WO2016129774A1 - Method for preparing vertically aligned carbon nanotube aggregates - Google Patents

Method for preparing vertically aligned carbon nanotube aggregates Download PDF

Info

Publication number
WO2016129774A1
WO2016129774A1 PCT/KR2015/011383 KR2015011383W WO2016129774A1 WO 2016129774 A1 WO2016129774 A1 WO 2016129774A1 KR 2015011383 W KR2015011383 W KR 2015011383W WO 2016129774 A1 WO2016129774 A1 WO 2016129774A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
zirconium
metal
vertically aligned
forming
Prior art date
Application number
PCT/KR2015/011383
Other languages
French (fr)
Korean (ko)
Inventor
김준형
유홍
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2016129774A1 publication Critical patent/WO2016129774A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing vertically aligned carbon nanotube assemblies, and more particularly, to a method for producing vertically aligned carbon nanotube assemblies with high productivity.
  • Carbon nanotubes are carbon structures in which an atomic layer of graphite has a cylindrical shape, and its length is very long compared to its diameter.
  • CNTs are conductive, extremely high in strength, and chemically stable, they are prepared in the form of powders, pastes, yarns, thin films, and sheets, and exhibit excellent properties when applied to electrical, electronic, electrochemical, and energy related devices.
  • the manufacturing method of CNT is divided into a technique of making a powder form which does not have a large degree of orientation and a technique of making a form oriented vertically on a substrate.
  • a representative technique for making powder forms is the fluidized bed chemical vapor deposition method.
  • a thin layer of catalyst material is formed using a silicon or metal substrate on which a ceramic buffer layer is formed, and the catalyst layer is a dry coating method applied in a vacuum state using sputtering or e-beam, and a solution containing a catalyst element.
  • the spin coating method (dip coating) and dip coating method (dip coating) is mainly used as a coating method.
  • Vertically oriented CNTs can be broadly divided into two types. One is that when a part of vertically oriented CNTs are pulled horizontally on the substrate surface, the surrounding CNTs are collectively connected and drawn so that they can be made into a thin, high-transmittance CNT sheet. Some drawable CNTs can be drawn and they cannot be drawn to form CNT sheets or CNT yarns.
  • Drawable CNTs have the advantage of making CNT sheets and CNT yarns easy to dry, which is very advantageous for applications.
  • the thicknesses of the buffer layer and the catalyst layer should be applied uniformly and thinly, and until now, they are manufactured by a sputtering method or a dry process using e-beam, which requires high vacuum, and thus the manufacturing cost is high.
  • a sputtering method or a dry process using e-beam which requires high vacuum, and thus the manufacturing cost is high.
  • Non-Patent Document 1 Xavier Lepro et al., “Spinnable carbon nanotube forests grown on thin, flexible metallic substrates”, CARBON 48 (2010) 3621-3627)
  • An object of the present invention is to provide a method for producing a vertically aligned carbon nanotube aggregate through a wet method of high productivity.
  • A applying a buffer layer-forming solution containing a metal compound containing zirconium and an organic solvent to at least one side of the substrate to form a buffer layer;
  • B preparing a solution for forming a catalyst layer comprising an organic solvent and a catalyst precursor compound comprising at least one metal selected from the group consisting of iron, cobalt and nickel;
  • C coating the catalyst layer forming solution on the buffer layer to form a catalyst layer;
  • D forming a vertically aligned carbon nanotube aggregate on the catalyst layer.
  • the metal compound comprising zirconium is a metal organic compound comprising zirconium, a metal salt comprising zirconium or a mixture thereof.
  • zirconium-containing metal compound is zirconium pentanedionate, zirconium acetate, zirconium acrylate, zirconium acetylacetonate and zirconium acetylacetonate At least one selected from the group consisting of zirconium hydroxide, a method for producing a vertically aligned carbon nanotube aggregate.
  • step (A) further comprises a heat treatment step after application of the buffer layer forming solution.
  • step (A) is a layer containing amorphous zirconium oxide.
  • the catalyst precursor compound is a metal organic compound, a metal salt or a mixture thereof comprising at least one metal selected from the group consisting of iron, cobalt and nickel. .
  • catalyst precursor compound according to item 1 wherein the catalyst precursor compound is at least one selected from the group consisting of pentanedionate, nitrate, sulfate, hydrochloride, acetate and formate selected from the group consisting of iron, cobalt and nickel , Method for producing vertically aligned carbon nanotube aggregates.
  • the molar ratio of item 10, wherein the molar ratio of at least one metal of iron, cobalt and nickel of the catalyst precursor compound to a metal comprising aluminum or zirconium of the compound for forming the catalyst carrier is 1: 5 to 5: 1.
  • step (C) further comprises a heat treatment step after application of the catalyst layer forming solution.
  • step (D) is performed by chemical vapor deposition.
  • the manufacturing method of the present invention can produce vertically aligned carbon nanotube aggregates by wet method, for example, spin coating method or dip coating method, under atmospheric pressure, it is possible to introduce them into continuous processes such as roll-to-tol process.
  • Productivity allows the production of vertically aligned carbon nanotube assemblies.
  • the carbon nanotubes when a portion of the vertically aligned carbon nanotubes is pulled in a horizontal direction on the substrate surface, the carbon nanotubes are collectively connected and drawn to form a thin, high transmittance carbon nanotube sheet. It can be made into, and can be made into carbon nanotube yarns by giving rotation upon drawing.
  • the carbon nanotube sheet and the carbon nanotube seal have high electrical conductivity and high strength, and thus may be very useful for transparent electrodes, battery current collectors, supercapacitors, and the like.
  • FIG. 1 is a view schematically showing a substrate, a buffer layer, a catalyst layer, and a vertically aligned CNT aggregate according to the manufacturing method of the present invention.
  • Example 2 is a scanning electron micrograph of the surface of the buffer layer according to Example 1;
  • FIG. 3 is a scanning electron micrograph of the vertically aligned CNT aggregate prepared according to Example 1.
  • Example 4 is a scanning electron micrograph of a CNT yarn prepared by drawing while rotating the vertically oriented CNT aggregate prepared according to Example 1.
  • FIG. 5 is a photograph of a CNT sheet prepared by drawing a portion of the vertically oriented CNT aggregate prepared according to Example 1.
  • the present invention comprises the steps of: (A) applying a buffer layer-forming solution containing a metal compound containing zirconium and an organic solvent to at least one surface of the substrate to form a buffer layer; (B) preparing a solution for forming a catalyst layer comprising an organic solvent and a catalyst precursor compound comprising at least one metal selected from the group consisting of iron, cobalt and nickel; (C) coating the catalyst layer forming solution on the buffer layer to form a catalyst layer; And (D) forming a carbon nanotube aggregate on the catalyst layer, to which a wet process can be applied.
  • a buffer layer forming solution containing a metal compound containing zirconium and an organic solvent is applied to at least one surface of a substrate to form a buffer layer ((A) step).
  • the substrate may be used without particular limitation as long as it has the durability to withstand the process of forming the buffer layer, the catalyst layer and the carbon nanotube aggregate, and it may be desirable to be able to maintain the shape even at a high temperature of about 800 ° C.
  • Such substrates include, for example, glass, polymers, other organic-inorganic thin films, metals, and the like.
  • polymers silicon, quartz, glass, mica, graphite, diamond, ceramics, iron, nickel, chromium, Molybdenum, tungsten, titanium, aluminum, manganese, cobalt, copper, silver, gold, platinum, niobium, tantalum, lead, zinc, gallium, indium, antimony, and the like. It can be used in the form of alloys above.
  • the flexible thin film may be used.
  • the metal compound containing zirconium contained in the buffer layer forming solution is a main component for forming the buffer layer, which allows the buffer layer to be stably formed by a wet method, and the vertically aligned carbon nanotubes formed thereafter may be horizontally drawn.
  • It may be a metal organic compound containing zirconium, a metal salt containing zirconium, or a mixture thereof, and more specifically, zirconium pentanedionate, zirconium acetate, zirconium acrylate, zirconium acrylate For example, at least one selected from the group consisting of zirconium acetylacetonate and zirconium hydroxide.
  • the organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving / dispersing a metal compound containing zirconium.
  • organic solvent capable of dissolving / dispersing a metal compound containing zirconium.
  • alcohol, acetone, dimethylformamide, n-methylpyrrolidone, etc. may be used alone or in combination of two or more. It can be mixed and used.
  • the metal cation concentration of the solution for buffer layer formation is 0.01-0.2M.
  • the buffer layer can be formed to a suitable thickness.
  • the thickness of a buffer layer is 2-30 nm. The thickness of the buffer layer can be adjusted by adjusting the application rate, the number of application, etc. in addition to the concentration of the buffer layer forming solution.
  • the buffer layer according to the present invention is formed through a wet method in which the above-mentioned buffer layer forming solution is applied to a substrate.
  • the method of applying the buffer layer forming solution to the substrate is not particularly limited as long as it is a wet coating process known in the art, and examples thereof include spin coating or dip coating, but are not limited thereto.
  • the buffer layer forming solution is applied to the substrate, the buffer layer is formed through a heat treatment process in which natural drying or predetermined heat is applied.
  • the zirconium-containing metal compound is thermally decomposed so that the buffer layer includes amorphous zirconium oxide, which may be more preferable in terms of productivity of the carbon nanotubes, stability of the buffer layer, and the like.
  • the condition of the heat treatment is not particularly limited as long as it can produce amorphous zirconium oxide, for example, may be performed for 5 to 30 minutes at a temperature of 250 to 500 °C.
  • step (B) a solution for forming a catalyst layer comprising a catalyst precursor compound and an organic solvent including at least one metal selected from the group consisting of iron, cobalt and nickel is prepared (step (B)).
  • the catalyst precursor compound forms a catalyst for growing vertically aligned carbon nanotubes
  • the present invention employs metal organic compounds, metal salts or mixtures thereof comprising at least one metal selected from the group consisting of iron, cobalt and nickel. .
  • At least one pentanedionate, nitrate, sulfate, hydrochloride, acetate, formate, etc. selected from the group consisting of iron, cobalt and nickel may be used alone or in combination of two or more. have.
  • the organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving / dispersing the catalyst precursor compound.
  • an alcohol, acetone, dimethylformamide, n-methylpyrrolidone, or the like may be used alone or in combination of two or more thereof. Can be.
  • the catalyst layer forming solution may further include a compound for forming a catalyst carrier, which is a metal organic compound or metal salt containing aluminum or zirconium.
  • the catalyst carrier may be more desirable for uniform growth of vertically oriented carbon nanotubes, as it prevents agglomeration of the catalyst and helps uniform dispersion.
  • More specific examples of the compound for forming the catalyst carrier may be used alone or in combination of two or more of pentanedionate, nitrate, sulfate, hydrochloride, acetate, formate, and the like of aluminum or zirconium.
  • the molar ratio of at least one metal of iron, cobalt and nickel of the catalyst precursor compound and the metal including aluminum or zirconium of the compound for forming the catalyst carrier is 1: 5 to It is preferable to mix so that it becomes 5: 1. Dispersion of the catalyst in the above range can be performed most effectively.
  • the metal cation concentration of the solution for catalyst layer formation is 0.01-0.2M. Within this concentration, the catalyst layer can be formed to a suitable thickness. At this time, the metal cation includes both the metal of the catalyst precursor compound and the metal of the catalyst carrier. It is preferable that the thickness of a catalyst layer is 2-30 nm. The thickness of the catalyst layer may be adjusted by adjusting the coating speed, the number of coating, etc., in addition to the concentration of the catalyst layer forming solution.
  • step (C) the catalyst layer forming solution is applied onto the buffer layer to form a catalyst layer.
  • the catalyst layer according to the present invention is formed through a wet method in which the above-described solution for forming a catalyst layer is applied onto the buffer layer in the same manner as the buffer layer.
  • the applicable wet coating process is also not particularly limited, and for example, spin coating or dip coating, but is not limited thereto.
  • the catalyst layer forming solution is applied onto the buffer layer
  • the catalyst layer is formed by a natural drying or a heat treatment process in which a predetermined heat is applied.
  • the conditions of the heat treatment are not particularly limited, but may be performed, for example, for 5 to 30 minutes at a temperature of 100 to 800 ° C.
  • step (D) To form a vertically aligned carbon nanotube aggregate on the catalyst layer (step (D)).
  • Forming the vertically aligned carbon nanotube aggregate on the catalyst layer can be used without particular limitation the methods known in the art, preferably chemical vapor deposition method can be used.
  • the heating rate may be performed at 40 to 700 ° C. per minute.
  • 1 is a schematic view showing a complete layer, a catalyst layer, and grown CNTs on a metal substrate.
  • the vertically aligned carbon nanotube aggregates prepared according to the production method of the present invention may be produced as carbon nanotube thin films (paper, sheet, film) through a method known in the art.
  • the vertically aligned carbon nanotube assembly according to the present invention is capable of drawing in the horizontal direction, the sheet produced by drawing or the yarn produced by rotation during drawing has a high electrical conductivity and high strength transparent electrode, battery current collector, It can be very useful for supercapacitor.
  • Zirconium acetate was dissolved in a 200 cc solution of methyl alcohol to a metal cation concentration of 0.09 mole.
  • a 100 ⁇ m thick STS 304 stainless steel thin film was immersed in the solution and maintained for 5 seconds, and was pulled up at a pulling speed of 6 cm / min at 25 ° C.
  • the substrate was heat-treated at 300 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a buffer layer.
  • the heat-treated substrate had a stable buffer layer applied to the surface even after several months.
  • the scanning electron micrograph of the surface of the completed layer thus prepared is shown in FIG. 2.
  • the growth furnace was heated to 750 ° C. in 2 minutes while simultaneously injecting 450 sccm of argon gas, 10 sccm of hydrogen gas, and 120 sccm of ethylene gas. After growing for 5 minutes, the atmosphere in the growth furnace was changed to argon and cooled to room temperature to prepare a vertically oriented CNT aggregate. Scanning electron micrographs of the CNTs thus prepared are shown in FIG. 3.
  • the scanning electron micrograph of the CNT yarn prepared by rotating the prepared vertically oriented CNT aggregate is shown in FIG. 4.
  • FIG. 5 A photograph of a CNT sheet prepared by drawing a portion of the prepared vertically oriented CNT aggregate is shown in FIG. 5.
  • Zirconium acetate was dissolved in a 200 cc solution of methyl alcohol to a metal cation concentration of 0.09 mole.
  • a 100 ⁇ m thick STS 304 stainless steel thin film was immersed in the solution and maintained for 5 seconds, and was pulled up at a pulling speed of 6 cm / min at 25 ° C.
  • the substrate was heat-treated at 400 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a buffer layer.
  • the heat-treated substrate had a stable buffer layer applied to the surface even after several months.
  • the growth furnace was heated to 770 ° C in 20 minutes while simultaneously injecting 450 sccm of argon gas, 150 sccm of hydrogen gas, and 60 sccm of ethylene gas. After the growth was maintained at 750 ° C. for 1 minute, the atmosphere in the growth furnace was changed to argon, and then cooled to room temperature to prepare a vertically aligned CNT aggregate.
  • Zirconium acetate was dissolved in a 200 cc solution of methyl alcohol so that the metal cation concentration was 0.1 mole. After immersing the 100 mm thick STS 304 stainless steel thin film in the solution and maintained for 5 seconds, it was pulled up at a pulling speed of 6 cm / min at 25 °C room temperature. After coating, the substrate was heat-treated at 400 ° C. for 10 minutes and cooled to prepare a metal substrate having a buffer layer applied thereto.
  • the growth furnace was heated to 750 ° C. in 10 minutes while simultaneously injecting 450 sccm of argon gas, 100 sccm of hydrogen gas, and 50 sccm of ethylene gas. After growing for 2 minutes at 760 °C, the atmosphere in the growth furnace was changed to argon and then cooled to room temperature to prepare a vertically aligned CNT aggregate.
  • Zirconium acetate was dissolved in a 200 cc solution of methyl alcohol to a metal cation concentration of 0.09 mole. After immersing the 100 mm thick STS 304 stainless steel thin film in the solution and maintained for 5 seconds, it was pulled up at a pulling speed of 6 cm / min at 25 °C room temperature. After the coating, the substrate was heat-treated at 300 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a buffer layer. The heat-treated substrate had a stable buffer layer applied to the surface even after several months.
  • zirconium pentanedionate and cobalt nitrate were weighed so that the atomic ratio of zirconium and cobalt was 1: 2, and dissolved in an ethyl alcohol solution so that the cation concentration was 0.05 mole (mole) to prepare a solution for forming a catalyst layer.
  • the solution was maintained for 5 seconds and then pulled up at a pulling rate of 6 cm / min at 25 ° C. using a dip coater.
  • the substrate was heat-treated at 300 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a catalyst layer.
  • the heat-treated substrate was stable in the catalyst layer applied to the surface even after several months.
  • the growth furnace was heated to 750 ° C. in 2 minutes while simultaneously injecting 450 sccm of argon gas, 20 sccm of hydrogen gas, and 120 sccm of ethylene gas, and then 750 ° C. After growing for 5 minutes, the atmosphere in the growth furnace was changed to argon and cooled to room temperature to prepare a vertically oriented CNT aggregate.
  • catalyst layer 140 vertically aligned carbon nanotube assembly

Abstract

The present invention relates to a method for preparing vertically aligned carbon nanotube aggregates and, more specifically, to a method for preparing vertically aligned carbon nanotube aggregates, the method enabling the application of a wet process and comprising the steps of: (A) forming a buffer layer by coating, on at least one surface of a substrate, a solution, which comprises an organic solvent and a metal compound containing zirconium, for forming a buffer layer; (B) preparing a solution for forming a catalyst layer, comprising an organic solvent, and a catalyst precursor compound containing at least one metal selected from the group consisting of iron, cobalt and nickel; (C) forming a catalyst layer by coating, on the buffer layer, the solution for forming a catalyst layer; and (D) forming carbon nanotube aggregates on the catalyst layer.

Description

수직배향 탄소 나노 튜브 집합체의 제조방법Method for producing vertically aligned carbon nanotube assemblies
본 발명은 수직배향 탄소 나노 튜브 집합체의 제조방법에 관한 것이며, 보다 상세하게는 높은 생산성으로 수직배향 탄소 나노 튜브 집합체를 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for producing vertically aligned carbon nanotube assemblies, and more particularly, to a method for producing vertically aligned carbon nanotube assemblies with high productivity.
탄소 나노 튜브(CNT)는 흑연 한 원자 층이 원통형으로 말린 형태를 가지며 길이가 직경에 비해 매우 긴 탄소 구조체이다.Carbon nanotubes (CNTs) are carbon structures in which an atomic layer of graphite has a cylindrical shape, and its length is very long compared to its diameter.
CNT는 도전성을 갖는 동시에 강도가 매우 크며 화학적으로 안정하기 때문에 분말, 페이스트, 실(yarn), 얇은 필름, 시트 형태로 준비하여 전기, 전자, 전기화학, 에너지 관련 소자에 응용할 때 우수한 특성을 나타낸다. Since CNTs are conductive, extremely high in strength, and chemically stable, they are prepared in the form of powders, pastes, yarns, thin films, and sheets, and exhibit excellent properties when applied to electrical, electronic, electrochemical, and energy related devices.
CNT의 제조방법으로는 크게 배향성을 갖지 않는 분말 형태로 만드는 기술과 기판 위에 수직으로 배향된 형태로 만드는 기술로 나누어진다. 분말 형태로 만드는 대표 기술로는 유동층 화학기상증착법(fluidized bed chemical vapor deposition method)이 있다.The manufacturing method of CNT is divided into a technique of making a powder form which does not have a large degree of orientation and a technique of making a form oriented vertically on a substrate. A representative technique for making powder forms is the fluidized bed chemical vapor deposition method.
수직배향 CNT를 제조하기 위해서는 얇은 층의 촉매 물질을 세라믹 완충층이 형성된 실리콘 혹은 금속 기판을 사용하며, 촉매층은 스퍼터링 혹은 e-beam을 사용하는 진공 상태에서 도포하는 건식도포법과, 촉매 원소를 함유하는 용액을 사용하고 상압에서 도포하는 습식도포법이 있으며, 습식도포법에서는 도포 방법으로 주로 스핀코팅법(spin coating) 및 딥코팅법(dip coating)이 사용된다.In order to manufacture vertically oriented CNTs, a thin layer of catalyst material is formed using a silicon or metal substrate on which a ceramic buffer layer is formed, and the catalyst layer is a dry coating method applied in a vacuum state using sputtering or e-beam, and a solution containing a catalyst element. There is a wet coating method that is applied at atmospheric pressure using a wet coating method, the spin coating method (dip coating) and dip coating method (dip coating) is mainly used as a coating method.
수직 배향 CNT는 다시 두 종류로 크게 구분할 수 있다. 하나는 수직배향된 CNT의 일부를 기판 표면에 수평 방향으로 잡아당길 때 주위의 CNT가 집단적으로 연결되어 인발됨으로써 얇고 광투과율이 높은 CNT 시트로 제조될 수 있으며 인발 시에 회전을 주면 카본 CNT 실로 만들 수 있는 수직배향 CNT(drawable CNT)와, 인발이 되지 않아 CNT 시트나 CNT 실로 만들 수 없는 것이 있다.Vertically oriented CNTs can be broadly divided into two types. One is that when a part of vertically oriented CNTs are pulled horizontally on the substrate surface, the surrounding CNTs are collectively connected and drawn so that they can be made into a thin, high-transmittance CNT sheet. Some drawable CNTs can be drawn and they cannot be drawn to form CNT sheets or CNT yarns.
Drawable CNT는 CNT 시트와 CNT 실을 건식법으로 용이하게 만들 수 있는 장점이 있어 응용에 매우 유리하다.Drawable CNTs have the advantage of making CNT sheets and CNT yarns easy to dry, which is very advantageous for applications.
그러나 drawable CNT를 제조하기 위해서는 완충층과 촉매층의 두께를 얇고 균일하게 도포하여야 하는데, 현재까지는 고진공을 요구하는 스퍼터링법(sputtering)이나 e-beam을 사용하는 건식 공정으로 제조하고 있어 제조 비용이 높다. 예를 들면, 스테인레스 금속 기판 위에 비정질 실리콘산화물을 도포하고 그 위에 고-진공에서 철 촉매층을 도포하여 drawable CNT 제조에 성공한 예는 알려진 바가 있다(Xavier Lepro등, “Spinnable carbon nanotube forests grown on thin, flexible metallic substrates”, CARBON 48 (2010) 3621-3627). However, in order to manufacture drawable CNTs, the thicknesses of the buffer layer and the catalyst layer should be applied uniformly and thinly, and until now, they are manufactured by a sputtering method or a dry process using e-beam, which requires high vacuum, and thus the manufacturing cost is high. For example, it has been known to apply an amorphous silicon oxide on a stainless metal substrate and then to a high-vacuum iron catalyst layer to produce a drawable CNT (Xavier Lepro et al., “Spinnable carbon nanotube forests grown on thin, flexible metallic substrates ”, CARBON 48 (2010) 3621-3627).
[선행기술문헌][Preceding technical literature]
[비특허문헌][Non-Patent Documents]
(비특허문헌 1)Xavier Lepro 등, “Spinnable carbon nanotube forests grown on thin, flexible metallic substrates”, CARBON 48 (2010) 3621-3627)(Non-Patent Document 1) Xavier Lepro et al., “Spinnable carbon nanotube forests grown on thin, flexible metallic substrates”, CARBON 48 (2010) 3621-3627)
본 발명은 생산성이 높은 습식법을 통한 수직배향 탄소 나노 튜브 집합체의 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a vertically aligned carbon nanotube aggregate through a wet method of high productivity.
또한, 본 발명은 수평 방향으로 인발될 수 있는 수직배향 탄소 나노 튜브 집합체의 습식 제조 방법을 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a wet manufacturing method of vertically oriented carbon nanotube assemblies that can be drawn in a horizontal direction.
1. (A) 지르코늄을 포함하는 금속 화합물 및 유기용매를 포함하는 완충층 형성용 용액을 기판의 적어도 일면에 도포하여 완충층을 형성하는 단계; (B) 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 금속을 포함하는 촉매 전구체 화합물 및 유기용매를 포함하는 촉매층 형성용 용액을 제조하는 단계; (C) 상기 완충층 상에 상기 촉매층 형성용 용액을 도포하여 촉매층을 형성하는 단계; 및 (D) 상기 촉매층 상에 수직배향 탄소 나노 튜브 집합체를 형성하는 단계;를 포함하는 수직배향 탄소 나노 튜브 집합체의 제조방법.1. (A) applying a buffer layer-forming solution containing a metal compound containing zirconium and an organic solvent to at least one side of the substrate to form a buffer layer; (B) preparing a solution for forming a catalyst layer comprising an organic solvent and a catalyst precursor compound comprising at least one metal selected from the group consisting of iron, cobalt and nickel; (C) coating the catalyst layer forming solution on the buffer layer to form a catalyst layer; And (D) forming a vertically aligned carbon nanotube aggregate on the catalyst layer.
2. 항목 1에 있어서, 상기 지르코늄을 포함하는 금속 화합물은 지르코늄을 포함하는 금속 유기화합물, 지르코늄을 포함하는 금속염 또는 이들의 혼합물인, 수직배향 탄소 나노 튜브 집합체의 제조방법.2. The method according to item 1, wherein the metal compound comprising zirconium is a metal organic compound comprising zirconium, a metal salt comprising zirconium or a mixture thereof.
3. 항목 1에 있어서, 상기 지르코늄을 포함하는 금속 화합물은 지르코늄 펜탄디오네이트(zirconium pentanedionate), 지르코늄 아세테이트(zirconium acetate), 지르코늄 아크릴레이트(zirconium acrylate), 지르코늄 아세틸아세토네이트(zirconium acetylacetonate) 및 지르코늄 하이드록사이드(zirconium hydroxide)로 이루어진 군에서 선택되는 적어도 하나인, 수직배향 탄소 나노 튜브 집합체의 제조방법.3. The metal compound according to item 1, wherein the zirconium-containing metal compound is zirconium pentanedionate, zirconium acetate, zirconium acrylate, zirconium acetylacetonate and zirconium acetylacetonate At least one selected from the group consisting of zirconium hydroxide, a method for producing a vertically aligned carbon nanotube aggregate.
4. 항목 1에 있어서, 상기 (A) 단계 및 (B) 단계의 유기용매는 서로 독립적으로 알코올, 아세톤, 디메틸포름아미드 및 n-메틸피롤리돈으로 이루어진 군에서 선택되는 적어도 하나인, 수직배향 탄소 나노 튜브 집합체의 제조방법.4. The vertical alignment according to item 1, wherein the organic solvents of (A) and (B) are at least one selected from the group consisting of alcohol, acetone, dimethylformamide and n-methylpyrrolidone independently of each other. Method for producing carbon nanotube aggregates.
5. 항목 1에 있어서, 상기 완충층 형성용 용액의 금속 양이온 농도는 0.01 내지 0.2M인, 수직배향 탄소 나노 튜브 집합체의 제조방법.5. The method according to item 1, wherein the metal cation concentration of the buffer layer forming solution is 0.01 to 0.2M.
6. 항목 1에 있어서, 상기 (A) 단계는 완충층 형성용 용액의 도포 후 열처리 공정을 더 포함하는, 수직배향 탄소 나노 튜브 집합체의 제조방법.6. The method of item 1, wherein step (A) further comprises a heat treatment step after application of the buffer layer forming solution.
7. 항목 6에 있어서, 상기 (A) 단계에서 형성된 완충층은 비정질 지르코늄 산화물을 포함하여 이루어지는 층인, 수직배향 탄소 나노 튜브 집합체의 제조방법.7. The method for producing a vertically aligned carbon nanotube aggregate according to item 6, wherein the buffer layer formed in step (A) is a layer containing amorphous zirconium oxide.
8. 항목 1에 있어서, 상기 촉매 전구체 화합물은 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 금속을 포함하는 금속 유기화합물, 금속염 또는 이들의 혼합물인, 수직배향 탄소 나노 튜브 집합체의 제조방법.8. The method according to item 1, wherein the catalyst precursor compound is a metal organic compound, a metal salt or a mixture thereof comprising at least one metal selected from the group consisting of iron, cobalt and nickel. .
9. 항목 1에 있어서, 상기 촉매 전구체 화합물은 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 펜탄디오네이트, 질산염, 황산염, 염산염, 아세트산염 및 포름산염으로 이루어진 군에서 선택되는 적어도 하나인, 수직배향 탄소 나노 튜브 집합체의 제조방법.9. The catalyst precursor compound according to item 1, wherein the catalyst precursor compound is at least one selected from the group consisting of pentanedionate, nitrate, sulfate, hydrochloride, acetate and formate selected from the group consisting of iron, cobalt and nickel , Method for producing vertically aligned carbon nanotube aggregates.
10. 항목 1에 있어서, 상기 촉매층 형성용 용액은, 알루미늄 또는 지르코늄을 포함하는 금속 유기화합물 또는 금속염인 촉매 담지체 형성용 화합물을 더 포함하는, 수직배향 탄소 나노 튜브 집합체의 제조방법.10. The method for producing a vertically aligned carbon nanotube assembly according to item 1, wherein the solution for forming a catalyst layer further comprises a compound for forming a catalyst carrier which is a metal organic compound or metal salt containing aluminum or zirconium.
11. 항목 10에 있어서, 상기 촉매 담지체 형성용 화합물은, 알루미늄 또는 지르코늄의 펜탄디오네이트, 질산염, 황산염, 염산염, 아세트산염 및 포름산염으로 이루어진 군에서 선택되는 적어도 하나인, 수직배향 탄소 나노 튜브 집합체의 제조방법.11. The vertically aligned carbon nanotube according to item 10, wherein the compound for forming the catalyst carrier is at least one selected from the group consisting of pentanedionate, nitrate, sulfate, hydrochloride, acetate and formate of aluminum or zirconium. Method of making aggregates.
12. 항목 10에 있어서, 상기 촉매 전구체 화합물의 철, 코발트 및 니켈 중 적어도 하나의 금속과 상기 촉매 담지체 형성용 화합물의 알루미늄 또는 지르코늄을 포함하는 금속의 몰비는 1:5 내지 5:1인, 수직배향 탄소 나노 튜브 집합체의 제조방법.12. The molar ratio of item 10, wherein the molar ratio of at least one metal of iron, cobalt and nickel of the catalyst precursor compound to a metal comprising aluminum or zirconium of the compound for forming the catalyst carrier is 1: 5 to 5: 1. Method for producing vertically aligned carbon nanotube aggregates.
13. 항목 1에 있어서, 상기 촉매층 형성용 용액의 금속 양이온 농도는 0.01 내지 0.2M인, 수직배향 탄소 나노 튜브 집합체의 제조방법.13. The method for producing a vertically aligned carbon nanotube aggregate according to item 1, wherein the metal cation concentration of the solution for forming a catalyst layer is 0.01 to 0.2M.
14. 항목 1에 있어서, 상기 (C) 단계는 촉매층 형성용 용액의 도포 후 열처리 공정을 더 포함하는, 수직배향 탄소 나노 튜브 집합체의 제조방법.14. The method of item 1, wherein step (C) further comprises a heat treatment step after application of the catalyst layer forming solution.
15. 항목 1에 있어서, 상기 (A) 단계 및 (C) 단계에서 완충층 형성용 용액 및 촉매층 형성용 용액의 도포는 습식법으로 수행되는, 수직배향 탄소 나노 튜브 집합체의 제조방법.15. The method according to item 1, wherein the application of the buffer layer forming solution and the catalyst layer forming solution in steps (A) and (C) is performed by a wet method.
16. 항목 15에 있어서, 상기 습식법은 스핀 코팅법 또는 딥코팅법인, 수직배향 탄소 나노 튜브 집합체의 제조방법.16. The method according to item 15, wherein the wet method is a spin coating method or a dip coating method.
17. 항목 1에 있어서, 상기 (D) 단계는 화학기상증착으로 수행되는, 수직배향 탄소 나노 튜브 집합체의 제조방법.17. The method according to item 1, wherein step (D) is performed by chemical vapor deposition.
18. 항목 1 내지 17 중 어느 한 항의 방법으로 제조된 수직배향 탄소 나노 튜브 집합체.18. Oriented carbon nanotube aggregates prepared by the method of any one of items 1 to 17.
19. 항목 18에 있어서, 수평 방향으로 인발이 가능한 수직배향 탄소 나노 튜브 집합체.19. The vertically aligned carbon nanotube assembly according to item 18, wherein the vertically oriented carbon nanotube assemblies are drawable in the horizontal direction.
20. 항목 18의 수직배향 탄소 나노 튜브 집합체로부터 제조되는 탄소 나노 튜브 박막.20. A carbon nanotube thin film prepared from the vertically aligned carbon nanotube aggregate of item 18.
21. 항목 18의 수직배향 탄소 나노 튜브 집합체로부터 제조되는 탄소 나노 튜브 실.21. Carbon nanotube seals prepared from the vertically aligned carbon nanotube assemblies of item 18.
본 발명의 제조방법은 대기압 하에서 습식법, 예를 들면 스핀 코팅법이나 딥코팅법을 통해 수직배향 탄소 나노 튜브 집합체를 제조할 수 있으므로, 롤-투-톨 공정과 같은 연속 공정에 도입이 가능하여 높은 생산성으로 수직배향 탄소 나노 튜브 집합체를 제조할 수 있다.Since the manufacturing method of the present invention can produce vertically aligned carbon nanotube aggregates by wet method, for example, spin coating method or dip coating method, under atmospheric pressure, it is possible to introduce them into continuous processes such as roll-to-tol process. Productivity allows the production of vertically aligned carbon nanotube assemblies.
또한, 본 발명의 제조방법으로 제조된 수직배향 탄소 나노 튜브 집합체는 그 일부를 기판 표면에 수평 방향으로 잡아당기면 주위의 카본 나노튜브가 집단적으로 연결되어 인발됨으로써, 얇고 광투과율이 높은 탄소 나노 튜브 시트로 제조될 수 있으며, 인발 시에 회전을 주면 탄소 나노 튜브 실(yarn)로 만들 수 있다. 이러한 탄소 나노 튜브 시트 및 탄소 나노 튜브 실은 높은 전기전도성과 높은 강도를 지녀 투명 전극, 전지 집전체, supercapacitor 등에 매우 유용하게 사용될 수 있다.In addition, in the vertically aligned carbon nanotube assembly manufactured by the manufacturing method of the present invention, when a portion of the vertically aligned carbon nanotubes is pulled in a horizontal direction on the substrate surface, the carbon nanotubes are collectively connected and drawn to form a thin, high transmittance carbon nanotube sheet. It can be made into, and can be made into carbon nanotube yarns by giving rotation upon drawing. The carbon nanotube sheet and the carbon nanotube seal have high electrical conductivity and high strength, and thus may be very useful for transparent electrodes, battery current collectors, supercapacitors, and the like.
도 1은 본 발명의 제조방법에 따른, 기판, 완충층, 촉매층 및 수직배향 CNT 집합체를 개략적으로 나타낸 도면이다.1 is a view schematically showing a substrate, a buffer layer, a catalyst layer, and a vertically aligned CNT aggregate according to the manufacturing method of the present invention.
도 2는 실시예 1에 따른 완충층 표면의 주사전자현미경 사진이다.2 is a scanning electron micrograph of the surface of the buffer layer according to Example 1;
도 3은 실시예 1에 따라 제조된 수직배향 CNT 집합체의 주사전자현미경 사진이다.3 is a scanning electron micrograph of the vertically aligned CNT aggregate prepared according to Example 1. FIG.
도 4는 실시예 1에 따라 제조된 수직배향 CNT 집합체를 인발하면서 회전시켜 제조된 CNT 실의 주사전자현미경 사진이다.4 is a scanning electron micrograph of a CNT yarn prepared by drawing while rotating the vertically oriented CNT aggregate prepared according to Example 1.
도 5는 실시예 1에 따라 제조된 수직배향 CNT 집합체의 일부를 인발하여 제조된 CNT sheet의 사진이다.5 is a photograph of a CNT sheet prepared by drawing a portion of the vertically oriented CNT aggregate prepared according to Example 1. FIG.
본 발명은 (A) 지르코늄을 포함하는 금속 화합물 및 유기용매를 포함하는 완충층 형성용 용액을 기판의 적어도 일면에 도포하여 완충층을 형성하는 단계; (B) 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 금속을 포함하는 촉매 전구체 화합물 및 유기용매를 포함하는 촉매층 형성용 용액을 제조하는 단계; (C) 상기 완충층 상에 상기 촉매층 형성용 용액을 도포하여 촉매층을 형성하는 단계; 및 (D) 상기 촉매층 상에 탄소 나노 튜브 집합체를 형성하는 단계를 포함함으로써, 습식 공정이 적용될 수 있는, 수직배향 탄소 나노 튜브 집합체의 제조방법에 관한 것이다.The present invention comprises the steps of: (A) applying a buffer layer-forming solution containing a metal compound containing zirconium and an organic solvent to at least one surface of the substrate to form a buffer layer; (B) preparing a solution for forming a catalyst layer comprising an organic solvent and a catalyst precursor compound comprising at least one metal selected from the group consisting of iron, cobalt and nickel; (C) coating the catalyst layer forming solution on the buffer layer to form a catalyst layer; And (D) forming a carbon nanotube aggregate on the catalyst layer, to which a wet process can be applied.
이하, 본 발명의 제조방법의 일 실시예를 보다 상세하게 설명하도록 한다.Hereinafter, an embodiment of the manufacturing method of the present invention will be described in more detail.
먼저, 지르코늄을 포함하는 금속 화합물 및 유기용매를 포함하는 완충층 형성용 용액을 기판의 적어도 일면에 도포하여 완충층을 형성한다((A) 단계).First, a buffer layer forming solution containing a metal compound containing zirconium and an organic solvent is applied to at least one surface of a substrate to form a buffer layer ((A) step).
기판은 완충층, 촉매층 및 탄소 나노 튜브 집합체의 형성 공정을 견딜 수 있는 내구성을 가진 것이라면 특별한 제한 없이 사용될 수 있으며, 약 800℃ 정도의 고온에서도 형상을 유지할 수 있는 것이 바람직할 수 있다. 이러한 기판으로는 예를 들면, 유리, 고분자, 기타 유무기 박막, 금속 등을 들 수 있으며, 예를 들면, 고분자, 실리콘, 석영, 유리, 마이카, 흑연, 다이아몬드, 세라믹, 철, 니켈, 크로뮴, 몰리브덴, 텅스텐, 티타늄, 알루미늄, 망간, 코발트, 구리, 은, 금, 백금, 니오븀, 탄탈럼, 납, 아연, 갈륨, 인듐, 안티몬 등을 들 수 있으며, 상기 금속은 금속 단독 또는 산화물, 2종 이상의 합금 형태로 사용될 수 있다. 롤-투-롤 공정 등에 적용하는 경우에는 플렉서블한 것이 바람직하므로 금속 박막이 사용될 수 있다. The substrate may be used without particular limitation as long as it has the durability to withstand the process of forming the buffer layer, the catalyst layer and the carbon nanotube aggregate, and it may be desirable to be able to maintain the shape even at a high temperature of about 800 ° C. Such substrates include, for example, glass, polymers, other organic-inorganic thin films, metals, and the like. For example, polymers, silicon, quartz, glass, mica, graphite, diamond, ceramics, iron, nickel, chromium, Molybdenum, tungsten, titanium, aluminum, manganese, cobalt, copper, silver, gold, platinum, niobium, tantalum, lead, zinc, gallium, indium, antimony, and the like. It can be used in the form of alloys above. In the case of application in a roll-to-roll process or the like, the flexible thin film may be used.
완충층 형성용 용액에 포함되는 지르코늄을 포함하는 금속 화합물은 완충층을 형성하는 주성분으로서, 완충층을 습식법을 통해 안정적으로 형성하게 하고 이후에 형성되는 수직배향 탄소 나노 튜브가 수평 인발될 수 있도록 한다.The metal compound containing zirconium contained in the buffer layer forming solution is a main component for forming the buffer layer, which allows the buffer layer to be stably formed by a wet method, and the vertically aligned carbon nanotubes formed thereafter may be horizontally drawn.
지르코늄을 포함하는 금속 유기화합물, 지르코늄을 포함하는 금속염 또는 이들의 혼합물일 수 있으며, 보다 구체적으로는 지르코늄 펜탄디오네이트(zirconium pentanedionate), 지르코늄 아세테이트(zirconium acetate), 지르코늄 아크릴레이트(zirconium acrylate), 지르코늄 아세틸아세토네이트(zirconium acetylacetonate) 및 지르코늄 하이드록사이드(zirconium hydroxide)로 이루어진 군에서 선택되는 적어도 하나를 예로 들 수 있다.It may be a metal organic compound containing zirconium, a metal salt containing zirconium, or a mixture thereof, and more specifically, zirconium pentanedionate, zirconium acetate, zirconium acrylate, zirconium acrylate For example, at least one selected from the group consisting of zirconium acetylacetonate and zirconium hydroxide.
유기용매는 지르코늄을 포함하는 금속 화합물을 용해/분산시킬 수 있는 유기 용매라면 특별히 한정되지 않으며, 예를 들면 알코올, 아세톤, 디메틸포름아미드, n-메틸피롤리돈 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.The organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving / dispersing a metal compound containing zirconium. For example, alcohol, acetone, dimethylformamide, n-methylpyrrolidone, etc. may be used alone or in combination of two or more. It can be mixed and used.
완충층 형성용 용액의 금속 양이온 농도는 0.01 내지 0.2M인 것이 바람직하다. 상기 농도 내에서 완충층이 적당한 두께로 형성될 수 있다. 또한, 완충층의 두께는 2 내지 30nm인 것이 바람직하다. 완충층의 두께는 완충층 형성용 용액의 농도 외에도 도포 속도, 도포 횟수 등을 조절함으로써 조절할 수 있다.It is preferable that the metal cation concentration of the solution for buffer layer formation is 0.01-0.2M. Within this concentration, the buffer layer can be formed to a suitable thickness. Moreover, it is preferable that the thickness of a buffer layer is 2-30 nm. The thickness of the buffer layer can be adjusted by adjusting the application rate, the number of application, etc. in addition to the concentration of the buffer layer forming solution.
본 발명에 따른 완충층은 전술한 완충층 형성용 용액을 기판에 도포하는 습식법을 통해 형성된다. 완충층 형성용 용액을 기판에 도포하는 방식은 당분야에 알려진 습식 도포 공정이라면 특별한 제한이 없으며, 예를 들면 스핀 코팅법 또는 딥코팅법 등을 들 수 있으나, 이에 한정되는 것은 아니다.The buffer layer according to the present invention is formed through a wet method in which the above-mentioned buffer layer forming solution is applied to a substrate. The method of applying the buffer layer forming solution to the substrate is not particularly limited as long as it is a wet coating process known in the art, and examples thereof include spin coating or dip coating, but are not limited thereto.
완충층 형성용 용액을 기판에 도포한 후에는 자연 건조 또는 소정의 열을 가하는 열처리 공정을 통해 완충층을 형성한다. After the buffer layer forming solution is applied to the substrate, the buffer layer is formed through a heat treatment process in which natural drying or predetermined heat is applied.
열처리를 하는 경우 지르코늄을 포함하는 금속 화합물이 열분해되어 완충층은 비정질 지르코늄 산화물을 포함하게 되어 탄소 나노 튜브의 생산성, 완충층의 안정성 등의 측면에서 보다 바람직할 수 있다. 열처리의 조건은 비정질 지르코늄 산화물을 생성할 수 있다면 특별히 한정되지 않으며, 예를 들면 250 내지 500℃의 온도에서 5 내지 30분 동안 수행될 수 있다. In the case of heat treatment, the zirconium-containing metal compound is thermally decomposed so that the buffer layer includes amorphous zirconium oxide, which may be more preferable in terms of productivity of the carbon nanotubes, stability of the buffer layer, and the like. The condition of the heat treatment is not particularly limited as long as it can produce amorphous zirconium oxide, for example, may be performed for 5 to 30 minutes at a temperature of 250 to 500 ℃.
다음으로, 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 금속을 포함하는 촉매 전구체 화합물 및 유기용매를 포함하는 촉매층 형성용 용액을 제조한다((B) 단계).Next, a solution for forming a catalyst layer comprising a catalyst precursor compound and an organic solvent including at least one metal selected from the group consisting of iron, cobalt and nickel is prepared (step (B)).
촉매 전구체 화합물은 수직배향 탄소 나노 튜브를 성장시키는 촉매를 형성하며, 본 발명에서는 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 금속을 포함하는 금속 유기화합물, 금속염 또는 이들의 혼합물을 사용한다.The catalyst precursor compound forms a catalyst for growing vertically aligned carbon nanotubes, and the present invention employs metal organic compounds, metal salts or mixtures thereof comprising at least one metal selected from the group consisting of iron, cobalt and nickel. .
촉매 전구체 화합물의 보다 구체적인 예를 들면, 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 펜탄디오네이트, 질산염, 황산염, 염산염, 아세트산염, 포름산염 등을 각각 단독으로 또는 2종 이상 사용할 수 있다.For more specific examples of the catalyst precursor compound, at least one pentanedionate, nitrate, sulfate, hydrochloride, acetate, formate, etc. selected from the group consisting of iron, cobalt and nickel may be used alone or in combination of two or more. have.
유기용매는 촉매 전구체 화합물을 용해/분산시킬 수 있는 유기 용매라면 특별히 한정되지 않으며, 예를 들면 알코올, 아세톤, 디메틸포름아미드, n-메틸피롤리돈 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.The organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving / dispersing the catalyst precursor compound. For example, an alcohol, acetone, dimethylformamide, n-methylpyrrolidone, or the like may be used alone or in combination of two or more thereof. Can be.
필요에 따라, 촉매층 형성용 용액은, 알루미늄 또는 지르코늄을 포함하는 금속 유기화합물 또는 금속염인 촉매 담지체 형성용 화합물을 더 포함할 수 있다. 촉매 담지체는 촉매의 뭉침을 방지하고 균일한 분산을 도우므로, 수직배향 탄소 나노 튜브의 균일한 성장에 보다 바람직할 수 있다.If necessary, the catalyst layer forming solution may further include a compound for forming a catalyst carrier, which is a metal organic compound or metal salt containing aluminum or zirconium. The catalyst carrier may be more desirable for uniform growth of vertically oriented carbon nanotubes, as it prevents agglomeration of the catalyst and helps uniform dispersion.
촉매 담지체 형성용 화합물의 보다 구체적인 예를 들면, 알루미늄 또는 지르코늄의 펜탄디오네이트, 질산염, 황산염, 염산염, 아세트산염, 포름산염 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.More specific examples of the compound for forming the catalyst carrier may be used alone or in combination of two or more of pentanedionate, nitrate, sulfate, hydrochloride, acetate, formate, and the like of aluminum or zirconium.
본 발명에 따른 촉매 담지체를 사용하는 경우에는, 촉매 전구체 화합물의 철, 코발트 및 니켈 중 적어도 하나의 금속과 상기 촉매 담지체 형성용 화합물의 알루미늄 또는 지르코늄을 포함하는 금속의 몰비가 1:5 내지 5:1가 되도록 혼합하는 것이 바람직하다. 상기 범위에서 촉매의 분산이 가장 효과적으로 수행될 수 있다.When using the catalyst carrier according to the present invention, the molar ratio of at least one metal of iron, cobalt and nickel of the catalyst precursor compound and the metal including aluminum or zirconium of the compound for forming the catalyst carrier is 1: 5 to It is preferable to mix so that it becomes 5: 1. Dispersion of the catalyst in the above range can be performed most effectively.
촉매층 형성용 용액의 금속 양이온 농도는 0.01 내지 0.2M인 것이 바람직하다. 상기 농도 내에서 촉매층이 적당한 두께로 형성될 수 있다. 이 때 금속 양이온은 촉매 전구체 화합물의 금속 및 촉매 담지체의 금속을 모두 포함한다. 촉매층의 두께는 2 내지 30nm인 것이 바람직하다. 촉매층의 두께는 촉매층 형성용 용액의 농도 외에도 도포 속도, 도포 횟수 등을 조절함으로써 조절할 수 있다.It is preferable that the metal cation concentration of the solution for catalyst layer formation is 0.01-0.2M. Within this concentration, the catalyst layer can be formed to a suitable thickness. At this time, the metal cation includes both the metal of the catalyst precursor compound and the metal of the catalyst carrier. It is preferable that the thickness of a catalyst layer is 2-30 nm. The thickness of the catalyst layer may be adjusted by adjusting the coating speed, the number of coating, etc., in addition to the concentration of the catalyst layer forming solution.
다음으로, 상기 완충층 상에 상기 촉매층 형성용 용액을 도포하여 촉매층을 형성한다((C) 단계).Next, the catalyst layer forming solution is applied onto the buffer layer to form a catalyst layer (step (C)).
본 발명에 따른 촉매층은 상기 완충층과 마찬가지로 전술한 촉매층 형성용 용액을 상기 완충층 상에 도포하는 습식법을 통해 형성된다. 적용 가능한 습식 도포 공정 역시 특별한 제한이 없으며, 예를 들면 스핀 코팅법 또는 딥코팅법 등을 들 수 있으나, 이에 한정되는 것은 아니다.The catalyst layer according to the present invention is formed through a wet method in which the above-described solution for forming a catalyst layer is applied onto the buffer layer in the same manner as the buffer layer. The applicable wet coating process is also not particularly limited, and for example, spin coating or dip coating, but is not limited thereto.
촉매층 형성용 용액을 완충층 상에 도포한 후에는 자연 건조 또는 소정의 열을 가하는 열처리 공정을 통해 촉매층을 형성한다. After the catalyst layer forming solution is applied onto the buffer layer, the catalyst layer is formed by a natural drying or a heat treatment process in which a predetermined heat is applied.
촉매층 형성 시간, 효율, 촉매층의 안정성 등을 고려할 때 열처리를 하는 것이 바람직할 수 있다. 열처리의 조건은 특별히 한정되지는 않으나, 예를 들면 100 내지 800℃의 온도에서 5 내지 30분 동안 수행될 수 있다.In consideration of catalyst layer formation time, efficiency, stability of the catalyst layer, etc., it may be preferable to perform heat treatment. The conditions of the heat treatment are not particularly limited, but may be performed, for example, for 5 to 30 minutes at a temperature of 100 to 800 ° C.
다음으로, 상기 촉매층 상에 수직배향 탄소 나노 튜브 집합체를 형성한다((D) 단계).Next, to form a vertically aligned carbon nanotube aggregate on the catalyst layer (step (D)).
촉매층 상에 수직배향 탄소 나노 튜브 집합체를 형성하는 것은 당분야에 공지된 방법이 특별한 제한 없이 사용될 수 있으며, 바람직하게는 화학기상증착법을 사용할 수 있다. Forming the vertically aligned carbon nanotube aggregate on the catalyst layer can be used without particular limitation the methods known in the art, preferably chemical vapor deposition method can be used.
화학기상증착법을 예로 들어 설명하면, 상기 촉매층까지 형성된 기판을 탄소 나노 튜브 성장로에 투입하여 수직배향 탄소 나노 튜브 집합체를 얻을 수 있는데, 탄소 나노 튜브 성장로는 탄소공급원으로 아세틸렌 또는 에틸렌 가스를 사용하고, 운반 가스로 질소 또는 아르곤 가스를 사용하고, 촉매 환원 가스로 수소를 사용한다.Taking the chemical vapor deposition method as an example, it is possible to obtain a vertically aligned carbon nanotube aggregate by inserting the substrate formed up to the catalyst layer into a carbon nanotube growth furnace, using acetylene or ethylene gas as a carbon source. , Nitrogen or argon gas is used as the carrier gas, and hydrogen is used as the catalytic reduction gas.
성장로의 배부에 상기 기판을 위치시킨 후 상기 가스를 흘리면서 730 ~ 830℃로 가열하면, 수직배향 탄소 나노 튜브 집합체을 제조할 수 있다. 가열하는 속도는 1 분 당 40 내지 700℃로 수행될 수 있다.By placing the substrate on the back of the growth furnace and heating the gas at 730 ~ 830 ℃ while flowing the gas, it is possible to produce a vertically aligned carbon nanotube aggregate. The heating rate may be performed at 40 to 700 ° C. per minute.
도 1은 금속기판에 완층층 및 촉매층 그리고 성장시킨 CNT를 함께 나타낸 개략도이다.1 is a schematic view showing a complete layer, a catalyst layer, and grown CNTs on a metal substrate.
본 발명의 제조방법에 따라 제조된 수직배향 탄소 나노 튜브 집합체는 당분야에 공지된 방법을 통해 탄소 나노 튜브 박막(paper, sheet, film)으로 제조될 수 있다. 특히 본 발명에 따른 수직배향 탄소 나노 튜브 집합체는 수평 방향으로 인발이 가능하여, 인발하여 제조된 시트 또는 인발 시에 회전을 주어 제조된 실은 높은 전기전도성과 높은 강도를 지녀 투명 전극, 전지 집전체, supercapacitor 등에 매우 유용하게 사용될 수 있다.The vertically aligned carbon nanotube aggregates prepared according to the production method of the present invention may be produced as carbon nanotube thin films (paper, sheet, film) through a method known in the art. In particular, the vertically aligned carbon nanotube assembly according to the present invention is capable of drawing in the horizontal direction, the sheet produced by drawing or the yarn produced by rotation during drawing has a high electrical conductivity and high strength transparent electrode, battery current collector, It can be very useful for supercapacitor.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이들 실시예는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다. Hereinafter, preferred examples are provided to aid the understanding of the present invention, but these examples are merely illustrative of the present invention and are not intended to limit the scope of the appended claims, which are within the scope and spirit of the present invention. It is apparent to those skilled in the art that various changes and modifications can be made to the present invention, and such modifications and changes belong to the appended claims.
실시예Example 1 One
메틸 알코올 200 cc 용액에 지르코늄 아세테이트를 금속 양이온 농도가 0.09 몰(mole)이 되도록 용해하였다. 100㎛ 두께의 STS 304 스테인레스강 박막을 상기 용액에 담근 후 5초간 유지하고, 이를 25℃의 상온에서 6 cm/min의 인상 속도로 인상하였다. 도포 후 300℃에서 10분간 열처리한 후 상온으로 냉각하여 완충층이 도포된 금속기판을 제조하였다. 열처리된 기판은 수 개월이 지나도 표면에 도포된 완충층이 안정하였다. 이렇게 제조된 완층층 표면의 주사전자현미경 사진을 도 2에 나타내었다. Zirconium acetate was dissolved in a 200 cc solution of methyl alcohol to a metal cation concentration of 0.09 mole. A 100 μm thick STS 304 stainless steel thin film was immersed in the solution and maintained for 5 seconds, and was pulled up at a pulling speed of 6 cm / min at 25 ° C. After the coating, the substrate was heat-treated at 300 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a buffer layer. The heat-treated substrate had a stable buffer layer applied to the surface even after several months. The scanning electron micrograph of the surface of the completed layer thus prepared is shown in FIG. 2.
다음으로, 알루미늄 펜탄디오네이트와 질산코발트를 알루미늄과 코발트의 원자비가 1:2가 되도록 칭량한 후 에틸알콜에 금속 양이온 농도가 0.05 몰(mole)이 되도록 용해하여 촉매층 형성용 용액을 제조하였다. 25℃의 상온에서 완충층이 도포된 스테인레스강 기판을 촉매층 형성용 용액에 담근 후 5초간 유지한 후 dip coater를 사용하여 25℃의 상온에서 6 cm/min의 인상 속도로 인상하였다. 도포 후 300℃에서 10분간 열처리한 후 상온으로 냉각하여 촉매층이 형성된 금속기판을 제조하였다. 열처리된 기판은 수 개월이 지나도 표면에 도포된 촉매층이 안정하였다. 촉매층이 도포된 기판을 내경 5cm인 성장로의 중앙에 상온에서 정치한 후, 아르곤 가스 450sccm, 수소 가스 10sccm, 에틸렌 가스 120sccm를 각각 동시에 주입하면서 성장로를 750℃까지 2분만에 가열한 후 750℃에서 5분간 유지하여 성장시킨 후, 성장로 안의 분위기를 아르곤으로 바꾼 다음 상온으로 냉각하여 수직배향 CNT 집합체를 제조하였다. 이렇게 제조된 CNT의 주사전자현미경 사진을 도 3에 나타내었다.Next, aluminum pentanedionate and cobalt nitrate were weighed such that the atomic ratio of aluminum and cobalt was 1: 2, and dissolved in ethyl alcohol so that the metal cation concentration was 0.05 mole, thereby preparing a solution for forming a catalyst layer. After dipping the stainless steel substrate coated with the buffer layer at 25 ° C. at room temperature, the solution was maintained for 5 seconds and then pulled up at a pulling rate of 6 cm / min at 25 ° C. using a dip coater. After coating, the substrate was heat-treated at 300 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate on which a catalyst layer was formed. The heat-treated substrate was stable in the catalyst layer applied to the surface even after several months. After the substrate coated with the catalyst layer was allowed to stand at the center of the growth furnace having an inner diameter of 5 cm at room temperature, the growth furnace was heated to 750 ° C. in 2 minutes while simultaneously injecting 450 sccm of argon gas, 10 sccm of hydrogen gas, and 120 sccm of ethylene gas. After growing for 5 minutes, the atmosphere in the growth furnace was changed to argon and cooled to room temperature to prepare a vertically oriented CNT aggregate. Scanning electron micrographs of the CNTs thus prepared are shown in FIG. 3.
제조된 수직배향 CNT 집합체를 인발하면서 회전시켜 제조한 CNT 실의 주사전자현미경 사진을 도 4에 나타내었다.The scanning electron micrograph of the CNT yarn prepared by rotating the prepared vertically oriented CNT aggregate is shown in FIG. 4.
제조된 수직배향 CNT 집합체의 일부를 인발하여 제조된 CNT sheet의 사진을 도 5에 나타내었다.A photograph of a CNT sheet prepared by drawing a portion of the prepared vertically oriented CNT aggregate is shown in FIG. 5.
실시예Example 2 2
메틸 알코올 200 cc 용액에 지르코늄 아세테이트를 금속 양이온 농도가 0.09 몰(mole)이 되도록 용해하였다. 100㎛ 두께의 STS 304 스테인레스강 박막을 상기 용액에 담근 후 5초간 유지하고, 이를 25℃의 상온에서 6 cm/min의 인상 속도로 인상하였다. 도포 후 400℃에서 10분간 열처리한 후 상온으로 냉각하여 완충층이 도포된 금속기판을 제조하였다. 열처리된 기판은 수 개월이 지나도 표면에 도포된 완충층이 안정하였다. Zirconium acetate was dissolved in a 200 cc solution of methyl alcohol to a metal cation concentration of 0.09 mole. A 100 μm thick STS 304 stainless steel thin film was immersed in the solution and maintained for 5 seconds, and was pulled up at a pulling speed of 6 cm / min at 25 ° C. After the coating, the substrate was heat-treated at 400 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a buffer layer. The heat-treated substrate had a stable buffer layer applied to the surface even after several months.
다음으로, 알루미늄 펜탄디오네이트와 질산철을 알루미늄과 철의 원자비가 10:8이 되도록 칭량한 후 에틸알콜에 금속 양이온 농도가 0.09 몰(mole)이 되도록 용해하여 촉매층 형성용 용액을 제조하였다. 완충층이 도포된 스테인레스강 기판을 촉매층 형성용 용액에 담근 후 5초간 유지한 후 dip coater를 사용하여 40℃의 온도에서 6 cm/min의 인상 속도로 인상하였다. 도포 후 300℃에서 10분간 열처리한 후 상온으로 냉각하여 촉매층이 도포된 금속기판을 제조하였다. 열처리된 기판은 수 개월이 지나도 표면에 도포된 촉매층이 안정하였다. Next, aluminum pentanedionate and iron nitrate were weighed so that an atomic ratio of aluminum and iron was 10: 8, and then dissolved in ethyl alcohol so that the metal cation concentration was 0.09 mole, thereby preparing a solution for forming a catalyst layer. The stainless steel substrate coated with the buffer layer was immersed in the catalyst layer forming solution, held for 5 seconds, and then stretched at a pulling speed of 6 cm / min at a temperature of 40 ° C. using a dip coater. After coating, the substrate was heat-treated at 300 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a catalyst layer. The heat-treated substrate was stable in the catalyst layer applied to the surface even after several months.
완충층과 촉매층이 도포된 기판을 내경 5cm인 성장로의 중앙에 상온에서 정치한 후, 아르곤 가스 450sccm, 수소 가스 150sccm, 에틸렌 가스 60sccm를 각각 동시에 주입하면서 성장로를 770℃까지 20분만에 가열한 후 750℃에서 1분간 유지하여 성장시킨 후, 성장로 안의 분위기를 아르곤으로 바꾼 다음 상온으로 냉각하여 수직배향 CNT 집합체를 제조하였다.After the substrate coated with the buffer layer and the catalyst layer was allowed to stand at the center of the growth furnace having an inner diameter of 5 cm at room temperature, the growth furnace was heated to 770 ° C in 20 minutes while simultaneously injecting 450 sccm of argon gas, 150 sccm of hydrogen gas, and 60 sccm of ethylene gas. After the growth was maintained at 750 ° C. for 1 minute, the atmosphere in the growth furnace was changed to argon, and then cooled to room temperature to prepare a vertically aligned CNT aggregate.
실시예Example 3 3
메틸 알코올 200 cc 용액에 지르코늄 아세테이트를 금속 양이온 농도가 0.1 몰(mole)이 되도록 용해하였다. 100㎛ 두께의 STS 304 스테인레스강 박막을 상기 용액에 담근 후 5초간 유지한 후 이를 25℃의 상온에서 6 cm/min의 인상 속도로 인상하였다. 도포 후 400℃에서 10분간 열처리한 후 냉각하여 완충층이 도포된 금속기판을 제조하였다. Zirconium acetate was dissolved in a 200 cc solution of methyl alcohol so that the metal cation concentration was 0.1 mole. After immersing the 100 mm thick STS 304 stainless steel thin film in the solution and maintained for 5 seconds, it was pulled up at a pulling speed of 6 cm / min at 25 ℃ room temperature. After coating, the substrate was heat-treated at 400 ° C. for 10 minutes and cooled to prepare a metal substrate having a buffer layer applied thereto.
다음으로, 알루미늄 펜탄디오네이트와 질산니켈을 알루미늄과 니켈의 원자비가 1:1이 되도록 칭량한 후 에틸알콜 금속 용액에 양이온 농도가 0.05 몰(mole)이 되도록 용해하여 촉매층 형성용 용액을 제조하였다. 완충층이 도포된 스테인레스강 기판을 촉매층 형성용 용액에 담근 후 5초간 유지한 후 dip coater를 사용하여 40℃의 온도에서 6 cm/min의 인상 속도로 인상하였다. 도포 후 300℃에서 10분간 열처리한 후 냉각하였다. 열처리된 기판은 수 개월이 지나도 표면에 도포된 촉매층이 안정하였다. Next, aluminum pentanedionate and nickel nitrate were weighed such that an atomic ratio of aluminum and nickel was 1: 1, and then dissolved in an ethyl alcohol metal solution so as to have a cation concentration of 0.05 mole, thereby preparing a catalyst layer forming solution. The stainless steel substrate coated with the buffer layer was immersed in the catalyst layer forming solution, held for 5 seconds, and then stretched at a pulling speed of 6 cm / min at a temperature of 40 ° C. using a dip coater. After the application, heat treatment was performed at 300 ° C. for 10 minutes, followed by cooling. The heat-treated substrate was stable in the catalyst layer applied to the surface even after several months.
완충층과 촉매층이 도포된 기판을 내경 5cm 인 성장로의 중앙에 상온에서 정치한 후, 아르곤 가스 450sccm, 수소 가스 100sccm, 에틸렌 가스 50sccm를 각각 동시에 주입하면서 성장로를 750℃까지 10분만에 가열한 후 760℃에서 2분간 유지하여 성장시킨 후, 성장로 안의 분위기를 아르곤으로 바꾼 다음 상온으로 냉각하여 수직배향 CNT 집합체를 제조하였다.After the substrate coated with the buffer layer and the catalyst layer was allowed to stand at the center of the growth furnace having an inner diameter of 5 cm at room temperature, the growth furnace was heated to 750 ° C. in 10 minutes while simultaneously injecting 450 sccm of argon gas, 100 sccm of hydrogen gas, and 50 sccm of ethylene gas. After growing for 2 minutes at 760 ℃, the atmosphere in the growth furnace was changed to argon and then cooled to room temperature to prepare a vertically aligned CNT aggregate.
실시예Example 4 4
메틸 알코올 200 cc 용액에 지르코늄 아세테이트를 금속 양이온 농도가 0.09 몰(mole)이 되도록 용해하였다. 100㎛ 두께의 STS 304 스테인레스강 박막을 상기 용액에 담근 후 5초간 유지한 후 이를 25℃의 상온에서 6 cm/min의 인상 속도로 인상하였다. 도포 후 300℃에서 10분간 열처리한 후 상온으로 냉각하여 완충층이 도포된 금속기판을 제조하였다. 열처리된 기판은 수 개월이 지나도 표면에 도포된 완충층이 안정하였다. Zirconium acetate was dissolved in a 200 cc solution of methyl alcohol to a metal cation concentration of 0.09 mole. After immersing the 100 mm thick STS 304 stainless steel thin film in the solution and maintained for 5 seconds, it was pulled up at a pulling speed of 6 cm / min at 25 ℃ room temperature. After the coating, the substrate was heat-treated at 300 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a buffer layer. The heat-treated substrate had a stable buffer layer applied to the surface even after several months.
다음으로, 지르코늄 펜탄디오네이트와 질산코발트를 지르코늄과 코발트의 원자비가 1:2가 되도록 칭량한 후 에틸알콜 용액에 양이온 농도가 0.05 몰(mole)이 되도록 용해하여 촉매층 형성용 용액을 제조하였다. 25℃의 상온에서 완충층이 도포된 스테인레스강 기판을 촉매층 형성용 용액에 담근 후 5초간 유지한 후 dip coater를 사용하여 25℃의 상온에서 6 cm/min의 인상 속도로 인상하였다. 도포 후 300℃에서 10분간 열처리한 후 상온으로 냉각하여 촉매층이 도포된 금속기판을 제조하였다. 열처리된 기판은 수 개월이 지나도 표면에 도포된 촉매층이 안정하였다. Next, zirconium pentanedionate and cobalt nitrate were weighed so that the atomic ratio of zirconium and cobalt was 1: 2, and dissolved in an ethyl alcohol solution so that the cation concentration was 0.05 mole (mole) to prepare a solution for forming a catalyst layer. After dipping the stainless steel substrate coated with the buffer layer at 25 ° C. at room temperature, the solution was maintained for 5 seconds and then pulled up at a pulling rate of 6 cm / min at 25 ° C. using a dip coater. After coating, the substrate was heat-treated at 300 ° C. for 10 minutes and cooled to room temperature to prepare a metal substrate coated with a catalyst layer. The heat-treated substrate was stable in the catalyst layer applied to the surface even after several months.
촉매층이 도포된 기판을 내경 5cm 인 성장로의 중앙에 상온에서 정치한 후, 아르곤 가스 450sccm, 수소 가스 20sccm, 에틸렌 가스 120sccm를 각각 동시에 주입하면서 성장로를 750℃까지 2분만에 가열한 후 750℃에서 5분간 유지하여 성장시킨 후, 성장로 안의 분위기를 아르곤으로 바꾼 다음 상온으로 냉각하여 수직배향 CNT 집합체를 제조하였다.After the substrate coated with the catalyst layer was allowed to stand at the center of the growth furnace having an inner diameter of 5 cm at room temperature, the growth furnace was heated to 750 ° C. in 2 minutes while simultaneously injecting 450 sccm of argon gas, 20 sccm of hydrogen gas, and 120 sccm of ethylene gas, and then 750 ° C. After growing for 5 minutes, the atmosphere in the growth furnace was changed to argon and cooled to room temperature to prepare a vertically oriented CNT aggregate.
[부호의 설명][Description of the code]
110: 기판 120: 완충층110: substrate 120: buffer layer
130: 촉매층 140: 수직배향 탄소 나노 튜브 집합체130: catalyst layer 140: vertically aligned carbon nanotube assembly

Claims (21)

  1. (A) 지르코늄을 포함하는 금속 화합물 및 유기용매를 포함하는 완충층 형성용 용액을 기판의 적어도 일면에 도포하여 완충층을 형성하는 단계;(A) applying a buffer layer-forming solution containing a metal compound containing zirconium and an organic solvent to at least one surface of the substrate to form a buffer layer;
    (B) 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 금속을 포함하는 촉매 전구체 화합물 및 유기용매를 포함하는 촉매층 형성용 용액을 제조하는 단계;(B) preparing a solution for forming a catalyst layer comprising an organic solvent and a catalyst precursor compound comprising at least one metal selected from the group consisting of iron, cobalt and nickel;
    (C) 상기 완충층 상에 상기 촉매층 형성용 용액을 도포하여 촉매층을 형성하는 단계; 및(C) coating the catalyst layer forming solution on the buffer layer to form a catalyst layer; And
    (D) 상기 촉매층 상에 수직배향 탄소 나노 튜브 집합체를 형성하는 단계(D) forming a vertically aligned carbon nanotube aggregate on the catalyst layer
    를 포함하는 수직배향 탄소 나노 튜브 집합체의 제조방법.Method for producing a vertically aligned carbon nanotube aggregate comprising a.
  2. 청구항 1에 있어서, 상기 지르코늄을 포함하는 금속 화합물은 지르코늄을 포함하는 금속 유기화합물, 지르코늄을 포함하는 금속염 또는 이들의 혼합물인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein the metal compound including zirconium is a metal organic compound including zirconium, a metal salt including zirconium, or a mixture thereof.
  3. 청구항 1에 있어서, 상기 지르코늄을 포함하는 금속 화합물은 지르코늄 펜탄디오네이트(zirconium pentanedionate), 지르코늄 아세테이트(zirconium acetate), 지르코늄 아크릴레이트(zirconium acrylate), 지르코늄 아세틸아세토네이트(zirconium acetylacetonate) 및 지르코늄 하이드록사이드(zirconium hydroxide)로 이루어진 군에서 선택되는 적어도 하나인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein the zirconium-containing metal compound is zirconium pentanedionate, zirconium acetate, zirconium acrylate, zirconium acetylacetonate and zirconium acetylacetonate At least one selected from the group consisting of (zirconium hydroxide), a method for producing a vertically aligned carbon nanotube aggregate.
  4. 청구항 1에 있어서, 상기 (A) 단계 및 (B) 단계의 유기용매는 서로 독립적으로 알코올, 아세톤, 디메틸포름아미드 및 n-메틸피롤리돈으로 이루어진 군에서 선택되는 적어도 하나인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein the organic solvent of step (A) and (B) is independently at least one selected from the group consisting of alcohol, acetone, dimethylformamide and n-methylpyrrolidone, vertically aligned carbon nano Method for producing tube assembly.
  5. 청구항 1에 있어서, 상기 완충층 형성용 용액의 금속 양이온 농도는 0.01 내지 0.2M인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein the metal cation concentration of the buffer layer forming solution is 0.01 to 0.2M.
  6. 청구항 1에 있어서, 상기 (A) 단계는 완충층 형성용 용액의 도포 후 열처리 공정을 더 포함하는, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein step (A) further includes a heat treatment process after application of the buffer layer forming solution.
  7. 청구항 6에 있어서, 상기 (A) 단계에서 형성된 완충층은 비정질 지르코늄 산화물을 포함하여 이루어지는 층인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 6, wherein the buffer layer formed in step (A) is a layer including amorphous zirconium oxide.
  8. 청구항 1에 있어서, 상기 촉매 전구체 화합물은 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 금속을 포함하는 금속 유기화합물, 금속염 또는 이들의 혼합물인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein the catalyst precursor compound is a metal organic compound, a metal salt, or a mixture thereof including at least one metal selected from the group consisting of iron, cobalt, and nickel.
  9. 청구항 1에 있어서, 상기 촉매 전구체 화합물은 철, 코발트 및 니켈로 이루어진 군에서 선택되는 적어도 하나의 펜탄디오네이트, 질산염, 황산염, 염산염, 아세트산염 및 포름산염으로 이루어진 군에서 선택되는 적어도 하나인, 수직배향 탄소 나노 튜브 집합체의 제조방법.2. The vertical of claim 1 wherein the catalyst precursor compound is at least one selected from the group consisting of at least one pentanedionate, nitrate, sulfate, hydrochloride, acetate and formate selected from the group consisting of iron, cobalt and nickel Method for producing oriented carbon nanotube aggregates.
  10. 청구항 1에 있어서, 상기 촉매층 형성용 용액은, 알루미늄 또는 지르코늄을 포함하는 금속 유기화합물 또는 금속염인 촉매 담지체 형성용 화합물을 더 포함하는, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein the solution for forming a catalyst layer further comprises a compound for forming a catalyst carrier, which is a metal organic compound or a metal salt containing aluminum or zirconium.
  11. 청구항 10에 있어서, 상기 촉매 담지체 형성용 화합물은, 알루미늄 또는 지르코늄의 펜탄디오네이트, 질산염, 황산염, 염산염, 아세트산염 및 포름산염으로 이루어진 군에서 선택되는 적어도 하나인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The vertically aligned carbon nanotube aggregate according to claim 10, wherein the compound for forming the catalyst carrier is at least one selected from the group consisting of pentanedionate, nitrate, sulfate, hydrochloride, acetate and formate of aluminum or zirconium. Manufacturing method.
  12. 청구항 10에 있어서, 상기 촉매 전구체 화합물의 철, 코발트 및 니켈 중 적어도 하나의 금속과 상기 촉매 담지체 형성용 화합물의 알루미늄 또는 지르코늄을 포함하는 금속의 몰비는 1:5 내지 5:1인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The vertical orientation of claim 10, wherein a molar ratio of at least one metal of iron, cobalt, and nickel of the catalyst precursor compound and a metal including aluminum or zirconium of the compound for forming the catalyst carrier is 1: 5 to 5: 1. Method for producing carbon nanotube aggregates.
  13. 청구항 1에 있어서, 상기 촉매층 형성용 용액의 금속 양이온 농도는 0.01 내지 0.2M인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein the metal cation concentration of the solution for forming a catalyst layer is 0.01 to 0.2M.
  14. 청구항 1에 있어서, 상기 (C) 단계는 촉매층 형성용 용액의 도포 후 열처리 공정을 더 포함하는, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method according to claim 1, wherein the step (C) further comprises a heat treatment step after the application of the catalyst layer forming solution, a method for producing a vertically aligned carbon nanotube aggregate.
  15. 청구항 1에 있어서, 상기 (A) 단계 및 (C) 단계에서 완충층 형성용 용액 및 촉매층 형성용 용액의 도포는 습식법으로 수행되는, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein the application of the buffer layer forming solution and the catalyst layer forming solution in steps (A) and (C) is performed by a wet method.
  16. 청구항 15에 있어서, 상기 습식법은 스핀 코팅법 또는 딥코팅법인, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 15, wherein the wet method is a spin coating method or a dip coating method.
  17. 청구항 1에 있어서, 상기 (D) 단계는 화학기상증착으로 수행되는, 수직배향 탄소 나노 튜브 집합체의 제조방법.The method of claim 1, wherein step (D) is performed by chemical vapor deposition.
  18. 청구항 1 내지 17 중 어느 한 항의 방법으로 제조된 수직배향 탄소 나노 튜브 집합체.Orthogonal carbon nanotube aggregate produced by the method of any one of claims 1 to 17.
  19. 청구항 18에 있어서, 수평 방향으로 인발이 가능한 수직배향 탄소 나노 튜브 집합체.19. The vertically aligned carbon nanotube assembly of claim 18, wherein the vertically oriented carbon nanotube aggregate is capable of drawing in the horizontal direction.
  20. 청구항 18의 수직배향 탄소 나노 튜브 집합체로부터 제조되는 탄소 나노 튜브 박막.A carbon nanotube thin film prepared from the vertically aligned carbon nanotube aggregate of claim 18.
  21. 청구항 18의 수직배향 탄소 나노 튜브 집합체로부터 제조되는 탄소 나노 튜브 실.A carbon nanotube seal made from the vertically aligned carbon nanotube assembly of claim 18.
PCT/KR2015/011383 2015-02-12 2015-10-27 Method for preparing vertically aligned carbon nanotube aggregates WO2016129774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150021816 2015-02-12
KR10-2015-0021816 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016129774A1 true WO2016129774A1 (en) 2016-08-18

Family

ID=56615370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011383 WO2016129774A1 (en) 2015-02-12 2015-10-27 Method for preparing vertically aligned carbon nanotube aggregates

Country Status (2)

Country Link
KR (1) KR102573712B1 (en)
WO (1) WO2016129774A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101869805B1 (en) 2016-09-29 2018-07-24 전자부품연구원 Anode for a lithium secondary battery, method of the same and lithium secondary battery using the same
KR101893933B1 (en) 2016-10-07 2018-09-03 전자부품연구원 Anode for a lithium secondary battery and method of the same and lithium secondary battery using the same
KR102651783B1 (en) * 2018-09-20 2024-03-26 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074833A1 (en) * 2007-03-14 2010-03-25 Yoshikazu Nakayama Catalyst Body For Production of Brush-Shaped Carbon Nanostructure, Process for Producing Catalyst Body, Brush-Shaped Carbon Nanostructure, and Process for Producing the Same
KR20110118138A (en) * 2009-02-10 2011-10-28 니폰 제온 가부시키가이샤 Base for producing oriented carbon nanotube aggregate, and method for producing oriented carbon nanotube aggregate
KR20120126087A (en) * 2010-03-01 2012-11-20 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Method for producing aligned carbon nanotube aggregate
JP2013071876A (en) * 2011-09-28 2013-04-22 Taiyo Nippon Sanso Corp Manufacturing method for oriented cnt using wet catalyst, and oriented cnt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015173B1 (en) * 1969-06-07 1975-06-03
WO2007015710A2 (en) * 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
FR2895572B1 (en) * 2005-12-23 2008-02-15 Commissariat Energie Atomique MATERIAL BASED ON CARBON AND SILICON NANOTUBES FOR USE IN NEGATIVE ELECTRODES FOR LITHIUM ACCUMULATOR
KR101256066B1 (en) * 2011-06-08 2013-04-18 삼성에스디아이 주식회사 Electrod and method of manufacturing the same and rechargeable battery including the same
JP6267423B2 (en) 2012-12-19 2018-01-24 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074833A1 (en) * 2007-03-14 2010-03-25 Yoshikazu Nakayama Catalyst Body For Production of Brush-Shaped Carbon Nanostructure, Process for Producing Catalyst Body, Brush-Shaped Carbon Nanostructure, and Process for Producing the Same
KR20110118138A (en) * 2009-02-10 2011-10-28 니폰 제온 가부시키가이샤 Base for producing oriented carbon nanotube aggregate, and method for producing oriented carbon nanotube aggregate
KR20120126087A (en) * 2010-03-01 2012-11-20 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Method for producing aligned carbon nanotube aggregate
JP2013071876A (en) * 2011-09-28 2013-04-22 Taiyo Nippon Sanso Corp Manufacturing method for oriented cnt using wet catalyst, and oriented cnt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IZUMI, KEIJI ET AL.: "Zirconia Coating on Stainless Steel Sheets from Organozirconium Compounds", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 72, no. 8, 1989, pages 1465 - 1468 *

Also Published As

Publication number Publication date
KR20160099458A (en) 2016-08-22
KR102573712B1 (en) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2020096338A1 (en) Method for preparing single-atom catalyst supported on carbon support
KR101063359B1 (en) Carbon materials, lamination product comprising the same and method for preparing the same
WO2012008789A9 (en) Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
JP5748766B2 (en) Extensive precipitation of graphene on a substrate and products containing it
WO2016006943A1 (en) Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor
WO2012150763A2 (en) Method for manufacturing high quality graphene using continuous heat treatment chemical vapor deposition method
WO2013165101A1 (en) Hybrid electrode using silver nanowires and graphene, and preparation method thereof
TWI245079B (en) Method for growing highly-ordered nanofibers
WO2010056061A2 (en) A single-crystalline germanium cobalt nanowire, a germanium cobalt nanowire structure, and a fabrication method thereof
WO2016129774A1 (en) Method for preparing vertically aligned carbon nanotube aggregates
WO2015008905A1 (en) Graphene/silicon nanowire molecular sensor or method for manufacturing same and method for identifying molecule using same
KR101425376B1 (en) Large-area carbon nanomesh from polymer and method of preparing the same
JP2013166692A (en) Method for producing substrate with conductive diamond film formed thereon
WO2014021640A1 (en) Method for bidirectional doping of graphene, bidirectionally doped graphene, and device comprising same
CN109468711B (en) Carbon nanotube-graphene composite fiber and preparation method and application thereof
WO2016178452A1 (en) Chemical etching method for silicon using graphene as catalyst
Tu et al. Facile synthesis of SnO2 nanotube arrays by using ZnO nanorod arrays as sacrificial templates
TW200406513A (en) Method for producing graphite nanofiber, electron discharge source, and display device
KR102349695B1 (en) Method of manufacturing vertically aligned carbon nanotubes
KR102269051B1 (en) Method of manufacturing stretchable conductor
WO2014137057A1 (en) Method for detecting crystal grain boundaries of graphene and device using method
WO2019045551A2 (en) Method for manufacturing 3-dimensional mesoporous graphene structure
WO2020190105A2 (en) Method for preparing carbon material having sp2 hybrid structure with controlled content of pyridinic nitrogen and pyrrolic nitrogen, and carbon material prepared by same
WO2014209030A1 (en) Method for manufacturing graphene using cover member and method for manufacturing electronic element including same
CN107500276B (en) Method for preparing ultra-clean graphene by using copper acetate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882137

Country of ref document: EP

Kind code of ref document: A1