JPH01303022A - Solar generator - Google Patents

Solar generator

Info

Publication number
JPH01303022A
JPH01303022A JP62306097A JP30609787A JPH01303022A JP H01303022 A JPH01303022 A JP H01303022A JP 62306097 A JP62306097 A JP 62306097A JP 30609787 A JP30609787 A JP 30609787A JP H01303022 A JPH01303022 A JP H01303022A
Authority
JP
Japan
Prior art keywords
power
inverter
output
solar cell
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62306097A
Other languages
Japanese (ja)
Other versions
JPH07108071B2 (en
Inventor
Kazufumi Ushijima
牛嶋 和文
Kazuyoshi Tsukamoto
塚本 一義
Hitoshi Tamura
仁志 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62306097A priority Critical patent/JPH07108071B2/en
Publication of JPH01303022A publication Critical patent/JPH01303022A/en
Publication of JPH07108071B2 publication Critical patent/JPH07108071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To stabilize the commercial power system, by maintaining the output power from an inverter for inverting DC current fed from solar cells or batteries into AC power at a constant level with respect to time and setting the output power higher than the maximum output power from the solar cells. CONSTITUTION:An inverter 3 follows to a command output fed from a controller 6 and feeds effective power to a commercial power system 4. Output power from the inverter 3 is maintained constant with respect to time and set higher than the maximum output from solar cells 1. Batteries 2 discharge power to the inverter 3 and the power stored in the batteries 2 reduces because of day time discharge. The reduction is supplemented through recharge of the batteries 2 with midnight power.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は太陽電池の発電電力を商用電力系統に回生じて
電気事業を行う分散電源システムに係り、特に該システ
ムにおいて使われている系統連系インバータの制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to a distributed power supply system that conducts electricity business by recirculating power generated by solar cells to a commercial power grid, and particularly relates to This invention relates to a control device for a grid-connected inverter.

(ロ)従来の技術 電気事業における電力会社の電源設備運用の大略は、原
子力発電をベースにして水力、火力その他の設備を1日
の負荷f動に応じて出力調整することであり、過去の実
績や天候などによる負荷予測を行い、運用計画を立てて
いる。
(b) Conventional technology The general idea of power supply equipment operation by electric power companies in the electric power industry is to adjust the output of hydropower, thermal power, and other equipment based on nuclear power generation according to the daily load fluctuation. We make operational plans based on load forecasts based on actual results and weather conditions.

ところで太陽光発電システムが上記のような電力系統に
接続された場合、太陽電池の発電電力は負荷とは無関係
に、主としてそのときの日射条件によって変動する。
By the way, when a solar power generation system is connected to the power system as described above, the power generated by the solar cells fluctuates mainly depending on the solar radiation conditions at that time, regardless of the load.

このように多数のシステムが分散配置され、太陽電池の
発電′電力を直接電力系統へ回生する方式では、その発
電電力がランダムに変化することから、配電系統の電圧
管理を全体に亘って適正に行うのが極めて困難になると
考えられる。
In this method, where a large number of systems are distributed and the power generated by solar cells is directly regenerated into the power grid, the generated power varies randomly, so it is necessary to properly manage the voltage of the power distribution system throughout the system. It would be extremely difficult to do so.

現在の分散配置型太陽光発電システムについては例えば
NEDO(新エネルギー開発機構)研究成果年報I(6
1年度)PP、244〜219「太陽光発電システム実
用化技術開発」に開示されているように電力貯蔵装置付
のシステム運用方式が検討されており、その方式は日射
量比例運転、潮流安定化運転、定電力運転の3種類であ
る。
Regarding current distributed solar power generation systems, for example, NEDO (New Energy Development Organization) Research Results Annual Report I (6
1) PP, 244-219 "Technology development for practical application of solar power generation systems", a system operation method with a power storage device is being considered, and the method is solar radiation proportional operation, power flow stabilization. There are three types: operation and constant power operation.

しかし乍ら上記前れの方式についても電気事業の 用電源として変電所レベノー集中監視が成される形態で
あり、一般家庭用の小規模の太陽光発電設備には不向き
となる問題点があった。
However, the above-mentioned previous method also had the problem of being unsuitable for small-scale solar power generation equipment for general household use, as it required centralized monitoring of substation levels as a power source for electric power utilities. .

(ハ)発明が解決しようとする問題点 本発明の対象となる小規模分散型電源のうち、特に一般
家庭毎に付設される2〜3kWの太陽電池発電設備にお
いては上述の集中監視や遠隔制御方式の導入が困難であ
ることから個々の発電システムで単独に出力調整が成さ
れることになる。
(c) Problems to be solved by the invention Among the small-scale distributed power sources that are the subject of the present invention, the above-mentioned centralized monitoring and remote control are particularly important for 2 to 3 kW solar power generation equipment installed in each general household. Since it is difficult to introduce this system, output adjustment will be performed independently for each power generation system.

本発明が解決しようとする問題点は電気事業の電力系統
運用面から、小規模電源においてその発電電力変化を安
定化するとともに、該変化の予測を容易にたてるここの
できる太陽光発電装置を開発することである。
The problem to be solved by the present invention is to provide a photovoltaic power generation device that can stabilize the power generated by a small-scale power source and easily predict the change from the power system operation side of the electric power business. It is to develop.

に))問題点を解決するだめの手段 太陽電池と、該太陽電池の発電電力によって充電される
蓄電池と、前記太陽電池及び蓄電池の直流を交流に変換
するインバータと、該インバータと連系接続される商用
電力系統とより成る太陽光発電装置であって、前記イン
バータの送出電力量を時刻に対して一定の関イ糸に保つ
とともに、この送出電力量lを前記太陽電池の最大発電
電力量よりも大きく設定する。
b)) Means for solving the problem A solar cell, a storage battery charged by the power generated by the solar cell, an inverter that converts the direct current of the solar cell and storage battery into alternating current, and an inverter connected to the inverter. A photovoltaic power generation device consisting of a commercial power system, in which the amount of power sent out by the inverter is maintained at a constant value with respect to time, and the amount of power sent out is set to be less than the maximum amount of power generated by the solar cells. also set large.

(ホ)作 用 インバータの送出出力を日射剤の変化に関係なく常に一
定の時刻vs7屯カバターンに固定することにより、分
散電源から電力系統へ出力する電力値が常に一定となり
、′電気事業の設備運用計画が安易となる。
(E) Function By always fixing the output of the inverter at a constant time vs. 7 ton cover regardless of changes in solar radiation, the power value output from the distributed power source to the power grid will always be constant, and Operation planning becomes easier.

(へ)実施例 以下本発明の太陽光発電装置を図面の一実施例に沿って
詳細に説明する。
(f) Example Hereinafter, the solar power generation device of the present invention will be explained in detail with reference to an example of the drawings.

第1図に上記装置の基本システム全ブロック図で示す。FIG. 1 shows a complete block diagram of the basic system of the above device.

同図において、(1)は出力容量2.5 k Wの太陽
電池、(2)は該太陽電池(1)の発電電力によって充
電される蓄′市池、(3)は航記太陽′市池(1)及び
蓄電池(2)の直流出力を交流に変換するインバータ、
(4)は該インバータ(3)に連系接続される商用電力
系統である。
In the figure, (1) is a solar cell with an output capacity of 2.5 kW, (2) is a storage pond that is charged by the power generated by the solar cell (1), and (3) is a solar cell. an inverter that converts the DC output of the pond (1) and storage battery (2) into AC;
(4) is a commercial power system interconnected to the inverter (3).

前記太陽電池(])の発電電力は分流器(5)で検出さ
れる電流値と前記蓄電池(2)の電圧イ1ムこの積によ
って求められ、即ち例えば10秒毎に前記電流値及び′
市圧値を累積することにより発電電力量を測るようにす
る。この発電電力量の計測は@記太陽電池(1)及び蓄
電池(2)の出力全夫々入力とするコントローラ16)
内部で行われる。そして前記太陽電池(1)の送出室カ
バターンは例えば1分間毎の時刻に対応する出力電力振
幅の形で予め設定され、前記コントロー九6)内部に記
憶される。葦だ前記インバータ(3)は、前記コントロ
ーラ16)の指令値出力に追従することにより、有効電
力を前記電力系統へ送出する。
The power generated by the solar cell () is determined by the product of the current value detected by the shunt (5) and the voltage value of the storage battery (2).
The amount of power generated will be measured by accumulating the city pressure values. The amount of power generated is measured by the controller 16, which inputs all the outputs of the solar cell (1) and storage battery (2).
It is done internally. The delivery chamber cover turn of the solar cell (1) is set in advance in the form of an output power amplitude corresponding to a time of one minute, for example, and is stored in the controller 96). The inverter (3) sends active power to the power system by following the command value output of the controller 16).

前記インバータ(3)の送出電力の設定に際し、第2図
(a)で示す時刻に対する余弦曲線、または第2図(b
)で示す電気事業における設備運用に近似した曲線等の
任意の曲線が可能であり、これら曲線とがっ は、前記蓄電池(2)の容量及び太陽電池の発電容量に
よって決定される。
When setting the output power of the inverter (3), a cosine curve with respect to time shown in FIG. 2(a) or a cosine curve as shown in FIG.
) An arbitrary curve, such as a curve that approximates the equipment operation in the electric utility industry, is possible, and the sharpness of these curves is determined by the capacity of the storage battery (2) and the power generation capacity of the solar cell.

ところで1拍記太陽゛屯池(1)の発電電力変化と+i
iJ記インバータ(3)の送出゛電力量Po及びFjf
f記蓄電池(2)への充東電力簾pB間の関イ糸はP 
B7 PCTP o /η□  ・・・・・・・・・・
・直式1)で表現系れる。但し〒山は前記インバータ(
3)の平均変換効率である。第1図の実施例の場合送出
電力量Poは上述の送出電力設定によって一定に堆力電
力量PRが変化する。そこで上記式lにおいてpBが零
若しくは負数となるよつにインバータ・3)の送出電力
Poを設定してやると蓄電池(2)はその放電によって
インバータ(3)に電力を供給することにより、蓄電池
(2)は尾間の送出電力により貯蔵電力が減少する結果
となる。っ 1)[記貯蔵直方の減少分はその日の深夜から翌朝にか
けての時間帯の深夜重力を利用して蓄電池(2)を范′
屯することにより補充される。この補充゛重重力量Pc
は前記充電電力量FBの算出結果(負数)に対応して pc’=、pB/(’2x−りB)・・・・・・(式2
)で表現される。但し72Bは蓄電池(2)の貯蔵効率
である。
By the way, the change in the power generated by the 1-beat solar pond (1) and +i
Output power of iJ inverter (3) Power amount Po and Fjf
The connecting thread between the charging electric power blind pB and the f storage battery (2) is P.
B7 PCTP o /η□ ・・・・・・・・・・
・It can be expressed using the direct formula 1). However, the mountain is the inverter (
3) is the average conversion efficiency. In the case of the embodiment shown in FIG. 1, the output power amount Po and the output power amount PR change constantly depending on the above-mentioned output power settings. Therefore, if the output power Po of the inverter 3 is set so that pB becomes zero or a negative number in the above formula l, the storage battery (2) supplies power to the inverter (3) by its discharge, and the storage battery (2) ) results in a decrease in stored power due to the power sent between Oma. 1) [The decrease in storage capacity is made up by increasing storage battery (2) using the late night gravity from midnight to the next morning.
It is replenished by going to sea. This replenishment ``gravitational weight Pc
corresponds to the calculation result (negative number) of the charging power amount FB, and pc'=, pB/('2x-riB) (Formula 2
) is expressed. However, 72B is the storage efficiency of the storage battery (2).

次に、J3図にインバータ・3)の送出出力及び蓄電池
(2)の補充電電力の時刻に対応する変化を指令するコ
ントローラ(6)の電力指令制御ブロック図を示し、以
下これについて説明する。
Next, Fig. J3 shows a power command control block diagram of the controller (6) which commands changes in the sending output of the inverter 3) and the auxiliary charging power of the storage battery (2) according to time, and will be described below.

図中(61)il:t4ffiEメンバータ(3)の送
出電カパターンケ記憶するROMであり、1分毎にタイ
マ(62)からアドレス変更を受けて送出電力値に相当
する8bitのデータを出力する。(63)はD−A変
換器であり、mIJ記ROM (61)のデジタルの出
力信号全アナログ値に変換し、加算器(64)の一方の
入力信号とする。
In the figure, (61) il: t4ffiE This is a ROM that stores the output power pattern of member data (3), receives address changes from the timer (62) every minute, and outputs 8-bit data corresponding to the output power value. (63) is a DA converter, which converts the digital output signal of the mIJ ROM (61) into all analog values, which is used as one input signal of the adder (64).

一万の((i 5 )は蓄電池(2)の補充′耐電カバ
ターンを記憶する第2のROMであり、上述のROM(
61)と同様にタイマー(62)の時刻データに基いて
アドレス変更を堂けて、その補充電電力値に相当する8
bitのデータを出力し、このデータは第2のD−A変
換器(66)にてアナログ値に変換される。
10,000 ((i 5 ) is the second ROM that stores the replenishment of the storage battery (2)' electrically resistant cover pattern, and the above-mentioned ROM (
61), the address can be changed based on the time data of the timer (62), and the 8 corresponding to the supplementary charging power value can be changed.
Bit data is output, and this data is converted into an analog value by the second DA converter (66).

(67)は電力量設定器であり、前述の補充電電力量P
cに相当する値を出力し、この出力信号は第3のD−A
変換器(68)にてアナログ値に変換される。
(67) is a power amount setting device, and the above-mentioned auxiliary charging power amount P
c, and this output signal is sent to the third D-A.
It is converted into an analog value by a converter (68).

前記各D−A変換器(66)(68)の出力は乗算器(
69)にてその槓が演算され、かくして得られた補充電
電力Wの時刻に対応した指令値は前記加算器(64)の
他方の入力となる。
The output of each DA converter (66) (68) is sent to a multiplier (
69), the command value corresponding to the time of the supplementary charging power W obtained in this way becomes the other input of the adder (64).

前記加算器(64)では前記D−Af換器(63)の出
力と前記乗算器(69)この出力に基いて前記インバー
タ(3)の電力指令値を出力するが、該インバータ(3
)の送出電力は正で、蓄電池(2)の補充電電力は負で
あるために前記インバータ(3)の負極側へのアナログ
信号の形態をとる。尚前記ROM(65)の記憶データ
はROM(61)と同様に前体の第2図(a)(b)に
示された任意のパターンを選択できることは言うまでも
ないが、同じ時刻にインバータ(3)の電力送出と蓄電
池(2)の補充電とが重なることがないように設定する
The adder (64) outputs a power command value for the inverter (3) based on the output of the D-Af converter (63) and the output of the multiplier (69).
) is positive, and the auxiliary charging power of the storage battery (2) is negative, so it takes the form of an analog signal to the negative electrode side of the inverter (3). It goes without saying that the data stored in the ROM (65) can be selected from any of the patterns shown in FIGS. ) is set so that the power transmission and supplementary charging of the storage battery (2) do not overlap.

前記インバータ(3)には第4図に示すような出力電力
制御方式が採用される。即ち前記インバータ(3)のフ
ィードバククループはインバータ(3)の送出電力を検
出する電力検出器、3υと、該電力検出器のυの出力と
前記加算器(64)の指令饋とを比較する・ 誤差増幅
器に)と、該増幅器64の出力信号の誤差成分をパルス
波に変換するパルス幅変調(PWM)回路に)とにより
構成されるものであ一す、該ノくルス幅変調回路(至)
はインバータ主回路図の出力電圧と位相と全制御するこ
とにより、前記インバータ(3)の出力電力を前記加算
器(64)からの軍刀指令値l!ig5図は41〜.4
図の実施例における各部の動。
The inverter (3) employs an output power control method as shown in FIG. That is, the feedback loop of the inverter (3) compares a power detector 3υ that detects the output power of the inverter (3) with the output of the power detector υ and the command output of the adder (64). - an error amplifier) and a pulse width modulation (PWM) circuit that converts the error component of the output signal of the amplifier 64 into a pulse wave; To)
is fully controlled with the output voltage and phase of the inverter main circuit diagram, so that the output power of the inverter (3) is adjusted to the gunto command value l! from the adder (64). ig5 diagram is 41~. 4
Movement of each part in the example shown in the figure.

タイムチャートである。同図において(a)は太陽電池
+1+の発電電力を示B、2Jkwの出力容量から1出
力される1時間毎の出力平均値を示している。
This is a time chart. In the same figure, (a) shows the power generated by the solar cell +1+, and B shows the hourly average output value of one output from the output capacity of 2 Jkw.

即ち第18目は8時〜17時迄の間で太陽電池(1)を
発電させその最大出力直約1.4 k Wを碍、42日
目は同様に約1.9kWの出力を得た。しかし第3ロー
、第48目は悪天餌のため太陽電池(1)の発電量は少
なく、第5ロー、第6ローは天候が回復し充分な発電量
が得られたことを示している。これに対して第5図(b
)はインバータ(3)の送出電力を示しており、送出電
力値は正として前記第2図(a)で示すヂ余弦波曲線を
大体呈している。同じく第5図(b)において負出力は
補充電電力を示し、ここではO〜5時迄の時間で振幅変
動のない矩形波として設定しているが、この補充電電力
値を時刻に対して任意に設定できることは言うまでもな
い。
That is, on the 18th day, the solar cell (1) generated power between 8:00 and 17:00, achieving a maximum output of approximately 1.4 kW, and on the 42nd day, the output was approximately 1.9 kW. . However, in the 3rd and 48th rows, the amount of power generated by the solar cell (1) was low due to poor weather conditions, and in the 5th and 6th rows, the weather improved and sufficient power generation was obtained. . In contrast, Fig. 5 (b
) indicates the output power of the inverter (3), and assuming that the output power value is positive, it approximately exhibits the cosine wave curve shown in FIG. 2(a). Similarly, in Fig. 5(b), the negative output indicates the auxiliary charging power, and here it is set as a rectangular wave with no amplitude fluctuation from 0 to 5 o'clock, but this auxiliary charging power value is Needless to say, it can be set arbitrarily.

また第5図(C)は蓄電池(2)の充放電電力値、(d
)は蓄電池(2)の貯蔵電力量を示すものである。
In addition, Fig. 5 (C) shows the charging/discharging power value of the storage battery (2), (d
) indicates the amount of power stored in the storage battery (2).

(ト)発明の効果 本発明は以上の説明の如く太陽電池と、該太陽電池の発
電電力によって充電される蓄電池と、前記太陽電池及び
蓄電池の直流を交流に変換するインバータと、該インバ
ータと連糸接続される商用電力系統とより成る太陽電池
発電装置であって、前記インバータの送出電力量を時刻
に対して一定の関係に保つとともに、この送出電力量を
前記太陽電池の最大発電電力量よりも大きく設定するこ
とにより、分散電源より商用′重力系統へ送出する電力
が一定となり、商用電力系統の安定化に極めて効果的で
ある。
(g) Effects of the Invention As described above, the present invention includes a solar cell, a storage battery that is charged by the power generated by the solar cell, an inverter that converts the direct current of the solar cell and storage battery into alternating current, and an inverter that is connected to the inverter. A solar cell power generation device consisting of a commercial power grid connected by a wire, in which the amount of power sent out by the inverter is kept in a constant relationship with respect to time, and the amount of power sent out is set to be lower than the maximum amount of power generated by the solar cell. By setting a large value, the power sent from the distributed power sources to the commercial power grid becomes constant, which is extremely effective in stabilizing the commercial power grid.

尚、インバータを制御するコントローラのROM全変換
することにより、容易に電力需#地域の負荷パターンに
合致させた送出出力が設定可能であり、ピークカット(
ロードレベリング)に対して効果的であり、分散電源が
一般家庭に多数普及した場合の群管理が容易となる。
Furthermore, by completely converting the ROM of the controller that controls the inverter, it is possible to easily set the output output that matches the load pattern of the electricity demand area, and it is possible to reduce the peak cut (
It is effective for load leveling) and facilitates group management when distributed power sources are widely used in general households.

また蓄電池の補充屯を深夜電力を利用して行い、電力の
時間移動を行うことによりロードレベリングに更に効果
をもたらす。
In addition, late-night electricity is used to replenish the storage battery, and by moving the electricity over time, load leveling is even more effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明太陽光発電装置の基本ブロック図、第2
図(aHb)はインバータが選択する出力波形パターン
図、第3図は第1図のコントローラのシステムブロック
図、第4図は第1図のインバータの電力制御システムブ
ロック図、第5図(a)〜(eJは第1回者部の動作タ
イムチャートを示す図である。 (1)・・・太陽電池、(2)・・蓄電池、(3)・イ
ンバータ、(4)・・・商用′重力系統。 出頭人 三洋′市機株式会社 代理人 弁理士 四寿卓ll1)′51(外1名)派 
      −− 手続補正書(方式〕 平成1 年 7月パ日 1 事件の表示 昭和62年特許願第306097 号 2 発明の名称 太陽光発電装置 3 補正をする者 事件この関係 特許出願人 名 称 (188)三洋電機株式会社 4代理人 住 所 守口型京阪本通2工目18番地連絡先:電話(
東京)837−6239特許センター駐在山崎5、補正
命令の日付(発送臼) 平成1年7月4日 6 補正の対象 (1)明細書の「図面の簡単な説明」の欄。 7、 補正の内容 (])明細書第]]頁第18行目 [第5図(a)〜(e)は」とあるのを、「第5図(a
)〜(d)は」と補正する。
Figure 1 is a basic block diagram of the solar power generation device of the present invention, Figure 2
Figure (aHb) is a diagram of the output waveform pattern selected by the inverter, Figure 3 is a system block diagram of the controller in Figure 1, Figure 4 is a block diagram of the power control system of the inverter in Figure 1, and Figure 5 (a). ~(eJ is a diagram showing the operation time chart of the first part. (1)...Solar cell, (2)...Storage battery, (3)...Inverter, (4)...Commercial' gravity Lineage. Person appearing: Sanyo' Ichiki Co., Ltd. agent Patent attorney Shiju Takull1) '51 (1 other person) faction
-- Procedural amendment (method) July 1, 1999 1 Display of the case Patent Application No. 306097 of 1988 2 Name of the invention Solar power generation device 3 Person making the amendment Case This relationship Patent applicant name (188) Sanyo Electric Co., Ltd. 4 Agent Address: Moriguchi-type Keihan Hondori 2nd Floor 18 Contact: Telephone (
(Tokyo) 837-6239 Patent Center Representative Yamazaki 5 Date of amendment order (dispatch) July 4, 1999 6 Subject of amendment (1) "Brief explanation of drawings" column of the specification. 7. Contents of the amendment (]) Specification No.] Page 18, line [Figures 5(a) to (e)] has been changed to
) to (d) are corrected as ".

Claims (1)

【特許請求の範囲】[Claims] (1)太陽電池と、該太陽電池の発電電力によって充電
される蓄電池と、前記太陽電池及び蓄電池の直流を交流
に変換するインバータと、該インバータと連系接続され
る商用電力系統とより成る太陽光発電装置であって、前
記インバータの送出電力量を時刻に対して一定の関係に
保つとともに、この送出電力量を前記太陽電池の最大発
電電力量よりも大きく設定することを特徴とする太陽光
発電装置。
(1) A solar cell consisting of a solar cell, a storage battery that is charged by the power generated by the solar cell, an inverter that converts the direct current of the solar cell and storage battery into alternating current, and a commercial power system that is interconnected with the inverter. A photovoltaic power generation device, characterized in that the amount of power sent out by the inverter is maintained in a constant relationship with respect to time, and the amount of power sent out is set to be larger than the maximum amount of power generated by the solar cell. Power generation equipment.
JP62306097A 1987-12-03 1987-12-03 Solar power generator Expired - Fee Related JPH07108071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306097A JPH07108071B2 (en) 1987-12-03 1987-12-03 Solar power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306097A JPH07108071B2 (en) 1987-12-03 1987-12-03 Solar power generator

Publications (2)

Publication Number Publication Date
JPH01303022A true JPH01303022A (en) 1989-12-06
JPH07108071B2 JPH07108071B2 (en) 1995-11-15

Family

ID=17953000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306097A Expired - Fee Related JPH07108071B2 (en) 1987-12-03 1987-12-03 Solar power generator

Country Status (1)

Country Link
JP (1) JPH07108071B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433529A (en) * 1990-05-30 1992-02-04 Toshiba Corp Power storage type power supply device
JP2003079054A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Solar power generation system having storage battery
WO2014167928A1 (en) * 2013-04-12 2014-10-16 三菱電機株式会社 Storage battery charge/discharge control device and storage battery charge/discharge control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433529A (en) * 1990-05-30 1992-02-04 Toshiba Corp Power storage type power supply device
JP2003079054A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Solar power generation system having storage battery
WO2014167928A1 (en) * 2013-04-12 2014-10-16 三菱電機株式会社 Storage battery charge/discharge control device and storage battery charge/discharge control method

Also Published As

Publication number Publication date
JPH07108071B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US10454277B2 (en) Method and apparatus for controlling power flow in a hybrid power system
Martin et al. Backstepping control of smart grid-connected distributed photovoltaic power supplies for telecom equipment
Rana et al. Design of modified droop controller for frequency support in microgrid using fleet of electric vehicles
CN112751357B (en) Photovoltaic energy storage system and control method thereof
Borase et al. Energy management system for microgrid with power quality improvement
Mobarrez et al. Implementation of distributed power balancing strategy with a layer of supervision in a low-voltage DC microgrid
JP2023138478A (en) Method of controlling battery energy storage system of electric power system with high dynamic load
US9502903B2 (en) Energy management systems and methods
Singh et al. Power management in solar PV fed microgrid system with battery support
Bhattacharyya et al. DC link voltage control based power management scheme for standalone PV systems
Kumar et al. Modelling and control of bess for solar integration for pv ramp rate control
WO2020218191A1 (en) Power control device, method of controlling power control device, and distributed power generation system
CN108667071A (en) A kind of active distribution network load is precisely controlled computational methods
JPH01303022A (en) Solar generator
Ahamed et al. Designing and simulation of a DC microgrid in PSCAD
Kumari et al. Decentralized soc based droop with sliding mode current controller for dc microgrid
Sharma et al. Power management and economic load dispatch based control of hybrid PV-battery-diesel standalone AC system
JP7084351B2 (en) DC power grid and DC power network control system
Marinescu et al. PV-battery system with enhanced control for microgrid integration
Naresh et al. Intelligent control strategy for power management in hybrid renewable energy system
Heo et al. Energy Storage Operation with Renewable Generation for Energy Self-reliance in Smart Grid
Tejwani et al. Control strategy for utility interactive hybrid PV Hydrogen System
US6768285B2 (en) Power system for converting variable source power to constant load power
Calpbinici et al. Design of an Energy Management System for AC/DC Microgrid
Choi et al. Control design of coordinated droop control for hybrid AC/DC microgrid considering distributed generation characteristics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees