、ペンタフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸エチル、2,2,3,3-テトラフルオロプロピオン酸メチル、酢酸2,2-ジフルオロエチル、ヘプタフルオロイソ酪酸メチル、2,3,3,3-テトラフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸メチル、酢酸2,2,2-トリフルオロエチル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸tert-ブチル、4,4,4-トリフルオロ酪酸エチル、4,4,4-トリフルオロ酪酸メチル、2,2-ジフルオロ酢酸ブチル、ジフルオロ酢酸エチル、トリフルオロ酢酸n-ブチル、酢酸2,2,3,3-テトラフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、3,3,3-トリフルオロプロピオン酸3,3,3トリフルオロプロピル、ジフルオロ酢酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピル、酢酸1H,1H-ヘプタフルオロブチル、ヘプタフルオロ酪酸メチル、トリフルオロ酢酸エチル等が挙げられる。これらの中でも、耐電圧と沸点などの観点から、カルボン酸エステルとしては、プロピオン酸エチル、酢酸メチル、2,2,3,3-テトラフルオロプロピオン酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピルが好ましい。カルボン酸エステルは、鎖状カーボネートと同様に電解液の粘度を低減する効果がある。したがって、例えば、カルボン酸エステルは、鎖状カーボネートの代わりに使用することが可能であり、また、鎖状カーボネートと併用することも可能である。
 鎖状カルボン酸エステルは、「-COO-」構造に付加する置換基の炭素数が小さい場合、粘度が低いという特長があるが、沸点も低くなる傾向がある。沸点が低い鎖状カルボン酸エステルは電池の高温動作時に気化してしまう場合がある。一方、炭素数が大きすぎると、電解液の粘度が高くなって導電性が下がる場合がある。このような理由から、鎖状カルボン酸エステルの「-COO-」構造に付加する2つの置換基の総炭素数は3以上8以下であることが好ましい。
 また、「-COO-」構造に付加する置換基がフッ素原子を含有する場合、電解液の耐酸化性を向上することができる。このような理由から、鎖状カルボン酸エステルは下記式(8)で表されるフッ素化鎖状カルボン酸エステルであることが好ましい。
 C2n+1-l-COO-C2m+1-kk   (8)
 [式(8)中、nは1、2、3または4であり、mは1、2、3または4であり、lは0から2n+1までのいずれかの整数であり、kは0から2m+1までのいずれかの整数であり、lおよびkの少なくとも一方は1以上の整数である。]
 式(8)で示されるフッ素化鎖状カルボン酸エステルにおいて、フッ素置換量が少ないと、フッ素化鎖状カルボン酸エステルが高電位の正極と反応することにより電池の容量維持率が低下したり、ガスが発生したりする場合がある。一方、フッ素置換量が多すぎると、鎖状カルボン酸エステルの他の溶媒との相溶性が低下したり、フッ素化鎖状カルボン酸エステルの沸点が下がったりする場合がある。このような理由から、フッ素置換量は、1%以上90%以下であることが好ましく、10%以上85%以下であることがより好ましく、20%以上80%以下であることがさらに好ましい。つまり、式(8)のl、m、nが以下の関係式を満たすことが好ましい。
 0.01≦(l+k)/(2n+2m+2)≦0.9
 カルボン酸エステルを含有する場合、非水電解溶媒中の含有率は、0.1体積以上が好ましく、0.2体積%以上がより好ましく、0.5体積%以上がさらに好ましく、1体積%以上が特に好ましい。カルボン酸エステルの非水電解溶媒中の含有率は、50体積%以下が好ましく、20体積%以下がより好ましく、15体積%以下がさらに好ましく、10体積%以下が特に好ましい。カルボン酸エステルの含有率を0.1体積%以上とすることにより、低温特性をより向上でき、また導電率をより向上できる。また、カルボン酸エステルの含有率を50体積%以下とすることにより、電池を高温放置した場合に蒸気圧が高くなりすぎることを低減することができる。
 また、フッ素化鎖状カルボン酸エステルを含有する場合、非水電解溶媒中の含有率は、特に制限されるものではないが、0.1体積%以上50体積%以下が好ましい。フッ素化鎖状カルボン酸エステルの非水電解溶媒中の含有率が0.1体積%以上であると、電解液の粘度を下げることができ、導電性を高めることができる。また、耐酸化性を高める効果が得られる。また、フッ素化鎖状カルボン酸エステルの非水電解溶媒中の含有率が50体積%以下であると、電解液の導電性を高く保つことが可能であり、電解液の相溶性を確保することができる。また、フッ素化鎖状カルボン酸エステルの非水電解溶媒中の含有率は、1体積%以上がより好ましく、5体積%以上がさらに好ましく、10体積%以上が特に好ましい。また、フッ素化鎖状カルボン酸エステルの非水電解溶媒中の含有率は、45体積%以下がより好ましく、40体積%以下がさらに好ましく、35体積%以下が特に好ましい。
 非水電解溶媒は、下記式(9)で表されるアルキレンビスカーボネートを含んでもよい。アルキレンビスカーボネートの耐酸化性は、鎖状カーボネートと同等かやや高いことから、電解液の耐電圧性を向上することができる。
Figure JPOXMLDOC01-appb-C000008
 [式(9)中、RおよびRは、それぞれ独立に、置換または無置換のアルキル基を表す。Rは、置換または無置換のアルキレン基を表す。]
 式(9)において、アルキル基は、直鎖状または分岐鎖状のものを含み、炭素数が1~6であることが好ましく、炭素数が1~4であることがより好ましい。アルキレン基は、二価の飽和炭化水素基であり、直鎖状または分岐鎖状のものを含み、炭素数が1~4であることが好ましく、炭素数が1~3であることがより好ましい。
 式(9)で表されるアルキレンビスカーボネートとしては、例えば、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(メトキシカルボニルオキシ)プロパン、または1-エトキシカルボニルオキシ-2-メトキシカルボニルオキシエタン等が挙げられる。これらの中でも、1,2-ビス(メトキシカルボニルオキシ)エタンが好ましい。
 アルキレンビスカーボネートを含有する場合、非水電解溶媒中の含有率は、0.1体積%以上が好ましく、0.5体積%以上がより好ましく、1体積%以上がさらに好ましく、1.5体積%以上が特に好ましい。アルキレンビスカーボネートの非水電解溶媒中の含有率は、70体積%以下が好ましく、60体積%以下がより好ましく、50体積%以下がさらに好ましく、40体積%以下が特に好ましい。
 アルキレンビスカーボネートは誘電率が低い材料である。そのため、例えば、鎖状カーボネートの代わりに使用することが可能であり、または鎖状カーボネートと併用することが可能である。
 非水電解溶媒は、鎖状エーテルを含むことができる。
 鎖状エーテルとしては、特に制限されるものではないが、例えば、1,2-エトキシエタン(DEE)若しくはエトキシメトキシエタン(EME)等が挙げられる。鎖状エーテルは、鎖状カーボネートと同様に電解液の粘度を低減する効果がある。したがって、例えば、鎖状エーテルは、鎖状カーボネート、カルボン酸エステルの代わりに使用することが可能であり、また、鎖状カーボネート、カルボン酸エステルと併用することも可能である。
 鎖状エーテルは、炭素数が小さい場合、沸点が低くなる傾向があるため、電池の高温動作時に気化してしまう場合がある。一方、炭素数が大きすぎると、鎖状エーテルの粘度が高くなって、電解液の導電性が下がる場合がある。したがって、炭素数は4以上10以下であることが好ましい。
 非水電解溶媒としては、上記以外にさらに以下のものを含んでいても良い。非水電解溶媒は、例えば、γ-ブチロラクトン等のγ-ラクトン類、テトラヒドロフラン若しくは2-メチルテトラヒドロフラン等の環状エーテル類等を含むことができる。また、これらの材料の水素原子の一部をフッ素原子で置換したものを含んでも良い。また、その他にも、ジメチルスルホキシド、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン(例えば、1,3-ジオキソラン)、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドンなどの非プロトン性有機溶媒を含んでも良い。
 支持塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10等のリチウム塩が挙げられる。また、支持塩としては、他にも、低級脂肪族カルボン酸カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて用いることができる。
 また、非水電解溶媒にイオン伝導性ポリマーを添加することができる。イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリエチレンやポリプロピレン等のポリオレフィン等を挙げることができる。また、イオン伝導性ポリマーとしては、例えば、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、ポリビニルフルオライド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリカーボネート、ポリエチレンテレフタレート、ポリヘキサメチレンアシパミド、ポリカプロラクタム、ポリウレタン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、ポリイソプレン、およびこれらの誘導体を挙げることができる。イオン伝導性ポリマーは、一種を単独で、または二種以上を組み合わせて用いることができる。また、上記ポリマーを構成する各種モノマーを含むポリマーを用いてもよい。
 また、本実施形態において、非水電解溶媒には、必要に応じて電解液添加剤を添加してもよい。
 (正極)
 本実施形態によるリチウム二次電池の正極は、正極活物質として、前述の特許文献1~6に開示されているように、LiMnあるいはLiCoOなどの4V級の材料を用いることができる。また、LiM1O(M1はMn、Fe、CoおよびNiからなる群から選択される少なくとも1種の元素であり、M1の一部がMg、AlまたはTiで置換されていてもよい。)、LiMn2-xM2(M2はMg、Al、Co、Ni、FeおよびBからなる群から選択される少なくとも1種の元素であり、0≦x<0.4である。)などのリチウム含有複合酸化物、LiFePOで表されるオリビン型材料なども用いることができる。
 また、高エネルギー密度を得る観点から、リチウム金属に対して4.5V以上の電位でリチウムイオンを吸蔵または放出可能な正極活物質を含むことが好ましい。このような正極活物質としては、その充放電曲線の少なくとも充電曲線が、リチウム金属に対して4.5V以上の領域を少なくとも一部に有するものを用いることができる。すなわち、充電曲線のみにリチウム金属に対して4.5V以上の領域を少なくとも一部に有する活物質、または充電曲線および放電曲線の両方にリチウム金属に対して4.5V以上の領域を少なくとも一部に有する活物質を用いることができる。
 この充放電曲線の測定条件としては、充放電電流を正極活物質の質量あたりで5mA/g、充電終止電圧を5.2V、放電終止電圧を3Vに設定することができる。
 このような正極活物質としては、スピネル系材料、層状系材料、オリビン系材料が挙げられる。
 スピネル系材料としては、LiNi0.5Mn1.5、LiCoMnO、LiCrMnO、LiFeMnO、LiCu0.5Mn1.5などのリチウムに対して4.5V以上の高電位で動作する材料;LiMnのMnの一部を他元素で置換して寿命を高めた、LiM1Mn2-x-yM2(M1はNi、Fe、Co、CrおよびCuから選ばれる少なくとも1種であり、0.4<x<1.1であり、M2は、Li、Al、B、Mg、Siおよび遷移金属から選ばれる少なくとも1種であり、0<y<0.5である。);およびこれらの材料の酸素の一部をフッ素や塩素で置換したものが挙げられる。
 スピネル系材料は、特に下記式(10)で示されるものが好ましい。
 Li(MMn2-x-y)(O4-w)  (10)
[式(10)中、0≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1であり、MはCo、Ni、Fe、CrおよびCuから選ばれる少なくとも1種であり、YはLi、B、Na、Al、Mg、Ti、Si、KおよびCaから選ばれる少なくとも1種であり、ZはFおよびClの少なくとも一方である。]
 特に0.4≦x≦1.1であることが好ましい。
 層状系材料は、一般式LiMOで表され、具体的には、LiCoO、LiNi1-x(0.05<x<0.3、Mは少なくともCoまたはAlを含む元素である。)で表される材料、Li(NiCoMn2-x-y)O(0.1<x<0.7、0<y<0.5)、Li(M1-zMn)O(0.33≦z≦0.7、MはLi、CoおよびNiのうちの少なくとも一種である。)で表される材料が挙げられる。
 また、下記式(11)で表される材料が特に好ましい。
  Li(Li1-x-zMn)O   (11)
[式(11)中、0≦x<0.3、0.3≦z≦0.7、MはCoおよびNiの少なくとも1種である。]
式(11)中のxは0≦x<0.2が好ましい。
 オリビン系材料は、一般式:
  LiMPO(Mは遷移金属)
で表され、具体的には、LiFePO、LiMnPO、LiCoPO、LiNiPOが挙げられる。これらの遷移金属の一部を別の元素で置換したり、酸素部分をフッ素で置き換えられたりしたものも使用できる。高エネルギー密度の観点から、高電位で動作するLiMPO(MはCoおよびNiの少なくとも一方である。)で表される材料が好ましい。
 このほかにも、NASICON型、リチウム遷移金属シリコン複合酸化物、などを使用することができる。
 上記の高電位で動作する正極活物質とその他の通常の正極活物質とを併用してもよいが、正極活物質全体における上記の高電位で動作する正極活物質の含有率は、60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。
 これらの正極活物質の比表面積は、例えば0.01~5m/gであり、0.05~4m/gが好ましく、0.1~3m/gがより好ましく、0.2~2m/gがさらに好ましい。比表面積をこのような範囲とすることにより、電解液との接触面積を適当な範囲に調整することができる。つまり、比表面積を0.01m/g以上とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。また、比表面積を5m/g以下とすることにより、電解液の分解が促進することや、活物質の構成元素が溶出することをより抑制することができる。比表面積は、通常のBET比表面積測定法により測定できる。
 前記正極活物質の中心粒径は、0.01~50μmであることが好ましく、0.02~40μmがより好ましい。粒径を0.02μm以上とすることにより、正極活物質の構成元素の溶出をより抑制でき、また、電解液との接触による劣化をより抑制できる。また、粒径を50μm以下とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。中心粒径は、50%累積径D50(メジアン径)であり、レーザー回折散乱式粒度分布測定装置によって測定できる。
 正極用結着剤としては、負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して2~10質量部が好ましい。
 ポリフッ化ビニリデン(PVdF)以外の結着剤としては、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミドが挙げられる。
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 正極集電体としてはアルミニウム、ニッケル、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 正極は、上記の活物質を、導電性物質、結着剤とともにN-メチル-2-ピロリドン(NMP)等の溶剤中に分散混練し、これを正極集電体上に塗布することにより得ることができる。
 (負極)
 負極は、負極活物質として、リチウムを吸蔵および放出し得る材料を含むものであれば特に限定されない。
 負極活物質としては、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料(a)、リチウムと合金可能な金属(b)、またはリチウムイオンを吸蔵、放出し得る金属酸化物(c)等が挙げられ、炭素材料(a)を含むものであることが好ましい。
 炭素材料(a)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。炭素材料(a)は、それ単独で、またはその他の物質と併用して用いることができる。併用して用いる場合、炭素材料(a)は、負極活物質中2質量%以上80質量%以下の範囲であることが好ましく、例えば2質量%以上30質量%以下の範囲で用いることができる。
 金属(b)としては、Al、Si、Pb、Sn、Zn、Cd、Sb、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、La等を主体とした金属、またはこれらの2種以上の合金、あるいはこれら金属または合金とリチウムとの合金等を用いることができる。特に、金属(b)としてシリコン(Si)を含むことが好ましい。金属(b)は、それ単独でまたはその他の物質と併用して用いることができるが、負極活物質中5質量%以上90質量%以下の範囲であることが好ましく、20質量%以上50質量%以下の範囲であることがより好ましい。
 金属酸化物(c)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物を用いることができる。特に、金属酸化物(c)として酸化シリコンを含むことが好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物(c)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(c)の電気伝導性を向上させることができる。金属酸化物(c)は、それ単独でまたはその他の物質と併用して用いることができるが、負極活物質中5質量%以上90質量%以下の範囲であることが好ましく、40質量%以上70質量%以下の範囲であることがより好ましい。
 金属酸化物(c)の具体例としては、例えば、LiFe、WO、MoO、SiO、SiO、CuO、SnO、SnO、Nb、LiTi2-x(1≦x≦4/3)、PbO、Pb等が挙げられる。
 また、負極活物質としては、他にも、例えば、リチウムイオンを吸蔵、放出し得る金属硫化物(d)が挙げられる。金属硫化物(d)としては、例えば、SnSやFeS等が挙げられる。また、負極活物質としては、他にも、例えば、金属リチウム若しくはリチウム合金、ポリアセン若しくはポリチオフェン、またはLi(LiN)、LiMnN、LiFeN、Li2.5Co0.5N若しくはLiCoN等の窒化リチウム等を挙げる事ができる。
 以上の負極活物質は、一種を単独でまたは二種以上を混合して用いることができる。
 一実施形態では、負極活物質は、炭素材料(a)、金属(b)、および金属酸化物(c)を含む構成とすることができる。以下、この負極活物質について説明する。
 金属酸化物(c)はその全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(c)は、炭素材料(a)や金属(b)の体積膨張を抑制することができ、電解液の分解を抑制することができる。このメカニズムは、金属酸化物(c)がアモルファス構造であることにより、炭素材料(a)と電解液の界面への被膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(c)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(c)がアモルファス構造を有しない場合には、金属酸化物(c)に固有のピークが観測されるが、金属酸化物(c)の全部または一部がアモルファス構造を有する場合が、金属酸化物(c)に固有ピークがブロードとなって観測される。
 金属酸化物(c)は、金属(b)を構成する金属の酸化物であることが好ましい。また、金属(b)および金属酸化物(c)は、それぞれシリコン(Si)および酸化シリコン(SiO)であることが好ましい。
 金属(b)は、その全部または一部が金属酸化物(c)中に分散していることが好ましい。金属(b)の少なくとも一部を金属酸化物(c)中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、金属(b)の全部または一部が金属酸化物(c)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属(b)粒子を含むサンプルの断面を観察し、金属酸化物(c)中に分散している金属(b)粒子の酸素濃度を測定し、金属(b)粒子を構成している金属が酸化物となっていないことを確認することができる。
 上述のように、炭素材料(a)、金属(b)、および金属酸化物(c)の合計に対するそれぞれの炭素材料(a)、金属(b)、および金属酸化物(c)の含有率は、それぞれ、2質量%以上80質量%以下、5質量%以上90質量%以下、および5質量%以上90質量%以下であることが好ましい。また、炭素材料(a)、金属(b)、および金属酸化物(c)の合計に対するそれぞれの炭素材料(a)、金属(b)、および金属酸化物(c)の含有率は、それぞれ、2質量%以上30質量%以下、20質量%以上50質量%以下、および40質量%以上70質量%以下であることがより好ましい。
 金属酸化物(c)の全部または一部がアモルファス構造であり、金属(b)の全部または一部が金属酸化物(c)中に分散しているような負極活物質は、例えば、特開2004-47404号公報で開示されているような方法で作製することができる。すなわち、金属酸化物(c)をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、金属酸化物(c)中の金属(b)がナノクラスター化し、かつ表面が炭素材料(a)で被覆された複合体を得ることができる。また、炭素材料(a)と金属(b)と金属酸化物(c)とをメカニカルミリングで混合することでも、上記負極活物質を作製することができる。
 また、炭素材料(a)、金属(b)、および金属酸化物(c)は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。例えば、金属(b)の平均粒子径は、炭素材料(a)の平均粒子径および金属酸化物(c)の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時にともなう体積変化の大きい金属(b)が相対的に小粒径となり、体積変化の小さい炭素材料(a)や金属酸化物(c)が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒子、小粒径の粒子、大粒径の粒子の順にリチウムが吸蔵、放出されることとなり、この点からも、残留応力、残留歪みの発生が抑制される。金属(b)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 また、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であることが好ましく、金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることが好ましい。さらに、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であり、かつ金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることがより好ましい。平均粒子径をこのような範囲に制御すれば、金属および合金相の体積膨脹の緩和効果がより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、シリコン酸化物(c)の平均粒子径を黒鉛(a)の平均粒子径の1/2以下とし、シリコン(b)の平均粒子径をシリコン酸化物(c)の平均粒子径の1/2以下とすることが好ましい。また、より具体的には、シリコン(b)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 負極用結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が挙げられる。
 負極結着剤の含有率は、負極活物質と負極結着剤の総量に対して1~30質量%の範囲であることが好ましく、2~25質量%であることがより好ましい。1質量%以上とすることにより、活物質同士あるいは活物質と集電体との密着性が向上し、サイクル特性が良好になる。また、30質量%以下とすることにより、活物質比率が向上し、負極容量を向上することができる。
 負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
 (セパレータ)
 二次電池は、その構成として正極、負極、セパレータ、および非水電解質との組み合わせから構成されてよい。セパレータとしては、例えば、織布、不織布、ポリエチレンやポリプロピレンなどのポリオレフィン系、ポリイミド、多孔性ポリフッ化ビニリデン膜等の多孔性ポリマー膜、またはイオン伝導性ポリマー電解質膜等が挙げられる。これらは単独または組み合わせで使用することができる。
 (電池の形状および外装)
 電池の形状としては、例えば、円筒形、角形、コイン型、ボタン型、ラミネート型が挙げられる。
 ラミネート型の場合、電極およびセパレータが平面形状のまま積層されており、Rの小さい部分(捲回構造の巻き芯に近い領域または扁平型捲回構造の折り返す部位にあたる領域)が存在しない。そのため、充放電に伴う体積変化が大きい活物質を用いた場合、捲回構造を持つ電池に比べて、充放電に伴う電極の体積変化による悪影響を受けにくい。
 電池の外装体としては、例えば、ステンレス、鉄、アルミニウム、チタン、またはこれらの合金、あるいはこれらのメッキ加工品が挙げられる。メッキとしては例えばニッケルメッキを用いることができる。電池がラミネート型の場合は、外装体としてラミネートフィルムが好ましい。
 ラミネートフィルムの樹脂基材層上の金属箔層としては、例えば、アルミニウム、アルミニウム合金、チタン箔が挙げられる。ラミネートフィルムの熱溶着層の材質としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の熱可塑性高分子材料が挙げられる。また、ラミネートフィルムの樹脂基材層や金属箔層はそれぞれ1層に限定されるものではなく2層以上であってもよい。汎用性やコストの観点から、アルミニウムラミネートフィルムが好ましい。
 外装体としてラミネートフィルムを用いた場合、外装体として金属缶を用いた場合に比べて、ガスが発生に起因する電池の体積変化や電極の歪みが生じやすい。これは、ラミネートフィルムが金属缶に比べて電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くし、内部に余分な空間がないため、電池内でガスが発生した場合に直ちに電池の体積変化や電極の変形につながりやすい。また、ラミネート型電池の場合は、捲回構造をもつ電池に比べて電極間にガスが発生した際に電極間に滞留しやすいため電極間の間隔が広がり易い傾向があり、ラミネートフィルム外装体を用いると、この傾向はより顕著になる。本実施形態によれば、このような問題の発生を抑えることができ、ラミネートフィルム外装体を用いたラミネート型電池であっても、長期信頼性に優れた非水電解液二次電池を提供することができる。
 (電池の基本構造)
 本実施形態によるラミネート型のリチウム二次電池の断面図を図1に示す。図1に示すように、本実施形態によるリチウム二次電池は、アルミニウム箔等の金属からなる正極集電体3と、その上に設けられた正極活物質を含有する正極活物質層1とからなる正極、および銅箔等の金属からなる負極集電体4と、その上に設けられた負極活物質を含有する負極活物質層2とからなる負極を有する。正極および負極は、正極活物質層1と負極活物質層2とが対向するように、不織布やポリプロピレン微多孔膜などからなるセパレータ5を介して積層されている。この電極対は、アルミニウムラミネートフィルム等の外装体6、7で形成された容器内に収容されている。正極集電体3には正極タブ9が接続けられ、負極集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。容器内には電解液が注入され封止される。複数の電極対が積層された電極群が容器内に収容された構造とすることもできる。
 以下、本発明を適用した具体的な実施例について説明するが、本発明は、本実施例に限定されるものではなく、その主旨を超えない範囲において適宜変更して実施することが可能である。
 以下の例で使用した化合物の略号について説明する。
PC:プロピレンカーボネート
EC:エチレンカーボネート
TFETFPE:1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル
TTFEP:リン酸トリス(2,2,2-トリフルオロエチル)
DMC:ジメチルカーボネート
FEC:フルオロエチレンカーボネート
FPC:3,3,3-トリフルオロプロピレンカーボネート
<実施例1-1>
 正極活物質としてのLiNi0.5Mn1.5(90質量%)と、結着剤としてのポリフッ化ビニリデン(PVdF)(5質量%)と、導電剤としてのカーボンブラック(5質量%)と、を混合して正極合剤とした。この正極合剤をN-メチル-2-ピロリドンに分散させることにより、正極用スラリーを調製した。この正極用スラリーを厚さ20μmのアルミニウム製集電体の片面に、均一に塗布した。単位面積当たりの初回充電容量が2.5mAh/cmとなるように塗布膜の厚さを調整した。乾燥させた後、ロールプレスで圧縮成型することにより正極を作製した。
 負極活物質としては人造黒鉛を用いた。人造黒鉛を、N-メチルピロリドンにPVdFを溶かしたものに分散させ、負極用スラリーを調製した。負極活物質、結着剤の質量比は90/10とした。この負極用スラリーを厚さ10μmのCu集電体上に均一に塗布した。初回充電容量が3.0mAh/cmとなるように塗布膜の厚さを調整した。乾燥させた後、ロールプレスで圧縮成型することにより負極を作製した。
 3cm×3cmに切り出した正極と負極をセパレータを介して対向するように配置させた。セパレータには、厚さ25μmの微多孔性ポリプロピレンフィルムを用いた。
 電解液は、プロピレンカーボネート(PC)、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル(TFETFPE)、リン酸トリス(2,2,2-トリフルオロエチル)(TTFEP)、およびジメチルカーボネート(DMC)をPC/TFETFPE/TTFEP/DMC=50/30/20/3(体積比)で構成した溶媒に、リチウム塩LiPFを0.8mol/l加え、さらに、フルオロエチレンカーボネート(FEC)を上記溶媒組成において体積比2となるように添加した。
 上記の正極、負極、セパレータ、および電解液を、ラミネート外装体の中に配置し、ラミネートを封止し、リチウム二次電池を作製した。正極と負極は、タブが接続され、ラミネートの外部から電気的に接続された状態とした。
 このリチウム二次電池を、100mAで充電し、上限電圧が4.8Vに達した後は、全充電時間が2.5時間になるまで定電圧で充電した。その後、100mAで下限電圧3Vになるまで定電流で放電した。この充放電を100回繰り返した。この充放電は45℃の恒温槽内で実施した。
(ガス発生評価)
 ガス発生量は、充放電サイクル前後のセル体積の変化を測定することにより評価した。セル体積は、アルキメデス法を用いて測定し、充放電サイクル前後での差分を調べることにより、ガス発生量を算出した。なお、ここに示していないが、FECを添加しない場合はガス発生量が非常に多かった。
<実施例1-2>
 フルオロエチレンカーボネート(FEC)を上記溶媒組成において体積比3となるように添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製し、ガス発生量を測定した。
<実施例1-3>
 フルオロエチレンカーボネート(FEC)を上記溶媒組成において体積比5となるように添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製し、ガス発生量を測定した。
<実施例1-4>
 フルオロエチレンカーボネート(FEC)を上記溶媒組成において体積比10となるように添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製し、ガス発生量を測定した。
Figure JPOXMLDOC01-appb-T000009
 図2は、フッ素化環状カーボネートであるフルオロエチレンカーボネート(FEC)の添加量による、充放電サイクルにおけるガス発生量を示している(実施例1-1~1-4)。FECを適量添加することでガス発生量が最小になり、さらに添加すると増加してしまう傾向がある。本実施例では、PCを50体積%近く含有する電解溶媒組成においても、電解液中のFECの含有量がおよそ2~6体積%の範囲、特に3体積%近傍においてガス発生が良好に抑制された。また、表1および図2より、PCに対するFECの含有率(体積比)が4~12%の範囲、特に6%近傍でガス発生の抑制が良好であったことがわかる。
<実施例2-1>
 電解液として、PC/TFETFPE/TTFEP=38/20/40(体積比)で構成した溶媒に1,3-プロパンスルトン0.1mol/lを加え、リチウム塩LiPFを0.8mol/l加えた。さらに、フッ素化環状カーボネートである3,3,3-トリフルオロプロピレンカーボネート(FPC)を2体積%となるように添加した。電解液以外の構成は実施例1-1と同様にしてリチウム二次電池を作製し、45℃充放電サイクル300サイクル後にガス発生量を測定したところ、0.34ccであった。
<実施例2-2>
 電解液の溶媒の組成を、PC/TFETFPE/TTFEP=38/20/40(体積比)に代えてPC/TFETFPE/TTFEP=30/20/40(体積比)とし、FPCを2体積%に代えて10体積%となるように添加した以外は、実施例2-1と同様にしてリチウム二次電池を作製し、ガス発生量を測定したところ、0.42ccであった。
<比較例A>
 電解液の溶媒の組成を、PC/TFETFPE/TTFEP=40/20/40とし、FPCを添加しなかったこと以外は、実施例2-1と同様にしてリチウム二次電池を作製し、ガス発生量を測定したところ、0.72ccであった。
Figure JPOXMLDOC01-appb-T000010
 実施例2-1および実施例2-2において、FPCの添加によりガス発生が抑制された。FPCの電解液中の含有量は、2体積%近傍に最適量があると思われる。また、PCに対するFPCの含有率(体積比)が5%近傍から33%近傍においてガス発生を良好に抑制できると考えられる。
<実施例3-1>
 電解液の溶媒の組成をPC/TFETFPE/DMC=30/70/1とし、FECを上記溶媒組成比において体積比2となるように添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製し、45℃充放電サイクル300サイクル後のガス発生量を測定したところ、0.32ccであった。
<実施例3-2>
 電解液の溶媒の組成をPC/TFETFPE/TTFEP/DMC=30/50/20/1とし、FECを上記溶媒組成比において体積比2となるように添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製し、45℃充放電サイクル300サイクル後のガス発生量を測定したところ、0.17ccであった。
Figure JPOXMLDOC01-appb-T000011
 実施例3-1と実施例3-2との比較によれば、TTFEPを添加した方がガス発生量がより少なく、フッ素含有リン酸エステルを混合することにより、さらにガス発生抑制効果が得られた。PCに対するFECの含有率(体積比)は7%近傍においてガス発生の抑制効果が良好であるといえる。また、FEC2体積%と3体積%の比較を行ったところ、FEC2体積%の方がガス量が少なく、電解液に対し2体積%近傍においてガス発生の抑制効果が良好であった。
<実施例4-1>
 電解液の溶媒の組成をPC/TFETFPE/TTFEP/DMC=30/20/50/3としFECを上記溶媒組成において体積比3となるように添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製し、45℃充放電サイクル50サイクル後にガス発生量を測定したところ、0.25ccであった。
 また、本実施例と同じリチウム二次電池を作製し、45℃において、50mAの定電流で4.75Vまで充電を行い、2.5時間定電圧充電を行い、その後3.0Vまで放電を行った。その後再び同じ条件で充電を行った後、25℃において50mAで3.0Vまで放電し、このときの放電容量を測定したところ56mAhであった。
<実施例4-2>
 電解液の溶媒の組成をEC/PC/TFETFPE/TTFEP/DMC=10/20/20/50/3としFECを上記溶媒組成において体積比3となるように添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製し、45℃充放電サイクル50サイクル後にガス発生量を測定したところ、0.26ccであった。
 また、本実施例と同じリチウム二次電池を作製し、実施例4-1と同様にして25℃における放電容量を測定したところ55mAhであった。
Figure JPOXMLDOC01-appb-T000012
 実施例4-1および実施例4-2のいずれにおいてもガス発生が抑制されている。電解液に、より多くPCを含む実施例4-1は、ガス発生がより抑制されており、かつ、電池容量もPCの一部をECに置き換えた実施例4-2と同等以上であった。
 以下にプロピレンカーボネートを含まない溶媒組成の比較例を示す。
<比較例B-1>
 電解液の溶媒の組成をFEC/TFETFPE/TTFEP=30/40/30とした以外は、実施例1-1と同様にしてリチウム二次電池を作製したところ、電極の抵抗が増大し電池が動作しなかった。
<比較例B-2>
 電解液の溶媒の組成をFEC/TFETFPE=30/70とした以外は、実施例1-1と同様にしてリチウム二次電池を作製したところ、電極の抵抗が増大し電池が動作しなかった。
<比較例B-3>
 電解液の溶媒の組成をFEC/TTFEP=30/70とした以外は、実施例1-1と同様にしてリチウム二次電池を作製したところ、電極の抵抗が増大し電池が動作しなかった。
<比較例C>
 電解液の溶媒の組成をEC/FEC/TFETFPE=30/20/50とした以外は、実施例1-1と同様にしてリチウム二次電池を作製し、45℃充放電サイクル50サイクル後にガス発生量を測定したところ、1.73ccであった。
Figure JPOXMLDOC01-appb-T000013
 比較例B-1~B-3においては、PCを含まない電解溶媒の組成とした場合、電極の抵抗が増大し電池が動作しない結果となった。また、比較例Cにおいて、PCを含まずにECを含む電解溶媒の組成とした場合はガス発生量が上記の各実施例よりも多い結果となった。
 以上に示すように、本実施形態により、低温での良好な特性が期待でき、ガス発生が抑制されたリチウム二次電池を得ることが可能である。
 本実施形態のリチウム二次電池は、低温での良好な特性が期待でき、ガス発生が抑制された二次電池であり、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、モバイル機器の電源、移動・輸送用媒体の電源、バックアップ電源、太陽光発電、風力発電などで発電した電力を貯める蓄電設備などに、利用することができる。
1 正極活物質層
2 負極活物質層
3 正極集電体
4 負極集電体
5 セパレータ
6 ラミネート外装体
7 ラミネート外装体
8 負極タブ
9 正極タブ

Claims (19)

  1.  リチウムの吸蔵放出が可能な正極および負極と、リチウムイオンを含有する非水電解質とを有するリチウムイオン二次電池であって、
     前記非水電解質は
      プロピレンカーボネート、
      一般式(1)で示されるフッ素化環状カーボネート、並びに、
      フッ素含有リン酸エステルおよびフッ素化鎖状エーテルから選択される1種以上
    を含有し、
     前記プロピレンカーボネートの含有率は非水電解溶媒中1体積%以上50体積%以下であり、前記フッ素化環状カーボネートの含有率は非水電解溶媒中0.1体積%以上10体積%以下であることを特徴とするリチウムイオン二次電池。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、AからDは、それぞれ独立に、水素原子、フッ素原子、または、置換もしくは無置換のアルキル基であり、AからDの少なくとも1つはフッ素原子またはフッ素含有アルキル基である。]
  2.  プロピレンカーボネートの非水電解溶媒中の含有率が、5体積%以上であることを特徴とする請求項1に記載のリチウムイオン二次電池。
  3.  プロピレンカーボネートの非水電解溶媒中の含有率が、40体積%以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  4.  プロピレンカーボネートの非水電解溶媒中の含有率が、30体積%以下であることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
  5.  前記フッ素化環状カーボネートの非水電解溶媒中の含有率が、1体積%以上であることを特徴とする請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
  6.  前記フッ素化環状カーボネートの非水電解溶媒中の含有率が、2体積%以上であることを特徴とする請求項1~5のいずれか1項に記載のリチウムイオン二次電池。
  7.  前記フッ素化環状カーボネートの非水電解溶媒中の含有率が、5体積%以下であることを特徴とする請求項1~6のいずれか1項に記載のリチウムイオン二次電池。
  8.  前記フッ素化環状カーボネートのプロピレンカーボネートに対する含有率が、2体積%以上40体積%以下であることを特徴とする請求項1~7のいずれか1項に記載のリチウムイオン二次電池。
  9.  前記フッ素化環状カーボネートのプロピレンカーボネートに対する含有率が、20体積%以下であることを特徴とする請求項1~8のいずれか1項に記載のリチウムイオン二次電池。
  10.  前記フッ素化環状カーボネートのプロピレンカーボネートに対する含有率が、4体積%以上であることを特徴とする請求項1~9のいずれか1項に記載のリチウムイオン二次電池。
  11.  前記フッ素化環状カーボネートは、エチレンカーボネート、プロピレンカーボネートまたはブチレンカーボネートが有する水素原子の一部または全部をフッ素原子に置換した構造を有する化合物からなる群から選ばれる少なくとも1種であることを特徴とする請求項1~10のいずれか1項に記載のリチウムイオン二次電池。
  12.  前記フッ素化環状カーボネートは、フルオロエチレンカーボネートおよびフルオロプロピレンカーボネートから選ばれる少なくとも1種を含むことを特徴とする請求項11に記載のリチウムイオン二次電池。
  13.  前記フッ素化鎖状エーテルは、下記式(2)で表されることを特徴とする請求項1~12のいずれか1項に記載の非水電解質二次電池。
     C2n+1-l-O-C2m+1-kk   (2)
     [式(2)中、nは1、2、3、4、5または6であり、mは1、2、3または4であり、lは0から2n+1までのいずれかの整数であり、kは0から2m+1までのいずれかの整数であり、lおよびkの少なくとも一方は1以上の整数である。]
  14.  前記フッ素含有リン酸エステルは、下記式(3)で表されることを特徴とする請求項1~13のいずれか1項に記載のリチウムイオン二次電池。
    Figure JPOXMLDOC01-appb-C000002
    [式(3)中、R、R、Rは、それぞれ独立に、アルキル基またはフッ素含有アルキル基を示し、R、RおよびRの少なくとも1つがフッ素含有アルキル基である。]
  15.  前記正極に含まれる正極活物質が下記式(4)で表されるリチウムマンガン複合酸化物を含むことを特徴とする、請求項1~14のいずれか1項に記載のリチウムイオン二次電池。
       Li(MMn2-x-y)(O4-w)      (4)
    (式中、0≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。Mは、Co、Ni、Fe、CrおよびCuからなる群より選ばれる少なくとも一種であり、Yは、Li、B、Na、Al、Mg、Ti、Si、KおよびCaからなる群より選ばれる少なくとも一種であり、Zは、FおよびClからなる群より選ばれる少なくとも一種である。)
  16.  前記リチウムマンガン複合酸化物が、Mとして少なくともNiを含むことを特徴とする請求項15に記載のリチウムイオン二次電池。
  17.  前記正極に含まれる正極活物質が下記式(5)または(6)で表される少なくとも一種のリチウム金属複合酸化物を含むことを特徴とする請求項1~16のいずれか1項に記載のリチウムイオン二次電池。
       LiMPO   (5)
    [式(5)中、MはCoおよびNiのうちの少なくとも1種である。]
       Li(Li1-x-zMn)O   (6)
    [式(6)中、0≦x<0.3、0.3≦z≦0.7、MはCoおよびNiの少なくとも1種である]
  18.  前記正極、前記負極および前記非水電解質を内包する外装体を有し、この外装体がアルミラミネートからなることを特徴とする請求項1~17のいずれか1項に記載のリチウムイオン二次電池。
  19.  正極と、負極と、非水電解質とを備えるリチウムイオン二次電池の製造方法であって、
     前記正極と前記負極とをセパレータを介して対向に配置する工程、
     前記対向に配置した正極と負極を、非水電解質とともに外装体に収容する工程、および、
     前記外装体を封止する工程
    を含み、前記非水電解質は
     プロピレンカーボネート、
     一般式(7)で示されるフッ素化環状カーボネート、並びに、
     フッ素含有リン酸エステルおよびフッ素化鎖状エーテルから選択される1種以上
    を含有し、
     前記プロピレンカーボネートの含有率は非水電解溶媒中1体積%以上50体積%以下であり、前記フッ素化環状カーボネートの含有率は非水電解溶媒中0.1体積%以上10体積%以下であることを特徴とするリチウムイオン二次電池の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式(7)中、AからDは、それぞれ独立に、水素原子、フッ素原子、または、置換もしくは無置換のアルキル基であり、AからDの少なくとも1つはフッ素原子またはフッ素含有アルキル基である。]
PCT/JP2014/060968 2013-04-18 2014-04-17 リチウムイオン二次電池 WO2014171518A2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015512526A JP6500775B2 (ja) 2013-04-18 2014-04-17 リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-087602 2013-04-18
JP2013087602 2013-04-18

Publications (2)

Publication Number Publication Date
WO2014171518A2 true WO2014171518A2 (ja) 2014-10-23
WO2014171518A3 WO2014171518A3 (ja) 2014-12-11

Family

ID=51731933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060968 WO2014171518A2 (ja) 2013-04-18 2014-04-17 リチウムイオン二次電池

Country Status (2)

Country Link
JP (1) JP6500775B2 (ja)
WO (1) WO2014171518A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175217A1 (ja) * 2015-04-30 2016-11-03 日本電気株式会社 二次電池用電解液及び二次電池
JP2016219419A (ja) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 電池用電解液、および、電池
JP2019106261A (ja) * 2017-12-11 2019-06-27 トヨタ自動車株式会社 リチウムイオン電池用正極活物質及びその製造方法、リチウムイオン電池、並びに、リチウムイオン電池システム
US11450888B2 (en) 2017-08-10 2022-09-20 Gs Yuasa International Ltd. Nonaqueous electrolyte and nonaqueous electrolyte energy storage device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015024A1 (en) * 1996-10-03 1998-04-09 National Research Council Of Canada Electrolyte comprising fluoro-ethylene carbonate and propylene carbonate, for alkali metal-ion secondary battery
JP2008053212A (ja) * 2006-07-24 2008-03-06 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池
EP2555310B1 (en) * 2010-03-26 2018-10-31 NEC Energy Devices, Ltd. Non-aqueous electrolyte secondary battery
WO2012077712A1 (ja) * 2010-12-07 2012-06-14 日本電気株式会社 リチウム二次電池
JP2012190771A (ja) * 2011-02-23 2012-10-04 Asahi Glass Co Ltd 二次電池用非水電解液および二次電池
JP5819653B2 (ja) * 2011-07-07 2015-11-24 東ソ−・エフテック株式会社 非引火性電解液

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175217A1 (ja) * 2015-04-30 2016-11-03 日本電気株式会社 二次電池用電解液及び二次電池
JPWO2016175217A1 (ja) * 2015-04-30 2018-02-22 日本電気株式会社 二次電池用電解液及び二次電池
US20180108935A1 (en) * 2015-04-30 2018-04-19 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery
JP2016219419A (ja) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 電池用電解液、および、電池
US11450888B2 (en) 2017-08-10 2022-09-20 Gs Yuasa International Ltd. Nonaqueous electrolyte and nonaqueous electrolyte energy storage device
JP2019106261A (ja) * 2017-12-11 2019-06-27 トヨタ自動車株式会社 リチウムイオン電池用正極活物質及びその製造方法、リチウムイオン電池、並びに、リチウムイオン電池システム

Also Published As

Publication number Publication date
JP6500775B2 (ja) 2019-04-17
WO2014171518A3 (ja) 2014-12-11
JPWO2014171518A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6756268B2 (ja) 二次電池
JP6138490B2 (ja) リチウム二次電池
US10749208B2 (en) Secondary battery and electrolyte liquid
JP6079770B2 (ja) リチウム二次電池
JP6123682B2 (ja) リチウム二次電池
JP5910627B2 (ja) 二次電池
JP6428609B2 (ja) 二次電池用電解液および二次電池
US20180108935A1 (en) Electrolyte solution for secondary batteries, and secondary battery
JPWO2016010090A1 (ja) 電解液及びそれを用いた二次電池
WO2013161774A1 (ja) リチウム二次電池
JP6179232B2 (ja) リチウム二次電池の充電方法
JP6292120B2 (ja) リチウム二次電池とその製造方法
JP6607188B2 (ja) 正極及びそれを用いた二次電池
WO2016021596A1 (ja) リチウム二次電池およびその製造方法
JP6500775B2 (ja) リチウムイオン二次電池
WO2014103893A1 (ja) リチウム二次電池とその選別方法
JP6601033B2 (ja) 蓄電装置及びその製造方法
CN110326153B (zh) 二次电池和二次电池的使用方法
JP6179511B2 (ja) リチウム二次電池
JPWO2014133161A1 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785569

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2015512526

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14785569

Country of ref document: EP

Kind code of ref document: A2