WO2014167928A1 - Storage battery charge/discharge control device and storage battery charge/discharge control method - Google Patents

Storage battery charge/discharge control device and storage battery charge/discharge control method Download PDF

Info

Publication number
WO2014167928A1
WO2014167928A1 PCT/JP2014/056182 JP2014056182W WO2014167928A1 WO 2014167928 A1 WO2014167928 A1 WO 2014167928A1 JP 2014056182 W JP2014056182 W JP 2014056182W WO 2014167928 A1 WO2014167928 A1 WO 2014167928A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
discharge
charge
current
Prior art date
Application number
PCT/JP2014/056182
Other languages
French (fr)
Japanese (ja)
Inventor
原 聡
吉岡 省二
吉瀬 万希子
村田 充
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2014167928A1 publication Critical patent/WO2014167928A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a storage battery charge / discharge control device and a storage battery charge / discharge control method that control the charge / discharge of the storage battery in the storage battery system to prevent the deterioration of the storage battery and extend its life.
  • PV photovoltaic power generation
  • a storage battery (stationary type) is used in order to effectively use surplus power of the PV power generated by the PV system and specific electric power supplied from a commercial power source at a low price.
  • Storage battery is installed.
  • such a storage battery also serves as an emergency power source during a power failure.
  • the prior art has the following problems.
  • the charging current value of the storage battery is not controlled (cannot be set), and can take various current values depending on the fluctuations in PV power and load power. There is no change. Therefore, if the fluctuation of the PV power and the fluctuation of the load power occur suddenly, the charge / discharge current value of the storage battery suddenly increases or the charge / discharge current value of the storage battery changes instantaneously. In such a case, as a result, there is a problem that the storage battery may be deteriorated or the life may be shortened.
  • An object of the present invention is to obtain a storage battery charge / discharge control device and a storage battery charge / discharge control method that can suppress the instantaneous change and prevent the deterioration of the storage battery and extend its life.
  • the charge / discharge control device for a storage battery detects PV power generated in a PV system that is a solar power generation system, system power supplied from a system power supply, and load power consumed by a load, and specific power.
  • a storage battery charge / discharge control device that performs storage battery charge control during a time zone and performs storage battery discharge control during a daytime time zone defined as a time zone other than the specific power time zone.
  • the current PV power is less than the current load power.
  • the first discharge rate is set so that the amount of decrease in the charge rate per unit time until the charge rate of the storage battery reaches the desired lower limit SOC value from the current time to the desired discharge end time is constant.
  • the first discharge current value is set, and the first storage battery output obtained by multiplying the set first discharge current value and the storage battery voltage is calculated from the current load power to the current PV power.
  • the difference is smaller than the first difference value obtained by subtracting, the storage battery is discharged until the charging rate reaches the lower limit SOC value at the set first discharge current value.
  • the storage battery charge / discharge control method includes a step of detecting PV power generated in a PV system that is a photovoltaic power generation system, system power supplied from a system power supply, and load power consumed by a load.
  • a step of detecting PV power generated in a PV system that is a photovoltaic power generation system, system power supplied from a system power supply, and load power consumed by a load.
  • the amount of increase in the charge rate per unit time until the charge rate of the storage battery reaches the desired upper limit SOC value from the desired charge start time to the desired charge end time is constant.
  • the charging current value is set, and the step of charging the storage battery until the charging rate reaches the upper limit SOC value at the set charging current value, and is defined as a time zone other than the specific power time zone In daytime hours, when the current PV power is less than or equal to the current load power, the storage battery charge rate reaches the desired lower SOC value from the current time to the desired discharge end time.
  • the first discharge current value is set by calculating the first discharge rate so that the reduction amount per unit time of the charging rate until reaching the constant, and the set first discharge current value, the storage battery voltage,
  • the charging rate is set at the set first discharge current value.
  • Discharge rate The second storage battery output of the storage battery obtained by setting the second discharge current value and multiplying the set second discharge current value by the storage battery voltage from the current load power to the current PV power Discharging the storage battery until the charging rate reaches the lower limit SOC value at the set second discharge current value when the difference is smaller than the second difference value obtained by subtracting.
  • the charge / discharge current value is calculated based on the charge / discharge time and the storage battery state, and the charge / discharge is determined based on the relationship between the PV power, the load power, and the storage battery power, and the storage battery is charged / discharged. To do. As a result, even when PV power fluctuations and load power fluctuations occur suddenly, it is possible to suppress rapid increases and instantaneous changes in the charge / discharge current value of the storage battery, and to prevent deterioration of the storage battery and It is possible to obtain a storage battery charge / discharge control device and a storage battery charge / discharge control method that achieve a long life.
  • Embodiment 1 of this invention It is a block diagram of the system
  • Embodiment 1 of this invention it is explanatory drawing which showed the change of the charging rate when charge control of a storage battery is performed in a specific electric power time slot
  • Embodiment 1 of this invention it is explanatory drawing which showed the change of PV electric power and load electric power when PV electric power falls below load electric power during the daytime.
  • Embodiment 1 of this invention when PV electric power falls below load electric power in the daytime, it is explanatory drawing which showed the change of the charging rate when discharge control of a storage battery is performed. In Embodiment 1 of this invention, it is explanatory drawing which showed the change of PV electric power and load electric power when PV electric power exceeds load electric power around noon in the daytime. In Embodiment 1 of this invention, it is explanatory drawing which showed an example of the change of a charging rate when discharge control of a storage battery is performed when PV electric power exceeds load electric power around noon in the daytime.
  • Embodiment 1 of this invention it is explanatory drawing which showed another example of the change of a charging rate when discharge control of a storage battery is performed when PV electric power exceeds load electric power around noon in the daytime. .
  • Embodiment 1 of this invention it is explanatory drawing which showed the change of PV electric power and load electric power when PV electric power exceeds load electric power from the morning to the evening in the daytime.
  • Embodiment 1 of this invention it is explanatory drawing which showed the change of the charging rate when discharge control of a storage battery is performed when PV electric power exceeds load electric power in the daytime from morning to noon.
  • Embodiment 2 of this invention it is explanatory drawing which showed together the change of PV electric power and load electric power when PV electric power exceeds load electric power around noon, and the change of the charging rate of a storage battery in the daytime. is there. It is explanatory drawing which shows the outline of the quantitative structure of the load electric power in each of the 1st time area
  • FIG. 1 is a configuration diagram of a system linkage system according to Embodiment 1 of the present invention.
  • the system linkage system in FIG. 1 includes a storage battery system 10, a PV system 20, a CT sensor 30, a load 40, and a system power supply 50.
  • the storage battery system 10 includes a storage battery 11, a battery management unit (hereinafter referred to as BMU) 12, a storage battery power conditioner (hereinafter referred to as storage battery PCS) 13, and a charge / discharge control device (hereinafter referred to as charge / discharge control device) of the storage battery 11. (Referred to as a discharge control device) 14.
  • the PV system 20 includes a PV device 21 and a PV power conditioner (hereinafter referred to as a PV PCS) 22.
  • the storage battery 11 in the storage battery system 10 charges the supplied power and discharges the power stored by charging.
  • the BMU 12 connected to the storage battery 11 has a protection function and a state monitoring function for safety management of the storage battery 11, and acquires information on the storage battery 11 based on these functions. Specifically, if overcharge, overdischarge, overvoltage, overcurrent, temperature abnormality, or the like occurs in the storage battery 11, the BMU 12 pauses the operation (charge / discharge) of the storage battery 11 with a protection function. Further, the BMU 12 monitors the storage battery state such as voltage measurement, current measurement, electric energy measurement, charge / discharge end management, and remaining capacity management in the storage battery 11 by the state monitoring function.
  • the storage battery PCS 13 connected to the BMU 12 converts AC power obtained by converting PV power from a PV device 21 in the PV system 20 described later into AC and AC power from the system power supply 50 into DC power, and passes through the BMU 12. And supplied to the storage battery 11. Further, the storage battery PCS 13 acquires information on the PV power and the load power detected by the CT sensor 30.
  • the charge / discharge control device 14 acquires information on the storage battery state, PV power, and load power of the storage battery 11 from the BMU 12 and the PCS 13 for storage battery, and performs charge / discharge control of the storage battery 11. Specifically, the charge / discharge control device 14 controls the operation state of the storage battery 11 to any one of the discharge mode, the charge mode, and the hibernation mode based on the acquired information, and the charge / discharge of the storage battery 11. Determine the current value.
  • the PV device 21 in the PV system 20 generates PV power from sunlight.
  • the PV PCS 22 converts the PV power generated by the PV device 21 into alternating current, and supplies the converted alternating current power to the storage battery PCS 13 and the load 40 to be connected.
  • the CT sensor 30 detects the PV power generated by the PV device 21 and the load power consumed by the load 40.
  • the load 40 consumes AC power supplied from the storage battery PCS 13, PV PCS 22, and the system power supply 50 as load power.
  • the system power supply 50 is, for example, a single-phase or three-phase commercial power supply.
  • FIG. 2 is a flowchart illustrating charge / discharge control of storage battery 11 by charge / discharge control device 14 according to Embodiment 1 of the present invention.
  • Electricity consumption varies depending on the time of day. That is, the power demand for people to work increases from morning to noon to night, while the power demand for people to work decreases at midnight. A time zone and a time zone where power demand is small will be born. Moreover, in the electric power company which produces electric power, in the time slot
  • a price difference is set between a time zone when the power demand is large and a time zone when the power demand is small (specifically, in the time zone when the power demand is large, an expensive power charge is set and However, in a small time zone, the electric power demand is leveled by setting an inexpensive electric power charge).
  • the storage battery 11 is charged (purchased power) in a time zone where the power rate is cheap, and is discharged to the load 40 in a time zone where the power rate is expensive.
  • a time zone for example, a midnight time zone in which the power rate is cheap is set as the specific power time zone.
  • step S101 the charge / discharge control device 14 determines whether or not the current time (current time) is a specific power time zone where the electricity rate is cheap.
  • step S101 when the charge / discharge control device 14 determines that the current time is not the specific power time zone (that is, NO), the process proceeds to step S201 described later. That is, the daytime time zone in which the current time is defined as a time zone other than the specific power time zone (here, the time zone from 8:00 to 23:00 is defined as the daytime time zone, and from 23:00 to the next morning at 8:00 In this case, it is determined that it is not the specific power time zone. On the other hand, if it is determined in step S101 that the current time is the specific power time zone (that is, YES), the process proceeds to step S102.
  • step S102 the charge / discharge control device 14 sets an upper limit SOC (State Of Charge) of the storage battery 11.
  • SOC State Of Charge
  • the upper limit SOC of the storage battery 11 should just set the desired upper limit SOC previously by the user.
  • step S ⁇ b> 103 the charge / discharge control device 14 sets a charging end time at which charging of the storage battery 11 ends.
  • the charging end time is set such that, for example, charging of the storage battery 11 ends at 8:00, which is the end time of the specific power period.
  • step S104 the charge / discharge control device 14 calculates a charge rate based on the upper limit SOC set in step S102 and the charge end time set in step S103, and sets a charge current value. That is, the charging current value so that the amount of increase in the charging rate per unit time until the charging rate of the storage battery 11 reaches the upper limit SOC value from the current SOC value becomes constant by the charging end time in the specific power time period. Will be set. Specifically, the charging rate is calculated and the charging current value is set according to the following equation (1).
  • the charge rate indicates a relative ratio of the current during charging to the capacity of the storage battery 11, and the unit is represented by C.
  • the charging rate of 1 C is a current value that completes charging in 1 hour (reach the upper limit SOC) when the storage battery 11 having the nominal capacity is charged with constant current, and the charging rate is 0.
  • .2C is a current value at which charging is completed in 5 hours (up to the upper limit SOC).
  • the charging start time is exemplified by setting at 23:00, which is the start time of the specific power time zone, but is not limited thereto, and may be another time in the specific power time zone. Further, for example, when the charge start time is set to 2 o'clock after 24:00 and the charge rate is calculated according to the above equation (1), the current time is calculated as 26:00 instead of 2 o'clock. Further, in the first embodiment, the charging end time is exemplified by setting it to 8:00, which is the end time of the specific power time zone, but is not limited thereto, and may be another time in the specific power time zone.
  • step S105 the charge / discharge control device 14 starts charging the storage battery 11 using the grid power from the grid power supply 50 in accordance with the charge current value set at the charge rate calculated in step S104.
  • step S106 the charge / discharge control device 14 determines whether or not the charging rate of the storage battery 11 has reached the upper limit SOC. That is, it is determined whether or not the current time is the charging end time at which the charging rate of the storage battery 11 reaches the upper limit SOC.
  • step S106 when it is determined that the charging rate of the storage battery 11 has not reached the upper limit SOC (that is, NO), the charge / discharge control device 14 returns to step S105 and continues charging the storage battery 11. On the other hand, when the charge / discharge control device 14 determines in step S106 that the charging rate of the storage battery 11 has reached the upper limit SOC (that is, YES), the process of the flowchart of FIG.
  • the charging end time is set to 8 o'clock by a series of execution processes of step S101 to step S106
  • the charging rate of the storage battery 11 is limited to the upper limit at 8 o'clock, which is the end time of the specific power period.
  • the SOC is reached for the first time.
  • step S101 when the current time is the daytime time zone from 8:00 to 23:00, in step S101, the charge / discharge control device 14 determines that the current time is not the specific power time zone (that is, NO). Therefore, it progresses to step S201.
  • the specific power time zone that is, NO
  • step S201 the charge / discharge control device 14 determines whether the PV power detected by the CT sensor 30 is larger than the load power. In step S201, when the charge / discharge control device 14 determines that the PV power is larger than the load power (that is, YES), the process proceeds to step S202.
  • the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21.
  • step S202 the charge / discharge control device 14 determines whether or not the storage battery 11 is to be charged. Specifically, for example, if the current charging rate of the storage battery 11 is not the upper limit SOC, it is determined to charge the storage battery 11, and if it is the upper limit SOC, it is determined not to charge the storage battery 11.
  • step S202 when the charge / discharge control device 14 determines to charge the storage battery 11, in step S203, the operation state of the storage battery 11 is set to the charging mode, and surplus power in the PV power is supplied to the storage battery 11. The storage battery 11 is charged. On the other hand, when it is determined in step S202 that the storage battery 11 is not charged, in step S204, the charging / discharging of the storage battery 11 is paused by setting the operation state of the storage battery 11 to the sleep mode (charging / discharging). Do not).
  • the charge / discharge control apparatus 14 returns to step S201 after executing the process of step S203 or step S204, and executes the processes after step S201.
  • the charge / discharge control device 14 may sell surplus power in the PV power via the system power supply 50.
  • step S201 determines in step S201 that the PV power is equal to or lower than the load power (ie, NO)
  • the process proceeds to step S205.
  • step S205 the charge / discharge control device 14 sets the desired lower limit SOC of the storage battery 11, sets the desired discharge end time at which the discharge of the storage battery 11 ends, and sets the lower limit SOC and the discharge end, as before. Based on the time, the discharge rate is calculated and the discharge current value is set.
  • the discharge current value so that the amount of decrease in the charging rate per unit time until the charging rate of the storage battery 11 reaches the lower limit SOC value from the current SOC value becomes constant by the discharge end time in the daytime period.
  • the discharge rate is calculated according to the following formula (2), and the discharge current value is set.
  • the discharge rate indicates the relative ratio of the current during discharge to the capacity of the storage battery 11, and the unit is represented by C.
  • the charge rate of 1 C is a current value at which discharge is completed in 1 hour (reaching the lower limit SOC) when the storage battery 11 having a nominal capacity is discharged at a constant current, and the charge rate is 0.
  • .2C is a current value at which discharge is completed in 5 hours (lower limit SOC is reached).
  • step S206 the charge / discharge control device 14 calculates the storage battery output (discharge power) of the storage battery 11 according to the discharge current value set at the discharge rate calculated in step S205. Specifically, the product of the current voltage value of the storage battery 11 and the set discharge current value is calculated as the current storage battery output.
  • step S207 when the charge / discharge control device 14 determines that the storage battery output is greater than or equal to the first difference value (that is, NO), the charge / discharge control device 14 returns to step S204 and sets the operation state of the storage battery 11 to the sleep mode. 11 charge / discharge (operation) is paused (leaves pause). In this case, the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21.
  • PV power is unstable because its power value is likely to fluctuate rapidly depending on the weather. Therefore, by discharging the storage battery 11 having a storage battery output equal to or greater than the first difference value, extra power is generated. Therefore, when the storage battery output is greater than or equal to the first difference value, the discharge of the storage battery 11 is suspended and the load 40 is operated with system power and PV power so as not to generate extra power from the storage battery 11. Thereby, highly efficient operation is possible without wasting storage battery power.
  • step S207 when the charge / discharge control device 14 determines that the storage battery output is smaller than the first difference value (that is, YES), in step S208, according to the set discharge current value, the storage battery 11 Start discharging.
  • the load 40 is operated using the system power from the system power supply 50, the PV power from the PV device 21, and the discharge power from the storage battery 11. Moreover, about the storage battery 11, according to the set discharge current value, the system power from the system power supply 50 is made to follow the fluctuation of the PV power and the load power so that the battery 11 can be discharged while maintaining a constant current value. .
  • the domestic load can be efficiently operated.
  • step S209 the charge / discharge control device 14 determines whether or not the charging rate of the storage battery 11 has reached the lower limit SOC.
  • step S209 when it is determined that the charging rate of the storage battery 11 has not reached the lower limit SOC (that is, NO), the charge / discharge control device 14 returns to step S207, and the storage battery output is again the first difference. It will be determined whether it is smaller than the value. That is, the calculation in step S207 is repeatedly performed.
  • step S208 the storage battery 11 is continuously discharged at the set discharge current value.
  • step S209 when the charge / discharge control device 14 determines in step S209 that the charging rate of the storage battery 11 has reached the lower limit SOC, the process of the flowchart of FIG.
  • the charging rate of the storage battery 11 is set to the lower limit at 23:00, which is the end time of the daytime time zone.
  • the SOC is reached for the first time.
  • the discharge start time is set to 8 o'clock, which is the start time of the daytime period, but is not limited thereto, and may be another time of the daytime period.
  • the discharge end time is set to 23:00, which is the end time of the daytime time zone, but is not limited to this, and may be another time of the daytime time zone.
  • the discharge end time is calculated as 26:00 instead of 2 o'clock.
  • FIG. 3 is an explanatory diagram showing a change in the charging rate when the charging control of the storage battery 11 is performed in the specific power time zone in the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing changes in PV power and load power when PV power falls below load power over the daytime in Embodiment 1 of the present invention.
  • FIG. 5 is an explanatory diagram showing a change in the charging rate when the discharge control of the storage battery 11 is performed when the PV power falls below the load power over the daytime in the first embodiment of the present invention.
  • the performance of the storage battery 11 is that the nominal capacity is 30 Ah, 6 kW, the upper limit SOC of the storage battery 11 is set to 100%, and the lower limit SOC is set to 25%. Moreover, the case where the PV panel whose maximum PV electric energy is 3.2 kW is used as the PV apparatus 21 in the PV system 20 is assumed.
  • the charging / discharging control device 14 controls charging of the storage battery 11 at 23:00 to 8:00, which is a specific power period.
  • the charge / discharge control device 14 calculates the charge rate and sets the charge current value according to the above equation (1).
  • the current time to start charging is 23:00 and the charging end time is 8:00.
  • the current (23:00) SOC is set to 25%, which is the lower limit SOC, and the SOC at the end of charging is set to 100%, which is the upper limit SOC. Specifically, it is calculated as in the following formula (3).
  • the charging / discharging control device 14 has a constant increase in the charging rate of the storage battery 11 per unit time in 9 hours from 23:00 to 8:00, as shown in FIG. From 25%, which is the lower limit SOC, to 100%, which is the upper limit SOC (the storage battery 11 is charged to full charge). Therefore, if the current time (charging start time) and charging end time at which charging in a specific power time period is started are changed, it is possible to charge to full charge at a desired charging rate.
  • the lowest charging current value It will be possible to charge up to full charge.
  • the charge / discharge control device 14 changes the setting of the charging current value in accordance with a desired upper limit SOC set in advance. That is, for example, as shown in FIG. 3, if the upper limit SOC is changed to 90%, the charging rate of the storage battery 11 is reduced from 25%, which is the lower limit SOC, to the upper limit SOC in 9 hours from 23:00 to 8:00. The setting of the charging current value is changed to be 90%.
  • the charging / discharging control device 14 may set the charging current value so that the charging rate of the storage battery 11 reaches the upper limit SOC in a shorter time than 9 hours from 23:00 to 8:00.
  • charging is performed with a specified charging current value without setting the charging end time.
  • the behavior is such that the charging rate of the storage battery 11 becomes 100% which is the upper limit SOC in 4 hours, and the control of the charging current value (the control of the slope indicating the change in the charging rate) cannot be performed. Therefore, as a result, the full charge maintenance time of the storage battery 11 cannot be controlled, and it has not been possible to prevent the deterioration of the storage battery and extend its life.
  • the full charge maintenance time of the storage battery 11 can be controlled by setting the charging current value. Therefore, for example, if the storage battery 11 is charged to the full charge at the lowest charging current value in the specific power time zone, the full charge maintenance time of the storage battery 11 can be reduced to the minimum, and the storage battery can be prevented from being deteriorated and have a long life. Can be realized.
  • the charge / discharge control device 14 controls the discharge of the storage battery 11 during the daytime period from 8:00 to 23:00.
  • the load 40 is operated using the system power from the system power supply 50, the PV power from the PV device 21, and the discharge power from the storage battery 11. Then, at 8:00, which is the start time of the daytime period, as described above, the discharge rate is calculated and the discharge current value is set according to the above equation (2).
  • the current time (discharge start time) at which discharge starts is 8:00, and the discharge end time is 23:00.
  • the current (8 o'clock) SOC is set to 100%, which is the upper limit SOC, and the SOC at the end of discharge is set to 25%, which is the lower limit SOC. Specifically, it is calculated as in the following formula (4).
  • the charge / discharge control device 14 calculates the storage battery output by multiplying the current storage battery voltage value of the storage battery 11 and the set discharge current value. And when a storage battery output is smaller than the 1st difference value mentioned above, the charging / discharging control apparatus 14 starts discharge of the storage battery 11 according to the set discharge current value.
  • the charge / discharge control device 14 has a constant decrease in the charging rate of the storage battery 11 per unit time in 15 hours from 8:00 to 23:00, and has an upper limit SOC of 100.
  • Storage battery 11 will continue to be discharged at a discharge current value (1.5 A) that is set to 25% that is the lower limit SOC from%.
  • the power shortage with respect to the load 40 is supplemented with the system power from the system power supply 50.
  • discharge start time discharge start time
  • discharge end time discharge end time at which the daytime discharge is started
  • the discharge start time is set to 8 o'clock and the discharge end time is set to 23:00 so that the charge rate of the storage battery 11 is changed from the upper limit SOC to the lower limit SOC, the lowest discharge current value
  • the discharge start time is set to 8 o'clock and the discharge end time is set to 23:00 so that the charge rate of the storage battery 11 is changed from the upper limit SOC to the lower limit SOC, the lowest discharge current value
  • the storage battery is discharged according to the fluctuation of PV power and the fluctuation of load power without setting the discharge current value, the behavior of the discharge current value is controlled. could not. That is, in the past, according to fluctuations in PV power and load power, for example, as shown in FIG. 5, the charging rate of the storage battery 11 is reduced to 25%, which is the lower limit SOC, in one hour from 8:00 to 9:00. Therefore, it is impossible to control the discharge current value (control of the slope indicating a change in the charging rate). Therefore, as a result, even when a sudden change in PV power or load power occurs during discharge of the storage battery, the discharge current value may increase unexpectedly, preventing deterioration of the storage battery and extending its life. Can not be realized.
  • the discharge current value of the storage battery 11 can be controlled by setting the discharge current value. Therefore, for example, if the storage battery 11 is discharged to the lower limit SOC at the lowest discharge current value in the daytime period, the discharge current value will not increase unexpectedly, preventing deterioration of the storage battery and extending its life. Is possible.
  • FIG. 6 is an explanatory diagram showing changes in PV power and load power when PV power exceeds load power around noon in the daytime in Embodiment 1 of the present invention.
  • FIG. 7 shows an example of the change in the charging rate when the discharge control of the storage battery 11 is performed when the PV power exceeds the load power around noon in the daytime in Embodiment 1 of the present invention. It is explanatory drawing.
  • FIG. 8 shows another example of the change in the charging rate when the discharge control of the storage battery 11 is performed when the PV power exceeds the load power around noon in the daytime in Embodiment 1 of the present invention.
  • the charging / discharging control device 14 pauses the storage battery 11 as shown in FIG. 7 when the surplus power of the PV power is not charged in the storage battery 11.
  • the charging / discharging control device 14 controls charging of the storage battery 11 as shown in FIG. 8 when charging the storage battery 11 with surplus power of the PV power.
  • the charge / discharge control device 14 controls the discharge of the storage battery 11 as shown in FIG. 7
  • the system power from the system power supply 50, the PV power from the PV device 21 and the discharge power from the storage battery 11 are used as in FIG.
  • the load 40 is operated.
  • the discharge rate is calculated and the discharge current value is set according to the above equation (2), as in FIG.
  • the current time at which discharge starts is 8 o'clock
  • the discharge end time is 23:00
  • the current (8 o'clock) SOC is the upper limit SOC of 100%.
  • the discharge rate is calculated and the discharge current value is set. Specifically, it is calculated as in the following formula (5).
  • the charge / discharge control device 14 calculates the storage battery output by multiplying the current storage battery voltage value of the storage battery 11 and the set discharge current value. When the storage battery output is smaller than the first difference value, the charge / discharge control device 14 starts discharging the storage battery 11 according to the set discharge current value as described above.
  • the PV power increases after 10 o'clock, and when the storage battery output is equal to or greater than the first difference value, the charge / discharge control device 14 is as described above. Then, the discharge of the storage battery 11 is stopped. In this case, the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21.
  • the PV power is less than the load power as in the morning.
  • the discharge rate is calculated again according to the above equation (2), and the discharge current value is reset.
  • the current start time (discharge start time) is 13:00
  • the discharge end time is 23:00
  • the current (13:00) SOC is 90%.
  • the SOC at that time is set to 25% which is the lower limit SOC
  • the discharge rate is calculated again, and the discharge current value is reset.
  • the charging / discharging control apparatus 14 is discharging the storage battery 11, the charging rate of the storage battery is reduced from 100% which is the upper limit SOC to 90%. Specifically, it is calculated as in the following formula (6).
  • the charge / discharge control device 14 calculates the storage battery output by multiplying the current storage battery voltage value of the storage battery 11 and the reset discharge current value. And when a storage battery output is smaller than a 1st difference value, the charging / discharging control apparatus 14 starts the discharge of the storage battery 11 again according to the reset current value reset as mentioned above. Then, as shown in FIG. 7, in 10 hours from 13:00 to 23:00, the charging rate of the storage battery 11 is reset so that the amount of decrease per unit time becomes constant and the lower limit SOC is 25%. The storage battery 11 will continue to be discharged at the discharge current value (1.95 A).
  • the charge / discharge control device 14 discharges the storage battery 11 at the set discharge current value (1.5 A) from 8 o'clock to 10 o'clock in the daytime period. Since it continues, the charging rate of the storage battery 11 falls from 100% which is upper limit SOC. Moreover, since the charging / discharging control apparatus 14 stops discharge of the storage battery 11 from about 10:00 to 13:00, it will be in the state by which the charging rate of the storage battery 11 was maintained constant. Further, from 13:00 to 23:00, the storage battery 11 continues to be discharged again at the reset discharge current value (1.95) A, so the charge rate of the storage battery 11 is reduced to 25%, which is the lower limit SOC.
  • the storage battery is discharged according to the fluctuation of PV power and the fluctuation of load power without setting the discharge current value, the behavior of the discharge current value is controlled. could not. That is, according to the fluctuation of the PV power and the fluctuation of the load power, conventionally, as shown in FIG. 7, for example, the charging rate of the storage battery 11 becomes 80% in 2 hours from 8 o'clock to 10 o'clock. Controls the discharge current value in a state where it remains constant at 80% for 3 hours from 13:00 to 15:00, and reaches the lower limit SOC of 25% in 6 hours from 13:00 to 19:00. (Slope control showing change in charging rate) is not possible. On the other hand, in the first embodiment, even if the PV power fluctuates greatly during the daytime, the discharge current value of the storage battery 11 can be controlled, so that the same effect as described above can be obtained.
  • the charge / discharge control device 14 controls the discharge of the storage battery 11 as shown in FIG. 8
  • the storage battery 11 is continuously discharged at the set discharge current value (1.5 A).
  • the charging rate decreases from 100%, which is the upper limit SOC.
  • PV power increases after 10 o'clock, and when the storage battery output is equal to or greater than the first difference value, the charge / discharge control device 14, as described above, Discharging the storage battery 11 is suspended.
  • the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21, and the surplus power in the PV power is charged to the storage battery 11, so that FIG. As shown, the charging rate of the storage battery 11 becomes 100%, which is the upper limit SOC again.
  • the PV power is less than the load power as in the morning.
  • the discharge rate is calculated again according to the above equation (2), and the discharge current value is reset.
  • the current time (discharge start time) at which discharge starts is 13:00
  • the discharge end time is 23:00
  • the current (13:00) SOC is 100%.
  • the SOC at that time is set to 25% which is the lower limit SOC
  • the discharge rate is calculated again, and the discharge current value is reset. Specifically, it is calculated as in the following formula (7).
  • the charge / discharge control device 14 has a constant decrease in the charging rate of the storage battery 11 per unit time in 10 hours from 13:00 to 23:00, and the lower limit SOC.
  • the storage battery 11 is continuously discharged at the discharge current value (2.25 A) reset to be 25%.
  • the charge / discharge control device 14 discharges the storage battery 11 at the set discharge current value (1.5 A) from 8:00 to 10:00 in the daytime period. Since it continues, the charging rate of the storage battery 11 falls from 100% which is upper limit SOC. Moreover, since the charging / discharging control apparatus 14 stops charging from about 10:00 to 13:00 and performs charging, the charging rate of the storage battery 11 becomes constant after reaching the upper limit SOC of 100%. It will be maintained. Furthermore, from 13:00 to 23:00, the storage battery 11 continues to be discharged again with the reset discharge current value (2.25) A, so the charge rate of the storage battery 11 is reduced to 25%, which is the lower limit SOC.
  • the storage battery is discharged according to the fluctuation of PV power and the fluctuation of load power without setting the discharge current value, the behavior of the discharge current value is controlled. could not. That is, according to the fluctuation of the PV power and the fluctuation of the load power, conventionally, as shown in FIG. 8, for example, the charging rate of the storage battery 11 becomes 80% in 2 hours from 8 o'clock to 10 o'clock. It becomes 100% which is the upper limit SOC in 3 hours from -13: 00 and is kept constant at 100%, and it is 25% which is the lower limit SOC in 8 hours from 13:00 to 21:00. It shows behavior and cannot control the discharge current value (control of the slope indicating the change in the charging rate).
  • the discharge current value of the storage battery 11 can be controlled even if the PV power fluctuates greatly during the daytime period, so that a desired discharge rate corresponding to the current time is obtained.
  • the battery can be discharged to the lower limit SOC.
  • FIG. 9 is an explanatory diagram showing changes in PV power and load power when the PV power exceeds the load power from morning to evening in the daytime in Embodiment 1 of the present invention.
  • FIG. 10 shows a change in the charging rate when the discharge control of the storage battery 11 is performed when the PV power exceeds the load power from morning to evening in the daytime in Embodiment 1 of the present invention.
  • the charge / discharge control device 14 controls the discharge of the storage battery 11.
  • the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21.
  • the charging / discharging control device 14 stops discharging the storage battery 11 (does not discharge), the charging rate of the storage battery 11 is kept constant with the upper limit SOC being 100%. Normally, since the charging rate of the storage battery 11 is already 100%, which is the upper limit SOC, the storage battery 11 is not charged and surplus power is sold.
  • the discharge start time is 17:00
  • the discharge end time is 23:00
  • the current (17:00) SOC is 100%, which is the upper limit SOC.
  • the discharge rate is calculated again, and the discharge current value is set. Specifically, it is calculated as in the following formula (8).
  • the charge / discharge control device 14 calculates the storage battery output by multiplying the current storage battery voltage value of the storage battery 11 and the set discharge current value. When the storage battery output is smaller than the first difference value, the charge / discharge control device 14 starts discharging the storage battery 11 according to the set discharge current value as described above.
  • the charging rate of the storage battery 11 is set so that the amount of decrease per unit time is constant and the lower limit SOC is 25% in 6 hours from 17:00 to 23:00.
  • the storage battery 11 will continue to be discharged at the discharge current value (3.75 A).
  • the storage battery is discharged according to the fluctuation of PV power and the fluctuation of load power without setting the discharge current value, the behavior of the discharge current value is controlled. could not.
  • the charging rate of the storage battery 11 is kept constant at 100%, which is the upper limit SOC from 8:00 to 13:00. In this state, the behavior becomes 50% in 10 hours from 13:00 to 23:00, and the discharge current value cannot be controlled.
  • the charging / discharging control apparatus 14 is that the charging rate of the storage battery 11 is daytime.
  • the discharge current value is set so that the lower limit SOC is reached by the end time of the intermediate time zone (start time of the specific power time zone), and the storage battery 11 is discharged. Therefore, the charging rate of the storage battery 11 does not become larger than the lower limit SOC, and no extra power remains in the storage battery 11. That is, in the daytime time period, the charging power can be efficiently used until the charging rate of the storage battery 11 reaches the lower limit SOC.
  • FIG. 11 is an explanatory diagram showing a change in the capacity maintenance rate of the storage battery 11 according to Embodiment 1 of the present invention.
  • the change of the capacity retention rate of the storage battery in the conventional storage battery system is also shown as a comparative example.
  • the charge / discharge current value during charging and discharging cannot be controlled. Therefore, at the time of charging in the specific power time zone, the charging end time may be shortened, and the full charge maintaining time of the storage battery may be lengthened.
  • the charge / discharge rate is determined according to the current time of charging / discharging and the current storage battery state by the charge / discharge control operation by the charge / discharge control device 14.
  • the charge / discharge current value is calculated and set. Therefore, as a result, as shown in FIG. 11, when the storage battery system 10 is used during a certain period, the decrease in the capacity maintenance rate of the storage battery 11 becomes smaller than the conventional one, and the life of the storage battery 11 can be extended. . Furthermore, since the power charged in the storage battery 11 can be used efficiently until the charging rate of the storage battery 11 reaches the lower limit SOC in the daytime hours, the economy is improved.
  • the charge / discharge control device 14 is configured to store the storage battery 11 from the current time to the desired discharge end time as described above.
  • the discharge current value is set so that the storage rate reaches the lower limit SOC, and the storage battery output of the storage battery 11 is calculated.
  • the charge / discharge control device 14 discharges the storage battery until the charging rate reaches the lower limit SOC value at the set discharge current value.
  • the charge / discharge control device 14 stops the operation of the storage battery 11 when the storage battery output of the storage battery 11 is equal to or greater than the first difference value during the daytime. Then, during the pause, when the current PV power is less than or equal to the current load power, as described above, the storage rate of the storage battery 11 reaches the lower limit SOC from the current time to the desired discharge end time. The discharge current value is reset and the storage battery output of the storage battery 11 is calculated. Subsequently, when the calculated storage battery output is smaller than the first difference value, the charge / discharge control device 14 discharges the storage battery until the charging rate reaches the lower limit SOC value at the reset discharge current value.
  • the charging / discharging control apparatus 14 is the daytime time zone.
  • WHEREIN When the present PV electric power is larger than the present load electric power, based on the present storage battery state, the surplus electric power of the present PV electric power is stored in the storage battery 11. Or the operation of the storage battery 11 is stopped.
  • the current storage battery state based on the charge rate (remaining capacity) of the current storage battery 11, surplus power of the current PV power is charged to the storage battery 11, or Or the case where the operation
  • the present invention is not limited to this, and surplus power of the current PV power is charged into the storage battery 11 in consideration of another storage battery state exemplified in the paragraph 0018 (for example, the voltage, current, or amount of power of the storage battery 11). Alternatively, the operation of the storage battery 11 may be paused.
  • the charge / discharge control apparatus 14 is charged until the charge rate of the storage battery 11 reaches the upper limit SOC value from the current charge rate value between the desired charge start time and the desired charge end time in the specific power time zone.
  • the charge rate is calculated so that the rate increase per unit time is constant, and the charge current value is set.
  • the charge / discharge control device 14 charges the storage battery 11 with the set charging current value.
  • the full charge maintenance time of the storage battery 11 can be controlled, the full charge maintenance time of the storage battery 11 can be reduced, and as a result, deterioration of the storage battery and long life can be achieved.
  • the desired charge start time is set as the start time of the specific power time zone and the desired charge end time is set as the end time of the specific power time zone, the full charge maintenance time of the storage battery 11 can be reduced to the minimum. .
  • the charging / discharging control apparatus in a storage battery system calculates a charging / discharging rate according to the time which performs charging / discharging, and a storage battery state, sets a charging / discharging electric current value, PV power From the load power and storage battery power, the start of charge / discharge is determined, and the storage battery charge / discharge control is performed.
  • Embodiment 2 In the first embodiment, various change patterns of PV power and load power during the daytime (previous FIGS. 4, 6, and 9) are exemplified, and the operation example of the charge / discharge control device 14 has been described.
  • FIG. 2 and FIGS. 12 and 13 On the other hand, in the second embodiment of the present invention, a case where PV power changes above the load power around noon during the day is illustrated, see the flowchart of FIG. 2 and FIGS. 12 and 13 above. However, an operation example of the charge / discharge control device 14 will be further described.
  • FIG. 12 shows the change in PV power and load power when the PV power exceeds the load power around noon and the change in the charging rate of the storage battery 11 in the daytime in Embodiment 2 of the present invention. It is explanatory drawing shown.
  • FIG. 13 is an explanatory diagram showing an outline of a quantitative configuration of load power in each of the first time region (1), the second time region (2), and the third time region (3) in FIG.
  • the daytime change (solid line) of the charge rate of the storage battery in the conventional storage battery system is also shown as a comparative example with respect to the daytime change (dashed line) of the charge rate of the storage battery 11.
  • region (1) in FIG. 12 is equivalent to the part where PV electric power is increasing gradually
  • region (2) is equivalent to the part where PV electric power exceeds load electric power.
  • the third time region (3) corresponds to a portion where the PV power is gradually reduced.
  • the charge / discharge control device 14 determines that it is the specific power time zone (step S101), and sets the upper limit SOC, the charging end time, and the charging current value (steps S102 to S104). ). Subsequently, the charging / discharging control device 14 continues charging until the charging rate reaches the upper limit SOC if charging is started, and ends the operation if it reaches the upper limit SOC (steps S105 and S106).
  • the charge / discharge control device 14 operates as follows in each of the first time region (1), the second time region (2), and the third time region (3) in the daytime time zone. It is assumed.
  • the charge / discharge control device 14 when the charge / discharge control device 14 operates in the first time region (1) in the daytime time zone, the charge / discharge control device 14 has a magnitude relationship between PV power and load power as shown in FIG. Is determined (step S201). In this case, as shown in FIG. 12, since the PV power is initially equal to or less than the load power, the charge / discharge control device 14 determines that the PV power is equal to or less than the load power (step S201), and the discharge current value and the storage battery are determined. The output is calculated (steps S205 and S206).
  • the charge / discharge control device 14 loads the load power if the calculated storage battery output is equal to or greater than the value obtained by subtracting the current PV power from the current load power. Since the above power is supplied to the load 40, the operation of the storage battery 11 is suspended (steps S207 and S204).
  • step S201 the charge / discharge control apparatus 14 stops the operation
  • step S201 the charge / discharge control apparatus 14 stops the operation
  • step S201 the charge / discharge control apparatus 14 stops the operation
  • step S201 the charge / discharge control apparatus 14 stops the operation
  • step S201 the charge / discharge control apparatus 14 stops the operation
  • movement of the storage battery 11 once again will determine the magnitude relationship between PV electric power and load electric power (step S201), and if PV electric power is below load electric power, it will be discharge current value.
  • the storage battery output is calculated (steps S205 and S206). Subsequently, the charge / discharge control device 14 determines the magnitude relationship between the calculated storage battery output and the value obtained by subtracting the current PV power from the current load power (step S207).
  • the charge / discharge control device 14 repeats the execution of a series of steps S201 ⁇ S205 ⁇ S206 ⁇ S207 ⁇ S204 ⁇ S201 without starting the discharge of the storage battery 11.
  • the charge / discharge control device 14 repeats the execution of a series of steps of step S201 ⁇ S202 ⁇ S203 or S204 ⁇ S201.
  • step S201 when the charging / discharging control device 14 operates in the second time region (2) in the daytime time zone, the charging / discharging control device 14 has a magnitude of PV power and load power as shown in FIG. The relationship is determined (step S201). In this case, as shown in FIG. 12, since the PV power is larger than the load power, the charge / discharge control device 14 has the PV power larger than the load power (in other words, surplus power in the PV power is generated. (Step S201).
  • the charge / discharge control device 14 determines whether or not to charge the storage battery 11 (step S202), charges the storage battery 11 (step S203), or pauses the operation of the storage battery 11 (step S204).
  • step S202 determines whether or not to charge the storage battery 11
  • step S203 charges the storage battery 11
  • step S204 pauses the operation of the storage battery 11
  • FIG. 13B when the storage battery 11 is selected to be charged, it is assumed that surplus power of the PV power is charged to the storage battery 11, and when the operation of the storage battery 11 is selected to be stopped, For example, it is assumed that surplus power in the PV power is sold via the system power supply 50.
  • the charging / discharging control device 14 when the charging / discharging control device 14 operates in the third time region (3) of the daytime time zone, the charging / discharging control device 14 has a magnitude of PV power and load power as shown in FIG. The relationship is determined (step S201). In this case, as shown in FIG. 12, since the PV power becomes equal to or less than the load power from around 13:00, the charge / discharge control device 14 determines that the PV power is equal to or less than the load power (step S201), and the discharge current. The value and the storage battery output are calculated (steps S205 and S206).
  • the charge / discharge control device 14 determines the magnitude relationship between the calculated storage battery output and the value obtained by subtracting the current PV power from the current load power (step S207).
  • the charge / discharge control device 14 performs steps S201 ⁇ S205 ⁇ S206 ⁇ S207. It is assumed that the operation of the storage battery 11 is paused by repeating a series of steps of S204 ⁇ S201.
  • step S208 the charge / discharge control device 14 starts discharging the storage battery 11 (step S208).
  • the charging / discharging control device 14 starts a series of steps S208 ⁇ S209 ⁇ S207 ⁇ S208 ⁇ S209 if the discharge of the storage battery 11 is started. It is assumed that the execution of this step is repeated, and when the lower limit SOC is reached, the operation is terminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

By determining the charge/discharge current value on the basis of the amount of time for charging and discharging and the battery state of the storage battery, directing the initiation of charging and discharging of the storage battery by using the PV power generated in a photovoltaic power generation (PV) system, the load power consumed by a load, and the storage battery output calculated by multiplying the storage battery voltage and the charge/discharge current value, and charging and discharging the storage battery at a calculated constant current, it is possible to obtain a storage battery charge/discharge control device and a storage battery charge/discharge control method which are capable of suppressing sudden increases and instant changes in the charge/discharge current value of the storage battery, even in cases in which PV power fluctuations and load power fluctuations occur suddenly, and which achieve degradation prevention and a longer operating life for the storage battery.

Description

蓄電池の充放電制御装置および蓄電池の充放電制御方法Storage battery charge / discharge control device and storage battery charge / discharge control method
 本発明は、蓄電池システム内の蓄電池の充放電を制御することで、蓄電池の劣化防止および長寿命化を図る蓄電池の充放電制御装置および蓄電池の充放電制御方法に関するものである。 The present invention relates to a storage battery charge / discharge control device and a storage battery charge / discharge control method that control the charge / discharge of the storage battery in the storage battery system to prevent the deterioration of the storage battery and extend its life.
 近年、太陽光発電(Photovoltaic power generation;以降では、PVと称す)システム等のエネルギー機器、家電および住宅機器等をコントロールし、エネルギーマネジメントを行うことで、二酸化炭素排出の削減を実現するスマートハウスが提案されている。 In recent years, smart houses that can reduce carbon dioxide emissions by controlling energy equipment such as photovoltaic power generation (hereinafter referred to as PV) systems, home appliances, and housing equipment, and performing energy management. Proposed.
 このようなスマートハウスにおいては、PVシステムで発電されたPV電力のうちの余剰電力と、商用電源から供給される、電気料金の安価な特定電力とを有効に利用するために、蓄電池(定置型蓄電池)が設置されている。また、このような蓄電池は、停電時の非常用電源としての役割も担う。 In such a smart house, a storage battery (stationary type) is used in order to effectively use surplus power of the PV power generated by the PV system and specific electric power supplied from a commercial power source at a low price. Storage battery) is installed. Moreover, such a storage battery also serves as an emergency power source during a power failure.
 ここで、PV電力の変動および負荷電力の変動に応じて、蓄電池の充放電が行われる場合、従来では、蓄電池の劣化防止および長寿命化を図るために、蓄電池の充放電を制御するさまざまな方法がある。 Here, when charging / discharging of a storage battery is performed according to the fluctuation | variation of PV electric power and the fluctuation | variation of load electric power, conventionally, in order to aim at prevention of deterioration of a storage battery and prolonging life, various charging / discharging of a storage battery is controlled. There is a way.
 そのような方法の1つとして、蓄電池の放電電流値があらかじめ設定した値に到達した際に、蓄電池と、負荷とを切り離し、蓄電池の放電電流が大きくなりすぎないように抑制する方法がある(例えば、特許文献1参照)。 As one of such methods, when the discharge current value of the storage battery reaches a preset value, there is a method of separating the storage battery and the load and suppressing the discharge current of the storage battery from becoming too large ( For example, see Patent Document 1).
 また、PV電力は、性質上、変動しやすく不安定であるので、蓄電池にPV電力を充電する場合、蓄電池の充電電流が変動しやすい。そこで、充電電流の変動を抑制するために、変動分の充電電流を一般の系統電源(商用電源)からの系統電流で調整しながら、一定の充電電流で蓄電池を充電する方法がある(例えば、特許文献2参照)。 Also, since the PV power is variable and unstable in nature, the charging current of the storage battery is likely to change when the storage battery is charged with PV power. Therefore, in order to suppress the fluctuation of the charging current, there is a method of charging the storage battery with a constant charging current while adjusting the charging current corresponding to the fluctuation with the grid current from a general grid power supply (commercial power supply) (for example, Patent Document 2).
 また、電気料金が安価な特定電力時間帯に商用電源から蓄電池を充電する場合、蓄電池が満充電状態になるべくならないように、充電開始時刻を遅らせて充電することにより、蓄電池の満充電状態を維持する時間(以降では、満充電維持時間と称す)を減少させる方法がある(例えば、特許文献3参照)。同様に、特定電力時間帯に蓄電池を充電する場合、蓄電池の充電量として、第一充電量と第二充電量とを設定し、2段階の充電を行うことにより、蓄電池の満充電維持時間を減少させる方法がある(例えば、特許文献4参照)。 In addition, when charging a storage battery from a commercial power source during a specific power hour when the electricity rate is low, the storage battery is fully charged by delaying the charging start time so that the storage battery should not be fully charged. There is a method of reducing the time (hereinafter referred to as full charge maintenance time) to perform (see, for example, Patent Document 3). Similarly, when charging a storage battery in a specific power period, the first charge amount and the second charge amount are set as the storage battery charge amount, and the full charge maintenance time of the storage battery is reduced by performing two-stage charging. There is a method of decreasing (see, for example, Patent Document 4).
国際公開第2012/049972号パンフレットInternational Publication No. 2012/049972 Pamphlet 特開昭62-89435号公報JP-A-62-89435 特開2010-259163号公報JP 2010-259163 A 特開2012-39725号公報JP 2012-39725 A
 しかしながら、従来技術には以下のような課題がある。
 特許文献1~4に記載の従来技術では、蓄電池の充電電流値が制御されておらず(設定できず)、PV電力の変動および負荷電力の変動に応じて、大小様々な電流値を取り得ることには変わりがない。したがって、PV電力の変動および負荷電力の変動が急激に発生すれば、蓄電池の充放電電流値が急激に大きくなったり、蓄電池の充放電電流値が瞬時に変化したりする。このような場合、結果として、蓄電池が劣化したり、寿命が短くなったりする恐れがあるという問題があった。
However, the prior art has the following problems.
In the prior art described in Patent Documents 1 to 4, the charging current value of the storage battery is not controlled (cannot be set), and can take various current values depending on the fluctuations in PV power and load power. There is no change. Therefore, if the fluctuation of the PV power and the fluctuation of the load power occur suddenly, the charge / discharge current value of the storage battery suddenly increases or the charge / discharge current value of the storage battery changes instantaneously. In such a case, as a result, there is a problem that the storage battery may be deteriorated or the life may be shortened.
 本発明は、前記のような課題を解決するためになされたものであり、PV電力の変動および負荷電力の変動が急激に発生した場合であっても、蓄電池の充放電電流値の急激な増加および瞬時の変化を抑制することができるとともに、蓄電池の劣化防止および長寿命化を実現する蓄電池の充放電制御装置および蓄電池の充放電制御方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and even when fluctuations in PV power and load power occur suddenly, the charge / discharge current value of the storage battery rapidly increases. An object of the present invention is to obtain a storage battery charge / discharge control device and a storage battery charge / discharge control method that can suppress the instantaneous change and prevent the deterioration of the storage battery and extend its life.
 本発明における蓄電池の充放電制御装置は、太陽光発電システムであるPVシステムにおいて発電したPV電力と、系統電源から供給される系統電力と、負荷が消費する負荷電力とを検出するとともに、特定電力時間帯に蓄電池の充電制御を行い、特定電力時間帯以外の時間帯として規定される日中時間帯に蓄電池の放電制御を行う蓄電池の充放電制御装置であって、特定電力時間帯では、所望の充電開始時刻から所望の充電終了時刻までに蓄電池の充電率が所望の上限SOC値に到達するまでの充電率の単位時間当たりの増加量が一定となるように充電レートを算出することにより、充電電流値を設定し、設定した充電電流値で充電率が上限SOC値に到達するまで蓄電池を充電し、日中時間帯では、現在のPV電力が現在の負荷電力以下の場合に、現在の時刻から所望の放電終了時刻までに蓄電池の充電率が所望の下限SOC値に到達するまでの充電率の単位時間当たりの減少量が一定となるように第1放電レートを算出することにより、第1放電電流値を設定し、設定した第1放電電流値と、蓄電池の電圧とを乗ずることで得られる蓄電池の第1蓄電池出力が、現在の負荷電力から現在のPV電力を減算することで得られる第1差分値よりも小さい場合に、設定した第1放電電流値で充電率が下限SOC値に到達するまで蓄電池を放電するものである。 The charge / discharge control device for a storage battery according to the present invention detects PV power generated in a PV system that is a solar power generation system, system power supplied from a system power supply, and load power consumed by a load, and specific power. A storage battery charge / discharge control device that performs storage battery charge control during a time zone and performs storage battery discharge control during a daytime time zone defined as a time zone other than the specific power time zone. By calculating the charge rate so that the amount of increase in the charge rate per unit time until the charge rate of the storage battery reaches the desired upper limit SOC value from the charge start time to the desired charge end time is constant, The charging current value is set, and the storage battery is charged until the charging rate reaches the upper limit SOC value at the set charging current value. In the daytime period, the current PV power is less than the current load power. In this case, the first discharge rate is set so that the amount of decrease in the charge rate per unit time until the charge rate of the storage battery reaches the desired lower limit SOC value from the current time to the desired discharge end time is constant. By calculating, the first discharge current value is set, and the first storage battery output obtained by multiplying the set first discharge current value and the storage battery voltage is calculated from the current load power to the current PV power. When the difference is smaller than the first difference value obtained by subtracting, the storage battery is discharged until the charging rate reaches the lower limit SOC value at the set first discharge current value.
 また、本発明における蓄電池の充放電制御方法は、太陽光発電システムであるPVシステムにおいて発電したPV電力と、系統電源から供給される系統電力と、負荷が消費する負荷電力とを検出するステップと、特定電力時間帯では、所望の充電開始時刻から所望の充電終了時刻までに蓄電池の充電率が所望の上限SOC値に到達するまでの充電率の単位時間当たりの増加量が一定となるように充電レートを算出することにより、充電電流値を設定し、設定した充電電流値で充電率が上限SOC値に到達するまで蓄電池を充電するステップと、特定電力時間帯以外の時間帯として規定される日中時間帯では、現在のPV電力が現在の負荷電力以下の場合に、現在の時刻から所望の放電終了時刻までに蓄電池の充電率が所望の下限SOC値に到達するまでの充電率の単位時間当たりの減少量が一定となるように第1放電レートを算出することにより、第1放電電流値を設定し、設定した第1放電電流値と、蓄電池の電圧とを乗ずることで得られる蓄電池の第1蓄電池出力が、現在の負荷電力から現在のPV電力を減算することで得られる第1差分値よりも小さい場合に、設定した第1放電電流値で充電率が下限SOC値に到達するまで蓄電池を放電するステップと、第1蓄電池出力が第1差分値以上である場合に、蓄電池の動作を休止し、休止の間において、現在のPV電力が現在の負荷電力以下である場合に、現在の時刻から所望の放電終了時刻までに蓄電池の蓄電率が所望の下限SOC値に到達するまでの充電率の単位時間当たりの減少量が一定となるように第2放電レートを算出することにより、第2放電電流値を設定し、設定した第2放電電流値と、蓄電池の電圧とを乗ずることで得られる蓄電池の第2蓄電池出力が、現在の負荷電力から現在のPV電力を減算することで得られる第2差分値よりも小さい場合に、設定した第2放電電流値で充電率が下限SOC値に到達するまで蓄電池を放電するステップと、を備えたものである。 The storage battery charge / discharge control method according to the present invention includes a step of detecting PV power generated in a PV system that is a photovoltaic power generation system, system power supplied from a system power supply, and load power consumed by a load. In the specific power time zone, the amount of increase in the charge rate per unit time until the charge rate of the storage battery reaches the desired upper limit SOC value from the desired charge start time to the desired charge end time is constant. By calculating the charging rate, the charging current value is set, and the step of charging the storage battery until the charging rate reaches the upper limit SOC value at the set charging current value, and is defined as a time zone other than the specific power time zone In daytime hours, when the current PV power is less than or equal to the current load power, the storage battery charge rate reaches the desired lower SOC value from the current time to the desired discharge end time. The first discharge current value is set by calculating the first discharge rate so that the reduction amount per unit time of the charging rate until reaching the constant, and the set first discharge current value, the storage battery voltage, When the first storage battery output of the storage battery obtained by multiplying is smaller than the first difference value obtained by subtracting the current PV power from the current load power, the charging rate is set at the set first discharge current value. Discharging the storage battery until the value reaches the lower limit SOC value, and when the first storage battery output is greater than or equal to the first difference value, the operation of the storage battery is suspended, and the current PV power is When the power is equal to or lower than the power, the second reduction is performed so that the amount of decrease in the charging rate per unit time until the storage rate of the storage battery reaches the desired lower limit SOC value from the current time to the desired discharge end time is constant. Discharge rate The second storage battery output of the storage battery obtained by setting the second discharge current value and multiplying the set second discharge current value by the storage battery voltage from the current load power to the current PV power Discharging the storage battery until the charging rate reaches the lower limit SOC value at the set second discharge current value when the difference is smaller than the second difference value obtained by subtracting.
 本発明によれば、充放電を行う時間、および蓄電池状態に基づいて充放電電流値を算出し、PV電力、負荷電力および蓄電池電力の関係より充放電を行うことを判断し、蓄電池を充放電する。これにより、PV電力の変動および負荷電力の変動が急激に発生した場合であっても、蓄電池の充放電電流値の急激な増加および瞬時の変化を抑制することができるとともに、蓄電池の劣化防止および長寿命化を実現する蓄電池の充放電制御装置および蓄電池の充放電制御方法を得ることができる。 According to the present invention, the charge / discharge current value is calculated based on the charge / discharge time and the storage battery state, and the charge / discharge is determined based on the relationship between the PV power, the load power, and the storage battery power, and the storage battery is charged / discharged. To do. As a result, even when PV power fluctuations and load power fluctuations occur suddenly, it is possible to suppress rapid increases and instantaneous changes in the charge / discharge current value of the storage battery, and to prevent deterioration of the storage battery and It is possible to obtain a storage battery charge / discharge control device and a storage battery charge / discharge control method that achieve a long life.
本発明の実施の形態1における系統連係システムの構成図である。It is a block diagram of the system | strain connection system in Embodiment 1 of this invention. 本発明の実施の形態1における充放電制御装置による蓄電池の充放電制御を説明したフローチャートである。It is the flowchart explaining the charging / discharging control of the storage battery by the charging / discharging control apparatus in Embodiment 1 of this invention. 本発明の実施の形態1において、特定電力時間帯に蓄電池の充電制御が行われる際の充電率の変化を示した説明図である。In Embodiment 1 of this invention, it is explanatory drawing which showed the change of the charging rate when charge control of a storage battery is performed in a specific electric power time slot | zone. 本発明の実施の形態1において、日中にかけてPV電力が負荷電力を下回る場合のPV電力および負荷電力の変化を示した説明図である。In Embodiment 1 of this invention, it is explanatory drawing which showed the change of PV electric power and load electric power when PV electric power falls below load electric power during the daytime. 本発明の実施の形態1において、日中にかけてPV電力が負荷電力を下回る場合に、蓄電池の放電制御が行われる際の充電率の変化を示した説明図である。In Embodiment 1 of this invention, when PV electric power falls below load electric power in the daytime, it is explanatory drawing which showed the change of the charging rate when discharge control of a storage battery is performed. 本発明の実施の形態1において、日中のうち、正午頃にPV電力が負荷電力を上回る場合のPV電力および負荷電力の変化を示した説明図である。In Embodiment 1 of this invention, it is explanatory drawing which showed the change of PV electric power and load electric power when PV electric power exceeds load electric power around noon in the daytime. 本発明の実施の形態1において、日中のうち、正午頃にPV電力が負荷電力を上回る場合に、蓄電池の放電制御が行われる際の充電率の変化の一例を示した説明図である。In Embodiment 1 of this invention, it is explanatory drawing which showed an example of the change of a charging rate when discharge control of a storage battery is performed when PV electric power exceeds load electric power around noon in the daytime. 本発明の実施の形態1において、日中のうち、正午頃にPV電力が負荷電力を上回る場合に、蓄電池の放電制御が行われる際の充電率の変化の別例を示した説明図である。In Embodiment 1 of this invention, it is explanatory drawing which showed another example of the change of a charging rate when discharge control of a storage battery is performed when PV electric power exceeds load electric power around noon in the daytime. . 本発明の実施の形態1において、日中のうち、朝頃から夕方頃にPV電力が負荷電力を上回る場合のPV電力および負荷電力の変化を示した説明図である。In Embodiment 1 of this invention, it is explanatory drawing which showed the change of PV electric power and load electric power when PV electric power exceeds load electric power from the morning to the evening in the daytime. 本発明の実施の形態1において、日中のうち、朝頃から昼頃にPV電力が負荷電力を上回る場合に、蓄電池の放電制御が行われる際の充電率の変化を示した説明図である。In Embodiment 1 of this invention, it is explanatory drawing which showed the change of the charging rate when discharge control of a storage battery is performed when PV electric power exceeds load electric power in the daytime from morning to noon. . 本発明の実施の形態1における蓄電池の容量維持率の変化を示した説明図である。It is explanatory drawing which showed the change of the capacity maintenance rate of the storage battery in Embodiment 1 of this invention. 本発明の実施の形態2において、日中のうち、正午頃にPV電力が負荷電力を上回る場合のPV電力および負荷電力の変化と、蓄電池の充電率の変化とを併せて示した説明図である。In Embodiment 2 of this invention, it is explanatory drawing which showed together the change of PV electric power and load electric power when PV electric power exceeds load electric power around noon, and the change of the charging rate of a storage battery in the daytime. is there. 図12中の第1時間領域、第2時間領域および第3時間領域のそれぞれにおける負荷電力の量的構成の概略を示す説明図である。It is explanatory drawing which shows the outline of the quantitative structure of the load electric power in each of the 1st time area | region in FIG. 12, a 2nd time area | region, and a 3rd time area | region.
 以下、本発明による蓄電池の充放電制御装置および蓄電池の充放電制御方法を、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, a storage battery charge / discharge control device and a storage battery charge / discharge control method according to the present invention will be described with reference to the drawings according to preferred embodiments. In the description of the drawings, the same reference numerals are assigned to the same elements, and duplicate descriptions are omitted.
 実施の形態1.
 図1は、本発明の実施の形態1における系統連係システムの構成図である。この図1における系統連係システムは、蓄電池システム10、PVシステム20、CTセンサ30、負荷40および系統電源50を備える。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a system linkage system according to Embodiment 1 of the present invention. The system linkage system in FIG. 1 includes a storage battery system 10, a PV system 20, a CT sensor 30, a load 40, and a system power supply 50.
 蓄電池システム10は、蓄電池11、バッテリマネジメントユニット(以降では、BMUと称す)12、蓄電池用パワーコンディショナ(以降では、蓄電池用PCSと称す)13および蓄電池11の充放電制御装置(以降では、充放電制御装置と称す)14を有する。また、PVシステム20は、PV装置21およびPV用パワーコンディショナ(以降では、PV用PCSと称す)22を有する。 The storage battery system 10 includes a storage battery 11, a battery management unit (hereinafter referred to as BMU) 12, a storage battery power conditioner (hereinafter referred to as storage battery PCS) 13, and a charge / discharge control device (hereinafter referred to as charge / discharge control device) of the storage battery 11. (Referred to as a discharge control device) 14. The PV system 20 includes a PV device 21 and a PV power conditioner (hereinafter referred to as a PV PCS) 22.
 蓄電池システム10内の蓄電池11は、供給された電力を充電するとともに、充電により蓄えられた電力を放電する。蓄電池11に接続されているBMU12は、蓄電池11の安全性管理のため、保護機能および状態監視機能を有し、これらの機能に基づき、蓄電池11の情報を取得する。具体的には、BMU12は、蓄電池11において、過充電、過放電、過電圧、過電流または温度異常等が発生すれば、保護機能によって、蓄電池11の動作(充放電)を休止させる。また、BMU12は、状態監視機能によって、蓄電池11における電圧計測、電流計測、電力量計測、充放電末管理および残存容量管理等といった蓄電池状態の監視を行う。 The storage battery 11 in the storage battery system 10 charges the supplied power and discharges the power stored by charging. The BMU 12 connected to the storage battery 11 has a protection function and a state monitoring function for safety management of the storage battery 11, and acquires information on the storage battery 11 based on these functions. Specifically, if overcharge, overdischarge, overvoltage, overcurrent, temperature abnormality, or the like occurs in the storage battery 11, the BMU 12 pauses the operation (charge / discharge) of the storage battery 11 with a protection function. Further, the BMU 12 monitors the storage battery state such as voltage measurement, current measurement, electric energy measurement, charge / discharge end management, and remaining capacity management in the storage battery 11 by the state monitoring function.
 BMU12に接続されている蓄電池用PCS13は、後述するPVシステム20内のPV装置21からのPV電力を交流に変換した交流電力および系統電源50からの交流電力を直流電力に変換し、BMU12を介して、蓄電池11に供給する。また、蓄電池用PCS13は、CTセンサ30が検出したPV電力および負荷電力の情報を取得する。 The storage battery PCS 13 connected to the BMU 12 converts AC power obtained by converting PV power from a PV device 21 in the PV system 20 described later into AC and AC power from the system power supply 50 into DC power, and passes through the BMU 12. And supplied to the storage battery 11. Further, the storage battery PCS 13 acquires information on the PV power and the load power detected by the CT sensor 30.
 充放電制御装置14は、BMU12および蓄電池用PCS13から蓄電池11の蓄電池状態、PV電力および負荷電力の情報を取得し、蓄電池11の充放電制御を行う。具体的には、充放電制御装置14は、これらの取得した情報に基づいて、蓄電池11の動作状態を放電モード、充電モードまたは休止モードのいずれかのモードに制御するとともに、蓄電池11の充放電電流値を決定する。 The charge / discharge control device 14 acquires information on the storage battery state, PV power, and load power of the storage battery 11 from the BMU 12 and the PCS 13 for storage battery, and performs charge / discharge control of the storage battery 11. Specifically, the charge / discharge control device 14 controls the operation state of the storage battery 11 to any one of the discharge mode, the charge mode, and the hibernation mode based on the acquired information, and the charge / discharge of the storage battery 11. Determine the current value.
 PVシステム20内のPV装置21は、太陽光からPV電力を発生させる。PV用PCS22は、PV装置21が発電したPV電力を交流に変換し、連結する蓄電池用PCS13および負荷40に、変換した交流電力を供給する。CTセンサ30は、PV装置21が発電するPV電力と、負荷40が消費する負荷電力とを検出する。 The PV device 21 in the PV system 20 generates PV power from sunlight. The PV PCS 22 converts the PV power generated by the PV device 21 into alternating current, and supplies the converted alternating current power to the storage battery PCS 13 and the load 40 to be connected. The CT sensor 30 detects the PV power generated by the PV device 21 and the load power consumed by the load 40.
 負荷40は、蓄電池用PCS13、PV用PCS22および系統電源50から供給された交流電力を、負荷電力として消費する。系統電源50は、例えば、単相または3相等の商用電源である。 The load 40 consumes AC power supplied from the storage battery PCS 13, PV PCS 22, and the system power supply 50 as load power. The system power supply 50 is, for example, a single-phase or three-phase commercial power supply.
 次に、充放電制御装置14による蓄電池11の充放電制御について、図2のフローチャートを参照しながら説明する。図2は、本発明の実施の形態1における充放電制御装置14による蓄電池11の充放電制御を説明したフローチャートである。 Next, charge / discharge control of the storage battery 11 by the charge / discharge control device 14 will be described with reference to the flowchart of FIG. FIG. 2 is a flowchart illustrating charge / discharge control of storage battery 11 by charge / discharge control device 14 according to Embodiment 1 of the present invention.
 電力消費(電力需要)は、一日のうちで時間帯によって変化する。すなわち、朝~昼~夜においては、人々が活動するための電力需要が増加する一方、深夜においては、人々が活動するための電力需要が減少するので、一日のうちに、電力需要が大きな時間帯と、電力需要が小さな時間帯が生まれることとなる。また、発電を行っている電力会社においては、電力需要が小さな時間帯(例えば、深夜時間帯)では、発電所での発電電力が余ってしまい、無駄になってしまうおそれがある。したがって、発電所では、電力需要が大きな時間帯と、電力需要が小さな時間帯とに価格差を設ける(具体的には、電力需要が大きな時間帯では、高価な電力料金を設定し、電力需要が小さな時間帯では、安価な電力料金を設定する)ことで、電力需要の平準化を行っている。ここで、蓄電池11は、電力料金が安価な時間帯では充電(買電)を行い、電力料金が高価な時間帯では負荷40に対して放電する。なお、以降では、このように電力料金が安価な時間帯(例えば、深夜時間帯)を特定電力時間帯とする。 Electricity consumption (electric power demand) varies depending on the time of day. That is, the power demand for people to work increases from morning to noon to night, while the power demand for people to work decreases at midnight. A time zone and a time zone where power demand is small will be born. Moreover, in the electric power company which produces electric power, in the time slot | zone (for example, midnight time slot | zone) when electric power demand is small, there exists a possibility that the electric power generated in a power plant may be left and it may be wasted. Therefore, at the power plant, a price difference is set between a time zone when the power demand is large and a time zone when the power demand is small (specifically, in the time zone when the power demand is large, an expensive power charge is set and However, in a small time zone, the electric power demand is leveled by setting an inexpensive electric power charge). Here, the storage battery 11 is charged (purchased power) in a time zone where the power rate is cheap, and is discharged to the load 40 in a time zone where the power rate is expensive. In the following, a time zone (for example, a midnight time zone) in which the power rate is cheap is set as the specific power time zone.
 まず、ステップS101において、充放電制御装置14は、現在の時刻(現時刻)が電気料金の安価な特定電力時間帯であるか否かを判定する。ステップS101において、充放電制御装置14は、現時刻が特定電力時間帯でない(すなわち、NO)と判定した場合には、後述するステップS201へと進む。すなわち、現時刻が特定電力時間帯以外の時間帯として規定される日中時間帯(ここでは、8時から23時までの時間帯を日中時間帯と定義し、23時から翌朝の8時までを特定電力時間帯と定義する)の場合、特定電力時間帯でないと判定されることとなる。一方、ステップS101において、現時刻が特定電力時間帯である(すなわち、YES)と判定した場合には、ステップS102へと進む。 First, in step S101, the charge / discharge control device 14 determines whether or not the current time (current time) is a specific power time zone where the electricity rate is cheap. In step S101, when the charge / discharge control device 14 determines that the current time is not the specific power time zone (that is, NO), the process proceeds to step S201 described later. That is, the daytime time zone in which the current time is defined as a time zone other than the specific power time zone (here, the time zone from 8:00 to 23:00 is defined as the daytime time zone, and from 23:00 to the next morning at 8:00 In this case, it is determined that it is not the specific power time zone. On the other hand, if it is determined in step S101 that the current time is the specific power time zone (that is, YES), the process proceeds to step S102.
 ステップS102において、充放電制御装置14は、蓄電池11の上限SOC(State Of Charge;充電率)を設定する。なお、蓄電池11の上限SOCは、ユーザがあらかじめ所望の上限SOCを設定しておけばよい。次に、ステップS103において、充放電制御装置14は、蓄電池11の充電が終了する充電終了時刻を設定する。なお、充電終了時刻は、例えば、特定電力時間帯の終了時刻である8時に蓄電池11の充電が終了するように設定される。 In step S102, the charge / discharge control device 14 sets an upper limit SOC (State Of Charge) of the storage battery 11. In addition, the upper limit SOC of the storage battery 11 should just set the desired upper limit SOC previously by the user. Next, in step S <b> 103, the charge / discharge control device 14 sets a charging end time at which charging of the storage battery 11 ends. The charging end time is set such that, for example, charging of the storage battery 11 ends at 8:00, which is the end time of the specific power period.
 ステップS104において、充放電制御装置14は、ステップS102で設定した上限SOCおよびステップS103で設定した充電終了時刻に基づき、充電レートを算出し、充電電流値を設定する。すなわち、特定電力時間帯の充電終了時刻までに、蓄電池11の充電率が現在のSOC値から上限SOC値に到達するまでの充電率の単位時間当たりの増加量が一定となるように充電電流値が設定されることとなる。具体的には、下式(1)にしたがって、充電レートが算出され、充電電流値が設定される。 In step S104, the charge / discharge control device 14 calculates a charge rate based on the upper limit SOC set in step S102 and the charge end time set in step S103, and sets a charge current value. That is, the charging current value so that the amount of increase in the charging rate per unit time until the charging rate of the storage battery 11 reaches the upper limit SOC value from the current SOC value becomes constant by the charging end time in the specific power time period. Will be set. Specifically, the charging rate is calculated and the charging current value is set according to the following equation (1).
 なお、充電レートとは、蓄電池11の容量に対する充電時の電流の相対的な比率を示し、単位がCで表される。例えば、充電レートが1Cとは、公称容量値の容量を持つ蓄電池11を定電流充電した場合に、1時間で充電完了となる(上限SOCに達する)電流値のことであり、充電レートが0.2Cとは、5時間で充電完了となる(上限SOCに達する)電流値のことである。 The charge rate indicates a relative ratio of the current during charging to the capacity of the storage battery 11, and the unit is represented by C. For example, the charging rate of 1 C is a current value that completes charging in 1 hour (reach the upper limit SOC) when the storage battery 11 having the nominal capacity is charged with constant current, and the charging rate is 0. .2C is a current value at which charging is completed in 5 hours (up to the upper limit SOC).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、本実施の形態1では、充電開始時刻を、特定電力時間帯の開始時刻である23時に設定して例示するが、これに限定されず、特定電力時間帯の別の時刻としてもよい。また、例えば、充電開始時刻を24時以降である2時に設定して、上式(1)にしたがって、充電レートを算出する場合、現時刻を2時ではなく、26時として計算する。また、本実施の形態1では、充電終了時刻を、特定電力時間帯の終了時刻である8時に設定して例示するが、これに限定されず、特定電力時間帯の別の時刻としてもよい。 In the first embodiment, the charging start time is exemplified by setting at 23:00, which is the start time of the specific power time zone, but is not limited thereto, and may be another time in the specific power time zone. Further, for example, when the charge start time is set to 2 o'clock after 24:00 and the charge rate is calculated according to the above equation (1), the current time is calculated as 26:00 instead of 2 o'clock. Further, in the first embodiment, the charging end time is exemplified by setting it to 8:00, which is the end time of the specific power time zone, but is not limited thereto, and may be another time in the specific power time zone.
 次に、ステップS105において、充放電制御装置14は、ステップS104で算出した充電レートで設定した充電電流値にしたがって、系統電源50からの系統電力を用いて蓄電池11の充電を開始する。 Next, in step S105, the charge / discharge control device 14 starts charging the storage battery 11 using the grid power from the grid power supply 50 in accordance with the charge current value set at the charge rate calculated in step S104.
 次に、ステップS106において、充放電制御装置14は、蓄電池11の充電率が上限SOCに到達したか否かを判定する。すなわち、現時刻が蓄電池11の充電率が上限SOCに到達する充電終了時刻であるか否かを判定していることとなる。 Next, in step S106, the charge / discharge control device 14 determines whether or not the charging rate of the storage battery 11 has reached the upper limit SOC. That is, it is determined whether or not the current time is the charging end time at which the charging rate of the storage battery 11 reaches the upper limit SOC.
 ステップS106において、充放電制御装置14は、蓄電池11の充電率が上限SOCに到達していない(すなわち、NO)と判定した場合には、ステップS105に戻り、蓄電池11の充電を継続する。一方、ステップS106において、充放電制御装置14は、蓄電池11の充電率が上限SOCに到達した(すなわち、YES)と判定した場合には、図2のフローチャートの処理を終了する。 In step S106, when it is determined that the charging rate of the storage battery 11 has not reached the upper limit SOC (that is, NO), the charge / discharge control device 14 returns to step S105 and continues charging the storage battery 11. On the other hand, when the charge / discharge control device 14 determines in step S106 that the charging rate of the storage battery 11 has reached the upper limit SOC (that is, YES), the process of the flowchart of FIG.
 このようなステップS101~ステップS106の一連の実行処理により、例えば、充電終了時刻を8時と設定すれば、特定電力時間帯の終了時刻である8時の時点において、蓄電池11の充電率が上限SOCにはじめて到達する。 For example, if the charging end time is set to 8 o'clock by a series of execution processes of step S101 to step S106, the charging rate of the storage battery 11 is limited to the upper limit at 8 o'clock, which is the end time of the specific power period. The SOC is reached for the first time.
 ここで、現時刻が8時から23時までの日中時間帯の場合、ステップS101において、充放電制御装置14は、現時刻が特定電力時間帯でない(すなわち、NO)と判定することとなるので、ステップS201へと進む。 Here, when the current time is the daytime time zone from 8:00 to 23:00, in step S101, the charge / discharge control device 14 determines that the current time is not the specific power time zone (that is, NO). Therefore, it progresses to step S201.
 ステップS201において、充放電制御装置14は、CTセンサ30が検出したPV電力が負荷電力よりも大きいか否かを判定する。ステップS201において、充放電制御装置14は、PV電力が負荷電力よりも大きい(すなわち、YES)と判定した場合には、ステップS202へと進む。ここで、PV電力が負荷電力よりも大きい場合においては、系統電源50からの系統電力およびPV装置21からのPV電力を用いて負荷40が運用されることとなる。 In step S201, the charge / discharge control device 14 determines whether the PV power detected by the CT sensor 30 is larger than the load power. In step S201, when the charge / discharge control device 14 determines that the PV power is larger than the load power (that is, YES), the process proceeds to step S202. Here, when the PV power is larger than the load power, the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21.
 ステップS202において、充放電制御装置14は、蓄電池11を充電するか否かを判定する。具体的には、例えば、現在の蓄電池11の充電率が上限SOCでなければ、蓄電池11を充電すると判定され、上限SOCであれば、蓄電池11を充電しないと判定される。 In step S202, the charge / discharge control device 14 determines whether or not the storage battery 11 is to be charged. Specifically, for example, if the current charging rate of the storage battery 11 is not the upper limit SOC, it is determined to charge the storage battery 11, and if it is the upper limit SOC, it is determined not to charge the storage battery 11.
 ステップS202において、充放電制御装置14は、蓄電池11を充電すると判定した場合には、ステップS203において、蓄電池11の動作状態を充電モードとして、PV電力のうちの余剰電力を蓄電池11に供給し、蓄電池11を充電する。一方、ステップS202において、充放電制御装置14は、蓄電池11を充電しないと判定した場合には、ステップS204において、蓄電池11の動作状態を休止モードとして、蓄電池11の充放電を休止する(充放電をしない)。 In step S202, when the charge / discharge control device 14 determines to charge the storage battery 11, in step S203, the operation state of the storage battery 11 is set to the charging mode, and surplus power in the PV power is supplied to the storage battery 11. The storage battery 11 is charged. On the other hand, when it is determined in step S202 that the storage battery 11 is not charged, in step S204, the charging / discharging of the storage battery 11 is paused by setting the operation state of the storage battery 11 to the sleep mode (charging / discharging). Do not).
 また、充放電制御装置14は、ステップS203またはステップS204の処理を実行した後、ステップS201へと戻り、ステップS201以降の処理を実行する。なお、ステップS203およびステップS204において、充放電制御装置14は、PV電力のうちの余剰電力を、系統電源50を介して売電してもよい。 The charge / discharge control apparatus 14 returns to step S201 after executing the process of step S203 or step S204, and executes the processes after step S201. In step S <b> 203 and step S <b> 204, the charge / discharge control device 14 may sell surplus power in the PV power via the system power supply 50.
 一方、ステップS201において、充放電制御装置14は、PV電力が負荷電力以下(すなわち、NO)と判定した場合には、ステップS205へと進む。 On the other hand, if the charge / discharge control device 14 determines in step S201 that the PV power is equal to or lower than the load power (ie, NO), the process proceeds to step S205.
 ステップS205において、充放電制御装置14は、先と同様に、蓄電池11の所望の下限SOCを設定し、蓄電池11の放電が終了する所望の放電終了時刻を設定し、設定した下限SOCおよび放電終了時刻に基づき、放電レートを算出し、放電電流値を設定する。 In step S205, the charge / discharge control device 14 sets the desired lower limit SOC of the storage battery 11, sets the desired discharge end time at which the discharge of the storage battery 11 ends, and sets the lower limit SOC and the discharge end, as before. Based on the time, the discharge rate is calculated and the discharge current value is set.
 すなわち、日中時間帯の放電終了時刻までに、蓄電池11の充電率が現在のSOC値から下限SOC値に到達するまでの充電率の単位時間当たりの減少量が一定となるように放電電流値が設定されることとなる。具体的には、下式(2)にしたがって、放電レートが算出され、放電電流値が設定される。 That is, the discharge current value so that the amount of decrease in the charging rate per unit time until the charging rate of the storage battery 11 reaches the lower limit SOC value from the current SOC value becomes constant by the discharge end time in the daytime period. Will be set. Specifically, the discharge rate is calculated according to the following formula (2), and the discharge current value is set.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、放電レートとは、蓄電池11の容量に対する放電時の電流の相対的な比率を示し、単位がCで表される。例えば、充電レートが1Cとは、公称容量値の容量を持つ蓄電池11を定電流放電した場合に、1時間で放電完了となる(下限SOCに達する)電流値のことであり、充電レートが0.2Cとは、5時間で放電完了となる(下限SOCに達する)電流値のことである。 The discharge rate indicates the relative ratio of the current during discharge to the capacity of the storage battery 11, and the unit is represented by C. For example, the charge rate of 1 C is a current value at which discharge is completed in 1 hour (reaching the lower limit SOC) when the storage battery 11 having a nominal capacity is discharged at a constant current, and the charge rate is 0. .2C is a current value at which discharge is completed in 5 hours (lower limit SOC is reached).
 次に、ステップS206において、充放電制御装置14は、ステップS205で算出した放電レートで設定した放電電流値にしたがって、蓄電池11の蓄電池出力(放電電力)を算出する。具体的には、現在の蓄電池11の電圧値および設定した放電電流値の積を、現在の蓄電池出力として算出する。 Next, in step S206, the charge / discharge control device 14 calculates the storage battery output (discharge power) of the storage battery 11 according to the discharge current value set at the discharge rate calculated in step S205. Specifically, the product of the current voltage value of the storage battery 11 and the set discharge current value is calculated as the current storage battery output.
 次に、ステップS207において、充放電制御装置14は、ステップS206で算出した蓄電池出力が現在の負荷電力から現在のPV電力を減算することで得られる第1差分値(=負荷電力-PV電力)よりも小さいか否かを判定する。すなわち、充放電制御装置14は、CTセンサ30が検出したPV電力および負荷電力の検出値の監視結果に基づき、蓄電池出力と、第1差分値との大きさを比較することとなる。 Next, in step S207, the charge / discharge control device 14 obtains the first difference value (= load power−PV power) obtained by subtracting the current PV power from the current load power from the storage battery output calculated in step S206. Or less. That is, the charge / discharge control device 14 compares the magnitudes of the storage battery output and the first difference value based on the monitoring results of the detected values of the PV power and the load power detected by the CT sensor 30.
 ステップS207において、充放電制御装置14は、蓄電池出力が第1差分値以上である(すなわち、NO)と判定した場合には、ステップS204へと戻り、蓄電池11の動作状態を休止モードとして、蓄電池11の充放電(動作)を休止する(休止のままとする)。この場合、系統電源50からの系統電力およびPV装置21からのPV電力を用いて負荷40が運用されることとなる。 In step S207, when the charge / discharge control device 14 determines that the storage battery output is greater than or equal to the first difference value (that is, NO), the charge / discharge control device 14 returns to step S204 and sets the operation state of the storage battery 11 to the sleep mode. 11 charge / discharge (operation) is paused (leaves pause). In this case, the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21.
 ここで、PV電力は、天候によって電力値が急激に変動しやすく不安定である。そのため、第1差分値以上の蓄電池出力を有する蓄電池11を放電することにより、余計な電力が発生してしまう。したがって、蓄電池出力が第1差分値以上の場合には、蓄電池11から余計な電力が発生しないようにするため蓄電池11の放電を休止し、系統電力およびPV電力で負荷40を運用する。これにより、蓄電池電力を無駄にすることなく高効率な運用が可能となる。 Here, PV power is unstable because its power value is likely to fluctuate rapidly depending on the weather. Therefore, by discharging the storage battery 11 having a storage battery output equal to or greater than the first difference value, extra power is generated. Therefore, when the storage battery output is greater than or equal to the first difference value, the discharge of the storage battery 11 is suspended and the load 40 is operated with system power and PV power so as not to generate extra power from the storage battery 11. Thereby, highly efficient operation is possible without wasting storage battery power.
 一方、ステップS207において、充放電制御装置14は、蓄電池出力が第1差分値よりも小さい(すなわち、YES)と判定した場合には、ステップS208において、設定した放電電流値にしたがって、蓄電池11の放電を開始する。 On the other hand, in step S207, when the charge / discharge control device 14 determines that the storage battery output is smaller than the first difference value (that is, YES), in step S208, according to the set discharge current value, the storage battery 11 Start discharging.
 この場合、系統電源50からの系統電力、PV装置21からのPV電力および蓄電池11からの放電電力を用いて負荷40が運用されることとなる。また、蓄電池11については、設定した放電電流値にしたがって、一定電流値の状態を保ったまま放電できるように、PV電力および負荷電力の変動に対して、系統電源50からの系統電力を追従させる。 In this case, the load 40 is operated using the system power from the system power supply 50, the PV power from the PV device 21, and the discharge power from the storage battery 11. Moreover, about the storage battery 11, according to the set discharge current value, the system power from the system power supply 50 is made to follow the fluctuation of the PV power and the load power so that the battery 11 can be discharged while maintaining a constant current value. .
 ここで、第1差分値よりも小さい蓄電池出力を有する蓄電池11を放電することにより、効率よく家庭内負荷を運用することができる。 Here, by discharging the storage battery 11 having a storage battery output smaller than the first difference value, the domestic load can be efficiently operated.
 次に、ステップS209において、充放電制御装置14は、蓄電池11の充電率が下限SOCに到達したか否かを判定する。ステップS209において、充放電制御装置14は、蓄電池11の充電率が下限SOCに到達していない(すなわち、NO)と判定した場合には、ステップS207へと戻り、再び、蓄電池出力が第1差分値よりも小さいか否かを判定することとなる。すなわち、ステップS207における計算が繰り返し行われることとなる。ここで、ステップS207において、蓄電池出力が第1差分値よりも小さいと判定されれば、ステップS208において、設定した放電電流値で蓄電池11の放電が継続して行われる。 Next, in step S209, the charge / discharge control device 14 determines whether or not the charging rate of the storage battery 11 has reached the lower limit SOC. In step S209, when it is determined that the charging rate of the storage battery 11 has not reached the lower limit SOC (that is, NO), the charge / discharge control device 14 returns to step S207, and the storage battery output is again the first difference. It will be determined whether it is smaller than the value. That is, the calculation in step S207 is repeatedly performed. Here, if it is determined in step S207 that the storage battery output is smaller than the first difference value, in step S208, the storage battery 11 is continuously discharged at the set discharge current value.
 一方、ステップS209において、充放電制御装置14は、蓄電池11の充電率が下限SOCに到達したと判定した場合には、図2のフローチャートの処理を終了する。 On the other hand, when the charge / discharge control device 14 determines in step S209 that the charging rate of the storage battery 11 has reached the lower limit SOC, the process of the flowchart of FIG.
 このようなステップS201~ステップS209の一連の実行処理により、例えば、放電終了時刻を23時と設定すれば、日中時間帯の終了時刻である23時の時点において、蓄電池11の充電率が下限SOCにはじめて到達する。 If the discharge end time is set to 23:00 by a series of execution processes of step S201 to step S209, the charging rate of the storage battery 11 is set to the lower limit at 23:00, which is the end time of the daytime time zone. The SOC is reached for the first time.
 なお、本実施の形態1では、放電開始時刻を、日中時間帯の開始時刻である8時に設定して例示するが、これに限定されず、日中時間帯の別の時刻としてもよい。また、本実施の形態1では、放電終了時刻を、日中時間帯の終了時刻である23時に設定して例示するが、これに限定されず、日中時間帯の別の時刻としてもよい。また、例えば、放電終了時刻を24時以降である2時に設定して、上式(2)にしたがって、放電レートを算出する場合、放電終了時刻を2時ではなく、26時として計算する。 In the first embodiment, the discharge start time is set to 8 o'clock, which is the start time of the daytime period, but is not limited thereto, and may be another time of the daytime period. In the first embodiment, the discharge end time is set to 23:00, which is the end time of the daytime time zone, but is not limited to this, and may be another time of the daytime time zone. Also, for example, when the discharge end time is set to 2 o'clock after 24:00 and the discharge rate is calculated according to the above equation (2), the discharge end time is calculated as 26:00 instead of 2 o'clock.
 次に、充放電制御装置14による蓄電池11の充放電制御の模擬試験の一例について、図3~図5を参照しながら説明する。図3は、本発明の実施の形態1において、特定電力時間帯に蓄電池11の充電制御が行われる際の充電率の変化を示した説明図である。図4は、本発明の実施の形態1において、日中にかけてPV電力が負荷電力を下回る場合のPV電力および負荷電力の変化を示した説明図である。図5は、本発明の実施の形態1において、日中にかけてPV電力が負荷電力を下回る場合に、蓄電池11の放電制御が行われる際の充電率の変化を示した説明図である。 Next, an example of a simulation test of charge / discharge control of the storage battery 11 by the charge / discharge control device 14 will be described with reference to FIGS. FIG. 3 is an explanatory diagram showing a change in the charging rate when the charging control of the storage battery 11 is performed in the specific power time zone in the first embodiment of the present invention. FIG. 4 is an explanatory diagram showing changes in PV power and load power when PV power falls below load power over the daytime in Embodiment 1 of the present invention. FIG. 5 is an explanatory diagram showing a change in the charging rate when the discharge control of the storage battery 11 is performed when the PV power falls below the load power over the daytime in the first embodiment of the present invention.
 なお、ここでは、具体的に説明するために、蓄電池11の性能として、公称容量が30Ah、6kWであり、蓄電池11の上限SOCを100%に、下限SOCを25%に設定する場合を想定する。また、PVシステム20内のPV装置21として、最大PV電力量が3.2kWであるPVパネルを用いる場合を想定する。 Here, for the sake of specific explanation, it is assumed that the performance of the storage battery 11 is that the nominal capacity is 30 Ah, 6 kW, the upper limit SOC of the storage battery 11 is set to 100%, and the lower limit SOC is set to 25%. . Moreover, the case where the PV panel whose maximum PV electric energy is 3.2 kW is used as the PV apparatus 21 in the PV system 20 is assumed.
 まず、充放電制御装置14による、特定電力時間帯における蓄電池11の充電制御動作について説明する。この図3に示すように、特定電力時間帯である23時~8時に、充放電制御装置14は、蓄電池11を充電制御する。この場合、充放電制御装置14は、前述したように、上式(1)にしたがって、充電レートを算出し、充電電流値を設定する。 First, the charge control operation of the storage battery 11 in the specific power time zone by the charge / discharge control device 14 will be described. As shown in FIG. 3, the charging / discharging control device 14 controls charging of the storage battery 11 at 23:00 to 8:00, which is a specific power period. In this case, as described above, the charge / discharge control device 14 calculates the charge rate and sets the charge current value according to the above equation (1).
 なお、充電を開始する現時刻を23時とし、充電終了時刻を8時とする。また、蓄電池11の充電率について、現在(23時)のSOCを、下限SOCである25%とし、充電終了時のSOCを、上限SOCである100%とする。具体的には、下式(3)のように算出される。 It should be noted that the current time to start charging is 23:00 and the charging end time is 8:00. Further, regarding the charging rate of the storage battery 11, the current (23:00) SOC is set to 25%, which is the lower limit SOC, and the SOC at the end of charging is set to 100%, which is the upper limit SOC. Specifically, it is calculated as in the following formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 充放電制御装置14は、このように設定した充電電流値により、図3に示すように、23時~8時までの9時間で、蓄電池11の充電率の単位時間当たりの増加量が一定となり、下限SOCである25%から上限SOCである100%になる(蓄電池11を満充電まで充電する)。したがって、特定電力時間帯の充電を開始する現時刻(充電開始時刻)および充電終了時刻を変更すれば、所望の充電レートで満充電まで充電することができることとなる。また、特定電力時間帯において、特に、充電開始時刻を23時とし、充電終了時刻を8時として、蓄電池11の充電率が下限SOCから上限SOCになるように充電する場合、最も低い充電電流値で満充電まで充電することができることとなる。 As shown in FIG. 3, the charging / discharging control device 14 has a constant increase in the charging rate of the storage battery 11 per unit time in 9 hours from 23:00 to 8:00, as shown in FIG. From 25%, which is the lower limit SOC, to 100%, which is the upper limit SOC (the storage battery 11 is charged to full charge). Therefore, if the current time (charging start time) and charging end time at which charging in a specific power time period is started are changed, it is possible to charge to full charge at a desired charging rate. Further, in the specific power time zone, in particular, when charging is performed so that the charging rate of the storage battery 11 is changed from the lower limit SOC to the upper limit SOC when the charging start time is 23:00 and the charging end time is 8:00, the lowest charging current value It will be possible to charge up to full charge.
 また、充放電制御装置14は、あらかじめ設定された所望の上限SOCに応じて、充電電流値の設定を変更する。すなわち、例えば、図3に示すように、上限SOCが90%に設定変更されれば、23時~8時までの9時間で、蓄電池11の充電率が下限SOCである25%から上限SOCである90%になるように、充電電流値の設定が変更される。なお、充放電制御装置14は、23時~8時までの9時間よりも短時間で蓄電池11の充電率が上限SOCになるように、充電電流値を設定してもよい。 Further, the charge / discharge control device 14 changes the setting of the charging current value in accordance with a desired upper limit SOC set in advance. That is, for example, as shown in FIG. 3, if the upper limit SOC is changed to 90%, the charging rate of the storage battery 11 is reduced from 25%, which is the lower limit SOC, to the upper limit SOC in 9 hours from 23:00 to 8:00. The setting of the charging current value is changed to be 90%. The charging / discharging control device 14 may set the charging current value so that the charging rate of the storage battery 11 reaches the upper limit SOC in a shorter time than 9 hours from 23:00 to 8:00.
 ここで、従来では、本実施の形態1と異なり、充電終了時間を設定せずに規定された充電電流値で充電を行うため、例えば、図3に示すように、23時~3時までの4時間で蓄電池11の充電率が上限SOCである100%になるような挙動を示し、充電電流値の制御(充電率の変化を示す傾きの制御)ができない。したがって、結果として、蓄電池11の満充電維持時間を制御できず、蓄電池の劣化防止および長寿命化を実現できなかった。 Here, conventionally, unlike the first embodiment, charging is performed with a specified charging current value without setting the charging end time. For example, as shown in FIG. The behavior is such that the charging rate of the storage battery 11 becomes 100% which is the upper limit SOC in 4 hours, and the control of the charging current value (the control of the slope indicating the change in the charging rate) cannot be performed. Therefore, as a result, the full charge maintenance time of the storage battery 11 cannot be controlled, and it has not been possible to prevent the deterioration of the storage battery and extend its life.
 これに対して、本実施の形態1では、充電電流値を設定することにより、蓄電池11の満充電維持時間を制御することができる。したがって、例えば、特定電力時間帯において、最も低い充電電流値で蓄電池11を満充電まで充電すれば、蓄電池11の満充電維持時間を最小にまで減少させることができ、蓄電池の劣化防止および長寿命化が可能となる。 In contrast, in the first embodiment, the full charge maintenance time of the storage battery 11 can be controlled by setting the charging current value. Therefore, for example, if the storage battery 11 is charged to the full charge at the lowest charging current value in the specific power time zone, the full charge maintenance time of the storage battery 11 can be reduced to the minimum, and the storage battery can be prevented from being deteriorated and have a long life. Can be realized.
 次に、充放電制御装置14による、日中時間帯における蓄電池11の放電制御動作について説明する。 Next, the discharge control operation of the storage battery 11 in the daytime time zone by the charge / discharge control device 14 will be described.
 例えば、日中の天候が悪く、PV電力が少ないので、図4に示すように、日中にかけてPV電力が負荷電力を下回って変化する場合を想定する。この場合、この図5に示すように、日中時間帯である8時~23時に、充放電制御装置14は、蓄電池11を放電制御する。 For example, assume that the daytime weather is bad and the PV power is low, so that the PV power changes below the load power over the day as shown in FIG. In this case, as shown in FIG. 5, the charge / discharge control device 14 controls the discharge of the storage battery 11 during the daytime period from 8:00 to 23:00.
 すなわち、PV電力が少ないので、系統電源50からの系統電力、PV装置21からのPV電力および蓄電池11からの放電電力を用いて負荷40が運用されることとなる。そして、日中時間帯の開始時刻である8時時点において、前述したように、上式(2)にしたがって、放電レートを算出し、放電電流値を設定する。 That is, since the PV power is small, the load 40 is operated using the system power from the system power supply 50, the PV power from the PV device 21, and the discharge power from the storage battery 11. Then, at 8:00, which is the start time of the daytime period, as described above, the discharge rate is calculated and the discharge current value is set according to the above equation (2).
 なお、放電を開始する現時刻(放電開始時刻)を8時とし、放電終了時刻を23時とする。また、蓄電池11の蓄電率について、現在(8時)のSOCを、上限SOCである100%とし、放電終了時のSOCを、下限SOCである25%とする。具体的には、下式(4)のように算出される。 Note that the current time (discharge start time) at which discharge starts is 8:00, and the discharge end time is 23:00. Further, regarding the storage rate of the storage battery 11, the current (8 o'clock) SOC is set to 100%, which is the upper limit SOC, and the SOC at the end of discharge is set to 25%, which is the lower limit SOC. Specifically, it is calculated as in the following formula (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、充放電制御装置14は、現在の蓄電池11の蓄電池の電圧値および設定した放電電流値を乗ずることにより、蓄電池出力を算出する。そして、蓄電池出力が、前述した第1差分値よりも小さい場合には、充放電制御装置14は、設定した放電電流値にしたがって、蓄電池11の放電を開始する。 Also, the charge / discharge control device 14 calculates the storage battery output by multiplying the current storage battery voltage value of the storage battery 11 and the set discharge current value. And when a storage battery output is smaller than the 1st difference value mentioned above, the charging / discharging control apparatus 14 starts discharge of the storage battery 11 according to the set discharge current value.
 また、日中の天候が悪く、図4に示すように、日中にかけてPV電力が負荷電力を下回って変化する場合、常に、蓄電池出力が第1差分値よりも小さくなる。したがって、図5に示すように、充放電制御装置14は、8時~23時までの15時間で、蓄電池11の充電率が単位時間当たりの減少量が一定となるとともに、上限SOCである100%から下限SOCである25%となるように設定した放電電流値(1.5A)で蓄電池11を放電し続けることとなる。なお、蓄電池11を1.5Aで放電し続けた場合に、負荷40に対して不足する電力は、系統電源50からの系統電力で補われる。 In addition, when the daytime weather is bad and the PV power changes below the load power over the day as shown in FIG. 4, the storage battery output is always smaller than the first difference value. Therefore, as shown in FIG. 5, the charge / discharge control device 14 has a constant decrease in the charging rate of the storage battery 11 per unit time in 15 hours from 8:00 to 23:00, and has an upper limit SOC of 100. Storage battery 11 will continue to be discharged at a discharge current value (1.5 A) that is set to 25% that is the lower limit SOC from%. In addition, when the storage battery 11 is continuously discharged at 1.5 A, the power shortage with respect to the load 40 is supplemented with the system power from the system power supply 50.
 したがって、日中時間帯の放電を開始する現時刻(放電開始時刻)および放電終了時刻を変更すれば、所望の放電レートで下限SOCまで放電することができることとなる。また、日中時間帯において、特に、放電開始時刻を8時とし、放電終了時刻を23時として、蓄電池11の充電率が上限SOCから下限SOCになるように放電する場合、最も低い放電電流値で下限SOCまで放電することができることとなる。 Therefore, if the current time (discharge start time) and discharge end time at which the daytime discharge is started are changed, it is possible to discharge to the lower limit SOC at a desired discharge rate. Further, in the daytime period, in particular, when the discharge start time is set to 8 o'clock and the discharge end time is set to 23:00 so that the charge rate of the storage battery 11 is changed from the upper limit SOC to the lower limit SOC, the lowest discharge current value Thus, it is possible to discharge to the lower limit SOC.
 ここで、従来では、本実施の形態1と異なり、放電電流値を設定せずに、PV電力の変動および負荷電力の変動に応じて蓄電池の放電が行われるので、放電電流値の挙動を制御できなかった。すなわち、従来では、PV電力の変動および負荷電力の変動に応じて、例えば、図5に示すように、8時~9時までの1時間で蓄電池11の充電率が下限SOCである25%になるような挙動を示し、放電電流値の制御(充電率の変化を示す傾きの制御)ができない。したがって、結果として、蓄電池の放電時にPV電力または負荷電力の急激な変動が発生した場合であっても、放電電流値が予期せずに大きくなってしまうことあり、蓄電池の劣化防止および長寿命化を実現できなかった。 Here, conventionally, unlike the first embodiment, since the storage battery is discharged according to the fluctuation of PV power and the fluctuation of load power without setting the discharge current value, the behavior of the discharge current value is controlled. could not. That is, in the past, according to fluctuations in PV power and load power, for example, as shown in FIG. 5, the charging rate of the storage battery 11 is reduced to 25%, which is the lower limit SOC, in one hour from 8:00 to 9:00. Therefore, it is impossible to control the discharge current value (control of the slope indicating a change in the charging rate). Therefore, as a result, even when a sudden change in PV power or load power occurs during discharge of the storage battery, the discharge current value may increase unexpectedly, preventing deterioration of the storage battery and extending its life. Could not be realized.
 これに対して、本実施の形態1では、放電電流値を設定することにより、蓄電池11の放電電流値を制御することができる。したがって、例えば、日中時間帯において、最も低い放電電流値で蓄電池11を下限SOCまで放電すれば、放電電流値が予期せずに大きくなってしまうことがなく、蓄電池の劣化防止および長寿命化が可能となる。 In contrast, in the first embodiment, the discharge current value of the storage battery 11 can be controlled by setting the discharge current value. Therefore, for example, if the storage battery 11 is discharged to the lower limit SOC at the lowest discharge current value in the daytime period, the discharge current value will not increase unexpectedly, preventing deterioration of the storage battery and extending its life. Is possible.
 次に、日中にかけてPV電力が負荷電力を下回って変化する場合(先の図4、図5参照)以外の別の場合において行われる充放電制御装置14による、日中時間帯における蓄電池11の放電制御動作について、図6~図8を参照しながら説明する。図6は、本発明の実施の形態1において、日中のうち、正午頃にPV電力が負荷電力を上回る場合のPV電力および負荷電力の変化を示した説明図である。図7は、本発明の実施の形態1において、日中のうち、正午頃にPV電力が負荷電力を上回る場合に、蓄電池11の放電制御が行われる際の充電率の変化の一例を示した説明図である。図8は、本発明の実施の形態1において、日中のうち、正午頃にPV電力が負荷電力を上回る場合に、蓄電池11の放電制御が行われる際の充電率の変化の別例を示した説明図である。 Next, the storage battery 11 of the daytime time zone by the charge / discharge control device 14 performed in another case other than the case where the PV power changes below the load power over the daytime (see FIGS. 4 and 5 above). The discharge control operation will be described with reference to FIGS. FIG. 6 is an explanatory diagram showing changes in PV power and load power when PV power exceeds load power around noon in the daytime in Embodiment 1 of the present invention. FIG. 7 shows an example of the change in the charging rate when the discharge control of the storage battery 11 is performed when the PV power exceeds the load power around noon in the daytime in Embodiment 1 of the present invention. It is explanatory drawing. FIG. 8 shows another example of the change in the charging rate when the discharge control of the storage battery 11 is performed when the PV power exceeds the load power around noon in the daytime in Embodiment 1 of the present invention. FIG.
 ここで、例えば、日中のうち、朝方曇りの天候で正午頃晴れの天候となり、図6に示すように、日中のうち、正午頃にPV電力が負荷電力を上回って変化する場合を想定する。この場合において、充放電制御装置14は、PV電力のうちの余剰電力を蓄電池11に充電しないときは、図7に示すように、蓄電池11を休止する。一方、充放電制御装置14は、PV電力のうちの余剰電力を蓄電池11に充電するときは、図8に示すように、蓄電池11を充電制御する。 Here, for example, it is assumed that the daytime is cloudy in the morning and the weather is sunny around noon, and as shown in FIG. 6, the PV power changes above the load power around noon in the daytime. To do. In this case, the charging / discharging control device 14 pauses the storage battery 11 as shown in FIG. 7 when the surplus power of the PV power is not charged in the storage battery 11. On the other hand, the charging / discharging control device 14 controls charging of the storage battery 11 as shown in FIG. 8 when charging the storage battery 11 with surplus power of the PV power.
 まず、充放電制御装置14が図7に示すように、蓄電池11を放電制御する場合について説明する。この場合、朝方においては、負荷電力よりもPV電力が少ないので、先の図5と同様に、系統電源50からの系統電力、PV装置21からのPV電力および蓄電池11からの放電電力を用いて負荷40が運用されることとなる。そして、8時時点において、先の図5と同様に、上式(2)にしたがって、放電レートを算出し、放電電流値を設定する。 First, the case where the charge / discharge control device 14 controls the discharge of the storage battery 11 as shown in FIG. 7 will be described. In this case, since the PV power is lower than the load power in the morning, the system power from the system power supply 50, the PV power from the PV device 21 and the discharge power from the storage battery 11 are used as in FIG. The load 40 is operated. Then, at the time of 8 o'clock, the discharge rate is calculated and the discharge current value is set according to the above equation (2), as in FIG.
 なお、8時の時点においては、放電を開始する現時刻(放電開始時刻)を8時とし、放電終了時刻を23時として、また、現在(8時)のSOCを、上限SOCである100%とし、放電終了時のSOCを、下限SOCである25%として、放電レートが算出され、放電電流値が設定される。具体的には、下式(5)のように算出される。 At 8 o'clock, the current time at which discharge starts (discharge start time) is 8 o'clock, the discharge end time is 23:00, and the current (8 o'clock) SOC is the upper limit SOC of 100%. Assuming that the SOC at the end of the discharge is 25%, which is the lower limit SOC, the discharge rate is calculated and the discharge current value is set. Specifically, it is calculated as in the following formula (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、充放電制御装置14は、現在の蓄電池11の蓄電池の電圧値および設定した放電電流値を乗ずることにより、蓄電池出力を算出する。そして、蓄電池出力が、第1差分値よりも小さい場合には、充放電制御装置14は、前述したように、設定した放電電流値にしたがって、蓄電池11の放電を開始する。 Also, the charge / discharge control device 14 calculates the storage battery output by multiplying the current storage battery voltage value of the storage battery 11 and the set discharge current value. When the storage battery output is smaller than the first difference value, the charge / discharge control device 14 starts discharging the storage battery 11 according to the set discharge current value as described above.
 ここで、図6に示すように、10時以降になるとPV電力が増加していき、蓄電池出力が、第1差分値以上となった場合には、充放電制御装置14は、前述したように、蓄電池11の放電を休止する。この場合、系統電源50からの系統電力、PV装置21からのPV電力を用いて負荷40が運用されることとなる。 Here, as shown in FIG. 6, the PV power increases after 10 o'clock, and when the storage battery output is equal to or greater than the first difference value, the charge / discharge control device 14 is as described above. Then, the discharge of the storage battery 11 is stopped. In this case, the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21.
 また、図6に示すように、13時になると、朝方と同様に負荷電力よりもPV電力が少なくなる。このような場合には、上式(2)にしたがって、放電レートを再び算出し、放電電流値を再設定する。 Also, as shown in FIG. 6, at 13:00, the PV power is less than the load power as in the morning. In such a case, the discharge rate is calculated again according to the above equation (2), and the discharge current value is reset.
 なお、13時の時点においては、放電を開始する現時刻(放電開始時刻)を13時とし、放電終了時刻を23時として、また、現在(13時)のSOCを、90%とし、放電終了時のSOCを、下限SOCである25%として、放電レートが再び算出され、放電電流値が再設定される。また、充放電制御装置14は、蓄電池11を放電しているので、蓄電池の充電率が上限SOCである100%から減少して90%となっている。具体的には、下式(6)のように算出される。 At 13:00, the current start time (discharge start time) is 13:00, the discharge end time is 23:00, and the current (13:00) SOC is 90%. The SOC at that time is set to 25% which is the lower limit SOC, the discharge rate is calculated again, and the discharge current value is reset. Moreover, since the charging / discharging control apparatus 14 is discharging the storage battery 11, the charging rate of the storage battery is reduced from 100% which is the upper limit SOC to 90%. Specifically, it is calculated as in the following formula (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、充放電制御装置14は、現在の蓄電池11の蓄電池の電圧値および再設定した放電電流値を乗ずることにより、蓄電池出力を算出する。そして、蓄電池出力が、第1差分値よりも小さい場合には、充放電制御装置14は、前述したように、再設定した放電電流値にしたがって、蓄電池11の放電を再び開始する。そして、図7に示すように、13時~23時までの10時間で、蓄電池11の充電率が単位時間当たりの減少量が一定となるとともに、下限SOCである25%となるように再設定した放電電流値(1.95A)で蓄電池11を放電し続けることとなる。 Moreover, the charge / discharge control device 14 calculates the storage battery output by multiplying the current storage battery voltage value of the storage battery 11 and the reset discharge current value. And when a storage battery output is smaller than a 1st difference value, the charging / discharging control apparatus 14 starts the discharge of the storage battery 11 again according to the reset current value reset as mentioned above. Then, as shown in FIG. 7, in 10 hours from 13:00 to 23:00, the charging rate of the storage battery 11 is reset so that the amount of decrease per unit time becomes constant and the lower limit SOC is 25%. The storage battery 11 will continue to be discharged at the discharge current value (1.95 A).
 以上をまとめると、図7に示すように、充放電制御装置14は、日中時間帯の8時から10時頃までにおいては、設定した放電電流値(1.5A)で蓄電池11を放電し続けるので、蓄電池11の充電率が上限SOCである100%から低下する。また、充放電制御装置14は、10時頃から13時においては、蓄電池11の放電を休止するので、蓄電池11の充電率が一定に維持された状態となる。さらに、13時から23時においては、再設定した放電電流値(1.95)Aで蓄電池11を再び、放電し続けるので、蓄電池11の充電率が下限SOCである25%にまで低下する。 In summary, as shown in FIG. 7, the charge / discharge control device 14 discharges the storage battery 11 at the set discharge current value (1.5 A) from 8 o'clock to 10 o'clock in the daytime period. Since it continues, the charging rate of the storage battery 11 falls from 100% which is upper limit SOC. Moreover, since the charging / discharging control apparatus 14 stops discharge of the storage battery 11 from about 10:00 to 13:00, it will be in the state by which the charging rate of the storage battery 11 was maintained constant. Further, from 13:00 to 23:00, the storage battery 11 continues to be discharged again at the reset discharge current value (1.95) A, so the charge rate of the storage battery 11 is reduced to 25%, which is the lower limit SOC.
 ここで、従来では、本実施の形態1と異なり、放電電流値を設定せずに、PV電力の変動および負荷電力の変動に応じて蓄電池の放電が行われるので、放電電流値の挙動を制御できなかった。すなわち、従来では、PV電力の変動および負荷電力の変動に応じて、例えば、図7に示すように、蓄電池11の充電率が8時~10時までの2時間で80%になり、10時~13時までの3時間で80%のまま一定に維持された状態になり、13時~19時までの6時間で下限SOCである25%になるような挙動を示し、放電電流値の制御(充電率の変化を示す傾きの制御)ができない。これに対して、本実施の形態1では、日中時間帯において、PV電力が大きく変動しても、蓄電池11の放電電流値を制御することができるので、前述した同様の効果が得られる。 Here, conventionally, unlike the first embodiment, since the storage battery is discharged according to the fluctuation of PV power and the fluctuation of load power without setting the discharge current value, the behavior of the discharge current value is controlled. could not. That is, according to the fluctuation of the PV power and the fluctuation of the load power, conventionally, as shown in FIG. 7, for example, the charging rate of the storage battery 11 becomes 80% in 2 hours from 8 o'clock to 10 o'clock. Controls the discharge current value in a state where it remains constant at 80% for 3 hours from 13:00 to 15:00, and reaches the lower limit SOC of 25% in 6 hours from 13:00 to 19:00. (Slope control showing change in charging rate) is not possible. On the other hand, in the first embodiment, even if the PV power fluctuates greatly during the daytime, the discharge current value of the storage battery 11 can be controlled, so that the same effect as described above can be obtained.
 次に、充放電制御装置14が図8に示すように、蓄電池11を放電制御する場合について説明する。この場合、図7と同様に、日中時間帯の開始時刻である8時から10時頃までにおいては、設定した放電電流値(1.5A)で蓄電池11を放電し続けるので、蓄電池11の充電率が上限SOCである100%から低下する。 Next, the case where the charge / discharge control device 14 controls the discharge of the storage battery 11 as shown in FIG. 8 will be described. In this case, as in FIG. 7, from 8 o'clock to 10 o'clock, which is the start time of the daytime time zone, the storage battery 11 is continuously discharged at the set discharge current value (1.5 A). The charging rate decreases from 100%, which is the upper limit SOC.
 また、図6に示すように、10時以降になるとPV電力が増加していき、蓄電池出力が、第1差分値以上となった場合には、充放電制御装置14は、前述したように、蓄電池11の放電を休止する。この場合、系統電源50からの系統電力、PV装置21からのPV電力を用いて負荷40が運用されることとなり、さらに、PV電力のうちの余剰電力が蓄電池11に充電されるので、図8に示すように、蓄電池11の充電率が再び、上限SOCである100%になる。 Also, as shown in FIG. 6, PV power increases after 10 o'clock, and when the storage battery output is equal to or greater than the first difference value, the charge / discharge control device 14, as described above, Discharging the storage battery 11 is suspended. In this case, the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21, and the surplus power in the PV power is charged to the storage battery 11, so that FIG. As shown, the charging rate of the storage battery 11 becomes 100%, which is the upper limit SOC again.
 また、図6に示すように、13時になると朝方と同様に負荷電力よりもPV電力が少なくなる。このような場合には、上式(2)にしたがって、放電レートを再び算出し、放電電流値を再設定する。 Also, as shown in FIG. 6, at 13:00, the PV power is less than the load power as in the morning. In such a case, the discharge rate is calculated again according to the above equation (2), and the discharge current value is reset.
 なお、13時の時点においては、放電を開始する現時刻(放電開始時刻)を13時とし、放電終了時刻を23時として、また、現在(13時)のSOCを、100%とし、放電終了時のSOCを、下限SOCである25%として、放電レートが再び算出され、放電電流値が再設定される。具体的には、下式(7)のように算出される。 At 13:00, the current time (discharge start time) at which discharge starts is 13:00, the discharge end time is 23:00, and the current (13:00) SOC is 100%. The SOC at that time is set to 25% which is the lower limit SOC, the discharge rate is calculated again, and the discharge current value is reset. Specifically, it is calculated as in the following formula (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 そして、同様に、充放電制御装置14は、図8に示すように、13時~23時までの10時間で、蓄電池11の充電率が単位時間当たりの減少量が一定となるとともに、下限SOCである25%となるように再設定した放電電流値(2.25A)で蓄電池11を放電し続けることとなる。 Similarly, as shown in FIG. 8, the charge / discharge control device 14 has a constant decrease in the charging rate of the storage battery 11 per unit time in 10 hours from 13:00 to 23:00, and the lower limit SOC. Thus, the storage battery 11 is continuously discharged at the discharge current value (2.25 A) reset to be 25%.
 以上をまとめると、図8に示すように、充放電制御装置14は、日中時間帯の8時から10時頃までにおいては、設定した放電電流値(1.5A)で蓄電池11を放電し続けるので、蓄電池11の充電率が上限SOCである100%から低下する。また、充放電制御装置14は、10時頃から13時においては、蓄電池11の放電を休止するとともに充電を行うので、蓄電池11の充電率が上限SOCである100%になった後、一定に維持された状態となる。さらに、13時から23時においては、再設定した放電電流値(2.25)Aで蓄電池11を再び、放電し続けるので、蓄電池11の充電率が下限SOCである25%にまで低下する。 In summary, as shown in FIG. 8, the charge / discharge control device 14 discharges the storage battery 11 at the set discharge current value (1.5 A) from 8:00 to 10:00 in the daytime period. Since it continues, the charging rate of the storage battery 11 falls from 100% which is upper limit SOC. Moreover, since the charging / discharging control apparatus 14 stops charging from about 10:00 to 13:00 and performs charging, the charging rate of the storage battery 11 becomes constant after reaching the upper limit SOC of 100%. It will be maintained. Furthermore, from 13:00 to 23:00, the storage battery 11 continues to be discharged again with the reset discharge current value (2.25) A, so the charge rate of the storage battery 11 is reduced to 25%, which is the lower limit SOC.
 ここで、従来では、本実施の形態1と異なり、放電電流値を設定せずに、PV電力の変動および負荷電力の変動に応じて蓄電池の放電が行われるので、放電電流値の挙動を制御できなかった。すなわち、従来では、PV電力の変動および負荷電力の変動に応じて、例えば、図8に示すように、蓄電池11の充電率が8時~10時までの2時間で80%になり、10時~13時までの3時間で上限SOCである100%となるとともに100%のまま一定に維持された状態になり、13時~21時までの8時間で下限SOCである25%になるような挙動を示し、放電電流値の制御(充電率の変化を示す傾きの制御)ができない。これに対して、本実施の形態1では、日中時間帯において、PV電力が大きく変動しても、蓄電池11の放電電流値を制御することができるので、現時刻に応じた所望の放電レートで最終的には下限SOCまで放電することができる。 Here, conventionally, unlike the first embodiment, since the storage battery is discharged according to the fluctuation of PV power and the fluctuation of load power without setting the discharge current value, the behavior of the discharge current value is controlled. could not. That is, according to the fluctuation of the PV power and the fluctuation of the load power, conventionally, as shown in FIG. 8, for example, the charging rate of the storage battery 11 becomes 80% in 2 hours from 8 o'clock to 10 o'clock. It becomes 100% which is the upper limit SOC in 3 hours from -13: 00 and is kept constant at 100%, and it is 25% which is the lower limit SOC in 8 hours from 13:00 to 21:00. It shows behavior and cannot control the discharge current value (control of the slope indicating the change in the charging rate). On the other hand, in the first embodiment, the discharge current value of the storage battery 11 can be controlled even if the PV power fluctuates greatly during the daytime period, so that a desired discharge rate corresponding to the current time is obtained. Finally, the battery can be discharged to the lower limit SOC.
 次に、日中のうち、正午頃にPV電力が負荷電力を上回ってPV電力および負荷電力が変化する場合(先の図6~図8参照)以外の別の場合において行われる充放電制御装置14による、日中時間帯における蓄電池11の放電制御動作について、図9および図10を参照しながら説明する。図9は、本発明の実施の形態1において、日中のうち、朝頃から夕方頃にPV電力が負荷電力を上回る場合のPV電力および負荷電力の変化を示した説明図である。図10は、本発明の実施の形態1において、日中のうち、朝頃から夕方頃にPV電力が負荷電力を上回る場合に、蓄電池11の放電制御が行われる際の充電率の変化を示した説明図である。 Next, a charge / discharge control device performed in another case other than the case where the PV power exceeds the load power and the PV power and the load power change around noon (see FIGS. 6 to 8). 14, the discharge control operation of the storage battery 11 in the daytime time zone will be described with reference to FIG. 9 and FIG. FIG. 9 is an explanatory diagram showing changes in PV power and load power when the PV power exceeds the load power from morning to evening in the daytime in Embodiment 1 of the present invention. FIG. 10 shows a change in the charging rate when the discharge control of the storage battery 11 is performed when the PV power exceeds the load power from morning to evening in the daytime in Embodiment 1 of the present invention. FIG.
 ここで、例えば、日中のうち、朝方から晴れの天候で、図9に示すように、日中のうち、朝頃から夕方頃にPV電力が負荷電力を上回って変化する場合を想定する。この場合、図10に示すように、充放電制御装置14は、蓄電池11を放電制御する。 Here, for example, a case is assumed in which the PV power changes from the morning to the evening in the daytime and in the sunny weather from the morning in the daytime and from the morning to the evening in the daytime as shown in FIG. In this case, as shown in FIG. 10, the charge / discharge control device 14 controls the discharge of the storage battery 11.
 すなわち、日中時間帯の朝方においては、負荷電力よりもPV電力が多いので、系統電源50からの系統電力およびPV装置21からのPV電力を用いて負荷40が運用されることとなる。 That is, in the morning of daytime hours, the PV power is more than the load power, so the load 40 is operated using the system power from the system power supply 50 and the PV power from the PV device 21.
 したがって、充放電制御装置14は、蓄電池11の放電を休止する(放電をしない)ので、蓄電池11の充電率が上限SOCである100%のまま一定に維持された状態となる。なお、通常において、蓄電池11の充電率がすでに上限SOCである100%であるので、蓄電池11の充電が行われず、余剰電力が売電される。 Therefore, since the charging / discharging control device 14 stops discharging the storage battery 11 (does not discharge), the charging rate of the storage battery 11 is kept constant with the upper limit SOC being 100%. Normally, since the charging rate of the storage battery 11 is already 100%, which is the upper limit SOC, the storage battery 11 is not charged and surplus power is sold.
 そして、図9に示すように、17時になり、負荷電力よりもPV電力が少なくなる場合には、日中時間帯のうちの最初として、上式(2)にしたがって、放電レートを算出し、放電電流値を設定する。 Then, as shown in FIG. 9, when the PV power becomes less than the load power at 17:00, the discharge rate is calculated according to the above equation (2) as the first of the daytime hours, Set the discharge current value.
 なお、17時の時点においては、放電を開始する現時刻(放電開始時刻)を17時とし、放電終了時刻を23時として、また、現在(17時)のSOCを、上限SOCである100%とし、放電終了時のSOCを、下限SOCである25%として、放電レートが再び算出され、放電電流値が設定される。具体的には、下式(8)のように算出される。 At the time of 17:00, the current time at which discharge starts (discharge start time) is 17:00, the discharge end time is 23:00, and the current (17:00) SOC is 100%, which is the upper limit SOC. Assuming that the SOC at the end of the discharge is 25%, which is the lower limit SOC, the discharge rate is calculated again, and the discharge current value is set. Specifically, it is calculated as in the following formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、充放電制御装置14は、現在の蓄電池11の蓄電池の電圧値および設定した放電電流値を乗ずることにより、蓄電池出力を算出する。そして、蓄電池出力が、第1差分値よりも小さい場合には、充放電制御装置14は、前述したように、設定した放電電流値にしたがって、蓄電池11の放電を開始する。 Further, the charge / discharge control device 14 calculates the storage battery output by multiplying the current storage battery voltage value of the storage battery 11 and the set discharge current value. When the storage battery output is smaller than the first difference value, the charge / discharge control device 14 starts discharging the storage battery 11 according to the set discharge current value as described above.
 そして、図10に示すように、17時~23時までの6時間で、蓄電池11の充電率が単位時間当たりの減少量が一定となるとともに、下限SOCである25%となるように設定した放電電流値(3.75A)で蓄電池11を放電し続けることとなる。 Then, as shown in FIG. 10, the charging rate of the storage battery 11 is set so that the amount of decrease per unit time is constant and the lower limit SOC is 25% in 6 hours from 17:00 to 23:00. The storage battery 11 will continue to be discharged at the discharge current value (3.75 A).
 ここで、従来では、本実施の形態1と異なり、放電電流値を設定せずに、PV電力の変動および負荷電力の変動に応じて蓄電池の放電が行われるので、放電電流値の挙動を制御できなかった。すなわち、従来では、PV電力の変動および負荷電力の変動に応じて、例えば、図10に示すように、蓄電池11の充電率が8時~13時まで上限SOCである100%のまま一定に維持された状態になり、13時~23時までの10時間で50%になるような挙動を示し、放電電流値の制御ができない。 Here, conventionally, unlike the first embodiment, since the storage battery is discharged according to the fluctuation of PV power and the fluctuation of load power without setting the discharge current value, the behavior of the discharge current value is controlled. could not. In other words, according to fluctuations in PV power and load power in the past, for example, as shown in FIG. 10, the charging rate of the storage battery 11 is kept constant at 100%, which is the upper limit SOC from 8:00 to 13:00. In this state, the behavior becomes 50% in 10 hours from 13:00 to 23:00, and the discharge current value cannot be controlled.
 これに対して、本実施の形態1では、日中のうち、朝頃から夕方頃にPV電力が負荷電力を上回る場合であっても、充放電制御装置14は、蓄電池11の充電率が日中時間帯の終了時刻(特定電力時間帯の開始時刻)までには下限SOCとなるように放電電流値を設定し、蓄電池11を放電する。したがって、蓄電池11の充電率が下限SOCよりも大きい状態とはならず、蓄電池11に余計な電力が残ることがない。すなわち、日中時間帯において、蓄電池11の充電率が下限SOCになるまで、充電電力を効率的に使用することができる。 On the other hand, in this Embodiment 1, even if it is a case where PV electric power exceeds load electric power from the morning to the evening in the daytime, the charging / discharging control apparatus 14 is that the charging rate of the storage battery 11 is daytime. The discharge current value is set so that the lower limit SOC is reached by the end time of the intermediate time zone (start time of the specific power time zone), and the storage battery 11 is discharged. Therefore, the charging rate of the storage battery 11 does not become larger than the lower limit SOC, and no extra power remains in the storage battery 11. That is, in the daytime time period, the charging power can be efficiently used until the charging rate of the storage battery 11 reaches the lower limit SOC.
 次に、充放電制御装置14による蓄電池11の充放電制御動作における寿命延命効果について、図11を参照しながら説明する。図11は、本発明の実施の形態1における蓄電池11の容量維持率の変化を示した説明図である。なお、図11においては、比較例として、従来の蓄電池システムにおける蓄電池の容量維持率の変化も併せて示されている。 Next, the life extension effect in the charge / discharge control operation of the storage battery 11 by the charge / discharge control device 14 will be described with reference to FIG. FIG. 11 is an explanatory diagram showing a change in the capacity maintenance rate of the storage battery 11 according to Embodiment 1 of the present invention. In addition, in FIG. 11, the change of the capacity retention rate of the storage battery in the conventional storage battery system is also shown as a comparative example.
 図11において、従来の蓄電池システムにおいては、前述したように、充電時および放電時の充放電電流値を制御できない。したがって、特定電力時間帯における充電時には、充電終了時間が早くなってしまうことがあり、蓄電池の満充電維持時間が長くなってしまうことがあった。 In FIG. 11, in the conventional storage battery system, as described above, the charge / discharge current value during charging and discharging cannot be controlled. Therefore, at the time of charging in the specific power time zone, the charging end time may be shortened, and the full charge maintaining time of the storage battery may be lengthened.
 また、蓄電池11の放電中にPV電力または負荷電力の急激な変動が発生した場合、放電電流値が予期せず大きくなってしまう。結果として、図11に示すように、ある期間中に従来の蓄電池システムを使用した場合、蓄電池の容量維持率の低下が大きくなる。 In addition, when the PV power or the load power suddenly changes during the discharge of the storage battery 11, the discharge current value increases unexpectedly. As a result, as shown in FIG. 11, when the conventional storage battery system is used during a certain period, the capacity maintenance rate of the storage battery is greatly reduced.
 これに対して、本実施の形態1における蓄電池システム10においては、充放電制御装置14による充放電制御動作により、充放電を行う現在の時刻と、現在の蓄電池状態とに応じて充放電レートを算出して充放電電流値を設定している。したがって、結果として、図11に示すように、ある期間中に蓄電池システム10を使用した場合、蓄電池11の容量維持率の低下が従来と比べて小さくなり、蓄電池11の長寿命化が可能となる。さらに、日中時間帯において、蓄電池11の充電率が下限SOCになるまで蓄電池11に充電した電力を、効率的に使用することができるので、経済性が向上する。 On the other hand, in the storage battery system 10 according to the first embodiment, the charge / discharge rate is determined according to the current time of charging / discharging and the current storage battery state by the charge / discharge control operation by the charge / discharge control device 14. The charge / discharge current value is calculated and set. Therefore, as a result, as shown in FIG. 11, when the storage battery system 10 is used during a certain period, the decrease in the capacity maintenance rate of the storage battery 11 becomes smaller than the conventional one, and the life of the storage battery 11 can be extended. . Furthermore, since the power charged in the storage battery 11 can be used efficiently until the charging rate of the storage battery 11 reaches the lower limit SOC in the daytime hours, the economy is improved.
 このように、充放電制御装置14は、日中時間帯では、現在のPV電力が現在の負荷電力以下の場合に、前述したように、現在の時刻から所望の放電終了時刻までに蓄電池11の蓄電率が下限SOCに到達するように放電電流値を設定し、蓄電池11の蓄電池出力を算出する。そして、充放電制御装置14は、算出した蓄電池出力が、第1差分値よりも小さい場合に、設定した放電電流値で充電率が下限SOC値に到達するまで蓄電池を放電する。これにより、蓄電池11の放電電流値を制御することができるので、放電電流値が予期せずに大きくなってしまうことがなく、蓄電池の劣化防止および長寿命化が可能となる。 In this way, in the daytime time zone, when the current PV power is equal to or less than the current load power, the charge / discharge control device 14 is configured to store the storage battery 11 from the current time to the desired discharge end time as described above. The discharge current value is set so that the storage rate reaches the lower limit SOC, and the storage battery output of the storage battery 11 is calculated. When the calculated storage battery output is smaller than the first difference value, the charge / discharge control device 14 discharges the storage battery until the charging rate reaches the lower limit SOC value at the set discharge current value. Thereby, since the discharge current value of the storage battery 11 can be controlled, the discharge current value does not increase unexpectedly, and it is possible to prevent the storage battery from deteriorating and extend its life.
 また、充放電制御装置14は、日中時間帯では、蓄電池11の蓄電池出力が、第1差分値以上の場合に、蓄電池11の動作を休止する。そして、休止の間において、現在のPV電力が現在の負荷電力以下の場合に、前述したように、現在の時刻から所望の放電終了時刻までに蓄電池11の蓄電率が下限SOCに到達するように放電電流値を再設定し、蓄電池11の蓄電池出力を算出する。続いて、充放電制御装置14は、算出した蓄電池出力が、第1差分値よりも小さい場合において、再設定した放電電流値で充電率が下限SOC値に到達するまで蓄電池を放電する。これにより、日中時間帯において、PV電力が大きく変動しても、現在の時刻に応じた所望の放電レートで最終的には、充電終了時刻に下限SOCまで放電することができるので、放電電流値が予期せずに大きくなってしまうことがなく、蓄電池の劣化防止および長寿命化が可能となる。 Moreover, the charge / discharge control device 14 stops the operation of the storage battery 11 when the storage battery output of the storage battery 11 is equal to or greater than the first difference value during the daytime. Then, during the pause, when the current PV power is less than or equal to the current load power, as described above, the storage rate of the storage battery 11 reaches the lower limit SOC from the current time to the desired discharge end time. The discharge current value is reset and the storage battery output of the storage battery 11 is calculated. Subsequently, when the calculated storage battery output is smaller than the first difference value, the charge / discharge control device 14 discharges the storage battery until the charging rate reaches the lower limit SOC value at the reset discharge current value. As a result, even if the PV power fluctuates greatly during the daytime period, it can be discharged to the lower limit SOC at the end of charge at the desired discharge rate according to the current time. The value does not increase unexpectedly, and it is possible to prevent the storage battery from deteriorating and extend its life.
 また、充放電制御装置14は、日中時間帯では、現在のPV電力が現在の負荷電力よりも大きい場合に、現在の蓄電池状態に基づいて、現在のPV電力のうちの余剰電力を蓄電池11に充電するか、または蓄電池11の動作を休止する。なお、本実施の形態1では、現在の蓄電池状態の具体例として、現在の蓄電池11の充電率(残存容量)に基づいて、現在のPV電力のうちの余剰電力を蓄電池11に充電するか、または蓄電池11の動作を休止する場合を例示した。しかしながら、これに限定されず、段落0018で例示した別の蓄電池状態(例えば、蓄電池11の電圧、電流または電力量等)を考慮して、現在のPV電力のうちの余剰電力を蓄電池11に充電するか、または蓄電池11の動作を休止するように構成してもよい。 Moreover, the charging / discharging control apparatus 14 is the daytime time zone. WHEREIN: When the present PV electric power is larger than the present load electric power, based on the present storage battery state, the surplus electric power of the present PV electric power is stored in the storage battery 11. Or the operation of the storage battery 11 is stopped. In the first embodiment, as a specific example of the current storage battery state, based on the charge rate (remaining capacity) of the current storage battery 11, surplus power of the current PV power is charged to the storage battery 11, or Or the case where the operation | movement of the storage battery 11 was stopped was illustrated. However, the present invention is not limited to this, and surplus power of the current PV power is charged into the storage battery 11 in consideration of another storage battery state exemplified in the paragraph 0018 (for example, the voltage, current, or amount of power of the storage battery 11). Alternatively, the operation of the storage battery 11 may be paused.
 また、充放電制御装置14は、特定電力時間帯では、所望の充電開始時刻から所望の充電終了時刻までに蓄電池11の充電率が現在の充電率の値から上限SOC値に到達するまでの充電率の単位時間当たりの増加量が一定となるように充電レートを算出し、充電電流値を設定する。そして、充放電制御装置14は、設定した充電電流値で、蓄電池11を充電する。これにより、蓄電池11の満充電維持時間を制御することができるので、蓄電池11の満充電維持時間を減少させることができ、結果として、蓄電池の劣化防止および長寿命化が可能となる。さらに、所望の充電開始時刻を特定電力時間帯の開始時刻として、所望の充電終了時刻を特定電力時間帯の終了時刻にすれば、蓄電池11の満充電維持時間を最小にまで減少させることができる。 Moreover, the charge / discharge control apparatus 14 is charged until the charge rate of the storage battery 11 reaches the upper limit SOC value from the current charge rate value between the desired charge start time and the desired charge end time in the specific power time zone. The charge rate is calculated so that the rate increase per unit time is constant, and the charge current value is set. Then, the charge / discharge control device 14 charges the storage battery 11 with the set charging current value. Thereby, since the full charge maintenance time of the storage battery 11 can be controlled, the full charge maintenance time of the storage battery 11 can be reduced, and as a result, deterioration of the storage battery and long life can be achieved. Furthermore, if the desired charge start time is set as the start time of the specific power time zone and the desired charge end time is set as the end time of the specific power time zone, the full charge maintenance time of the storage battery 11 can be reduced to the minimum. .
 以上、本実施の形態1によれば、蓄電池システム内の充放電制御装置は、充放電を行う時間、および蓄電池状態に応じて充放電レートを算出して充放電電流値を設定し、PV電力、負荷電力、蓄電池電力より充放電開始の判断を行い、蓄電池の充放電制御を行う。 As mentioned above, according to this Embodiment 1, the charging / discharging control apparatus in a storage battery system calculates a charging / discharging rate according to the time which performs charging / discharging, and a storage battery state, sets a charging / discharging electric current value, PV power From the load power and storage battery power, the start of charge / discharge is determined, and the storage battery charge / discharge control is performed.
 これにより、蓄電池の充放電時にPV電力または負荷電力の急激な変動が発生した場合であっても、充放電電流値が予期せずに大きくなってしまうことがなく、さらに、蓄電池11の満充電維持時間を減少させることができるので、蓄電池の長寿命化が可能となる。また、日中時間帯において、蓄電池に充電した電力を、蓄電池の充電率が下限SOCになるまで効率的に使用することができるので、経済性が向上する。 As a result, even if a sudden change in PV power or load power occurs during charging / discharging of the storage battery, the charge / discharge current value does not increase unexpectedly, and the storage battery 11 is fully charged. Since the maintenance time can be reduced, the life of the storage battery can be extended. Moreover, since the electric power charged in the storage battery can be efficiently used in the daytime hours until the charge rate of the storage battery reaches the lower limit SOC, the economy is improved.
 実施の形態2.
 先の実施の形態1では、日中におけるPV電力および負荷電力のさまざまな変化パターン(先の図4、図6、図9)を例示し、充放電制御装置14の動作例について説明した。これに対して、本発明の実施の形態2では、日中のうち正午頃にPV電力が負荷電力を上回って変化する場合を例示し、先の図2のフローチャート、図12および図13を参照しながら、充放電制御装置14の動作例についてさらに説明する。
Embodiment 2. FIG.
In the first embodiment, various change patterns of PV power and load power during the daytime (previous FIGS. 4, 6, and 9) are exemplified, and the operation example of the charge / discharge control device 14 has been described. On the other hand, in the second embodiment of the present invention, a case where PV power changes above the load power around noon during the day is illustrated, see the flowchart of FIG. 2 and FIGS. 12 and 13 above. However, an operation example of the charge / discharge control device 14 will be further described.
 図12は、本発明の実施の形態2において、日中のうち、正午頃にPV電力が負荷電力を上回る場合のPV電力および負荷電力の変化と、蓄電池11の充電率の変化とを併せて示した説明図である。図13は、図12中の第1時間領域(1)、第2時間領域(2)および第3時間領域(3)のそれぞれにおける負荷電力の量的構成の概略を示す説明図である。 FIG. 12 shows the change in PV power and load power when the PV power exceeds the load power around noon and the change in the charging rate of the storage battery 11 in the daytime in Embodiment 2 of the present invention. It is explanatory drawing shown. FIG. 13 is an explanatory diagram showing an outline of a quantitative configuration of load power in each of the first time region (1), the second time region (2), and the third time region (3) in FIG.
 なお、図12においては、蓄電池11の充電率の日中の変化(破線)に対する比較例として、従来の蓄電池システムにおける蓄電池の充電率の日中の変化(実線)も併せて示されている。また、図12中の第1時間領域(1)は、PV電力が徐々に増加している部分に相当し、第2時間領域(2)は、PV電力が負荷電力を上回っている部分に相当し、第3時間領域(3)は、PV電力が徐々に減少している部分に相当する。 In addition, in FIG. 12, the daytime change (solid line) of the charge rate of the storage battery in the conventional storage battery system is also shown as a comparative example with respect to the daytime change (dashed line) of the charge rate of the storage battery 11. Moreover, the 1st time area | region (1) in FIG. 12 is equivalent to the part where PV electric power is increasing gradually, and the 2nd time area | region (2) is equivalent to the part where PV electric power exceeds load electric power. The third time region (3) corresponds to a portion where the PV power is gradually reduced.
 ここで、図12において、充放電制御装置14が特定電力時間帯で動作する場合、以下のように動作すると想定される。 Here, in FIG. 12, when the charge / discharge control device 14 operates in a specific power time zone, it is assumed that the device operates as follows.
 すなわち、充放電制御装置14は、先の図2に示すように、特定電力時間帯であると判定し(ステップS101)、上限SOC、充電終了時刻および充電電流値を設定する(ステップS102~S104)。続いて、充放電制御装置14は、充電を開始すれば、充電率が上限SOCに到達するまで充電を継続し、上限SOCに到達すれば、動作を終了する(ステップS105、S106)。 That is, as shown in FIG. 2, the charge / discharge control device 14 determines that it is the specific power time zone (step S101), and sets the upper limit SOC, the charging end time, and the charging current value (steps S102 to S104). ). Subsequently, the charging / discharging control device 14 continues charging until the charging rate reaches the upper limit SOC if charging is started, and ends the operation if it reaches the upper limit SOC (steps S105 and S106).
 一方、図12において、充放電制御装置14は、日中時間帯の第1時間領域(1)、第2時間領域(2)および第3時間領域(3)のそれぞれでは、以下のように動作すると想定される。 On the other hand, in FIG. 12, the charge / discharge control device 14 operates as follows in each of the first time region (1), the second time region (2), and the third time region (3) in the daytime time zone. It is assumed.
 すなわち、充放電制御装置14が日中時間帯の第1時間領域(1)で動作する場合、充放電制御装置14は、先の図2に示すように、PV電力と負荷電力との大小関係を判定する(ステップS201)。この場合、図12に示すように、はじめはPV電力が負荷電力以下であるので、充放電制御装置14は、PV電力が負荷電力以下であると判定し(ステップS201)、放電電流値および蓄電池出力を算出する(ステップS205、S206)こととなる。 That is, when the charge / discharge control device 14 operates in the first time region (1) in the daytime time zone, the charge / discharge control device 14 has a magnitude relationship between PV power and load power as shown in FIG. Is determined (step S201). In this case, as shown in FIG. 12, since the PV power is initially equal to or less than the load power, the charge / discharge control device 14 determines that the PV power is equal to or less than the load power (step S201), and the discharge current value and the storage battery are determined. The output is calculated (steps S205 and S206).
 続いて、充放電制御装置14は、図13の(A)に示すように、算出した蓄電池出力が現在の負荷電力から現在のPV電力を減算することで得られる値以上であれば、負荷電力以上の電力を負荷40に供給してしまうこととなるので、蓄電池11の動作を休止する(ステップS207、S204)。 Subsequently, as shown in FIG. 13A, the charge / discharge control device 14 loads the load power if the calculated storage battery output is equal to or greater than the value obtained by subtracting the current PV power from the current load power. Since the above power is supplied to the load 40, the operation of the storage battery 11 is suspended (steps S207 and S204).
 そして、充放電制御装置14は、蓄電池11の動作を休止すれば、もう一度、PV電力と負荷電力との大小関係を判定し(ステップS201)、PV電力が負荷電力以下であれば、放電電流値および蓄電池出力を算出する(ステップS205、S206)。続いて、充放電制御装置14は、算出した蓄電池出力と現在の負荷電力から現在のPV電力を減算することで得られる値との大小関係を判定する(ステップS207)。 And if the charge / discharge control apparatus 14 stops the operation | movement of the storage battery 11, once again will determine the magnitude relationship between PV electric power and load electric power (step S201), and if PV electric power is below load electric power, it will be discharge current value. The storage battery output is calculated (steps S205 and S206). Subsequently, the charge / discharge control device 14 determines the magnitude relationship between the calculated storage battery output and the value obtained by subtracting the current PV power from the current load power (step S207).
 ここで、図12に示すように、第1時間領域(1)では、時刻が進むにつれて、負荷電力とPV電力との差が小さくなっている。したがって、充放電制御装置14は、蓄電池11の放電を開始することなく、ステップS201→S205→S206→S207→S204→S201という一連のステップの実行を繰り返すと想定される。また、図12に示すように、10時30分頃になれば、PV電力が負荷電力よりも大きくなる。したがって、充放電制御装置14は、ステップS201→S202→S203またはS204→S201という一連のステップの実行を繰り返すと想定される。 Here, as shown in FIG. 12, in the first time region (1), the difference between the load power and the PV power becomes smaller as the time advances. Therefore, it is assumed that the charge / discharge control device 14 repeats the execution of a series of steps S201 → S205 → S206 → S207 → S204 → S201 without starting the discharge of the storage battery 11. Moreover, as shown in FIG. 12, when about 10:30, PV electric power will become larger than load electric power. Therefore, it is assumed that the charge / discharge control device 14 repeats the execution of a series of steps of step S201 → S202 → S203 or S204 → S201.
 次に、充放電制御装置14が日中時間帯の第2時間領域(2)で動作する場合、充放電制御装置14は、先の図2に示すように、PV電力と負荷電力との大小関係を判定する(ステップS201)。この場合、図12に示すように、PV電力が負荷電力よりも大きいので、充放電制御装置14は、PV電力が負荷電力よりも大きい(換言すると、PV電力のうちの余剰電力が発生している)と判定する(ステップS201)こととなる。 Next, when the charging / discharging control device 14 operates in the second time region (2) in the daytime time zone, the charging / discharging control device 14 has a magnitude of PV power and load power as shown in FIG. The relationship is determined (step S201). In this case, as shown in FIG. 12, since the PV power is larger than the load power, the charge / discharge control device 14 has the PV power larger than the load power (in other words, surplus power in the PV power is generated. (Step S201).
 続いて、充放電制御装置14は、蓄電池11を充電するか否かを判定し(ステップS202)、蓄電池11を充電する(ステップS203)か、蓄電池11の動作を休止する(ステップS204)。ここで、図13の(B)に示すように、蓄電池11を充電すると選択した場合、PV電力のうちの余剰電力を蓄電池11に充電すると想定され、蓄電池11の動作を休止すると選択した場合、例えば、PV電力のうちの余剰電力を、系統電源50を介して売電すると想定される。 Subsequently, the charge / discharge control device 14 determines whether or not to charge the storage battery 11 (step S202), charges the storage battery 11 (step S203), or pauses the operation of the storage battery 11 (step S204). Here, as shown in FIG. 13B, when the storage battery 11 is selected to be charged, it is assumed that surplus power of the PV power is charged to the storage battery 11, and when the operation of the storage battery 11 is selected to be stopped, For example, it is assumed that surplus power in the PV power is sold via the system power supply 50.
 次に、充放電制御装置14が日中時間帯の第3時間領域(3)で動作する場合、充放電制御装置14は、先の図2に示すように、PV電力と負荷電力との大小関係を判定する(ステップS201)。この場合、図12に示すように、13時頃から、PV電力が負荷電力以下となるので、充放電制御装置14は、PV電力が負荷電力以下であると判定し(ステップS201)、放電電流値および蓄電池出力を算出する(ステップS205、S206)こととなる。 Next, when the charging / discharging control device 14 operates in the third time region (3) of the daytime time zone, the charging / discharging control device 14 has a magnitude of PV power and load power as shown in FIG. The relationship is determined (step S201). In this case, as shown in FIG. 12, since the PV power becomes equal to or less than the load power from around 13:00, the charge / discharge control device 14 determines that the PV power is equal to or less than the load power (step S201), and the discharge current. The value and the storage battery output are calculated (steps S205 and S206).
 続いて、充放電制御装置14は、算出した蓄電池出力と、現在の負荷電力から現在のPV電力を減算することで得られる値との大小関係を判定する(ステップS207)。ここで、算出した蓄電池出力にもよるが、13時頃(13時付近)においては、負荷電力とPV電力との差が小さいので、充放電制御装置14は、ステップS201→S205→S206→S207→S204→S201という一連のステップの実行を繰り返し、蓄電池11の動作を休止すると想定される。 Subsequently, the charge / discharge control device 14 determines the magnitude relationship between the calculated storage battery output and the value obtained by subtracting the current PV power from the current load power (step S207). Here, although depending on the calculated storage battery output, since the difference between the load power and the PV power is small around 13:00 (around 13:00), the charge / discharge control device 14 performs steps S201 → S205 → S206 → S207. It is assumed that the operation of the storage battery 11 is paused by repeating a series of steps of S204 → S201.
 また、14時以降においては、負荷電力とPV電力との差が徐々に大きくなるので、図13の(C)に示すように、算出した蓄電池出力が現在の負荷電力から現在のPV電力を減算することで得られる値よりも小さくなる。この場合、充放電制御装置14は、蓄電池11の放電を開始する(ステップS208)と想定される。 Further, after 14:00, the difference between the load power and the PV power gradually increases, so that the calculated storage battery output subtracts the current PV power from the current load power as shown in FIG. It becomes smaller than the value obtained by doing. In this case, it is assumed that the charge / discharge control device 14 starts discharging the storage battery 11 (step S208).
 そして、図12において、13時以降、PV電力が負荷電力を上回ることがないので、充放電制御装置14は、蓄電池11の放電を開始すれば、ステップS208→S209→S207→S208→S209という一連のステップの実行を繰り返すと想定され、下限SOCに到達すれば、動作を終了する。 In FIG. 12, since the PV power does not exceed the load power after 13:00, the charging / discharging control device 14 starts a series of steps S208 → S209 → S207 → S208 → S209 if the discharge of the storage battery 11 is started. It is assumed that the execution of this step is repeated, and when the lower limit SOC is reached, the operation is terminated.
 以上、本実施の形態2によれば、日中のうち正午頃にPV電力が負荷電力を上回って変化する場合をさらに例示して、充放電制御装置14の動作例を補足説明することで、先の実施の形態1で述べた効果が得られることを明らかにした。 As described above, according to the second embodiment, by further illustrating the case where the PV power changes more than the load power around noon in the daytime, by supplementarily explaining the operation example of the charge / discharge control device 14, It has been clarified that the effects described in the first embodiment can be obtained.

Claims (6)

  1.  太陽光発電システムであるPVシステムにおいて発電したPV電力と、系統電源から供給される系統電力と、負荷が消費する負荷電力とを検出するとともに、特定電力時間帯に蓄電池の充電制御を行い、前記特定電力時間帯以外の時間帯として規定される日中時間帯に前記蓄電池の放電制御を行う蓄電池の充放電制御装置であって、
     前記特定電力時間帯では、所望の充電開始時刻から所望の充電終了時刻までに前記蓄電池の充電率が所望の上限SOC値に到達するまでの充電率の単位時間当たりの増加量が一定となるように充電レートを算出することにより、充電電流値を設定し、設定した前記充電電流値で前記充電率が前記上限SOC値に到達するまで前記蓄電池を充電し、
     前記日中時間帯では、現在のPV電力が現在の負荷電力以下の場合に、現在の時刻から所望の放電終了時刻までに前記蓄電池の充電率が所望の下限SOC値に到達するまでの充電率の単位時間当たりの減少量が一定となるように第1放電レートを算出することにより、第1放電電流値を設定し、設定した前記第1放電電流値と、前記蓄電池の電圧とを乗ずることで得られる前記蓄電池の第1蓄電池出力が、前記現在の負荷電力から前記現在のPV電力を減算することで得られる第1差分値よりも小さい場合に、設定した前記第1放電電流値で前記充電率が前記下限SOC値に到達するまで前記蓄電池を放電する
     蓄電池の充放電制御装置。
    The PV power generated in the PV system that is a photovoltaic power generation system, the system power supplied from the system power supply, and the load power consumed by the load are detected, and charge control of the storage battery is performed in a specific power time zone, A storage battery charge / discharge control device that performs discharge control of the storage battery during a daytime period defined as a time zone other than the specific power time zone,
    In the specific power time zone, an increase amount per unit time of the charging rate until the charging rate of the storage battery reaches a desired upper limit SOC value from a desired charging start time to a desired charging end time is constant. By setting a charging current value, and charging the storage battery until the charging rate reaches the upper limit SOC value with the set charging current value,
    In the daytime period, when the current PV power is less than or equal to the current load power, the charging rate until the charging rate of the storage battery reaches a desired lower limit SOC value from the current time to the desired discharge end time By calculating the first discharge rate so that the amount of decrease per unit time is constant, the first discharge current value is set, and the set first discharge current value is multiplied by the voltage of the storage battery. When the first storage battery output of the storage battery obtained in (1) is smaller than the first difference value obtained by subtracting the current PV power from the current load power, the set first discharge current value is used. A storage battery charge / discharge control device for discharging the storage battery until a charging rate reaches the lower limit SOC value.
  2.  請求項1に記載の蓄電池の充放電制御装置において、
     前記日中時間帯では、前記第1蓄電池出力が前記第1差分値以上である場合に、前記蓄電池の動作を休止し、前記休止の間において、前記現在のPV電力が前記現在の負荷電力以下である場合に、現在の時刻から前記所望の放電終了時刻までに前記蓄電池の蓄電率が前記所望の下限SOC値に到達するまでの充電率の単位時間当たりの減少量が一定となるように第2放電レートを算出することにより、第2放電電流値を設定し、設定した前記第2放電電流値と、前記蓄電池の電圧とを乗ずることで得られる前記蓄電池の第2蓄電池出力が、前記現在の負荷電力から前記現在のPV電力を減算することで得られる第2差分値よりも小さい場合に、設定した前記第2放電電流値で前記充電率が前記下限SOC値に到達するまで前記蓄電池を放電する
     蓄電池の充放電制御装置。
    The charge / discharge control device for a storage battery according to claim 1,
    In the daytime period, when the first storage battery output is greater than or equal to the first difference value, the operation of the storage battery is suspended, and the current PV power is less than or equal to the current load power during the suspension. In this case, the reduction rate per unit time until the storage rate of the storage battery reaches the desired lower limit SOC value from the current time to the desired discharge end time is set to be constant. By calculating the two discharge rates, a second discharge current value is set, and the second storage battery output of the storage battery obtained by multiplying the set second discharge current value and the storage battery voltage is the current When the current difference is smaller than the second difference value obtained by subtracting the current PV power from the load power of the battery, the storage battery is operated until the charging rate reaches the lower limit SOC value at the set second discharge current value. Discharge The charge and discharge control device for a storage battery.
  3.  請求項1に記載の蓄電池の充放電制御装置において、
     前記日中時間帯では、前記現在のPV電力が前記現在の負荷電力よりも大きい場合に、現在の蓄電池状態に基づいて、前記現在のPV電力のうちの余剰電力を前記蓄電池に充電するか、または前記蓄電池の動作を休止する
     蓄電池の充放電制御装置。
    The charge / discharge control device for a storage battery according to claim 1,
    In the daytime period, when the current PV power is larger than the current load power, the storage battery is charged with surplus power of the current PV power based on the current storage battery state, Or the charging / discharging control apparatus of the storage battery which stops operation | movement of the said storage battery.
  4.  請求項2に記載の蓄電池の充放電制御装置において、
     前記休止の間において、前記現在のPV電力が前記現在の負荷電力よりも大きい場合に、現在の蓄電池状態に基づいて、前記現在のPV電力のうちの余剰電力を前記蓄電池に充電するか、または前記蓄電池の動作を休止する
     蓄電池の充放電制御装置。
    In the storage battery charge / discharge control device according to claim 2,
    During the pause, if the current PV power is greater than the current load power, the surplus power of the current PV power is charged to the battery based on the current battery status, or A charge / discharge control device for a storage battery that stops the operation of the storage battery.
  5.  請求項1から4のいずれか1項に記載の蓄電池の充放電制御装置において、
     前記特定電力時間帯では、前記所望の充電開始時刻が前記特定電力時間帯の開始時刻であり、前記所望の充電終了時刻が前記特定電力時間帯の終了時刻である
     蓄電池の充放電制御装置。
    In the storage battery charge / discharge control device according to any one of claims 1 to 4,
    In the specific power time zone, the desired charge start time is a start time of the specific power time zone, and the desired charge end time is an end time of the specific power time zone.
  6.  太陽光発電システムであるPVシステムにおいて発電したPV電力と、系統電源から供給される系統電力と、負荷が消費する負荷電力とを検出するステップと、
     特定電力時間帯では、所望の充電開始時刻から所望の充電終了時刻までに蓄電池の充電率が所望の上限SOC値に到達するまでの充電率の単位時間当たりの増加量が一定となるように充電レートを算出することにより、充電電流値を設定し、設定した前記充電電流値で前記充電率が前記上限SOC値に到達するまで前記蓄電池を充電するステップと、
     前記特定電力時間帯以外の時間帯として規定される日中時間帯では、現在のPV電力が現在の負荷電力以下の場合に、現在の時刻から所望の放電終了時刻までに前記蓄電池の充電率が所望の下限SOC値に到達するまでの充電率の単位時間当たりの減少量が一定となるように第1放電レートを算出することにより、第1放電電流値を設定し、設定した前記第1放電電流値と、前記蓄電池の電圧とを乗ずることで得られる前記蓄電池の第1蓄電池出力が、前記現在の負荷電力から前記現在のPV電力を減算することで得られる第1差分値よりも小さい場合に、設定した前記第1放電電流値で前記充電率が前記下限SOC値に到達するまで前記蓄電池を放電するステップと、
     前記第1蓄電池出力が前記第1差分値以上である場合に、前記蓄電池の動作を休止し、前記休止の間において、前記現在のPV電力が前記現在の負荷電力以下である場合に、現在の時刻から前記所望の放電終了時刻までに前記蓄電池の蓄電率が前記所望の下限SOC値に到達するまでの充電率の単位時間当たりの減少量が一定となるように第2放電レートを算出することにより、第2放電電流値を設定し、設定した前記第2放電電流値と、前記蓄電池の電圧とを乗ずることで得られる前記蓄電池の第2蓄電池出力が、前記現在の負荷電力から前記現在のPV電力を減算することで得られる第2差分値よりも小さい場合に、設定した前記第2放電電流値で前記充電率が前記下限SOC値に到達するまで前記蓄電池を放電するステップと、
     を備えた蓄電池の充放電制御方法。
    Detecting PV power generated in a PV system that is a photovoltaic power generation system, system power supplied from a system power supply, and load power consumed by a load;
    In a specific power time zone, charging is performed so that the amount of increase in the charging rate per unit time until the charging rate of the storage battery reaches the desired upper limit SOC value from the desired charging start time to the desired charging end time is constant. Setting a charging current value by calculating a rate, and charging the storage battery until the charging rate reaches the upper limit SOC value at the set charging current value;
    In the daytime time zone defined as a time zone other than the specific power time zone, when the current PV power is equal to or lower than the current load power, the charging rate of the storage battery is between the current time and the desired discharge end time. The first discharge current value is set by calculating the first discharge rate so that the decrease amount per unit time of the charging rate until the desired lower limit SOC value is reached, and the set first discharge When the first storage battery output of the storage battery obtained by multiplying the current value by the voltage of the storage battery is smaller than the first difference value obtained by subtracting the current PV power from the current load power And discharging the storage battery until the charging rate reaches the lower limit SOC value at the set first discharge current value;
    When the output of the first storage battery is greater than or equal to the first difference value, the operation of the storage battery is suspended, and during the suspension, the current PV power is less than or equal to the current load power. Calculating the second discharge rate so that the amount of decrease in the charge rate per unit time until the storage rate of the storage battery reaches the desired lower limit SOC value from the time to the desired discharge end time is constant. By setting the second discharge current value and multiplying the set second discharge current value by the voltage of the storage battery, the second storage battery output of the storage battery is calculated from the current load power to the current load power. Discharging the storage battery until the charging rate reaches the lower limit SOC value at the set second discharge current value when smaller than a second difference value obtained by subtracting PV power; and
    A charge / discharge control method for a storage battery.
PCT/JP2014/056182 2013-04-12 2014-03-10 Storage battery charge/discharge control device and storage battery charge/discharge control method WO2014167928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-083910 2013-04-12
JP2013083910A JP2016119728A (en) 2013-04-12 2013-04-12 Storage battery charge/discharge control device and storage battery charge/discharge control method

Publications (1)

Publication Number Publication Date
WO2014167928A1 true WO2014167928A1 (en) 2014-10-16

Family

ID=51689342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056182 WO2014167928A1 (en) 2013-04-12 2014-03-10 Storage battery charge/discharge control device and storage battery charge/discharge control method

Country Status (2)

Country Link
JP (1) JP2016119728A (en)
WO (1) WO2014167928A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833923A (en) * 2014-12-18 2015-08-12 北汽福田汽车股份有限公司 Power battery overheating determination method, device, and vehicle having the same
JP2016171738A (en) * 2015-03-11 2016-09-23 エルエス産電株式会社Lsis Co., Ltd. Power management system
JP2016187292A (en) * 2015-03-27 2016-10-27 パナソニックIpマネジメント株式会社 Power storage system and management device
WO2018047415A1 (en) * 2016-09-12 2018-03-15 住友電気工業株式会社 Power storage device and power supply system
CN110932301A (en) * 2019-12-20 2020-03-27 沈阳工业大学 Method for improving wind power acceptance capacity based on participation of battery energy storage
CN116014866A (en) * 2023-03-28 2023-04-25 赫里欧新能源有限公司 Power supply method and system based on breeze wind power generation wall

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7030585B2 (en) * 2018-03-23 2022-03-07 大阪瓦斯株式会社 Solar power system
JP7192385B2 (en) * 2018-10-19 2022-12-20 日新電機株式会社 Power storage system, control device, and control method for power storage system
CN109655758B (en) * 2018-12-29 2020-12-11 蜂巢能源科技有限公司 Battery open-circuit voltage measuring method and system
KR102636457B1 (en) * 2019-04-09 2024-02-15 엘에스일렉트릭(주) Ess(energy storage system) and method for controling of the ess
CN115579923B (en) * 2022-10-18 2024-02-23 国网上海能源互联网研究院有限公司 Energy storage optimization operation method and device for multiple scenes and multiple targets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303022A (en) * 1987-12-03 1989-12-06 Sanyo Electric Co Ltd Solar generator
JP2001008385A (en) * 1999-06-22 2001-01-12 Sekisui Chem Co Ltd Power storing system
WO2012043636A1 (en) * 2010-09-28 2012-04-05 三洋電機株式会社 Power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303022A (en) * 1987-12-03 1989-12-06 Sanyo Electric Co Ltd Solar generator
JP2001008385A (en) * 1999-06-22 2001-01-12 Sekisui Chem Co Ltd Power storing system
WO2012043636A1 (en) * 2010-09-28 2012-04-05 三洋電機株式会社 Power supply system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833923A (en) * 2014-12-18 2015-08-12 北汽福田汽车股份有限公司 Power battery overheating determination method, device, and vehicle having the same
JP2016171738A (en) * 2015-03-11 2016-09-23 エルエス産電株式会社Lsis Co., Ltd. Power management system
US10110004B2 (en) 2015-03-11 2018-10-23 Lsis Co., Ltd. Power management system
JP2016187292A (en) * 2015-03-27 2016-10-27 パナソニックIpマネジメント株式会社 Power storage system and management device
WO2018047415A1 (en) * 2016-09-12 2018-03-15 住友電気工業株式会社 Power storage device and power supply system
JPWO2018047415A1 (en) * 2016-09-12 2019-06-27 住友電気工業株式会社 Power storage device and power supply system
CN110932301A (en) * 2019-12-20 2020-03-27 沈阳工业大学 Method for improving wind power acceptance capacity based on participation of battery energy storage
CN110932301B (en) * 2019-12-20 2021-11-16 沈阳工业大学 Method for improving wind power acceptance capacity based on participation of battery energy storage
CN116014866A (en) * 2023-03-28 2023-04-25 赫里欧新能源有限公司 Power supply method and system based on breeze wind power generation wall

Also Published As

Publication number Publication date
JP2016119728A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
WO2014167928A1 (en) Storage battery charge/discharge control device and storage battery charge/discharge control method
JP5584763B2 (en) DC power distribution system
JP6168564B2 (en) Method and power generation system for supplying electrical energy from a distributed energy source
JP5583781B2 (en) Power management system
JP4369450B2 (en) Power supply system
TWI497866B (en) Charging equipment
JP5925554B2 (en) Control device, control system, and control method
KR101696999B1 (en) Method for controlling an energy storage device and system for managing a power
US9912184B2 (en) Delayed reactive electrical consumption mitigation
JP5836164B2 (en) Solar power system
JP2008154334A (en) Power conditioner
JP2013042627A (en) Dc power supply control device and dc power supply control method
JP2017038432A (en) Control device, system, and control method
JP6166512B2 (en) Control device, power system, and control method
JP2024009124A (en) Power control device, storage battery system, storage battery charge power control method and program
JP2013143895A (en) Charge/discharge control device, power storage system, power supply system and charge/discharge control method
JP2012200060A (en) Feeding control system and feeding control method
WO2012049955A1 (en) Power management system
JP6832511B2 (en) Power converter, power conversion system
JP6101523B2 (en) Power supply system
JP2015050897A (en) Power conditioner
JP2016015803A (en) Load leveler
JP2015213409A (en) Load leveling device
JP6832510B2 (en) Power converter, power conversion system
JP6078374B2 (en) Power supply device and charge control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP