WO2014162447A1 - Joining structure and light-emitting device - Google Patents

Joining structure and light-emitting device Download PDF

Info

Publication number
WO2014162447A1
WO2014162447A1 PCT/JP2013/059925 JP2013059925W WO2014162447A1 WO 2014162447 A1 WO2014162447 A1 WO 2014162447A1 JP 2013059925 W JP2013059925 W JP 2013059925W WO 2014162447 A1 WO2014162447 A1 WO 2014162447A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
electrode
wiring
film
film thickness
Prior art date
Application number
PCT/JP2013/059925
Other languages
French (fr)
Japanese (ja)
Inventor
雄司 齋藤
賢一 奥山
博樹 丹
正宣 赤木
邦彦 白幡
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/059925 priority Critical patent/WO2014162447A1/en
Publication of WO2014162447A1 publication Critical patent/WO2014162447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes

Definitions

  • the present invention relates to a junction structure and a light emitting device.
  • organic EL Organic Electroluminescence
  • An organic EL element is comprised by the transparent electrode, the other electrode arrange
  • Examples of the technology related to the organic EL element include those described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 The technique described in Patent Document 1 is to adjust the resistance value of the transparent wiring by adjusting the thickness of the transparent wiring connecting the transparent electrode and the input electrode.
  • Patent Document 2 describes a light-emitting element having an electrode composed of a metal line formed in a line shape and a polymer line covering the upper surface and side surfaces of the metal line.
  • a region in which the film thickness changes may be provided in the first conductive film.
  • the connection reliability in the junction structure is lowered due to local current concentration based on the change in the film thickness.
  • An example of a problem to be solved by the present invention is to improve connection reliability in a joint structure composed of two conductive films joined to each other.
  • a first conductive film made of a conductive material and a second conductive film made of a metal material are bonded to each other;
  • the first conductive film has a non-stacked portion that does not overlap the second conductive film in plan view,
  • the non-stacked portion has a film thickness change region in which the film thickness decreases as the distance from the second conductive film increases.
  • the film thickness of the non-stacked portion is a joint structure that continuously changes in the film thickness change region.
  • a light emitting device having the joint structure according to any one of claims 1 to 3,
  • An organic EL element having a first electrode, a second electrode, and an organic layer disposed between the first electrode and the second electrode;
  • a first wiring electrically connected to the first electrode and configured by the first conductive film;
  • An organic EL element comprising: a first electrode composed of the first conductive film; a second electrode; and an organic layer disposed between the first electrode and the second electrode; A lead wire bonded to the first electrode and configured by the second conductive film; It is a light-emitting device provided with.
  • FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1.
  • FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1.
  • It is a figure which shows a part of light-emitting device shown in FIG. It is a figure which shows a part of light-emitting device shown in FIG.
  • FIG. 9 is a cross-sectional view showing a CC cross section of FIG. 8.
  • FIG. 9 is a cross-sectional view showing a DD cross section of FIG. 8. It is a figure which shows a part of light-emitting device shown in FIG.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment.
  • 2 is a cross-sectional view showing the AA cross section of FIG. 1
  • FIG. 3 is a cross-sectional view showing the BB cross section of FIG. 4 and 5 are views showing a part of the light emitting device 10 shown in FIG.
  • FIG. 4 the positional relationship between the first conductive film 110 and the second conductive film 130 is particularly shown.
  • FIG. 5 particularly shows the configuration of the insulating layer 120.
  • 6 and 7 are diagrams illustrating an example of a bonding structure 200 including the first conductive film 110 and the second conductive film 130 according to the present embodiment.
  • the bonding structure 200 is formed by bonding a first conductive film 110 made of a conductive material and a second conductive film 130 made of a metal material.
  • the first conductive film 110 has a non-stacked portion 220 that does not overlap the second conductive film 130 in plan view.
  • the non-stacked portion 220 has a film thickness changing region 222 whose film thickness decreases as the distance from the second conductive film 130 increases. The film thickness of the non-stacked portion 220 changes continuously in the film thickness changing region 222.
  • the light emitting device 10 has a joint structure 200.
  • the light emitting device 10 includes an organic EL element 20, a first wiring 114, and a lead wiring 134.
  • the organic EL element 20 includes a first electrode 112, a second electrode 152, and an organic layer 140 disposed between the first electrode 112 and the second electrode 152.
  • the first wiring 114 is electrically connected to the first electrode 112 and is configured by the first conductive film 110.
  • the lead-out wiring 134 is joined to the first wiring 114 and is configured by the second conductive film 130.
  • the bonding structure 200 is a bonding structure in which the first conductive film 110 and the second conductive film 130 are bonded to each other.
  • the bonding between the first conductive film 110 and the second conductive film 130 includes a case where another structure is interposed between the first conductive film 110 and the second conductive film 130.
  • the bonding structure 200 is formed on the substrate 100, for example. In this case, the first conductive film 110 and the second conductive film 130 are formed on the substrate 100.
  • the junction structure 200 constitutes a light emitting device including, for example, an organic EL element.
  • the light emitting device includes, for example, an organic EL element, a first wiring that is electrically connected to an electrode that constitutes the organic EL element, and a lead wiring that is electrically connected to the first wiring.
  • an electrical signal for controlling light emission / non-light emission is supplied from the outside to the electrodes constituting the organic EL element via the lead wiring and the first wiring.
  • the 1st electrically conductive film 110 among the joining structures 200 comprises the 1st wiring connected to the electrode which comprises an organic EL element, for example.
  • the second conductive film 130 of the bonding structure 200 constitutes, for example, a lead wiring. In this case, the junction structure 200 is formed between the first wiring and the lead-out wiring.
  • the first conductive film 110 substantially includes a conductive material.
  • the conductive material constituting the first conductive film 110 include a transparent conductive material or a paste-like conductive material such as silver. Among these, a transparent conductive material is particularly preferable.
  • the first conductive film 110 is made of a transparent conductive material, the first conductive film 110 is a transparent conductive film.
  • the first conductive film 110 has a shape extending in one direction parallel to the plane of the substrate 100, for example.
  • the transparent conductive material includes, for example, an inorganic material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), or a conductive polymer.
  • the transparent conductive material includes a conductive polymer
  • the first conductive film 110 can be formed using a coating method. In this case, in the step of forming the first conductive film 110, it is possible to suppress a thermal load from being applied to other components such as the substrate 100.
  • the first conductive film 110 is preferably a coating-type conductive film formed by applying a solution in which this inorganic material is dispersed in an organic solvent. . Even in such a case, the first conductive film 110 can be formed by a coating method.
  • the conductive polymer included in the transparent conductive material constituting the first conductive film 110 is a conductive polymer including, for example, a ⁇ -conjugated conductive polymer and a polyanion.
  • the ⁇ -conjugated conductive polymer is not particularly limited.
  • a chain conductive polymer of phenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl compounds can be used. From the viewpoint of conductivity, transparency, stability, etc., polythiophenes or polyanilines are preferable, and polyethylene dioxythiophene is particularly preferable.
  • Polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, or polyacrylic acid can be used.
  • the polyanion used in the present embodiment may be a homopolymer of these or two or more kinds of copolymers.
  • the transparent conductive material may further include a crosslinking agent, a leveling agent, an antifoaming agent, or the like.
  • the second conductive film 130 includes a metal material.
  • a metal material having a lower electrical resistivity than the conductive material constituting the first conductive film 110 is used.
  • the first conductive film 110 and the second conductive film 130 are made of different materials.
  • the metal material included in the second conductive film 130 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd.
  • the second conductive film 130 includes one or more of these metal materials.
  • the first conductive film 110 has a non-stacked portion 220 that does not overlap the second conductive film 130 in plan view.
  • the first conductive film 110 is provided so that a part of the first conductive film 110 overlaps the second conductive film 130.
  • the first conductive film 110 includes a stacked portion that overlaps with the second conductive film 130 in a plan view and a non-stacked portion 220 that does not overlap with the second conductive film 130 in a plan view. Note that the first conductive film 110 does not need to have a stacked portion overlapping the second conductive film 130.
  • the non-stacked portion 220 has a film thickness changing region 222 whose film thickness decreases as the distance from the second conductive film 130 increases. That is, the film thickness of the non-stacked portion 220 in the film thickness change region 222 gradually decreases as the distance from the second conductive film 130 increases. Further, the film thickness of the non-laminated portion 220 continuously changes in the film thickness changing region 222. That is, in the film thickness change region 222, a portion where the film thickness of the non-stacked portion 220 changes discontinuously is not formed. In this specification, that the film thickness changes continuously includes, for example, a case where the film thickness changing region 222 includes a portion where the film thickness does not change.
  • the non-stacked portion 220 that does not overlap the second conductive film 130 in the plan view of the first conductive film 110 has the film thickness change region 222.
  • the film thickness of the non-stacked portion 220 continuously changes in the film thickness changing region 222.
  • a portion where the film thickness changes discontinuously occurs in the film thickness changing region 222. Can be suppressed. That is, it is possible to suppress a sudden change in the electric resistance value based on the discontinuous change in the film thickness in the first conductive film 110. For this reason, local current concentration in the first conductive film 110 can be reduced, and the connection reliability in the junction structure 200 composed of the first conductive film 110 and the second conductive film 130 bonded to each other can be improved. .
  • the first conductive film 110 is provided, for example, such that the film thickness changing region 222 constitutes only a part of the non-stacked portion 220.
  • the film thickness changing region 222 is formed, for example, at a position away from the second conductive film 130 on the substrate 100.
  • the film thickness of the portion located between the second conductive film 130 and the film thickness changing region 222 in the non-stacked portion 220 can be increased.
  • the 1st electrically conductive film 110 comprises wiring, an electrode, etc.
  • the first conductive film 110 may be formed so that the film thickness changing region 222 is adjacent to the second conductive film 130.
  • the first conductive film 110 may be formed so that the entire non-stacked portion 220 is constituted by the film thickness changing region 222.
  • FIG. 6 illustrates the case where the film thickness changing region 222 is formed at a position on the substrate 100 that is separated from the second conductive film 130.
  • the film thickness of the non-stacked portion 220 has a certain size in a region sandwiched between the second conductive film 130 and the film thickness changing region 222.
  • the upper surface of the non-stacked portion 220 has a flat surface parallel to the plane of the substrate 100.
  • the non-stacked portion 220 has a film thickness change region 224 in which the film thickness increases as the distance from the second conductive film 130 increases between the second conductive film 130 and the film thickness change region 222. ing. At this time, the film thickness of the non-stacked portion 220 in the film thickness changing region 224 gradually increases as the distance from the second conductive film 130 increases. In the example shown in FIG. 7, the film thickness of the non-stacked portion 220 continuously changes in the film thickness change region 224.
  • the film thickness change region 224 a portion where the film thickness of the non-stacked portion 220 changes discontinuously is not formed. In this case, in the film thickness change region 224, it is possible to mitigate the change in electrical resistance value based on the film thickness change.
  • the non-stacked portion 220 has a plurality of film thickness change regions in which the film thickness increases or decreases as the distance from the second conductive film 130 increases between the second conductive film 130 and the film thickness change region 222 in plan view. You may have.
  • the first conductive film 110 be formed so that the film thickness of the non-stacked portion 220 continuously changes in all film thickness change regions.
  • the film thickness of at least a portion of the non-stacked portion 220 located between the second conductive film 130 and the film thickness changing region 222 is, for example, a stacked portion overlapping the second conductive film 130 of the first conductive film 110. And the total thickness of the second conductive film 130 or more.
  • the film thickness of the non-stacked portion 220 has, for example, a certain size in a region located on the side opposite to the second conductive film 130 when viewed from the film thickness changing region 222.
  • the upper surface of the non-stacked portion 220 has a flat surface parallel to the plane of the substrate 100 in the region located on the opposite side of the second conductive film 130 from the film thickness changing region 222.
  • the non-stacked portion 220 has a film thickness change region in which the film thickness increases or decreases as the distance from the second conductive film 130 increases in a region located on the opposite side of the second conductive film 130 from the film thickness change region 222. You may have.
  • a portion of the upper surface of the non-stacked portion 220 located in the film thickness changing region 222 is, for example, an inclined surface that is inclined with respect to the plane of the substrate 100.
  • the inclined surface can be a smooth surface having no discontinuous steps.
  • the portion of the upper surface of the non-stacked portion 220 located in the film thickness changing region 222 has an angle from the normal 208 to the plane of the substrate 100 of 15 ° or more. Thereby, the change of the electrical resistance value in the film thickness change region 222 in the first conductive film 110 can be further alleviated. For this reason, it becomes possible to further improve the connection reliability in the junction structure 200 composed of the first conductive film 110 and the second conductive film 130 bonded to each other.
  • the angle ⁇ from the normal 208 to the plane of the substrate 100 is 15 ° or more in the portion located in the film thickness change region 222 on the upper surface of the non-stacked portion 220.
  • the film thickness of the thick film portion 204 having the maximum film thickness in the film thickness change region 222 is D1
  • the film thickness of the thin film portion 202 having the minimum film thickness is D2.
  • the film thickness of the thick film part 204 can be made sufficiently larger than the film thickness of the thin film part 202.
  • the film thickness of the non-stacked portion 220 between the film thickness changing region 222 and the second conductive film 130 can be sufficiently increased.
  • the 1st electrically conductive film 110 comprises wiring, an electrode, etc.
  • the film thickness in the portion located on the side opposite to the second conductive film 130 as viewed from the film thickness change region 222 can be made sufficiently small, and the transparency can be improved.
  • the bonding structure 200 in which the first conductive film 110 and the second conductive film 130 are bonded to each other is formed as follows.
  • the second conductive film 130 is formed over the substrate 100.
  • the second conductive film 130 is formed using, for example, a coating method, a sputtering method, or a vapor deposition method.
  • a coating method used in the said process For example, the inkjet method, screen printing method, spray coating method, letterpress printing method, gravure printing method, or dispenser coating method is mentioned.
  • coating method contains binder resin and an organic solvent, for example.
  • the binder resin for example, a cellulose resin, an epoxy resin, or an acrylic resin can be used.
  • the organic solvent for example, a hydrocarbon solvent or an alcohol solvent can be used.
  • the metal particles contained in the coating liquid are, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, or Pd.
  • the coating liquid contains one or more of these metal particles.
  • a first conductive film 110 is formed over the substrate 100.
  • the first conductive film 110 is formed, for example, by applying a transparent conductive material-containing coating solution on the substrate 100 and drying it.
  • the first conductive film 110 is formed so as to cover a part of the second conductive film 130, for example.
  • the transparent conductive material-containing coating solution is not particularly limited, but is applied onto the substrate 100 using, for example, an ink jet method, a screen printing method, a relief printing method, a gravure printing method, a die coat, a spin coat, or a spray.
  • the transparent conductive material-containing coating solution used in the step of forming the first conductive film 110 includes, for example, an organic solvent and water in addition to the above-described transparent conductive material.
  • the organic solvent for example, an alcohol solvent can be used.
  • the first conductive film 110 may be formed by applying a paste-like conductive material such as silver on the substrate 100 and drying it.
  • the process of forming the first conductive film 110 is performed as follows, for example. First, a transparent conductive material-containing coating solution is applied on the substrate 100 so as to cover a part of the second conductive film 130 (first coating step). Thereby, the first conductive film 110 is formed on the substrate 100. Next, a transparent conductive material coating solution is further applied on the non-laminated portion 220 that does not overlap the second conductive film 130 in the first conductive film 110 (second coating step). As a result, a film thickness changing region 222 whose film thickness decreases as the distance from the second conductive film 130 increases in the non-stacked portion 220.
  • coating process is not specifically limited, It is possible to select suitably according to the film thickness of the non-lamination part 220 calculated
  • the first conductive film 110 formed on the substrate 100 is dried.
  • the first conductive film 110 is formed by a coating method, by adjusting the number of times the coating liquid is applied, the content of the conductive polymer in the coating liquid, the type of solvent, and the like.
  • the joining structure 200 is formed in this way.
  • the light emitting device 10 may be a lighting device.
  • the light-emitting device 10 is an illumination device
  • the light-emitting device 10 has a configuration in which, for example, a plurality of linear organic layers 140 having different emission colors are arranged repeatedly. Thereby, the illuminating device excellent in color rendering properties is realized.
  • the light-emitting device 10 that is a lighting device may have a planar organic layer 140.
  • the substrate 100 is, for example, a transparent substrate.
  • the substrate 100 can be a glass substrate. Thereby, the light emitting device 10 having excellent heat resistance and the like can be manufactured at low cost.
  • the substrate 100 may be a film-like substrate made of a resin material.
  • a display with particularly high flexibility can be realized.
  • the resin material constituting the film substrate include polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
  • the light emitting device 10 that is a display has a plurality of organic EL elements 20 arranged in an array on the substrate 100, for example.
  • the organic EL element 20 includes a first electrode 112 provided on the substrate 100, an organic layer 140 provided on the first electrode 112, and a second electrode 152 provided on the organic layer 140. ing. At this time, the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
  • a plurality of first electrodes 112 extending in the Y direction in the drawing and a plurality of second electrodes 152 extending in the X direction in the drawing are provided on the substrate 100.
  • the organic EL element 20 is formed in each portion where the first electrode 112 and the second electrode 152 overlap each other in plan view. As a result, a plurality of organic EL elements 20 arranged in an array are formed on the substrate 100.
  • the first electrode 112 serves as an anode of an organic EL element, for example.
  • the first electrode 112 is, for example, a transparent electrode that is transparent or translucent to the wavelength of light emitted from the light emitting layer 144 of the organic layer 140 described later.
  • the first electrode 112 is provided, for example, on the substrate 100 and in the pixel region 300 so as to extend linearly in the Y direction in the drawing.
  • On the substrate 100 for example, a plurality of first electrodes 112 that are separated from each other are arranged in a direction (X direction in the drawing) perpendicular to the extending direction of the first electrodes 112. At this time, the plurality of first electrodes 112 are separated from each other, for example.
  • the pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 4, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • the first electrode 112 is made of, for example, a transparent conductive material.
  • the transparent conductive material constituting the first electrode 112 for example, the same transparent conductive material as that constituting the first conductive film 110 can be used. For this reason, the 1st electrode 112 can have transparency.
  • the first wiring 114 is provided on the substrate 100.
  • the case where the 1st wiring 114 is electrically connected with the 1st electrode 112 is illustrated.
  • a plurality of first wirings 114 connected to different first electrodes 112 are provided on the substrate 100.
  • the plurality of first electrodes 112 in the present embodiment are connected to the lead-out wiring 134 via the first wiring 114, respectively.
  • the first wiring 114 is constituted by the first conductive film 110 made of a conductive material.
  • the first wiring 114 formed of the first conductive film 110 can have transparency.
  • the first electrode 112 and the first wiring 114 are provided integrally on the substrate 100, for example.
  • the first wiring 114 and the first electrode 112 are constituted by the first conductive film 110, for example.
  • a portion of the first conductive film 110 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the first electrode 112.
  • a portion of the first conductive film 110 located outside the pixel region 300 becomes the first wiring 114.
  • the first electrode 112 is connected to the lead wiring 134 through the first wiring 114.
  • a plurality of first conductive films 110 extending in the Y direction in the drawing are provided on the substrate 100.
  • the plurality of first conductive films 110 are arranged in the X direction in the drawing so as to be separated from each other. A portion of the first conductive film 110 located on the end side connected to the extraction wiring 134 from the pixel region 300 indicated by the alternate long and short dash line is the first wiring 114.
  • a lead wiring 134 is provided on the substrate 100 .
  • the lead wiring 134 is connected to the first wiring 114 .
  • a plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other.
  • Each lead-out wiring 134 is connected to the first wiring 114.
  • the plurality of first wires 114 are connected to the outside via the lead wires 134, respectively.
  • a light emission / non-light emission signal is supplied to the organic EL element 20 via the first wiring 114 and the lead-out wiring 134.
  • the lead-out wiring 134 is comprised by the 2nd electrically conductive film 130 comprised with a metal material. Therefore, when the lead wiring 134 is connected to the first wiring 114, the first wiring 114 configured by the first conductive film 110 and the lead wiring 134 configured by the second conductive film 130 are bonded to each other. Thus, the joint structure 200 is formed. In the example illustrated in FIG. 4, the joint structure 200 is formed in a portion surrounded by a broken line.
  • the first wiring 114 is connected to the lead wiring 134 at one end. At this time, the first wiring 114 is bonded to, for example, the lead wiring 134 at the one end portion to form the bonding structure 200.
  • the first wiring 114 extends in the first direction when viewed from the lead wiring 134. In the present embodiment, the first direction refers to the Y direction in the figure, for example.
  • the first wiring 114 is configured by the first conductive film 110.
  • the lead-out wiring 134 is configured by the second conductive film 130.
  • the first wiring 114 has the non-stacked portion 220 including the film thickness change region 222.
  • the film thickness of the non-lamination part 220 changes continuously in the film thickness change area
  • the first wiring 114 is formed so that one end of the first wiring 114 overlaps a part of the lead wiring 134.
  • the first wiring 114 is formed so as to cover a part of each of the upper surface and the side surface of the lead wiring 134, for example. In this case, the first wiring 114 has a stacked portion that overlaps the lead wire 134 and a non-stacked portion 220 that does not overlap the lead wire 134.
  • the first wiring 114 has a film thickness changing region 222 in the non-stacked portion 220.
  • the film thickness of the first wiring 114 is reduced in a region located on the opposite side of the second conductive film 130 as viewed from the film thickness changing region 222. That is, the film thickness in the portion of the first wiring 114 connected to the first electrode 112 can be reduced.
  • the film thickness of the first electrode 112 is reduced by reducing the film thickness of the portion of the first wiring 114 connected to the first electrode 112. It is easy to make it smaller. Therefore, it becomes easy to improve the transparency of the first electrode 112 constituting the organic EL element 20.
  • An insulating layer 120 is provided on the substrate 100 so as to cover the first electrode 112, for example.
  • the insulating layer 120 is provided so as to cover the first electrode 112 and the first wiring 114 and a part of each of the extraction wiring 164 described later.
  • the insulating layer 120 is a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by exposure and development.
  • the insulating layer 120 may be made of a resin material other than polyimide resin, and may be epoxy resin or acrylic resin.
  • the insulating layer 120 is provided with a plurality of first openings 122, for example.
  • the first openings 122 are formed so as to form a matrix, for example.
  • the plurality of first openings 122 are formed so as to be located on the first electrode 112.
  • the plurality of first openings 122 are provided at positions overlapping the second electrode 152 extending in a direction orthogonal to the first electrode 112 (X direction in the figure), for example. For this reason, the plurality of first openings 122 are arranged to form a matrix.
  • the insulating layer 120 is provided with a plurality of second openings 124, for example. As shown in FIG. 5, the second opening 124 is provided, for example, so as to be located on the lead wiring 164.
  • the plurality of second openings 124 are arranged along one side of the matrix formed by the first openings 122. When viewed in a direction along this one side (for example, Y direction in the figure), the second openings 124 are arranged at the same interval as the first openings 122.
  • a partition wall 170 is provided on the insulating layer 120. As shown in FIG. 1, the partition 170 is provided so as to extend in the X direction in the drawing. That is, the partition 170 is formed along the extending direction of the second electrode 152. A plurality of partition walls 170 are provided so as to be arranged in the Y direction in the drawing.
  • the partition wall 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed.
  • the partition wall 170 may be made of a resin material other than a polyimide resin, or may be an epoxy resin or an acrylic resin.
  • the partition wall 170 has, for example, a trapezoidal cross-sectional shape (reverse trapezoidal shape). That is, the width of the upper surface of the partition wall 170 is larger than the width of the bottom surface of the partition wall 170, for example. In this case, even when the plurality of second electrodes 152 are collectively formed by a sputtering method, a vapor deposition method, or the like, the plurality of second electrodes 152 positioned between the adjacent partition walls 170 can be separated from each other. It becomes. Therefore, the second electrode 152 can be easily formed.
  • the planar shape of the partition wall 170 is not limited to that shown in FIG. Therefore, by changing the planar shape of the partition 170, the planar pattern of the plurality of second electrodes 152 that are separated from each other by the partition 170 can be freely changed.
  • an organic layer 140 is formed in the first opening 122.
  • the organic layer 140 is configured by a stacked body in which, for example, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially stacked.
  • the hole injection layer 142 is in contact with the first electrode 112
  • the electron injection layer 146 is in contact with the second electrode 152.
  • the organic layer 140 is sandwiched between the first electrode 112 and the second electrode 152.
  • a hole transport layer may be formed between the hole injection layer 142 and the light emitting layer 144, or an electron transport layer may be formed between the light emitting layer 144 and the electron injection layer 146.
  • the organic layer 140 may not include the hole injection layer 142.
  • a partition 170 is provided on the insulating layer 120.
  • the organic layers 140 provided in each of a plurality of regions sandwiched between adjacent partition walls 170 are separated from each other in the Y direction in the drawing.
  • a laminated film made of the same material as the organic layer 140 is formed on the partition wall 170, for example.
  • each layer constituting the organic layer 140 is provided so as to be continuous between adjacent first openings 122 in the X direction in the drawing in which the partition 170 extends.
  • a second electrode 152 is provided on the organic layer 140.
  • the 2nd electrode 152 becomes a cathode of an organic EL element, for example.
  • the second electrode 152 is provided, for example, so as to extend linearly in the X direction in the drawing.
  • On the substrate 100 for example, a plurality of second electrodes 152 spaced apart from each other are arranged in a direction (Y direction in the drawing) perpendicular to the extending direction of the second electrodes 152.
  • the second electrode 152 is made of a metal material such as tin, magnesium, indium, calcium, aluminum, copper, silver, or an alloy thereof. One of these materials may be used alone, or two or more arbitrary combinations may be used. Note that in the case where the second electrode 152 is a cathode, the second electrode 152 is preferably made of a conductive material having a work function smaller than that of the first electrode 112 that is an anode.
  • a second wiring 154 is provided on the substrate 100.
  • the second wiring 154 is connected to one of the first electrode 112 and the second electrode 152 that is not connected to the first wiring 114.
  • one of the first electrode 112 and the second electrode 152 that is connected to the second wiring 154 is connected to the outside via the second wiring 154.
  • a case where the second wiring 154 is provided on the organic layer 140 and connected to the second electrode 152 is exemplified.
  • a plurality of second wirings 154 connected to the different second electrodes 152 are provided on the organic layer 140.
  • the plurality of second electrodes 152 in the present embodiment are connected to the outside via the second wirings 154, respectively.
  • part of the second wiring 154 is embedded in the second opening 124, and part of the second wiring 154 is connected to an extraction wiring 164 described later.
  • the second wiring 154 is made of, for example, a metal material.
  • a metal material constituting the second wiring 154 for example, the same material as the second electrode 152 can be used.
  • the second electrode 152 and the second wiring 154 are provided integrally on the organic layer 140, for example, and constitute the conductive film 150.
  • a part of the conductive film 150 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the second electrode 152.
  • a portion of the conductive film 150 located outside the pixel region 300 serves as the second wiring 154.
  • the second electrode 152 is connected to the lead wiring 164 via the second wiring 154, for example.
  • a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • a plurality of conductive films 150 extending in the X direction in the drawing are provided on the organic layer 140.
  • the plurality of conductive films 150 are arranged in the Y direction in the drawing so as to be separated from each other.
  • a portion located on the end side connected to the extraction wiring 164 with respect to the pixel region 300 becomes the second wiring 154.
  • the plurality of conductive films 150 are collectively formed on the organic layer 140 using, for example, a sputtering method or a vapor deposition method. Even in such a case, since the partition 170 is formed on the insulating layer 120 in this embodiment, the conductive film 150 provided in each of a plurality of regions sandwiched between adjacent partitions 170 is illustrated in the drawing. They are separated from each other in the Y direction. As a result, it is possible to form a plurality of conductive films 150 arranged in the Y direction in the drawing and extending in the X direction in the drawing so as to be separated from each other. At this time, a film made of the same material as the conductive film 150 is formed over the partition wall 170.
  • a lead wiring 164 is provided on the substrate 100.
  • the second wiring 154 is connected to the outside through the lead wiring 164. Therefore, the second electrode 152 is connected to the outside via the second wiring 154 and the lead wiring 164, and a signal is supplied.
  • the lead wiring 164 is made of, for example, a metal material.
  • the metal material constituting the lead wiring 164 for example, the same material as the lead wiring 134 can be used. In this case, the lead wiring 164 can be formed simultaneously with the lead wiring 134. For this reason, it can suppress that the manufacturing process number of the light-emitting device 10 increases.
  • the lead wiring 134 is formed on the substrate 100.
  • the lead wiring 134 is formed on the substrate 100 using, for example, a coating method, a sputtering method, or a vapor deposition method.
  • the lead wiring 134 is configured by the second conductive film 130.
  • the lead wiring 134 is formed using, for example, the above-described method for forming the second conductive film 130 and the material forming the second conductive film 130.
  • the lead wiring 164 is formed on the substrate 100 simultaneously with the step of forming the lead wiring 134.
  • the lead wiring 164 is formed by the same method and material as the lead wiring 134, for example.
  • the first wiring 114 is formed on the substrate 100.
  • the first wiring 114 is formed by, for example, applying a transparent conductive material-containing coating solution on the substrate 100 and drying it.
  • the first wiring 114 is the first conductive film 110.
  • the first wiring 114 is formed using, for example, the above-described method for forming the first conductive film 110 and the material constituting the first conductive film 110.
  • the first wiring 114 constituted by the first conductive film 110 and the lead wiring 134 constituted by the second conductive film 130 are bonded to each other to form the bonded structure 200.
  • the bonding structure 200 is formed using, for example, the method for forming the bonding structure 200 described above.
  • the first electrode 112 connected to the first wiring 114 is formed together with the first wiring 114.
  • the first electrode 112 is formed by the first conductive film 110 integrally with the first wiring 114, for example.
  • the first wiring 114 is dried.
  • the transparent conductive material includes a conductive polymer
  • the first wiring 114 is dried to increase the cohesive force of the conductive polymer, so that the first wiring 114 can be a strong film.
  • the first wiring 114 is cured by performing a heat treatment on the first wiring 114.
  • the transparent conductive material constituting the first wiring 114 includes a photosensitive material
  • the first wiring 114 may be cured by UV irradiation. The structure obtained at this stage is shown in FIG.
  • the insulating layer 120 is formed on the substrate 100, the first electrode 112, the first wiring 114, and the lead wiring 164.
  • the insulating layer 120 is patterned into a predetermined shape using dry etching or wet etching. As a result, a plurality of first openings 122 and a plurality of second openings 124 are formed in the insulating layer 120. At this time, the plurality of first openings 122 are formed, for example, such that a part of the first electrode 112 is exposed from each first opening 122.
  • a partition wall 170 is formed on the insulating layer 120.
  • the partition wall 170 is obtained by patterning an insulating film provided over the insulating layer 120 into a predetermined shape using dry etching or wet etching.
  • the cross-sectional shape of the partition wall 170 can be changed to an inverted trapezoid by adjusting the conditions during exposure and development. The structure obtained at this stage is shown in FIG.
  • a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially formed in the first opening 122. These are formed using, for example, a coating method or a vapor deposition method. Thereby, the organic layer 140 is formed.
  • the conductive film 150 constituting the second electrode 152 and the second wiring 154 is formed on the organic layer 140.
  • the conductive film 150 is formed so that, for example, a part of the conductive film 150 is located in the second opening 124.
  • the conductive film 150 is formed using, for example, a vapor deposition method or a sputtering method.
  • the organic EL element 20 composed of the first electrode 112, the second electrode 152, and the organic layer 140 sandwiched therebetween is formed on the substrate 100.
  • the light emitting device 10 is formed in this way.
  • the non-stacked portion 220 that does not overlap the second conductive film 130 in the plan view of the first conductive film 110 has the film thickness changing region 222.
  • the film thickness of the non-stacked portion 220 continuously changes in the film thickness changing region 222.
  • a portion in which the film thickness changes discontinuously occurs in the film thickness changing region 222 can be suppressed. That is, it is possible to suppress a sudden change in the electric resistance value based on the discontinuous change in the film thickness in the first conductive film 110.
  • the device 10 can be realized. Thereby, the connection reliability between the 1st electrode 112 and the extraction wiring 134 can be improved. In addition, the operational reliability of the light emitting device 10 can be improved.
  • FIG. 8 is a plan view showing the light emitting device 12 according to the second embodiment, and corresponds to FIG. 1 according to the first embodiment.
  • 9 is a cross-sectional view showing a CC cross section of FIG. 8
  • FIG. 10 is a cross-sectional view showing a DD cross section of FIG.
  • FIG. 11 is a diagram showing a part of the light emitting device 12 shown in FIG. FIG. 11 particularly shows the positional relationship between the first conductive film 110 and the second conductive film 130.
  • the first conductive film 110 in the bonding structure 200 constitutes an electrode constituting, for example, an organic EL element.
  • the second conductive film 130 forms, for example, a lead wiring that is electrically connected to an electrode that forms the organic EL element.
  • the junction structure 200 is formed between the electrode constituting the organic EL element and the lead wiring.
  • the non-laminated portion 220 including the film thickness changing region 222 in which the film thickness continuously changes is formed.
  • the light emitting device 12 has the same configuration as that of the light emitting device 10 according to the first embodiment, except for the configuration of the first electrode 112 and the lead wiring 134.
  • the light emitting device 12 has a joint structure 200.
  • the light emitting device 12 includes the organic EL element 20 and a lead wiring 134.
  • the organic EL element 20 includes a first electrode 112 configured by the first conductive film 110, a second electrode 152, and an organic layer 140 disposed between the first electrode 112 and the second electrode 152. is doing.
  • the lead wiring 134 is joined to the first electrode 112 and is constituted by the second conductive film 130.
  • the first electrodes 112 are arranged on the substrate 100 in the pixel region 300 in a matrix, for example.
  • the plurality of first electrodes 112 arranged in a matrix are separated from each other.
  • the pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 8, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • the first electrode 112 is composed of a first conductive film 110 composed of a conductive material. When the first conductive film 110 is made of a transparent conductive material, the first electrode 112 made of the first conductive film 110 can have transparency.
  • the first wiring 114 constituting the light emitting device 10 according to the first embodiment is not provided.
  • the lead-out wiring 134 extends in the Y direction in the figure.
  • a plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other.
  • Each lead-out wiring 134 is connected to a plurality of first electrodes 112 arranged in the Y direction. For this reason, the plurality of first electrodes 112 are each connected to the outside via the lead wiring 134.
  • a light emission / non-light emission signal is supplied to the organic EL element 20 through the lead wiring 134.
  • the lead-out wiring 134 is comprised by the 2nd electrically conductive film 130 comprised with a metal material.
  • the first electrode 112 configured by the first conductive film 110 and the lead-out wiring 134 configured by the second conductive film 130 are bonded to each other to form the bonded structure 200.
  • the joint structure 200 is formed in a portion surrounded by a broken line.
  • the first electrode 112 is connected to the lead wiring 134 at one end. At this time, the first electrode 112 is bonded to, for example, the lead wiring 134 at the one end portion to form the bonded structure 200. As shown in FIG. 10, a portion of the lead-out wiring 134 that is joined to the first electrode 112 is located, for example, in a region where the organic EL element 20 is formed in plan view.
  • the first electrode 112 extends in the second direction when viewed from the lead wiring 134. In the present embodiment, the second direction refers to, for example, the X direction in the figure.
  • the shape of the first electrode 112 is not particularly limited and can be selected as appropriate in accordance with the design of the organic EL element 20. For example, it is rectangular.
  • the first electrode 112 is composed of the first conductive film 110.
  • the lead-out wiring 134 is configured by the second conductive film 130. Therefore, the first electrode 112 has the non-stacked portion 220 including the film thickness changing region 222. And the film thickness of the non-lamination part 220 changes continuously in the film thickness change area
  • the first electrode 112 is formed so that one end of the first electrode 112 overlaps part of the lead-out wiring 134.
  • the first electrode 112 is formed so as to cover, for example, a part of each of the upper surface and the side surface of the lead-out wiring 134. In this case, the first electrode 112 has a stacked portion that overlaps the lead wiring 134 and a non-stacked portion 220 that does not overlap the lead wiring 134.
  • the first electrode 112 has a film thickness changing region 222 in the non-laminated portion 220.
  • the film thickness of the first electrode 112 decreases in a region located on the side opposite to the second conductive film 130 as viewed from the film thickness change region 222. That is, it is possible to reduce the film thickness in at least a part of the region constituting the pixel in the first electrode 112. Therefore, it becomes easy to improve the transparency of the first electrode 112 constituting the organic EL element 20.
  • the insulating layer 120 is formed so as to cover the lead wiring 134, for example.
  • the insulating layer 120 is provided so as to cover a part of each of the lead wiring 134 and the lead wiring 164.
  • a plurality of first openings 122 are formed in the insulating layer 120 so as to form a matrix, for example.
  • the first electrode 112 is formed in the first opening 122.
  • a plurality of first electrodes 112 arranged in a matrix on the substrate 100 are formed. Further, as shown in FIGS. 9 and 10, the plurality of first electrodes 112 are separated from each other by the insulating layer 120.
  • the first opening 122 is formed, for example, so as to overlap a part of the lead wiring 134 in a plan view. In this case, a part of the lead wiring 134 that overlaps the first opening 122 in plan view is connected to the first electrode 112 formed in the first opening 122.
  • the insulating layer 120 is made of the same material as that of the first embodiment, for example.
  • the partition 170, the organic layer 140, the second electrode 152, the second wiring 154, and the extraction wiring 164 in the present embodiment have the same configuration as that of the first embodiment, for example.
  • connection reliability between the first conductive film 110 and the second conductive film 130 can be improved as in the first embodiment.
  • the light emitting device 12 including the first electrode 112 configured by the first conductive film 110 and the lead-out wiring 134 configured by the second conductive film 130 can be realized. Thereby, the connection reliability between the 1st electrode 112 and the extraction wiring 134 can be improved. In addition, the operational reliability of the light emitting device can be improved.
  • Example 1 First, a metal film made of silver was formed on a glass substrate by a sputtering method. Next, this metal film was patterned into a line shape by dry etching to form a second conductive film. Next, the transparent conductive material-containing coating solution was applied by an inkjet method so as to cover a part of the second conductive film, thereby forming a first conductive film (first coating step). Next, the transparent conductive material-containing coating liquid was applied twice on the non-laminated portion that did not overlap the second conductive film in the first conductive film (second coating step). Thereby, the film thickness change region where the film thickness decreases as the distance from the second conductive film increases in the non-laminated portion.
  • the transparent conductive material-containing coating solution poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT-PSS, CLEVIOS PH510 (manufactured by Heraeus)) in a solvent. A solution obtained by dispersing the solution was used. Subsequently, the transparent conductive material containing coating liquid apply
  • Example 1 the 1st electrically conductive film had the non-lamination part containing the film thickness change area

Abstract

A joining structure obtained by joining a first conductive film (110) and a second conductive film (130) to each other. The first conductive film (110) that constitutes the joining structure is constituted of a conductive material. The second conductive film (130) that constitutes the joining structure is constituted of a metallic material. The first conductive film (110) has a non-layered part that does not overlap with the second conductive film (130). The non-layered part has a film-thickness variation region where the film thickness decreases as the distance from the second conductive film (130) increases. The film thickness of the non-layered part varies continuously along the film-thickness variation region.

Description

接合構造および発光装置Junction structure and light emitting device
 本発明は、接合構造および発光装置に関する。 The present invention relates to a junction structure and a light emitting device.
 照明装置やディスプレイの光源の一つに、有機EL(Organic Electroluminescence)素子がある。有機EL素子は、たとえば透明電極と、これに対向して配置される他の電極と、これらの電極に狭持される有機層と、により構成される。有機EL素子に関する技術としては、たとえば特許文献1および特許文献2に記載のものが挙げられる。 One of the light sources of lighting devices and displays is an organic EL (Organic Electroluminescence) element. An organic EL element is comprised by the transparent electrode, the other electrode arrange | positioned facing this, for example, and the organic layer pinched | interposed into these electrodes. Examples of the technology related to the organic EL element include those described in Patent Document 1 and Patent Document 2.
 特許文献1に記載の技術は、透明電極と入力用電極との間を接続する透明配線の厚みを調節することにより、透明配線の抵抗値を調節するというものである。特許文献2には、ライン状に形成された金属ラインと、当該金属ラインの上面および側面を覆うポリマーラインと、からなる電極を有する発光素子が記載されている。 The technique described in Patent Document 1 is to adjust the resistance value of the transparent wiring by adjusting the thickness of the transparent wiring connecting the transparent electrode and the input electrode. Patent Document 2 describes a light-emitting element having an electrode composed of a metal line formed in a line shape and a polymer line covering the upper surface and side surfaces of the metal line.
特開2001-76885号公報JP 2001-76885 A 特開2006-93123号公報JP 2006-93123 A
 第1導電膜と第2導電膜とを互いに接合させてなる接合構造において、第1導電膜中に膜厚が変化する領域が設けられる場合がある。この場合、膜厚の変化に基づく局所的な電流集中に起因して、接合構造における接続信頼性が低下してしまうおそれがあった。 In a bonding structure in which the first conductive film and the second conductive film are bonded to each other, a region in which the film thickness changes may be provided in the first conductive film. In this case, there is a possibility that the connection reliability in the junction structure is lowered due to local current concentration based on the change in the film thickness.
 本発明が解決しようとする課題としては、互いに接合された二つの導電膜からなる接合構造における接続信頼性を向上させることが一例として挙げられる。 An example of a problem to be solved by the present invention is to improve connection reliability in a joint structure composed of two conductive films joined to each other.
 請求項1に記載の発明は、
 導電材料により構成される第1導電膜と、金属材料により構成される第2導電膜と、が互いに接合してなる接合構造であって、
 前記第1導電膜は、平面視で前記第2導電膜と重ならない非積層部を有しており、
 前記非積層部は、前記第2導電膜から遠ざかるにつれて膜厚が小さくなる膜厚変化領域を有しており、
 前記非積層部の膜厚は、前記膜厚変化領域において連続的に変化する接合構造である。
The invention described in claim 1
A first conductive film made of a conductive material and a second conductive film made of a metal material are bonded to each other;
The first conductive film has a non-stacked portion that does not overlap the second conductive film in plan view,
The non-stacked portion has a film thickness change region in which the film thickness decreases as the distance from the second conductive film increases.
The film thickness of the non-stacked portion is a joint structure that continuously changes in the film thickness change region.
 請求項6に記載の発明は、
 請求項1~3いずれか一項に記載の接合構造を有する発光装置であって、
 第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された有機層と、を有する有機EL素子と、
 前記第1電極と電気的に接続し、かつ前記第1導電膜により構成される第1配線と、
 前記第1配線と接合し、かつ前記第2導電膜により構成される引出配線と、
 を備える発光装置である。
The invention described in claim 6
A light emitting device having the joint structure according to any one of claims 1 to 3,
An organic EL element having a first electrode, a second electrode, and an organic layer disposed between the first electrode and the second electrode;
A first wiring electrically connected to the first electrode and configured by the first conductive film;
A lead wire joined to the first wire and made of the second conductive film;
It is a light-emitting device provided with.
 請求項7に記載の発明は、
 請求項1~3のいずれか一項に記載の接合構造を有する発光装置であって、
 前記第1導電膜により構成される第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された有機層と、を有する有機EL素子と、
 前記第1電極に接合し、かつ前記第2導電膜により構成される引出配線と、
 を備える発光装置である。
The invention described in claim 7
A light-emitting device having the junction structure according to any one of claims 1 to 3,
An organic EL element comprising: a first electrode composed of the first conductive film; a second electrode; and an organic layer disposed between the first electrode and the second electrode;
A lead wire bonded to the first electrode and configured by the second conductive film;
It is a light-emitting device provided with.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on 1st Embodiment. 図1のA-A断面を示す断面図である。FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1. 図1のB-B断面を示す断面図である。FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1. 図1に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 図1に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 第1の実施形態における第1導電膜と、第2導電膜と、により構成される接合構造の一例を示す図である。It is a figure which shows an example of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. 第1の実施形態における第1導電膜と、第2導電膜と、により構成される接合構造の一例を示す図である。It is a figure which shows an example of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. 第2の実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on 2nd Embodiment. 図8のC-C断面を示す断面図である。FIG. 9 is a cross-sectional view showing a CC cross section of FIG. 8. 図8のD-D断面を示す断面図である。FIG. 9 is a cross-sectional view showing a DD cross section of FIG. 8. 図8に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る発光装置10を示す平面図である。図2は図1のA-A断面を示す断面図であり、図3は図1のB-B断面を示す断面図である。
 また、図4および5は、図1に示す発光装置10の一部を示す図である。図4では、とくに第1導電膜110と、第2導電膜130との位置関係が示されている。また、図5では、とくに絶縁層120の構成が示されている。図6および7は、本実施形態における第1導電膜110と、第2導電膜130と、により構成される接合構造200の一例を示す図である。
(First embodiment)
FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment. 2 is a cross-sectional view showing the AA cross section of FIG. 1, and FIG. 3 is a cross-sectional view showing the BB cross section of FIG.
4 and 5 are views showing a part of the light emitting device 10 shown in FIG. In FIG. 4, the positional relationship between the first conductive film 110 and the second conductive film 130 is particularly shown. FIG. 5 particularly shows the configuration of the insulating layer 120. 6 and 7 are diagrams illustrating an example of a bonding structure 200 including the first conductive film 110 and the second conductive film 130 according to the present embodiment.
 接合構造200は、導電材料により構成される第1導電膜110と、金属材料により構成される第2導電膜130と、が互いに接合してなる。第1導電膜110は、平面視で第2導電膜130と重ならない非積層部220を有している。非積層部220は、第2導電膜130から遠ざかるにつれて膜厚が小さくなる膜厚変化領域222を有している。非積層部220の膜厚は、膜厚変化領域222において連続的に変化する。 The bonding structure 200 is formed by bonding a first conductive film 110 made of a conductive material and a second conductive film 130 made of a metal material. The first conductive film 110 has a non-stacked portion 220 that does not overlap the second conductive film 130 in plan view. The non-stacked portion 220 has a film thickness changing region 222 whose film thickness decreases as the distance from the second conductive film 130 increases. The film thickness of the non-stacked portion 220 changes continuously in the film thickness changing region 222.
 また、本実施形態に係る発光装置10は、接合構造200を有している。
 発光装置10は、有機EL素子20と、第1配線114と、引出配線134と、を備えている。有機EL素子20は、第1電極112と、第2電極152と、第1電極112と第2電極152との間に配置された有機層140と、を有している。第1配線114は、第1電極112と電気的に接続し、かつ第1導電膜110により構成されている。引出配線134は、第1配線114と接合し、かつ第2導電膜130により構成されている。
In addition, the light emitting device 10 according to the present embodiment has a joint structure 200.
The light emitting device 10 includes an organic EL element 20, a first wiring 114, and a lead wiring 134. The organic EL element 20 includes a first electrode 112, a second electrode 152, and an organic layer 140 disposed between the first electrode 112 and the second electrode 152. The first wiring 114 is electrically connected to the first electrode 112 and is configured by the first conductive film 110. The lead-out wiring 134 is joined to the first wiring 114 and is configured by the second conductive film 130.
 以下、本実施形態に係る接合構造200の構成の一例、発光装置10の構成の一例、および発光装置10の製造方法の一例につき、詳細に説明する。 Hereinafter, an example of the configuration of the bonding structure 200 according to the present embodiment, an example of the configuration of the light emitting device 10, and an example of a method for manufacturing the light emitting device 10 will be described in detail.
 まず、本実施形態に係る接合構造200の構成の一例について説明する。
 接合構造200は、第1導電膜110と、第2導電膜130と、が互いに接合してなる接合構造である。なお、本明細書において、第1導電膜110と第2導電膜130が接合するとは、第1導電膜110と第2導電膜130との間に他の構成が介在する場合を含む。
 本実施形態において、接合構造200は、たとえば基板100上に形成される。この場合、第1導電膜110および第2導電膜130は、基板100上に形成されることとなる。
First, an example of the configuration of the joint structure 200 according to the present embodiment will be described.
The bonding structure 200 is a bonding structure in which the first conductive film 110 and the second conductive film 130 are bonded to each other. Note that in this specification, the bonding between the first conductive film 110 and the second conductive film 130 includes a case where another structure is interposed between the first conductive film 110 and the second conductive film 130.
In the present embodiment, the bonding structure 200 is formed on the substrate 100, for example. In this case, the first conductive film 110 and the second conductive film 130 are formed on the substrate 100.
 接合構造200は、たとえば有機EL素子を含む発光装置を構成する。発光装置は、たとえば有機EL素子と、有機EL素子を構成する電極に電気的に接続する第1配線と、第1配線に電気的に接続する引出配線と、を備える。このとき、引出配線および第1配線を介して有機EL素子を構成する電極に外部から発光/非発光を制御するための電気信号が供給される。
 本実施形態において、接合構造200のうち第1導電膜110は、たとえば有機EL素子を構成する電極に接続する第1配線を構成する。また、接合構造200のうち第2導電膜130は、たとえば引出配線を構成する。この場合、第1配線と引出配線との間において、接合構造200が形成されることとなる。
The junction structure 200 constitutes a light emitting device including, for example, an organic EL element. The light emitting device includes, for example, an organic EL element, a first wiring that is electrically connected to an electrode that constitutes the organic EL element, and a lead wiring that is electrically connected to the first wiring. At this time, an electrical signal for controlling light emission / non-light emission is supplied from the outside to the electrodes constituting the organic EL element via the lead wiring and the first wiring.
In this embodiment, the 1st electrically conductive film 110 among the joining structures 200 comprises the 1st wiring connected to the electrode which comprises an organic EL element, for example. In addition, the second conductive film 130 of the bonding structure 200 constitutes, for example, a lead wiring. In this case, the junction structure 200 is formed between the first wiring and the lead-out wiring.
 第1導電膜110は、実質的に導電材料を含んで構成される。第1導電膜110を構成する導電材料としては、たとえば透明導電材料、または銀等のペースト状の導電材料が挙げられる。この中でも、透明導電材料がとくに好ましい。第1導電膜110が透明導電材料により構成される場合、透明性を有する導電膜となる。本実施形態において、第1導電膜110は、たとえば基板100平面に平行な一方向に延在する形状を有する。 The first conductive film 110 substantially includes a conductive material. Examples of the conductive material constituting the first conductive film 110 include a transparent conductive material or a paste-like conductive material such as silver. Among these, a transparent conductive material is particularly preferable. When the first conductive film 110 is made of a transparent conductive material, the first conductive film 110 is a transparent conductive film. In the present embodiment, the first conductive film 110 has a shape extending in one direction parallel to the plane of the substrate 100, for example.
 透明導電材料は、たとえばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)等の無機材料、または導電性高分子を含んでなる。
 透明導電材料が導電性高分子を含む場合、第1導電膜110は塗布法を用いて形成することができる。この場合、第1導電膜110を形成する工程において、基板100等の他の構成へ熱負荷がかかってしまうことを抑制することが可能となる。
 また、透明導電材料として無機材料を含む場合には、第1導電膜110は、この無機材料を有機溶剤中に分散させた溶液を塗布することにより形成される塗布型導電膜であることが好ましい。このような場合においても、第1導電膜110を、塗布法を用いて形成することができる。
The transparent conductive material includes, for example, an inorganic material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), or a conductive polymer.
When the transparent conductive material includes a conductive polymer, the first conductive film 110 can be formed using a coating method. In this case, in the step of forming the first conductive film 110, it is possible to suppress a thermal load from being applied to other components such as the substrate 100.
When an inorganic material is included as the transparent conductive material, the first conductive film 110 is preferably a coating-type conductive film formed by applying a solution in which this inorganic material is dispersed in an organic solvent. . Even in such a case, the first conductive film 110 can be formed by a coating method.
 本実施形態において、第1導電膜110を構成する透明導電材料に含まれる導電性高分子は、たとえばπ共役系導電性高分子とポリアニオンを含んでなる導電性高分子である。この場合、とくに導電性や耐熱性、フレキシブル性に優れた第1導電膜110を形成することが可能となる。
 π共役系導電性高分子としては、特に限定されないが、たとえばポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、またはポリチアジル類の鎖状導電性ポリマーを用いることができる。導電性、透明性、安定性等の観点からは、ポリチオフェン類またはポリアニリン類であることが好ましく、ポリエチレンジオキシチオフェンであることがとくに好ましい。
 ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、またはポリアクリル酸を用いることができる。本実施形態において用いられるポリアニオンは、これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
In the present embodiment, the conductive polymer included in the transparent conductive material constituting the first conductive film 110 is a conductive polymer including, for example, a π-conjugated conductive polymer and a polyanion. In this case, it is possible to form the first conductive film 110 that is particularly excellent in conductivity, heat resistance, and flexibility.
The π-conjugated conductive polymer is not particularly limited. A chain conductive polymer of phenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl compounds can be used. From the viewpoint of conductivity, transparency, stability, etc., polythiophenes or polyanilines are preferable, and polyethylene dioxythiophene is particularly preferable.
Polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, or polyacrylic acid can be used. The polyanion used in the present embodiment may be a homopolymer of these or two or more kinds of copolymers.
 第1導電膜110を構成する透明導電材料として導電性高分子を含む場合、透明導電材料は、架橋剤、レベリング剤、または消泡剤等をさらに含んでいてもよい。 When the conductive polymer is included as the transparent conductive material constituting the first conductive film 110, the transparent conductive material may further include a crosslinking agent, a leveling agent, an antifoaming agent, or the like.
 第2導電膜130は、金属材料を含んで構成される。ここで、第2導電膜130に含まれる金属材料としては、たとえば第1導電膜110を構成する導電材料よりも電気抵抗率が低い金属材料が使用される。この場合、第1導電膜110と第2導電膜130は、互いに異なる材料により構成されることとなる。第2導電膜130に含まれる金属材料としては、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、Cu、およびPdが挙げられる。なお、第2導電膜130は、これらの金属材料のうちの1種または2種以上を含む。 The second conductive film 130 includes a metal material. Here, as the metal material contained in the second conductive film 130, for example, a metal material having a lower electrical resistivity than the conductive material constituting the first conductive film 110 is used. In this case, the first conductive film 110 and the second conductive film 130 are made of different materials. Examples of the metal material included in the second conductive film 130 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd. The second conductive film 130 includes one or more of these metal materials.
 第1導電膜110は、平面視で第2導電膜130と重ならない非積層部220を有している。本実施形態においては、第1導電膜110の一部が第2導電膜130上に重なるように、第1導電膜110が設けられる。この場合、第1導電膜110は、平面視で第2導電膜130と重なる積層部と、平面視で第2導電膜130と重ならない非積層部220と、を有することとなる。なお、第1導電膜110は、第2導電膜130と重なる積層部を有していなくともよい。 The first conductive film 110 has a non-stacked portion 220 that does not overlap the second conductive film 130 in plan view. In the present embodiment, the first conductive film 110 is provided so that a part of the first conductive film 110 overlaps the second conductive film 130. In this case, the first conductive film 110 includes a stacked portion that overlaps with the second conductive film 130 in a plan view and a non-stacked portion 220 that does not overlap with the second conductive film 130 in a plan view. Note that the first conductive film 110 does not need to have a stacked portion overlapping the second conductive film 130.
 非積層部220は、第2導電膜130から遠ざかるにつれて膜厚が小さくなる膜厚変化領域222を有している。すなわち、膜厚変化領域222における非積層部220の膜厚は、第2導電膜130から遠ざかるにつれて漸減することとなる。
 また、非積層部220の膜厚は、膜厚変化領域222において連続的に変化する。すなわち、膜厚変化領域222には、非積層部220の膜厚の大きさが不連続に変化する部分が形成されないこととなる。本明細書において、膜厚が連続的に変化するとは、たとえば膜厚変化領域222中に膜厚が変化しない部分が含まれる場合を含む。
The non-stacked portion 220 has a film thickness changing region 222 whose film thickness decreases as the distance from the second conductive film 130 increases. That is, the film thickness of the non-stacked portion 220 in the film thickness change region 222 gradually decreases as the distance from the second conductive film 130 increases.
Further, the film thickness of the non-laminated portion 220 continuously changes in the film thickness changing region 222. That is, in the film thickness change region 222, a portion where the film thickness of the non-stacked portion 220 changes discontinuously is not formed. In this specification, that the film thickness changes continuously includes, for example, a case where the film thickness changing region 222 includes a portion where the film thickness does not change.
 本実施形態によれば、第1導電膜110のうち平面視で第2導電膜130と重ならない非積層部220は、膜厚変化領域222を有している。そして、非積層部220の膜厚は、膜厚変化領域222において連続的に変化する。これにより、第1導電膜110の膜厚が変化する領域である膜厚変化領域222が設けられた場合であっても、膜厚変化領域222において膜厚が不連続に変化する部分が生じることを抑制できる。すなわち、第1導電膜110内における膜厚の不連続な変化に基づいて電気抵抗値の急激な変化が生じることを抑制できる。このため、第1導電膜110における局所的な電流集中を緩和し、互いに接合された第1導電膜110と第2導電膜130からなる接合構造200における接続信頼性を向上させることが可能となる。 According to the present embodiment, the non-stacked portion 220 that does not overlap the second conductive film 130 in the plan view of the first conductive film 110 has the film thickness change region 222. The film thickness of the non-stacked portion 220 continuously changes in the film thickness changing region 222. As a result, even when the film thickness changing region 222, which is the region where the film thickness of the first conductive film 110 changes, is provided, a portion where the film thickness changes discontinuously occurs in the film thickness changing region 222. Can be suppressed. That is, it is possible to suppress a sudden change in the electric resistance value based on the discontinuous change in the film thickness in the first conductive film 110. For this reason, local current concentration in the first conductive film 110 can be reduced, and the connection reliability in the junction structure 200 composed of the first conductive film 110 and the second conductive film 130 bonded to each other can be improved. .
 本実施形態において、第1導電膜110は、たとえば膜厚変化領域222が非積層部220の一部のみを構成するように設けられる。このとき、膜厚変化領域222は、たとえば基板100上における第2導電膜130から離間する位置に形成される。この場合、非積層部220のうち第2導電膜130と膜厚変化領域222との間に位置する部分の膜厚を、厚くすることができる。このため、第1導電膜110が配線や電極等を構成する場合において、配線や電極等の内部における電気抵抗値を低減することが可能となる。
 なお、第1導電膜110は、膜厚変化領域222が第2導電膜130と隣接するよう形成されていてもよい。また、第1導電膜110は、非積層部220の全域が膜厚変化領域222により構成されるよう形成されていてもよい。
In the present embodiment, the first conductive film 110 is provided, for example, such that the film thickness changing region 222 constitutes only a part of the non-stacked portion 220. At this time, the film thickness changing region 222 is formed, for example, at a position away from the second conductive film 130 on the substrate 100. In this case, the film thickness of the portion located between the second conductive film 130 and the film thickness changing region 222 in the non-stacked portion 220 can be increased. For this reason, when the 1st electrically conductive film 110 comprises wiring, an electrode, etc., it becomes possible to reduce the electrical resistance value inside wiring, an electrode, etc.
The first conductive film 110 may be formed so that the film thickness changing region 222 is adjacent to the second conductive film 130. Further, the first conductive film 110 may be formed so that the entire non-stacked portion 220 is constituted by the film thickness changing region 222.
 図6においては、膜厚変化領域222が、基板100上における第2導電膜130から離間する位置に形成される場合が例示されている。図6示す例では、非積層部220の膜厚は、第2導電膜130と膜厚変化領域222とに挟まれる領域において一定の大きさを有する。すなわち、第2導電膜130と膜厚変化領域222とに挟まれる領域において、非積層部220の上面は、基板100平面に平行な平坦面を有することとなる。 FIG. 6 illustrates the case where the film thickness changing region 222 is formed at a position on the substrate 100 that is separated from the second conductive film 130. In the example illustrated in FIG. 6, the film thickness of the non-stacked portion 220 has a certain size in a region sandwiched between the second conductive film 130 and the film thickness changing region 222. In other words, in the region sandwiched between the second conductive film 130 and the film thickness changing region 222, the upper surface of the non-stacked portion 220 has a flat surface parallel to the plane of the substrate 100.
 図7においても、膜厚変化領域222が、基板100上における第2導電膜130から離間する位置に形成される場合が例示されている。図7に示す例において、非積層部220は、第2導電膜130と膜厚変化領域222との間において、第2導電膜130から遠ざかるにつれて膜厚が大きくなる膜厚変化領域224を有している。このとき、膜厚変化領域224における非積層部220の膜厚は、第2導電膜130から遠ざかるにつれて漸増することとなる。図7に示す例では、非積層部220の膜厚は、膜厚変化領域224において連続的に変化する。すなわち、膜厚変化領域224には、非積層部220の膜厚の大きさが不連続に変化する部分が形成されないこととなる。この場合、膜厚変化領域224において、膜厚の変化に基づく電気抵抗値の変化を緩和することが可能となる。 7 also illustrates the case where the film thickness changing region 222 is formed at a position away from the second conductive film 130 on the substrate 100. In the example shown in FIG. 7, the non-stacked portion 220 has a film thickness change region 224 in which the film thickness increases as the distance from the second conductive film 130 increases between the second conductive film 130 and the film thickness change region 222. ing. At this time, the film thickness of the non-stacked portion 220 in the film thickness changing region 224 gradually increases as the distance from the second conductive film 130 increases. In the example shown in FIG. 7, the film thickness of the non-stacked portion 220 continuously changes in the film thickness change region 224. That is, in the film thickness change region 224, a portion where the film thickness of the non-stacked portion 220 changes discontinuously is not formed. In this case, in the film thickness change region 224, it is possible to mitigate the change in electrical resistance value based on the film thickness change.
 なお、非積層部220は、平面視で第2導電膜130と膜厚変化領域222との間において、第2導電膜130から遠ざかるにつれて膜厚が大きくなる、または小さくなる膜厚変化領域を複数有していてもよい。この場合、全ての膜厚変化領域において、非積層部220の膜厚が連続的に変化するように、第1導電膜110が形成されることが好ましい。
 また、非積層部220のうち少なくとも第2導電膜130と膜厚変化領域222との間に位置する部分の膜厚は、たとえば第1導電膜110のうちの第2導電膜130と重なる積層部の膜厚と第2導電膜130の膜厚の合計以上である。
Note that the non-stacked portion 220 has a plurality of film thickness change regions in which the film thickness increases or decreases as the distance from the second conductive film 130 increases between the second conductive film 130 and the film thickness change region 222 in plan view. You may have. In this case, it is preferable that the first conductive film 110 be formed so that the film thickness of the non-stacked portion 220 continuously changes in all film thickness change regions.
The film thickness of at least a portion of the non-stacked portion 220 located between the second conductive film 130 and the film thickness changing region 222 is, for example, a stacked portion overlapping the second conductive film 130 of the first conductive film 110. And the total thickness of the second conductive film 130 or more.
 非積層部220の膜厚は、膜厚変化領域222からみて第2導電膜130と反対側に位置する領域において、たとえば一定の大きさを有する。すなわち、膜厚変化領域222からみて第2導電膜130と反対側に位置する領域において、非積層部220の上面は、基板100平面に平行な平坦面を有することとなる。なお、非積層部220は、膜厚変化領域222からみて第2導電膜130と反対側に位置する領域において、第2導電膜130から遠ざかるにつれて膜厚が大きく、または小さくなる膜厚変化領域を有していてもよい。 The film thickness of the non-stacked portion 220 has, for example, a certain size in a region located on the side opposite to the second conductive film 130 when viewed from the film thickness changing region 222. In other words, the upper surface of the non-stacked portion 220 has a flat surface parallel to the plane of the substrate 100 in the region located on the opposite side of the second conductive film 130 from the film thickness changing region 222. The non-stacked portion 220 has a film thickness change region in which the film thickness increases or decreases as the distance from the second conductive film 130 increases in a region located on the opposite side of the second conductive film 130 from the film thickness change region 222. You may have.
 非積層部220の上面のうち膜厚変化領域222に位置する部分は、たとえば基板100平面に対して傾斜する傾斜面である。この傾斜面は、たとえば不連続な段差を有していない滑らかな面とすることができる。
 本実施形態において、非積層部220の上面のうち膜厚変化領域222に位置する部分は、基板100平面に対する垂線208からの角度が15°以上である。これにより、第1導電膜110のうち膜厚変化領域222における電気抵抗値の変化を、さらに緩和することができる。このため、互いに接合された第1導電膜110と第2導電膜130からなる接合構造200における接続信頼性を、さらに向上させることが可能となる。図6および図7に示す例では、非積層部220の上面のうち膜厚変化領域222に位置する部分において、基板100平面に対する垂線208からの角度θが15°以上となる。
A portion of the upper surface of the non-stacked portion 220 located in the film thickness changing region 222 is, for example, an inclined surface that is inclined with respect to the plane of the substrate 100. For example, the inclined surface can be a smooth surface having no discontinuous steps.
In the present embodiment, the portion of the upper surface of the non-stacked portion 220 located in the film thickness changing region 222 has an angle from the normal 208 to the plane of the substrate 100 of 15 ° or more. Thereby, the change of the electrical resistance value in the film thickness change region 222 in the first conductive film 110 can be further alleviated. For this reason, it becomes possible to further improve the connection reliability in the junction structure 200 composed of the first conductive film 110 and the second conductive film 130 bonded to each other. In the example shown in FIGS. 6 and 7, the angle θ from the normal 208 to the plane of the substrate 100 is 15 ° or more in the portion located in the film thickness change region 222 on the upper surface of the non-stacked portion 220.
 本実施形態において、膜厚変化領域222における最大の膜厚を有する厚膜部204の膜厚をD1とし、最小の膜厚を有する薄膜部202の膜厚をD2とする。この場合、D1≧1.1×D2を満たすことが好ましい。これにより、薄膜部202の膜厚に対し、厚膜部204の膜厚を十分に大きくすることができる。
 この場合、膜厚変化領域222と第2導電膜130との間における非積層部220の膜厚を十分に大きくできる。このため、第1導電膜110が配線や電極等を構成する場合において、配線や電極等の内部における電気抵抗値を十分に低減することが可能となる。また、非積層部220のうち、膜厚変化領域222からみて第2導電膜130とは反対側に位置する部分における膜厚を十分に小さくし、その透明性の向上を図ることもできる。
In the present embodiment, the film thickness of the thick film portion 204 having the maximum film thickness in the film thickness change region 222 is D1, and the film thickness of the thin film portion 202 having the minimum film thickness is D2. In this case, it is preferable that D1 ≧ 1.1 × D2. Thereby, the film thickness of the thick film part 204 can be made sufficiently larger than the film thickness of the thin film part 202.
In this case, the film thickness of the non-stacked portion 220 between the film thickness changing region 222 and the second conductive film 130 can be sufficiently increased. For this reason, when the 1st electrically conductive film 110 comprises wiring, an electrode, etc., it becomes possible to fully reduce the electrical resistance value inside wiring, an electrode, etc. In addition, in the non-stacked portion 220, the film thickness in the portion located on the side opposite to the second conductive film 130 as viewed from the film thickness change region 222 can be made sufficiently small, and the transparency can be improved.
 本実施形態においては、たとえば次のようにして第1導電膜110および第2導電膜130が互いに接合してなる接合構造200が形成される。
 まず、基板100上に第2導電膜130を形成する。第2導電膜130は、たとえば塗布法、スパッタリング法または蒸着法を用いて形成される。当該工程において使用される塗布法としては、特に限定されないが、たとえばインクジェット法、スクリーン印刷法、スプレー塗布法、凸版印刷法、グラビア印刷法またはディスペンサー塗布法が挙げられる。
 塗布法により第2導電膜130を形成する際に用いられる塗布液は、たとえばバインダ樹脂および有機溶剤を含む。バインダ樹脂としては、たとえばセルロース系樹脂、エポキシ系樹脂、またはアクリル系樹脂を用いることができる。有機溶剤としては、たとえば炭化水素系溶剤、またはアルコール系溶剤を用いることができる。また、塗布液中に含有される金属粒子は、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、Cu、またはPdである。当該塗布液中には、これらの金属粒子のうちの1種または2種以上が含まれる。
In the present embodiment, for example, the bonding structure 200 in which the first conductive film 110 and the second conductive film 130 are bonded to each other is formed as follows.
First, the second conductive film 130 is formed over the substrate 100. The second conductive film 130 is formed using, for example, a coating method, a sputtering method, or a vapor deposition method. Although it does not specifically limit as a coating method used in the said process, For example, the inkjet method, screen printing method, spray coating method, letterpress printing method, gravure printing method, or dispenser coating method is mentioned.
The coating liquid used when forming the 2nd electrically conductive film 130 by the apply | coating method contains binder resin and an organic solvent, for example. As the binder resin, for example, a cellulose resin, an epoxy resin, or an acrylic resin can be used. As the organic solvent, for example, a hydrocarbon solvent or an alcohol solvent can be used. Further, the metal particles contained in the coating liquid are, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, or Pd. The coating liquid contains one or more of these metal particles.
 次に、基板100上に、第1導電膜110を形成する。第1導電膜110は、たとえば透明導電材料含有塗布液を基板100上に塗布し、これを乾燥することにより形成される。第1導電膜110は、たとえば第2導電膜130の一部を覆うように形成される。
 透明導電材料含有塗布液は、特に限定されないが、たとえばインクジェット法、スクリーン印刷法、凸版印刷法、グラビア印刷法、ダイコート、スピンコート、またはスプレーを用いて基板100上に塗布される。第1導電膜110を形成する当該工程において用いられる透明導電材料含有塗布液は、たとえば上述した透明導電材料に加え、有機溶剤や水等を含む。有機溶剤としては、たとえばアルコール系溶剤を用いることができる。なお、第1導電膜110は、銀等のペースト状の導電材料を基板100上に塗布し、これを乾燥することにより形成されてもよい。
Next, a first conductive film 110 is formed over the substrate 100. The first conductive film 110 is formed, for example, by applying a transparent conductive material-containing coating solution on the substrate 100 and drying it. The first conductive film 110 is formed so as to cover a part of the second conductive film 130, for example.
The transparent conductive material-containing coating solution is not particularly limited, but is applied onto the substrate 100 using, for example, an ink jet method, a screen printing method, a relief printing method, a gravure printing method, a die coat, a spin coat, or a spray. The transparent conductive material-containing coating solution used in the step of forming the first conductive film 110 includes, for example, an organic solvent and water in addition to the above-described transparent conductive material. As the organic solvent, for example, an alcohol solvent can be used. The first conductive film 110 may be formed by applying a paste-like conductive material such as silver on the substrate 100 and drying it.
 第1導電膜110を形成する当該工程は、たとえば次のように行われる。
 まず、透明導電材料含有塗布液を、第2導電膜130の一部を覆うように基板100上に塗布する(第1塗布工程)。これにより、基板100上に第1導電膜110が形成される。次いで、第1導電膜110のうち第2導電膜130と重ならない非積層部220上に、透明導電材料塗布液をさらに塗布する(第2塗布工程)。これにより、非積層部220に、第2導電膜130から遠ざかるにつれて膜厚が小さくなる膜厚変化領域222が形成される。なお、上記第2塗布工程において上記塗布液を塗布する回数は、特に限定されず、求められる非積層部220の膜厚に従い適宜選択することが可能である。その後、基板100上に形成された第1導電膜110を乾燥する。
 本実施形態においては、塗布法により第1導電膜110を形成する場合において、塗布液を塗布する回数や、塗布液中における導電性高分子の含有量、溶剤の種類等をそれぞれ調節することにより、膜厚変化領域222において連続的に膜厚が変化する非積層部220が形成された第1導電膜110を実現することができる。また、印刷版または塗布装置から供給される塗布材料の量や、塗布回数の調整、構造物を設けて塗布材料の流動を調整すること等により第1導電膜110の形状を調整することも可能である。
 本実施形態では、このようにして接合構造200が形成される。
The process of forming the first conductive film 110 is performed as follows, for example.
First, a transparent conductive material-containing coating solution is applied on the substrate 100 so as to cover a part of the second conductive film 130 (first coating step). Thereby, the first conductive film 110 is formed on the substrate 100. Next, a transparent conductive material coating solution is further applied on the non-laminated portion 220 that does not overlap the second conductive film 130 in the first conductive film 110 (second coating step). As a result, a film thickness changing region 222 whose film thickness decreases as the distance from the second conductive film 130 increases in the non-stacked portion 220. In addition, the frequency | count of apply | coating the said coating liquid in a said 2nd application | coating process is not specifically limited, It is possible to select suitably according to the film thickness of the non-lamination part 220 calculated | required. Thereafter, the first conductive film 110 formed on the substrate 100 is dried.
In the present embodiment, when the first conductive film 110 is formed by a coating method, by adjusting the number of times the coating liquid is applied, the content of the conductive polymer in the coating liquid, the type of solvent, and the like. Thus, it is possible to realize the first conductive film 110 in which the non-stacked portion 220 whose film thickness continuously changes in the film thickness changing region 222 is formed. It is also possible to adjust the shape of the first conductive film 110 by adjusting the amount of coating material supplied from the printing plate or coating device, the number of coatings, and adjusting the flow of coating material by providing a structure. It is.
In the present embodiment, the joining structure 200 is formed in this way.
 次に、発光装置10の構成の一例について説明する。
 図1においては、発光装置10がディスプレイである場合が例示される。
 なお、発光装置10は、照明装置であってもよい。発光装置10が照明装置である場合、発光装置10は、たとえば互いに発光色が異なるライン状の有機層140を複数繰り返し並べた構成を有する。これにより、演色性に優れた照明装置が実現される。また、照明装置である発光装置10は、面状の有機層140を有していてもよい。
Next, an example of the configuration of the light emitting device 10 will be described.
In FIG. 1, the case where the light-emitting device 10 is a display is illustrated.
The light emitting device 10 may be a lighting device. When the light-emitting device 10 is an illumination device, the light-emitting device 10 has a configuration in which, for example, a plurality of linear organic layers 140 having different emission colors are arranged repeatedly. Thereby, the illuminating device excellent in color rendering properties is realized. In addition, the light-emitting device 10 that is a lighting device may have a planar organic layer 140.
 基板100は、たとえば透明基板である。本実施形態において、基板100は、ガラス基板とすることができる。これにより、耐熱性等に優れた発光装置10を安価に製造することが可能となる。 The substrate 100 is, for example, a transparent substrate. In the present embodiment, the substrate 100 can be a glass substrate. Thereby, the light emitting device 10 having excellent heat resistance and the like can be manufactured at low cost.
 基板100は、樹脂材料により構成されるフィルム状の基板であってもよい。この場合、特にフレキシブル性の高いディスプレイを実現することが可能となる。フィルム状の基板を構成する樹脂材料としては、たとえばポリエチレンテレフタレート、ポリエチレンナフタレートおよびポリカーボネートが挙げられる。 The substrate 100 may be a film-like substrate made of a resin material. In this case, a display with particularly high flexibility can be realized. Examples of the resin material constituting the film substrate include polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
 ディスプレイである発光装置10は、たとえばアレイ状に配列された複数の有機EL素子20を基板100上に有する。有機EL素子20は、基板100上に設けられた第1電極112と、第1電極112上に設けられた有機層140と、有機層140上に設けられた第2電極152と、を有している。このとき、有機層140は、第1電極112と第2電極152との間に配置されることとなる。 The light emitting device 10 that is a display has a plurality of organic EL elements 20 arranged in an array on the substrate 100, for example. The organic EL element 20 includes a first electrode 112 provided on the substrate 100, an organic layer 140 provided on the first electrode 112, and a second electrode 152 provided on the organic layer 140. ing. At this time, the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
 本実施形態では、たとえば図中Y方向に延びる複数の第1電極112と、図中X方向に延びる複数の第2電極152と、が基板100上に設けられる。そして、第1電極112と第2電極152が平面視で互いに重なる各部分において、有機EL素子20が形成される。これにより、基板100上には、アレイ状に配列された複数の有機EL素子20が形成されることとなる。 In the present embodiment, for example, a plurality of first electrodes 112 extending in the Y direction in the drawing and a plurality of second electrodes 152 extending in the X direction in the drawing are provided on the substrate 100. The organic EL element 20 is formed in each portion where the first electrode 112 and the second electrode 152 overlap each other in plan view. As a result, a plurality of organic EL elements 20 arranged in an array are formed on the substrate 100.
 第1電極112は、たとえば有機EL素子の陽極となる。この場合、第1電極112は、たとえば後述する有機層140のうちの発光層144から発光される光の波長に対して透明または半透明である透明電極となる。また、第1電極112は、たとえば基板100上であって、かつ画素領域300内において、図中Y方向に直線状に延在するように設けられる。また、基板100上には、たとえば互いに離間する複数の第1電極112が、第1電極112の延在方向と垂直な方向(図中X方向)に配列される。このとき、複数の第1電極112は、たとえば互いに離間する。なお、画素領域300は、複数の有機EL素子20を含む領域である。図4に示す例では、一点鎖線により囲まれた領域が画素領域300に該当する。 The first electrode 112 serves as an anode of an organic EL element, for example. In this case, the first electrode 112 is, for example, a transparent electrode that is transparent or translucent to the wavelength of light emitted from the light emitting layer 144 of the organic layer 140 described later. Further, the first electrode 112 is provided, for example, on the substrate 100 and in the pixel region 300 so as to extend linearly in the Y direction in the drawing. On the substrate 100, for example, a plurality of first electrodes 112 that are separated from each other are arranged in a direction (X direction in the drawing) perpendicular to the extending direction of the first electrodes 112. At this time, the plurality of first electrodes 112 are separated from each other, for example. The pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 4, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
 本実施形態において、第1電極112は、たとえば透明導電材料により構成される。第1電極112を構成する透明導電材料としては、たとえば第1導電膜110を構成する透明導電材料と同様のものを用いることができる。このため、第1電極112は透明性を有することができる。 In the present embodiment, the first electrode 112 is made of, for example, a transparent conductive material. As the transparent conductive material constituting the first electrode 112, for example, the same transparent conductive material as that constituting the first conductive film 110 can be used. For this reason, the 1st electrode 112 can have transparency.
 基板100上には、たとえば第1配線114が設けられている。本実施形態では、第1配線114が、第1電極112と電気的に接続する場合が例示される。このとき、基板100上には、それぞれ異なる第1電極112へ接続する複数の第1配線114が設けられる。このため、本実施形態における複数の第1電極112は、それぞれ第1配線114を介して引出配線134へ接続されることとなる。 On the substrate 100, for example, the first wiring 114 is provided. In this embodiment, the case where the 1st wiring 114 is electrically connected with the 1st electrode 112 is illustrated. At this time, a plurality of first wirings 114 connected to different first electrodes 112 are provided on the substrate 100. For this reason, the plurality of first electrodes 112 in the present embodiment are connected to the lead-out wiring 134 via the first wiring 114, respectively.
 本実施形態において、第1配線114は、導電材料により構成される第1導電膜110により構成される。第1導電膜110が透明導電材料により構成される場合、第1導電膜110により構成される第1配線114は透明性を有することができる。 In the present embodiment, the first wiring 114 is constituted by the first conductive film 110 made of a conductive material. In the case where the first conductive film 110 is made of a transparent conductive material, the first wiring 114 formed of the first conductive film 110 can have transparency.
 本実施形態において、第1電極112および第1配線114は、たとえば基板100上に一体として設けられる。この場合、第1配線114および第1電極112は、たとえば第1導電膜110により構成されることとなる。このとき、第1導電膜110のうち、複数の有機EL素子20を含む画素領域300内に位置する部分が、第1電極112となる。また、第1導電膜110のうち、画素領域300外に位置する部分が、第1配線114となる。第1電極112は、第1配線114を介して引出配線134に接続する。
 図4に示す例において、基板100上には、図中Y方向に延在する第1導電膜110が複数設けられている。これら複数の第1導電膜110は、互いに離間するよう図中X方向に配列されている。そして、第1導電膜110のうち、一点鎖線で示される画素領域300よりも引出配線134と接続する端部側に位置する部分が、第1配線114となる。
In the present embodiment, the first electrode 112 and the first wiring 114 are provided integrally on the substrate 100, for example. In this case, the first wiring 114 and the first electrode 112 are constituted by the first conductive film 110, for example. At this time, a portion of the first conductive film 110 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the first electrode 112. Further, a portion of the first conductive film 110 located outside the pixel region 300 becomes the first wiring 114. The first electrode 112 is connected to the lead wiring 134 through the first wiring 114.
In the example shown in FIG. 4, a plurality of first conductive films 110 extending in the Y direction in the drawing are provided on the substrate 100. The plurality of first conductive films 110 are arranged in the X direction in the drawing so as to be separated from each other. A portion of the first conductive film 110 located on the end side connected to the extraction wiring 134 from the pixel region 300 indicated by the alternate long and short dash line is the first wiring 114.
 基板100上には、引出配線134が設けられている。
 本実施形態では、引出配線134が第1配線114に接続する場合が例示される。基板100上には、互いに離間するよう図中X方向に配列された複数の引出配線134が設けられている。各引出配線134は、それぞれ第1配線114に接続される。このため、複数の第1配線114は、それぞれ引出配線134を介して外部へ接続されることとなる。有機EL素子20には、第1配線114および引出配線134を介して発光/非発光の信号が供給される。
On the substrate 100, a lead wiring 134 is provided.
In the present embodiment, a case where the lead wiring 134 is connected to the first wiring 114 is exemplified. A plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other. Each lead-out wiring 134 is connected to the first wiring 114. For this reason, the plurality of first wires 114 are connected to the outside via the lead wires 134, respectively. A light emission / non-light emission signal is supplied to the organic EL element 20 via the first wiring 114 and the lead-out wiring 134.
 本実施形態において、引出配線134は、金属材料により構成される第2導電膜130により構成される。このため、引出配線134が第1配線114に接続される場合、第1導電膜110により構成される第1配線114と、第2導電膜130により構成される引出配線134と、が互いに接合して接合構造200が形成されることとなる。図4に示す例では、破線により囲まれた部分において接合構造200が形成される。
 第1配線114は、一の端部において引出配線134と接続している。このとき、第1配線114は、たとえば上記一の端部において引出配線134と接合し、接合構造200を形成することとなる。第1配線114は、引出配線134からみて第1方向に延びている。なお、本実施形態において第1方向とは、たとえば図中Y方向をさす。
In this embodiment, the lead-out wiring 134 is comprised by the 2nd electrically conductive film 130 comprised with a metal material. Therefore, when the lead wiring 134 is connected to the first wiring 114, the first wiring 114 configured by the first conductive film 110 and the lead wiring 134 configured by the second conductive film 130 are bonded to each other. Thus, the joint structure 200 is formed. In the example illustrated in FIG. 4, the joint structure 200 is formed in a portion surrounded by a broken line.
The first wiring 114 is connected to the lead wiring 134 at one end. At this time, the first wiring 114 is bonded to, for example, the lead wiring 134 at the one end portion to form the bonding structure 200. The first wiring 114 extends in the first direction when viewed from the lead wiring 134. In the present embodiment, the first direction refers to the Y direction in the figure, for example.
 第1配線114は、第1導電膜110により構成される。また、引出配線134は、第2導電膜130により構成される。このため、第1配線114は、膜厚変化領域222を含む非積層部220を有することとなる。そして、非積層部220の膜厚は、上述したとおり膜厚変化領域222において連続的に変化する。
 本実施形態においては、第1配線114の一端が引出配線134の一部上に重なるように、第1配線114が形成される。また、第1配線114は、たとえば引出配線134のうちの上面と、側面と、のそれぞれの一部を覆うように形成される。この場合、第1配線114は、引出配線134と重なる積層部と、引出配線134と重ならない非積層部220を有することとなる。
The first wiring 114 is configured by the first conductive film 110. In addition, the lead-out wiring 134 is configured by the second conductive film 130. For this reason, the first wiring 114 has the non-stacked portion 220 including the film thickness change region 222. And the film thickness of the non-lamination part 220 changes continuously in the film thickness change area | region 222 as above-mentioned.
In the present embodiment, the first wiring 114 is formed so that one end of the first wiring 114 overlaps a part of the lead wiring 134. The first wiring 114 is formed so as to cover a part of each of the upper surface and the side surface of the lead wiring 134, for example. In this case, the first wiring 114 has a stacked portion that overlaps the lead wire 134 and a non-stacked portion 220 that does not overlap the lead wire 134.
 第1配線114は、非積層部220において膜厚変化領域222を有している。この場合、第1配線114の膜厚は、膜厚変化領域222からみて第2導電膜130と反対側に位置する領域において小さくなる。すなわち、第1配線114のうち第1電極112と接続する部分における膜厚を小さくすることができる。
 第1配線114と第1電極112が一体として形成される場合には、第1配線114のうち第1電極112と接続する部分における膜厚を小さくすることにより、第1電極112の膜厚を小さくすることも容易となる。したがって、有機EL素子20を構成する第1電極112の透明性の向上を図ることが容易となる。
The first wiring 114 has a film thickness changing region 222 in the non-stacked portion 220. In this case, the film thickness of the first wiring 114 is reduced in a region located on the opposite side of the second conductive film 130 as viewed from the film thickness changing region 222. That is, the film thickness in the portion of the first wiring 114 connected to the first electrode 112 can be reduced.
In the case where the first wiring 114 and the first electrode 112 are integrally formed, the film thickness of the first electrode 112 is reduced by reducing the film thickness of the portion of the first wiring 114 connected to the first electrode 112. It is easy to make it smaller. Therefore, it becomes easy to improve the transparency of the first electrode 112 constituting the organic EL element 20.
 基板100上には、たとえば第1電極112を覆うように絶縁層120が設けられている。本実施形態においては、たとえば第1電極112と、第1配線114および後述する引出配線164それぞれの一部と、を覆うように絶縁層120が設けられる。
 絶縁層120は、ポリイミド系樹脂等の感光性の樹脂であり、露光および現像されることによって所望のパターンに形成される。絶縁層120は、ポリイミド系樹脂以外の樹脂材料により構成されてもよく、エポキシ系樹脂やアクリル系樹脂であってもよい。
An insulating layer 120 is provided on the substrate 100 so as to cover the first electrode 112, for example. In the present embodiment, for example, the insulating layer 120 is provided so as to cover the first electrode 112 and the first wiring 114 and a part of each of the extraction wiring 164 described later.
The insulating layer 120 is a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by exposure and development. The insulating layer 120 may be made of a resin material other than polyimide resin, and may be epoxy resin or acrylic resin.
 絶縁層120には、たとえば複数の第1開口122が設けられている。図5に示すように、第1開口122は、たとえばマトリクスを構成するように形成される。
 本実施形態においては、複数の第1開口122は、第1電極112上に位置するように形成される。図中Y方向に延在する各第1電極112の上には、たとえば複数の第1開口122が所定の間隔を空けて図中Y方向に配列される。また、これらの複数の第1開口122は、たとえば第1電極112と直交する方向(図中X方向)に延在する第2電極152と重なる位置に設けられる。このため、複数の第1開口122は、マトリクスを構成するように配置されることとなる。
The insulating layer 120 is provided with a plurality of first openings 122, for example. As shown in FIG. 5, the first openings 122 are formed so as to form a matrix, for example.
In the present embodiment, the plurality of first openings 122 are formed so as to be located on the first electrode 112. On each first electrode 112 extending in the Y direction in the figure, for example, a plurality of first openings 122 are arranged in the Y direction in the figure at a predetermined interval. In addition, the plurality of first openings 122 are provided at positions overlapping the second electrode 152 extending in a direction orthogonal to the first electrode 112 (X direction in the figure), for example. For this reason, the plurality of first openings 122 are arranged to form a matrix.
 絶縁層120には、たとえば複数の第2開口124が設けられている。
 図5に示すように、第2開口124は、たとえば引出配線164上に位置するように設けられる。複数の第2開口124は、第1開口122が構成するマトリクスの一辺に沿って配置されている。この一辺に沿う方向(たとえば図中Y方向)でみた場合、第2開口124は、第1開口122と同じ間隔で配置されている。
The insulating layer 120 is provided with a plurality of second openings 124, for example.
As shown in FIG. 5, the second opening 124 is provided, for example, so as to be located on the lead wiring 164. The plurality of second openings 124 are arranged along one side of the matrix formed by the first openings 122. When viewed in a direction along this one side (for example, Y direction in the figure), the second openings 124 are arranged at the same interval as the first openings 122.
 絶縁層120上には、たとえば隔壁170が設けられている。
 図1に示すように、隔壁170は、図中X方向に延在するように設けられる。すなわち、隔壁170は、第2電極152の延在方向に沿って形成されることとなる。また、隔壁170は、図中Y方向に配列されるよう複数設けられる。
 隔壁170は、たとえばポリイミド系樹脂等の感光性の樹脂であり、露光および現像されることによって所望のパターンに形成される。なお、隔壁170は、ポリイミド系樹脂以外の樹脂材料により構成されてもよく、エポキシ系樹脂やアクリル系樹脂であってもよい。
On the insulating layer 120, for example, a partition wall 170 is provided.
As shown in FIG. 1, the partition 170 is provided so as to extend in the X direction in the drawing. That is, the partition 170 is formed along the extending direction of the second electrode 152. A plurality of partition walls 170 are provided so as to be arranged in the Y direction in the drawing.
The partition wall 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed. The partition wall 170 may be made of a resin material other than a polyimide resin, or may be an epoxy resin or an acrylic resin.
 隔壁170は、たとえば断面が台形の上下を逆にした形状(逆台形)を有している。すなわち、隔壁170の上面の幅は、たとえば隔壁170の底面の幅よりも大きい。この場合、複数の第2電極152をスパッタリング法や蒸着法等により一括して形成する場合であっても、隣接する隔壁170間にそれぞれ位置する複数の第2電極152を互いに分断させることが可能となる。したがって、第2電極152を容易に形成することができる。
 なお、隔壁170の平面形状は、図1に示すものに限られない。このため、隔壁170の平面形状を変更することにより、隔壁170により互いに分断される複数の第2電極152の平面パターンを自由に変更することが可能となる。
The partition wall 170 has, for example, a trapezoidal cross-sectional shape (reverse trapezoidal shape). That is, the width of the upper surface of the partition wall 170 is larger than the width of the bottom surface of the partition wall 170, for example. In this case, even when the plurality of second electrodes 152 are collectively formed by a sputtering method, a vapor deposition method, or the like, the plurality of second electrodes 152 positioned between the adjacent partition walls 170 can be separated from each other. It becomes. Therefore, the second electrode 152 can be easily formed.
The planar shape of the partition wall 170 is not limited to that shown in FIG. Therefore, by changing the planar shape of the partition 170, the planar pattern of the plurality of second electrodes 152 that are separated from each other by the partition 170 can be freely changed.
 図2に示すように、第1開口122の中には、たとえば有機層140が形成されている。
 本実施形態において、有機層140は、たとえば正孔注入層142、発光層144および電子注入層146を順に積層した積層体により構成される。このとき、正孔注入層142は第1電極112に接し、電子注入層146は第2電極152に接する。このため、有機層140は、第1電極112と第2電極152との間に狭持されることとなる。
 なお、正孔注入層142と発光層144の間には正孔輸送層が形成されてもよいし、発光層144と電子注入層146の間には電子輸送層が形成されてもよい。また、有機層140は、正孔注入層142を有していなくともよい。
As shown in FIG. 2, for example, an organic layer 140 is formed in the first opening 122.
In the present embodiment, the organic layer 140 is configured by a stacked body in which, for example, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially stacked. At this time, the hole injection layer 142 is in contact with the first electrode 112, and the electron injection layer 146 is in contact with the second electrode 152. For this reason, the organic layer 140 is sandwiched between the first electrode 112 and the second electrode 152.
Note that a hole transport layer may be formed between the hole injection layer 142 and the light emitting layer 144, or an electron transport layer may be formed between the light emitting layer 144 and the electron injection layer 146. Further, the organic layer 140 may not include the hole injection layer 142.
 本実施形態において、絶縁層120上には、たとえば隔壁170が設けられている。この場合、図2に示すように、隣接する隔壁170間に挟まれる複数の領域それぞれに設けられた有機層140は、図中Y方向において互いに分断される。なお、隔壁170上には、たとえば有機層140と同一材料からなる積層膜が形成される。
 一方で、図3に示すように、有機層140を構成する各層は、隔壁170が延在する図中X方向において、隣り合う第1開口122の間において連続するように設けられる。
In the present embodiment, for example, a partition 170 is provided on the insulating layer 120. In this case, as shown in FIG. 2, the organic layers 140 provided in each of a plurality of regions sandwiched between adjacent partition walls 170 are separated from each other in the Y direction in the drawing. A laminated film made of the same material as the organic layer 140 is formed on the partition wall 170, for example.
On the other hand, as shown in FIG. 3, each layer constituting the organic layer 140 is provided so as to be continuous between adjacent first openings 122 in the X direction in the drawing in which the partition 170 extends.
 有機層140上には、第2電極152が設けられている。
 本実施形態において、第2電極152は、たとえば有機EL素子の陰極となる。第2電極152は、たとえば図中X方向に直線状に延在するように設けられる。また、基板100上には、たとえば互いに離間する複数の第2電極152が、第2電極152の延在方向と垂直な方向(図中Y方向)に配列される。
A second electrode 152 is provided on the organic layer 140.
In this embodiment, the 2nd electrode 152 becomes a cathode of an organic EL element, for example. The second electrode 152 is provided, for example, so as to extend linearly in the X direction in the drawing. On the substrate 100, for example, a plurality of second electrodes 152 spaced apart from each other are arranged in a direction (Y direction in the drawing) perpendicular to the extending direction of the second electrodes 152.
 第2電極152は、たとえば錫、マグネシウム、インジウム、カルシウム、アルミニウム、銅、もしくは銀、またはこれらの合金等の金属材料により構成される。これらの材料は、一種を単独で用いてもよく、二種以上の任意の組み合わせを用いてもよい。なお、第2電極152が陰極である場合、第2電極152は、陽極である第1電極112よりも仕事関数が小さい導電性材料により構成されることが好ましい。 The second electrode 152 is made of a metal material such as tin, magnesium, indium, calcium, aluminum, copper, silver, or an alloy thereof. One of these materials may be used alone, or two or more arbitrary combinations may be used. Note that in the case where the second electrode 152 is a cathode, the second electrode 152 is preferably made of a conductive material having a work function smaller than that of the first electrode 112 that is an anode.
 基板100上には、第2配線154が設けられている。
 第2配線154は、第1電極112または第2電極152のうち第1配線114と接続していない一方に接続している。これにより、第1電極112および第2電極152のうち第2配線154と接続されるいずれか一方は、第2配線154を介して外部へ接続されることとなる。
 本実施形態においては、第2配線154が有機層140上に設けられ、第2電極152に接続される場合が例示される。このとき、有機層140上には、それぞれ異なる第2電極152へ接続する複数の第2配線154が設けられる。このため、本実施形態における複数の第2電極152は、それぞれ第2配線154を介して外部へ接続されることとなる。なお、第2配線154は、たとえば一部が第2開口124内に埋め込まれ、当該一部において後述する引出配線164に接続される。
A second wiring 154 is provided on the substrate 100.
The second wiring 154 is connected to one of the first electrode 112 and the second electrode 152 that is not connected to the first wiring 114. As a result, one of the first electrode 112 and the second electrode 152 that is connected to the second wiring 154 is connected to the outside via the second wiring 154.
In the present embodiment, a case where the second wiring 154 is provided on the organic layer 140 and connected to the second electrode 152 is exemplified. At this time, a plurality of second wirings 154 connected to the different second electrodes 152 are provided on the organic layer 140. For this reason, the plurality of second electrodes 152 in the present embodiment are connected to the outside via the second wirings 154, respectively. For example, part of the second wiring 154 is embedded in the second opening 124, and part of the second wiring 154 is connected to an extraction wiring 164 described later.
 第2配線154は、たとえば金属材料により構成される。第2配線154を構成する金属材料としては、たとえば第2電極152と同様のものを用いることができる。 The second wiring 154 is made of, for example, a metal material. As a metal material constituting the second wiring 154, for example, the same material as the second electrode 152 can be used.
 本実施形態において、第2電極152および第2配線154は、たとえば有機層140上に一体として設けられ、導電膜150を構成する。この場合、導電膜150のうち、複数の有機EL素子20を含む画素領域300内に位置する部分が、第2電極152となる。また、導電膜150のうち、画素領域300外に位置する部分が、第2配線154となる。第2電極152は、たとえば第2配線154を介して引出配線164に接続する。なお、図1に示す例では、一点鎖線で囲まれた領域が画素領域300に該当する。
 図1に示す例において、有機層140上には、図中X方向に延在する導電膜150が複数設けられている。また、これらの複数の導電膜150は、互いに離間するよう図中Y方向に配列されている。そして、導電膜150のうち、画素領域300よりも引出配線164と接続する端部側に位置する部分が、第2配線154となる。
In the present embodiment, the second electrode 152 and the second wiring 154 are provided integrally on the organic layer 140, for example, and constitute the conductive film 150. In this case, a part of the conductive film 150 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the second electrode 152. In addition, a portion of the conductive film 150 located outside the pixel region 300 serves as the second wiring 154. The second electrode 152 is connected to the lead wiring 164 via the second wiring 154, for example. In the example illustrated in FIG. 1, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
In the example shown in FIG. 1, a plurality of conductive films 150 extending in the X direction in the drawing are provided on the organic layer 140. The plurality of conductive films 150 are arranged in the Y direction in the drawing so as to be separated from each other. In the conductive film 150, a portion located on the end side connected to the extraction wiring 164 with respect to the pixel region 300 becomes the second wiring 154.
 複数の導電膜150は、たとえばスパッタリング法または蒸着法等を用いて有機層140上に一括で形成される。このような場合であっても、本実施形態においては絶縁層120上に隔壁170が形成されているため、隣接する隔壁170間に挟まれる複数の領域それぞれに設けられた導電膜150は図中Y方向において互いに分断されることとなる。
 これにより、互いに離間するよう図中Y方向に配列され、かつ図中X方向に延在する複数の導電膜150を形成することが可能となる。このとき、隔壁170上には、導電膜150と同一材料からなる膜が形成されることとなる。
The plurality of conductive films 150 are collectively formed on the organic layer 140 using, for example, a sputtering method or a vapor deposition method. Even in such a case, since the partition 170 is formed on the insulating layer 120 in this embodiment, the conductive film 150 provided in each of a plurality of regions sandwiched between adjacent partitions 170 is illustrated in the drawing. They are separated from each other in the Y direction.
As a result, it is possible to form a plurality of conductive films 150 arranged in the Y direction in the drawing and extending in the X direction in the drawing so as to be separated from each other. At this time, a film made of the same material as the conductive film 150 is formed over the partition wall 170.
 基板100上には、たとえば引出配線164が設けられている。第2配線154は、引出配線164を介して外部に接続する。このため、第2電極152は、第2配線154および引出配線164を介して外部に接続され、信号が供給されることとなる。 On the substrate 100, for example, a lead wiring 164 is provided. The second wiring 154 is connected to the outside through the lead wiring 164. Therefore, the second electrode 152 is connected to the outside via the second wiring 154 and the lead wiring 164, and a signal is supplied.
 引出配線164は、たとえば金属材料により構成される。引出配線164を構成する金属材料としては、たとえば引出配線134と同様のものを用いることができる。この場合、引出配線164は、引出配線134と同時に形成することが可能となる。このため、発光装置10の製造工程数が増大することを抑制することができる。 The lead wiring 164 is made of, for example, a metal material. As the metal material constituting the lead wiring 164, for example, the same material as the lead wiring 134 can be used. In this case, the lead wiring 164 can be formed simultaneously with the lead wiring 134. For this reason, it can suppress that the manufacturing process number of the light-emitting device 10 increases.
 次に、発光装置10の製造方法の一例について説明する。
 まず、基板100上に引出配線134を形成する。引出配線134は、たとえば塗布法、スパッタリング法または蒸着法を用いて基板100上に形成される。なお、本実施形態において、引出配線134は、第2導電膜130により構成される。このため、引出配線134は、たとえば上述した第2導電膜130を形成する方法および第2導電膜130を構成する材料を用いて形成される。
Next, an example of a method for manufacturing the light emitting device 10 will be described.
First, the lead wiring 134 is formed on the substrate 100. The lead wiring 134 is formed on the substrate 100 using, for example, a coating method, a sputtering method, or a vapor deposition method. In the present embodiment, the lead wiring 134 is configured by the second conductive film 130. For this reason, the lead wiring 134 is formed using, for example, the above-described method for forming the second conductive film 130 and the material forming the second conductive film 130.
 また、本実施形態においては、たとえば引出配線134を形成する工程と同時に、基板100上に引出配線164が形成される。この場合、引出配線164は、たとえば引出配線134と同様の方法および材料により形成される。 In this embodiment, for example, the lead wiring 164 is formed on the substrate 100 simultaneously with the step of forming the lead wiring 134. In this case, the lead wiring 164 is formed by the same method and material as the lead wiring 134, for example.
 次に、基板100上に、第1配線114を形成する。第1配線114は、たとえば透明導電材料含有塗布液を基板100上に塗布し、これを乾燥することにより形成される。なお、本実施形態において、第1配線114は、第1導電膜110である。このため、第1配線114は、たとえば上述した第1導電膜110を形成する方法および第1導電膜110を構成する材料を用いて形成される。また、第1導電膜110により構成される第1配線114および第2導電膜130により構成される引出配線134は、互いに接合して接合構造200を形成する。このとき、接合構造200は、たとえば上述した接合構造200を形成する方法を用いて形成される。
 第1配線114を形成する上記工程においては、たとえば第1配線114とともに、第1配線114に接続する第1電極112が形成される。この場合、第1電極112は、たとえば第1配線114と一体として第1導電膜110により形成される。
Next, the first wiring 114 is formed on the substrate 100. The first wiring 114 is formed by, for example, applying a transparent conductive material-containing coating solution on the substrate 100 and drying it. In the present embodiment, the first wiring 114 is the first conductive film 110. For this reason, the first wiring 114 is formed using, for example, the above-described method for forming the first conductive film 110 and the material constituting the first conductive film 110. In addition, the first wiring 114 constituted by the first conductive film 110 and the lead wiring 134 constituted by the second conductive film 130 are bonded to each other to form the bonded structure 200. At this time, the bonding structure 200 is formed using, for example, the method for forming the bonding structure 200 described above.
In the step of forming the first wiring 114, for example, the first electrode 112 connected to the first wiring 114 is formed together with the first wiring 114. In this case, the first electrode 112 is formed by the first conductive film 110 integrally with the first wiring 114, for example.
 次に、第1配線114に対し熱処理を施す。これにより、第1配線114を乾燥させる。透明導電材料が導電性高分子を含む場合には、第1配線114を乾燥させることにより導電性高分子の凝集力が高まり、第1配線114を強固な膜とすることができる。また、第1配線114に対し熱処理を施すことにより、第1配線114の硬化が行われる。また、第1配線114を構成する透明導電材料が感光性材料を含む場合には、UV照射により第1配線114を硬化してもよい。
 この段階において得られる構造が、図4に示されるものである。
Next, heat treatment is performed on the first wiring 114. Thereby, the first wiring 114 is dried. When the transparent conductive material includes a conductive polymer, the first wiring 114 is dried to increase the cohesive force of the conductive polymer, so that the first wiring 114 can be a strong film. Further, the first wiring 114 is cured by performing a heat treatment on the first wiring 114. When the transparent conductive material constituting the first wiring 114 includes a photosensitive material, the first wiring 114 may be cured by UV irradiation.
The structure obtained at this stage is shown in FIG.
 次に、基板100上、第1電極112上、第1配線114上および引出配線164上に絶縁層120を形成する。絶縁層120は、ドライエッチングまたはウェットエッチング等を用いて所定の形状にパターニングされる。これにより、絶縁層120に、複数の第1開口122および複数の第2開口124が形成される。このとき、複数の第1開口122は、たとえば各第1開口122から第1電極112の一部が露出するように形成される。 Next, the insulating layer 120 is formed on the substrate 100, the first electrode 112, the first wiring 114, and the lead wiring 164. The insulating layer 120 is patterned into a predetermined shape using dry etching or wet etching. As a result, a plurality of first openings 122 and a plurality of second openings 124 are formed in the insulating layer 120. At this time, the plurality of first openings 122 are formed, for example, such that a part of the first electrode 112 is exposed from each first opening 122.
 次に、絶縁層120上に隔壁170を形成する。隔壁170は、絶縁層120上に設けられた絶縁膜をドライエッチングまたはウェットエッチング等を用いて所定の形状にパターニングすることにより得られる。隔壁170が感光性樹脂により形成される場合、露光および現像時の条件を調節することにより、隔壁170の断面形状を逆台形にすることができる。この段階において得られる構造が、図5に示されるものである。 Next, a partition wall 170 is formed on the insulating layer 120. The partition wall 170 is obtained by patterning an insulating film provided over the insulating layer 120 into a predetermined shape using dry etching or wet etching. When the partition wall 170 is formed of a photosensitive resin, the cross-sectional shape of the partition wall 170 can be changed to an inverted trapezoid by adjusting the conditions during exposure and development. The structure obtained at this stage is shown in FIG.
 次に、第1開口122内に、正孔注入層142、発光層144および電子注入層146を順に形成する。これらは、たとえば塗布法または蒸着法を用いて形成される。
 これにより、有機層140が形成される。
Next, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially formed in the first opening 122. These are formed using, for example, a coating method or a vapor deposition method.
Thereby, the organic layer 140 is formed.
 次に、有機層140上に、第2電極152および第2配線154を構成する導電膜150を形成する。このとき、たとえば導電膜150の一部が第2開口124内に位置するように、導電膜150が形成される。導電膜150は、たとえば蒸着法またはスパッタリング法を用いて形成される。
 これにより、第1電極112と、第2電極152と、これらに狭持された有機層140と、により構成される有機EL素子20が、基板100上に形成されることとなる。
 本実施形態においては、たとえばこのようにして発光装置10が形成される。
Next, the conductive film 150 constituting the second electrode 152 and the second wiring 154 is formed on the organic layer 140. At this time, the conductive film 150 is formed so that, for example, a part of the conductive film 150 is located in the second opening 124. The conductive film 150 is formed using, for example, a vapor deposition method or a sputtering method.
As a result, the organic EL element 20 composed of the first electrode 112, the second electrode 152, and the organic layer 140 sandwiched therebetween is formed on the substrate 100.
In the present embodiment, for example, the light emitting device 10 is formed in this way.
 以上、本実施形態によれば、第1導電膜110のうち平面視で第2導電膜130と重ならない非積層部220は、膜厚変化領域222を有している。そして、非積層部220の膜厚は、膜厚変化領域222において連続的に変化する。これにより、第1導電膜110に膜厚が変化する領域である膜厚変化領域222が設けられた場合であっても、膜厚変化領域222において膜厚が不連続に変化する部分が生じることを抑制できる。すなわち、第1導電膜110内における膜厚の不連続な変化に基づいて電気抵抗値の急激な変化が生じることを抑制できる。このため、第1導電膜110における局所的な電流集中を緩和し、互いに接合された第1導電膜110と第2導電膜130からなる接合構造200における接続信頼性を向上させることが可能となる。
 また、有機EL素子20を構成する第1電極112に接続され、かつ第1導電膜110により構成される第1配線114と、第2導電膜130により構成される引出配線134と、を備える発光装置10を実現することができる。これにより、第1電極112と引出配線134との間における接続信頼性を向上させることができる。また、発光装置10の動作信頼性を向上させることも可能となる。
As described above, according to the present embodiment, the non-stacked portion 220 that does not overlap the second conductive film 130 in the plan view of the first conductive film 110 has the film thickness changing region 222. The film thickness of the non-stacked portion 220 continuously changes in the film thickness changing region 222. Thus, even when the first conductive film 110 is provided with a film thickness changing region 222 that is a region in which the film thickness changes, a portion in which the film thickness changes discontinuously occurs in the film thickness changing region 222. Can be suppressed. That is, it is possible to suppress a sudden change in the electric resistance value based on the discontinuous change in the film thickness in the first conductive film 110. For this reason, local current concentration in the first conductive film 110 can be reduced, and the connection reliability in the junction structure 200 composed of the first conductive film 110 and the second conductive film 130 bonded to each other can be improved. .
In addition, a light emission including a first wiring 114 connected to the first electrode 112 configuring the organic EL element 20 and configured by the first conductive film 110 and an extraction wiring 134 configured by the second conductive film 130. The device 10 can be realized. Thereby, the connection reliability between the 1st electrode 112 and the extraction wiring 134 can be improved. In addition, the operational reliability of the light emitting device 10 can be improved.
(第2の実施形態)
 図8は、第2の実施形態に係る発光装置12を示す平面図であり、第1の実施形態に係る図1に対応している。図9は、図8のC-C断面を示す断面図であり、図10は図8のD-D断面を示す断面図である。図11は、図8に示す発光装置12の一部を示す図である。図11では、とくに第1導電膜110と第2導電膜130との位置関係が示されている。
(Second Embodiment)
FIG. 8 is a plan view showing the light emitting device 12 according to the second embodiment, and corresponds to FIG. 1 according to the first embodiment. 9 is a cross-sectional view showing a CC cross section of FIG. 8, and FIG. 10 is a cross-sectional view showing a DD cross section of FIG. FIG. 11 is a diagram showing a part of the light emitting device 12 shown in FIG. FIG. 11 particularly shows the positional relationship between the first conductive film 110 and the second conductive film 130.
 本実施形態において、接合構造200のうち第1導電膜110は、たとえば有機EL素子を構成する電極を構成する。接合構造200のうち第2導電膜130は、たとえば有機EL素子を構成する電極と電気的に接続する引出配線を構成する。この場合、有機EL素子を構成する電極と、引出配線と、の間において、接合構造200が形成される。このとき、有機EL素子を構成する電極において、膜厚が連続的に変化する膜厚変化領域222を含む非積層部220が形成されることとなる。 In the present embodiment, the first conductive film 110 in the bonding structure 200 constitutes an electrode constituting, for example, an organic EL element. In the bonding structure 200, the second conductive film 130 forms, for example, a lead wiring that is electrically connected to an electrode that forms the organic EL element. In this case, the junction structure 200 is formed between the electrode constituting the organic EL element and the lead wiring. At this time, in the electrode constituting the organic EL element, the non-laminated portion 220 including the film thickness changing region 222 in which the film thickness continuously changes is formed.
 本実施形態に係る発光装置12は、第1電極112、および引出配線134の構成を除いて第1の実施形態に係る発光装置10と同様の構成を有する。
 発光装置12は、接合構造200を有している。発光装置12は、有機EL素子20と、引出配線134と、を備えている。有機EL素子20は、第1導電膜110により構成される第1電極112と、第2電極152と、第1電極112と第2電極152との間に配置された有機層140と、を有している。引出配線134は、第1電極112と接合し、かつ第2導電膜130により構成されている。
The light emitting device 12 according to the present embodiment has the same configuration as that of the light emitting device 10 according to the first embodiment, except for the configuration of the first electrode 112 and the lead wiring 134.
The light emitting device 12 has a joint structure 200. The light emitting device 12 includes the organic EL element 20 and a lead wiring 134. The organic EL element 20 includes a first electrode 112 configured by the first conductive film 110, a second electrode 152, and an organic layer 140 disposed between the first electrode 112 and the second electrode 152. is doing. The lead wiring 134 is joined to the first electrode 112 and is constituted by the second conductive film 130.
 以下、発光装置12の構成の一例について説明する。 Hereinafter, an example of the configuration of the light emitting device 12 will be described.
 本実施形態において、第1電極112は、たとえば基板100上であって、画素領域300内にマトリクス状に配置される。マトリクス状に配置された複数の第1電極112は、互いに離間する。なお、画素領域300は、複数の有機EL素子20を含む領域である。図8に示す例では、一点鎖線により囲まれた領域が画素領域300に該当する。
 第1電極112は、導電材料により構成される第1導電膜110により構成される。第1導電膜110が透明導電材料により構成される場合、第1導電膜110により構成される第1電極112は透明性を有することができる。
In the present embodiment, the first electrodes 112 are arranged on the substrate 100 in the pixel region 300 in a matrix, for example. The plurality of first electrodes 112 arranged in a matrix are separated from each other. The pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 8, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
The first electrode 112 is composed of a first conductive film 110 composed of a conductive material. When the first conductive film 110 is made of a transparent conductive material, the first electrode 112 made of the first conductive film 110 can have transparency.
 本実施形態に係る発光装置12においては、第1の実施形態に係る発光装置10を構成する第1配線114が設けられていない。 In the light emitting device 12 according to the present embodiment, the first wiring 114 constituting the light emitting device 10 according to the first embodiment is not provided.
 本実施形態では、引出配線134が第1電極112に接続される場合が例示される。引出配線134は、図中Y方向に延在している。また、基板100上には、互いに離間するよう図中X方向に配列された複数の引出配線134が設けられている。各引出配線134は、それぞれY方向に配列された複数の第1電極112に接続される。このため、複数の第1電極112は、それぞれ引出配線134を介して外部へ接続されることとなる。有機EL素子20には、引出配線134を介して発光/非発光の信号が供給される。
 本実施形態において、引出配線134は、金属材料により構成される第2導電膜130により構成される。このため、第1導電膜110により構成される第1電極112と、第2導電膜130により構成される引出配線134と、が互いに接合して接合構造200が形成されることとなる。図11に示す例では、破線により囲まれた部分において接合構造200が形成される。
In the present embodiment, a case where the lead wiring 134 is connected to the first electrode 112 is exemplified. The lead-out wiring 134 extends in the Y direction in the figure. A plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other. Each lead-out wiring 134 is connected to a plurality of first electrodes 112 arranged in the Y direction. For this reason, the plurality of first electrodes 112 are each connected to the outside via the lead wiring 134. A light emission / non-light emission signal is supplied to the organic EL element 20 through the lead wiring 134.
In this embodiment, the lead-out wiring 134 is comprised by the 2nd electrically conductive film 130 comprised with a metal material. For this reason, the first electrode 112 configured by the first conductive film 110 and the lead-out wiring 134 configured by the second conductive film 130 are bonded to each other to form the bonded structure 200. In the example illustrated in FIG. 11, the joint structure 200 is formed in a portion surrounded by a broken line.
 第1電極112は、一の端部において引出配線134と接続している。このとき、第1電極112は、たとえば上記一の端部において引出配線134と接合し、接合構造200を形成することとなる。図10に示すように、引出配線134のうち第1電極112と接合する部分は、たとえば平面視で有機EL素子20を形成する領域内に位置する。
 第1電極112は、引出配線134からみて第2方向に延びている。なお、本実施形態において第2方向とは、たとえば図中X方向をさす。第1電極112の形状は、特に限定されず有機EL素子20の設計に併せて適宜選択可能であるが、たとえば矩形である。
The first electrode 112 is connected to the lead wiring 134 at one end. At this time, the first electrode 112 is bonded to, for example, the lead wiring 134 at the one end portion to form the bonded structure 200. As shown in FIG. 10, a portion of the lead-out wiring 134 that is joined to the first electrode 112 is located, for example, in a region where the organic EL element 20 is formed in plan view.
The first electrode 112 extends in the second direction when viewed from the lead wiring 134. In the present embodiment, the second direction refers to, for example, the X direction in the figure. The shape of the first electrode 112 is not particularly limited and can be selected as appropriate in accordance with the design of the organic EL element 20. For example, it is rectangular.
 第1電極112は、第1導電膜110により構成される。また、引出配線134は、第2導電膜130により構成される。このため、第1電極112は、膜厚変化領域222を含む非積層部220を有することとなる。そして、非積層部220の膜厚は、上述したとおり膜厚変化領域222において連続的に変化する。
 図11に示す例においては、第1電極112の一端が引出配線134の一部上に重なるように、第1電極112が形成される。また、第1電極112は、たとえば引出配線134のうちの上面と、側面と、のそれぞれの一部を覆うように形成される。この場合、第1電極112は、引出配線134と重なる積層部と、引出配線134と重ならない非積層部220を有することとなる。
The first electrode 112 is composed of the first conductive film 110. In addition, the lead-out wiring 134 is configured by the second conductive film 130. Therefore, the first electrode 112 has the non-stacked portion 220 including the film thickness changing region 222. And the film thickness of the non-lamination part 220 changes continuously in the film thickness change area | region 222 as above-mentioned.
In the example shown in FIG. 11, the first electrode 112 is formed so that one end of the first electrode 112 overlaps part of the lead-out wiring 134. The first electrode 112 is formed so as to cover, for example, a part of each of the upper surface and the side surface of the lead-out wiring 134. In this case, the first electrode 112 has a stacked portion that overlaps the lead wiring 134 and a non-stacked portion 220 that does not overlap the lead wiring 134.
 第1電極112は、非積層部220において膜厚変化領域222を有している。この場合、第1電極112の膜厚は、膜厚変化領域222からみて第2導電膜130と反対側に位置する領域において小さくなる。すなわち、第1電極112のうち画素を構成する領域の少なくとも一部における膜厚を小さくすることができる。したがって、有機EL素子20を構成する第1電極112の透明性の向上を図ることが容易となる。 The first electrode 112 has a film thickness changing region 222 in the non-laminated portion 220. In this case, the film thickness of the first electrode 112 decreases in a region located on the side opposite to the second conductive film 130 as viewed from the film thickness change region 222. That is, it is possible to reduce the film thickness in at least a part of the region constituting the pixel in the first electrode 112. Therefore, it becomes easy to improve the transparency of the first electrode 112 constituting the organic EL element 20.
 絶縁層120は、たとえば引出配線134を覆うように形成される。本実施形態においては、たとえば引出配線134と引出配線164のそれぞれの一部を覆うように絶縁層120が設けられる。また、図11に示すように、絶縁層120には、複数の第1開口122が、たとえばマトリクスを構成するように形成される。
 本実施形態においては、第1電極112は、第1開口122内に形成される。これにより、基板100上にマトリクス状に配置された複数の第1電極112が形成される。また、図9および10に示すように、複数の第1電極112は、絶縁層120によって互いに離間されることとなる。第1開口122は、たとえば引出配線134の一部と平面視で重なるように形成される。この場合、引出配線134のうちの第1開口122と平面視で重なる一部が、第1開口122に形成された第1電極112と接続することとなる。
 絶縁層120は、たとえば第1の実施形態と同様の材料により構成される。
The insulating layer 120 is formed so as to cover the lead wiring 134, for example. In the present embodiment, for example, the insulating layer 120 is provided so as to cover a part of each of the lead wiring 134 and the lead wiring 164. Also, as shown in FIG. 11, a plurality of first openings 122 are formed in the insulating layer 120 so as to form a matrix, for example.
In the present embodiment, the first electrode 112 is formed in the first opening 122. As a result, a plurality of first electrodes 112 arranged in a matrix on the substrate 100 are formed. Further, as shown in FIGS. 9 and 10, the plurality of first electrodes 112 are separated from each other by the insulating layer 120. The first opening 122 is formed, for example, so as to overlap a part of the lead wiring 134 in a plan view. In this case, a part of the lead wiring 134 that overlaps the first opening 122 in plan view is connected to the first electrode 112 formed in the first opening 122.
The insulating layer 120 is made of the same material as that of the first embodiment, for example.
 本実施形態における隔壁170、有機層140、第2電極152、第2配線154、および引出配線164は、たとえば第1の実施形態と同様の構成を有する。 The partition 170, the organic layer 140, the second electrode 152, the second wiring 154, and the extraction wiring 164 in the present embodiment have the same configuration as that of the first embodiment, for example.
 以上、本実施形態においても、第1の実施形態と同様に、第1導電膜110と第2導電膜130との間における接続信頼性を向上させることができる。
 また、本実施形態によれば、第1導電膜110により構成される第1電極112と、第2導電膜130により構成される引出配線134と、を備える発光装置12を実現することができる。これにより、第1電極112と引出配線134との間における接続信頼性を向上させることができる。また、発光装置の動作信頼性を向上させることも可能となる。
As described above, also in the present embodiment, the connection reliability between the first conductive film 110 and the second conductive film 130 can be improved as in the first embodiment.
In addition, according to the present embodiment, the light emitting device 12 including the first electrode 112 configured by the first conductive film 110 and the lead-out wiring 134 configured by the second conductive film 130 can be realized. Thereby, the connection reliability between the 1st electrode 112 and the extraction wiring 134 can be improved. In addition, the operational reliability of the light emitting device can be improved.
 以下、実施形態を、実施例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, embodiments will be described in detail with reference to examples. In addition, this embodiment is not limited to description of these Examples at all.
(実施例1)
 まず、ガラス基板上に、銀からなる金属膜を、スパッタリング法を用いて形成した。次いで、この金属膜をドライエッチングによりライン状にパターニングし、第2導電膜を形成した。次いで、透明導電材料含有塗布液を、第2導電膜の一部を覆うようにインクジェット法により塗布して第1導電膜を形成した(第1塗布工程)。次いで、第1導電膜のうち第2導電膜と重ならない非積層部上に、透明導電材料含有塗布液を2回塗布した(第2塗布工程)。これにより、上記非積層部に、第2導電膜から遠ざかるにつれて膜厚が小さくなる膜厚変化領域が形成された。第1塗布工程および第2塗布工程において、透明導電材料含有塗布液としては、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT-PSS、CLEVIOS PH510(Heraeus社製))を溶剤中へ分散して得られる溶液を使用した。次いで、ガラス基板上に塗布された透明導電材料含有塗布液を乾燥した。これにより、第1導電膜と、第2導電膜と、からなる構造体を作製した。
 このようにして得られた構造体を、第1の実施形態に係る発光装置に適用した。
(Example 1)
First, a metal film made of silver was formed on a glass substrate by a sputtering method. Next, this metal film was patterned into a line shape by dry etching to form a second conductive film. Next, the transparent conductive material-containing coating solution was applied by an inkjet method so as to cover a part of the second conductive film, thereby forming a first conductive film (first coating step). Next, the transparent conductive material-containing coating liquid was applied twice on the non-laminated portion that did not overlap the second conductive film in the first conductive film (second coating step). Thereby, the film thickness change region where the film thickness decreases as the distance from the second conductive film increases in the non-laminated portion. In the first coating step and the second coating step, as the transparent conductive material-containing coating solution, poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT-PSS, CLEVIOS PH510 (manufactured by Heraeus)) in a solvent. A solution obtained by dispersing the solution was used. Subsequently, the transparent conductive material containing coating liquid apply | coated on the glass substrate was dried. Thereby, the structure which consists of a 1st electrically conductive film and a 2nd electrically conductive film was produced.
The structure thus obtained was applied to the light emitting device according to the first embodiment.
 実施例1では、第1導電膜は、第2導電膜から遠ざかるにつれて膜厚が小さくなる膜厚変化領域を含む非積層部を有していた。また、非積層部の膜厚は、膜厚変化領域において連続的に変化していた。非積層部の上面のうち膜厚変化領域に位置する部分は、ガラス基板平面に対する垂線からの角度が15°以上であった。
 実施例1においては、第1導電膜と第2導電膜との間に長時間電流を流した際における、第1導電膜と第2導電膜との間の接続信頼性に優れていた。
In Example 1, the 1st electrically conductive film had the non-lamination part containing the film thickness change area | region where a film thickness becomes small as it distanced from the 2nd electrically conductive film. Further, the film thickness of the non-laminated portion continuously changed in the film thickness change region. Of the upper surface of the non-laminated portion, the portion located in the film thickness change region had an angle from the normal to the glass substrate plane of 15 ° or more.
In Example 1, the connection reliability between the first conductive film and the second conductive film was excellent when a current was passed between the first conductive film and the second conductive film for a long time.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (7)

  1.  導電材料により構成される第1導電膜と、金属材料により構成される第2導電膜と、が互いに接合してなる接合構造であって、
     前記第1導電膜は、平面視で前記第2導電膜と重ならない非積層部を有しており、
     前記非積層部は、前記第2導電膜から遠ざかるにつれて膜厚が小さくなる膜厚変化領域を有しており、
     前記非積層部の膜厚は、前記膜厚変化領域において連続的に変化する接合構造。
    A first conductive film made of a conductive material and a second conductive film made of a metal material are bonded to each other;
    The first conductive film has a non-stacked portion that does not overlap the second conductive film in plan view,
    The non-stacked portion has a film thickness change region in which the film thickness decreases as the distance from the second conductive film increases.
    The thickness of the non-stacked portion is a junction structure that continuously changes in the thickness change region.
  2.  請求項1に記載の接合構造において、
     前記第1導電膜および前記第2導電膜は、基板上に設けられており、
     前記非積層部の上面のうち前記膜厚変化領域に位置する部分は、前記基板平面に対する垂線からの角度が15°以上である接合構造。
    The joint structure according to claim 1,
    The first conductive film and the second conductive film are provided on a substrate,
    A portion of the upper surface of the non-laminated portion located in the film thickness change region has a bonding structure in which an angle from a perpendicular to the substrate plane is 15 ° or more.
  3.  請求項1または2に記載の接合構造において、
     前記導電材料は、導電性高分子を含む接合構造。
    In the junction structure according to claim 1 or 2,
    The conductive material is a bonding structure including a conductive polymer.
  4.  請求項1~3いずれか一項に記載の接合構造において、
     前記第1導電膜は、有機EL素子を構成する電極に接続する第1配線であり、
     前記第2導電膜は、前記第1配線と電気的に接続する引出配線である接合構造。
    In the joining structure according to any one of claims 1 to 3,
    The first conductive film is a first wiring connected to an electrode constituting the organic EL element,
    The junction structure, wherein the second conductive film is a lead wiring electrically connected to the first wiring.
  5.  請求項1~3いずれか一項に記載の接合構造において、
     前記第1導電膜は、有機EL素子を構成する電極であり、
     前記第2導電膜は、前記電極と電気的に接続する配線である接合構造。
    In the joining structure according to any one of claims 1 to 3,
    The first conductive film is an electrode constituting an organic EL element,
    The second conductive film is a junction structure that is a wiring electrically connected to the electrode.
  6.  請求項1~3いずれか一項に記載の接合構造を有する発光装置であって、
     第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された有機層と、を有する有機EL素子と、
     前記第1電極と電気的に接続し、かつ前記第1導電膜により構成される第1配線と、
     前記第1配線と接合し、かつ前記第2導電膜により構成される引出配線と、
     を備える発光装置。
    A light emitting device having the joint structure according to any one of claims 1 to 3,
    An organic EL element having a first electrode, a second electrode, and an organic layer disposed between the first electrode and the second electrode;
    A first wiring electrically connected to the first electrode and configured by the first conductive film;
    A lead wire joined to the first wire and made of the second conductive film;
    A light emitting device comprising:
  7.  請求項1~3いずれか一項に記載の接合構造を有する発光装置であって、
     前記第1導電膜により構成される第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された有機層と、を有する有機EL素子と、
     前記第1電極に接合し、かつ前記第2導電膜により構成される引出配線と、
     を備える発光装置。
    A light emitting device having the joint structure according to any one of claims 1 to 3,
    An organic EL element comprising: a first electrode composed of the first conductive film; a second electrode; and an organic layer disposed between the first electrode and the second electrode;
    A lead wire bonded to the first electrode and configured by the second conductive film;
    A light emitting device comprising:
PCT/JP2013/059925 2013-04-01 2013-04-01 Joining structure and light-emitting device WO2014162447A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059925 WO2014162447A1 (en) 2013-04-01 2013-04-01 Joining structure and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059925 WO2014162447A1 (en) 2013-04-01 2013-04-01 Joining structure and light-emitting device

Publications (1)

Publication Number Publication Date
WO2014162447A1 true WO2014162447A1 (en) 2014-10-09

Family

ID=51657780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059925 WO2014162447A1 (en) 2013-04-01 2013-04-01 Joining structure and light-emitting device

Country Status (1)

Country Link
WO (1) WO2014162447A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311230A (en) * 2003-04-08 2004-11-04 Pioneer Electronic Corp Light emitting display panel and its manufacturing method
WO2010150648A1 (en) * 2009-06-25 2010-12-29 コニカミノルタホールディングス株式会社 Organic electronics panel and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311230A (en) * 2003-04-08 2004-11-04 Pioneer Electronic Corp Light emitting display panel and its manufacturing method
WO2010150648A1 (en) * 2009-06-25 2010-12-29 コニカミノルタホールディングス株式会社 Organic electronics panel and method for producing the same

Similar Documents

Publication Publication Date Title
WO2014162453A1 (en) Joint structure and light-emitting device
JP2019215577A (en) Optical device
JP6484702B2 (en) Light emitting device
JP6283022B2 (en) Optical device
WO2014162448A1 (en) Light-emitting device
WO2014162447A1 (en) Joining structure and light-emitting device
US9401495B2 (en) Luminescent element and lighting device using the same
JP6266599B2 (en) Optical device
WO2014162451A1 (en) Joined structure and light-emitting device
JP2014203525A (en) Joining structure and light-emitting device
WO2014162454A1 (en) Joint structure and light-emitting device
WO2014162449A1 (en) Joining structure and light-emitting device
JP6555911B2 (en) Light emitting device
WO2014162446A1 (en) Joining structure and light-emitting device
WO2014162450A1 (en) Light-emitting device
JP2014203526A (en) Junction structure and light-emitting device
WO2017029889A1 (en) Organic el panel, illuminating device, and method for manufacturing organic el panel
JP6496138B2 (en) Light emitting device
WO2013186918A1 (en) Organic electroluminescence device
JP2014203527A (en) Joining structure and light-emitting device
WO2017122360A1 (en) Light emitting device
WO2016151819A1 (en) Light-emitting device
JP2019165026A (en) Light-emitting device
WO2017006392A1 (en) Light emitting device
JP2016100314A (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP