WO2014168273A1 - Multilayer silicon compound-coated carbon composite, production method therefor, and fuel cell electrode catalyst using same - Google Patents

Multilayer silicon compound-coated carbon composite, production method therefor, and fuel cell electrode catalyst using same Download PDF

Info

Publication number
WO2014168273A1
WO2014168273A1 PCT/KR2013/003128 KR2013003128W WO2014168273A1 WO 2014168273 A1 WO2014168273 A1 WO 2014168273A1 KR 2013003128 W KR2013003128 W KR 2013003128W WO 2014168273 A1 WO2014168273 A1 WO 2014168273A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon composite
silicon compound
coated
group
Prior art date
Application number
PCT/KR2013/003128
Other languages
French (fr)
Korean (ko)
Inventor
임성엽
정두환
김상경
백동현
이병록
김애란
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2014168273A1 publication Critical patent/WO2014168273A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon composite coated with a multilayer silicon compound, a method of manufacturing the same, and an electrode catalyst for a fuel cell using the same. More specifically, a highly durable multilayer silicon compound coated with enhanced electrochemical corrosion resistance and controlled surface hydrophobicity is coated.
  • the present invention relates to a carbon composite, a method for preparing the same, and an electrode catalyst for a fuel cell using the same.
  • Electrode catalyst the core material of fuel cell, mainly uses platinum suitable for hydrogen oxidation and oxygen reduction reaction. Prolonged operation causes catalyst deterioration problems such as elution of platinum and corrosion of the carbon support, and the active area of the catalyst is drastically reduced, shortening the life of the fuel cell. For this reason, it is urgently required to increase the activity of the oxygen reduction catalyst and to enhance the stability and durability for a long time, and it is the greatest issue in commercializing fuel cells.
  • the supported catalyst is mainly used to increase the stability and active surface area of the catalyst, and a carbon material having a large specific surface area such as carbon black is mainly used as the catalyst carrier.
  • Durability of fuel cell catalysts starts from the improvement of the catalyst carrier, and active research is being conducted in this regard.
  • carbon nanofibers and carbon nanotubes have superior durability compared to carbon black used mainly.
  • carbon nanotubes and carbon nanofibers have high electrical conductivity, excellent mechanical properties, and have a high surface potential as a catalyst support because they have a unique surface structure.
  • Korean Patent Publication No. 2006-0028032 discloses an electrode substrate selected from carbon paper or carbon cloth, an activated carbon layer positioned on the surface of the electrode substrate, and a nanocarbon bonded to the surface of the activated carbon layer and the nanocarbon.
  • silicon compounds which can compensate for the weak points of carbon materials, which generally have weak metal-support interactions, and enhance the corrosion resistance of the support, are introduced to the surfaces of the carbon materials.
  • a new material was synthesized by a hybrid method, and a highly durable oxygen reduction catalyst using the same was developed.
  • an object of the present invention is to provide a carbon composite coated with a highly durable multilayer silicon compound having enhanced electrochemical corrosion resistance and controlled surface hydrophobicity, a method for preparing the same, and an electrode catalyst for a fuel cell using the same.
  • silicon compounds which can supplement the weak points of carbon materials, which generally have weak metal-support interactions, and enhance the corrosion resistance of the support, are introduced to the surfaces of the carbon materials.
  • a new material was synthesized by a hybrid method, and a highly durable oxygen reduction catalyst using the same was developed.
  • an object of the present invention is to provide a carbon composite coated with a highly durable multilayer silicon compound having enhanced electrochemical corrosion resistance and controlled surface hydrophobicity, a method for preparing the same, and an electrode catalyst for a fuel cell using the same.
  • a core comprising a carbon material; Silicon carbide formed on the core; And it provides a carbon composite coated with a multilayer silicon compound comprising a silicon oxide formed on the silicon carbide.
  • the present invention also comprises the steps of coating the silane polymer on the surface of the carbon material by stirring the carbon material and the silane polymer in a solvent; Evaporating the solvent and drying the carbon composite coated with the silane polymer; And it provides a method for producing a multi-layer silicon compound coated carbon composite comprising the step of heat-treating the carbon composite coated with the amorphous silane polymer.
  • the carbon material may be carbon nanotubes, carbon nanofibers, carbon black, activated carbon, graphite (artificial or natural) and the like, but is not limited thereto.
  • a polysilane of the formula (1) may be used as the silane polymer.
  • the polymer backbone of Formula 1 is composed of silicon and carbon atoms, and R 1 and R 2 branched to a silicon atom may be selected from the group consisting of hydrogen, an alkyl group, an aryl group, an alkoxy group, and an aryloxy group.
  • the alkyl group is a methyl group, an ethyl group, n-propyl group or isopropyl group
  • the aryl group is a phenyl group or benzyl group
  • the alkoxy group is a methoxy group, ethoxy group, n-propaoxy group or isopropanooxy group
  • the aryloxy group is a phenoxy group Or benzoic.
  • R 3 and R 4 branched to a carbon atom may be selected from the group consisting of hydrogen, an alkyl group and an aryl group.
  • the alkyl group may be a methyl group, an ethyl group, n-propyl group or isopropyl group
  • the aryl group may be a phenyl group or benzyl group.
  • a core comprising a carbon material; Silicon carbide formed on the core; And it provides a carbon composite coated with a multilayer silicon compound comprising a silicon oxide formed on the silicon carbide.
  • the present invention also comprises the steps of coating the silane polymer on the surface of the carbon material by stirring the carbon material and the silane polymer in a solvent; Evaporating the solvent and drying the carbon composite coated with the silane polymer; And it provides a method for producing a multi-layer silicon compound coated carbon composite comprising the step of heat-treating the carbon composite coated with the amorphous silane polymer.
  • the carbon material may be carbon nanotubes, carbon nanofibers, carbon black, activated carbon, graphite (artificial or natural) and the like, but is not limited thereto.
  • a polysilane of the formula (1) may be used as the silane polymer.
  • the polymer backbone of Formula 1 is composed of silicon and carbon atoms, and R 1 and R 2 branched to a silicon atom may be selected from the group consisting of hydrogen, an alkyl group, an aryl group, an alkoxy group, and an aryloxy group.
  • the alkyl group is a methyl group, an ethyl group, n-propyl group or isopropyl group
  • the aryl group is a phenyl group or benzyl group
  • the alkoxy group is a methoxy group, ethoxy group, n-propaoxy group or isopropaoxy group
  • the aryloxy group is a phenoxy group Or benzoic.
  • R 3 and R 4 branched to a carbon atom may be selected from the group consisting of hydrogen, an alkyl group and an aryl group.
  • the alkyl group may be a methyl group, an ethyl group, n-propyl group or isopropyl group
  • the aryl group may be a phenyl group or benzyl group.
  • the carbon composite coated with the silane polymer is dried and then pulverized and heat treated, and the heat treatment may be performed at 300 to 500 ° C. for 1 to 4 hours under an air or oxygen atmosphere.
  • the second heat treatment may be performed for 1 to 4 hours at 600 ⁇ 1300 °C in an inert gas atmosphere.
  • the carbon composite coated with the silane polymer is dried and then pulverized and heat treated, and the heat treatment may be performed at 300 to 500 ° C. for 1 to 4 hours under an air or oxygen atmosphere.
  • the second heat treatment may be performed for 1 to 4 hours at 600 ⁇ 1300 °C in an inert gas atmosphere.
  • the present invention provides a carbon composite coated with a highly durable multilayer silicon compound having enhanced electrochemical corrosion resistance and controlled surface hydrophobicity, and a method for preparing the same, and using the same as a carrier of an electrode catalyst for fuel cells, thereby providing an electrode catalyst for fuel cell.
  • Strengthen chemical corrosion resistance can improve durability.
  • Example 1 is a graph showing the thermal weight measurement results of the plate lit carbon nanofibers used in Example 1 according to the present invention.
  • Figure 2 is a graph showing the thermal weight measurement results of the carbon composite coated with the multilayer silicon compound prepared in Examples 1 to 3 according to the present invention.
  • Figure 3 is measured for the nitrogen adsorption of carbon composites and PCNF coated with a multi-layer silicon compound PS / PCNF prepared in Example 1 in Example 1 according to the present invention heat-treated at 300 °C, 400 °C, 500 °C A graph showing the results.
  • Figure 4 is a nitrogen of the multi-layer silicon compound coated carbon composite prepared by changing the PS / PCNF prepared in Example 1 in Example 1 according to the present invention at 400 °C heat treatment time 2 hours, 4 hours, 8 hours It is a graph which shows the result measured about adsorption.
  • FIG 5 is a graph showing the results of nitrogen adsorption after the first heat treatment at 400 ° C for the samples of Examples 1 to 3 in Test Example 4 according to the present invention.
  • FIG. 6 shows nitrogen adsorption for the sample of Example 1 prepared after the first heat treatment (400 ° C., 2h, Air) in Example 5 according to the present invention after the second heat treatment at different temperatures in a nitrogen atmosphere.
  • FIG. 7 are SEM images of 50000 magnification and SEM images of 100000 magnification, respectively, taken for the platelet-carbon nanofibers used in Example 1, and FIGS. 7 (c) and (d) Are SEM pictures of 50000 magnification and SEM pictures of 100000 magnification, respectively, taken for Sample 5 in Test Example 1 according to the present invention.
  • FIG. 8 are the SEM photograph of 50000 magnification taken about the sample 14 in the test example 1 which concerns on this invention, and the SEM photograph of 50000 magnification taken about the sample 15, respectively.
  • FIG. 9 (a) and 9 (b) are TEM photographs taken of platelet-carbon nanofibers (PCNF) used in Example 1.
  • PCNF platelet-carbon nanofibers
  • FIGS. 10 (c) and (d) are of Test Example 1 according to the present invention.
  • FIG. 11 are TEM photographs taken with respect to Sample 15 in Test Example 1 according to the present invention, and FIGS. 11C and 11D show samples of Test Example 1 according to the present invention. TEM picture taken for 16.
  • FIG. 14 is a view schematically showing a carbon composite coated with a multilayer silicon compound prepared according to the present invention.
  • FIG. 15 is a view schematically showing a carbon composite coated with a multilayer silicon compound on a carbon nanofiber core prepared according to the present invention.
  • 16 is a schematic cross-sectional view of a carbon composite coated with a multilayer silicon compound prepared according to the present invention.
  • FIG. 17 shows the results of X-ray photo-electron spectroscopy on silicon and carbon elements of a carbon composite coated with carbon material, polysilane, and multilayer silicon compound according to sample number shown in Table 1 in Test Example 1 according to the present invention.
  • the carbon material and the silane polymer are put in a solvent and stirred to coat the silane polymer on the surface of the carbon material.
  • carbon nanotubes As the carbon material used in the present invention, carbon nanotubes, carbon nanofibers, carbon black, activated carbon, graphite (artificial or natural) and the like can be used.
  • the carbon material it is preferable to use platelet-carbon nanofibers in which a graphene layer is arranged perpendicular to the fiber axis.
  • the silane polymer used in the present invention is preferably used in 1 to 25:99 to 75% by weight.
  • the durability improvement effect is insignificant, and when the silane polymer is used in excess of 25% by weight, a material aggregation phenomenon is severely generated and a problem in that the properties of the carbon material hardly appear. Can be.
  • the amount of the silane polymer should be suitably used for the specific surface area of the carbon material using the core. . That is, it is preferable to increase the ratio of a silane polymer, so that a specific surface area of a carbon material for cores is large.
  • polysilane of Formula 1 may be used as the silane polymer.
  • the polymer backbone of Formula 1 is composed of silicon and carbon atoms, and R 1 and R 2 branched to a silicon atom may be selected from the group consisting of hydrogen, an alkyl group, an aryl group, an alkoxy group, and an aryloxy group.
  • the alkyl group is a methyl group, an ethyl group, n-propyl group or isopropyl group
  • the aryl group is a phenyl group or benzyl group
  • the alkoxy group is a methoxy group, ethoxy group, n-propaoxy group or isopropanooxy group
  • the aryloxy group is a phenoxy group Or benzoic.
  • R 3 and R 4 branched to a carbon atom may be selected from the group consisting of hydrogen, an alkyl group and an aryl group.
  • the alkyl group may be a methyl group, an ethyl group, n-propyl group or isopropyl group
  • the aryl group may be a phenyl group or benzyl group.
  • a solvent which can be used to dissolve and stir the carbon material and the silane polymer is n-pentane, n-hexane, n-heptane, n-octane, n-decane, dicyclopentane, benzene, toluene, xylene Hydrocarbon solvents selected from the group consisting of durene, indene, tetrahydronaphthalene, decahydronaphthalene and squalane; Dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran and p An ether solvent selected from the group consisting of dioxane; Or a polar solvent selected from the group consist
  • the solvent and the quantum silane polymer in the flask is completely dissolved using a stirrer and the carbon material is added thereto and stirred in a sealed state to uniformly coat the silane polymer on the surface of the carbon material.
  • the carbon composite coated with the silane polymer remaining in the flask is completely dried in an oven.
  • the dried silane polymer is prepared by grinding a carbon composite coated.
  • carbon may be burned to increase the number of micro-sized pores, thereby increasing the specific surface area of the carbon composite coated with the silicon compound.
  • the dried silane polymer-coated carbon composite may be heat-treated for 1 to 4 hours at 300 ⁇ 500 °C under air or oxygen atmosphere.
  • the secondary heat treatment may be additionally performed at 600 to 1300 ° C. for 1 to 4 hours under an inert gas atmosphere such as helium, nitrogen, and argon.
  • the first heat treatment and the second heat treatment are selected as the conditions for suppressing the oxidation of the carbon core as much as possible, because it is desirable to minimize the structural change of the carbon material in the process of coating the multilayer silicon compound on the carbon core .
  • the carbon composite coated with the multilayer silicon compound manufactured as described above is manufactured in the form of coating the multilayer silicon compound 20 including the silicon carbide layer and the silicon oxide layer on the surface of the carbon material 10. do.
  • the carbon composite of the present invention may be prepared in a form in which a multilayer silicon compound is coated on carbon fibers as shown in (a) or in a form in which a multilayer silicon compound is coated on carbon particles as in (b).
  • a silicon carbide layer 21 is formed on the surface of the carbon material 10, and on the silicon carbide layer 21. Silicon oxide layer 22 is partially applied.
  • the thickness of the silicon carbide layer 21 is 0.3 to 1 nm, and the thickness of the silicon oxide layer 22 is preferably 0.5 to 5 nm, but is not limited thereto.
  • the silicon oxide number of the silicon oxide layer 22 is preferably 0.5 to 2.
  • the present invention also provides an electrode catalyst for a fuel cell manufactured using a carbon composite coated with a multilayer silicon compound as a support, and using platinum or a platinum-ruthenium alloy as an active metal catalyst.
  • Silica-carbon nanofiber composites were prepared using platelet-carbon nanofibers (PCNF, Suntel) among various types of carbon nanofibers.
  • PCNF platelet-carbon nanofibers
  • polycarbomethylsilane (Sigma-Adrich Co.) polymer containing silicon was used as a precursor.
  • the average molecular weight of the polymer is 800, and monomers having a molecular weight of 58 form a chain of 14 to 15 chains.
  • Toluene Toluene, DC chemical Co.
  • the used toluene had a purity of 99.5% and a boiling point of 110.8 ° C.
  • Polycarbomethylsilane was coated on the surface of the carbon nanotubes at a content ratio of polycarbomethylsilane and carbon nanotubes of 0.25: 1 (weight ratio).
  • a fixed amount of polycarbomethylsilane was added to a flask containing 200 ml, and the resultant was completely dissolved by stirring for about 30 minutes using a magnetic stirrer.
  • PCNF was added to the flask, and the mixture was stirred at room temperature for 15 hours to uniformly coat polycarbomethylsilane (PS) on the surface of the PCNF.
  • PS polycarbomethylsilane
  • the solvent was then evaporated using a rotary evaporator.
  • the solvent in the flask was operated at 70 ° C. and 100 rpm until all of the solvent in the flask evaporated.
  • the condensed toluene was stored in a container and reused. In order to completely dry the PS / PCNF complex remaining in the flask, it was dried in a dry oven for 24 hours. The dried PS / PCNF was ground finely and stored in a container.
  • the prepared PS / CNTs were heat treated using only the first heat treatment and the second heat treatment.
  • the PS / PCNF was heat-treated in an air atmosphere using an electro furnace (Seoyoung Tech) to produce silica by combining silicon of polycarbomethylsilane with oxygen in the air.
  • 200 mg of each sample was taken and the experiment was carried out at different temperatures of 300 ° C, 400 ° C and 500 ° C.
  • the flow rate of air was 200 cc / min, and the temperature rise temperature was 5 minutes per minute, and the heat treatment was performed while maintaining the temperature for 2 hours when reaching the set temperature (300 ° C, 400 ° C, 500 ° C).
  • heat treatment experiments were further performed for 4 hours and 8 hours. After the heat treatment, the sample was weighed and stored separately in a container.
  • a carbon composite coated with a multilayer silicon compound was prepared in the same manner as in Example 1 except that the content ratio of polycarbomethylsilane and carbon nanotubes was 0.5: 1 (weight ratio).
  • a carbon composite coated with a multilayer silicon compound was prepared in the same manner as in Example 1 except that the content ratio of polycarbomethylsilane and carbon nanotubes was 1: 1 (weight ratio).
  • the inside of the electric furnace was changed to a nitrogen atmosphere, and the second heat treatment was performed at 500 ° C., 600 ° C., 700 ° C., 800 ° C., and 900 ° C. for 1 hour.
  • the flow rate of nitrogen was 200 cc / min, and the temperature increase temperature was 5 ° C. per minute.
  • Platelet-carbon nanofibers, polycarbomethylsilane used in Example 1, the use weight and air atmosphere or nitrogen atmosphere of platelet-carbon nanofibers and polycarbomethylsilane in the process prepared in Examples 1 to 3 The thermal weight measurement results of the carbon composite coated with the multilayer silicon compound prepared below are shown in FIGS. 1 and 2, respectively, and the results are shown in Table 1 below.
  • the samples are all reduced in weight after the heat treatment.
  • the specific surface area of PCNF was 48.29 m / g, but the specific surface area was very small, but after coating silica on the surface, it was confirmed that the specific surface area was increased.
  • Sample 5 which was subjected only to the first heat treatment at 400 ° C, increased more than two times, and sample 10, which was subjected to the second heat treatment at 700 ° C, increased three times. Although the specific surface areas of samples 5, 6, and 7 having different heat treatment times of 2 hours, 4 hours, and 8 hours at the same heat treatment temperature were found, the specific surface area decreased slightly as the time increased.
  • the platelet-carbon nanofibers used in Example 1 have no mass change before 600 ° C., but rapidly decrease in mass from 600 ° C. or higher, and the polycarbomethylsilane has a mass near 200 ° C. Little by little, the mass decreased little by little from 500 degreeC or more.
  • the carbon composite coated with the multilayer silicon compound prepared by coating polycarbomethylsilane on the surface of the PCNF starts burning carbon at around 600 ° C., and the carbon is all burned at around 800 ° C. in a content ratio of 0.25: 1. In the case of 20%, 0.5: 1, 33%, and 1: 1 was confirmed that about 47% of the silica remained.
  • Test Example 2 Nitrogen adsorption characteristics of the carbon composite coated with the multilayer silicon compound of Example 1
  • the PS / PCNF prepared in Example 1 was subjected to nitrogen adsorption of the carbon composite coated with the multilayer silicon compound and PCNF, which were heat-treated at 300 ° C., 400 ° C. and 500 ° C., respectively, and the results are shown in FIG. 3.
  • the carbon composite coated with the multilayer silicon compound shows a nitrogen adsorption graph in which micro-sized pores are developed.
  • the pores of the microsize increase and the total adsorption amount also increases.
  • Test Example 3 Nitrogen adsorption characteristics of the carbon composite coated with the multilayer silicon compound of Example 1 prepared by varying the heat treatment time
  • the PS / PCNF prepared in Example 1 was measured at 400 ° C. for 2 hours, 4 hours, and 8 hours, and the nitrogen adsorption of the multilayered silicon compound-coated carbon composite was measured and shown in FIG. 4.
  • Nitrogen adsorption of samples subjected to the first heat treatment at 400 ° C. was measured by varying the content ratio of 0.25: 1, 0.5: 1, 1: 1 as in Examples 1 to 3, respectively, and is shown in FIG. 5.
  • Test Example 5 Nitrogen adsorption characteristics of the carbon composites coated with the multilayer silicon compound of Example 1 subjected to the second heat treatment
  • Example 1 After performing the first heat treatment (400, 2h, Air) in Example 1 and the second heat treatment at different temperatures in a nitrogen atmosphere, respectively, the nitrogen adsorption of the prepared sample is measured and shown in FIG.
  • the second heat-treated sample at 500 ° C. and 600 ° C. showed a graph shape similar to that of the first heat-treated sample only.
  • micro-sized pores develop and the total adsorption amount increases.
  • mesosize pores begin to develop.
  • the micro and meso-sized pores decrease. Due to this pore change, both the specific surface area and the total pore volume decrease as the temperature increases.
  • Test Example 7 Characterization of the surface area of a carbon composite coated with a multilayer silicon compound
  • FIG. 7 (c) and (d) are SEMs of samples of the carbon composites coated with the multilayer silicon compound subjected to the first heat treatment at 400, which are almost the same as the shape of the PCNF, but only slightly shorter in length. Referring to (a) of FIG. 8, only silica remains white after heat treatment in an air atmosphere at 700 ° C., but the shape of PCNF remained like other samples. All the carbon was burned, and only silica remained, and the shape having a space inside was confirmed through the image. 8 (b) is an image of a sample having a content ratio of 0.5: 1 and subjected to a first heat treatment at 400 ° C. FIG.
  • FIG. 9 is a TEM photograph of PCNF without any processing.
  • the (002) planes stacked along the axial direction of the PCNF can be confirmed.
  • 10 (a) and 10 (b) are samples in which all carbon components are burned by heat treatment at 700 ° C. in an air atmosphere to compare and confirm a coated state of a silicon compound, and only silicon oxide remains and maintains the form of PCNF. As you can see, it looks like it's empty. This suggests that the silicon compound is applied very uniformly on the surface of the carbon material.
  • 10 and 11 are TEM images of samples having different content ratios. As the content increases, the coating thickness is increased little by little, but it can be seen that silica is generally coated on the surface of about 3 to 5 nm thick. However, in the content ratio sample of 0.5: 1 or more, the amount of polycarbomethylsilane was confirmed to be agglomeration phenomenon.
  • FIG. 17 is a graph showing an analysis result using an X-ray photoelectron spectroscopy (XPS; AXIS NOVA, KRATOS) for the samples.
  • XPS X-ray photoelectron spectroscopy
  • Table 1 The numbers in the figures are the sample numbers shown in Table 1, (a) and (c) show the results of spectroscopic silicon element (2p electron reference) spectroscopy of each sample, and (b) and (d) indicate the carbon elements of each sample ( 1s electronic reference) shows spectroscopic results.
  • XPS analysis can determine the oxidation state from the binding energy of each element. According to literature (Shallenberger, JR, J. Vac. Sci. Technol.
  • the binding energy is Si 0 or SiH (99.4 eV), Si 1+ (100.3 eV). , Si 2+ (101.2eV), Si 3+ (102.0eV), Si 4+ (103.0eV). It can be seen that the higher the heat treatment temperature of the sample, the higher the oxidation number of the silicon element.
  • Sample 13 treated at 500 degrees Celsius in an air atmosphere has a 2p electron bonding energy of about 101.2 eV, and the oxidation number +2 is about, and the sample treated at 700 degrees Celsius has an oxidation number of +3 or more.
  • Samples prepared by the two-step heat treatment can be seen that the (8 to 12) silicon oxide is + 2 to + 3. That is, the silicon element corresponds to an oxide of +1 to + tetravalent depending on the heat treatment temperature.
  • silicon has two kinds of carbon-bonded species and oxygen-bonded species. Does not appear in Therefore, it can be seen that the sample has a silicon carbide coating formed on the PCNF core and a multilayer structure having silicon oxide at the outermost surface. Since silicon carbide and oxide are simultaneously present in XPS on the surface, the silicon oxide layer is considered to be discontinuously distributed without surrounding the entire sample surface.
  • Test Example 8 Measurement of Electrochemical Characteristics of Electrocatalyst Using Carbon Composite Coated with Multi-layered Silicon Compound

Abstract

The present invention relates to a method for producing a multilayer silicon compound-coated carbon composite, the method comprising the steps of: coating the surface of a carbon material with a silane polymer by putting the carbon material and the silane polymer into a solvent and stirring the mixture; evaporating the solvent and drying a carbon composite coated with the silane polymer; and subjecting the carbon composite coated with the silane polymer to a heat treatment.

Description

다층 실리콘화합물이 코팅된 탄소 복합체, 이의 제조방법 및 이를 이용한 연료전지용 전극촉매 Carbon composite coated with multilayer silicon compound, preparation method thereof and electrode catalyst for fuel cell using same
본 발명은 다층 실리콘화합물이 코팅된 탄소 복합체, 이의 제조방법 및 이를 이용한 연료전지용 전극촉매에 관한 것으로, 더욱 상세하게는 전기화학적 내부식성이 강화되고, 표면 소수성이 제어된 고내구성 다층 실리콘화합물이 코팅된 탄소 복합체, 이의 제조방법 및 이를 이용한 연료전지용 전극촉매에 관한 것이다.The present invention relates to a carbon composite coated with a multilayer silicon compound, a method of manufacturing the same, and an electrode catalyst for a fuel cell using the same. More specifically, a highly durable multilayer silicon compound coated with enhanced electrochemical corrosion resistance and controlled surface hydrophobicity is coated. The present invention relates to a carbon composite, a method for preparing the same, and an electrode catalyst for a fuel cell using the same.
연료전지의 핵심 소재인 전극 촉매는 수소산화 및 산소환원반응에 적합한 백금을 주로 사용한다. 장시간 운전은 백금의 용출과 탄소지지체의 부식과 같은 촉매 열화 문제를 야기시키고, 촉매의 활성면적이 급격히 감소하여 연료전지의 수명이 짧아진다. 이러한 이유로 산소환원 촉매 활성의 증대와 더불어 장시간 안정성과 내구성을 강화하는 것이 절실히 요구되며, 연료전지 상용화에 있어서 최대 관건이다.Electrode catalyst, the core material of fuel cell, mainly uses platinum suitable for hydrogen oxidation and oxygen reduction reaction. Prolonged operation causes catalyst deterioration problems such as elution of platinum and corrosion of the carbon support, and the active area of the catalyst is drastically reduced, shortening the life of the fuel cell. For this reason, it is urgently required to increase the activity of the oxygen reduction catalyst and to enhance the stability and durability for a long time, and it is the greatest issue in commercializing fuel cells.
촉매의 안정성과 활성 표면적을 증대시키기 위해 담지촉매를 주로 이용하고, 카본블랙과 같은 비표면적이 큰 탄소재료가 주로 촉매 담지체로 사용된다. 연료전지 촉매의 내구성 강화는 이러한 촉매 담지체의 개량에서부터 시작되며, 이와 관련하여 활발한 연구가 진행되고 있다. The supported catalyst is mainly used to increase the stability and active surface area of the catalyst, and a carbon material having a large specific surface area such as carbon black is mainly used as the catalyst carrier. Durability of fuel cell catalysts starts from the improvement of the catalyst carrier, and active research is being conducted in this regard.
그 중 탄소나노섬유(carbon nanofibers)와 탄소나노튜브(carbon nanotubes)를 탄소지지체로 사용한 연구들은 주로 사용하는 카본블랙과 비교하여 내구성이 우수한 결과가 보고되고 있다. 또한 탄소나노튜브와 탄소나노섬유는 전기전도성이 높으며 기계적 특성이 뛰어날 뿐만 아니라 독특한 표면 구조를 갖고 있기 때문에 촉매 지지체로써 높은 가능성을 갖고 있다.Among them, studies using carbon nanofibers and carbon nanotubes as carbon supports have been reported to have superior durability compared to carbon black used mainly. In addition, carbon nanotubes and carbon nanofibers have high electrical conductivity, excellent mechanical properties, and have a high surface potential as a catalyst support because they have a unique surface structure.
이러한 한국공개특허 제2006-0028032호는 탄소종이 또는 탄소천 중에서 선택되는 전극기재, 상기 전극기재의 표면에 위치하는 활성탄소층 및 상기 활성탄소층의 표면에 결합된 나노카본과 상기 나노카본에 증착 코팅된 촉매를 포함하는 연료전지용 전극으로서, 촉매의 표면적이 커서, 적은 양의 촉매를 사용하면서도 연료전지의 성능을 향상시킬 수 있는 연료전지용 전극에 관한 것이다.Korean Patent Publication No. 2006-0028032 discloses an electrode substrate selected from carbon paper or carbon cloth, an activated carbon layer positioned on the surface of the electrode substrate, and a nanocarbon bonded to the surface of the activated carbon layer and the nanocarbon. A fuel cell electrode comprising a coated catalyst, the surface of the catalyst is large, relates to a fuel cell electrode that can improve the performance of the fuel cell using a small amount of catalyst.
촉매 입자의 안정적인 부착과 담지체 비표면적을 더욱 증대시키기 위해 탄소재료에 표면 처리를 하게 되는데, 이러한 경우 활성은 향상되나 내구성 측면에서 악화되는 경향이 있다. 전형적인 방법으로 강한 산을 이용하여 전기화학적 산화를 통해 표면에 산소를 포함한 기능기를 생성시키는 방법이 사용되지만 이러한 처리는 흑연구조의 파괴 때문에 탄소나노튜브의 구조와 전기적 특성을 상당히 악화시키는 것으로 알려져 있다. 이러한 문제 때문에 금속산화물, 고분자 등을 촉매담지체로 도입하는 연구도 진행되고 있으나, 근본적으로 전기전도도가 매우 낮은 물질이기 때문에 고활성 전기화학적 촉매를 제조함에 있어 기술적인 난이도가 있는 편이다.In order to further increase the adhesion of the catalyst particles and the specific surface area of the support, surface treatment is performed on the carbon material. In this case, the activity is improved but the durability tends to deteriorate. A typical method is to generate functional groups containing oxygen on the surface by electrochemical oxidation using strong acid, but this treatment is known to significantly degrade the structure and electrical properties of carbon nanotubes due to the destruction of graphite structure. Due to these problems, research into introducing metal oxides, polymers, and the like into catalyst carriers is being conducted, but since the material is very low in electrical conductivity, there is a technical difficulty in preparing a high activity electrochemical catalyst.
본 발명자들은 상술한 문제점을 해결하고자 예의 연구를 거듭하였고, 그 결과 일반적으로 금속-지지체 상호작용이 약한 탄소재료의 약점을 보완하고 지지체의 부식 내성을 강화할 수 있는 실리콘화합물을 탄소재료의 표면에 도입하는 하이브리드 방법에 의해 신규 소재를 합성하고, 이를 이용한 고내구성 산소환원촉매를 개발하였다.The present inventors have intensively studied to solve the above problems, and as a result, silicon compounds, which can compensate for the weak points of carbon materials, which generally have weak metal-support interactions, and enhance the corrosion resistance of the support, are introduced to the surfaces of the carbon materials. A new material was synthesized by a hybrid method, and a highly durable oxygen reduction catalyst using the same was developed.
따라서, 본 발명의 목적은 전기화학적 내부식성이 강화되고, 표면 소수성이 제어된 고내구성 다층 실리콘화합물이 코팅된 탄소 복합체, 이의 제조방법 및 이를 이용한 연료전지용 전극촉매를 제공하기 위한 것이다.Accordingly, an object of the present invention is to provide a carbon composite coated with a highly durable multilayer silicon compound having enhanced electrochemical corrosion resistance and controlled surface hydrophobicity, a method for preparing the same, and an electrode catalyst for a fuel cell using the same.
본 발명자들은 상술한 문제점을 해결하고자 예의 연구를 거듭하였고, 그 결과 일반적으로 금속-지지체 상호작용이 약한 탄소재료의 약점을 보완하고 지지체의 부식 내성을 강화할 수 있는 실리콘화합물을 탄소재료의 표면에 도입하는 하이브리드 방법에 의해 신규 소재를 합성하고, 이를 이용한 고내구성 산소환원촉매를 개발하였다.The present inventors have intensively studied to solve the above-mentioned problems, and as a result, silicon compounds, which can supplement the weak points of carbon materials, which generally have weak metal-support interactions, and enhance the corrosion resistance of the support, are introduced to the surfaces of the carbon materials. A new material was synthesized by a hybrid method, and a highly durable oxygen reduction catalyst using the same was developed.
따라서, 본 발명의 목적은 전기화학적 내부식성이 강화되고, 표면 소수성이 제어된 고내구성 다층 실리콘화합물이 코팅된 탄소 복합체, 이의 제조방법 및 이를 이용한 연료전지용 전극촉매를 제공하기 위한 것이다.Accordingly, an object of the present invention is to provide a carbon composite coated with a highly durable multilayer silicon compound having enhanced electrochemical corrosion resistance and controlled surface hydrophobicity, a method for preparing the same, and an electrode catalyst for a fuel cell using the same.
상기 목적을 달성하기 위하여, 탄소 소재를 포함하여 이루어지는 코어; 상기 코어의 위에 형성된 실리콘카바이드; 및 상기 실리콘카바이드 위에 형성된 실리콘옥사이드를 포함하는 다층 실리콘화합물이 코팅된 탄소 복합체를 제공한다.In order to achieve the above object, a core comprising a carbon material; Silicon carbide formed on the core; And it provides a carbon composite coated with a multilayer silicon compound comprising a silicon oxide formed on the silicon carbide.
본 발명은 또한 탄소 소재 및 실란 고분자를 용매에 넣고 교반하여 탄소 소재의 표면에 실란 고분자를 코팅하는 단계; 상기 용매를 증발시키고 실란 고분자가 코팅된 탄소 복합체를 건조시키는 단계; 및 상기 비정질 실란 고분자가 코팅된 탄소 복합체를 열처리하는 단계를 포함하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법을 제공한다.The present invention also comprises the steps of coating the silane polymer on the surface of the carbon material by stirring the carbon material and the silane polymer in a solvent; Evaporating the solvent and drying the carbon composite coated with the silane polymer; And it provides a method for producing a multi-layer silicon compound coated carbon composite comprising the step of heat-treating the carbon composite coated with the amorphous silane polymer.
본 발명의 일 실시형태에 있어서, 상기 탄소 소재로는 탄소나노튜브, 탄소나노섬유, 카본블랙, 활성탄, 흑연(인조 또는 천연) 등을 사용할 수 있으나 이에 제한되지 않는다.In one embodiment of the present invention, the carbon material may be carbon nanotubes, carbon nanofibers, carbon black, activated carbon, graphite (artificial or natural) and the like, but is not limited thereto.
본 발명의 일 실시형태에 있어서, 상기 실란 고분자로서 하기 화학식 1의 폴리실란을 사용할 수 있다. 화학식 1의 고분자 주쇄는 실리콘과 탄소 원자로 구성되고, 실리콘 원자에 가지 결합된 R1 및 R2는 수소, 알킬기, 아릴기, 알콕시기 및 아릴옥시기로 이루어진 군에서 선택될 수 있다. 여기서 알킬기는 메틸기, 에틸기, n-프로필기 또는 이소프로필기이고, 아릴기는 페닐기 또는 벤질기이고, 알콕시기는 메톡시기, 에톡시기, n-프로파옥시기 또는 이소프로파옥시기이고, 아릴옥시기는 페녹시기 또는 벤족시기일 수 있다. 또한, 탄소 원자에 가지 결합된 R3 및 R4는 수소, 알킬기 및 아릴기로 이루어진 군에서 선택될 수 있다. 여기서, 알킬기는 메틸기, 에틸기, n-프로필기 또는 이소프로필기이고, 아릴기는 페닐기 또는 벤질기일 수 있다.In one embodiment of the present invention, a polysilane of the formula (1) may be used as the silane polymer. The polymer backbone of Formula 1 is composed of silicon and carbon atoms, and R 1 and R 2 branched to a silicon atom may be selected from the group consisting of hydrogen, an alkyl group, an aryl group, an alkoxy group, and an aryloxy group. Wherein the alkyl group is a methyl group, an ethyl group, n-propyl group or isopropyl group, the aryl group is a phenyl group or benzyl group, the alkoxy group is a methoxy group, ethoxy group, n-propaoxy group or isopropanooxy group, and the aryloxy group is a phenoxy group Or benzoic. Further, R 3 and R 4 branched to a carbon atom may be selected from the group consisting of hydrogen, an alkyl group and an aryl group. Here, the alkyl group may be a methyl group, an ethyl group, n-propyl group or isopropyl group, and the aryl group may be a phenyl group or benzyl group.
[화학식 1][Formula 1]
Figure PCTKR2013003128-appb-I000001
Figure PCTKR2013003128-appb-I000001
상기 목적을 달성하기 위하여, 탄소 소재를 포함하여 이루어지는 코어; 상기 코어의 위에 형성된 실리콘카바이드; 및 상기 실리콘카바이드 위에 형성된 실리콘옥사이드를 포함하는 다층 실리콘화합물이 코팅된 탄소 복합체를 제공한다.In order to achieve the above object, a core comprising a carbon material; Silicon carbide formed on the core; And it provides a carbon composite coated with a multilayer silicon compound comprising a silicon oxide formed on the silicon carbide.
본 발명은 또한 탄소 소재 및 실란 고분자를 용매에 넣고 교반하여 탄소 소재의 표면에 실란 고분자를 코팅하는 단계; 상기 용매를 증발시키고 실란 고분자가 코팅된 탄소 복합체를 건조시키는 단계; 및 상기 비정질 실란 고분자가 코팅된 탄소 복합체를 열처리하는 단계를 포함하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법을 제공한다.The present invention also comprises the steps of coating the silane polymer on the surface of the carbon material by stirring the carbon material and the silane polymer in a solvent; Evaporating the solvent and drying the carbon composite coated with the silane polymer; And it provides a method for producing a multi-layer silicon compound coated carbon composite comprising the step of heat-treating the carbon composite coated with the amorphous silane polymer.
본 발명의 일 실시형태에 있어서, 상기 탄소 소재로는 탄소나노튜브, 탄소나노섬유, 카본블랙, 활성탄, 흑연(인조 또는 천연) 등을 사용할 수 있으나 이에 제한되지 않는다.In one embodiment of the present invention, the carbon material may be carbon nanotubes, carbon nanofibers, carbon black, activated carbon, graphite (artificial or natural) and the like, but is not limited thereto.
본 발명의 일 실시형태에 있어서, 상기 실란 고분자로서 하기 화학식 1의 폴리실란을 사용할 수 있다. 화학식 1의 고분자 주쇄는 실리콘과 탄소 원자로 구성되고, 실리콘 원자에 가지 결합된 R1 및 R2는 수소, 알킬기, 아릴기, 알콕시기 및 아릴옥시기로 이루어진 군에서 선택될 수 있다. 여기서 알킬기는 메틸기, 에틸기, n-프로필기 또는 이소프로필기이고, 아릴기는 페닐기 또는 벤질기이고, 알콕시기는 메톡시기, 에톡시기, n-프로파옥시기 또는 이소프로파옥시기이고, 아릴옥시기는 페녹시기 또는 벤족시기일 수 있다. 또한, 탄소 원자에 가지 결합된 R3 및 R4는 수소, 알킬기 및 아릴기로 이루어진 군에서 선택될 수 있다. 여기서, 알킬기는 메틸기, 에틸기, n-프로필기 또는 이소프로필기이고, 아릴기는 페닐기 또는 벤질기일 수 있다.In one embodiment of the present invention, a polysilane of the formula (1) may be used as the silane polymer. The polymer backbone of Formula 1 is composed of silicon and carbon atoms, and R 1 and R 2 branched to a silicon atom may be selected from the group consisting of hydrogen, an alkyl group, an aryl group, an alkoxy group, and an aryloxy group. Wherein the alkyl group is a methyl group, an ethyl group, n-propyl group or isopropyl group, the aryl group is a phenyl group or benzyl group, the alkoxy group is a methoxy group, ethoxy group, n-propaoxy group or isopropaoxy group, and the aryloxy group is a phenoxy group Or benzoic. Further, R 3 and R 4 branched to a carbon atom may be selected from the group consisting of hydrogen, an alkyl group and an aryl group. Here, the alkyl group may be a methyl group, an ethyl group, n-propyl group or isopropyl group, and the aryl group may be a phenyl group or benzyl group.
[화학식 1][Formula 1]
Figure PCTKR2013003128-appb-I000002
Figure PCTKR2013003128-appb-I000002
본 발명에서 상기 실란 고분자가 코팅된 탄소 복합체를 건조시킨 후 분쇄하여 열처리시키며, 상기 열처리는 공기 또는 산소 분위기 하에서 300~500℃ 에서 1~4 시간 동안 수행될 수 있다.In the present invention, the carbon composite coated with the silane polymer is dried and then pulverized and heat treated, and the heat treatment may be performed at 300 to 500 ° C. for 1 to 4 hours under an air or oxygen atmosphere.
또한, 상기 열처리 단계 후에 불활성 기체 분위기 하에서 600~1300℃ 에서 1~4 시간 동안 2차 열처리가 수행될 수 있다.In addition, after the heat treatment step, the second heat treatment may be performed for 1 to 4 hours at 600 ~ 1300 ℃ in an inert gas atmosphere.
본 발명에서 상기 실란 고분자가 코팅된 탄소 복합체를 건조시킨 후 분쇄하여 열처리시키며, 상기 열처리는 공기 또는 산소 분위기 하에서 300~500℃ 에서 1~4 시간 동안 수행될 수 있다.In the present invention, the carbon composite coated with the silane polymer is dried and then pulverized and heat treated, and the heat treatment may be performed at 300 to 500 ° C. for 1 to 4 hours under an air or oxygen atmosphere.
또한, 상기 열처리 단계 후에 불활성 기체 분위기 하에서 600~1300℃ 에서 1~4 시간 동안 2차 열처리가 수행될 수 있다.In addition, after the heat treatment step, the second heat treatment may be performed for 1 to 4 hours at 600 ~ 1300 ℃ in an inert gas atmosphere.
본 발명은 전기화학적 내부식성이 강화되고, 표면 소수성이 제어된 고내구성 다층 실리콘화합물이 코팅된 탄소 복합체 및 이의 제조방법을 제공하고 이를 연료전지용 전극촉매의 담지체로서 사용하여 연료전지용 전극촉매의 전기화학적 내부식성을 강화하여 내구성을 향상시킬 수 있다.The present invention provides a carbon composite coated with a highly durable multilayer silicon compound having enhanced electrochemical corrosion resistance and controlled surface hydrophobicity, and a method for preparing the same, and using the same as a carrier of an electrode catalyst for fuel cells, thereby providing an electrode catalyst for fuel cell. Strengthen chemical corrosion resistance can improve durability.
도 1은 본 발명에 따른 실시예 1에서 사용된 플레이트리트-탄소나노섬유의 열무게 측정 결과를 나타낸 그래프이다.1 is a graph showing the thermal weight measurement results of the plate lit carbon nanofibers used in Example 1 according to the present invention.
도 2는 본 발명에 따른 실시예 1 내지 3에서 제조된 다층 실리콘화합물이 코팅된 탄소 복합체의 열무게 측정 결과를 나타낸 그래프이다.Figure 2 is a graph showing the thermal weight measurement results of the carbon composite coated with the multilayer silicon compound prepared in Examples 1 to 3 according to the present invention.
도 3은 본 발명에 따른 시험예 2에서 실시예 1에서 제조한 PS/PCNF를 300℃, 400℃, 500℃에서 각각 열처리한 다층 실리콘화합물이 코팅된 탄소 복합체와 PCNF의 질소흡착에 대해 측정한 결과를 나타낸 그래프이다.Figure 3 is measured for the nitrogen adsorption of carbon composites and PCNF coated with a multi-layer silicon compound PS / PCNF prepared in Example 1 in Example 1 according to the present invention heat-treated at 300 ℃, 400 ℃, 500 ℃ A graph showing the results.
도 4는 본 발명에 따른 시험예 3에서 실시예 1에서 제조한 PS/PCNF를 400℃에서 열처리 시간을 2시간, 4시간, 8시간으로 달리하여 제조한 다층 실리콘화합물이 코팅된 탄소 복합체의 질소흡착에 대해 측정한 결과를 나타낸 그래프이다.Figure 4 is a nitrogen of the multi-layer silicon compound coated carbon composite prepared by changing the PS / PCNF prepared in Example 1 in Example 1 according to the present invention at 400 ℃ heat treatment time 2 hours, 4 hours, 8 hours It is a graph which shows the result measured about adsorption.
도 5는 본 발명에 따른 시험예 4에서 실시예 1 내지 실시예 3의 샘플에 대해 400℃에서 1차 열처리를 한 후의 질소흡착을 측정한 결과를 나타낸 그래프이다.5 is a graph showing the results of nitrogen adsorption after the first heat treatment at 400 ° C for the samples of Examples 1 to 3 in Test Example 4 according to the present invention.
도 6은 본 발명에 따른 시험예 5에서 1차 열처리(400℃, 2h, Air)를 한 후에 질소분위기에서 각각 다른 온도에서 2차 열처리한 후 제조된 실시예 1의 샘플에 대해 질소흡착을 측정한 결과를 나타낸 그래프이다.FIG. 6 shows nitrogen adsorption for the sample of Example 1 prepared after the first heat treatment (400 ° C., 2h, Air) in Example 5 according to the present invention after the second heat treatment at different temperatures in a nitrogen atmosphere. A graph showing one result.
도 7 의 (a) 및 (b)는 각각 실시예 1에서 사용된 플레이트리트-탄소나노섬유에 대해 촬영한 50000 배율의 SEM 사진 및 100000 배율의 SEM 사진이고, 도 7 의 (c) 및 (d)는 각각 본 발명에 따른 시험예 1에서의 샘플 5에 대해 촬영한 50000 배율의 SEM 사진 및 100000 배율의 SEM 사진이다.(A) and (b) of FIG. 7 are SEM images of 50000 magnification and SEM images of 100000 magnification, respectively, taken for the platelet-carbon nanofibers used in Example 1, and FIGS. 7 (c) and (d) Are SEM pictures of 50000 magnification and SEM pictures of 100000 magnification, respectively, taken for Sample 5 in Test Example 1 according to the present invention.
도 8 의 (a) 및 (b)는 각각 본 발명에 따른 시험예 1에서의 샘플 14에 대해 촬영한 50000 배율의 SEM 사진 및 샘플 15에 대해 촬영한 50000 배율의 SEM 사진이다.(A) and (b) of FIG. 8 are the SEM photograph of 50000 magnification taken about the sample 14 in the test example 1 which concerns on this invention, and the SEM photograph of 50000 magnification taken about the sample 15, respectively.
도 9의 (a) 및 (b)는 실시예 1에서 사용된 플레이트리트-탄소나노섬유 (PCNF)에 대해 촬영한 TEM 사진이다.9 (a) and 9 (b) are TEM photographs taken of platelet-carbon nanofibers (PCNF) used in Example 1. FIG.
도 10의 (a) 및 (b)는 본 발명에 따른 시험예 1에서의 샘플 14에 대해 촬영한 TEM 사진이고, 도 10의 (c) 및 (d)는 본 발명에 따른 시험예 1에서의 샘플 5에 대해 촬영한 TEM 사진이다.(A) and (b) of FIG. 10 are TEM photographs taken with respect to Sample 14 in Test Example 1 according to the present invention, and FIGS. 10 (c) and (d) are of Test Example 1 according to the present invention. TEM image taken for sample 5.
도 11의 (a) 및 (b)는 발명에 따른 시험예 1에서의 샘플 15에 대해 촬영한 TEM 사진이고, 도 11의 (c) 및 (d)는 본 발명에 따른 시험예 1에서의 샘플 16에 대해 촬영한 TEM 사진이다.(A) and (b) of FIG. 11 are TEM photographs taken with respect to Sample 15 in Test Example 1 according to the present invention, and FIGS. 11C and 11D show samples of Test Example 1 according to the present invention. TEM picture taken for 16.
도 12는 본 발명에 따른 시험예 8에서 40%Pt/PCNF와 40%Pt/실리카-PCNF의 내구성 테스트 전후의 CV 그래프이다.12 is a CV graph before and after the durability test of 40% Pt / PCNF and 40% Pt / silica-PCNF in Test Example 8 according to the present invention.
도 13은 본 발명에 따른 시험예 8에서 40%Pt/PCNF와 40%Pt/실리카-PCNF의 내구성 테스트 전후의 ORR 그래프이다.13 is an ORR graph before and after the durability test of 40% Pt / PCNF and 40% Pt / silica-PCNF in Test Example 8 according to the present invention.
도 14는 본 발명에 따라 제조된 다층 실리콘화합물이 코팅된 탄소 복합체를 개략적으로 나타낸 도면이다.14 is a view schematically showing a carbon composite coated with a multilayer silicon compound prepared according to the present invention.
도 15는 본 발명에 따라 제조된 탄소나노섬유 코어에 다층 실리콘화합물이 코팅된 탄소 복합체를 개략적으로 나타낸 도면이다. 15 is a view schematically showing a carbon composite coated with a multilayer silicon compound on a carbon nanofiber core prepared according to the present invention.
도 16은 본 발명에 따라 제조된 다층 실리콘화합물이 코팅된 탄소 복합체의 단면을 개략적으로 나타낸 도면이다. 16 is a schematic cross-sectional view of a carbon composite coated with a multilayer silicon compound prepared according to the present invention.
도 17은 본 발명에 따른 시험예 1에서 표 1에 나타낸 샘플번호별 탄소 소재, 폴리실란, 그리고 다층 실리콘화합물이 코팅된 탄소 복합체의 실리콘과 탄소 원소에 대한 X선 광-전자 분광 측정 결과를 나타낸 도면이다. FIG. 17 shows the results of X-ray photo-electron spectroscopy on silicon and carbon elements of a carbon composite coated with carbon material, polysilane, and multilayer silicon compound according to sample number shown in Table 1 in Test Example 1 according to the present invention. Drawing.
이하, 본 발명에 따른 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법을 상세히 설명한다.Hereinafter, a method of manufacturing a carbon composite coated with a multilayer silicon compound according to the present invention will be described in detail.
우선, 탄소 소재 및 실란 고분자를 용매에 넣고 교반하여 탄소 소재의 표면에 실란 고분자를 코팅한다.First, the carbon material and the silane polymer are put in a solvent and stirred to coat the silane polymer on the surface of the carbon material.
본 발명에서 사용되는 탄소 소재로서 탄소나노튜브, 탄소나노섬유, 카본블랙, 활성탄, 흑연(인조 또는 천연) 등을 사용할 수 있다.As the carbon material used in the present invention, carbon nanotubes, carbon nanofibers, carbon black, activated carbon, graphite (artificial or natural) and the like can be used.
상기 탄소 소재로서 탄소나노튜브로는 그래핀층이 섬유축에 수직으로 배열하는 플레이트리트-탄소나노섬유를 사용하는 것이 바람직하다. As the carbon material, it is preferable to use platelet-carbon nanofibers in which a graphene layer is arranged perpendicular to the fiber axis.
본 발명에서 사용되는 실란 고분자:탄소 소재는 1~25:99~75 중량%로 사용되는 것이 바람직하다.The silane polymer used in the present invention: the carbon material is preferably used in 1 to 25:99 to 75% by weight.
상기 실란 고분자가 1 중량% 미만으로 사용되는 경우 내구성 향상 효과가 미미하고, 상기 실란 고분자가 25 중량% 초과로 사용되는 경우 소재 뭉침 현상이 심하게 발생되고 탄소 소재의 특성이 거의 나타나지 않는 문제점이 발생될 수 있다. 또한, 비표면적이 다른 탄소 코어를 이용하여 상기 다층 실리콘화합물이 코팅된 탄소 복합체를 제조하고, 유사한 표면 특성을 얻기 위해서는 상기 실란 고분자의 양을 코어로 사용하는 탄소 소재의 비표면적에 적합하게 사용해야 한다. 즉, 코어용 탄소 소재가 비표면적이 클수록 실란 고분자의 비율을 늘리는 것이 바람직하다. When the silane polymer is used in less than 1% by weight, the durability improvement effect is insignificant, and when the silane polymer is used in excess of 25% by weight, a material aggregation phenomenon is severely generated and a problem in that the properties of the carbon material hardly appear. Can be. In addition, in order to prepare a carbon composite coated with the multilayer silicon compound using a carbon core having a different specific surface area, and to obtain similar surface properties, the amount of the silane polymer should be suitably used for the specific surface area of the carbon material using the core. . That is, it is preferable to increase the ratio of a silane polymer, so that a specific surface area of a carbon material for cores is large.
상기 실란 고분자로서 하기 화학식 1의 폴리실란을 사용할 수 있다. 화학식 1의 고분자 주쇄는 실리콘과 탄소 원자로 구성되고, 실리콘 원자에 가지 결합된 R1 및 R2는 수소, 알킬기, 아릴기, 알콕시기 및 아릴옥시기로 이루어진 군에서 선택될수 있다. 여기서 알킬기는 메틸기, 에틸기, n-프로필기 또는 이소프로필기이고, 아릴기는 페닐기 또는 벤질기이고, 알콕시기는 메톡시기, 에톡시기, n-프로파옥시기 또는 이소프로파옥시기이고, 아릴옥시기는 페녹시기 또는 벤족시기일 수 있다. 또한, 탄소 원자에 가지 결합된 R3 및 R4는 수소, 알킬기 및 아릴기로 이루어진 군에서 선택될 수 있다. 여기서, 알킬기는 메틸기, 에틸기, n-프로필기 또는 이소프로필기이고, 아릴기는 페닐기 또는 벤질기일 수 있다.As the silane polymer, polysilane of Formula 1 may be used. The polymer backbone of Formula 1 is composed of silicon and carbon atoms, and R 1 and R 2 branched to a silicon atom may be selected from the group consisting of hydrogen, an alkyl group, an aryl group, an alkoxy group, and an aryloxy group. Wherein the alkyl group is a methyl group, an ethyl group, n-propyl group or isopropyl group, the aryl group is a phenyl group or benzyl group, the alkoxy group is a methoxy group, ethoxy group, n-propaoxy group or isopropanooxy group, and the aryloxy group is a phenoxy group Or benzoic. Further, R 3 and R 4 branched to a carbon atom may be selected from the group consisting of hydrogen, an alkyl group and an aryl group. Here, the alkyl group may be a methyl group, an ethyl group, n-propyl group or isopropyl group, and the aryl group may be a phenyl group or benzyl group.
[화학식 1][Formula 1]
Figure PCTKR2013003128-appb-I000003
Figure PCTKR2013003128-appb-I000003
본 발명에서 탄소 소재 및 실란 고분자를 용해시켜 교반하기 위해 사용할 수 있는 용매로는 n-펜탄, n-헥산, n-헵탄, n-옥탄, n-데칸, 디시클로펜탄, 벤젠, 톨루엔, 자일렌, 듀렌, 인덴, 테트라히드로나프탈렌, 데카히드로나프탈렌 및 스쿠알란으로 이루어진 군으로부터 선택되는 탄화수소계 용매; 디프로필 에테르, 에틸렌 글리콜 디메틸 에테르, 에틸렌 글리콜 디에틸 에테르, 에틸렌 글리콜 메틸 에틸 에테르, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸 에틸 에테르, 테트라히드로푸란, 테트라히드로피란 및 p-디옥산으로 이루어진 군으로부터 선택되는 에테르계 용매; 또는 프로필렌 카르보네이트, -부티로락톤, N-메틸-2-피롤리돈, 디메틸 포름아미드, 아세토니트릴 및 디메틸 술폭시드로 이루어진 군으로부터 선택되는 극성 용매; 사염화탄소, 클로로포름, 1,2-디클로로에탄, 디클로로-메탄 및 클로로벤젠으로 이루어진 군으로부터 선택되는 할로겐화 탄화수소계 유기 용매를 사용할 수 있다.In the present invention, a solvent which can be used to dissolve and stir the carbon material and the silane polymer is n-pentane, n-hexane, n-heptane, n-octane, n-decane, dicyclopentane, benzene, toluene, xylene Hydrocarbon solvents selected from the group consisting of durene, indene, tetrahydronaphthalene, decahydronaphthalene and squalane; Dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran and p An ether solvent selected from the group consisting of dioxane; Or a polar solvent selected from the group consisting of propylene carbonate, -butyrolactone, N-methyl-2-pyrrolidone, dimethyl formamide, acetonitrile and dimethyl sulfoxide; Halogenated hydrocarbon organic solvents selected from the group consisting of carbon tetrachloride, chloroform, 1,2-dichloroethane, dichloro-methane and chlorobenzene can be used.
보다 상세하게는 플라스크에 용매 및 정량의 실란 고분자를 넣고 교반기를 이용하여 완전히 용해시키고 이에 탄소 소재를 넣고 밀봉한 상태로 교반하여 탄소 소재의 표면에 실란 고분자를 균일하게 코팅한다.More specifically, the solvent and the quantum silane polymer in the flask is completely dissolved using a stirrer and the carbon material is added thereto and stirred in a sealed state to uniformly coat the silane polymer on the surface of the carbon material.
다음으로, 상기 용매를 증발시키고 실란 고분자가 코팅된 탄소 복합체를 건조시킨다.Next, the solvent is evaporated and the carbon composite coated with the silane polymer is dried.
상기 반응물이 포함된 플라스크 내부의 용매가 모두 증발할 때까지 회전 증발기를 이용하여 용매를 증발시킨 후 플라스크에 남아있는 실란 고분자가 코팅된 탄소 복합체를 오븐에서 완전히 건조시킨다.After evaporating the solvent using a rotary evaporator until all the solvent in the flask containing the reactant evaporates, the carbon composite coated with the silane polymer remaining in the flask is completely dried in an oven.
이후 건조된 실란 고분자가 코팅된 탄소 복합체를 분쇄하여 준비한다.Then, the dried silane polymer is prepared by grinding a carbon composite coated.
마지막으로, 상기 실란 고분자가 코팅된 탄소 복합체를 열처리한다.Finally, the carbon composite coated with the silane polymer is heat treated.
이와 같이 실란 고분자가 코팅된 탄소 복합체를 열처리시킴으로써 탄소를 연소시켜 마이크로 크기의 기공의 수를 증가시킴으로써 최종적으로 제조되는 실리콘화합물이 코팅된 탄소 복합체의 비표면적을 증가시킬 수 있다.As such, by heating the carbon composite coated with the silane polymer, carbon may be burned to increase the number of micro-sized pores, thereby increasing the specific surface area of the carbon composite coated with the silicon compound.
본 발명에 따른 일 실시형태에 있어서, 상기 건조된 실란 고분자가 코팅된 탄소 복합체를 공기 또는 산소 분위기 하에서 300~500℃ 에서 1~4 시간 동안 열처리할 수 있다.In one embodiment according to the present invention, the dried silane polymer-coated carbon composite may be heat-treated for 1 to 4 hours at 300 ~ 500 ℃ under air or oxygen atmosphere.
또한, 상기 1차 열처리 후 추가적으로 헬륨, 질소, 아르곤 등의 불활성 기체 분위기 하에서 600~1300℃에서 1~4 시간 동안 2차 열처리가 수행될 수 있다.In addition, after the primary heat treatment, the secondary heat treatment may be additionally performed at 600 to 1300 ° C. for 1 to 4 hours under an inert gas atmosphere such as helium, nitrogen, and argon.
상기 1차 열처리 및 2차 열처리는 탄소 소재 코어의 산화를 최대한 억제하는 조건으로 선정하는 것이고, 이는 탄소 소재 코어에 다층 실리콘화합물을 코팅하는 과정에서 탄소 소재의 구조 변화를 최소화하는 것이 바람직하기 때문이다. The first heat treatment and the second heat treatment are selected as the conditions for suppressing the oxidation of the carbon core as much as possible, because it is desirable to minimize the structural change of the carbon material in the process of coating the multilayer silicon compound on the carbon core .
도 14를 참조하면 상술한 바에 따라 제조되는 다층 실리콘화합물이 코팅된 탄소 복합체는 탄소 소재(10)의 표면을 실리콘카바이드층 및 실리콘옥사이드층을 포함하는 다층 실리콘화합물(20)이 코팅된 형태로 제조된다. 본 발명의 탄소 복합체는 (a)와 같이 탄소 섬유에 다층 실리콘화합물이 코팅된 형태 또는 (b)와 같이 탄소 입자에 다층 실리콘화합물이 코팅된 형태 등으로 제조될 수 있다.Referring to FIG. 14, the carbon composite coated with the multilayer silicon compound manufactured as described above is manufactured in the form of coating the multilayer silicon compound 20 including the silicon carbide layer and the silicon oxide layer on the surface of the carbon material 10. do. The carbon composite of the present invention may be prepared in a form in which a multilayer silicon compound is coated on carbon fibers as shown in (a) or in a form in which a multilayer silicon compound is coated on carbon particles as in (b).
실리콘카바이드층과 실리콘옥사이드층이 도포된 구조를 보다 구체적으로 살펴 보면, 도 15 및 도 16에서와 같이 실리콘카바이드층(21)이 탄소 소재(10) 표면에 형성되고, 실리콘카바이드층(21) 위에 실리콘옥사이드층(22)이 부분적으로 도포된다.Looking at the structure in which the silicon carbide layer and the silicon oxide layer is applied in more detail, as shown in FIGS. 15 and 16, a silicon carbide layer 21 is formed on the surface of the carbon material 10, and on the silicon carbide layer 21. Silicon oxide layer 22 is partially applied.
실리콘카바이드층(21)의 두께는 0.3 내지 1 nm이고, 실리콘옥사이드층(22)의 두께는 0.5 내지 5 nm 로 형성되는 것이 바람직하나 이에 한정되는 것은 아니다. 실리콘옥사이드층(22)의 실리콘 산화수는 0.5 내지 2인 것이 바람직하다. The thickness of the silicon carbide layer 21 is 0.3 to 1 nm, and the thickness of the silicon oxide layer 22 is preferably 0.5 to 5 nm, but is not limited thereto. The silicon oxide number of the silicon oxide layer 22 is preferably 0.5 to 2.
또한 본 발명은 다층 실리콘화합물이 코팅된 탄소 복합체를 담지체로 사용하고, 활성 금속촉매로는 백금 또는 백금-루테늄 합금을 사용하여 제조되는 연료전지용 전극촉매를 제공한다.The present invention also provides an electrode catalyst for a fuel cell manufactured using a carbon composite coated with a multilayer silicon compound as a support, and using platinum or a platinum-ruthenium alloy as an active metal catalyst.
이하 본 발명의 바람직한 실시예 및 시험예를 상세하게 설명한다. 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.Hereinafter, preferred examples and test examples of the present invention will be described in detail. The terms or words used in the specification and claims are not to be construed as being limited to conventional or dictionary meanings, but should be construed as meanings and concepts corresponding to the technical matters of the present invention.
본 명세서에 기재된 실시예, 시험예 및 도면은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있다.The embodiments, test examples, and drawings described herein are preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, and thus, various equivalents and modifications may be substituted for them at the time of the present application. Can be.
실시예 1Example 1
(1) 다중벽 탄소나노튜브 및 폴리카르보메틸실란의 준비(1) Preparation of multi-walled carbon nanotubes and polycarbomethylsilane
여러 종류의 탄소나노섬유 중에서 플레이트리트-탄소나노섬유(PCNF, Suntel)를 사용하여 실리카-탄소나노섬유 복합체를 제조하였다. PCNF에 실리카를 코팅하기 위하여 전구물질로 실리콘을 포함하고 있는 폴리카르보메틸실란(Polycarbomethylsilane, Sigma-Adrich Co.) 고분자를 사용하였다. 고분자의 평균 분자량은 800 이며, 분자량이 58인 단량체가 14개에서 15개정도 사슬을 이루고 있다. 고분자를 녹이기 위한 용매로 톨루엔(Toluene, DC chemical Co.)을 사용하였다. 사용한 톨루엔의 순도는 99.5%이며, 끓는점은 110.8℃이다.Silica-carbon nanofiber composites were prepared using platelet-carbon nanofibers (PCNF, Suntel) among various types of carbon nanofibers. In order to coat silica on PCNF, polycarbomethylsilane (Sigma-Adrich Co.) polymer containing silicon was used as a precursor. The average molecular weight of the polymer is 800, and monomers having a molecular weight of 58 form a chain of 14 to 15 chains. Toluene (Toluene, DC chemical Co.) was used as a solvent to dissolve the polymer. The used toluene had a purity of 99.5% and a boiling point of 110.8 ° C.
(2) 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법(2) Manufacturing method of carbon composite coated with multilayer silicon compound
폴리카르보메틸실란과 탄소나노튜브의 함량비를 0.25:1(중량비)로 하여 탄소나노튜브 표면에 폴리카르보메틸실란을 코팅하였다. 200 ml를 넣은 플라스크에 고체상태의 폴리카르보메틸실란 정량을 넣고 마그네틱 교반기를 이용하여 약 30분정도 교반하여 완전히 녹였다. 이 플라스크에 PCNF를 넣고 밀봉한 상태로 상온에서 15 시간 교반하여 PCNF의 표면에 폴리카르보메틸실란(PS)을 균일하게 코팅하였다. 그 다음 회전 증발기를 이용하여 용매를 증발시켰다. 70℃, 100 rpm의 조건에서 플라스크 내부의 용매가 모두 증발할 때까지 작동시켰고, 응축된 톨루엔은 용기에 보관하여 재사용 하였다. 플라스크에 남아있는 PS/PCNF 복합체를 완전히 건조시키기 위하여 드라이 오븐에 넣어 24시간 건조하였다. 건조된 PS/PCNF는 유발에 갈아 잘게 분쇄하여 용기에 보관하였다.Polycarbomethylsilane was coated on the surface of the carbon nanotubes at a content ratio of polycarbomethylsilane and carbon nanotubes of 0.25: 1 (weight ratio). A fixed amount of polycarbomethylsilane was added to a flask containing 200 ml, and the resultant was completely dissolved by stirring for about 30 minutes using a magnetic stirrer. PCNF was added to the flask, and the mixture was stirred at room temperature for 15 hours to uniformly coat polycarbomethylsilane (PS) on the surface of the PCNF. The solvent was then evaporated using a rotary evaporator. The solvent in the flask was operated at 70 ° C. and 100 rpm until all of the solvent in the flask evaporated. The condensed toluene was stored in a container and reused. In order to completely dry the PS / PCNF complex remaining in the flask, it was dried in a dry oven for 24 hours. The dried PS / PCNF was ground finely and stored in a container.
제조한 PS/CNT를 1차 열처리만 하는 방법과 2차 열처리까지 진행하는 방법을 이용하여 각각 열처리를 하였다. 1차 열처리는 제조한 PS/PCNF를 전기로(electro furnace, 서영테크)를 이용하여 공기 분위기에서 열처리하여 폴리카르보메틸실란의 규소와 공기 중의 산소가 결합하여 실리카를 생성하도록 하였다. 각 샘플 200 mg을 취하여 300℃, 400℃, 500℃ 온도를 달리하여 실험을 진행하였다. 공기의 유량은 200 cc/min으로 하였고, 승온 온도는 1분에 5 씩 하여 설정온도(300℃, 400℃, 500℃)에 도달하면 2시간 동안 온도를 유지하며 열처리를 하였다. 400℃에서는 4시간, 8시간 열처리 실험을 추가적으로 진행하였다. 열처리가 끝난 샘플은 무게를 잰 뒤에 용기에 따로 보관하였다.The prepared PS / CNTs were heat treated using only the first heat treatment and the second heat treatment. In the first heat treatment, the PS / PCNF was heat-treated in an air atmosphere using an electro furnace (Seoyoung Tech) to produce silica by combining silicon of polycarbomethylsilane with oxygen in the air. 200 mg of each sample was taken and the experiment was carried out at different temperatures of 300 ° C, 400 ° C and 500 ° C. The flow rate of air was 200 cc / min, and the temperature rise temperature was 5 minutes per minute, and the heat treatment was performed while maintaining the temperature for 2 hours when reaching the set temperature (300 ° C, 400 ° C, 500 ° C). At 400 ° C., heat treatment experiments were further performed for 4 hours and 8 hours. After the heat treatment, the sample was weighed and stored separately in a container.
실시예 2Example 2
폴리카르보메틸실란과 탄소나노튜브의 함량비를 0.5:1(중량비)로 한 것을 제외하고 실시예 1과 동일하게 수행하여 다층 실리콘화합물이 코팅된 탄소 복합체를 제조하였다.A carbon composite coated with a multilayer silicon compound was prepared in the same manner as in Example 1 except that the content ratio of polycarbomethylsilane and carbon nanotubes was 0.5: 1 (weight ratio).
실시예 3Example 3
폴리카르보메틸실란과 탄소나노튜브의 함량비를 1:1(중량비)로 한 것을 제외하고 실시예 1과 동일하게 수행하여 다층 실리콘화합물이 코팅된 탄소 복합체를 제조하였다.A carbon composite coated with a multilayer silicon compound was prepared in the same manner as in Example 1 except that the content ratio of polycarbomethylsilane and carbon nanotubes was 1: 1 (weight ratio).
시험예 1: 질소 분위기 하에서 제조된 다층 실리콘화합물이 코팅된 탄소 복합체의 열무게 측정 실험Test Example 1 Thermogravimetric Measurement Experiment of a Carbon Composite Coated with a Multi-Silicone Silicone Compound Prepared Under Nitrogen Atmosphere
실시예 1~3에서 열처리한 후 전기로 내부를 질소분위기로 바꾸어 500℃, 600℃, 700℃, 800℃, 900℃에서 1 시간동안 2차 열처리를 진행하였다. 1차 열처리와 동일하게 질소의 유량은 200 cc/min으로 하였고, 승온 온도는 1분에 5℃ 씩 하였다.After heat treatment in Examples 1 to 3, the inside of the electric furnace was changed to a nitrogen atmosphere, and the second heat treatment was performed at 500 ° C., 600 ° C., 700 ° C., 800 ° C., and 900 ° C. for 1 hour. As in the first heat treatment, the flow rate of nitrogen was 200 cc / min, and the temperature increase temperature was 5 ° C. per minute.
실시예 1에서 사용된 플레이트리트-탄소나노섬유, 폴리카르보메틸실란, 실시예 1 내지 3에서 제조하는 과정에서 플레이트리트-탄소나노섬유 및 폴리카르보메틸실란의 사용 중량 및 공기 분위기 또는 질소 분위기 하에서 제조된 다층 실리콘화합물이 코팅된 탄소 복합체의 열무게 측정 결과를 각각 도 1 및 도 2에 그래프로 나타내고 그 결과를 표 1에 나타내었다.Platelet-carbon nanofibers, polycarbomethylsilane used in Example 1, the use weight and air atmosphere or nitrogen atmosphere of platelet-carbon nanofibers and polycarbomethylsilane in the process prepared in Examples 1 to 3 The thermal weight measurement results of the carbon composite coated with the multilayer silicon compound prepared below are shown in FIGS. 1 and 2, respectively, and the results are shown in Table 1 below.
[표 1]TABLE 1
[규칙 제91조에 의한 정정 14.05.2013] 
Figure WO-DOC-FIGURE-91
[Revision 14.05.2013 under Rule 91]
Figure WO-DOC-FIGURE-91
상기 표 1을 참조하면, 샘플은 열처리 후에 중량이 모두 감소한다. PCNF의 비표면적은 48.29m/g로 비표면적이 매우 작지만 표면에 실리카를 코팅한 후, 비표면적이 증가한 것을 확인하였다. 400℃ 에서 1차 열처리만 한 샘플 5의 경우 2배 이상 증가하였고, 700℃ 에서 2차 열처리한 샘플 10의 경우는 3배 이상 증가하였다. 같은 열처리 온도에서 열처리 시간을 2시간, 4시간, 8시간으로 다르게 한 샘플 5, 6 및 7의 비표면적은 거의 비슷하지만 시간이 길어질수록 비표면적이 약간 감소하는 것을 확인하였다. 열처리 조건은 모두 같지만 함량비가 다른 샘플 5, 15 및 16의 비표면적을 비교해보면 함량비가 클수록 증가하는 것을 알 수 있다. 2차 열처리한 샘플의 경우 700℃ 까지는 온도가 높아질수록 비표면적이 증가하지만, 800℃ 이상부터는 오히려 비표면적이 감소하는 경향을 볼 수 있다.Referring to Table 1, the samples are all reduced in weight after the heat treatment. The specific surface area of PCNF was 48.29 m / g, but the specific surface area was very small, but after coating silica on the surface, it was confirmed that the specific surface area was increased. Sample 5, which was subjected only to the first heat treatment at 400 ° C, increased more than two times, and sample 10, which was subjected to the second heat treatment at 700 ° C, increased three times. Although the specific surface areas of samples 5, 6, and 7 having different heat treatment times of 2 hours, 4 hours, and 8 hours at the same heat treatment temperature were found, the specific surface area decreased slightly as the time increased. Comparing the specific surface areas of the samples 5, 15, and 16, which are all the same but different in content ratio, it can be seen that the content ratio increases as the content ratio increases. In the case of the second heat-treated sample, the specific surface area increases with increasing temperature up to 700 ° C, but the specific surface area decreases from 800 ° C or more.
도 1을 참조하면 실시예 1에서 사용된 플레이트리트-탄소나노섬유는 600℃ 이전에는 질량변화가 없다가 600℃ 이상부터는 급격하게 질량이 감소하며, 폴리카르보메틸실란은 200℃ 부근에서 질량이 조금씩 증가하며 500℃ 이상부터는 질량이 조금씩 감소하였다. 도 2를 참조하면 PCNF 표면에 폴리카르보메틸실란을 코팅하여 제조한 다층 실리콘화합물이 코팅된 탄소 복합체는 600℃ 부근에서 탄소가 타기 시작하여 800℃ 부근에서는 탄소가 모두 타고 함량비 0.25:1의 경우 20%, 0.5:1의 경우 33%, 1:1의 경우 47% 정도의 실리카가 남는 것을 확인하였다.Referring to FIG. 1, the platelet-carbon nanofibers used in Example 1 have no mass change before 600 ° C., but rapidly decrease in mass from 600 ° C. or higher, and the polycarbomethylsilane has a mass near 200 ° C. Little by little, the mass decreased little by little from 500 degreeC or more. Referring to FIG. 2, the carbon composite coated with the multilayer silicon compound prepared by coating polycarbomethylsilane on the surface of the PCNF starts burning carbon at around 600 ° C., and the carbon is all burned at around 800 ° C. in a content ratio of 0.25: 1. In the case of 20%, 0.5: 1, 33%, and 1: 1 was confirmed that about 47% of the silica remained.
시험예 2: 실시예 1의 다층 실리콘화합물이 코팅된 탄소 복합체의 질소흡착특성Test Example 2: Nitrogen adsorption characteristics of the carbon composite coated with the multilayer silicon compound of Example 1
실시예 1에서 제조한 PS/PCNF를 300℃, 400℃ , 500℃ 에서 각각 열처리한 다층 실리콘화합물이 코팅된 탄소 복합체와 PCNF의 질소흡착을 측정하였고 그 결과를 도 3에 나타내었다.The PS / PCNF prepared in Example 1 was subjected to nitrogen adsorption of the carbon composite coated with the multilayer silicon compound and PCNF, which were heat-treated at 300 ° C., 400 ° C. and 500 ° C., respectively, and the results are shown in FIG. 3.
도 3을 참조하면 기공이 거의 없는 PCNF와는 달리 다층 실리콘화합물이 코팅된 탄소 복합체는 마이크로 크기의 기공이 발달한 질소흡착 그래프를 보여준다. 또한 온도가 증가할수록 마이크로사이즈의 기공이 증가하고 전체 흡착량도 증가하는 것을 볼 수 있다.Referring to FIG. 3, unlike the PCNF having almost no pores, the carbon composite coated with the multilayer silicon compound shows a nitrogen adsorption graph in which micro-sized pores are developed. In addition, it can be seen that as the temperature increases, the pores of the microsize increase and the total adsorption amount also increases.
시험예 3: 열처리 시간을 달리하여 제조한 실시예 1의 다층 실리콘화합물이 코팅된 탄소 복합체의 질소흡착특성Test Example 3: Nitrogen adsorption characteristics of the carbon composite coated with the multilayer silicon compound of Example 1 prepared by varying the heat treatment time
실시예 1에서 제조한 PS/PCNF를 400℃ 에서 열처리 시간을 2시간, 4시간, 8시간으로 달리하여 제조한 다층 실리콘화합물이 코팅된 탄소 복합체의 질소흡착을 측정하여 도 4에 나타내었다.The PS / PCNF prepared in Example 1 was measured at 400 ° C. for 2 hours, 4 hours, and 8 hours, and the nitrogen adsorption of the multilayered silicon compound-coated carbon composite was measured and shown in FIG. 4.
도 4를 참조하면, 세 그래프 모두 마이크로 기공이 발달한 그래프 거동을 보인다. 2시간 열처리한 경우에 마이크로 기공이 가장 발달하였고 열처리 시간이 증가하면서 감소하는 것을 확인하였다.Referring to FIG. 4, all three graphs show graph behaviors in which micropores are developed. In the case of heat treatment for 2 hours, the micro pores were most developed and decreased as the heat treatment time increased.
시험예 4: 실시예 1 내지 실시예 3의 다층 실리콘화합물이 코팅된 탄소 복합체의 질소흡착특성Experimental Example 4 Nitrogen Adsorption Characteristics of Carbon Composites Coated with the Multilayer Silicone Compounds of Examples 1 to 3
실시예 1 내지 실시예 3과 같이 함량비를 0.25:1, 0.5:1, 1:1로 각각 달리하여 400℃ 에서 1차 열처리를 한 샘플들의 질소흡착을 측정하여 도 5에 나타내었다. Nitrogen adsorption of samples subjected to the first heat treatment at 400 ° C. was measured by varying the content ratio of 0.25: 1, 0.5: 1, 1: 1 as in Examples 1 to 3, respectively, and is shown in FIG. 5.
도 5를 참조하면 세 그래프 모두 마이크로 기공이 발달한 그래프의 거동을 보이며 PS의 함량비가 증가할수록 마이크로 기공이 발달하고 전체 흡착량도 증가하는 것을 알 수 있다.Referring to FIG. 5, all three graphs show the behavior of the graphs in which the micropores are developed. As the PS content ratio increases, the micropores develop and the total adsorption amount also increases.
시험예 5: 2차 열처리한 실시예 1의 다층 실리콘화합물이 코팅된 탄소 복합체의 질소흡착특성Test Example 5: Nitrogen adsorption characteristics of the carbon composites coated with the multilayer silicon compound of Example 1 subjected to the second heat treatment
실시예 1에서 1차 열처리(400, 2h, Air)를 한 후에 질소분위기에서 각각 다른 온도에서 2차 열처리한 후 제조된 샘플의 질소흡착을 측정하여 도 6에 나타내었다.After performing the first heat treatment (400, 2h, Air) in Example 1 and the second heat treatment at different temperatures in a nitrogen atmosphere, respectively, the nitrogen adsorption of the prepared sample is measured and shown in FIG.
도 6을 참조하면, 500℃ , 600℃ 에서 2차 열처리한 샘플은 1차 열처리만 진행한 샘플과 비슷한 그래프 형상을 보였다. 온도가 높을수록 마이크로 사이즈의 기공이 발달하고 전체 흡착량이 증가한다. 700℃ 이상의 높은 열처리 온도에서는 메조사이즈의 기공이 발달하기 시작하는 것을 볼 수 있다. 하지만 앞의 경우와는 다르게 700℃ 에서 온도가 높아질수록 마이크로크기와 메조크기의 기공이 감소한다. 이러한 기공 변화로 인해 표 1에서 비표면적과 전체기공부피 모두 온도가 높아질수록 감소하는 것을 볼 수 있다.Referring to FIG. 6, the second heat-treated sample at 500 ° C. and 600 ° C. showed a graph shape similar to that of the first heat-treated sample only. At higher temperatures, micro-sized pores develop and the total adsorption amount increases. At high heat treatment temperatures of 700 ° C. or higher, mesosize pores begin to develop. However, unlike the previous case, as the temperature increases at 700 ° C, the micro and meso-sized pores decrease. Due to this pore change, both the specific surface area and the total pore volume decrease as the temperature increases.
시험예 7: 다층 실리콘화합물이 코팅된 탄소 복합체의 표면적 특성 분석Test Example 7: Characterization of the surface area of a carbon composite coated with a multilayer silicon compound
시험예 1에서 제조한 샘플들의 표면적 특성을 분석하기 위해 주사전자현미경 (SEM), 투과전자현미경 (TEM, Tecnai F20, philips), 표면적 분석기 (Belsorp2 mini, BEL JAPAN)를 이용하였고 그 결과를 도 7 내지 도 11 에 나타내었다.Scanning electron microscope (SEM), transmission electron microscope (TEM, Tecnai F20, philips), and surface area analyzer (Belsorp2 mini, BEL JAPAN) were used to analyze the surface area characteristics of the samples prepared in Test Example 1. To FIG. 11.
도 7 의 (a) 및 (b)을 참조하면, 아무런 처리를 하지 않은 PCNF의 SEM 사진은 탄소나노튜브에 비해 길이가 짧으며 축 방향으로 흑연판이 쌓아져 있는 PCNF의 특징적인 모습을 볼 수 있다. 도 7 의 (c) 및 (d)은 400에서 1차 열처리한 다층 실리콘화합물이 코팅된 탄소 복합체의 샘플의 SEM으로 상기 PCNF의 형상과 거의 똑같고 길이만 다소 짧아졌다. 도 8의 (a)를 참조하면 700℃ , 공기 분위기에서 열처리를 통해 실리카만 남아 순백색을 띄지만 다른 샘플과 마찬가지로 PCNF의 형상이 남아있었다. 탄소를 모두 태우고 실리카만 남아 내부에 공간이 있는 형상을 이미지를 통해 확인하였다. 도 8의 (b)는 함량비가 0.5 : 1 이며, 400℃ 에서 1차 열처리한 샘플의 이미지이다.Referring to (a) and (b) of FIG. 7, the SEM image of the PCNF without any treatment is shorter than that of the carbon nanotubes, and the characteristic characteristics of the PCNF with graphite plates stacked in the axial direction can be seen. . 7 (c) and (d) are SEMs of samples of the carbon composites coated with the multilayer silicon compound subjected to the first heat treatment at 400, which are almost the same as the shape of the PCNF, but only slightly shorter in length. Referring to (a) of FIG. 8, only silica remains white after heat treatment in an air atmosphere at 700 ° C., but the shape of PCNF remained like other samples. All the carbon was burned, and only silica remained, and the shape having a space inside was confirmed through the image. 8 (b) is an image of a sample having a content ratio of 0.5: 1 and subjected to a first heat treatment at 400 ° C. FIG.
도 9는 아무 처리도 하지 않은 PCNF의 TEM사진이다. 특히 도 9의 (a)에서는 PCNF의 축 방향을 따라서 쌓여져 있는 (002)면을 확인할 수 있다. 도 10의 (a) 및 (b)는 실리콘화합물의 도포된 상태를 비교 확인하기 위하여 공기 분위기에서 700℃ 로 열처리하여 탄소 성분을 전부 연소시킨 샘플로서, 실리콘산화물만 남은 상태이고 PCNF의 형태를 유지하여 그대로 본 따고 있지만 속이 비어 있는 모습을 볼 수 있다. 이는 실리콘화합물이 탄소 소재의 표면에 매우 균일하게 도포되었음을 시사하는 것이다. 도 10 및 도 11은 함량비가 다른 샘플들의 TEM 이미지이다. 함량이 높아질수록 코팅된 두께는 조금씩 증가하지만 대체적으로 3~5 nm 정도 두께의 실리카가 표면에 코팅된 것을 볼 수 있다. 하지만 0.5:1 이상의 함량비 샘플에서는 폴리카르보메틸실란의 양이 많아 뭉치는 현상이 생기는 것을 확인 하였다.9 is a TEM photograph of PCNF without any processing. In particular, in Fig. 9A, the (002) planes stacked along the axial direction of the PCNF can be confirmed. 10 (a) and 10 (b) are samples in which all carbon components are burned by heat treatment at 700 ° C. in an air atmosphere to compare and confirm a coated state of a silicon compound, and only silicon oxide remains and maintains the form of PCNF. As you can see, it looks like it's empty. This suggests that the silicon compound is applied very uniformly on the surface of the carbon material. 10 and 11 are TEM images of samples having different content ratios. As the content increases, the coating thickness is increased little by little, but it can be seen that silica is generally coated on the surface of about 3 to 5 nm thick. However, in the content ratio sample of 0.5: 1 or more, the amount of polycarbomethylsilane was confirmed to be agglomeration phenomenon.
도 17는 샘플들에 대한 X선 광전자 분광기 (XPS; AXIS NOVA, KRATOS)를 이용한 분석 결과를 나타낸 그래프이다. 도면 안의 숫자는 표 1에 나타낸 샘플 번호이고, (a)와 (c)는 각 샘플의 실리콘 원소 (2p 전자 기준) 분광 결과를 나타낸 것이고, (b)와 (d)는 각 샘플의 탄소 원소 (1s 전자 기준) 분광 결과를 나타낸 것이다. XPS 분석은 각 원소의 결합에너지로부터 산화 상태를 파악할 수 있다. 문헌에 따르면 (Shallenberger, J.R. , J. Vac. Sci. Technol. A 1996, 14, 693698), 실리콘 원소의 산화수에 따라서 결합에너지가, Si0 또는 SiH (99.4eV), Si1+(100.3eV), Si2+(101.2eV), Si3+(102.0eV), Si4+(103.0eV)와 같이 나타난다. 샘플의 열처리 온도가 높을수록 실리콘 원소의 산화수가 증가하는 것을 볼 수 있다. 공기 분위기에서 섭씨 500도로 처리한 샘플 (13)은 2p 전자 결합에너지가 101.2eV 부근으로 산화수 +2가 정도이며, 섭씨 700도에서 처리한 샘플은 산화수가 +3 이상임을 알 수 있다. 2단계 열처리를 통해 제조한 샘플은 (8 내지 12) 실리콘 산화수가 + 2 내지 + 3 임을 알 수 있다. 즉, 실리콘 원소는 열처리 온도에 따라서 +1가 내지 + 4가의 산화물에 해당한다.17 is a graph showing an analysis result using an X-ray photoelectron spectroscopy (XPS; AXIS NOVA, KRATOS) for the samples. The numbers in the figures are the sample numbers shown in Table 1, (a) and (c) show the results of spectroscopic silicon element (2p electron reference) spectroscopy of each sample, and (b) and (d) indicate the carbon elements of each sample ( 1s electronic reference) shows spectroscopic results. XPS analysis can determine the oxidation state from the binding energy of each element. According to literature (Shallenberger, JR, J. Vac. Sci. Technol. A 1996, 14, 693698), depending on the oxidation number of the silicon element, the binding energy is Si 0 or SiH (99.4 eV), Si 1+ (100.3 eV). , Si 2+ (101.2eV), Si 3+ (102.0eV), Si 4+ (103.0eV). It can be seen that the higher the heat treatment temperature of the sample, the higher the oxidation number of the silicon element. Sample 13 treated at 500 degrees Celsius in an air atmosphere has a 2p electron bonding energy of about 101.2 eV, and the oxidation number +2 is about, and the sample treated at 700 degrees Celsius has an oxidation number of +3 or more. Samples prepared by the two-step heat treatment can be seen that the (8 to 12) silicon oxide is + 2 to + 3. That is, the silicon element corresponds to an oxide of +1 to + tetravalent depending on the heat treatment temperature.
한편, 샘플의 탄소 원소 산화 상태를 분석해보면 (도면 b와 d), 실리콘화합물이 코팅된 표면의 탄소 (샘플 4, 5, 8 ~ 13)는 흑연계 탄소 (PCNF)와 산화상태가 확연히 다른 것을 알 수 있다. 저온에서 열처리된 샘플은 PS의 탄소 상태에 가깝지만, 고온으로 갈수록 1s 전자 결합에너지가 증가함을 확인할 수 있다. 이 영역 (281.2 내지 283.4 eV)은 실리콘과 직접 연결되어 있는 탄소 원자들이 나타내는 특성이다. (Onneby, C.; Pantano, C., J. Vac. Sci. Technol. A 1997, 15, 15971602) 모든 샘플에서 PCNF는 표면에 전혀 드러나지 않은 상태이며, 샘플 표면의 모든 탄소는 실리콘과 결합한 상태로서 열처리 이력을 고려할 때 SiC 성분일 것으로 판단된다.On the other hand, when analyzing the carbon element oxidation state of the sample (Figs. B and d), the carbon ( Samples 4, 5, 8 to 13) on the surface coated with the silicon compound showed significantly different oxidation state from the graphite carbon (PCNF). Able to know. The sample heat-treated at low temperature is close to the carbon state of PS, but it can be seen that the 1s electron coupling energy increases with increasing temperature. This region 281.2 to 283.4 eV is a characteristic exhibited by the carbon atoms directly connected to silicon. (Onneby, C .; Pantano, C., J. Vac. Sci. Technol. A 1997, 15, 15971602) In all samples, PCNF is completely absent on the surface and all carbon on the sample surface is bonded to silicon. Considering the heat treatment history, it is determined that the SiC component.
실리콘과 탄소의 XPS 결과를 종합해서 보면, 실리콘은 탄소와 결합한 종, 산소와 결합한 종 두 가지가 있는 것으로 보이고, 2단계 열처리 온도가 높을수록 산화수가 높은 산화물이 형성되어 있으며, 코어의 탄소는 표면에 나타나지 않는다. 따라서, 본 샘플은 PCNF 코어에 실리콘카바이드 피복이 형성되어 있고, 표면 최외각에는 실리콘산화물이 있는 다층 구조임을 알 수 있다. 표면에서 실리콘카바이드와 산화물이 XPS에서 동시에 나타나고 있기 때문에 실리콘산화물층은 샘플 표면 전체를 둘러싸지 않고 불연속적으로 분포하고 있을 것으로 판단된다.From the XPS results of silicon and carbon, it can be seen that silicon has two kinds of carbon-bonded species and oxygen-bonded species. Does not appear in Therefore, it can be seen that the sample has a silicon carbide coating formed on the PCNF core and a multilayer structure having silicon oxide at the outermost surface. Since silicon carbide and oxide are simultaneously present in XPS on the surface, the silicon oxide layer is considered to be discontinuously distributed without surrounding the entire sample surface.
시험예 8: 다층 실리콘화합물이 코팅된 탄소 복합체를 이용한 전극촉매의 전기화학적 특성 측정Test Example 8: Measurement of Electrochemical Characteristics of Electrocatalyst Using Carbon Composite Coated with Multi-layered Silicon Compound
플라스크에 백금시약(H2PtCl6)정량을 넣은 뒤, 용매로 사용한 2-프로판올 150ml와 물 150ml를 넣은 다음 30분가량 질소가스를 흘려주었다. 그 다음 35에서 CO 가스(40cc/min)를 5시간 동안 흘려주었다. CO 가스를 끄고 담지체로 사용한 실시예 1에서 제조한 다층 실리콘화합물이 코팅된 탄소 복합체 정량을 넣은 뒤 90℃ 에서 12 시간 동안 환류를 시키면서 가열시켰다. 35℃ 까지 식힌 다음 필터링을 하였고 데시케이터를 이용하여 건조시켜 전극촉매를 제조하였고, 이에 대해 CV와 ORR측정과 내구성 테스트를 함께 수행하여 촉매의 전기화학적 특성과 내구성을 비교 분석하였다.Platinum reagent (H2PtCl6) was added to the flask, and 150 ml of 2-propanol and 150 ml of water were used as a solvent, followed by flowing nitrogen gas for about 30 minutes. Then at 35 CO gas (40 cc / min) was flowed for 5 hours. The CO gas was turned off and the metered carbon composite coated with the multilayer silicone compound prepared in Example 1 used as a carrier was heated while refluxing at 90 ° C. for 12 hours. After cooling to 35 ℃ and filtered and dried using a desiccator to prepare an electrode catalyst, the electrochemical characteristics and durability of the catalyst was compared by analyzing CV and ORR measurement and durability test.
40%Pt/PCNF와 40%Pt/실리카-PCNF의 내구성 테스트 전후 CV 그래프를 도 12에 나타내었고, 그래프를 토대로 촉매의 활성면적을 계산한 값을 하기 표 2에 나타내었다. 40%Pt/PCNF의 활성면적은 24.1m2/g, 40%Pt/실리카-PCNF의 활성면적은 27.6m2/g로 실리카-PCNF에 담지한 촉매의 활성면적이 다소 높은 것을 확인하였다. 0.6~1.1 V에서 4100 사이클을 돌린 후 측정한 활성면적은 40%Pt/PCNF의 활성면적은 19.2m2/g, 40%Pt/실리카-PCNF의 활성면적은 18.3m2/g으로 감소하였다. 도 13에 ORR그래프를 나타내었고, 표 3에 0.9 V에서의 전류밀도와 반파전위(half wave potential)을 나타내었다. 40%Pt/실리카-PCNF 촉매가 전류밀도와 반파전위 모두 높게 나타났다. 특히 내구성 테스트 결과에서 40%Pt/PCNF는 반파전위값이 850 mV에서 830 mV로 20 mV 정도 감소하였지만, 40%Pt/실리카-PCNF의 경우는 909 mV에서 902 mV로 7 mV 정도밖에 감소하지 않았다. 이를 통해서 실리카-PCNF에 담지한 촉매가 산소환원반응의 활성과 내구성 모두 뛰어난 것을 확인하였다.CV graphs before and after the durability test of 40% Pt / PCNF and 40% Pt / silica-PCNF are shown in FIG. 12, and the calculated values of the active area of the catalyst are shown in Table 2 below. The active area of 40% Pt / PCNF was 24.1m 2 / g, and the active area of 40% Pt / silica-PCNF was 27.6m 2 / g, confirming that the active area of the catalyst supported on silica-PCNF was rather high. After 4100 cycles at 0.6 ~ 1.1 V, the active area of 40% Pt / PCNF decreased to 19.2m 2 / g and 40% Pt / silica-PCNF to 18.3m 2 / g. An ORR graph is shown in FIG. 13, and a current density and a half wave potential at 0.9 V are shown in Table 3. 40% Pt / silica-PCNF catalyst showed high current density and half wave potential. In particular, in the endurance test results, the half-wave potential decreased by 20 mV from 850 mV to 830 mV, but 40% Pt / PCNF decreased by only 7 mV from 909 mV to 902 mV. . Through this, it was confirmed that the catalyst supported on silica-PCNF was excellent in both the activity and durability of the oxygen reduction reaction.
[표 2]TABLE 2
[규칙 제91조에 의한 정정 14.05.2013] 
Figure WO-DOC-FIGURE-123
[Revision 14.05.2013 under Rule 91]
Figure WO-DOC-FIGURE-123
[표 3]TABLE 3
[규칙 제91조에 의한 정정 14.05.2013] 
Figure WO-DOC-FIGURE-125
[Revision 14.05.2013 under Rule 91]
Figure WO-DOC-FIGURE-125

Claims (18)

  1. 탄소 소재를 포함하여 이루어지는 코어;A core comprising a carbon material;
    상기 코어의 위에 형성된 실리콘카바이드; 및Silicon carbide formed on the core; And
    상기 실리콘카바이드 위에 형성된 실리콘옥사이드를 포함하는 다층 실리콘화합물이 코팅된 탄소 복합체.A carbon composite coated with a multilayer silicon compound comprising silicon oxide formed on the silicon carbide.
  2. 상기 탄소 소재는 탄소나노튜브, 탄소나노섬유, 카본블랙, 활성탄 및 흑연으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체.The carbon material is a carbon composite coated with a multilayer silicon compound, characterized in that selected from the group consisting of carbon nanotubes, carbon nanofibers, carbon black, activated carbon and graphite.
  3. 탄소 소재 및 실란 고분자를 용매에 넣고 교반하여 탄소 소재의 표면에 실란 고분자를 코팅하는 단계;Coating the silane polymer on the surface of the carbon material by stirring the carbon material and the silane polymer in a solvent;
    상기 용매를 증발시키고 실란 고분자가 코팅된 탄소 복합체를 건조시키는 단계; 및Evaporating the solvent and drying the carbon composite coated with the silane polymer; And
    상기 실란 고분자가 코팅된 탄소 복합체를 열처리하는 단계Heat-treating the carbon composite coated with the silane polymer
    를 포함하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.Method of producing a carbon composite coated with a multilayer silicon compound comprising a.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 탄소 소재는 탄소나노튜브, 탄소나노섬유, 카본블랙, 활성탄 및 흑연으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.The carbon material is a carbon nanotube, carbon nanofibers, carbon black, activated carbon and graphite, characterized in that the carbon composite coated with a multilayer silicon compound, characterized in that selected from the group consisting of graphite.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 탄소나노섬유는 플레이트리트-탄소나노섬유인 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.The carbon nanofibers are platelet-carbon nanofibers, characterized in that the coating of a multi-layer silicon compound coated carbon composite.
  6. 청구항 3에 있어서,The method according to claim 3,
    상기 실란 고분자:탄소 소재는 1~25:99~75 중량%로 혼합하여 교반하는 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.The silane polymer: the carbon material is a method for producing a multilayer silicon compound coated carbon composite, characterized in that the mixture is stirred in 1 ~ 25:99 ~ 75% by weight.
  7. 청구항 3에 있어서,The method according to claim 3,
    상기 실란 고분자는 하기 화학식 1로 표시되는 폴리실란인 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.The silane polymer is a method for producing a carbon composite coated with a multilayer silicon compound, characterized in that the polysilane represented by the formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2013003128-appb-I000007
    Figure PCTKR2013003128-appb-I000007
    여기서, R1 및 R2는 수소, 알킬기, 아릴기, 알콕시기 및 아릴옥시기로 이루어진 군에서 선택되며, R3 및 R4는 수소, 알킬기 및 아릴기로 이루어진 군에서 선택된다.Here, R1 and R2 are selected from the group consisting of hydrogen, alkyl group, aryl group, alkoxy group and aryloxy group, and R3 and R4 are selected from the group consisting of hydrogen, alkyl group and aryl group.
  8. 청구항 3에 있어서,The method according to claim 3,
    상기 용매는 n-펜탄, n-헥산, n-헵탄, n-옥탄, n-데칸, 디시클로펜탄, 벤젠, 톨루엔, 자일렌, 듀렌, 인덴, 테트라히드로나프탈렌, 데카히드로나프탈렌 및 스쿠알란으로 이루어진 군으로부터 선택되는 탄화수소계 용매; 디프로필 에테르, 에틸렌 글리콜 디메틸 에테르, 에틸렌 글리콜 디에틸 에테르, 에틸렌 글리콜 메틸 에틸 에테르, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸 에틸 에테르, 테트라히드로푸란, 테트라히드로피란 및 p-디옥산으로 이루어진 군으로부터 선택되는 에테르계 용매; 또는 프로필렌 카르보네이트, -부티로락톤, N-메틸-2-피롤리돈, 디메틸 포름아미드, 아세토니트릴 및 디메틸 술폭시드로 이루어진 군으로부터 선택되는 극성 용매; 사염화탄소, 클로로포름, 1,2-디클로로에탄, 디클로로-메탄 및 클로로벤젠으로 이루어진 군으로부터 선택되는 할로겐화 탄화수소계 유기 용매인 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.The solvent is the group consisting of n-pentane, n-hexane, n-heptane, n-octane, n-decane, dicyclopentane, benzene, toluene, xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene and squalane Hydrocarbon-based solvents selected from; Dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran and p An ether solvent selected from the group consisting of dioxane; Or a polar solvent selected from the group consisting of propylene carbonate, -butyrolactone, N-methyl-2-pyrrolidone, dimethyl formamide, acetonitrile and dimethyl sulfoxide; A method for producing a carbon composite coated with a multilayer silicon compound, characterized in that the halogenated hydrocarbon organic solvent selected from the group consisting of carbon tetrachloride, chloroform, 1,2-dichloroethane, dichloro-methane and chlorobenzene.
  9. 청구항 3에 있어서,The method according to claim 3,
    상기 실란 고분자가 코팅된 탄소 복합체를 건조시킨 후 분쇄하여 열처리시키는 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.Method for producing a multi-layer silicon compound coated carbon composite characterized in that the silane polymer is coated with a carbon composite is dried and then pulverized.
  10. 청구항 3에 있어서,The method according to claim 3,
    상기 분쇄된 실란 고분자가 코팅된 탄소 복합체의 열처리는 공기 또는 산소 분위기, 300~500℃ 의 온도에서 1~4시간 수행되는 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.Heat treatment of the pulverized silane polymer-coated carbon composite is a method of producing a carbon composite coated with a multilayer silicon compound, characterized in that performed for 1 to 4 hours in an air or oxygen atmosphere, 300 ~ 500 ℃ temperature.
  11. 청구항 3에 있어서,The method according to claim 3,
    상기 분쇄된 실란 고분자가 코팅된 탄소 복합체의 열처리는 1차 열처리 및 2차 열처리를 수행하여 이루어지는 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.The heat treatment of the pulverized silane polymer-coated carbon composites is a method of manufacturing a carbon composite coated with a multilayer silicon compound, characterized in that the first heat treatment and the second heat treatment.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 분쇄된 실란 고분자가 코팅된 탄소 복합체의 1차 열처리는 공기 또는 산소 분위기 하에서 300~500℃ 에서 1~4 시간 동안 수행되고, 2차 열처리는 불활성 기체 분위기 하에서 600~1300℃ 에서 1~4 시간 동안 수행되는 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체의 제조방법.The first heat treatment of the pulverized silane polymer-coated carbon composite material is performed for 1 to 4 hours at 300 to 500 ° C. under an air or oxygen atmosphere, and the second heat treatment is performed at 600 to 1300 ° C. for 1 to 4 hours under an inert gas atmosphere. Method of producing a carbon composite coated with a multilayer silicon compound, characterized in that carried out during.
  13. 청구항 3 내지 청구항 12 중 어느 한 항에 따라 제조된 다층 실리콘화합물이 코팅된 탄소 복합체.A carbon composite coated with a multilayer silicone compound prepared according to any one of claims 3 to 12.
  14. 청구항 13에 있어서,The method according to claim 13,
    실리콘화합물층이 표면에 0.5~5 nm로 코팅된 것을 특징으로 하는 다층 실리콘화합물이 코팅된 탄소 복합체.Carbon composite coated with a multilayer silicon compound, characterized in that the silicon compound layer is coated on the surface of 0.5 ~ 5 nm.
  15. 청구항 1 또는 청구항 2에 따른 다층 실리콘화합물이 코팅된 탄소 복합체를 포함하여 이루어지는 담지체 및 상기 담지체에 담지된 활성 금속촉매를 포함하는 연료전지용 전극촉매.An electrode catalyst for a fuel cell comprising a support comprising a carbon composite coated with a multilayer silicon compound according to claim 1 or an active metal catalyst supported on the support.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 활성 금속촉매는 백금 또는 백금-루테늄 합금인 것을 특징으로 하는 연료전지용 전극촉매.The active metal catalyst is a fuel cell electrode catalyst, characterized in that the platinum or platinum-ruthenium alloy.
  17. 청구항 13 또는 청구항 14에 따른 다층 실리콘화합물이 코팅된 탄소 복합체를 포함하여 이루어지는 담지체 및 상기 담지체에 담지된 활성 금속촉매를 포함하는 연료전지용 전극촉매.An electrode catalyst for a fuel cell comprising a support comprising a carbon composite coated with a multilayer silicon compound according to claim 13 or 14 and an active metal catalyst supported on the support.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 활성 금속촉매는 백금 또는 백금-루테늄 합금인 것을 특징으로 하는 연료전지용 전극촉매.The active metal catalyst is a fuel cell electrode catalyst, characterized in that the platinum or platinum-ruthenium alloy.
PCT/KR2013/003128 2013-04-12 2013-04-15 Multilayer silicon compound-coated carbon composite, production method therefor, and fuel cell electrode catalyst using same WO2014168273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130040372A KR101519947B1 (en) 2013-04-12 2013-04-12 Multi layered silicon compound coated carbon-based composite, preparation method thereof and electrocatalyst for fuel cell manufactured by using the same
KR10-2013-0040372 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014168273A1 true WO2014168273A1 (en) 2014-10-16

Family

ID=51689672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003128 WO2014168273A1 (en) 2013-04-12 2013-04-15 Multilayer silicon compound-coated carbon composite, production method therefor, and fuel cell electrode catalyst using same

Country Status (2)

Country Link
KR (1) KR101519947B1 (en)
WO (1) WO2014168273A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534710A (en) * 2019-07-15 2019-12-03 同济大学 Silicon/carbon composite and its preparation method and application
CN113751005A (en) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 Catalyst of carbon-coated transition metal oxide and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596741A (en) * 1982-12-06 1986-06-24 Shin-Etsu Chemical Co., Ltd. Carbon fibers having improved surface properties and a method for the preparation thereof
US6743393B1 (en) * 1998-06-17 2004-06-01 Coi Ceramics, Inc. Method for producing ceramic matrix composites
KR20070025829A (en) * 2005-09-05 2007-03-08 경남대학교 산학협력단 Oxidation resistant multi-layer coating film for carbon/carbon composites and its manufacturing process
US20080261116A1 (en) * 2007-04-23 2008-10-23 Burton David J Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
US20120264020A1 (en) * 2010-10-07 2012-10-18 Applied Sciences, Inc. Method of depositing silicon on carbon nanomaterials
KR101218508B1 (en) * 2012-01-17 2013-01-03 인하대학교 산학협력단 Ceramic-carbon composites and its process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596741A (en) * 1982-12-06 1986-06-24 Shin-Etsu Chemical Co., Ltd. Carbon fibers having improved surface properties and a method for the preparation thereof
US6743393B1 (en) * 1998-06-17 2004-06-01 Coi Ceramics, Inc. Method for producing ceramic matrix composites
KR20070025829A (en) * 2005-09-05 2007-03-08 경남대학교 산학협력단 Oxidation resistant multi-layer coating film for carbon/carbon composites and its manufacturing process
US20080261116A1 (en) * 2007-04-23 2008-10-23 Burton David J Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
US20120264020A1 (en) * 2010-10-07 2012-10-18 Applied Sciences, Inc. Method of depositing silicon on carbon nanomaterials
KR101218508B1 (en) * 2012-01-17 2013-01-03 인하대학교 산학협력단 Ceramic-carbon composites and its process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534710A (en) * 2019-07-15 2019-12-03 同济大学 Silicon/carbon composite and its preparation method and application
CN110534710B (en) * 2019-07-15 2022-07-05 同济大学 Silicon/carbon composite material and preparation method and application thereof
CN113751005A (en) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 Catalyst of carbon-coated transition metal oxide and preparation method and application thereof
CN113751005B (en) * 2020-06-05 2023-07-11 中国石油化工股份有限公司 Catalyst of carbon-coated transition metal oxide, preparation method and application thereof

Also Published As

Publication number Publication date
KR101519947B1 (en) 2015-05-14
KR20140123275A (en) 2014-10-22

Similar Documents

Publication Publication Date Title
WO2020096338A1 (en) Method for preparing single-atom catalyst supported on carbon support
WO2016006943A1 (en) Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2014030853A1 (en) Method for preparing silicon oxide/carbon composite for anode active material of lithium secondary battery
WO2012157834A1 (en) Method for manufacturing an alloy catalyst for a fuel cell using silica coating
WO2021006439A1 (en) Electrochemical water decomposition catalyst and method for producing same
WO2014030782A1 (en) Carbon fibre composite coated with silicon carbide, and production method for same
WO2020231169A1 (en) Anode active material comprising metal phosphide coating on surface of carbon material, preparation method therefor, nonaqueous lithium secondary battery comprising anode active material, and manufacturing method therefor
WO2019182356A1 (en) High strength graphene composite fiber and method for manufacturing same
WO2011122890A2 (en) Method for coating oxidation protective layer for carbon/carbon composite, carbon heater, and cooker
WO2019098660A9 (en) Anode active material, preparation method therefor, and nonaqueous lithium secondary battery comprising same anode active material, and preparation method therefor
WO2013100455A1 (en) Silicon carbide powder, method for manufacturing the same and silicon carbide sintered body, method for manufacturing the same
WO2019059570A1 (en) Method for producing fuel cell catalyst, and fuel cell catalyst produced thereby
WO2023013938A1 (en) Conductive thin film production method using expandable graphite
WO2014168273A1 (en) Multilayer silicon compound-coated carbon composite, production method therefor, and fuel cell electrode catalyst using same
WO2016043396A1 (en) Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby
KR101495045B1 (en) Amorphous silicon oxide coated carbon-based composite, preparation method thereof and electrocatalyst for fuel cell manufactured by using the same
WO2020105926A1 (en) Sulfur-doped reduced graphene oxide, manufacturing method therefor, and polyimide nanocomposite containing sulfur-doped reduced graphene oxide
WO2020091199A1 (en) Method for preparing negative electrode active material, for lithium secondary battery, comprising silica-metal composite, and negative electrode active material prepared thereby
WO2014084636A1 (en) Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same
WO2015057026A1 (en) Ion transport material, electrolyte membrane comprising same, and method for producing same
WO2021125543A1 (en) Hydrogen evolution reaction catalyst comprising rhodium-nickel alloy nanofibers, and method for manufacturing rhodium-nickel alloy nanofibers
WO2016129774A1 (en) Method for preparing vertically aligned carbon nanotube aggregates
WO2012015261A2 (en) Silicon carbide and method for manufacturing the same
WO2022075565A1 (en) Lithium-sulfur battery cathode using fabric material, lithium-sulfur battery comprising same, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881879

Country of ref document: EP

Kind code of ref document: A1