WO2014162448A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2014162448A1
WO2014162448A1 PCT/JP2013/059926 JP2013059926W WO2014162448A1 WO 2014162448 A1 WO2014162448 A1 WO 2014162448A1 JP 2013059926 W JP2013059926 W JP 2013059926W WO 2014162448 A1 WO2014162448 A1 WO 2014162448A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
film thickness
wiring
emitting device
light emitting
Prior art date
Application number
PCT/JP2013/059926
Other languages
French (fr)
Japanese (ja)
Inventor
博樹 丹
賢一 奥山
雄司 齋藤
正宣 赤木
邦彦 白幡
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/059926 priority Critical patent/WO2014162448A1/en
Publication of WO2014162448A1 publication Critical patent/WO2014162448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks

Definitions

  • the present invention relates to a light emitting device.
  • organic EL Organic Electroluminescence
  • An organic EL element is comprised by the transparent electrode, the other electrode arrange
  • Examples of the technology related to the organic EL element include those described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 The technique described in Patent Document 1 is to form a resistance adjusting portion for adjusting the resistance value of the wiring electrode among the transparent electrodes in the wiring electrode.
  • Patent Document 2 describes a light-emitting element having an electrode composed of a metal line formed in a line shape and a polymer line covering the upper surface and side surfaces of the metal line.
  • the electrical resistance value at a specific portion of the electrode may be adjusted.
  • the inventor has found that the electrical resistance value at a specific location in the electrode can be adjusted, for example, by changing the film thickness of the electrode.
  • a spark is generated in the electrode due to a change in electrical resistance value based on a change in film thickness in the electrode. In this case, the operation reliability of the light emitting device is lowered.
  • An example of a problem to be solved by the present invention is to improve the operational reliability of a light emitting device.
  • the invention described in claim 1 A first electrode made of a conductive material; A second electrode at least partially facing the first electrode; An organic layer disposed between the first electrode and the second electrode; With The first electrode has a film thickness changing region in which the film thickness changes, The film thickness of the first electrode is a light emitting device that continuously changes in the film thickness change region.
  • FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1.
  • FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1.
  • FIG. 8 is a cross-sectional view showing a CC cross section of FIG. 7.
  • FIG. 8 is a cross-sectional view showing a DD cross section of FIG. 7. It is a figure which shows a part of light-emitting device shown in FIG. It is a figure which shows an example of a structure of the 1st electrode in 2nd Embodiment.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment.
  • 2 is a cross-sectional view showing the AA cross section of FIG. 1
  • FIG. 3 is a cross-sectional view showing the BB cross section of FIG. 4 and 5 are views showing a part of the light emitting device 10 shown in FIG.
  • FIG. 4 particularly shows the positional relationship between the transparent conductive film 110 and the lead-out wiring 134.
  • FIG. 5 particularly shows the configuration of the insulating layer 120.
  • FIG. 6 is a diagram illustrating an example of the configuration of the first electrode 112 in the present embodiment.
  • the light emitting device 10 includes a first electrode 112, a second electrode 152, and an organic layer 140.
  • the first electrode 112 is made of a conductive material.
  • the second electrode 152 is at least partially opposed to the first electrode 112.
  • the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
  • the first electrode 112 has a film thickness changing region 222 in which the film thickness changes. The film thickness of the first electrode 112 changes continuously in the film thickness change region 222.
  • the light emitting device 10 may be a lighting device.
  • the light-emitting device 10 is an illumination device
  • the light-emitting device 10 has a configuration in which, for example, a plurality of linear organic layers 140 having different emission colors are arranged repeatedly. Thereby, the illuminating device excellent in color rendering properties is realized.
  • the light-emitting device 10 that is a lighting device may have a planar organic layer 140.
  • the substrate 100 is, for example, a transparent substrate.
  • the substrate 100 can be a glass substrate. Thereby, the light emitting device 10 having excellent heat resistance and the like can be manufactured at low cost.
  • the substrate 100 may be a film-like substrate made of a resin material.
  • a display with particularly high flexibility can be realized.
  • the resin material constituting the film substrate include polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
  • the light emitting device 10 that is a display has a plurality of organic EL elements 20 arranged in an array on the substrate 100, for example.
  • the organic EL element 20 includes a first electrode 112 provided on the substrate 100, an organic layer 140 provided on the first electrode 112, and a second electrode 152 provided on the organic layer 140. ing. At this time, the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
  • a plurality of first electrodes 112 extending in the Y direction in the drawing and a plurality of second electrodes 152 extending in the X direction in the drawing are provided on the substrate.
  • the plurality of second electrodes 152 are provided so that a part of each second electrode 152 faces the first electrode 112.
  • the organic EL element 20 is formed in each portion where the first electrode 112 and the second electrode 152 overlap each other in plan view. As a result, a plurality of organic EL elements 20 arranged in an array are formed on the substrate 100.
  • the first electrode 112 serves as an anode of an organic EL element, for example.
  • the first electrode 112 is, for example, a transparent electrode that is transparent or translucent to the wavelength of light emitted from the light emitting layer 144 of the organic layer 140 described later.
  • the first electrode 112 is provided, for example, on the substrate 100 and in the pixel region 300 so as to extend linearly in the Y direction in the drawing.
  • On the substrate 100 for example, a plurality of first electrodes 112 that are separated from each other are arranged in a direction (X direction in the drawing) perpendicular to the extending direction of the first electrodes 112. At this time, the plurality of first electrodes 112 are separated from each other, for example.
  • the pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 4, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • the first electrode 112 is configured to substantially include a conductive material.
  • the conductive material constituting the first electrode 112 include a transparent conductive material or a paste-like conductive material such as silver. Among these, a transparent conductive material is particularly preferable.
  • the 1st electrode 112 is comprised with a transparent conductive material, it can be set as the transparent electrode which has transparency.
  • the transparent conductive material includes, for example, an inorganic material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), or a conductive polymer.
  • the transparent conductive material includes a conductive polymer
  • the first electrode 112 can be formed by a coating method.
  • the first electrode 112 in the step of forming the first electrode 112, it is possible to suppress a thermal load from being applied to other components such as the substrate 100.
  • the first electrode 112 is preferably a coating-type conductive film formed by applying a solution in which this inorganic material is dispersed in an organic solvent. Even in such a case, the first electrode 112 can be formed by a coating method.
  • the conductive polymer included in the transparent conductive material constituting the first electrode 112 is a conductive polymer including, for example, a ⁇ -conjugated conductive polymer and a polyanion.
  • the ⁇ -conjugated conductive polymer is not particularly limited.
  • a chain conductive polymer of phenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl compounds can be used. From the viewpoint of conductivity, transparency, stability, etc., polythiophenes or polyanilines are preferable, and polyethylene dioxythiophene is particularly preferable.
  • Polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, or polyacrylic acid can be used.
  • the polyanion used in the present embodiment may be a homopolymer of these or two or more kinds of copolymers.
  • the transparent conductive material may further include a crosslinking agent, a leveling agent, an antifoaming agent, or the like.
  • the first electrode 112 has a film thickness changing region 222 in which the film thickness changes.
  • the film thickness of the first electrode 112 in the film thickness changing region 222 is gradually increased or gradually decreased from one end side to the other end side of the film thickness changing region 222, for example.
  • the film thickness of the first electrode 112 continuously changes in the film thickness changing region 222. That is, in the film thickness change region 222, a portion where the film thickness of the first electrode 112 changes discontinuously is not formed.
  • that the film thickness changes continuously includes, for example, a case where the film thickness changing region 222 includes a portion where the film thickness does not change.
  • the first electrode 112 has the film thickness changing region 222 in which the film thickness changes.
  • the film thickness of the first electrode 112 changes continuously in the film thickness changing region 222.
  • a portion in which the film thickness changes discontinuously occurs in the film thickness changing region 222. Can be suppressed. That is, it is possible to suppress a sudden change in the electric resistance value based on the discontinuous change in the film thickness in the first electrode 112. For this reason, generation
  • the present inventor has found that various effects can be obtained by adjusting the film thickness of the first electrode 112.
  • An example of such an effect is control of the brightness of the light emitting device, for example.
  • the first electrode 112 has the film thickness changing region 222 in which the film thickness changes. That is, the thickness of each part in the first electrode 112 can be made different from each other. Thereby, the electrical resistance value in the 1st electrode 112 can be adjusted about each part. Therefore, it is possible to control the brightness of the light emitting device by adjusting the electrical resistance value at a specific location in the first electrode 112.
  • the part that increases the luminance is selected according to the purpose. For example, it may be desirable to increase the luminance at a specific location in order to improve luminance unevenness in the light emitting device. In a light emitting device that emits a plurality of different colors, for example, it may be desirable to increase the luminance of pixels that emit a specific color. In the present embodiment, it is possible to form the film thickness changing region 222 in which the film thickness changes in the first electrode 112 in accordance with these purposes.
  • the organic layer 140 and the second electrode 152 are provided on the first electrode 112, for example, the organic layer 140 and the second electrode 152 are provided.
  • the organic layer 140 and the second electrode 152 may be stepped due to the change in film thickness that occurs in the first electrode 112.
  • the change in film thickness in the film thickness change region 222 can be made smooth as described above. For this reason, the level
  • the first electrode 112 is formed such that, for example, the film thickness changing region 222 constitutes only a part of the first electrode 112.
  • the surface facing the second electrode 152 in the portion other than the film thickness changing region 222 in the first electrode 112 has a flat surface parallel to the substrate 100, for example.
  • FIG. 6 illustrates a case where the film thickness changing region 222 is formed in a part of the first electrode 112 and a region having a flat upper surface is formed in the other part.
  • the first electrode 112 may be formed so that the entire area of the first electrode 112 is constituted by the film thickness changing region 222. In this case, one surface of the first electrode 112 facing the second electrode 152 does not have a flat surface parallel to the substrate 100.
  • the first electrode 112 may have a plurality of film thickness changing regions 222, for example.
  • each film thickness change region 222 in the first electrode 112 is provided such that the film thickness of the first electrode 112 gradually increases or decreases in one direction.
  • it is preferable that the first electrode 112 is formed so that the film thickness of the first electrode 112 continuously changes in all the film thickness change regions 222.
  • a plurality of film thickness change regions 222 can be formed in the first electrode 112 such that one surface of the first electrode 112 that faces the second electrode 152 has an uneven curved surface.
  • the portion located in the film thickness changing region 222 is an inclined surface that is inclined with respect to the plane of the substrate 100, for example.
  • the inclined surface can be a smooth surface having no discontinuous steps.
  • the surface of the first electrode 112 that faces the second electrode 152 is the upper surface of the first electrode 112.
  • the portion located in the film thickness change region 222 has an angle from the normal 208 to the plane of the substrate 100 of 15 ° or more. Thereby, the change of the electrical resistance value in the film thickness change region 222 in the first electrode 112 can be further alleviated.
  • the angle ⁇ from the normal 208 to the plane of the substrate 100 is 15 ° or more in the portion located in the film thickness change region 222 on the upper surface of the first electrode 112.
  • the film thickness of the first portion 202 having the maximum film thickness in the film thickness change region 222 is D1
  • the film thickness of the second portion 204 having the minimum film thickness is D2.
  • the length of the region sandwiched between the first portion 202 and the second portion 204 is L.
  • (D1-D2) / L is preferably 3.73 or less.
  • the change in the film thickness of the first electrode 112 in the film thickness change region 222 becomes gentle, and the change in the electrical resistance value in the film thickness change region 222 can be further alleviated.
  • the first electrode is set so that (D1-D2) / L satisfies 3.73 or less regardless of which film thickness change region 222 is selected.
  • 112 is preferably formed.
  • the first wiring 114 is provided on the substrate 100.
  • the case where the 1st wiring 114 is electrically connected with the 1st electrode 112 is illustrated.
  • a plurality of first wirings 114 connected to different first electrodes 112 are provided on the substrate 100.
  • the plurality of first electrodes 112 in the present embodiment are connected to the lead-out wiring 134 via the first wiring 114, respectively.
  • the first electrode 112 is connected to the first wiring 114 at one end.
  • the first wiring 114 is made of, for example, a transparent conductive material.
  • the first wiring 114 can have transparency.
  • a transparent conductive material which comprises the 1st wiring 114 it is possible to use the same thing as the transparent conductive material which comprises the 1st electrode 112, for example.
  • the first electrode 112 and the first wiring 114 are provided integrally on the substrate 100, for example.
  • the first wiring 114 and the first electrode 112 are constituted by the transparent conductive film 110, for example.
  • a portion of the transparent conductive film 110 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the first electrode 112.
  • a portion of the transparent conductive film 110 located outside the pixel region 300 becomes the first wiring 114.
  • the first electrode 112 is connected to the lead wiring 134 through the first wiring 114.
  • a plurality of transparent conductive films 110 extending in the Y direction in the drawing are provided on the substrate 100.
  • the plurality of transparent conductive films 110 are arranged in the X direction in the figure so as to be separated from each other.
  • a portion located on the end side connected to the extraction wiring 134 with respect to the pixel region 300 indicated by the alternate long and short dash line is the first wiring 114.
  • the first electrode 112 In the first electrode 112, a voltage drop occurs as the distance from the first wiring 114 increases. Then, due to the voltage drop at the first electrode 112, the luminance is reduced.
  • the first electrode 112 is formed such that the film thickness of the first electrode 112 in the film thickness changing region 222 increases as the distance from the one end connected to the first wiring 114 increases. That is, the first electrode 112 can be formed such that the electrical resistance value of the first electrode 112 decreases as the distance from the first wiring 114 increases. Thereby, it is possible to improve luminance unevenness due to a voltage drop in the first electrode 112.
  • the structure of the film thickness change region 222 in the first electrode 112 is not limited to the one that increases as the distance from the one end connected to the first wiring 114 in the first electrode 112 increases.
  • the configuration of the film thickness change region 222 can be appropriately selected according to the purpose of increasing the luminance in the light emitting device.
  • the film thickness changing region 222 is formed at a position separated from the first wiring 114, for example.
  • FIG. 6 illustrates a case where the film thickness changing region 222 is formed at a position separated from the first wiring 114.
  • one surface of the first electrode 112 facing the second electrode 152 between the first wiring 114 and the film thickness changing region 222 has a flat surface parallel to the plane of the substrate 100, for example.
  • the film thickness change region 222 may be formed so as to be adjacent to the first wiring 114.
  • a lead wiring 134 is provided on the substrate 100 .
  • the lead wiring 134 is connected to the first wiring 114 .
  • a plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other.
  • Each lead-out wiring 134 is connected to the first wiring 114.
  • the plurality of first wires 114 are connected to the outside via the lead wires 134, respectively.
  • a light emission / non-light emission signal is supplied to the organic EL element 20 via the first wiring 114 and the lead-out wiring 134.
  • the first wiring 114 is formed so that one end of the first wiring 114 overlaps a part of the lead wiring 134.
  • the first wiring 114 is formed so as to cover a part of each of the upper surface and the side surface of the lead wiring 134, for example.
  • the lead wiring 134 is configured to include a metal material.
  • a metal material having an electric resistance value lower than that of the conductive material constituting the first electrode 112 is used.
  • the lead wiring 134 and the first electrode 112 are made of different materials. Examples of the metal material contained in the lead wiring 134 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd.
  • the lead wire 134 includes one or more of these metal materials.
  • An insulating layer 120 is provided on the substrate 100 so as to cover the first electrode 112, for example.
  • the insulating layer 120 is provided so as to cover the first electrode 112 and the first wiring 114 and a part of each of the extraction wiring 164 described later.
  • the insulating layer 120 is a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by exposure and development.
  • the insulating layer 120 may be made of a resin material other than polyimide resin, and may be epoxy resin or acrylic resin.
  • the insulating layer 120 is provided with a plurality of first openings 122, for example.
  • the first openings 122 are formed so as to form a matrix, for example.
  • the plurality of first openings 122 are formed so as to be located on the first electrode 112.
  • the plurality of first openings 122 are provided at positions overlapping the second electrode 152 extending in a direction orthogonal to the first electrode 112 (X direction in the figure), for example. For this reason, the plurality of first openings 122 are arranged to form a matrix.
  • the insulating layer 120 is provided with a plurality of second openings 124, for example. As shown in FIG. 5, the second opening 124 is provided, for example, so as to be located on the lead wiring 164.
  • the plurality of second openings 124 are arranged along one side of the matrix formed by the first openings 122. When viewed in a direction along this one side (for example, Y direction in the figure), the second openings 124 are arranged at the same interval as the first openings 122.
  • a partition wall 170 is provided on the insulating layer 120. As shown in FIG. 1, the partition 170 is provided so as to extend in the X direction in the drawing. That is, the partition 170 is formed along the extending direction of the second electrode 152. A plurality of partition walls 170 are provided so as to be arranged in the Y direction in the drawing.
  • the partition wall 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed.
  • the partition wall 170 may be made of a resin material other than a polyimide resin, or may be an epoxy resin or an acrylic resin.
  • the partition wall 170 has, for example, a trapezoidal cross-sectional shape (reverse trapezoidal shape). That is, the width of the upper surface of the partition wall 170 is larger than the width of the bottom surface of the partition wall 170, for example. In this case, even when the plurality of second electrodes 152 are collectively formed by a sputtering method, a vapor deposition method, or the like, the plurality of second electrodes 152 positioned between the adjacent partition walls 170 can be separated from each other. It becomes. Therefore, the second electrode 152 can be easily formed.
  • the planar shape of the partition wall 170 is not limited to that shown in FIG. Therefore, by changing the planar shape of the partition 170, the planar pattern of the plurality of second electrodes 152 that are separated from each other by the partition 170 can be freely changed.
  • an organic layer 140 is formed in the first opening 122.
  • the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
  • the organic layer 140 is configured by a stacked body in which, for example, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially stacked.
  • the hole injection layer 142 is in contact with the first electrode 112
  • the electron injection layer 146 is in contact with the second electrode 152.
  • the organic layer 140 is sandwiched between the first electrode 112 and the second electrode 152.
  • a hole transport layer may be formed between the hole injection layer 142 and the light emitting layer 144, or an electron transport layer may be formed between the light emitting layer 144 and the electron injection layer 146. Further, the organic layer 140 may not include the hole injection layer 142.
  • a partition 170 is provided on the insulating layer 120.
  • the organic layers 140 provided in each of a plurality of regions sandwiched between adjacent partition walls 170 are separated from each other in the Y direction in the drawing.
  • a laminated film made of the same material as the organic layer 140 is formed on the partition wall 170, for example.
  • each layer constituting the organic layer 140 is provided so as to be continuous between adjacent first openings 122 in the X direction in the drawing in which the partition 170 extends.
  • a second electrode 152 is provided on the organic layer 140.
  • the 2nd electrode 152 becomes a cathode of an organic EL element, for example.
  • the second electrode 152 is provided, for example, so as to extend linearly in the X direction in the drawing.
  • On the substrate 100 for example, a plurality of second electrodes 152 spaced apart from each other are arranged in a direction (Y direction in the drawing) perpendicular to the extending direction of the second electrodes 152. At this time, the plurality of second electrodes 152 are provided so that a part of each second electrode 152 faces the first electrode 112.
  • the light emitting device 10 includes a plurality of second electrodes 152 that are provided so that each part thereof faces the first electrode 112 extending in the Y direction in the drawing. At this time, each first electrode 112 faces a plurality of second electrodes 152.
  • the light emitting device 10 includes a plurality of organic layers 140 disposed between the first electrode 112 and the second electrode 152 facing each other. That is, one first electrode 112 extending in the Y direction in the drawing constitutes a plurality of organic EL elements 20 arranged in the Y direction in the drawing.
  • the first electrode 112 has the film thickness changing region 222 as described above.
  • the film thickness of the first electrode 112 can be varied among the organic EL elements 20.
  • the luminance can be controlled for each organic EL element 20.
  • the film thickness of the first electrode 112 can be made different between the portions in the organic EL element 20. Thereby, it is also possible to control the luminance at each location in the organic EL element 20.
  • the second electrode 152 is made of a metal material such as tin, magnesium, indium, calcium, aluminum, copper, silver, or an alloy thereof. One of these materials may be used alone, or two or more arbitrary combinations may be used. Note that in the case where the second electrode 152 is a cathode, the second electrode 152 is preferably made of a conductive material having a work function smaller than that of the first electrode 112 that is an anode.
  • a second wiring 154 is provided on the substrate 100.
  • the second wiring 154 is connected to one of the first electrode 112 and the second electrode 152 that is not connected to the first wiring 114.
  • one of the first electrode 112 and the second electrode 152 that is connected to the second wiring 154 is connected to the outside via the second wiring 154.
  • a case where the second wiring 154 is provided on the organic layer 140 and connected to the second electrode 152 is exemplified.
  • a plurality of second wirings 154 connected to the different second electrodes 152 are provided on the organic layer 140.
  • the plurality of second electrodes 152 in the present embodiment are connected to the outside via the second wirings 154, respectively.
  • part of the second wiring 154 is embedded in the second opening 124, and part of the second wiring 154 is connected to an extraction wiring 164 described later.
  • the second wiring 154 is made of, for example, a metal material.
  • a metal material constituting the second wiring 154 for example, the same material as the second electrode 152 can be used.
  • the second electrode 152 and the second wiring 154 are provided integrally on the organic layer 140, for example, and constitute the conductive film 150.
  • a part of the conductive film 150 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the second electrode 152.
  • a portion of the conductive film 150 located outside the pixel region 300 serves as the second wiring 154.
  • the second electrode 152 is connected to the lead wiring 164 via the second wiring 154, for example.
  • a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • a plurality of conductive films 150 extending in the X direction in the drawing are provided on the organic layer 140.
  • the plurality of conductive films 150 are arranged in the Y direction in the drawing so as to be separated from each other.
  • a portion located on the end side connected to the extraction wiring 164 with respect to the pixel region 300 becomes the second wiring 154.
  • the plurality of conductive films 150 are collectively formed on the organic layer 140 using, for example, a sputtering method or a vapor deposition method. Even in such a case, since the partition 170 is formed on the insulating layer 120 in this embodiment, the conductive film 150 provided in each of a plurality of regions sandwiched between adjacent partitions 170 is illustrated in the drawing. They are separated from each other in the Y direction. As a result, it is possible to form a plurality of conductive films 150 arranged in the Y direction in the drawing and extending in the X direction in the drawing so as to be separated from each other. At this time, a film made of the same material as the conductive film 150 is formed over the partition wall 170.
  • a lead wiring 164 is provided on the substrate 100.
  • the second wiring 154 is connected to the outside through the lead wiring 164. Therefore, the second electrode 152 is connected to the outside via the second wiring 154 and the lead wiring 164, and a signal is supplied.
  • the lead wiring 164 is made of, for example, a metal material.
  • the metal material constituting the lead wiring 164 for example, the same material as the lead wiring 134 can be used. In this case, the lead wiring 164 can be formed simultaneously with the lead wiring 134. For this reason, it can suppress that the manufacturing process number of the light-emitting device 10 increases.
  • the lead wiring 134 is formed on the substrate 100.
  • the lead wiring 134 is formed on the substrate 100 using, for example, a coating method, a sputtering method, or a vapor deposition method.
  • a coating method used in the said process For example, the inkjet method, screen printing method, spray coating method, letterpress printing method, gravure printing method, or dispenser coating method is mentioned.
  • the coating liquid used when forming the lead wiring 134 by a coating method includes, for example, a binder resin and an organic solvent.
  • the binder resin for example, a cellulose resin, an epoxy resin, or an acrylic resin can be used.
  • the organic solvent for example, a hydrocarbon solvent or an alcohol solvent can be used.
  • the metal particles contained in the coating liquid are, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, or Pd.
  • the coating liquid contains one or more of these metal particles.
  • the lead wiring 164 is formed on the substrate 100 simultaneously with the step of forming the lead wiring 134.
  • the lead wiring 164 is formed by the same method and material as the lead wiring 134, for example.
  • the transparent conductive film 110 constituting the first electrode 112 and the first wiring 114 is formed on the substrate 100.
  • the transparent conductive film 110 is formed by, for example, applying a transparent conductive material-containing coating solution on the substrate 100 and drying it.
  • the transparent conductive film 110 is formed to cover a part of the lead wiring 134, for example.
  • the transparent conductive material-containing coating solution is not particularly limited, but is applied onto the substrate 100 using, for example, an ink jet method, a screen printing method, a relief printing method, a gravure printing method, a die coat, a spin coat, or a spray.
  • the transparent conductive material-containing coating solution used in the step of forming the first conductive film 110 includes, for example, an organic solvent and water in addition to the above-described transparent conductive material.
  • the organic solvent for example, an alcohol solvent can be used.
  • the process of forming the transparent conductive film 110 is performed as follows, for example. First, the transparent conductive material-containing coating solution is coated on the substrate 100 so as to cover a part of the lead wiring 134 (first coating process). Thereby, the transparent conductive film 110 constituting the first electrode 112 and the first wiring 114 is formed on the substrate 100. Next, a transparent conductive material coating solution is further applied onto the portion of the transparent conductive film 110 that constitutes the first electrode 112 (second coating step). As a result, a film thickness changing region 222 in which the film thickness changes is formed in the first electrode 112.
  • coating process is not specifically limited, It is possible to select suitably according to the film thickness of the 1st electrode 112 calculated
  • the transparent conductive film 110 formed on the substrate 100 is dried.
  • the transparent conductive film 110 is formed by a coating method, by adjusting the number of times of coating the coating liquid, the content of the conductive polymer in the coating liquid, the type of the organic solvent, and the like.
  • the present invention is not limited to this, and the first electrode 112 and the first wiring 114 are different processes. May be formed. In this case, in the step of forming the first electrode 112, by adjusting the number of times of applying the coating liquid, the content of the conductive polymer in the coating liquid, the type of the organic solvent, etc. The first electrode 112 whose film thickness continuously changes can be realized.
  • the transparent conductive film 110 is dried.
  • the transparent conductive material contains a conductive polymer
  • the conductive film 110 is dried to increase the cohesive force of the conductive polymer, and the first electrode 112 and the first wiring 114 can be made strong films. it can.
  • the transparent conductive film 110 is cured by performing a heat treatment on the transparent conductive film 110.
  • the transparent conductive material constituting the transparent conductive film 110 includes a photosensitive material
  • the transparent conductive film 110 may be cured by UV irradiation. The structure obtained at this stage is shown in FIG.
  • the insulating layer 120 is formed on the substrate 100, the first electrode 112, the first wiring 114, and the lead wiring 164.
  • the insulating layer 120 is patterned into a predetermined shape using dry etching or wet etching. As a result, a plurality of first openings 122 and a plurality of second openings 124 are formed in the insulating layer 120. At this time, the plurality of first openings 122 are formed, for example, such that a part of the first electrode 112 is exposed from each first opening 122.
  • a partition wall 170 is formed on the insulating layer 120.
  • the partition wall 170 is obtained by patterning an insulating film provided over the insulating layer 120 into a predetermined shape using dry etching or wet etching.
  • the cross-sectional shape of the partition wall 170 can be changed to an inverted trapezoid by adjusting the conditions during exposure and development. The structure obtained at this stage is shown in FIG.
  • a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially formed in the first opening 122. These are formed using, for example, a coating method or a vapor deposition method. Thereby, the organic layer 140 is formed.
  • the conductive film 150 constituting the second electrode 152 and the second wiring 154 is formed on the organic layer 140.
  • the conductive film 150 is formed so that, for example, a part of the conductive film 150 is located in the second opening 124.
  • the conductive film 150 is formed using, for example, a vapor deposition method or a sputtering method.
  • the organic EL element 20 composed of the first electrode 112, the second electrode 152, and the organic layer 140 sandwiched therebetween is formed on the substrate 100.
  • the light emitting device 10 is formed in this way.
  • the first electrode 112 has the film thickness changing region 222 in which the film thickness changes.
  • the film thickness of the first electrode 112 changes continuously in the film thickness changing region 222.
  • a portion in which the film thickness changes discontinuously occurs in the film thickness changing region 222. Can be suppressed. That is, it is possible to suppress a sudden change in the electric resistance value based on the discontinuous change in the film thickness in the first electrode 112. For this reason, generation
  • FIG. 7 is a plan view showing the light emitting device 12 according to the second embodiment, and corresponds to FIG. 1 according to the first embodiment.
  • 8 is a cross-sectional view showing a CC cross section of FIG. 7
  • FIG. 9 is a cross-sectional view showing a DD cross section of FIG.
  • FIG. 10 is a diagram showing a part of the light emitting device 12 shown in FIG. FIG. 10 particularly shows the positional relationship between the transparent conductive film 110 and the extraction wiring 134.
  • FIG. 11 is a diagram illustrating an example of the configuration of the first electrode 112 in the present embodiment.
  • the light emitting device 12 according to the present embodiment has the same configuration as that of the light emitting device 10 according to the first embodiment except for the configuration of the first electrode 112 and the lead-out wiring 134.
  • the configuration of the light emitting device 12 will be described.
  • the first electrodes 112 are arranged on the substrate 100 in the pixel region 300 in a matrix, for example.
  • the plurality of first electrodes 112 arranged in a matrix are separated from each other.
  • the pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 7, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • the first electrode 112 is made of, for example, a conductive material.
  • the first electrode 112 is particularly preferably formed of a transparent conductive film 110 formed of, for example, a transparent conductive material. In this case, the first electrode 112 may have transparency.
  • the first electrode 112 has a film thickness changing region 222 in which the film thickness changes. Further, the film thickness of the first electrode 112 continuously changes in the film thickness changing region 222. Thereby, it is possible to suppress a sudden change in the electrical resistance value based on the discontinuous change in the film thickness in the first electrode 112. Therefore, the occurrence of sparks in the first electrode 112 can be suppressed, and the operation reliability of the light emitting device 12 can be improved. Moreover, in this embodiment, the film thickness of the 1st electrode 112 can be varied mutually between each location in the organic EL element 20. FIG. Thereby, it becomes possible to control the brightness
  • the first wiring 114 constituting the light emitting device 10 according to the first embodiment is not provided.
  • the lead-out wiring 134 extends in the Y direction in the figure.
  • a plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other.
  • Each lead-out wiring 134 is connected to a plurality of first electrodes 112 arranged in the Y direction. For this reason, the plurality of first electrodes 112 are each connected to the outside via the lead wiring 134.
  • a light emission / non-light emission signal is supplied to the organic EL element 20 through the lead wiring 134.
  • the first electrode 112 is connected to the lead wiring 134 at one end. As shown in FIG. 9, a portion of the lead-out wiring 134 that is joined to the first electrode 112 is located, for example, in a region where the organic EL element 20 is formed in a plan view.
  • the first electrode 112 extends in the X direction in FIG.
  • the shape of the first electrode 112 is not particularly limited and can be selected as appropriate in accordance with the design of the organic EL element 20. For example, it is rectangular.
  • the first electrode 112 is formed, for example, such that the film thickness of the first electrode 112 in the film thickness changing region 222 increases as the distance from the one end connected to the lead wiring 134 increases. That is, the first electrode 112 can be formed such that the electrical resistance value of the first electrode 112 decreases as the distance from the lead wire 134 increases. Thereby, it is possible to improve luminance unevenness due to a voltage drop in the first electrode 112.
  • the structure of the film thickness change region 222 in the first electrode 112 is not limited to the one that increases as the distance from the one end connected to the 134 of the first electrode 112 increases. The configuration of the film thickness change region 222 can be appropriately selected according to the purpose of increasing the luminance in the light emitting device.
  • the film thickness changing region 222 is formed at a position separated from the lead wiring 134, for example.
  • FIG. 11 the case where the film thickness change region 222 is formed at a position separated from the lead-out wiring 134 is illustrated.
  • one surface of the first electrode 112 facing the second electrode 152 between the lead wiring 134 and the film thickness changing region 222 has a flat surface parallel to the plane of the substrate 100, for example.
  • the film thickness change region 222 may be formed so as to be adjacent to the lead-out wiring 134.
  • the insulating layer 120 is formed so as to cover the lead wiring 134, for example.
  • the insulating layer 120 is provided so as to cover a part of each of the lead wiring 134 and the lead wiring 164.
  • a plurality of first openings 122 are formed in the insulating layer 120 so as to form a matrix, for example.
  • the first electrode 112 is formed in the first opening 122.
  • a plurality of first electrodes 112 arranged in a matrix on the substrate 100 are formed. Further, as shown in FIGS. 8 and 9, the plurality of first electrodes 112 are separated from each other by the insulating layer 120.
  • the first opening 122 is formed, for example, so as to overlap a part of the lead wiring 134 in a plan view. In this case, a part of the lead wiring 134 that overlaps the first opening 122 in plan view is connected to the first electrode 112 formed in the first opening 122.
  • the insulating layer 120 is made of the same material as that of the first embodiment, for example.
  • the partition 170, the organic layer 140, the second electrode 152, the second wiring 154, and the extraction wiring 164 in the present embodiment have the same configuration as that of the first embodiment, for example.
  • the first electrode 112 has the film thickness changing region 222 in which the film thickness changes.
  • the film thickness of the first electrode 112 changes continuously in the film thickness changing region 222. For this reason, like the first embodiment, the occurrence of sparks in the first electrode can be suppressed, and the operation reliability of the light emitting device can be improved.
  • Example 1 First, a metal film made of silver was formed on a glass substrate by a sputtering method. Next, this metal film was patterned into a line shape by dry etching to form a lead wiring. Next, the transparent conductive material-containing coating solution was applied by an inkjet method so as to cover a part of the lead wiring, thereby forming a transparent conductive film (first coating step). Thereby, the 1st electrode and 1st wiring which consist of transparent conductive films were integrally formed. Next, the transparent conductive material-containing coating solution was applied twice on a part of the first electrode (second coating step). As a result, a film thickness change region in which the film thickness gradually increases as the distance from the first wiring increases in the first electrode.
  • the transparent conductive material-containing coating solution poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT-PSS, CLEVIOS PH510 (manufactured by Heraeus)) in a solvent. A solution obtained by dispersing the solution was used. Next, the transparent conductive film was dried. Thus, a structure including the first electrode, the first wiring, and the lead wiring was produced. The structure thus obtained was applied to the light emitting device according to the first embodiment.
  • PEDOT-PSS polystyrene sulfonate
  • CLEVIOS PH510 manufactured by Heraeus
  • Example 1 the 1st electrode had the film thickness change area

Abstract

 This light-emitting device (10) is equipped with a first electrode, a second electrode (152) and an organic layer (140). The first electrode is made from an electro-conductive material. At least part of the second electrode (152) faces the first electrode. The organic layer (140) is positioned in between the first electrode and the second electrode (152). The first electrode has a variable film thickness region in which the film thickness varies. Moreover, the film thickness of the first electrode varies continuously in the variable film thickness region.

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 照明装置やディスプレイの光源の一つに、有機EL(Organic Electroluminescence)素子がある。有機EL素子は、たとえば透明電極と、これに対向して配置される他の電極と、これらの電極に狭持される有機層と、により構成される。有機EL素子に関する技術としては、たとえば特許文献1および特許文献2に記載のものが挙げられる。 One of the light sources of lighting devices and displays is an organic EL (Organic Electroluminescence) element. An organic EL element is comprised by the transparent electrode, the other electrode arrange | positioned facing this, for example, and the organic layer pinched | interposed into these electrodes. Examples of the technology related to the organic EL element include those described in Patent Document 1 and Patent Document 2.
 特許文献1に記載の技術は、透明電極のうちの配線電極の抵抗値を調整する抵抗調整部を、この配線電極に形成するというものである。特許文献2には、ライン状に形成された金属ラインと、当該金属ラインの上面および側面を覆うポリマーラインと、からなる電極を有する発光素子が記載されている。 The technique described in Patent Document 1 is to form a resistance adjusting portion for adjusting the resistance value of the wiring electrode among the transparent electrodes in the wiring electrode. Patent Document 2 describes a light-emitting element having an electrode composed of a metal line formed in a line shape and a polymer line covering the upper surface and side surfaces of the metal line.
特開平11-312582号公報Japanese Patent Laid-Open No. 11-312582 特開2006-93123号公報JP 2006-93123 A
 発光装置においては、明るさを制御するために、電極の特定箇所における電気抵抗値を調整する場合がある。本発明者は、たとえば電極の膜厚を変えることにより、電極中の特定箇所における電気抵抗値を調整できることを見出した。しかしながら、この場合、電極内における膜厚の変化に基づく電気抵抗値の変化に起因して、電極内においてスパークが発生することが懸念される。この場合、発光装置の動作信頼性は低下してしまう。 In the light emitting device, in order to control the brightness, the electrical resistance value at a specific portion of the electrode may be adjusted. The inventor has found that the electrical resistance value at a specific location in the electrode can be adjusted, for example, by changing the film thickness of the electrode. However, in this case, there is a concern that a spark is generated in the electrode due to a change in electrical resistance value based on a change in film thickness in the electrode. In this case, the operation reliability of the light emitting device is lowered.
 本発明が解決しようとする課題としては、発光装置の動作信頼性を向上することが一例として挙げられる。 An example of a problem to be solved by the present invention is to improve the operational reliability of a light emitting device.
 請求項1に記載の発明は、
 導電材料により構成される第1電極と、
 少なくとも一部が前記第1電極と対向する第2電極と、
 前記第1電極と前記第2電極との間に配置された有機層と、
 を備え、
 前記第1電極は、膜厚が変化する膜厚変化領域を有し、
 前記第1電極の膜厚は、前記膜厚変化領域において連続的に変化する発光装置である。
The invention described in claim 1
A first electrode made of a conductive material;
A second electrode at least partially facing the first electrode;
An organic layer disposed between the first electrode and the second electrode;
With
The first electrode has a film thickness changing region in which the film thickness changes,
The film thickness of the first electrode is a light emitting device that continuously changes in the film thickness change region.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on 1st Embodiment. 図1のA-A断面を示す断面図である。FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1. 図1のB-B断面を示す断面図である。FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1. 図1に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 図1に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 第1の実施形態における第1電極の構成の一例を示す図である。It is a figure which shows an example of a structure of the 1st electrode in 1st Embodiment. 第2の実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on 2nd Embodiment. 図7のC-C断面を示す断面図である。FIG. 8 is a cross-sectional view showing a CC cross section of FIG. 7. 図7のD-D断面を示す断面図である。FIG. 8 is a cross-sectional view showing a DD cross section of FIG. 7. 図7に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 第2の実施形態における第1電極の構成の一例を示す図である。It is a figure which shows an example of a structure of the 1st electrode in 2nd Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る発光装置10を示す平面図である。図2は図1のA-A断面を示す断面図であり、図3は図1のB-B断面を示す断面図である。
 また、図4および5は、図1に示す発光装置10の一部を示す図である。図4では、とくに透明導電膜110と、引出配線134との位置関係が示されている。また、図5では、とくに絶縁層120の構成が示されている。図6は、本実施形態における第1電極112の構成の一例を示す図である。
(First embodiment)
FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment. 2 is a cross-sectional view showing the AA cross section of FIG. 1, and FIG. 3 is a cross-sectional view showing the BB cross section of FIG.
4 and 5 are views showing a part of the light emitting device 10 shown in FIG. FIG. 4 particularly shows the positional relationship between the transparent conductive film 110 and the lead-out wiring 134. FIG. 5 particularly shows the configuration of the insulating layer 120. FIG. 6 is a diagram illustrating an example of the configuration of the first electrode 112 in the present embodiment.
 発光装置10は、第1電極112と、第2電極152と、有機層140と、を備えている。第1電極112は、導電材料により構成されている。第2電極152は、少なくとも一部が第1電極112と対向している。有機層140は、第1電極112と第2電極152との間に配置されている。第1電極112は、膜厚が変化する膜厚変化領域222を有している。第1電極112の膜厚は、膜厚変化領域222において連続的に変化する。 The light emitting device 10 includes a first electrode 112, a second electrode 152, and an organic layer 140. The first electrode 112 is made of a conductive material. The second electrode 152 is at least partially opposed to the first electrode 112. The organic layer 140 is disposed between the first electrode 112 and the second electrode 152. The first electrode 112 has a film thickness changing region 222 in which the film thickness changes. The film thickness of the first electrode 112 changes continuously in the film thickness change region 222.
 以下、本実施形態に係る発光装置10の構成の一例、および発光装置10の製造方法の一例につき、詳細に説明する。 Hereinafter, an example of the configuration of the light emitting device 10 according to the present embodiment and an example of a method for manufacturing the light emitting device 10 will be described in detail.
 まず、発光装置10の構成の一例について説明する。
 本実施形態においては、発光装置10がディスプレイである場合が例示される。
 なお、発光装置10は、照明装置であってもよい。発光装置10が照明装置である場合、発光装置10は、たとえば互いに発光色が異なるライン状の有機層140を複数繰り返し並べた構成を有する。これにより、演色性に優れた照明装置が実現される。また、照明装置である発光装置10は、面状の有機層140を有していてもよい。
First, an example of the configuration of the light emitting device 10 will be described.
In this embodiment, the case where the light-emitting device 10 is a display is illustrated.
The light emitting device 10 may be a lighting device. When the light-emitting device 10 is an illumination device, the light-emitting device 10 has a configuration in which, for example, a plurality of linear organic layers 140 having different emission colors are arranged repeatedly. Thereby, the illuminating device excellent in color rendering properties is realized. In addition, the light-emitting device 10 that is a lighting device may have a planar organic layer 140.
 基板100は、たとえば透明基板である。本実施形態において、基板100は、ガラス基板とすることができる。これにより、耐熱性等に優れた発光装置10を安価に製造することが可能となる。 The substrate 100 is, for example, a transparent substrate. In the present embodiment, the substrate 100 can be a glass substrate. Thereby, the light emitting device 10 having excellent heat resistance and the like can be manufactured at low cost.
 基板100は、樹脂材料により構成されるフィルム状の基板であってもよい。この場合、特にフレキシブル性の高いディスプレイを実現することが可能となる。フィルム状の基板を構成する樹脂材料としては、たとえばポリエチレンテレフタレート、ポリエチレンナフタレートおよびポリカーボネートが挙げられる。 The substrate 100 may be a film-like substrate made of a resin material. In this case, a display with particularly high flexibility can be realized. Examples of the resin material constituting the film substrate include polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
 ディスプレイである発光装置10は、たとえばアレイ状に配列された複数の有機EL素子20を基板100上に有する。有機EL素子20は、基板100上に設けられた第1電極112と、第1電極112上に設けられた有機層140と、有機層140上に設けられた第2電極152と、を有している。このとき、有機層140は、第1電極112と第2電極152との間に配置されることとなる。 The light emitting device 10 that is a display has a plurality of organic EL elements 20 arranged in an array on the substrate 100, for example. The organic EL element 20 includes a first electrode 112 provided on the substrate 100, an organic layer 140 provided on the first electrode 112, and a second electrode 152 provided on the organic layer 140. ing. At this time, the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
 本実施形態では、たとえば図中Y方向に延在する複数の第1電極112と、図中X方向に延在する複数の第2電極152と、が基板上に設けられる。このとき、各第2電極152の一部が第1電極112と対向するように、複数の第2電極152が設けられる。そして、第1電極112と第2電極152が平面視で互いに重なる各部分において、有機EL素子20が形成される。これにより、基板100上には、アレイ状に配列された複数の有機EL素子20が形成されることとなる。 In the present embodiment, for example, a plurality of first electrodes 112 extending in the Y direction in the drawing and a plurality of second electrodes 152 extending in the X direction in the drawing are provided on the substrate. At this time, the plurality of second electrodes 152 are provided so that a part of each second electrode 152 faces the first electrode 112. The organic EL element 20 is formed in each portion where the first electrode 112 and the second electrode 152 overlap each other in plan view. As a result, a plurality of organic EL elements 20 arranged in an array are formed on the substrate 100.
 第1電極112は、たとえば有機EL素子の陽極となる。この場合、第1電極112は、たとえば後述する有機層140のうちの発光層144から発光される光の波長に対して透明または半透明である透明電極となる。また、第1電極112は、たとえば基板100上であって、かつ画素領域300内において、図中Y方向に直線状に延在するように設けられる。また、基板100上には、たとえば互いに離間する複数の第1電極112が、第1電極112の延在方向と垂直な方向(図中X方向)に配列される。このとき、複数の第1電極112は、たとえば互いに離間する。なお、画素領域300は、複数の有機EL素子20を含む領域である。図4に示す例では、一点鎖線により囲まれた領域が画素領域300に該当する。 The first electrode 112 serves as an anode of an organic EL element, for example. In this case, the first electrode 112 is, for example, a transparent electrode that is transparent or translucent to the wavelength of light emitted from the light emitting layer 144 of the organic layer 140 described later. Further, the first electrode 112 is provided, for example, on the substrate 100 and in the pixel region 300 so as to extend linearly in the Y direction in the drawing. On the substrate 100, for example, a plurality of first electrodes 112 that are separated from each other are arranged in a direction (X direction in the drawing) perpendicular to the extending direction of the first electrodes 112. At this time, the plurality of first electrodes 112 are separated from each other, for example. The pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 4, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
 本実施形態において、第1電極112は、実質的に導電材料を含んで構成される。第1電極112を構成する導電材料としては、たとえば透明導電材料、または銀等のペースト状の導電材料が挙げられる。この中でも、透明導電材料がとくに好ましい。第1電極112が透明導電材料により構成される場合、透明性を有する透明電極とすることができる。
 透明導電材料は、たとえばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)等の無機材料、または導電性高分子を含んでなる。
 透明導電材料が導電性高分子を含む場合、第1電極112は塗布法を用いて形成することができる。この場合、第1電極112を形成する工程において、基板100等の他の構成へ熱負荷がかかってしまうことを抑制することが可能となる。
 また、透明導電材料として無機材料を含む場合には、第1電極112は、この無機材料を有機溶剤中に分散させた溶液を塗布することにより形成される塗布型導電膜であることが好ましい。このような場合においても、第1電極112を、塗布法を用いて形成することができる。
In the present embodiment, the first electrode 112 is configured to substantially include a conductive material. Examples of the conductive material constituting the first electrode 112 include a transparent conductive material or a paste-like conductive material such as silver. Among these, a transparent conductive material is particularly preferable. When the 1st electrode 112 is comprised with a transparent conductive material, it can be set as the transparent electrode which has transparency.
The transparent conductive material includes, for example, an inorganic material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), or a conductive polymer.
When the transparent conductive material includes a conductive polymer, the first electrode 112 can be formed by a coating method. In this case, in the step of forming the first electrode 112, it is possible to suppress a thermal load from being applied to other components such as the substrate 100.
When an inorganic material is included as the transparent conductive material, the first electrode 112 is preferably a coating-type conductive film formed by applying a solution in which this inorganic material is dispersed in an organic solvent. Even in such a case, the first electrode 112 can be formed by a coating method.
 本実施形態において、第1電極112を構成する透明導電材料に含まれる導電性高分子は、たとえばπ共役系導電性高分子とポリアニオンを含んでなる導電性高分子である。この場合、とくに導電性や耐熱性、フレキシブル性に優れた第1電極112を形成することが可能となる。
 π共役系導電性高分子としては、特に限定されないが、たとえばポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、またはポリチアジル類の鎖状導電性ポリマーを用いることができる。導電性、透明性、安定性等の観点からは、ポリチオフェン類またはポリアニリン類であることが好ましく、ポリエチレンジオキシチオフェンであることがとくに好ましい。
 ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、またはポリアクリル酸を用いることができる。本実施形態において用いられるポリアニオンは、これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
In the present embodiment, the conductive polymer included in the transparent conductive material constituting the first electrode 112 is a conductive polymer including, for example, a π-conjugated conductive polymer and a polyanion. In this case, it is possible to form the first electrode 112 that is particularly excellent in conductivity, heat resistance, and flexibility.
The π-conjugated conductive polymer is not particularly limited. A chain conductive polymer of phenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl compounds can be used. From the viewpoint of conductivity, transparency, stability, etc., polythiophenes or polyanilines are preferable, and polyethylene dioxythiophene is particularly preferable.
Polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, or polyacrylic acid can be used. The polyanion used in the present embodiment may be a homopolymer of these or two or more kinds of copolymers.
 第1電極112を構成する透明導電材料として導電性高分子を含む場合、透明導電材料は、架橋剤、レベリング剤、または消泡剤等をさらに含んでいてもよい。 When the conductive polymer is included as the transparent conductive material constituting the first electrode 112, the transparent conductive material may further include a crosslinking agent, a leveling agent, an antifoaming agent, or the like.
 第1電極112は、膜厚が変化する膜厚変化領域222を有している。このとき、膜厚変化領域222における第1電極112の膜厚は、たとえば膜厚変化領域222の一端側から他端側に向けて漸増または漸減することとなる。
 また、第1電極112の膜厚は、膜厚変化領域222において連続的に変化する。すなわち、膜厚変化領域222には、第1電極112の膜厚の大きさが不連続に変化する部分が形成されないこととなる。本明細書において、膜厚が連続的に変化するとは、たとえば膜厚変化領域222中に膜厚が変化しない部分が含まれる場合を含む。
The first electrode 112 has a film thickness changing region 222 in which the film thickness changes. At this time, the film thickness of the first electrode 112 in the film thickness changing region 222 is gradually increased or gradually decreased from one end side to the other end side of the film thickness changing region 222, for example.
Further, the film thickness of the first electrode 112 continuously changes in the film thickness changing region 222. That is, in the film thickness change region 222, a portion where the film thickness of the first electrode 112 changes discontinuously is not formed. In this specification, that the film thickness changes continuously includes, for example, a case where the film thickness changing region 222 includes a portion where the film thickness does not change.
 本実施形態によれば、第1電極112は、膜厚が変化する膜厚変化領域222を有している。そして、第1電極112の膜厚は、膜厚変化領域222において連続的に変化する。これにより、第1電極112の膜厚が変化する領域である膜厚変化領域222が設けられた場合であっても、膜厚変化領域222において膜厚が不連続に変化する部分が生じることを抑制できる。すなわち、第1電極112内における膜厚の不連続な変化に基づいて電気抵抗値の急激な変化が生じることを抑制することができる。このため、第1電極112におけるスパークの発生を抑え、発光装置10の動作信頼性を向上させることができる。 According to the present embodiment, the first electrode 112 has the film thickness changing region 222 in which the film thickness changes. The film thickness of the first electrode 112 changes continuously in the film thickness changing region 222. As a result, even when the film thickness changing region 222, which is the region in which the film thickness of the first electrode 112 changes, is provided, a portion in which the film thickness changes discontinuously occurs in the film thickness changing region 222. Can be suppressed. That is, it is possible to suppress a sudden change in the electric resistance value based on the discontinuous change in the film thickness in the first electrode 112. For this reason, generation | occurrence | production of the spark in the 1st electrode 112 can be suppressed, and the operation | movement reliability of the light-emitting device 10 can be improved.
 また、本発明者は、第1電極112の膜厚を調整することにより、種々の効果が得られることを見出した。このような効果の一例として、たとえば発光装置の明るさの制御がある。本実施形態によれば、第1電極112は、膜厚が変化する膜厚変化領域222を有する。すなわち、第1電極112における各部分の膜厚を互いに異ならせることができる。これにより、第1電極112内における電気抵抗値を各部分について調整することができる。したがって、第1電極112のうちの特定箇所における電気抵抗値を調整することにより、発光装置の明るさを制御することが可能となる。 Further, the present inventor has found that various effects can be obtained by adjusting the film thickness of the first electrode 112. An example of such an effect is control of the brightness of the light emitting device, for example. According to the present embodiment, the first electrode 112 has the film thickness changing region 222 in which the film thickness changes. That is, the thickness of each part in the first electrode 112 can be made different from each other. Thereby, the electrical resistance value in the 1st electrode 112 can be adjusted about each part. Therefore, it is possible to control the brightness of the light emitting device by adjusting the electrical resistance value at a specific location in the first electrode 112.
 発光装置においては、その目的により輝度を増大させる部分が選択される。たとえば、発光装置内における輝度ムラを改善するために、特定の箇所における輝度を増大させることが望ましい場合がある。また、互いに異なる複数の色を発光する発光装置においては、たとえば特定の色を発する画素において輝度を増大させることが望ましい場合もある。本実施形態においては、これらの目的に応じて、第1電極112内に膜厚が変化する膜厚変化領域222を形成することが可能である。 In the light emitting device, the part that increases the luminance is selected according to the purpose. For example, it may be desirable to increase the luminance at a specific location in order to improve luminance unevenness in the light emitting device. In a light emitting device that emits a plurality of different colors, for example, it may be desirable to increase the luminance of pixels that emit a specific color. In the present embodiment, it is possible to form the film thickness changing region 222 in which the film thickness changes in the first electrode 112 in accordance with these purposes.
 また、第1電極112上には、たとえば有機層140および第2電極152が設けられる。このような場合、有機層140および第2電極152には、第1電極112において生じる膜厚の変化をうけて、段差が生じるおそれがある。
 本実施形態によれば、上述のように膜厚変化領域222における膜厚の変化をなだらかにすることができる。このため、有機層140および第2電極152において生じる段差を低減することができる。これにより、発光装置において、電極の断線や、電極間のリーク等が生じてしまうことを抑制することが可能となる。
Further, on the first electrode 112, for example, the organic layer 140 and the second electrode 152 are provided. In such a case, the organic layer 140 and the second electrode 152 may be stepped due to the change in film thickness that occurs in the first electrode 112.
According to this embodiment, the change in film thickness in the film thickness change region 222 can be made smooth as described above. For this reason, the level | step difference which arises in the organic layer 140 and the 2nd electrode 152 can be reduced. Thereby, in the light emitting device, it is possible to suppress the occurrence of disconnection of electrodes, leakage between electrodes, and the like.
 本実施形態において、第1電極112は、たとえば膜厚変化領域222が第1電極112の一部のみを構成するように形成される。この場合、第1電極112のうち膜厚変化領域222以外の部分における第2電極152に対向する面は、たとえば基板100に平行な平坦面を有する。図6では、第1電極112のうち一部において膜厚変化領域222が形成され、他の部分において上面が平坦面を有する領域が形成される場合が例示される。
 また、第1電極112は、第1電極112の全域が膜厚変化領域222により構成されるように形成されていてもよい。この場合、第1電極112のうち第2電極152に対向する一面は、基板100に平行な平坦面を有しないこととなる。
In the present embodiment, the first electrode 112 is formed such that, for example, the film thickness changing region 222 constitutes only a part of the first electrode 112. In this case, the surface facing the second electrode 152 in the portion other than the film thickness changing region 222 in the first electrode 112 has a flat surface parallel to the substrate 100, for example. FIG. 6 illustrates a case where the film thickness changing region 222 is formed in a part of the first electrode 112 and a region having a flat upper surface is formed in the other part.
The first electrode 112 may be formed so that the entire area of the first electrode 112 is constituted by the film thickness changing region 222. In this case, one surface of the first electrode 112 facing the second electrode 152 does not have a flat surface parallel to the substrate 100.
 第1電極112は、たとえば複数の膜厚変化領域222を有していてもよい。この場合、第1電極112における各膜厚変化領域222は、それぞれ一の方向において、第1電極112の膜厚が漸増または漸減するように設けられる。このとき、全ての膜厚変化領域222において第1電極112の膜厚が連続的に変化するように、第1電極112が形成されることが好ましい。本実施形態においては、たとえば第1電極112のうち第2電極152に対向する一面が凹凸曲面を有するように、第1電極112に複数の膜厚変化領域222を形成することができる。 The first electrode 112 may have a plurality of film thickness changing regions 222, for example. In this case, each film thickness change region 222 in the first electrode 112 is provided such that the film thickness of the first electrode 112 gradually increases or decreases in one direction. At this time, it is preferable that the first electrode 112 is formed so that the film thickness of the first electrode 112 continuously changes in all the film thickness change regions 222. In the present embodiment, for example, a plurality of film thickness change regions 222 can be formed in the first electrode 112 such that one surface of the first electrode 112 that faces the second electrode 152 has an uneven curved surface.
 第1電極112の第2電極152に対向する一面のうち、膜厚変化領域222に位置する部分は、たとえば基板100平面に対して傾斜する傾斜面である。この傾斜面は、たとえば不連続な段差を有していない滑らかな面とすることができる。図1に示す例においては、第1電極112のうち第2電極152に対向する面は第1電極112の上面である。
 本実施形態において、第1電極112の第2電極152に対向する一面のうち、膜厚変化領域222に位置する部分は、基板100平面に対する垂線208からの角度が15°以上である。これにより、第1電極112のうち膜厚変化領域222における電気抵抗値の変化を、さらに緩和することができる。図6に示す例では、第1電極112の上面のうち膜厚変化領域222に位置する部分において、基板100平面に対する垂線208からの角度θが15°以上となる。
Of the one surface of the first electrode 112 facing the second electrode 152, the portion located in the film thickness changing region 222 is an inclined surface that is inclined with respect to the plane of the substrate 100, for example. For example, the inclined surface can be a smooth surface having no discontinuous steps. In the example shown in FIG. 1, the surface of the first electrode 112 that faces the second electrode 152 is the upper surface of the first electrode 112.
In the present embodiment, of the surface of the first electrode 112 facing the second electrode 152, the portion located in the film thickness change region 222 has an angle from the normal 208 to the plane of the substrate 100 of 15 ° or more. Thereby, the change of the electrical resistance value in the film thickness change region 222 in the first electrode 112 can be further alleviated. In the example shown in FIG. 6, the angle θ from the normal 208 to the plane of the substrate 100 is 15 ° or more in the portion located in the film thickness change region 222 on the upper surface of the first electrode 112.
 本実施形態において、膜厚変化領域222における最大の膜厚を有する第1部分202の膜厚をD1とし、最小の膜厚を有する第2部分204の膜厚をD2とする。そして、第1部分202と第2部分204により挟まれる領域の長さをLとする。この場合において、(D1-D2)/Lが3.73以下であることが好ましい。これにより、膜厚変化領域222における第1電極112の膜厚の変化をなだらかなものにし、膜厚変化領域222における電気抵抗値の変化を、さらに緩和することが可能となる。
 なお、複数の膜厚変化領域222が設けられている場合には、いずれの膜厚変化領域222を選択しても(D1-D2)/Lが3.73以下を満たすように、第1電極112が形成されていることが好ましい。
In the present embodiment, the film thickness of the first portion 202 having the maximum film thickness in the film thickness change region 222 is D1, and the film thickness of the second portion 204 having the minimum film thickness is D2. The length of the region sandwiched between the first portion 202 and the second portion 204 is L. In this case, (D1-D2) / L is preferably 3.73 or less. As a result, the change in the film thickness of the first electrode 112 in the film thickness change region 222 becomes gentle, and the change in the electrical resistance value in the film thickness change region 222 can be further alleviated.
When a plurality of film thickness change regions 222 are provided, the first electrode is set so that (D1-D2) / L satisfies 3.73 or less regardless of which film thickness change region 222 is selected. 112 is preferably formed.
 基板100上には、たとえば第1配線114が設けられている。本実施形態では、第1配線114が、第1電極112と電気的に接続する場合が例示される。このとき、基板100上には、それぞれ異なる第1電極112へ接続する複数の第1配線114が設けられる。このため、本実施形態における複数の第1電極112は、それぞれ第1配線114を介して引出配線134へ接続されることとなる。図4に示す例においては、第1電極112は、一端において第1配線114と接続されている。 On the substrate 100, for example, the first wiring 114 is provided. In this embodiment, the case where the 1st wiring 114 is electrically connected with the 1st electrode 112 is illustrated. At this time, a plurality of first wirings 114 connected to different first electrodes 112 are provided on the substrate 100. For this reason, the plurality of first electrodes 112 in the present embodiment are connected to the lead-out wiring 134 via the first wiring 114, respectively. In the example shown in FIG. 4, the first electrode 112 is connected to the first wiring 114 at one end.
 本実施形態において、第1配線114は、たとえば透明導電材料により構成される。この場合、第1配線114は透明性を有することができる。なお、第1配線114を構成する透明導電材料としては、たとえば第1電極112を構成する透明導電材料と同様のものを使用することが可能である。 In the present embodiment, the first wiring 114 is made of, for example, a transparent conductive material. In this case, the first wiring 114 can have transparency. In addition, as a transparent conductive material which comprises the 1st wiring 114, it is possible to use the same thing as the transparent conductive material which comprises the 1st electrode 112, for example.
 本実施形態において、第1電極112および第1配線114は、たとえば基板100上に一体として設けられる。この場合、第1配線114および第1電極112は、たとえば透明導電膜110により構成されることとなる。このとき、透明導電膜110のうち、複数の有機EL素子20を含む画素領域300内に位置する部分が、第1電極112となる。また、透明導電膜110のうち、画素領域300外に位置する部分が、第1配線114となる。第1電極112は、第1配線114を介して引出配線134に接続する。
 図4に示す例において、基板100上には、図中Y方向に延在する透明導電膜110が複数設けられている。これら複数の透明導電膜110は、互いに離間するよう図中X方向に配列されている。そして、透明導電膜110のうち、一点鎖線で示される画素領域300よりも引出配線134と接続する端部側に位置する部分が、第1配線114となる。
In the present embodiment, the first electrode 112 and the first wiring 114 are provided integrally on the substrate 100, for example. In this case, the first wiring 114 and the first electrode 112 are constituted by the transparent conductive film 110, for example. At this time, a portion of the transparent conductive film 110 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the first electrode 112. Further, a portion of the transparent conductive film 110 located outside the pixel region 300 becomes the first wiring 114. The first electrode 112 is connected to the lead wiring 134 through the first wiring 114.
In the example shown in FIG. 4, a plurality of transparent conductive films 110 extending in the Y direction in the drawing are provided on the substrate 100. The plurality of transparent conductive films 110 are arranged in the X direction in the figure so as to be separated from each other. In the transparent conductive film 110, a portion located on the end side connected to the extraction wiring 134 with respect to the pixel region 300 indicated by the alternate long and short dash line is the first wiring 114.
 第1電極112においては、第1配線114から離間するにつれて電圧降下が生じる。そして、第1電極112における電圧降下に起因して、輝度の低下が生じることとなる。
 図6に示す例では、第1電極112は、たとえば膜厚変化領域222における第1電極112の膜厚が、第1配線114と接続する上記一端から遠ざかるにつれて大きくなるように形成される。すなわち、第1電極112における電気抵抗値が第1配線114から遠ざかるにつれて小さくなるように、第1電極112を形成することができる。これにより、第1電極112中の電圧降下に起因した輝度ムラを改善することが可能となる。
 なお、第1電極112における膜厚変化領域222の構成は、第1電極112のうち第1配線114と接続する上記一端から遠ざかるにつれて大きくなるものに限られない。膜厚変化領域222の構成は、発光装置における輝度を増大させる目的に応じて適宜選択することが可能である。
In the first electrode 112, a voltage drop occurs as the distance from the first wiring 114 increases. Then, due to the voltage drop at the first electrode 112, the luminance is reduced.
In the example shown in FIG. 6, for example, the first electrode 112 is formed such that the film thickness of the first electrode 112 in the film thickness changing region 222 increases as the distance from the one end connected to the first wiring 114 increases. That is, the first electrode 112 can be formed such that the electrical resistance value of the first electrode 112 decreases as the distance from the first wiring 114 increases. Thereby, it is possible to improve luminance unevenness due to a voltage drop in the first electrode 112.
In addition, the structure of the film thickness change region 222 in the first electrode 112 is not limited to the one that increases as the distance from the one end connected to the first wiring 114 in the first electrode 112 increases. The configuration of the film thickness change region 222 can be appropriately selected according to the purpose of increasing the luminance in the light emitting device.
 本実施形態において、膜厚変化領域222は、たとえば第1配線114から離間する位置に形成される。図6においては、膜厚変化領域222が第1配線114から離間する位置に形成される場合が例示されている。このとき、第1配線114と膜厚変化領域222との間において、第1電極112のうち第2電極152と対向する一面は、たとえば基板100平面と平行な平坦面を有する。なお、膜厚変化領域222は、第1配線114と隣接して位置するように形成されていてもよい。 In the present embodiment, the film thickness changing region 222 is formed at a position separated from the first wiring 114, for example. FIG. 6 illustrates a case where the film thickness changing region 222 is formed at a position separated from the first wiring 114. At this time, one surface of the first electrode 112 facing the second electrode 152 between the first wiring 114 and the film thickness changing region 222 has a flat surface parallel to the plane of the substrate 100, for example. The film thickness change region 222 may be formed so as to be adjacent to the first wiring 114.
 基板100上には、引出配線134が設けられている。
 本実施形態では、引出配線134が第1配線114に接続する場合が例示される。基板100上には、互いに離間するよう図中X方向に配列された複数の引出配線134が設けられている。各引出配線134は、それぞれ第1配線114に接続される。このため、複数の第1配線114は、それぞれ引出配線134を介して外部へ接続されることとなる。有機EL素子20には、第1配線114および引出配線134を介して発光/非発光の信号が供給される。
 本実施形態においては、第1配線114の一端が引出配線134の一部上に重なるように、第1配線114が形成される。また、第1配線114は、たとえば引出配線134のうちの上面と、側面と、のそれぞれの一部を覆うように形成される。
On the substrate 100, a lead wiring 134 is provided.
In the present embodiment, a case where the lead wiring 134 is connected to the first wiring 114 is exemplified. A plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other. Each lead-out wiring 134 is connected to the first wiring 114. For this reason, the plurality of first wires 114 are connected to the outside via the lead wires 134, respectively. A light emission / non-light emission signal is supplied to the organic EL element 20 via the first wiring 114 and the lead-out wiring 134.
In the present embodiment, the first wiring 114 is formed so that one end of the first wiring 114 overlaps a part of the lead wiring 134. The first wiring 114 is formed so as to cover a part of each of the upper surface and the side surface of the lead wiring 134, for example.
 引出配線134は、金属材料を含んで構成される。ここで、引出配線134に含まれる金属材料としては、たとえば第1電極112を構成する導電材料よりも電気抵抗値が低い金属材料が使用される。この場合、引出配線134と第1電極112は、互いに異なる材料により構成されることとなる。引出配線134に含まれる金属材料としては、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、CuおよびPdが挙げられる。引出配線134は、これらの金属材料のうち1種または2種以上を含む。 The lead wiring 134 is configured to include a metal material. Here, as the metal material included in the lead-out wiring 134, for example, a metal material having an electric resistance value lower than that of the conductive material constituting the first electrode 112 is used. In this case, the lead wiring 134 and the first electrode 112 are made of different materials. Examples of the metal material contained in the lead wiring 134 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd. The lead wire 134 includes one or more of these metal materials.
 基板100上には、たとえば第1電極112を覆うように絶縁層120が設けられている。本実施形態においては、たとえば第1電極112と、第1配線114および後述する引出配線164それぞれの一部と、を覆うように絶縁層120が設けられる。
 絶縁層120は、ポリイミド系樹脂等の感光性の樹脂であり、露光および現像されることによって所望のパターンに形成される。絶縁層120は、ポリイミド系樹脂以外の樹脂材料により構成されてもよく、エポキシ系樹脂やアクリル系樹脂であってもよい。
An insulating layer 120 is provided on the substrate 100 so as to cover the first electrode 112, for example. In the present embodiment, for example, the insulating layer 120 is provided so as to cover the first electrode 112 and the first wiring 114 and a part of each of the extraction wiring 164 described later.
The insulating layer 120 is a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by exposure and development. The insulating layer 120 may be made of a resin material other than polyimide resin, and may be epoxy resin or acrylic resin.
 絶縁層120には、たとえば複数の第1開口122が設けられている。図5に示すように、第1開口122は、たとえばマトリクスを構成するように形成される。
 本実施形態においては、複数の第1開口122は、第1電極112上に位置するように形成される。図中Y方向に延在する各第1電極112の上には、たとえば複数の第1開口122が所定の間隔を空けて図中Y方向に配列される。また、これらの複数の第1開口122は、たとえば第1電極112と直交する方向(図中X方向)に延在する第2電極152と重なる位置に設けられる。このため、複数の第1開口122は、マトリクスを構成するように配置されることとなる。
The insulating layer 120 is provided with a plurality of first openings 122, for example. As shown in FIG. 5, the first openings 122 are formed so as to form a matrix, for example.
In the present embodiment, the plurality of first openings 122 are formed so as to be located on the first electrode 112. On each first electrode 112 extending in the Y direction in the figure, for example, a plurality of first openings 122 are arranged in the Y direction in the figure at a predetermined interval. In addition, the plurality of first openings 122 are provided at positions overlapping the second electrode 152 extending in a direction orthogonal to the first electrode 112 (X direction in the figure), for example. For this reason, the plurality of first openings 122 are arranged to form a matrix.
 絶縁層120には、たとえば複数の第2開口124が設けられている。
 図5に示すように、第2開口124は、たとえば引出配線164上に位置するように設けられる。複数の第2開口124は、第1開口122が構成するマトリクスの一辺に沿って配置されている。この一辺に沿う方向(たとえば図中Y方向)でみた場合、第2開口124は、第1開口122と同じ間隔で配置されている。
The insulating layer 120 is provided with a plurality of second openings 124, for example.
As shown in FIG. 5, the second opening 124 is provided, for example, so as to be located on the lead wiring 164. The plurality of second openings 124 are arranged along one side of the matrix formed by the first openings 122. When viewed in a direction along this one side (for example, Y direction in the figure), the second openings 124 are arranged at the same interval as the first openings 122.
 絶縁層120上には、たとえば隔壁170が設けられている。
 図1に示すように、隔壁170は、図中X方向に延在するように設けられる。すなわち、隔壁170は、第2電極152の延在方向に沿って形成されることとなる。また、隔壁170は、図中Y方向に配列されるよう複数設けられる。
 隔壁170は、たとえばポリイミド系樹脂等の感光性の樹脂であり、露光および現像されることによって所望のパターンに形成される。なお、隔壁170は、ポリイミド系樹脂以外の樹脂材料により構成されてもよく、エポキシ系樹脂やアクリル系樹脂であってもよい。
On the insulating layer 120, for example, a partition wall 170 is provided.
As shown in FIG. 1, the partition 170 is provided so as to extend in the X direction in the drawing. That is, the partition 170 is formed along the extending direction of the second electrode 152. A plurality of partition walls 170 are provided so as to be arranged in the Y direction in the drawing.
The partition wall 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed. The partition wall 170 may be made of a resin material other than a polyimide resin, or may be an epoxy resin or an acrylic resin.
 隔壁170は、たとえば断面が台形の上下を逆にした形状(逆台形)を有している。すなわち、隔壁170の上面の幅は、たとえば隔壁170の底面の幅よりも大きい。この場合、複数の第2電極152をスパッタリング法や蒸着法等により一括して形成する場合であっても、隣接する隔壁170間にそれぞれ位置する複数の第2電極152を互いに分断させることが可能となる。したがって、第2電極152を容易に形成することができる。
 なお、隔壁170の平面形状は、図1に示すものに限られない。このため、隔壁170の平面形状を変更することにより、隔壁170により互いに分断される複数の第2電極152の平面パターンを自由に変更することが可能となる。
The partition wall 170 has, for example, a trapezoidal cross-sectional shape (reverse trapezoidal shape). That is, the width of the upper surface of the partition wall 170 is larger than the width of the bottom surface of the partition wall 170, for example. In this case, even when the plurality of second electrodes 152 are collectively formed by a sputtering method, a vapor deposition method, or the like, the plurality of second electrodes 152 positioned between the adjacent partition walls 170 can be separated from each other. It becomes. Therefore, the second electrode 152 can be easily formed.
The planar shape of the partition wall 170 is not limited to that shown in FIG. Therefore, by changing the planar shape of the partition 170, the planar pattern of the plurality of second electrodes 152 that are separated from each other by the partition 170 can be freely changed.
 図2に示すように、第1開口122の中には、たとえば有機層140が形成されている。有機層140は、第1電極112と第2電極152との間に配置される。
 本実施形態において、有機層140は、たとえば正孔注入層142、発光層144および電子注入層146を順に積層した積層体により構成される。このとき、正孔注入層142は第1電極112に接し、電子注入層146は第2電極152に接する。このため、有機層140は、第1電極112と第2電極152との間に狭持されることとなる。
 なお、正孔注入層142と発光層144の間には正孔輸送層が形成されてもよいし、発光層144と電子注入層146の間には電子輸送層が形成されてもよい。また、有機層140は、正孔注入層142を有していなくともよい。
As shown in FIG. 2, for example, an organic layer 140 is formed in the first opening 122. The organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
In the present embodiment, the organic layer 140 is configured by a stacked body in which, for example, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially stacked. At this time, the hole injection layer 142 is in contact with the first electrode 112, and the electron injection layer 146 is in contact with the second electrode 152. For this reason, the organic layer 140 is sandwiched between the first electrode 112 and the second electrode 152.
Note that a hole transport layer may be formed between the hole injection layer 142 and the light emitting layer 144, or an electron transport layer may be formed between the light emitting layer 144 and the electron injection layer 146. Further, the organic layer 140 may not include the hole injection layer 142.
 本実施形態において、絶縁層120上には、たとえば隔壁170が設けられている。この場合、図2に示すように、隣接する隔壁170間に挟まれる複数の領域それぞれに設けられた有機層140は、図中Y方向において互いに分断される。なお、隔壁170上には、たとえば有機層140と同一材料からなる積層膜が形成される。
 一方で、図3に示すように、有機層140を構成する各層は、隔壁170が延在する図中X方向において、隣り合う第1開口122の間において連続するように設けられる。
In the present embodiment, for example, a partition 170 is provided on the insulating layer 120. In this case, as shown in FIG. 2, the organic layers 140 provided in each of a plurality of regions sandwiched between adjacent partition walls 170 are separated from each other in the Y direction in the drawing. A laminated film made of the same material as the organic layer 140 is formed on the partition wall 170, for example.
On the other hand, as shown in FIG. 3, each layer constituting the organic layer 140 is provided so as to be continuous between adjacent first openings 122 in the X direction in the drawing in which the partition 170 extends.
 有機層140上には、第2電極152が設けられている。
 本実施形態において、第2電極152は、たとえば有機EL素子の陰極となる。第2電極152は、たとえば図中X方向に直線状に延在するように設けられる。また、基板100上には、たとえば互いに離間する複数の第2電極152が、第2電極152の延在方向と垂直な方向(図中Y方向)に配列される。このとき、各第2電極152の一部が第1電極112と対向するように、複数の第2電極152が設けられる。
A second electrode 152 is provided on the organic layer 140.
In this embodiment, the 2nd electrode 152 becomes a cathode of an organic EL element, for example. The second electrode 152 is provided, for example, so as to extend linearly in the X direction in the drawing. On the substrate 100, for example, a plurality of second electrodes 152 spaced apart from each other are arranged in a direction (Y direction in the drawing) perpendicular to the extending direction of the second electrodes 152. At this time, the plurality of second electrodes 152 are provided so that a part of each second electrode 152 faces the first electrode 112.
 本実施形態において、発光装置10は、それぞれの一部が図中Y方向に延在する第1電極112と対向するように設けられた、複数の第2電極152を備えている。このとき、各第1電極112は、それぞれ複数の第2電極152と対向することとなる。また、発光装置10は、互いに対向する第1電極112と第2電極152との間にそれぞれ配置された複数の有機層140を備えている。すなわち、図中Y方向に延在する一の第1電極112は、図中Y方向に配列される複数の有機EL素子20を構成することとなる。
 第1電極112は、上述のとおり膜厚変化領域222を有している。このため、一の第1電極112によって複数の有機EL素子20が構成される本実施形態においては、各有機EL素子20間において第1電極112の膜厚を異ならせることができる。これにより、有機EL素子20毎に輝度を制御することが可能となる。また、有機EL素子20内の各箇所間において、第1電極112の膜厚を互いに異ならせることもできる。これにより、有機EL素子20内の各箇所における輝度をそれぞれ制御することも可能となる。
In the present embodiment, the light emitting device 10 includes a plurality of second electrodes 152 that are provided so that each part thereof faces the first electrode 112 extending in the Y direction in the drawing. At this time, each first electrode 112 faces a plurality of second electrodes 152. In addition, the light emitting device 10 includes a plurality of organic layers 140 disposed between the first electrode 112 and the second electrode 152 facing each other. That is, one first electrode 112 extending in the Y direction in the drawing constitutes a plurality of organic EL elements 20 arranged in the Y direction in the drawing.
The first electrode 112 has the film thickness changing region 222 as described above. For this reason, in the present embodiment in which a plurality of organic EL elements 20 are configured by one first electrode 112, the film thickness of the first electrode 112 can be varied among the organic EL elements 20. As a result, the luminance can be controlled for each organic EL element 20. In addition, the film thickness of the first electrode 112 can be made different between the portions in the organic EL element 20. Thereby, it is also possible to control the luminance at each location in the organic EL element 20.
 第2電極152は、たとえば錫、マグネシウム、インジウム、カルシウム、アルミニウム、銅、もしくは銀、またはこれらの合金等の金属材料により構成される。これらの材料は、一種を単独で用いてもよく、二種以上の任意の組み合わせを用いてもよい。なお、第2電極152が陰極である場合、第2電極152は、陽極である第1電極112よりも仕事関数が小さい導電性材料により構成されることが好ましい。 The second electrode 152 is made of a metal material such as tin, magnesium, indium, calcium, aluminum, copper, silver, or an alloy thereof. One of these materials may be used alone, or two or more arbitrary combinations may be used. Note that in the case where the second electrode 152 is a cathode, the second electrode 152 is preferably made of a conductive material having a work function smaller than that of the first electrode 112 that is an anode.
 基板100上には、第2配線154が設けられている。
 第2配線154は、第1電極112または第2電極152のうち第1配線114と接続していない一方に接続している。これにより、第1電極112および第2電極152のうち第2配線154と接続されるいずれか一方は、第2配線154を介して外部へ接続されることとなる。
 本実施形態においては、第2配線154が有機層140上に設けられ、第2電極152に接続される場合が例示される。このとき、有機層140上には、それぞれ異なる第2電極152へ接続する複数の第2配線154が設けられる。このため、本実施形態における複数の第2電極152は、それぞれ第2配線154を介して外部へ接続されることとなる。なお、第2配線154は、たとえば一部が第2開口124内に埋め込まれ、当該一部において後述する引出配線164に接続される。
A second wiring 154 is provided on the substrate 100.
The second wiring 154 is connected to one of the first electrode 112 and the second electrode 152 that is not connected to the first wiring 114. As a result, one of the first electrode 112 and the second electrode 152 that is connected to the second wiring 154 is connected to the outside via the second wiring 154.
In the present embodiment, a case where the second wiring 154 is provided on the organic layer 140 and connected to the second electrode 152 is exemplified. At this time, a plurality of second wirings 154 connected to the different second electrodes 152 are provided on the organic layer 140. For this reason, the plurality of second electrodes 152 in the present embodiment are connected to the outside via the second wirings 154, respectively. For example, part of the second wiring 154 is embedded in the second opening 124, and part of the second wiring 154 is connected to an extraction wiring 164 described later.
 第2配線154は、たとえば金属材料により構成される。第2配線154を構成する金属材料としては、たとえば第2電極152と同様のものを用いることができる。 The second wiring 154 is made of, for example, a metal material. As a metal material constituting the second wiring 154, for example, the same material as the second electrode 152 can be used.
 本実施形態において、第2電極152および第2配線154は、たとえば有機層140上に一体として設けられ、導電膜150を構成する。この場合、導電膜150のうち、複数の有機EL素子20を含む画素領域300内に位置する部分が、第2電極152となる。また、導電膜150のうち、画素領域300外に位置する部分が、第2配線154となる。第2電極152は、たとえば第2配線154を介して引出配線164に接続する。なお、図1に示す例では、一点鎖線で囲まれた領域が画素領域300に該当する。
 図1に示す例において、有機層140上には、図中X方向に延在する導電膜150が複数設けられている。また、これらの複数の導電膜150は、互いに離間するよう図中Y方向に配列されている。そして、導電膜150のうち、画素領域300よりも引出配線164と接続する端部側に位置する部分が、第2配線154となる。
In the present embodiment, the second electrode 152 and the second wiring 154 are provided integrally on the organic layer 140, for example, and constitute the conductive film 150. In this case, a part of the conductive film 150 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the second electrode 152. In addition, a portion of the conductive film 150 located outside the pixel region 300 serves as the second wiring 154. The second electrode 152 is connected to the lead wiring 164 via the second wiring 154, for example. In the example illustrated in FIG. 1, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
In the example shown in FIG. 1, a plurality of conductive films 150 extending in the X direction in the drawing are provided on the organic layer 140. The plurality of conductive films 150 are arranged in the Y direction in the drawing so as to be separated from each other. In the conductive film 150, a portion located on the end side connected to the extraction wiring 164 with respect to the pixel region 300 becomes the second wiring 154.
 複数の導電膜150は、たとえばスパッタリング法または蒸着法等を用いて有機層140上に一括で形成される。このような場合であっても、本実施形態においては絶縁層120上に隔壁170が形成されているため、隣接する隔壁170間に挟まれる複数の領域それぞれに設けられた導電膜150は図中Y方向において互いに分断されることとなる。
 これにより、互いに離間するよう図中Y方向に配列され、かつ図中X方向に延在する複数の導電膜150を形成することが可能となる。このとき、隔壁170上には、導電膜150と同一材料からなる膜が形成されることとなる。
The plurality of conductive films 150 are collectively formed on the organic layer 140 using, for example, a sputtering method or a vapor deposition method. Even in such a case, since the partition 170 is formed on the insulating layer 120 in this embodiment, the conductive film 150 provided in each of a plurality of regions sandwiched between adjacent partitions 170 is illustrated in the drawing. They are separated from each other in the Y direction.
As a result, it is possible to form a plurality of conductive films 150 arranged in the Y direction in the drawing and extending in the X direction in the drawing so as to be separated from each other. At this time, a film made of the same material as the conductive film 150 is formed over the partition wall 170.
 基板100上には、たとえば引出配線164が設けられている。第2配線154は、引出配線164を介して外部に接続する。このため、第2電極152は、第2配線154および引出配線164を介して外部に接続され、信号が供給されることとなる。 On the substrate 100, for example, a lead wiring 164 is provided. The second wiring 154 is connected to the outside through the lead wiring 164. Therefore, the second electrode 152 is connected to the outside via the second wiring 154 and the lead wiring 164, and a signal is supplied.
 引出配線164は、たとえば金属材料により構成される。引出配線164を構成する金属材料としては、たとえば引出配線134と同様のものを用いることができる。この場合、引出配線164は、引出配線134と同時に形成することが可能となる。このため、発光装置10の製造工程数が増大することを抑制することができる。 The lead wiring 164 is made of, for example, a metal material. As the metal material constituting the lead wiring 164, for example, the same material as the lead wiring 134 can be used. In this case, the lead wiring 164 can be formed simultaneously with the lead wiring 134. For this reason, it can suppress that the manufacturing process number of the light-emitting device 10 increases.
 次に、発光装置10の製造方法の一例について説明する。
 まず、基板100上に引出配線134を形成する。引出配線134は、たとえば塗布法、スパッタリング法または蒸着法を用いて基板100上に形成される。当該工程において使用される塗布法としては、特に限定されないが、たとえばインクジェット法、スクリーン印刷法、スプレー塗布法、凸版印刷法、グラビア印刷法、またはディスペンサー塗布法が挙げられる。
 塗布法により引出配線134を形成する際に用いられる塗布液は、たとえばバインダ樹脂および有機溶剤を含む。バインダ樹脂としては、たとえばセルロース系樹脂、エポキシ系樹脂、またはアクリル系樹脂を用いることができる。有機溶剤としては、たとえば炭化水素系溶剤、またはアルコール系溶剤を用いることができる。また、塗布液中に含有される金属粒子は、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、Cu、またはPdである。当該塗布液中には、これらの金属粒子のうちの1種または2種以上が含まれる。
Next, an example of a method for manufacturing the light emitting device 10 will be described.
First, the lead wiring 134 is formed on the substrate 100. The lead wiring 134 is formed on the substrate 100 using, for example, a coating method, a sputtering method, or a vapor deposition method. Although it does not specifically limit as a coating method used in the said process, For example, the inkjet method, screen printing method, spray coating method, letterpress printing method, gravure printing method, or dispenser coating method is mentioned.
The coating liquid used when forming the lead wiring 134 by a coating method includes, for example, a binder resin and an organic solvent. As the binder resin, for example, a cellulose resin, an epoxy resin, or an acrylic resin can be used. As the organic solvent, for example, a hydrocarbon solvent or an alcohol solvent can be used. Further, the metal particles contained in the coating liquid are, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, or Pd. The coating liquid contains one or more of these metal particles.
 また、本実施形態においては、たとえば引出配線134を形成する工程と同時に、基板100上に引出配線164が形成される。この場合、引出配線164は、たとえば引出配線134と同様の方法および材料により形成される。 In this embodiment, for example, the lead wiring 164 is formed on the substrate 100 simultaneously with the step of forming the lead wiring 134. In this case, the lead wiring 164 is formed by the same method and material as the lead wiring 134, for example.
 次に、基板100上に、第1電極112および第1配線114を構成する透明導電膜110を形成する。透明導電膜110は、たとえば透明導電材料含有塗布液を基板100上に塗布し、これを乾燥することにより形成される。透明導電膜110は、たとえば引出配線134の一部を覆うように形成される。
 透明導電材料含有塗布液は、特に限定されないが、たとえばインクジェット法、スクリーン印刷法、凸版印刷法、グラビア印刷法、ダイコート、スピンコート、またはスプレーを用いて基板100上に塗布される。第1導電膜110を形成する当該工程において用いられる透明導電材料含有塗布液は、たとえば上述した透明導電材料に加え、有機溶剤や水等を含む。有機溶剤としては、たとえばアルコール系溶剤を用いることができる。
Next, the transparent conductive film 110 constituting the first electrode 112 and the first wiring 114 is formed on the substrate 100. The transparent conductive film 110 is formed by, for example, applying a transparent conductive material-containing coating solution on the substrate 100 and drying it. The transparent conductive film 110 is formed to cover a part of the lead wiring 134, for example.
The transparent conductive material-containing coating solution is not particularly limited, but is applied onto the substrate 100 using, for example, an ink jet method, a screen printing method, a relief printing method, a gravure printing method, a die coat, a spin coat, or a spray. The transparent conductive material-containing coating solution used in the step of forming the first conductive film 110 includes, for example, an organic solvent and water in addition to the above-described transparent conductive material. As the organic solvent, for example, an alcohol solvent can be used.
 透明導電膜110を形成する当該工程は、たとえば次のように行われる。
 まず、透明導電材料含有塗布液を、引出配線134の一部を覆うように基板100上に塗布する(第1塗布工程)。これにより、基板100上に第1電極112および第1配線114を構成する透明導電膜110が形成される。次いで、透明導電膜110のうち第1電極112を構成する部分上に、透明導電材料塗布液をさらに塗布する(第2塗布工程)。これにより、第1電極112に、膜厚が変化する膜厚変化領域222が形成される。なお、上記第2塗布工程において上記塗布液を塗布する回数は、特に限定されず、求められる第1電極112の膜厚に従い適宜選択することが可能である。その後、基板100上に形成された透明導電膜110を乾燥する。
 本実施形態においては、塗布法により透明導電膜110を形成する場合において、塗布液を塗布する回数や、塗布液中における導電性高分子の含有量、有機溶剤の種類等をそれぞれ調節することにより、膜厚変化領域222において連続的に膜厚が変化する第1電極112を有する透明導電膜110を実現することができる。また、印刷版または塗布装置から供給される塗布材料の量や、塗布回数の調整、構造物を設けて塗布材料の流動を調整すること等により透明導電膜110の形状を調整することも可能である。
The process of forming the transparent conductive film 110 is performed as follows, for example.
First, the transparent conductive material-containing coating solution is coated on the substrate 100 so as to cover a part of the lead wiring 134 (first coating process). Thereby, the transparent conductive film 110 constituting the first electrode 112 and the first wiring 114 is formed on the substrate 100. Next, a transparent conductive material coating solution is further applied onto the portion of the transparent conductive film 110 that constitutes the first electrode 112 (second coating step). As a result, a film thickness changing region 222 in which the film thickness changes is formed in the first electrode 112. In addition, the frequency | count of apply | coating the said coating liquid in the said 2nd application | coating process is not specifically limited, It is possible to select suitably according to the film thickness of the 1st electrode 112 calculated | required. Thereafter, the transparent conductive film 110 formed on the substrate 100 is dried.
In the present embodiment, when the transparent conductive film 110 is formed by a coating method, by adjusting the number of times of coating the coating liquid, the content of the conductive polymer in the coating liquid, the type of the organic solvent, and the like. Thus, it is possible to realize the transparent conductive film 110 having the first electrode 112 whose film thickness continuously changes in the film thickness changing region 222. It is also possible to adjust the shape of the transparent conductive film 110 by adjusting the amount of coating material supplied from the printing plate or coating apparatus, the number of coatings, and the flow of the coating material by providing a structure. is there.
 本実施形態においては、第1電極112と第1配線114が透明導電膜110により一体として形成される例が示されるが、これに限られず、第1電極112と第1配線114がそれぞれ異なる工程により形成されていてもよい。この場合、第1電極112を形成する工程において、塗布液を塗布する回数や塗布液中における導電性高分子の含有量、有機溶剤の種類等をそれぞれ調整することにより、膜厚変化領域222において連続的に膜厚が変化する第1電極112を実現することができる。 In the present embodiment, an example in which the first electrode 112 and the first wiring 114 are integrally formed by the transparent conductive film 110 is shown. However, the present invention is not limited to this, and the first electrode 112 and the first wiring 114 are different processes. May be formed. In this case, in the step of forming the first electrode 112, by adjusting the number of times of applying the coating liquid, the content of the conductive polymer in the coating liquid, the type of the organic solvent, etc. The first electrode 112 whose film thickness continuously changes can be realized.
 次に、透明導電膜110に対し熱処理を施す。これにより、透明導電膜110を乾燥させる。透明導電材料が導電性高分子を含む場合には、透明導電膜110を乾燥させることにより導電性高分子の凝集力が高まり、第1電極112および第1配線114を強固な膜とすることができる。また、透明導電膜110に対し熱処理を施すことにより、透明導電膜110の硬化が行われる。また、透明導電膜110を構成する透明導電材料が感光性材料を含む場合には、UV照射により透明導電膜110を硬化してもよい。
 この段階において得られる構造が、図4に示されるものである。
Next, heat treatment is performed on the transparent conductive film 110. Thereby, the transparent conductive film 110 is dried. When the transparent conductive material contains a conductive polymer, the conductive film 110 is dried to increase the cohesive force of the conductive polymer, and the first electrode 112 and the first wiring 114 can be made strong films. it can. Further, the transparent conductive film 110 is cured by performing a heat treatment on the transparent conductive film 110. When the transparent conductive material constituting the transparent conductive film 110 includes a photosensitive material, the transparent conductive film 110 may be cured by UV irradiation.
The structure obtained at this stage is shown in FIG.
 次に、基板100上、第1電極112上、第1配線114上および引出配線164上に絶縁層120を形成する。絶縁層120は、ドライエッチングまたはウェットエッチング等を用いて所定の形状にパターニングされる。これにより、絶縁層120に、複数の第1開口122および複数の第2開口124が形成される。このとき、複数の第1開口122は、たとえば各第1開口122から第1電極112の一部が露出するように形成される。 Next, the insulating layer 120 is formed on the substrate 100, the first electrode 112, the first wiring 114, and the lead wiring 164. The insulating layer 120 is patterned into a predetermined shape using dry etching or wet etching. As a result, a plurality of first openings 122 and a plurality of second openings 124 are formed in the insulating layer 120. At this time, the plurality of first openings 122 are formed, for example, such that a part of the first electrode 112 is exposed from each first opening 122.
 次に、絶縁層120上に隔壁170を形成する。隔壁170は、絶縁層120上に設けられた絶縁膜をドライエッチングまたはウェットエッチング等を用いて所定の形状にパターニングすることにより得られる。隔壁170が感光性樹脂により形成される場合、露光および現像時の条件を調節することにより、隔壁170の断面形状を逆台形にすることができる。この段階において得られる構造が、図5に示されるものである。 Next, a partition wall 170 is formed on the insulating layer 120. The partition wall 170 is obtained by patterning an insulating film provided over the insulating layer 120 into a predetermined shape using dry etching or wet etching. When the partition wall 170 is formed of a photosensitive resin, the cross-sectional shape of the partition wall 170 can be changed to an inverted trapezoid by adjusting the conditions during exposure and development. The structure obtained at this stage is shown in FIG.
 次に、第1開口122内に、正孔注入層142、発光層144および電子注入層146を順に形成する。これらは、たとえば塗布法または蒸着法を用いて形成される。
 これにより、有機層140が形成される。
Next, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially formed in the first opening 122. These are formed using, for example, a coating method or a vapor deposition method.
Thereby, the organic layer 140 is formed.
 次に、有機層140上に、第2電極152および第2配線154を構成する導電膜150を形成する。このとき、たとえば導電膜150の一部が第2開口124内に位置するように、導電膜150が形成される。導電膜150は、たとえば蒸着法またはスパッタリング法を用いて形成される。
 これにより、第1電極112と、第2電極152と、これらに狭持された有機層140と、により構成される有機EL素子20が、基板100上に形成されることとなる。
 本実施形態においては、たとえばこのようにして発光装置10が形成される。
Next, the conductive film 150 constituting the second electrode 152 and the second wiring 154 is formed on the organic layer 140. At this time, the conductive film 150 is formed so that, for example, a part of the conductive film 150 is located in the second opening 124. The conductive film 150 is formed using, for example, a vapor deposition method or a sputtering method.
As a result, the organic EL element 20 composed of the first electrode 112, the second electrode 152, and the organic layer 140 sandwiched therebetween is formed on the substrate 100.
In the present embodiment, for example, the light emitting device 10 is formed in this way.
 以上、本実施形態によれば、第1電極112は、膜厚が変化する膜厚変化領域222を有している。そして、第1電極112の膜厚は、膜厚変化領域222において連続的に変化する。これにより、第1電極112の膜厚が変化する領域である膜厚変化領域222が設けられた場合であっても、膜厚変化領域222において膜厚が不連続に変化する部分が生じることを抑制できる。すなわち、第1電極112内における膜厚の不連続な変化に基づいて電気抵抗値の急激な変化が生じることを抑制することができる。このため、第1電極におけるスパークの発生を抑え、発光装置の動作信頼性を向上させることができる。 As described above, according to the present embodiment, the first electrode 112 has the film thickness changing region 222 in which the film thickness changes. The film thickness of the first electrode 112 changes continuously in the film thickness changing region 222. As a result, even when the film thickness changing region 222, which is the region in which the film thickness of the first electrode 112 changes, is provided, a portion in which the film thickness changes discontinuously occurs in the film thickness changing region 222. Can be suppressed. That is, it is possible to suppress a sudden change in the electric resistance value based on the discontinuous change in the film thickness in the first electrode 112. For this reason, generation | occurrence | production of the spark in a 1st electrode can be suppressed and the operation | movement reliability of a light-emitting device can be improved.
(第2の実施形態)
 図7は、第2の実施形態に係る発光装置12を示す平面図であり、第1の実施形態に係る図1に対応している。図8は、図7のC-C断面を示す断面図であり、図9は図7のD-D断面を示す断面図である。図10は、図7に示す発光装置12の一部を示す図である。図10では、とくに透明導電膜110と引出配線134との位置関係が示されている。図11は、本実施形態における第1電極112の構成の一例を示す図である。
(Second Embodiment)
FIG. 7 is a plan view showing the light emitting device 12 according to the second embodiment, and corresponds to FIG. 1 according to the first embodiment. 8 is a cross-sectional view showing a CC cross section of FIG. 7, and FIG. 9 is a cross-sectional view showing a DD cross section of FIG. FIG. 10 is a diagram showing a part of the light emitting device 12 shown in FIG. FIG. 10 particularly shows the positional relationship between the transparent conductive film 110 and the extraction wiring 134. FIG. 11 is a diagram illustrating an example of the configuration of the first electrode 112 in the present embodiment.
 本実施形態に係る発光装置12は、第1電極112、および引出配線134の構成を除いて第1の実施形態に係る発光装置10と同様の構成を有する。以下、発光装置12の構成の一例について説明する。 The light emitting device 12 according to the present embodiment has the same configuration as that of the light emitting device 10 according to the first embodiment except for the configuration of the first electrode 112 and the lead-out wiring 134. Hereinafter, an example of the configuration of the light emitting device 12 will be described.
 本実施形態において、第1電極112は、たとえば基板100上であって、画素領域300内にマトリクス状に配置される。マトリクス状に配置された複数の第1電極112は、互いに離間する。なお、画素領域300は、複数の有機EL素子20を含む領域である。図7に示す例では、一点鎖線により囲まれた領域が画素領域300に該当する。
 第1電極112は、たとえば導電材料により構成される。第1電極112を構成する導電材料としては、たとえば第1の実施形態において例示したものを用いることができる。本実施形態において、第1電極112は、たとえば透明導電材料により構成される透明導電膜110により構成されることがとくに好ましい。この場合、第1電極112は透明性を有することができる。
In the present embodiment, the first electrodes 112 are arranged on the substrate 100 in the pixel region 300 in a matrix, for example. The plurality of first electrodes 112 arranged in a matrix are separated from each other. The pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 7, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
The first electrode 112 is made of, for example, a conductive material. As the conductive material constituting the first electrode 112, for example, those exemplified in the first embodiment can be used. In the present embodiment, the first electrode 112 is particularly preferably formed of a transparent conductive film 110 formed of, for example, a transparent conductive material. In this case, the first electrode 112 may have transparency.
 本実施形態に係る発光装置12においても、第1電極112は、膜厚が変化する膜厚変化領域222を有している。また、第1電極112の膜厚は、膜厚変化領域222において連続的に変化する。これにより、第1電極112内における膜厚の不連続な変化に基づいて電気抵抗値の急激な変化が生じることを抑制することができる。したがって、第1電極112におけるスパークの発生を抑え、発光装置12の動作信頼性を向上できる。
 また、本実施形態においては、有機EL素子20内の各箇所間において、第1電極112の膜厚を互いに異ならせることができる。これにより、有機EL素子20内の各箇所における輝度をそれぞれ制御することが可能となる。
Also in the light emitting device 12 according to the present embodiment, the first electrode 112 has a film thickness changing region 222 in which the film thickness changes. Further, the film thickness of the first electrode 112 continuously changes in the film thickness changing region 222. Thereby, it is possible to suppress a sudden change in the electrical resistance value based on the discontinuous change in the film thickness in the first electrode 112. Therefore, the occurrence of sparks in the first electrode 112 can be suppressed, and the operation reliability of the light emitting device 12 can be improved.
Moreover, in this embodiment, the film thickness of the 1st electrode 112 can be varied mutually between each location in the organic EL element 20. FIG. Thereby, it becomes possible to control the brightness | luminance in each location in the organic EL element 20, respectively.
 本実施形態に係る発光装置12においては、第1の実施形態に係る発光装置10を構成する第1配線114が設けられていない。 In the light emitting device 12 according to the present embodiment, the first wiring 114 constituting the light emitting device 10 according to the first embodiment is not provided.
 本実施形態では、引出配線134が第1電極112に接続される場合が例示される。引出配線134は、図中Y方向に延在している。また、基板100上には、互いに離間するよう図中X方向に配列された複数の引出配線134が設けられている。各引出配線134は、それぞれY方向に配列された複数の第1電極112に接続される。このため、複数の第1電極112は、それぞれ引出配線134を介して外部へ接続されることとなる。有機EL素子20には、引出配線134を介して発光/非発光の信号が供給される。 In the present embodiment, a case where the lead wiring 134 is connected to the first electrode 112 is exemplified. The lead-out wiring 134 extends in the Y direction in the figure. A plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other. Each lead-out wiring 134 is connected to a plurality of first electrodes 112 arranged in the Y direction. For this reason, the plurality of first electrodes 112 are each connected to the outside via the lead wiring 134. A light emission / non-light emission signal is supplied to the organic EL element 20 through the lead wiring 134.
 第1電極112は、一端において引出配線134と接続している。図9に示すように、引出配線134のうち第1電極112と接合する部分は、たとえば平面視で有機EL素子20を形成する領域内に位置する。第1電極112は、引出配線134からみて図中X方向に延在している。第1電極112の形状は、特に限定されず有機EL素子20の設計に併せて適宜選択可能であるが、たとえば矩形である。 The first electrode 112 is connected to the lead wiring 134 at one end. As shown in FIG. 9, a portion of the lead-out wiring 134 that is joined to the first electrode 112 is located, for example, in a region where the organic EL element 20 is formed in a plan view. The first electrode 112 extends in the X direction in FIG. The shape of the first electrode 112 is not particularly limited and can be selected as appropriate in accordance with the design of the organic EL element 20. For example, it is rectangular.
 図11においては、第1電極112は、たとえば膜厚変化領域222における第1電極112の膜厚が、引出配線134と接続する上記一端から遠ざかるにつれて大きくなるように形成される。すなわち、第1電極112における電気抵抗値が引出配線134から遠ざかるにつれて小さくなるように、第1電極112を形成することができる。これにより、第1電極112中の電圧降下に起因した輝度ムラを改善することが可能となる。
 なお、第1電極112における膜厚変化領域222の構成は、第1電極112のうち134と接続する上記一端から遠ざかるにつれて大きくなるものに限られない。膜厚変化領域222の構成は、発光装置における輝度を増大させる目的に応じて適宜選択することが可能である。
In FIG. 11, the first electrode 112 is formed, for example, such that the film thickness of the first electrode 112 in the film thickness changing region 222 increases as the distance from the one end connected to the lead wiring 134 increases. That is, the first electrode 112 can be formed such that the electrical resistance value of the first electrode 112 decreases as the distance from the lead wire 134 increases. Thereby, it is possible to improve luminance unevenness due to a voltage drop in the first electrode 112.
In addition, the structure of the film thickness change region 222 in the first electrode 112 is not limited to the one that increases as the distance from the one end connected to the 134 of the first electrode 112 increases. The configuration of the film thickness change region 222 can be appropriately selected according to the purpose of increasing the luminance in the light emitting device.
 本実施形態において、膜厚変化領域222は、たとえば引出配線134から離間する位置に形成される。図11においては、膜厚変化領域222が引出配線134から離間する位置に形成される場合が例示されている。このとき、引出配線134と膜厚変化領域222との間において、第1電極112のうち第2電極152と対向する一面は、たとえば基板100平面と平行な平坦面を有する。なお、膜厚変化領域222は、引出配線134と隣接して位置するように形成されていてもよい。 In the present embodiment, the film thickness changing region 222 is formed at a position separated from the lead wiring 134, for example. In FIG. 11, the case where the film thickness change region 222 is formed at a position separated from the lead-out wiring 134 is illustrated. At this time, one surface of the first electrode 112 facing the second electrode 152 between the lead wiring 134 and the film thickness changing region 222 has a flat surface parallel to the plane of the substrate 100, for example. The film thickness change region 222 may be formed so as to be adjacent to the lead-out wiring 134.
 絶縁層120は、たとえば引出配線134を覆うように形成される。本実施形態においては、たとえば引出配線134と引出配線164のそれぞれの一部を覆うように絶縁層120が設けられる。また、図10に示すように、絶縁層120には、複数の第1開口122が、たとえばマトリクスを構成するように形成される。
 本実施形態においては、第1電極112は、第1開口122内に形成される。これにより、基板100上にマトリクス状に配置された複数の第1電極112が形成される。また、図8および9に示すように、複数の第1電極112は、絶縁層120によって互いに離間されることとなる。第1開口122は、たとえば引出配線134の一部と平面視で重なるように形成される。この場合、引出配線134のうちの第1開口122と平面視で重なる一部が、第1開口122に形成された第1電極112と接続することとなる。
 絶縁層120は、たとえば第1の実施形態と同様の材料により構成される。
The insulating layer 120 is formed so as to cover the lead wiring 134, for example. In the present embodiment, for example, the insulating layer 120 is provided so as to cover a part of each of the lead wiring 134 and the lead wiring 164. Also, as shown in FIG. 10, a plurality of first openings 122 are formed in the insulating layer 120 so as to form a matrix, for example.
In the present embodiment, the first electrode 112 is formed in the first opening 122. As a result, a plurality of first electrodes 112 arranged in a matrix on the substrate 100 are formed. Further, as shown in FIGS. 8 and 9, the plurality of first electrodes 112 are separated from each other by the insulating layer 120. The first opening 122 is formed, for example, so as to overlap a part of the lead wiring 134 in a plan view. In this case, a part of the lead wiring 134 that overlaps the first opening 122 in plan view is connected to the first electrode 112 formed in the first opening 122.
The insulating layer 120 is made of the same material as that of the first embodiment, for example.
 本実施形態における隔壁170、有機層140、第2電極152、第2配線154、および引出配線164は、たとえば第1の実施形態と同様の構成を有する。 The partition 170, the organic layer 140, the second electrode 152, the second wiring 154, and the extraction wiring 164 in the present embodiment have the same configuration as that of the first embodiment, for example.
 以上、本実施形態においても、第1電極112は、膜厚が変化する膜厚変化領域222を有している。そして、第1電極112の膜厚は、膜厚変化領域222において連続的に変化する。このため、第1の実施形態と同様に、第1電極におけるスパークの発生を抑え、発光装置の動作信頼性を向上させることができる。 As described above, also in the present embodiment, the first electrode 112 has the film thickness changing region 222 in which the film thickness changes. The film thickness of the first electrode 112 changes continuously in the film thickness changing region 222. For this reason, like the first embodiment, the occurrence of sparks in the first electrode can be suppressed, and the operation reliability of the light emitting device can be improved.
 以下、本実施形態を、実施例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present embodiment will be described in detail with reference to examples. In addition, this embodiment is not limited to description of these Examples at all.
(実施例1)
 まず、ガラス基板上に、銀からなる金属膜を、スパッタリング法を用いて形成した。次いで、この金属膜をドライエッチングによりライン状にパターニングし、引出配線を形成した。次いで、透明導電材料含有塗布液を、引出配線の一部を覆うようにインクジェット法により塗布して透明導電膜を形成した(第1塗布工程)。これにより、透明導電膜からなる第1電極および第1配線を、一体として形成した。次いで、第1電極の一部上に、透明導電材料含有塗布液を2回塗布した(第2塗布工程)。これにより、第1電極に、第1配線から遠ざかるにつれて膜厚が漸増する膜厚変化領域が形成された。第1塗布工程および第2塗布工程において、透明導電材料含有塗布液としては、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT-PSS、CLEVIOS PH510(Heraeus社製))を溶剤中へ分散して得られる溶液を使用した。次いで、透明導電膜を乾燥した。これにより、第1電極、第1配線、および引出配線からなる構造体を作製した。
 このようにして得られた構造体を、第1の実施形態に係る発光装置に適用した。
(Example 1)
First, a metal film made of silver was formed on a glass substrate by a sputtering method. Next, this metal film was patterned into a line shape by dry etching to form a lead wiring. Next, the transparent conductive material-containing coating solution was applied by an inkjet method so as to cover a part of the lead wiring, thereby forming a transparent conductive film (first coating step). Thereby, the 1st electrode and 1st wiring which consist of transparent conductive films were integrally formed. Next, the transparent conductive material-containing coating solution was applied twice on a part of the first electrode (second coating step). As a result, a film thickness change region in which the film thickness gradually increases as the distance from the first wiring increases in the first electrode. In the first coating step and the second coating step, as the transparent conductive material-containing coating solution, poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT-PSS, CLEVIOS PH510 (manufactured by Heraeus)) in a solvent. A solution obtained by dispersing the solution was used. Next, the transparent conductive film was dried. Thus, a structure including the first electrode, the first wiring, and the lead wiring was produced.
The structure thus obtained was applied to the light emitting device according to the first embodiment.
 実施例1では、第1電極は、膜厚が変化する膜厚変化領域を有していた。また、第1電極の膜厚は、膜厚変化領域において連続的に変化していた。第1電極の上面のうち膜厚変化領域に位置する部分は、ガラス基板平面に対する垂線からの角度が15°以上であった。
 このような実施例1において得られた構造体を用いた発光装置については、動作時においてスパークが生じず、高い動作信頼性が得られることがわかった。
In Example 1, the 1st electrode had the film thickness change area | region where a film thickness changes. Moreover, the film thickness of the first electrode continuously changed in the film thickness change region. Of the upper surface of the first electrode, the portion located in the film thickness change region had an angle from the normal to the glass substrate plane of 15 ° or more.
It was found that the light emitting device using the structure obtained in Example 1 did not cause spark during operation, and high operation reliability was obtained.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (5)

  1.  導電材料により構成される第1電極と、
     少なくとも一部が前記第1電極と対向する第2電極と、
     前記第1電極と前記第2電極との間に配置された有機層と、
     を備え、
     前記第1電極は、膜厚が変化する膜厚変化領域を有し、
     前記第1電極の膜厚は、前記膜厚変化領域において連続的に変化する発光装置。
    A first electrode made of a conductive material;
    A second electrode at least partially facing the first electrode;
    An organic layer disposed between the first electrode and the second electrode;
    With
    The first electrode has a film thickness changing region in which the film thickness changes,
    The light emitting device in which the film thickness of the first electrode continuously changes in the film thickness change region.
  2.  請求項1に記載の発光装置において、
     前記第1電極は、基板上に設けられており、
     前記第1電極の前記第2電極に対向する一面のうち、前記膜厚変化領域に位置する部分は、前記基板平面に対する垂線からの角度が15°以上である発光装置。
    The light-emitting device according to claim 1.
    The first electrode is provided on a substrate;
    Of the one surface of the first electrode facing the second electrode, the portion located in the film thickness change region has an angle from a perpendicular to the substrate plane of 15 ° or more.
  3.  請求項1または2に記載の発光装置において、
     前記第1電極は、一端において引出配線に電気的に接続しており、
     前記膜厚変化領域における前記第1電極の膜厚は、前記一端から遠ざかるにつれて大きくなる発光装置。
    The light emitting device according to claim 1 or 2,
    The first electrode is electrically connected to the lead wiring at one end;
    The light emitting device in which the film thickness of the first electrode in the film thickness change region increases as the distance from the one end increases.
  4.  請求項1~3いずれか一項に記載の発光装置において、
     前記導電材料は、導電性高分子を含む透明導電材料である発光装置。
    The light emitting device according to any one of claims 1 to 3,
    The light-emitting device, wherein the conductive material is a transparent conductive material containing a conductive polymer.
  5.  請求項1~4いずれか一項に記載の発光装置において、
     それぞれ一部が前記第1電極と対向するように設けられた複数の前記第2電極と、
     前記第1電極と前記第2電極との間にそれぞれ配置された複数の前記有機層と、
     を備える発光装置。
    The light emitting device according to any one of claims 1 to 4,
    A plurality of the second electrodes, each part of which is provided to face the first electrode;
    A plurality of the organic layers respectively disposed between the first electrode and the second electrode;
    A light emitting device comprising:
PCT/JP2013/059926 2013-04-01 2013-04-01 Light-emitting device WO2014162448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059926 WO2014162448A1 (en) 2013-04-01 2013-04-01 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059926 WO2014162448A1 (en) 2013-04-01 2013-04-01 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2014162448A1 true WO2014162448A1 (en) 2014-10-09

Family

ID=51657781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059926 WO2014162448A1 (en) 2013-04-01 2013-04-01 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2014162448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670607A (en) * 2017-12-05 2020-09-15 佳能株式会社 Top-emitting organic EL element and method for manufacturing top-emitting organic EL element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285523A (en) * 2004-03-30 2005-10-13 Nippon Seiki Co Ltd Organic electroluminescent panel
JP2007108672A (en) * 2005-10-14 2007-04-26 Lg Electron Inc Light emitting device
WO2008126269A1 (en) * 2007-03-30 2008-10-23 Pioneer Corporation Light emitting device
JP2009048808A (en) * 2007-08-15 2009-03-05 Panasonic Electric Works Co Ltd Light-emitting device
JP2012099244A (en) * 2010-10-29 2012-05-24 National Institute Of Advanced Industrial & Technology Electrode, method of manufacturing electrode, organic electroluminescent (el) device, and method of manufacturing the same device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285523A (en) * 2004-03-30 2005-10-13 Nippon Seiki Co Ltd Organic electroluminescent panel
JP2007108672A (en) * 2005-10-14 2007-04-26 Lg Electron Inc Light emitting device
WO2008126269A1 (en) * 2007-03-30 2008-10-23 Pioneer Corporation Light emitting device
JP2009048808A (en) * 2007-08-15 2009-03-05 Panasonic Electric Works Co Ltd Light-emitting device
JP2012099244A (en) * 2010-10-29 2012-05-24 National Institute Of Advanced Industrial & Technology Electrode, method of manufacturing electrode, organic electroluminescent (el) device, and method of manufacturing the same device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670607A (en) * 2017-12-05 2020-09-15 佳能株式会社 Top-emitting organic EL element and method for manufacturing top-emitting organic EL element
CN111670607B (en) * 2017-12-05 2023-11-10 佳能株式会社 Top-emitting organic EL element and method for manufacturing top-emitting organic EL element

Similar Documents

Publication Publication Date Title
US9680123B2 (en) Light emitting device, electrode structure and manufacturing method thereof
JP2010267428A (en) Method and device for forming functional film
JP2010282903A (en) Organic el display panel
JP6463354B2 (en) Light emitting device
WO2014162448A1 (en) Light-emitting device
WO2014162453A1 (en) Joint structure and light-emitting device
JP6283022B2 (en) Optical device
JP6266598B2 (en) Optical device
JP6266599B2 (en) Optical device
WO2014162447A1 (en) Joining structure and light-emitting device
WO2014162449A1 (en) Joining structure and light-emitting device
WO2014162451A1 (en) Joined structure and light-emitting device
JP2014203525A (en) Joining structure and light-emitting device
WO2014162450A1 (en) Light-emitting device
WO2014162454A1 (en) Joint structure and light-emitting device
WO2017029889A1 (en) Organic el panel, illuminating device, and method for manufacturing organic el panel
WO2014162446A1 (en) Joining structure and light-emitting device
KR100839379B1 (en) Organic light emitting diode display device
JP2014203526A (en) Junction structure and light-emitting device
WO2013186918A1 (en) Organic electroluminescence device
JP6441595B2 (en) Light emitting device
WO2017122360A1 (en) Light emitting device
JP2020074328A (en) Light emitting device
JP2015046263A (en) Light-emitting device
JP2014203527A (en) Joining structure and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP