WO2014157823A1 - 강판 및 그 제조 방법 - Google Patents

강판 및 그 제조 방법 Download PDF

Info

Publication number
WO2014157823A1
WO2014157823A1 PCT/KR2014/000847 KR2014000847W WO2014157823A1 WO 2014157823 A1 WO2014157823 A1 WO 2014157823A1 KR 2014000847 W KR2014000847 W KR 2014000847W WO 2014157823 A1 WO2014157823 A1 WO 2014157823A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
weight
manufacturing
cooling
sheet
Prior art date
Application number
PCT/KR2014/000847
Other languages
English (en)
French (fr)
Inventor
박진성
강춘구
구남훈
김성주
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130033942A external-priority patent/KR101505269B1/ko
Priority claimed from KR1020130062725A external-priority patent/KR101505293B1/ko
Priority claimed from KR1020140010354A external-priority patent/KR101586893B1/ko
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to CN201480018826.9A priority Critical patent/CN105121672B/zh
Priority to US14/780,513 priority patent/US10106865B2/en
Priority to EP14776303.1A priority patent/EP2980228B1/en
Publication of WO2014157823A1 publication Critical patent/WO2014157823A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • This invention relates to the steel plate manufacturing technique. More specifically, It is related with the steel plate excellent in aging resistance, and its manufacturing method.
  • the exterior panel materials for automobiles are required to have a resistance ratio to secure shape freezing during molding.
  • they need dent resistance that is not easily deformed against externally applied stress.
  • Beo hardened steel is a steel grade that can satisfy both sides, so that solid carbon remains in the steel, and the yield strength of the final product can be secured by increasing the yield strength of the final product by using carbon diffusion to the dislocation during the coating process.
  • the hardened hardened steel guarantees an increase in yield strength of 3 Kgf / mm 2 or more after the coated hardened steel.
  • solid solution carbon has a certain degree of activity even at room temperature in addition to the conditions for baking, and causes aging and yield point elongation at room temperature.
  • Aging is a phenomenon caused by the solid solution of carbon stuck to the operating potential, which hinders the movement of the potential. Aging phenomenon also increases in proportion to the amount of dissolved carbon, and in order to suppress the aging phenomenon, a method of controlling the amount of dissolved carbon in steel to about 0.001% by weight has been widely used. However, the amount of dissolved carbon in the steel changes due to various process variables of the composition and manufacturing process, and is exposed to conditions where aging may occur at any time depending on the storage temperature conditions.
  • the aging guarantee of the hardened hardened steel has been recognized as three months at room temperature, but in fact, considering the transportation period and the point of use, it requires a longer shelf life of about 6 to 12 months.
  • Background art related to the present invention is a coating cure hardening cold rolled steel sheet excellent in aging resistance disclosed in the Republic of Korea Patent Publication No. 10-2000-0016460 (published on March 25, 2000) and a manufacturing method thereof.
  • An object of the present invention is to provide a steel sheet excellent in aging resistance and a manufacturing method thereof.
  • the steel sheet may have a microstructure consisting of martensite 2.0-10.0 vol% and the remaining ferrite.
  • the steel sheet may further comprise a phosphorus (P): 0.02 ⁇ 0.08% by weight.
  • the value of said [Cr] +0.3 [Mo] is 0.5-1.5.
  • the steel sheet preferably contains chromium (Cr): 0.3 to 1.5% by weight.
  • the steel sheet may include at least one of phosphorus (P): 0.02 to 0.08% by weight and molybdenum (Mo): 0.05 to 0.4% by weight.
  • the steel sheet preferably contains aluminum (Al): 0.3 to 1.0% by weight.
  • the annealing treatment is preferably carried out so that the austenite volume fraction is 10 ⁇ 20vol%.
  • the cooling may be performed up to 450 ⁇ 510 °C.
  • the temper rolling may be performed on the plate cooled to a temperature below the Ms point.
  • the cooling may be performed up to a temperature below the Ms point.
  • the cooling is preferably carried out at an average cooling rate of 15 ⁇ 30 °C / sec.
  • the step of hot-plating a plate material may further include.
  • the temper rolling is preferably carried out at a 0.5 ⁇ 2.0% reduction rate.
  • the dislocation density in the ferrite matrix together with the ferrite and martensite abnormal structure is 1x10 13 / m 2 or more, through which a steel sheet exhibiting an r-value of 1.2 or more, a bake hardening ability of 30 MPa or more, and a aging resistance of 6 months or more can be manufactured.
  • the steel sheet according to the present invention is particularly suitable to be utilized for automobile exterior panels.
  • the steel sheet may further comprise a phosphorus (P): 0.02 ⁇ 0.08% by weight.
  • the remainder other than the alloying components are made of iron (Fe) and impurities which are inevitably included in steelmaking.
  • Martensite tissue is a tissue containing supersaturated carbon due to non-diffusion transformation in austenite tissue, and carbon contributes to the formation of martensite tissue.
  • the carbon is preferably contained in 0.005 to 0.06% by weight of the total weight of the steel sheet. In order to obtain an elongation of 38% or more, the carbon is preferably contained at 0.005 to 0.025% by weight.
  • the martensite structure can be secured in a state in which the elongation is not significantly deteriorated in the carbon content range, and the aging resistance by such martensite can be secured at the same time.
  • the content of carbon is less than 0.005% by weight, it is difficult to form martensite structure.
  • the carbon content exceeds 0.06% by weight, the strength may be excessively high and the elongation may be reduced to decrease the moldability.
  • Silicon (Si) is added as a deoxidizer to remove oxygen in the steel in the steelmaking process.
  • silicon contributes to the strength improvement of steel sheet through solid solution strengthening.
  • the silicon is preferably contained at 0.2% by weight or less, more preferably 0.1% by weight or less of the total weight of the steel sheet.
  • the amount of silicon added exceeds 0.2% by weight, there is a problem in that a large amount of oxide is formed on the surface of the steel sheet to lower workability.
  • Manganese is an effective sinterable element and contributes to martensite formation upon cooling after annealing.
  • the manganese is preferably included in 1.0 to 2.0% by weight of the total weight of the steel sheet. If the content of manganese is less than 1.0% by weight, the effect of addition thereof is insufficient. On the contrary, when the content of manganese exceeds 2.0% by weight, the phase transformation start temperature is lowered, and phase change occurs before the ⁇ 111 ⁇ // ND texture is developed by recrystallization, resulting in deterioration of formability and surface oxidation of manganese. This can cause surface quality problems.
  • S Sulfur
  • the content of sulfur is limited to 0.01% by weight or less of the total weight of the steel sheet.
  • aluminum (Al) is not only used as a deoxidizer, but also an element capable of retarding Ac3 transformation to increase the carbon concentration in austenite, and is hard during cooling after annealing even at a low carbon content of 0.06 wt% or less. It is an effective element to make martensite of phase.
  • the aluminum is preferably contained in 0.2 to 2.0% by weight of the total weight of the steel sheet, more preferably contained in 0.3 to 1.0% by weight.
  • the austenite fraction increases rapidly in the abnormal temperature range during annealing, thereby increasing the material deviation and decreasing the carbon concentration in the austenite.
  • the same carbide structure can be formed to increase yield strength, degrade aging resistance, and lower the hardness of martensite.
  • the aluminum content exceeds 2.0% by weight, the Ac3 temperature is increased to reduce the abnormal area fraction during annealing, and finally the formation of martensite tissue is suppressed, and the risk of inclusions is increased and the surface oxidation phenomenon during the annealing process. There is a problem that can cause, deterioration of the plating quality.
  • Chromium (Cr) and molybdenum (Mo) are elements that can secure the martensite structure by strengthening the hardenability of the steel sheet.
  • Cr Cr
  • Mo molybdenum
  • the austenite fraction during annealing increases rapidly and the carbon concentration decreases.
  • the content of molybdenum is excessive, Ac3 temperature is increased to decrease the fraction of austenite, and increasing the Ac3 temperature is a factor for lowering the productivity in a typical continuous annealing line.
  • the effect change according to the addition amount of chromium and molybdenum is remarkable.
  • the steel sheet according to the present invention may include at least one of phosphorus (P): 0.02 to 0.08% by weight and molybdenum (Mo): 0.05 to 0.4% by weight.
  • Nitrogen (N) generates inclusions inside the steel and degrades the internal quality of the steel sheet.
  • the nitrogen content is limited to 0.008% by weight or less of the total weight of the steel sheet.
  • Phosphorus (P) contributes to the improvement of strength in part, and may have an effect of improving the texture, which is more remarkable when the phosphorus content is contained 0.02% by weight or more. Phosphorus is particularly effective in controlling the r value in the 45 ° direction. However, when phosphorus is contained in excess of 0.08% by weight of the total weight of the steel sheet, it may cause surface defects due to segregation and work brittleness.
  • the content thereof is preferably 0.02 to 0.08% by weight of the total weight of the steel sheet.
  • niobium and titanium which not only increases the yield strength when excessively added as a carbonitride-forming element, but also decreases the dissolved carbon content and prevents martensite formation. It is preferably limited to less than 0.01% by weight.
  • the steel sheet according to the invention through a process that the control of the alloying elements and will be described later, the dislocation density in the ferrite base gae 1x10 13 / m 2 or more, 1x10 13 gae / m 2 to 9.9x10 13 gae / m 2 Can exhibit features. If the dislocation density in the ferrite matrix is less than 1 ⁇ 10 13 / m 2 , the dislocation density may be insufficient, thereby lowering the aging resistance. All.
  • the steel sheet according to the present invention may have a microstructure consisting of martensite 2.0 ⁇ 10.0vol% and the remaining substantially ferrite. More specifically, the martensite may have a millet form having an average particle diameter of 5 ⁇ m or less. In the case of ferrite, it can be made of polygonal ferrite.
  • the steel sheet according to the present invention may exhibit an r-value of 1.2 or more, a bake hardening ability of 30 MPa or more, and aging resistance of 6 months or more.
  • the steel sheet manufacturing method according to the present invention includes a slab reheating step, hot rolling step, winding step, cold rolling step, annealing treatment step, cooling step and temper rolling step.
  • the slab plate having the alloying elements described above is reheated at a temperature of about 1100 to 1300 ° C.
  • the reheated sheet is hot rolled at a temperature of at least Ar3.
  • winding temperature is 680 degreeC or more, and it is more preferable that it is 680-720 degreeC.
  • second phase carbides such as Pearlite and Cementite, are produced to produce shear bands that cause degradation of the aggregates during cold rolling. Since austenite having a high carbon concentration is generated and the strength is rapidly increased, the elongation decreases, and thus the hot rolled structure is controlled by polygonal ferrite by winding at a high temperature of 680 ° C or higher.
  • the cold rolling step after pickling the wound sheet, it is cold rolled at a reduction ratio of approximately 50 to 80%.
  • the cold-rolled sheet material is annealed to control the microstructure of the final steel sheet to control the austenite fraction.
  • the annealing treatment is preferably carried out at a temperature and time conditions such that the austenite fraction is 20 vol% or less, and more preferably, the austenite fraction is 10 to 20 vol%.
  • the austenite fraction it is possible to develop more than 2% of martensite in the steel after cooling, and to increase the operating potential density of the steel during annealing and temper rolling, thereby improving aging resistance. If the austenite fraction is less than 10 vol%, it may be difficult to secure martensite of 2% or more. Conversely, if the austenite fraction exceeds 20%, excessive martensite production may result in an r-value of less than 1.2.
  • the annealing treatment is preferably performed at a temperature of 810 to 850 ° C. for about 60 seconds, and more preferably annealing at 820 to 840 ° C.
  • the annealed plate is cooled to obtain a target microstructure.
  • the cooling is preferably carried out at an average cooling rate of 15 ⁇ 30 °C / sec. Martensite is generated when the average cooling rate is cooled to 15 ° C / sec or more, and the dislocation density may increase during the phase change process. However, if the average cooling rate exceeds 30 °C / sec, excessive dislocation density rises, the yield ratio may be too high.
  • the cooling may be performed up to 450 ⁇ 510 °C.
  • the plate after cooling, the plate may be subjected to constant temperature transformation, and then further cooled to a temperature below the Ms point. Through constant temperature transformation, strength and elongation can be controlled.
  • cooling may be carried out to a temperature below the Ms point.
  • the thermostatic treatment may be further performed.
  • the cold plate is temper rolled (Skin Pass Mill; SPM) to increase the dislocation density.
  • the temper rolling is preferably carried out at a 0.5 ⁇ 2.0% reduction rate.
  • the rolling reduction rate of the temper rolling is less than 0.5%, the dislocation density increasing efficiency is insufficient.
  • the rolling reduction ratio of the temper rolling exceeds 2.0%, the yield strength may increase and shape freezing deterioration may occur.
  • the annealing treatment and cooling step and the temper rolling step may further include a step of hot-plating a plate.
  • Hot-dip plating may be performed by hot dip galvanizing at about 450 to 510 ° C., or by hot dip galvanizing at about 450 to 510 ° C. and then heat-alloying at about 500 to 550 ° C.
  • the coiling temperature after hot rolling to a high temperature of 680 °C or more by controlling the volume fraction of coarse carbide or pearlite of 1 ⁇ m or more within 10% to reduce the development of shear texture during heat treatment after cold rolling [ 111] ⁇ 110> ⁇ fiber was developed.
  • the cold rolled hot rolled material was managed by cold rolling to manage the abnormal ⁇ volume fraction within 20%, thereby inhibiting the formation of metamorphic ferrite (Random Texture) during cooling after annealing to prevent ⁇ fiber deterioration. .
  • the solid dissolution carbon retains the steel sheet having the hardening hardening property to sufficiently secure the operating dislocation density in the ferrite matrix, thereby suppressing aging at room temperature.
  • the dislocation density is secured in the annealing and subsequent temper rolling stages.
  • the dislocation density increases in the ferrite and the martensite structure in the tempering rolling stage is caused by the formation of martensite structure having a large hardness difference from the ferrite in the annealing process.
  • Aging and yield point elongation at room temperature are caused by the interaction of carbon with the operating potential inside the ferrite, so that the aging resistance can be secured if the operating potential density is sufficiently secured.
  • the slab plate comprising the components described in Table 1 and consisting of the remaining iron and impurities was reheated at 1180 ° C. for 2 hours, followed by hot rolling. Hot rolling was performed under finishing rolling conditions at 900 °C corresponding to a temperature of at least the Ar3 point. The hot rolled sheet was cooled and wound up at 700 ° C.
  • temper rolling was performed at a reduction ratio of 0.5%.
  • Table 2 shows the mechanical properties of specimens 1-9.
  • the yield ratio was less than 60% and r-bar 1.2 or more.
  • Table 3 shows the microstructure, dislocation density and phase yield characteristics of specimens 1-5.
  • Microstructure and dislocation density were used for EBSD (Electron BackScatter Diffraction).
  • the dislocation density was evaluated by crystallographic misorientation analysis using EBSD (Electron Back-Scatter Diffraction).
  • EBSD Electro Back-Scatter Diffraction
  • ⁇ ( ⁇ ) 2 * ⁇ / L * ⁇ b ⁇
  • KAM [ ⁇ ] Kernel Average misorientation, ⁇ : misorientation angle, L: Unit Length, a: step length, n: Number of Kernel, ⁇ ( ⁇ ): dislocation density, b: burgers vector)
  • Martensite hardness was used for the microhardness meter.
  • each specimen was subjected to an accelerated aging test at a temperature of 100 ° C. without preliminary deformation.
  • the slab plate comprising the components shown in Table 4 and consisting of the remaining iron and impurities was reheated at 1200 ° C. for 2 hours, followed by hot rolling. Hot rolling was carried out in finish rolling conditions at 870 °C corresponding to a temperature of at least the Ar3 point. The hot rolled sheet was cooled and wound up at the temperatures listed in Table 5.
  • annealing was performed at 840 ° C. for 100 seconds and then cooled to 300 ° C. corresponding to a temperature below the Ms point at 20 ° C./sec.
  • temper rolling was performed at a reduction ratio of 0.5%.
  • the carbon content is preferably 0.025% by weight or less.
  • the alloy composition satisfies the range defined by the present invention, but in the case of specimen 13 with a relatively low winding temperature, the r-bar value was relatively lower than that of specimens 10 to 11, and the elongation was somewhat lower.
  • Table 6 shows the results of the specimens prepared by varying the annealing temperature for steel grade 1. In preparing Specimen 16 and Specimen 17, the other conditions were the same as in Specimen 10 preparation.
  • the martensite fraction increases as the annealing temperature is higher, and the martensite fraction is 2vol% or more under the annealing temperature of 810 ° C. or more, which is more favorable for aging resistance.
  • the slab plate including the components shown in Table 7 and consisting of the remaining iron and impurities were reheated at 1200 ° C. for 2 hours, and then hot rolled. Hot rolling was finished at 870 ° C corresponding to a temperature of at least Ar3. The hot rolled sheet was cooled and wound up at the temperatures listed in Table 2.
  • annealing was performed at the temperature shown in Table 8 for 100 seconds, and then cooled to 20 ° C / sec to 300 ° C corresponding to a temperature below the Ms point.
  • temper rolling was carried out at the reduction rates shown in Table 8.
  • Table 9 shows the results of evaluation of the physical properties of the steel sheet produced.
  • each of the specimens according to Comparative Examples 1 to 8 and Examples 1 to 8 was subjected to heat treatment at 160 ° C. for 20 minutes after 2% preliminary deformation, and the top yield strength and 2% preliminary deformation after heat treatment. The difference between the tensile strength and the test was measured.
  • the aging resistance was heat treated at 100 ° C. for 1 hour after 7.5% preliminary deformation.
  • the difference between the lower yield strength and the yield strength at 7.5% preliminary deformation was measured and expressed as an Aging Index (AI). .
  • AI Aging Index
  • the difference between the hardening hardening capacity (BH) and the aging index (AI) is at least large.
  • BH hardening hardening capacity
  • AI aging index
  • the BH-AI value was less than 10 MPa, and the date of phase yield was relatively short.
  • the r-bar value was less than 1.2, which means that the workability is not good. do.
  • an r-value of 1.2 or more can be obtained and carbon content is limited.
  • CT coiling temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

내시효성이 우수한 강판 및 그 제조 방법에 대하여 개시한다. 본 발명에 따른 강판은 중량%로, C : 0.005~0.06%, Si : 0.2% 이하, Mn : 1.0~2.0%, S : 0.01% 이하, Al : 0.2~2.0%, 0.3 ≤ [Cr]+0.3[Mo] ≤ 2.0이 되도록 Cr 및 Mo 중 1종 이상, N : 0.008% 이하 및 나머지 Fe와 불가피한 불순물로 이루어지고, 페라이트 기지 내 전위밀도가 1x1013 개/m2 이상인 것을 특징으로 한다.

Description

강판 및 그 제조 방법
본 발명은 강판 제조 기술에 관한 것으로, 보다 상세하게는 내시효성이 우수한 강판 및 그 제조 방법에 관한 것이다.
자동차용 외판재는 성형시 형상동결성을 확보하기 위한 저항복비 특성이 요구된다. 반면, 성형 후 완성 제품인 자동차에서는 외부에서 가해진 응력에 대해 쉽게 변형되지 않는 내덴트성이 필요하다.
소부경화강은 이러한 양면성을 만족시킬수 있는 강종으로 강중에 고용탄소를 잔류시켜 도장소부 과정에서 전위로의 탄소확산을 이용하여 최종제품의 항복강도를 높여 내덴트성을 확보할 수 있다. 통상 소부경화강은 도장소부 이후 3Kgf/mm2 이상의 항복강도 증가를 보증한다.
하지만 고용탄소는 도장 소부 조건 이외의 상온상태에서도 어느 정도 활성도를 가지며, 상온에서 시효현상 및 항복점 연신을 발생시키는 원인이 된다.
시효현상은 가동전위에 고용탄소가 고착되어 전위의 이동을 방해하기 때문에 생기는 현상이다. 시효현상 역시 고용탄소량에 비례적으로 증가하며, 시효현상을 억제하기 위하여, 강중의 고용탄소량을 0.001중량% 정도로 제어하는 방법이 널리 이용되어 왔다. 하지만 강중의 고용탄소량은 성분 및 제조공정의 다양한 공정변수로 인해 변화하며, 보관되는 온도 조건에 따라 언제든 시효현상이 발생 할 수 있는 조건에 노출되어 있다.
통상 소부경화강의 내시효 보증은 상온에서 3개월로 인식되어 왔으나, 실제로 운송기간과 사용시점을 고려 할 때 6개월~12개월 정도의 보다 긴내시효 기간을 요구하게 된다.
본 발명에 관련된 배경기술로는 대한민국 공개특허공보 제10-2000-0016460호(2000.03.25. 공개)에 개시되어 있는 내시효성이 우수한 도장인화 경화형 냉간압연 강판 및 그의 제조 방법이 있다.
본 발명의 목적은 내시효성이 우수한 강판 및 그 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 강판은 중량%로, 탄소(C) : 0.005~0.06%, 실리콘(Si) : 0.2% 이하, 망간(Mn) : 1.0~2.0%, 황(S) : 0.01% 이하, 알루미늄(Al) : 0.2~2.0%, 0.3 ≤ [Cr]+0.3[Mo] ≤ 2.0([ ]는 성분의 중량%)이 되도록 크롬(Cr) 및 몰리브덴(Mo) 중 1종 이상, 질소(N) : 0.008% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지고, 페라이트 기지 내 전위밀도가 1x1013 개/m2 이상인 것을 특징으로 한다.
이때, 상기 강판은 마르텐사이트 2.0~10.0vol% 및 나머지 페라이트로 이루어지는 미세조직을 가질 수 있다.
또한, 상기 강판은 인(P) : 0.02~0.08중량%를 더 포함할 수 있다.
또한, 상기 [Cr]+0.3[Mo]의 값이 0.5~1.5인 것이 바람직하다.
또한, 상기 강판은 크롬(Cr) : 0.3~1.5중량%를 포함하는 것이 바람직하다. 이 경우, 상기 강판은 인(P) : 0.02~0.08중량% 및 몰리브덴(Mo) : 0.05~0.4중량% 중 1종 이상을 포함할 수 있다.
또한, 상기 강판은 알루미늄(Al) : 0.3~1.0중량%를 포함하는 것이 바람직하다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 강판 제조 방법은 전술한 합금 성분을 갖는 슬라브 판재를 재가열하는 단계; 상기 재가열된 판재를 Ar3점 이상의 온도에서 열간압연하는 단계; 상기 열간압연된 판재를 680℃ 이상의 온도에서 권취하는 단계; 상기 권취된 판재를 산세한 후, 냉간압연하는 단계; 상기 냉간압연된 판재를 오스테나이트 체적분율이 20vol% 이내가 되도록 소둔 처리한 후 냉각하는 단계; 및 상기 냉각된 판재를 조질압연하는 단계;를 포함하는 것을 특징으로 한다.
이때, 상기 소둔 처리는 오스테나이트 체적분율이 10~20vol%가 되도록 수행하는 것이 바람직하다.
또한, 상기 냉각은 450~510℃까지 수행될 수 있다. 이 경우, 상기 냉각된 판재를 항온변태 처리하는 단계; 및 상기 항온변태 처리된 판재를 Ms점 이하의 온도까지 냉각하는 단계;를 더 포함하고, 상기 조질압연은 Ms점 이하의 온도까지 냉각된 판재에 대하여 수행될 수 있다.
또한, 상기 냉각은 Ms점 이하의 온도까지 수행될 수 있다.
또한, 상기 냉각은 15~30℃/sec의 평균냉각속도로 수행되는 것이 바람직하다.
또한, 상기 소둔 처리 및 냉각 단계와 상기 조질 압연 단계 사이에, 판재를 용융도금하는 단계;를 더 포함할 수 있다.
또한, 상기 조질압연은 0.5~2.0% 압하율로 수행되는 것이 바람직하다.
본 발명에 따른 강판 제조 방법에 의하면, 탄소, 알루미늄, 크롬 등의 합금 성분 조절, 권취, 소둔 처리, 냉각 등 공정 제어를 통하여 페라이트와 마르텐사이트 이상조직과 함께 페라이트 기지 내 전위밀도가 1x1013 개 / m2 이상을 나타낼 수 있으며, 이를 통하여 1.2 이상의 r-value, 30MPa 이상의 소부경화능, 6개월 이상의 내시효성을 나타내는 강판을 제조할 수 있다.
따라서, 본 발명에 따른 강판은 특히 자동차 외판용으로 활용되기에 적합하다.
이하 본 발명의 실시예에 따른 강판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
강판
본 발명에 따른 강판은, 중량%로, 탄소(C) : 0.005~0.06%, 실리콘(Si) : 0.2% 이하, 망간(Mn) : 1.0~2.0%, 황(S) : 0.01% 이하, 알루미늄(Al) : 0.2~2.0%, 0.3 ≤ [Cr]+0.3[Mo] ≤ 2.0([ ]는 성분의 중량%)이 되도록 크롬(Cr) 및 몰리브덴(Mo) 중 1종 이상, 질소(N) : 0.008% 이하를 포함한다.
또한, 상기 강판은 인(P) : 0.02~0.08중량%를 더 포함할 수 있다.
상기 합금성분들 외 나머지는 철(Fe)과 제강 과정 등에서 불가피하게 포함되는 불순물로 이루어진다.
이하, 본 발명에 따른 강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.
탄소(C)
마르텐사이트 조직은 오스테나이트(Austenite)조직에서 무확산 변태에 의한 과포화 탄소를 함유한 조직으로, 탄소는 이러한 마르텐사이트 조직 형성에 기여한다.
상기 탄소는 강판 전체 중량의 0.005~0.06중량%로 함유되는 것이 바람직하다. 38% 이상의 연신율을 얻는 것을 목적으로 할 경우, 상기 탄소는 0.005~0.025중량%로 함유되는 것이 바람직하다. 상기 탄소 함량 범위에서 연신율이 크게 열화되지 않는 상태로 마르텐사이트 조직을 확보할 수 있으며, 이러한 마르텐사이트에 의한 내시효성도 동시에 확보할 수 있다. 탄소의 함량이 0.005중량% 미만일 경우, 마르텐사이트 조직을 형성하기 어렵다. 반대로, 탄소 함량이 0.06중량%를 초과하는 경우, 강도가 지나치게 높아지고 연신율이 감소하여 성형성이 저하될 수 있다.
실리콘(Si)
실리콘(Si)은 제강공정에서 강 중의 산소를 제거하기 위한 탈산제로 첨가된다. 또한 실리콘은 고용강화를 통한 강판의 강도 향상에 기여한다.
상기 실리콘은 강판 전체 중량의 0.2중량% 이하로 함유되는 것이 바람직하고, 0.1중량% 이하로 함유되는 것이 보다 바람직하다. 실리콘의 첨가량이 0.2중량%를 초과하는 경우, 강판 표면에 산화물을 다량 형성하여 가공성을 저하시키는 문제점이 있다.
망간(Mn)
망간은 효과적인 소입성 원소로서, 소둔 처리 후 냉각시 마르텐사이트 형성에 기여한다.
상기 망간은 강판 전체 중량의 1.0~2.0중량%로 포함되는 것이 바람직하다. 상기 망간의 함량이 1.0중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 망간의 함량이 2.0중량%를 초과하면 상변태 시작 온도가 낮아지고, 재결정에 의해 {111}//ND 집합조직이 발달하기 전에 상변화가 발생하여 성형성이 열화 되고, 망간의 표면산화에 의해 표면품질문제를 야기할 수 있다.
황(S)
황(S)은 MnS를 형성하여 유효 망간 함량을 감소시키고, MnS에 이한 표면 결함을 야기할 수 있다.
이에 본 발명에서는 황의 함량을 강판 전체 중량의 0.01중량% 이하로 제한하였다.
알루미늄(Al)
본 발명에서 알루미늄(Al)은 탈산제로서 사용될 뿐만 아니라, 특히 Ac3 변태를 지연시켜 오스테나이트내 탄소 농화도를 높일 수 있는 원소로서, 0.06중량% 이하의 낮은 탄소함량으로도 소둔 처리 후 냉각 과정에서 경질상의 마르텐사이트를 만드는데 효과적인 원소이다.
상기 알루미늄은 강판 전체 중량의 0.2~2.0중량%로 포함되는 것이 바람직하고, 0.3~1.0중량%로 포함되는 것이 보다 바람직하다. 알루미늄의 함량이 0.2중량% 미만일 경우, 소둔 중 이상역 온도 구간에서 오스테나이트 분율이 급격히 증가하여 재질편차가 증가할 뿐만 아니라, 오스테나이트 내 탄소 농화도가 감소하여 냉각시 베이나이트나, 퍼얼라이트와 같은 탄화물 조직이 형성되어 항복강도를 높이고, 내시효성도 열화시킬 수 있으며, 마르텐사이트의 경도가 낮아질 수 있다. 반대로, 알루미늄의 함량이 2.0중량%를 초과하면 Ac3 온도가 증가하여 소둔 중 이상역 분율이 감소하게 되고 최종적으로 마르텐사이트 조직의 생성이 억제될 뿐만 아니라, 개재물 증가의 위험과 소둔 과정에서 표면산화 현상을 야기 할 수 있고, 도금 품질을 열화 시키는 문제점이 있다.
크롬(Cr), 몰리브덴(Mo)
크롬(Cr)과 몰리브덴(Mo)은 강판의 소입성을 강화하여 마르텐사이트 조직을 확보할 수 있도록 하는 원소들이다. 그러나, 크롬의 함량이 과다할 경우, 소둔 중 오스테나이트 분율이 급격하게 증가하여 탄소농화도가 감소한다. 또한, 몰리브덴의 함량이 과다할 경우, Ac3 온도가 증가하여 오스테나이트의 분율을 감소시키며, Ac3 온도 증가는 통상적인 연속소둔라인에서 생산성을 저하시키는 요인이 된다. 그리고, 크롬과 몰리브덴 첨가량에 따른 효과 변화는 크롬의 경우가 현저하다.
이러한 점에 착안하여, 본 발명의 발명자들은 오랜 연구 결과, 본 발명에 따른 강판의 합금조성에 있어서, 크롬과 몰리브덴이 아래 식을 만족할 때, 크롬과 오스테나이트 함량 과다로 인한 문제점을 발생시키지 않으면서 마르텐사이트 조직 확보에 기여하는 것을 알아내었다.
식 : 0.3 ≤ [Cr]+0.3[Mo] ≤ 2.0([ ]는 성분의 중량%)
[Cr]+0.3[Mo]이 0.3 미만일 경우, 크롬과 몰리브덴 첨가에 따른 소입성 강화 효과를 충분히 발휘하기 어렵다. 반대로, [Cr]+0.3[Mo]이 2.0을 초과하는 경우, 크롬 과다 첨가의 문제점 혹은 몰리브덴 과다 첨가의 문제점이 발생할 수 있다. 상기의 [Cr]+0.3[Mo]의 경우, 안정적인 마르텐사이트 확보 측면에서, 0.5 ≤ [Cr]+0.3[Mo] ≤ 1.5인 것이 보다 바람직하다.
한편, 상기 크롬의 경우, 0.3~1.5중량%를 포함하는 것이 보다 바람직하다. 이 경우, 본 발명에 따른 강판은 인(P) : 0.02~0.08중량% 및 몰리브덴(Mo) : 0.05~0.4중량% 중 1종 이상을 포함할 수 있다.
질소(N)
질소(N)는 강 내부에 개재물을 발생시켜 강판의 내부 품질을 저하시킨다.
이에 본 발명에서는 질소의 함량을 강판 전체 중량의 0.008중량% 이하로 제한하였다.
인(P)
인(P)은 강도 향상에 일부 기여하며, 집합조직 개선효과를 나타낼 수 있으며, 이는 인의 함량이 0.02중량% 이상 함유될 때 보다 현저하다. 인은 특히 45°방향의 r값을 제어하는데 효과적이다. 그러나 인이 강판 전체 중량의 0.08중량%를 초과하여 과다 함유될 경우 편석에 의한 표면결함과 가공취성 문제를 야기할 수 있다.
따라서, 인이 의도적으로 첨가될 경우, 그 함량은 강판 전체 중량의 0.02~0.08중량%가 바람직하다.
한편, 본 발명에 따른 강판의 경우, 탄질화물 형성원소로서 과다 첨가시 항복강도를 높일 뿐만 아니라 고용탄소함량을 감소시켜 마르텐사이트 형성을 방해하는 니오븀과 티타늄이 첨가되지 않는 것이 바람직하며, 포함되더라도 각각 0.01중량% 미만으로 제한되는 것이 바람직하다.
본 발명에 따른 강판은 상기의 합금 성분 및 후술하는 공정 제어를 통하여, 페라이트 기지 내 전위밀도가 1x1013 개/m2 이상, 보다 구체적으로는 1x1013 개/m2 내지 9.9x1013 개/m2인 특징을 나타낼 수 있다. 페라이트 기지 내 전위밀도가 1x1013 /m2 미만일 경우에는 전위 밀도가 불충분하여 내시효성이 저하될 수 있다. 다.
또한, 본 발명에 따른 강판은 마르텐사이트 2.0~10.0vol% 및 나머지 실질적으로 페라이트로 이루어지는 미세조직을 가질 수 있다. 보다 구체적으로, 상기 마르텐사이트는 5㎛ 이하의 평균 입경을 갖는 좁쌀 형태를 나타낼 수 있다. 페라이트의 경우, 폴리고날 형태의 페라이트로 이루어질 수 있다.
상기와 같은 전위밀도 및 미세조직에 의하여, 본 발명에 따른 강판은 1.2 이상의 r-value, 30MPa 이상의 소부경화능, 6개월 이상의 내시효성을 나타낼 수 있다.
강판 제조 방법
본 발명에 따른 강판 제조 방법은 슬라브 재가열 단계, 열간압연 단계, 권취 단계, 냉간압연 단계, 소둔 처리 단계, 냉각 단계 및 조질압연 단계를 포함한다.
우선, 슬라브 재가열 단계에서는 전술한 합금 성분을 갖는 슬라브 판재를 대략 1100~1300℃ 정도의 온도로 재가열한다.
다음으로, 열간압연 단계에서는 재가열된 판재를 Ar3점 이상의 온도에서 열간압연한다.
다음으로, 권취 단계에서는 열간압연된 판재를 냉각한 후, 권취한다. 이때, 권취 온도는 680℃ 이상인 것이 바람직하고, 680~720℃인 것이 보다 바람직하다. 680℃ 미만의 온도에서 권취시 퍼얼라이트(Pearlite), 세멘타이트(Cementite)와 같은 제 2상 탄화물들이 생성되어 냉간압연 시 집합조직의 열화를 야기하는 전단띠(Shear Band)가 발생하고, 탄화물 조직에서 탄소 농도가높은 오스테나이트가 생성되어 강도가 급격히 증가하면서 연신율의 저하가 발생하므로, 680℃ 이상의 고온에서 권취를 실시하여 열연조직을 폴리고날 페라이트(Polygonal Ferrite)로 제어한다.
다음으로, 냉간압연 단계에서는 권취된 판재를 산세한 후, 대략 50~80%의 압하율로 냉간압연한다.
다음으로, 소둔 처리 단계에서는 최종 제조되는 강판의 미세 조직 제어를 위하여 냉간압연된 판재를 소둔 처리하여 오스테나이트 분율을 제어한다.
이때, 소둔 처리는 오스테나이트 분율이 20vol% 이하가 되는 온도 및 시간 조건으로 수행하는 것이 바람직하고, 오스테나이트 분율이 10~20vol%가 되도록 하는 것이 보다 바람직하다. 이러한 오스테나이트 분율에서, 냉각 후 강중 이상조직(Martensite)을 2% 이상 발달시킬 수 있으며, 소둔 및 조질압연 중 강의 가동전위 밀도를 증가시킬 수 있어, 내시효성을 향상시킬 수 있다. 오스테나이트 분율이 10vol% 미만일 경우, 2% 이상의 마르텐사이트 확보가 어려워질 수 있다. 반대로, 오스테나이트 분율이 20%를 초과하는 경우, 과도한 마르텐사이트 생성으로, r-value가 1.2에 미치지 못할 수 있다. 이러한 오스테나이트 분율 확보를 위하여, 소둔 처리는 810~850℃의 온도에서 대략 60초동안 수행되는 것이 바람직하고, 820~840℃에서 소둔 처리하는 것이 보다 바람직하다.
냉각 단계에서는 목표하는 미세조직을 얻기 위해 소둔 처리된 판재를 냉각한다. 이때, 냉각은 15~30℃/sec의 평균냉각속도로 수행되는 것이 바람직하다. 평균냉각속도가 15℃/sec 이상에서 냉각시 마르텐사이트가 생성되어, 상변화 과정 중 전위밀도가 증가 할 수 있다. 다만, 평균냉각속도가 30℃/sec를 초과하는 경우, 과다한 전위밀도 상승이 발생하며, 항복비가 지나치게 높아지는 문제점이 발생할 수 있다.
일 예로, 냉각은 450~510℃까지 수행될 수 있다. 이 경우, 냉각 후, 판재를 항온변태 처리한 후, Ms점 이하의 온도까지 냉각하는 과정을 더 수행할 수 있다. 항온 변태 처리를 통하여 강도와 연신율을 조절할 수 있다.
다른 예로, 냉각은 Ms점 이하의 온도까지 수행될 수 있다. 이 경우에도 항온변태 처리 과정을 추가로 수행할 수 있다.
다음으로, 조질압연 단계에서는 냉각된 판재를 조질압연(Skin Pass Mill; SPM)하여 전위 밀도를 증가시킨다.
이때, 조질압연은 0.5~2.0% 압하율로 수행되는 것이 바람직하다. 조질압연의 압하율이 0.5% 미만일 경우, 전위 밀도 증가 효율이 불충분하다. 반대로, 조질압연의 압하율이 2.0%를 초과하는 경우 항복강도가 증가하여 형상 동결성 열화가 발생할 수 있다.
한편, 상기 소둔 처리 및 냉각 단계와 상기 조질 압연 단계 사이에, 판재를 용융도금하는 단계가 더 포함될 수 있다.
용융도금은 대략 450~510℃에서 용융아연도금하는 방식으로 수행되거나, 대략 450~510℃에서 용융아연도금한 후 대략 500~550℃에서 합금화열처리하는 방식으로 수행될 수 있다.
본 발명에서는 열간압연 후 권취 온도를 680℃ 이상의 고온으로 관리함으로써 1㎛ 이상의 조대한 탄화물, 혹은 펄라이트의 체적 분율을 10% 이내로 관리하여 냉간압연후 열처리시 전단 조직(Shear Texture) 발달을 저감하여 [111]<110> γ fiber를 발달 시켰다. 이렇게 제조된 열연재를 냉간압연하여 소둔 처리를 할 때 이상역 γ 체적 분율을 20% 이내로 관리하여, 소둔 처리 후 냉각시 변태되는 변태 페라이트[Random Texture] 형성을 억제하여 γ fiber 발달 저하를 방지하였다.
상기와 같이, 본 발명의 경우, 고용탄소가 잔류하여 소부경화 특성을 갖는 강종에 페라이트 기지조직 내에 가동전위밀도를 충분히 확보하여 상온에서의 시효현상을 억제한다. 전위 밀도 확보는 소둔 처리 단계와 이후 조질 압연 단계에서 이루어지며, 보다 자세히 설명하면 소둔 처리 단계에서 페라이트와 경도 차이가 큰 마르텐사이트 조직의 생성에 의한 페라이트 내 전위 밀도 증가와 조질 압연 단계에서 마르텐사이트 조직과 페라이트 상의 경도차에 의한 페라이트 내 전위밀도를 증가를 이용한다. 상온에서의 시효현상과 항복점 연신 발생은 페라이트 내부의 가동전위와 탄소의 상호작용에 의해 발생하므로, 가동전위 밀도를 충분히 확보하면 내시효성을 확보할 수 있다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. 여기에 기재되지 않은 내용은 이 기술분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1. 강판의 제조
표 1에 기재된 성분들을 포함하고 나머지 철과 불순물로 이루어지는 슬라브 판재를 1180℃에서 2시간동안 재가열하고, 이어 열간압연을 수행하였다. 열간압연은 Ar3점 이상의 온도에 해당하는 900℃에서 마무리압연 조건으로 수행하였다. 열간압연된 판재를 냉각하여 700℃에서 권취하였다.
이후, 산세 및 냉간압연한 후, 820℃에서 60초동안 소둔 처리한 후 20℃/sec로 480℃까지 냉각한 다음, 480℃에서 항온변태 처리한 후, 465℃의 아연 욕에 침적하였으며, 최종적으로 520℃에서 합금화 열처리를 행하고, 이후 Ms점 이하의 온도에 해당하는 300℃까지 냉각하였다.
이후, 0.5%의 압하율로 조질압연을 실시하였다.
[표 1] (단위 : 중량%)
Figure PCTKR2014000847-appb-I000001
표 2는 시편 1~9의 기계적 특성을 나타낸 것이다.
[표 2]
Figure PCTKR2014000847-appb-I000002
표 2를 참조하면, 본 발명에서 제시한 합금조성을 만족하는 시편 3~4, 7~9의 경우, 항복비 60% 미만 및 r-bar 1.2 이상을 만족하였다.
그러나, 크롬이 포함되지 않고, 알루미늄 함량이 상대적으로 낮은 시편 1~2의 경우, 항복비가 매우 높았으며, 다른 조건은 만족하나 알루미늄 함량이 상대적으로 낮은 시편 5 및 시편 6의 경우, 항복비가 60%를 초과하였으며, 시편 6의 경우 r-bar가 상대적으로 낮게 나타났다.
표 3은 시편 1~5의 미세조직, 전위밀도 및 상항복 특성을 나타낸 것이다.
미세조직 및 전위밀도는 EBSD(Electron BackScatter Diffraction)를 이용하였다.
그리고, 전위밀도는 EBSD(Electron Back-Scatter Diffraction)을 사용한 결정학적 misorientation 분석을 통하여 평가하였으며, 전위밀도를 구하는 식은 다음과 같다.
KAM[θ] = 1/6n × Σ ( θ12 + …………… + θn )
L = a(2n+1)
ρ(θ) = 2*θ / L *ㅣbㅣ
(상기 식에서, KAM[θ] : Kernel Average misorientation, θ : misorientation angle), L : 단위길이(Unit Length), a : step length, n : Number of Kernel, ρ(θ) : 전위 밀도, b : burgers vector)
마르텐사이트 경도는 미세경도계를 활용하였다.
또한, 상항복 특성 평가를 위하여, 예비변형이 없는 상태로, 각 시편을 100℃의 온도에서 가속시효테스트를 수행하였다.
[표 3]
Figure PCTKR2014000847-appb-I000003
표 3을 참조하면, 시편 3~4의 경우, 시편 1~2에 비하여 전위밀도가 상대적으로 높으며, 이에 따른 상항복 발생시점이 현저히 늦은 것을 볼 수 있다.
또한, 표 3을 참조하면, 시편 3~5의 경우, 마르텐사이트 경도가 클수록 전위밀도 증가량이 커지는 것을 볼 수 있으며, 이는 알루미늄 및 크롬, 인, 몰리브덴 등의 첨가로 인하여 마르텐사이트 경도가 480Hv 이상으로 크게 향상됨으로써 내시효성이 개선되는 것으로 볼 수 있다. 반면, 시편 5의 경우, 알루미늄이 불순물 수준으로 첨가되어 마르텐사이트 경도가 낮으며, 이로 인하여 전위밀도가 조질압연 후 1x1013/m2 이상임에도 불구하고 상항복 시점이 시편 3~4에 비하여 상대적으로 빠른 것을 볼 수 있다.
또한, 표 4에 기재된 성분들을 포함하고 나머지 철과 불순물로 이루어지는 슬라브 판재를 1200℃에서 2시간동안 재가열하고, 이어 열간압연을 수행하였다. 열간압연은 Ar3점 이상의 온도에 해당하는 870℃에서 마무리압연 조건으로 수행하였다. 열간압연된 판재를 냉각하여 표 5에 기재된 온도에서 권취를 수행하였다.
이후, 산세 및 냉간압연한 후, 840℃에서 100초동안 소둔 처리한 후 20℃/sec로 Ms점 이하의 온도에 해당하는 300℃까지 냉각하였다.
이후, 0.5%의 압하율로 조질압연을 실시하였다.
[표 4] (단위 : 중량%)
Figure PCTKR2014000847-appb-I000004
[표 5]
Figure PCTKR2014000847-appb-I000005
표 5를 참조하면, 본 발명에서 제시된 조건을 만족하는 시편 10~11의 경우, 연신율(El) 38% 이상, 소부경화능(BH) 30MPa 이상 및 r-value 1.2 이상을 모두 만족하였다.
그러나, 탄소 함량이 상대적으로 높은 시편 12의 경우, 연신율이 목표치에 미치지 못하였는 바, 38% 이상의 연신율을 확보하기 위해서는 탄소 함량이 0.025중량% 이하인 것이 바람직하다.
또한, 합금 조성은 본 발명에서 규정한 범위를 만족하나, 권취 온도가 상대적으로 낮은 시편 13의 경우, r-bar 값이 시편 10~11에 비하여 상대적으로 낮았으며, 연신율이 다소 낮았다.
또한, [Cr]+0.3[Mo]값이 0.3에 미치지 못하는 시편 14 및 알루미늄 함량이 0.2중량%에 미치지 못하는 시편 15의 경우, 마르텐사이트 분율이 2%에 미치지 못하였다.
표 6은 강종 1에 대하여 소둔 온도를 변화시키면서 시편을 제조한 결과를 나타낸 것이다. 시편 16 및 시편 17을 제조함에 있어, 다른 조건은 상기 시편 10 제조 방법과 동일하였다.
[표 6]
Figure PCTKR2014000847-appb-I000006
표 6을 참조하면, 소둔 온도가 높을수록 마르텐사이트 분율이 증가하는 것을 볼 수 있으며, 소둔 온도가 810℃ 이상인 조건에서 마르텐사이트 분율이 2vol% 이상을 나타내어 내시효성에 보다 유리하다.
그러나, 소둔 온도가 810℃ 미만인 시편 16의 경우, 마르텐사이트 분율이 낮은 것을 볼 수 있다.
또한, 표 7에 기재된 성분들을 포함하고 나머지 철과 불순물로 이루어지는 슬라브 판재를 1200℃에서 2시간동안 재가열하고, 이어 열간압연을 수행하였다. 열간압연은 Ar3점 이상의 온도에 해당하는 870℃에서 마무리하였다. 열간압연된 판재를 냉각하여 표 2에 기재된 온도에서 권취를 수행하였다.
이후, 산세 및 냉간압연한 후, 표 8에 기재된 온도에서 100초동안 소둔 처리한 후 20℃/sec로 Ms점 이하의 온도에 해당하는 300℃까지 냉각하였다.
이후, 표 8에 기재된 압하율로 조질압연을 실시하였다.
[표 7] (단위 : 중량%)
Figure PCTKR2014000847-appb-I000007
[표 8]
Figure PCTKR2014000847-appb-I000008
표 9는 제조된 강판의 물성 평가 결과를 나타낸 것이다.
소부경화능(BH)을 평가하기 위해 비교예 1~8 및 실시예 1~8에 따른 시편 각각을 2% 예비변형 후 160℃에서 20분간 열처리를 실시하였고, 열처리 후 상항복강도와 2% 예비변형시 인장강도와의 차를 측정하였다.
내시효성은 7.5% 예비변형 후, 100℃에서 1시간 동안 열처리를 실시하였고, 열처리 후 하항복강도와 7.5% 예비변형시 항복강도의 차를 측정하여, 시효지수(Aging Index; AI)로 나타내었다. 시효지수(AI)가 낮을수록 내시효성이 우수하다고 볼 수 있다.
또한, 항복점 연신을 평가하기 위하여, 30℃ 항온 열처리를 통해 상항복점 발생 시점을 30일 단위로 180일까지 평가 하였다.
[표 9]
Figure PCTKR2014000847-appb-I000009
표 9를 참조하면, 본 발명에 따른 강판 제조 방법에서 제시한 합금 조성 및 공정 조건을 만족하는 강판 시편(시편 24~25, 28~33)의 경우, 목표로 하는 물성을 모두 만족하였다.
내덴트성을 확보하면서 시효가 발생하지 않도록 하기 위해서는 소부경화능(BH)과 시효지수(AI) 차이가 최소 큰 것이 유리한데, 표 9를 참조하면, 발명강에 해당하는 시편의 경우, 모두 소부경화능(BH)과 시효지수(AI) 차이가 10MPa를 초과함을 알 수 있다.
그러나, 본 발명에서 제시한 합금 조성을 벗어난 시편들(시편 18~21)에 따른 강판 시편의 경우, BH-AI값이 10MPa 미만이였으며, 상항복 발생일이 상대적으로 짧았다.
또한, 본 발명에서 제시한 권취 온도 조건을 벗어난 시편들(시편 22~23, 26~27)에 따른 강판 시편의 경우, r-bar값이 1.2 미만으로 나타났으며, 이는 가공성이 좋지 못함을 의미한다.
결론적으로, 본 발명에 따른 강판 제조 방법에 의하면, 최소한의 마르텐사이트만을 이용하여 상변화와 조질압연 중 전위밀도를 증가시키는 공정을 이용함으로써 1.2 이상의 r-value를 확보할 수 있으며, 탄소함량을 제한하고, 열연 단계에서 권취온도(CT)를 680℃ 이상으로 높여 이상조직 없는 열연조직을 만들어 줌으로써 최종 제품의 r-value를 개선 할 수 있었으며, 이를 통해 외판재로써의 적용성을 향상시킬 수 있었다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.

Claims (16)

  1. 중량%로, 탄소(C) : 0.005~0.06%, 실리콘(Si) : 0.2% 이하, 망간(Mn) : 1.0~2.0%, 황(S) : 0.01% 이하, 알루미늄(Al) : 0.2~2.0%, 0.3 ≤ [Cr]+0.3[Mo] ≤ 2.0([ ]는 성분의 중량%)이 되도록 크롬(Cr) 및 몰리브덴(Mo) 중 1종 이상, 질소(N) : 0.008% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지고,
    페라이트 기지 내 전위밀도가 1x1013 개/m2 이상인 것을 특징으로 하는 강판.
  2. 제1항에 있어서,
    상기 강판은 인(P) : 0.02~0.08중량%를 더 포함하는 것을 특징으로 하는 강판.
  3. 제1항에 있어서,
    상기 [Cr]+0.3[Mo]의 값이 0.5~1.5인 것을 특징으로 하는 강판.
  4. 제1항에 있어서,
    상기 강판은 크롬(Cr) : 0.3~1.5중량%를 포함하는 것을 특징으로 하는 강판.
  5. 제4항에 있어서,
    상기 강판은 인(P) : 0.02~0.08중량% 및 몰리브덴(Mo) : 0.05~0.4중량% 중 1종 이상을 포함하는 것을 특징으로 하는 강판.
  6. 제1항에 있어서,
    상기 강판은 알루미늄(Al) : 0.3~1.0중량%를 포함하는 것을 특징으로 하는 강판.
  7. 제1항에 있어서,
    상기 강판은 마르텐사이트 2.0~10.0vol% 및 나머지 페라이트로 이루어지는 미세조직을 갖는 것을 특징으로 하는 강판.
  8. 제1항 내지 제6항 중 어느 하나에 기재된 합금 성분을 갖는 슬라브 판재를 재가열하는 단계;
    상기 재가열된 판재를 Ar3점 이상의 온도에서 열간압연하는 단계;
    상기 열간압연된 판재를 680℃ 이상의 온도에서 권취하는 단계;
    상기 권취된 판재를 산세한 후, 냉간압연하는 단계;
    상기 냉간압연된 판재를 오스테나이트 체적분율이 20vol% 이내가 되도록 소둔 처리한 후 냉각하는 단계; 및
    상기 냉각된 판재를 조질압연하는 단계;를 포함하는 것을 특징으로 하는 강판 제조 방법.
  9. 제8항에 있어서,
    상기 소둔 처리는 오스테나이트 체적분율이 10~20vol%가 되도록 수행하는 것을 특징으로 하는 강판 제조 방법.
  10. 제8항에 있어서,
    상기 소둔 처리는 810~850℃에서 수행되는 것을 특징으로 하는 강판 제조 방법.
  11. 제8항에 있어서,
    상기 냉각은 450~510℃까지 수행되는 것을 특징으로 하는 강판 제조 방법.
  12. 제11항에 있어서,
    상기 냉각된 판재를 항온변태 처리하는 단계; 및
    상기 항온변태 처리된 판재를 Ms점 이하의 온도까지 냉각하는 단계;를 더 포함하고,
    상기 조질압연은 Ms점 이하의 온도까지 냉각된 판재에 대하여 수행되는 것을 특징으로 하는 강판 제조 방법.
  13. 제8항에 있어서,
    상기 냉각은 Ms점 이하의 온도까지 수행되는 것을 특징으로 하는 강판 제조 방법.
  14. 제8항에 있어서,
    상기 냉각은 15~30℃/sec의 평균냉각속도로 수행되는 것을 특징으로 하는 강판 제조 방법.
  15. 제8항에 있어서,
    상기 소둔 처리 및 냉각 단계와 상기 조질 압연 단계 사이에, 판재를 용융도금하는 단계;를 더 포함하는 것을 특징으로 하는 강판 제조 방법.
  16. 제8항에 있어서,
    상기 조질압연은 0.5~2.0% 압하율로 수행되는 것을 특징으로 하는 강판 제조 방법.
PCT/KR2014/000847 2013-03-28 2014-01-29 강판 및 그 제조 방법 WO2014157823A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480018826.9A CN105121672B (zh) 2013-03-28 2014-01-29 钢板及其制备方法
US14/780,513 US10106865B2 (en) 2013-03-28 2014-01-29 Steel sheet and manufacturing method therefor
EP14776303.1A EP2980228B1 (en) 2013-03-28 2014-01-29 Manufacturing method for steel sheet

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2013-0033942 2013-03-28
KR1020130033942A KR101505269B1 (ko) 2013-03-28 2013-03-28 강판 및 그 제조 방법
KR1020130062725A KR101505293B1 (ko) 2013-05-31 2013-05-31 강판
KR10-2013-0062725 2013-05-31
KR20130074924 2013-06-27
KR10-2013-0074924 2013-06-27
KR1020140010354A KR101586893B1 (ko) 2013-06-27 2014-01-28 강판 및 그 제조 방법
KR10-2014-0010354 2014-01-28

Publications (1)

Publication Number Publication Date
WO2014157823A1 true WO2014157823A1 (ko) 2014-10-02

Family

ID=54668474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000847 WO2014157823A1 (ko) 2013-03-28 2014-01-29 강판 및 그 제조 방법

Country Status (4)

Country Link
US (1) US10106865B2 (ko)
EP (1) EP2980228B1 (ko)
CN (1) CN105121672B (ko)
WO (1) WO2014157823A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237365B2 (ja) * 2014-03-17 2017-11-29 新日鐵住金株式会社 成形性と衝突特性に優れた高強度鋼板
JP2016164291A (ja) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 冷間加工用鋼

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950007472B1 (ko) * 1991-04-26 1995-07-11 가와사키 세이테츠 가부시키가이샤 상온 비시효 소성경화성 인발 가공용 고장력 냉연강판 및 그 제조방법
KR20000016460A (ko) 1997-04-09 2000-03-25 에모토 간지 내시효성이 우수한 도장인화 경화형 냉간압연 강판 및 그의 제조 방법
JP2008144233A (ja) * 2006-12-11 2008-06-26 Kobe Steel Ltd 焼付硬化用高強度鋼板およびその製造方法
JP2009215572A (ja) * 2008-03-07 2009-09-24 Kobe Steel Ltd 降伏応力と伸びと伸びフランジ性に優れた高強度冷延鋼板
JP2010037652A (ja) * 2008-07-11 2010-02-18 Kobe Steel Ltd 耐水素脆化特性および加工性に優れた高強度冷延鋼板
KR20110110370A (ko) * 2009-05-27 2011-10-06 신닛뽄세이테쯔 카부시키카이샤 피로 특성과 연신 및 충돌 특성이 우수한 고강도 강판, 용융 도금 강판, 합금화 용융 도금 강판 및 그들의 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555756A (en) * 1995-01-24 1996-09-17 Inland Steel Company Method of lubricating steel strip for cold rolling, particularly temper rolling
KR100437930B1 (ko) * 2001-10-18 2004-07-09 스미토모 긴조쿠 고교 가부시키가이샤 가공성 및 형상정확도가 우수한 강판 및 이를 제조하는 방법
JP5157146B2 (ja) * 2006-01-11 2013-03-06 Jfeスチール株式会社 溶融亜鉛めっき鋼板
KR20080061855A (ko) * 2006-12-28 2008-07-03 주식회사 포스코 딥드로잉성이 우수한 복합조직강판
JP5332355B2 (ja) * 2007-07-11 2013-11-06 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
KR101230742B1 (ko) * 2008-03-07 2013-02-07 가부시키가이샤 고베 세이코쇼 냉간 압연 강판
KR20120132834A (ko) * 2011-05-30 2012-12-10 현대제철 주식회사 고강도 냉연강판 및 그 제조 방법
US9988700B2 (en) 2011-07-29 2018-06-05 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950007472B1 (ko) * 1991-04-26 1995-07-11 가와사키 세이테츠 가부시키가이샤 상온 비시효 소성경화성 인발 가공용 고장력 냉연강판 및 그 제조방법
KR20000016460A (ko) 1997-04-09 2000-03-25 에모토 간지 내시효성이 우수한 도장인화 경화형 냉간압연 강판 및 그의 제조 방법
JP2008144233A (ja) * 2006-12-11 2008-06-26 Kobe Steel Ltd 焼付硬化用高強度鋼板およびその製造方法
JP2009215572A (ja) * 2008-03-07 2009-09-24 Kobe Steel Ltd 降伏応力と伸びと伸びフランジ性に優れた高強度冷延鋼板
JP2010037652A (ja) * 2008-07-11 2010-02-18 Kobe Steel Ltd 耐水素脆化特性および加工性に優れた高強度冷延鋼板
KR20110110370A (ko) * 2009-05-27 2011-10-06 신닛뽄세이테쯔 카부시키카이샤 피로 특성과 연신 및 충돌 특성이 우수한 고강도 강판, 용융 도금 강판, 합금화 용융 도금 강판 및 그들의 제조 방법

Also Published As

Publication number Publication date
CN105121672A (zh) 2015-12-02
CN105121672B (zh) 2017-07-14
EP2980228A4 (en) 2017-01-25
EP2980228B1 (en) 2019-01-09
EP2980228A1 (en) 2016-02-03
US20160053340A1 (en) 2016-02-25
US10106865B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
KR102446210B1 (ko) 고강도 강 제품을 제조하는 방법 및 그로 인해 얻어지는 강 제품
US11692235B2 (en) Method for manufacturing a high-strength steel sheet and sheet obtained by the method
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
US11193189B2 (en) Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2016098963A1 (ko) 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2017155263A1 (ko) 소부경화성 및 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2016105115A1 (ko) 표면품질, 도금밀착성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2011105652A1 (ko) 도금성이 우수한 고강도 강판 및 그 제조 방법
WO2018105904A1 (ko) 소부 경화성 및 상온 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2018030715A1 (ko) 성형성이 우수한 고강도 박강판 및 그 제조방법
WO2017051998A1 (ko) 도금 강판 및 이의 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2016182098A1 (ko) 굽힘 가공성이 우수한 초고강도 열연강판 및 그 제조 방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2014157823A1 (ko) 강판 및 그 제조 방법
WO2021261884A1 (ko) 생산성 및 원가 절감 효과가 우수한 고강도 오스테나이트계 스테인리스강 및 이의 제조방법
WO2017018659A1 (ko) 내시효성 및 소부경화성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2024144040A1 (ko) 초고장력 냉연강판 및 그 제조방법
WO2023048448A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2014157822A1 (ko) 강판 및 그 제조 방법
WO2023048450A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2023048449A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014776303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14780513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE