WO2014157155A1 - めっき密着性に優れた溶融亜鉛系めっき鋼板およびその製造方法 - Google Patents

めっき密着性に優れた溶融亜鉛系めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014157155A1
WO2014157155A1 PCT/JP2014/058208 JP2014058208W WO2014157155A1 WO 2014157155 A1 WO2014157155 A1 WO 2014157155A1 JP 2014058208 W JP2014058208 W JP 2014058208W WO 2014157155 A1 WO2014157155 A1 WO 2014157155A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
plating
hot
heat treatment
Prior art date
Application number
PCT/JP2014/058208
Other languages
English (en)
French (fr)
Inventor
将明 浦中
清水 剛
健太郎 平田
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112015024016A priority Critical patent/BR112015024016A2/pt
Priority to SG11201507737QA priority patent/SG11201507737QA/en
Priority to CN201480018101.XA priority patent/CN105051238B/zh
Priority to NZ711709A priority patent/NZ711709A/en
Priority to MX2015013368A priority patent/MX366702B/es
Priority to CA2904131A priority patent/CA2904131C/en
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to AU2014245876A priority patent/AU2014245876B2/en
Priority to KR1020157024871A priority patent/KR102014062B1/ko
Priority to EP14774669.7A priority patent/EP2980259A4/en
Priority to US14/773,398 priority patent/US9523142B2/en
Publication of WO2014157155A1 publication Critical patent/WO2014157155A1/ja
Priority to US15/345,887 priority patent/US20170051379A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention is a steel plate containing B as a plating base plate and further containing one or more of Si, Mn, and Cr and subjected to hot-dip Zn-Al-Mg plating,
  • the present invention relates to a hot dip galvanized steel sheet having improved metal embrittlement cracking and plating adhesion and a method for producing the same.
  • Hot-dip galvanized steel sheets are widely used in various applications. However, when galvanized steel sheets are welded, cracks may occur in the weld heat affected zone, which may be a problem. This phenomenon is generally called “molten metal embrittlement cracking”, and it is considered that the molten plating component acts on the grain boundaries of the steel sheet to cause brittle fracture (grain boundary fracture).
  • hot-dip Zn-Al-Mg-based steel sheets are excellent in corrosion resistance and are used in various corrosion resistance applications including building materials. Recently, a hot-dip Zn—Al—Mg-based steel sheet has been increasingly applied as a substitute for a conventional general galvanized steel sheet. However, the hot-dip Zn—Al—Mg-based plated steel sheet tends to cause molten metal embrittlement cracking more easily than the conventional hot-dip galvanized steel sheet.
  • Patent Document 1 it is known that it is effective to apply a plating original plate containing B as a technique for improving resistance to molten metal embrittlement cracking.
  • Patent Document 2 discloses a technique for producing a molten Zn—Al—Mg based steel sheet using a steel type for a high-strength steel sheet containing a relatively large amount (around 2% by mass) of Mn as a plating base sheet.
  • molten metal embrittlement cracking no special consideration is given to the resistance to molten metal embrittlement cracking, and when this is used for welding, molten metal embrittlement cracking may become a problem.
  • Patent Document 3 also discloses a technique for manufacturing a hot-dip Zn—Al—Mg based steel sheet using a high strength steel sheet containing a relatively large amount (1% by mass or more) of Mn as a plating base sheet.
  • the plating original plate targeted by this technique contains B in order to improve the resistance to molten metal embrittlement cracking.
  • the use of a relatively high Mn-based high-strength steel type containing B for the plating original plate causes a new problem that the adhesion of the molten Zn—Al—Mg-based plating layer tends to be lowered. .
  • Patent Document 4 discloses a technique for manufacturing a hot-dip Zn—Al—Mg-based plated steel sheet on a high-strength steel sheet containing a large amount of Mn (1.5% by mass or more). Although the original plating plate targeted by this technique does not contain B, this document discloses that hot-dip Zn-Al-Mg-based plating causes problems such as non-plating and poor plating adhesion. ing. In this technique, the problem of non-plating and plating adhesion is solved by controlling the reducing atmosphere in the reduction heat treatment to bring SiO 2 in the surface layer portion of the steel sheet into an internal oxidation state.
  • the external oxidation of Si is suppressed while reducing Fe, and one kind selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 on the steel sheet surface or surface side.
  • FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 on the steel sheet surface or surface side.
  • the reduction heat treatment is also a treatment for adjusting the metal structure so that the mechanical properties of the plated steel plate have a predetermined performance by subjecting the steel plate to a high temperature. If the metal structure of a steel sheet containing B simultaneously with Si, Mn and Cr is adjusted according to the combination of the reduction heat treatment temperature and the holding time with good plating adhesion disclosed in Patent Document 3, the holding time cannot be increased. There was also a problem. In production equipment that continuously performs reduction heat treatment and hot dipping, the sheet passing speed of the steel sheet may be reduced for operational reasons. Even in such a case, it is advantageous that the plating adhesion can be secured even if the holding time is increased.
  • the present invention uses a steel plate to which B is added and imparted resistance to molten metal embrittlement cracking as a plating base plate, and a molten Zn—Al—Mg based alloy plating excellent in plating adhesion
  • the object is to produce a steel plate.
  • the above-mentioned object is intended for a plating original sheet containing B, and by defining the conditions of the coiling temperature when hot rolling the steel sheet and the conditions of the reduction heat treatment performed when introduced into the hot dip galvanizing bath This is achieved by suppressing the steel sheet surface from being covered with a Si—Mn—B-based oxide during the reduction heat treatment to ensure plating adhesion.
  • C 0.01 to 0.20%, P: 0.030% or less, S: 0.010% or less, Ti: 0.010 to 0.150%, sol.Al. : 0.100% or less, N: less than 0.010%, B: 0.0003 to 0.0100%, Si: 0.01 to 1.00%, Mn: 0.10 to 2.50%, Cr: A steel plate containing at least one selected from the group of 0.05 to 1.00%, the balance being Fe and unavoidable impurities, Winding a hot-rolled steel sheet in the range of 550 to 700 ° C; Subsequent to the reduction heat treatment, by hot dip galvanizing containing Al: 1.0 to 22.0%, Mg: 0.1 to 10.0% in mass%, the balance being Zn and inevitable impurities is applied.
  • the time during which the steel sheet surface temperature is maintained at 750 ° C. or higher in the reductive heat treatment furnace is defined as “holding time”, and the maximum temperature reached on the steel sheet surface in the furnace is defined as “reducing heat treatment temperature”.
  • the reduction heat treatment temperature is 750 to 860 ° C.
  • Concentration (mass%) of Si and Mn within 4 ⁇ m from the steel sheet surface before the reduction heat treatment A; Si: 0.15% or less, and Mn: 0.8% or less, B; Si: 0.6% or less and Mn: 1.5% or less, provided that A is not satisfied, C: Si: more than 0.6%, or Mn: more than 1.5%.
  • the hot dip galvanizing further contains at least one selected from the group consisting of Ti: 0.10% or less, B: 0.05% or less, Si: 2.0% or less by mass%. It does not matter.
  • the surface of the steel plate within 10 ⁇ m of the surface of the plating original plate when hot rolling is taken up, the Si single oxide, the Mn single oxide, the Cr single oxide, the Si—Mn composite oxide, At least one of a Si—Cr composite oxide, a Mn—Cr composite oxide, and a Si—Mn—Cr composite oxide is formed.
  • Such internal oxides are generated when the plating original plate has a chemical composition of mass%, Si: 0.01 to 1.00%, Mn: 0.10 to 2.50%, Cr: 0.00. This is because it contains one or more selected from the group of 05 to 1.00%.
  • the inventors delay the diffusion of B to the surface layer even if a Si—Mn-based oxide is generated on the steel sheet surface in a reducing atmosphere.
  • the concentration of Si and Mn is lower than the content of Si and Mn in the steel sheet within 4 ⁇ m from the surface of the steel sheet where the internal oxide is formed by winding under the above conditions during hot rolling. I also found. That is, a deficient layer of Si and Mn exists on the steel plate surface.
  • a material having improved both “melting metal embrittlement cracking resistance” and “plating adhesion” in a steel sheet subjected to hot-dip Zn—Al—Mg plating having high corrosion resistance is realized.
  • Production of a hot-dip Zn-Al-Mg alloy-plated steel sheet that simultaneously achieves these characteristics has been difficult, but the present invention is intended for use in hot-dip Zn-based steel sheets used for bending and welding. This contributes to the spread of hot-dip Zn—Al—Mg-based steel sheets.
  • the schematic diagram which shows the boss-welding test performed in order to evaluate a melt-proof embrittlement countermeasure cracking property.
  • % in the chemical composition of the plating original plate and the hot dipping means “% by mass” unless otherwise specified.
  • C 0.01 to 0.20%
  • C is a basic element responsible for the strength of the steel sheet, and in the present invention, a steel type having a C content level of 0.01% or more is targeted. You may manage to use the thing of C content of 0.10% or more. However, since excessive C content reduces ductility and weldability, the C content is limited to 0.20% or less.
  • Si 0.01 to 1.00% Si in the steel sheet causes a Si oxide film harmful to the plating property to be generated on the steel sheet surface.
  • the Si content needs to be 1.00% or less.
  • Si is also one of the main elements that generate internal oxides on the inner surface of the steel sheet surface, so a content of 0.01% or more is required. More preferably, it is 0.20% or more.
  • Mn in the steel sheet has the effect of strengthening the steel material by solid solution strengthening, and has the action of stabilizing the austenite and promoting the generation of transformation phases such as martensite.
  • the Mn content needs to be 0.10% or more.
  • the addition of a large amount of Mn causes a decrease in workability and plating properties, so the Mn content should be limited to 2.50% or less.
  • Mn is one of the main elements that generate an internal oxide on the inner side of the steel sheet surface, and for that purpose, a content of 0.10% or more is required. More preferably, it is 0.20% or more.
  • Cr 0.05 to 1.00% Cr in the steel sheet also has an effect of strengthening the steel material by solid solution strengthening, and is effective in suppressing molten metal embrittlement cracking. It is also one of the elements. For this reason, a content of 0.05% or more is required. More preferably, it is 0.20% or more. However, if added in a large amount, it causes a decrease in workability, so it should be limited to 1.00% or less. More preferably, it is 0.50% or less.
  • P 0.030% or less P has an effect of strengthening a steel material by solid solution strengthening, but if contained in a large amount, it causes a decrease in workability. Therefore, in the present invention, the target is 0.030% or less. And It is more preferable that it is 0.020% or less.
  • S 0.010% or less Since S forms a sulfide that causes a decrease in workability, it is desirable to reduce it as much as possible. As a result of various studies, the S content is allowed to be 0.010%, but is more preferably 0.005% or less particularly in applications where workability is important.
  • Ti 0.010 to 0.150%
  • Ti is a strong nitride-forming element and is an important element for fixing N in the plating original plate as TiN.
  • N the amount of free B is secured, and the effect of improving the resistance to molten metal embrittlement cracking by free B is exhibited.
  • the content is 0.020% or more.
  • Ti content is restrict
  • sol.Al 0.100% or less Al is added as a deoxidizing agent.
  • sol.Al acid-soluble Al
  • the content is limited to 0.100% or less. More preferably, it is 0.060% or less. In deoxidation, it is more effective to add Al in a range where the sol.Al content is 0.005% or more, and addition in a range where it is 0.010% or more is more effective. .
  • N Less than 0.010% N reacts with B to form a boride, which causes a reduction in the amount of free B effective in improving the resistance to molten metal embrittlement cracking. As a result of various studies, the N content is limited to a range of less than 0.010%.
  • B 0.0003-0.0100%
  • B is an element effective for suppressing molten metal embrittlement. The effect is considered to be brought about by the fact that B is segregated as free B to the grain boundary and the interatomic bonding force increases. For that purpose, it is necessary to secure a B content of at least 0.0003% or more. More preferably, the B content is 0.0005% or more. However, excessive addition of B causes formation of borides and deterioration of workability, so the upper limit of B content is limited to 0.0100%.
  • Nb 0.10% or less
  • Nb is an element effective in securing free B having an effect of improving resistance to molten metal embrittlement cracking because Nb has an action of fixing N.
  • the steel plate of this invention can contain Nb as needed. When Nb is contained, it is more effective to set the content to 0.001% or more. However, since a large amount of addition causes a decrease in workability, Nb is 0.10% or less, preferably 0.05% or less.
  • Mo 0.50% or less
  • Mo is also an element having an effect of improving the resistance to molten metal embrittlement cracking, and the steel sheet of the present invention can contain Mo if necessary. When Mo is contained, it is more effective to set the content to 0.01% or more. However, since a large amount of addition causes a decrease in workability, Mo should be added to 0.50% or less, preferably 0.20% or less.
  • the slab to be subjected to hot rolling and the finishing temperature are not particularly limited, and may be as usual.
  • the coiling temperature is in the range of 550 to 700 ° C. By winding at this temperature, within a range of 10 ⁇ m or less from the surface layer of the steel plate covered with oxide scale, a single oxide or complex oxide of Si, Mn, and Cr is generated as an internal oxide, and Si and Mn A depletion layer is formed.
  • a hot-rolled steel plate or a cold-rolled steel plate having the above chemical composition can be used as the plating base plate.
  • cold rolling is performed in accordance with a conventional method, and finished to a predetermined thickness.
  • the surface oxide scale needs to be sufficiently removed.
  • the plate thickness may be selected in the range of 0.6 to 4.5 mm, for example, depending on the application.
  • the steel plate sample was subjected to reduction heat treatment under various conditions, and the surface was observed. According to this, in the steel type without addition of B, which provides good plating adhesion, the surface is dotted with Si-Mn-based oxides, and even if the reductive heat treatment conditions are changed, this surface state changes greatly. Was not seen.
  • the same Si—Mn-based oxide as described above becomes a surface state scattered on the surface of the plating base plate, but as the heating proceeds, It was found that the B diffused from the silicon was added to the Si—Mn oxide, and the scattered oxide became an Si—Mn—B oxide. As the diffusion of B from the steel further progresses, the Si—Mn—B-based oxide on the surface of the steel sheet increases the B concentration and lowers the melting point. As a result, it is considered that the Si—Mn—B-based oxide partially melts during the reduction heat treatment, and the resulting melt covers the flat portion of the steel sheet surface.
  • the time during which the steel sheet surface temperature is maintained at 750 ° C. or higher in a reducing atmosphere furnace is defined as “holding time”, and the maximum temperature reached on the steel sheet surface in the furnace is defined as “reducing heat treatment temperature”
  • holding time the time during which the steel sheet surface temperature is maintained at 750 ° C. or higher in a reducing atmosphere furnace
  • reducing heat treatment temperature the maximum temperature reached on the steel sheet surface in the furnace
  • the concentration of Si and Mn within 4 ⁇ m of the steel sheet surface is determined by a preliminary experiment according to the combination of the steel type to be passed through the production line and the coiling temperature, and the combination of the Si concentration and the Mn concentration is the following A
  • the holding time of the reduction heat treatment is controlled depending on which of the following conditions is met.
  • the reduction heat treatment temperature is 750 to 860 ° C.
  • the holding time is within 250 seconds
  • the condition B is satisfied
  • the holding time is within 200 seconds
  • the condition C is satisfied
  • the reduction heat treatment may be performed under the condition that the holding time is within 150 seconds.
  • the recrystallization annealing is also performed by the reduction heat treatment
  • a condition in which the recrystallization temperature is reached or higher up to the inside of the steel sheet may be employed in each of the above condition ranges.
  • the reduction treatment temperature maximum surface temperature
  • an atmosphere conventionally used as a pretreatment for hot dipping can be applied.
  • a 5 to 50 volume% H 2 —N 2 atmosphere can be exemplified.
  • Al in the plating bath is effective in improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide-based dross in the plating bath.
  • the effect is recognized when the Al content of the hot dipping bath is 4.0% or more.
  • Al is also effective in improving the plating adhesion.
  • the Al content of the hot dipping bath needs to be 1.0% or more.
  • the Al content exceeds 22.0%, a brittle Fe—Al alloy layer grows excessively at the interface between the plating layer and the steel substrate, which causes a decrease in plating adhesion.
  • the Al content is preferably 15.0% or less, and may be controlled to 10.0% or less.
  • Mg in the plating bath exhibits the effect of significantly increasing the corrosion resistance of the plated steel sheet by generating a uniform corrosion product on the surface of the plating layer. It is also effective in improving plating adhesion. These effects are manifested when the Mg content of the hot dipping bath is in the range of 0.10% or more, and in order to obtain a particularly remarkable effect, it is more preferable to secure a Mg content of 1.0% or more. On the other hand, when the Mg content exceeds 10.0%, Mg oxide-based dross tends to occur. In order to obtain a higher quality plating layer, the Mg content is preferably 5.0% or less, and may be controlled to 4.0% or less.
  • Si When Si is contained in the hot dip plating bath, excessive growth of the Fe—Al alloy layer formed at the interface between the steel substrate and the plating layer is suppressed, and the workability of the hot dip Zn—Al—Mg plated steel sheet is improved. Is advantageous. Moreover, Si is effective in preventing the black change of the plating layer and maintaining the glossiness of the surface. Therefore, Si can be contained as necessary. When Si is contained, it is more effective to set the Si content of the hot dipping bath to 0.005% or more. However, since excessive Si content increases the amount of dross in the hot dipping bath, the Si content in the plating bath is limited to 2.0% or less.
  • Fe is mixed in the hot dipping bath because of the immersion and passage of the steel sheet.
  • the Fe content in the Zn—Al—Mg plating bath is generally allowed to be about 2.0%.
  • the plating bath for example, one or more of Ca, Sr, Na, rare earth elements, Ni, Co, Sn, Cu, Cr and Mn may be mixed, but the total content thereof is 1 It is desirable to manage to 0.0% or less.
  • the amount of plating adhesion is desirably adjusted in the range of 20 to 300 g / m 2 per one side of the steel sheet.
  • the steel having the chemical composition shown in Table 1 is melted, the slab is heated to 1250 ° C., extracted, and hot rolled at a finish rolling temperature of 880 ° C. and a winding temperature of 520 to 700 ° C., A hot-rolled steel strip having a thickness of 2.4 mm was obtained.
  • the hot-rolled steel strip was pickled and cold-rolled to prepare a cold-rolled steel plate having a thickness of 1.4 mm.
  • a part of the cold-rolled steel sheet is sampled and embedded in the resin, a cross section parallel to the thickness direction is observed with a scanning transmission electron microscope (STEM), and energy dispersive X-ray spectroscopy (EDX) is used.
  • STEM scanning transmission electron microscope
  • the Si concentration and Mn concentration in the vicinity of the steel sheet surface layer (within a depth of 4 ⁇ m from the rolled surface) were quantified.
  • the internal oxide was confirmed by performing etching with a nital solution on the embedded cross section and using an optical microscope or a scanning electron microscope (SEM). Displayed in Tables 2 and 3 as “O” for the formation of oxide in the region within 10 ⁇ m depth from the vicinity of the steel plate surface of the cross section (within 10 ⁇ m depth from the rolling surface), and “X” for those not confirmed. did.
  • each cold-rolled steel sheet is subjected to reduction heat treatment at various holding times and reduction heat treatment temperatures, and then immersed in a hot dip galvanizing bath without being exposed to the atmosphere, pulled up from the bath, and the amount of plating deposited per side Of about 90 g / m 2 was obtained.
  • the experimental conditions are described in Tables 2 and 3 and are as follows.
  • the welding conditions were a welding current: 217 A, a welding voltage of 25 V, a welding speed of 0.2 m / min, a shielding gas: CO 2 , and a shielding gas flow rate: 20 L / min.
  • YGW12 was used for the welding wire. After the welding start point made one round around the boss and after the welding start point was passed, welding was continued further to make a portion 4 where the weld beads 3 overlapped.
  • the test piece 1 and the boss 2 were cut as indicated by a broken line so as to include the bead overlap portion 4, embedded in a resin so that the cut surface 5 could be observed, and the bead overlap portion was observed with an optical microscope. .
  • the length of the crack was measured.
  • the longest crack length was defined as the “maximum crack length”. This crack occurs along the prior austenite grain boundary of the weld heat affected zone, and it is determined that this crack is a molten metal embrittlement crack.
  • the evaluation of the resistance to molten metal embrittlement cracking was a pass ( ⁇ ) when the maximum crack length was 0.1 mm or less, and a reject (x) when the maximum crack length exceeded 0.1 mm.
  • the evaluation results are shown in Table 4. Steels A to J and O passed, but steels K to N failed.
  • Test piece 2 Boss 3 Weld bead 4 Bead overlap part 5 Cut surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

【課題】Bを添加して耐溶融金属脆化割れ性を付与した鋼種をめっき原板に用いて、めっき密着性に優れた溶融Zn-Al-Mg系合金めっき鋼板を提供する。 【解決手段】めっき原板である鋼板とその表面上に形成された溶融亜鉛系めっき層との界面から10μm以内の鋼板側に、Si単独酸化物、Mn単独酸化物、Cr単独酸化物、Si-Mn系複合酸化物、Si-Cr系複合酸化物、Mn-Cr系複合酸化物、Si-Mn-Cr系複合酸化物の少なくとも1種以上が存在するめっき密着性に優れた溶融亜鉛系めっき鋼板。

Description

めっき密着性に優れた溶融亜鉛系めっき鋼板およびその製造方法
 本発明は、めっき原板として、Bを含有し、さらにSi、Mn、Crの1種以上を含有する鋼種を用い、これに溶融Zn-Al-Mg系めっきを施した鋼板であって、耐溶融金属脆化割れ性およびめっき密着性を同時に改善した溶融亜鉛系めっき鋼板およびその製造法に関する。
 溶融亜鉛系めっき鋼板は種々の用途で広く用いられているが、亜鉛系めっき鋼板に溶接を施すと、溶接熱影響部に割れが発生して問題となることがある。この現象は一般に「溶融金属脆化割れ」と呼ばれ、溶融しためっき成分が鋼板の粒界に作用して脆性的な破壊(粒界破壊)を引き起こすものと考えられている。
 亜鉛系めっき鋼板の中でも、溶融Zn-Al-Mg系めっき鋼板は耐食性に優れることから建材をはじめとする種々の耐食用途において使用されている。最近では、従来一般的な亜鉛めっき鋼板の代替としても溶融Zn-Al-Mg系めっき鋼板を適用することが多くなってきた。ただし溶融Zn-Al-Mg系めっき鋼板は、従来の溶融亜鉛めっき鋼板よりも溶融金属脆化割れを生じやすい傾向にある。
 そこで、耐溶融金属脆化割れ性を改善する手法として、Bを含有するめっき原板を適用することが有効であることが知られている(特許文献1)。
特開2003-003238号公報 特開2006-097063号公報 特開2011-214041号公報 特開2008-07842号公報
 溶融Zn-Al-Mg系めっき鋼板は、その高耐食性を活かして種々の用途で適用されるようになり、高張力鋼板の用途においても当該合金めっき鋼板のニーズが増えてきた。特許文献2には比較的多量(2質量%前後)のMnを含有する高張力鋼板用の鋼種をめっき原板として溶融Zn-Al-Mg系めっき鋼板を製造する技術が開示されている。ただし、耐溶融金属脆化割れ性については特に配慮されておらず、これを溶接用途に使用した場合には溶融金属脆化割れが問題となる場合がありうる。
 特許文献3にも、比較的多量(1質量%以上)のMnを含有した高張力鋼板をめっき原板として、これに溶融Zn-Al-Mg系めっき鋼板を製造する技術が開示されている。この技術が対象としているめっき原板は、耐溶融金属脆化割れ性を改善するためにBを含有している。しかしながら、比較的高Mn系でBを含有する高強度鋼種をめっき原板に使用すると、溶融Zn-Al-Mg系めっき層の密着性が低下しやすいという新たな問題が生じることが開示されている。めっき密着性に劣る鋼板を曲げ加工に供すると、曲げ部でめっきが剥離してトラブルの要因となる。この技術では、還元熱処理の保持時間と還元熱処理温度の条件を厳密に制御することにより、Bを含有するめっき原板であっても、Bが表面に多量に拡散してくる前に還元熱処理を終了することによってめっき密着性が低下する問題を解決している。
 特許文献4は、多量のMn(1.5質量%以上)を含有する高強度鋼板に、これに溶融Zn-Al-Mg系めっき鋼板を製造する技術を開示している。この技術が対象としているめっき原板はBを含有していないものの、この文献には溶融Zn-Al-Mg系めっきを行うと不めっきやめっき密着性が低下しやすいという問題が生じることが開示されている。この技術では、還元熱処理における還元雰囲気を制御して鋼板表層部におけるSiOを内部酸化状態とすることによって、不めっきやめっき密着性の問題を解決している。
 しかし、還元熱処理を行う還元帯において、Feを還元しながらSiの外部酸化を抑制し、鋼板表面または表面側にFeSiO,FeSiO,MnSiO,MnSiOから選ばれた1種以上のSi酸化物を生成させる目的で、還元帯の雰囲気中の酸素分圧POが所定の範囲となるように管理しなければならず煩雑である。
 また、還元熱処理は、鋼板を高温に曝して熱処理することで、めっき鋼板の機械的特性が所定の性能となるように金属組織を調整するための処理でもある。Si、MnやCrと同時にBを含有する鋼板の金属組織の調整を、特許文献3に開示されためっき密着性が良好な還元熱処理温度と保持時間の組み合わせに従って行うと、保持時間を長くできないという問題もあった。還元熱処理と溶融めっきを連続して行う生産設備では、操業上の理由から鋼板の通板速度を減速することもある。このような場合にも、保持時間を長くしてもめっき密着性が確保できることは好都合である。
 本発明は、上記の背景を考慮して、Bを添加して耐溶融金属脆化割れ性を付与した鋼板をめっき原板に用いて、めっき密着性に優れた溶融Zn-Al-Mg系合金めっき鋼板を製造することを目的とする。
 上記目的は、Bを含有するめっき原板を対象とし、鋼板を熱間圧延する際の巻取り温度の条件と、溶融亜鉛系めっき浴に導入する際に行われる還元熱処理の条件を規定することにより、還元熱処理時に鋼板表面がSi-Mn-B系の酸化物で覆われてしまうことを抑制してめっき密着性を確保することによって達成される。
 すなわち本発明では、質量%で、C:0.01~0.20%、P:0.030%以下、S:0.010%以下、Ti:0.010~0.150%、sol.Al:0.100%以下、N:0.010%未満、B:0.0003~0.0100%と、さらにSi:0.01~1.00%、Mn:0.10~2.50%、Cr:0.05~1.00%の群から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなる鋼板をめっき原板とし、
 熱延鋼板を550~700℃の範囲で巻き取ることと、
 還元熱処理に引き続いて、質量%で、Al:1.0~22.0%、Mg:0.1~10.0%を含有し、残部がZnおよび不可避的不純物からなる溶融亜鉛系めっきを施すにあたり、
 還元熱処理工程において、還元熱処理の炉内で鋼板表面温度が750℃以上に保持される時間を「保持時間」、当該炉内での鋼板表面の最高到達温度を「還元熱処理温度」と定義するとき、
 還元熱処理温度を750~860℃とし、
 還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度が下記の条件Aを満たす場合は保持時間を250秒以内、条件Bを満たす場合は保持時間を200秒以内、条件Cを満たす場合は保持時間を150秒以内として還元熱処理を行うことにより、めっき密着性に優れた溶融亜鉛系めっき鋼板を得る。
 還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度(質量%):
A; Si:0.15%以下、かつMn:0.8%以下、
B; Si:0.6%以下、かつMn:1.5%以下、ただしAを満たさない、
C; Si:0.6%超え、またはMn:1.5%超え。
 上記において、溶融亜鉛系めっきが、さらに、質量%で、Ti:0.10%以下、B:0.05%以下、Si:2.0%以下の群から選ばれる1種以上を含有するものであっても構わない。
 また、上記の製造方法に従うと、熱間圧延の巻取り時にめっき原板の表面10μm以内の鋼板側に、Si単独酸化物、Mn単独酸化物、Cr単独酸化物、Si-Mn系複合酸化物、Si-Cr系複合酸化物、Mn-Cr系複合酸化物、Si-Mn-Cr系複合酸化物の少なくとも1種以上が生成する。このような内部酸化物が生成するのは、めっき原板が、その化学組成として質量%で、Si:0.01~1.00%、Mn:0.10~2.50%、Cr:0.05~1.00%の群から選ばれる1種以上を含有していることによる。この内部酸化物を生成させためっき原板を還元熱処理すると、還元雰囲気中において鋼板表面へSi-Mn系酸化物が生成しても、Bが表層へ拡散してくることを遅延することを発明者らは見出したのである。
 また、発明者らは、熱間圧延時に前記の条件で巻き取って内部酸化物が生成した鋼板表面から4μm以内では、SiとMnの濃度が鋼板のSiとMnの含有量よりも低下することも見出した。すなわち、鋼板表面には、SiとMnの欠乏層が存在する。この濃度に応じて還元熱処理の保持時間を設定することにより、めっき密着性に優れた溶融Zn-Al-Mg系めっき鋼板が得られるのである。
 本発明によれば、高耐食性を有する溶融Zn-Al-Mg系めっきを施した鋼板において、「耐溶融金属脆化割れ性」と「めっき密着性」の両方を改善した材料が実現される。これらの特性を同時に両立させた溶融Zn-Al-Mg系合金めっき鋼板の製造は、従来困難であったところ、本発明は曲げ加工や溶接加工に供される溶融Zn系めっき鋼板の用途において、溶融Zn-Al-Mg系めっき鋼板の普及に寄与するものである。
耐溶融脆化対策割れ性を評価するために行う、ボス溶接試験を示す模式図。
 本明細書において、めっき原板および溶融めっきの化学組成における「%」は特に断らない限り「質量%」を意味する。
〔めっき原板〕
 本発明の対象となる鋼板の化学組成は以下のとおりである。
 C:0.01~0.20%
 Cは、鋼板の強度を担う基本的な元素であり、本発明では0.01%以上のC含有量レベルの鋼種を対象とする。0.10%以上のC含有量のものを使用するように管理してもよい。ただし、過剰のC含有は延性、溶接性を低下させるので、C含有量は0.20%以下に制限される。
 Si:0.01~1.00%
 鋼板中のSiは、めっき性に有害なSi酸化膜を鋼板表面に生じさせる要因となる。種々検討の結果、Si含有量は1.00%以下とする必要がある。ただし、本発明では、Siは鋼板表面の内側に内部酸化物を生成させる主要な元素のひとつでもあるため、0.01%以上の含有量が必要となる。0.20%以上とすることがより好ましい。
 Mn:0.10~2.50%
 鋼板中のMnは、固溶強化によって鋼材を強化する作用を有すると共に、オーステナイトを安定化させマルテンサイト等の変態相の生成を促進させる作用を有するので、鋼板の強度の確保と機械的特性の安定化のために、Mn含有量は0.10%以上とする必要がある。ただし、多量のMn添加は加工性およびめっき性を低下させる要因となるので、Mn含有量は2.50%以下に制限するのがよい。
 一方、本発明では、Mnは鋼板表面の内側に内部酸化物を生成させる主要な元素のひとつであり、そのためにも0.10%以上の含有量が必要となる。0.20%以上とすることがより好ましい。
 Cr:0.05~1.00%
 鋼板中のCrも、固溶強化によって鋼材を強化する作用を有するとともに、耐溶融金属脆化割れの抑制にも有効であり、しかも本発明では、鋼板表面の内側に内部酸化物を生成させる主要な元素のひとつでもある。そのため、0.05%以上の含有量が必要となる。0.20%以上とすることがより好ましい。ただし、多量に添加すると加工性を低下させる要因となるので、1.00%以下に制限するのがよい。0.50%以下とすることがより好ましい。
 P:0.030%以下
 Pは、固溶強化によって鋼材を強化する作用を有するが、多量に含有すると加工性を低下させる要因となるので、本発明では、0.030%以下のものを対象とする。0.020%以下であることがより好ましい。
 S:0.010%以下
 Sは、加工性低下の要因となる硫化物を形成するので、できるだけ低減することが望ましい。種々検討の結果、S含有量は0.010%まで許容されるが、特に加工性を重視する用途では0.005%以下とすることがより好ましい。
 Ti:0.010~0.150%
 Tiは、強力な窒化物形成元素であり、めっき原板中のNをTiNとして固定する上で重要な元素である。Nを固定することによりフリーBの量が確保され、フリーBによる耐溶融金属脆化割れ性の向上作用が発揮される。検討の結果、上記作用を十分に発揮させるためには0.010%以上のTi含有量を確保する必要がある。0.020%以上とすることがより好ましい。ただし、過剰にTiを添加しても上記効果は飽和し、またTiの多量添加は鋼材の加工性を劣化させる要因になる。このためTi含有量は0.150%以下の範囲に制限される。
 sol.Al:0.100%以下
 Alは、脱酸剤として添加されるが、過剰のAl添加はプレス成形性の低下を招く等の弊害を生じるので、sol.Al(酸可溶Al)として0.100%以下の含有量に制限される。0.060%以下であることがより好ましい。なお、脱酸においてはsol.Al含有量が0.005%以上となる範囲でAlを添加することがより効果的であり、0.010%以上となる範囲での添加が一層効果的である。
 N:0.010%未満
 Nは、Bと反応して硼化物を形成し、耐溶融金属脆化割れ性の改善に有効なフリーBの量を低減させる要因となる。種々検討の結果、N含有量は0.010%未満の範囲に制限される。
 B:0.0003~0.0100%
 Bは、溶融金属脆化の抑制に有効な元素である。その作用はBがフリーBとして結晶粒界に偏析して原子間結合力が増大することによってもたらされるものと考えられる。そのためには少なくとも0.0003%以上のB含有量を確保する必要がある。0.0005%以上のB含有量とすることがより好ましい。ただし、過剰のB添加は硼化物の生成、加工性劣化の要因となるため、B含有量の上限は0.0100%に制限される。
 Nb:0.10%以下
 Nbは、Nを固定する作用を有するので、耐溶融金属脆化割れ性を高める効果を有するフリーBを確保する上で有効な元素である。このため、本発明の鋼板は、必要に応じてNbを含有させることができる。Nbを含有させる場合は、0.001%以上の含有量とすることがより効果的である。ただし、多量の添加は加工性を低下させる要因となるので、Nbは0.10%以下、好ましくは0.05%以下がよい。
 Mo:0.50%以下
 Moも耐溶融金属脆化割れ性を高める効果を有する元素であり、本発明の鋼板は、必要によりMoを含有させることができる。Moを含有させる場合は、0.01%以上の含有量とすることがより効果的である。ただし、多量の添加は加工性を低下させる要因となるので、Moは0.50%以下、好ましくは0.20%以下の添加に留めるべきである。
〔熱間圧延〕
 熱間圧延に供するスラブや、仕上げ温度は特に限定されず、常法のとおりでよい。巻取り温度は550~700℃の範囲とする。この温度で巻取ることによって、酸化スケールに覆われた鋼板表層から10μm以下の範囲内に、Si、MnやCrの単独酸化物あるいは複合酸化物が内部酸化物として生成するととともに、SiやMnの欠乏層が形成される。
 本発明においてめっき原板としては、以上の化学組成を有する熱延鋼板または冷延鋼板を使用することができる。冷間圧延を行う場合は、このあと常法にしたがって冷間圧延を行い、所定の板厚に仕上げる。熱延鋼板の場合は、表面の酸化スケールが十分に除去されている必要がある。板厚は、用途に応じて例えば0.6~4.5mmの範囲で選択すればよい。
〔還元熱処理〕
 めっき原板を溶融亜鉛系めっき浴に導入する前に、通常、鋼板表面を活性化させるために還元熱処理が行われる。大量生産現場の連続溶融めっきラインでは、還元熱処理と溶融めっきを連続的に行うようになっている。この還元熱処理工程は、単にめっき原板の表面を活性化させるだけではなく、鋼板の金属組織を最終的な組織状態に調整するための焼鈍工程を兼ねる場合が多い。したがって、目的に応じて種々のヒートパターンが採用される。また、ラインの操業状況によっては、活性化や焼鈍に支障のない範囲で熱処理炉を通過する鋼帯の速度(ライン速度)が調整されることもある。
 前述のように、Bを含有する鋼板を溶融Zn-Al-Mg系めっきに供するとめっき密着性に問題を生じることがある。発明者らは、その原因を究明すべく、溶融めっき後のめっき層/鋼素地界面の状態を詳細に調べた。その結果、Bを含有しない鋼種では、めっき層/鋼素地界面には連続したFe-Al合金層が形成されており、この合金層を介してめっき層の密着性が確保されていた。これに対しBを含有する鋼種の場合、めっき層/鋼素地界面にはFe-Al合金層が形成されていない部分が多く見られた。その部分では、めっき層と鋼素地とが接合されていないことがわかった。また、鋼板表面にはめっき層が付着していない領域(不めっきと呼ばれる欠陥)がところどころに見られた。
 そこで、溶融めっき浴に浸漬する直前のめっき原板の表面状態を把握するために、鋼板試料を種々の条件で還元熱処理したのち、その表面を観察した。それによると、良好なめっき密着性が得られるB無添加の鋼種では、表面にSi-Mn系酸化物が点在しており、還元熱処理条件を変化させても、この表面状態には大きな変化は見られなかった。これに対しBを含有する鋼種では、還元熱処理の初期の段階では上記と同様のSi-Mn系酸化物がめっき原板の表面に点在する表面状態となるが、加熱が進行するに伴い鋼中から拡散してきたBがSi-Mn系酸化物に加わり、点在する酸化物はSi-Mn-B系の酸化物となることがわかった。鋼中からのBの拡散がさらに進むと鋼板表面のSi-Mn-B系の酸化物はBの濃度を増していき、低融点化する。その結果、還元熱処理中にSi-Mn-B系の酸化物が部分的に溶融し、生じた溶融物が鋼板表面の平坦部を覆って拡がるものと考えられる。事実、高温・長時間の加熱を行ったものでは鋼板表面の大部分がSi-Mn-B系の酸化物と、溶融凝固したと見られるSi、Mn、B濃化皮膜に覆われていた。このようなBが濃化した表面部分では鋼素地中のFeとZn-Al-Mg系めっき浴中のAlとの反応が阻害され、結果的にめっき層との接合不良や不めっきが生じやすくなるものと推察された。
 このような知見から、Bを添加した鋼種をめっき原板として溶融Zn-Al-Mg系めっきを施す際には、めっき前処理の還元熱処理を、Bが表面に多量に拡散してくる前に終了させることによって、めっき密着性を改善することが可能となる。具体的には、還元熱処理の「保持時間」と「還元熱処理温度」の組合せを適正範囲に厳密にコントロールすることによって、良好なめっき密着性を安定して実現することができる。
 めっき原板表面の活性化を十分に行うためには750℃以上の還元雰囲気中に鋼板表面を曝すことが有効である。詳細な検討の結果、還元雰囲気の炉内で鋼板表面温度が750℃以上に保持される時間を「保持時間」と定義し、当該炉内での鋼板表面の最高到達温度を「還元熱処理温度」と定義するとき、これらによって良好なめっき密着性を安定して実現することができる還元熱処理の条件範囲を規定することができる。実際の操業では、製造ラインに通板する鋼種と巻取り温度の組み合わせによって、鋼板表面4μm以内におけるSiとMnの濃度を予備実験により求めておき、そのSi濃度とMn濃度の組み合わせが次のA~Cのいずれの条件に該当するかによって、還元熱処理の保持時間をコントロールする。
 具体的には、還元熱処理温度は750~860℃であり、
 還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度が下記の条件Aを満たす場合は保持時間を250秒以内、条件Bを満たす場合は保持時間を200秒以内、条件Cを満たす場合は保持時間を150秒以内とする条件により還元熱処理を行えばよい。
 還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度(質量%):
A; Si:0.15%以下、かつMn:0.8%以下、
B; Si:0.6%以下、かつMn:1.5%以下、ただしAを満たさない、
C; Si:0.6%超え、またはMn:1.5%超え。
 還元熱処理によって再結晶焼鈍を兼ねる場合は、上記の各条件範囲において、鋼板内部まで再結晶温度以上となる条件を採用すればよい。当該対象鋼種の場合、上記の各条件範囲において還元処理温度(表面の最高到達温度)が740℃以上となるようにすることが望ましい。
 還元熱処理の雰囲気としては、従来一般的に溶融めっき前処理として使用されている雰囲気が適用できる。例えば5~50体積%H-N雰囲気が例示できる。
〔溶融亜鉛系めっき〕
 上記の還元熱処理を終えためっき原板を、大気に曝すことなく、溶融Zn-Al-Mg系めっき浴に導入する。
 めっき浴中のAlは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。その効果は、溶融めっき浴のAl含有量は4.0%以上で認められる。また、Alはめっき密着性の改善にも有効であり、本発明においてこの作用を十分に得るためには、溶融めっき浴のAl含有量を1.0%以上とする必要がある。一方、Al含有量が22.0%を超えると、めっき層と鋼基材との界面で脆いFe-Al合金層が過剰に成長するようになり、めっき密着性の低下を招く要因となる。優れためっき密着性を確保するには15.0%以下のAl含有量とすることが好ましく、10.0%以下に管理しても構わない。
 めっき浴中のMgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。また、めっき密着性の改善にも有効である。これらの作用は溶融めっき浴のMg含有量が0.10%以上の範囲で発現し、特に顕著な効果を得るためには1.0%以上のMg含有量を確保することがより好ましい。一方、Mg含有量が10.0%を超えるとMg酸化物系ドロスが発生し易くなる。より高品質のめっき層を得るには5.0%以下のMg含有量とすることが好ましく、4.0%以下に管理しても構わない。
 溶融めっき浴中にTi、Bを含有させると、溶融Zn-Al-Mg系めっき鋼板において斑点状の外観不良を与えるZn11Mg相の生成・成長が抑制される。またこれらの元素の添加によって溶融めっき時における製造条件の自由度が拡大する。このため、必要に応じてTi、Bの1種または2種を添加することができる。その添加量はTiの場合0.002%以上、Bの場合0.001%以上とすることがより効果的である。ただし、Ti含有量が過剰になるとめっき層中にTi-Al系の析出物が生成し、またB含有量が過剰になるとめっき層中にAl-B系あるいはTi-B系の析出物が生成して粗大化する。これらの析出物はめっき層表面の外観を損ねる要因となる。したがって、めっき浴にTiを添加する場合は0.10%以下の範囲で行う必要があり、0.01%以下とすることがより好ましい。また、Bを添加する場合は0.05%以下の範囲とする必要があり、0.005%以下とすることがより好ましい。
 溶融めっき浴中にSiを含有させると、鋼素地とめっき層の界面に生成するFe-Al合金層の過剰な成長が抑制され、溶融Zn-Al-Mg系めっき鋼板の加工性を向上させる上で有利となる。またSiはめっき層の黒変化を防止し、表面の光沢性を維持する上でも有効である。したがって、必要に応じてSiを含有させることができる。Siを含有させる場合は、溶融めっき浴のSi含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、めっき浴中のSi含有量は2.0%以下に制限される。
 溶融めっき浴中には、鋼板を浸漬・通過させる関係上、一般にはFeの混入が避けられない。Zn-Al-Mg系めっき浴中のFe含有量は概ね2.0%程度まで許容される。めっき浴中にはその他の元素として例えば、Ca、Sr、Na、希土類元素、Ni、Co、Sn、Cu、Cr、Mnの1種以上が混入する場合があるが、それらの合計含有量は1.0%以下に管理することが望ましい。
 めっき付着量は、鋼板片面当たり20~300g/mの範囲で調整することが望ましい。
 表1に示す化学組成を持つ鋼を溶製し、そのスラブを1250℃に加熱したのち抽出して、仕上げ圧延温度880℃、巻取り温度520~700℃の各温度で熱間圧延して、板厚2.4mmの熱延鋼帯を得た。次に、熱延鋼帯を酸洗したのち冷間圧延して、板厚1.4mmの冷延鋼板を用意した。この段階で、冷延鋼板の一部を採取して樹脂に埋め込み、板厚方向に平行な断面を走査透過型電子顕微鏡(STEM)で観察し、エネルギ-分散型X線分光法(EDX)により鋼板表層近傍(圧延面から深さ4μm以内)のSi濃度とMn濃度を定量した。また、内部酸化物の確認は、埋め込んだ上記断面にナイタール液によるエッチングを行い、光学顕微鏡または走査型電子顕微鏡(SEM)により行った。断面の鋼板表層近傍(圧延面から深さ10μm以内)から深さ10μm以内の領域に酸化物の生成が確認されたものを○、確認されなかったものを×として表2、表3中に表示した。
 次に、各冷延鋼板について、種々の保持時間、還元熱処理温度にて還元熱処理を施し、その後、大気に曝すことなく溶融亜鉛系めっき浴に浸漬し、浴から引き上げ、片面当たりのめっき付着量が約90g/mの溶融亜鉛系めっき鋼板を得た。実験条件は表2、表3に記載した他、以下のとおりである。
〔表層のSi濃度、Mn濃度〕
 表2、表3には、上述の条件A、B、Cに対応する条件を次のように記号で表記した。
 ◎: Si:0.15%以下、かつMn:0.8%以下、
 ○; Si:0.6%以下、かつMn:1.5%以下、ただし◎に含まれない、
 ●; Si:0.6%超え、またはMn:1.5%超え。
〔還元熱処理〕
 雰囲気ガス;30%H-N雰囲気
 熱処理温度と保持時間:表2、表3に記載
〔溶融めっき〕
 ・浴組成; 表2、表3に記載
 ・浴温; 400℃
 ・浴浸漬時間; 2sec
〔めっき密着性の評価〕
 得られためっき鋼板から幅15mmの曲げ試験片を切り出し、先端半径R=5mmのポンチを用いて90°V曲げ試験を行った。試験片の幅方向(=曲げ軸の方向)が圧延方向と一致するようにした。曲げ試験後の試験片について、曲げ加工部の外周部にJIS Z1522で定めるセロハン粘着テープを貼付した後、剥ぎ取って、テープにめっき層の付着が認められないものを○(めっき密着性;良好)、それ以外のものを×(めっき密着性;不良)と判定した。同種のめっきサンプルについてn=3で曲げ試験を行い、最も評価の悪い試験片の結果をそのサンプルの成績として採用した。結果は、表2、表3に示している。
〔耐溶融金属脆化割れ性の評価〕
 めっき鋼板から100mm×75mmのサンプルを切り出し、これをアーク溶接による溶融金属脆化に起因する溶接最大割れ長さを評価するための試験片とした。
 溶接試験は図1に示すような外観のボス溶接部材を作製する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。すなわち、試験片1の板面中央に直径20mm×長さ25mmの軟鋼からなるボス(突起)2を垂直に立て、このボス2を試験片1にアーク溶接にて接合した。溶接条件は、溶接電流:217A、溶接電圧25V、溶接速度0.2m/min、シールドガス:CO、シールドガス流量:20L/minとした。溶接ワイヤは、YGW12を用いた。
 溶接開始点からボスの周囲を1周して溶接開始点を過ぎた後もさらに溶接を続けて溶接ビード3が重なった部分4を作った。
 ボス溶接後に、ビード重なり部分4の部分を含むように試験片1とボス2を破線で示すように切断し、切断面5が観察できるように樹脂に埋め込んで光学顕微鏡によりビード重なり部を観察した。断面内の試験片1の部分に割れが観察された場合は、その割れの長さを測定し、複数の割れが観察された場合は最も長い割れ長さを「最大割れ長さ」とした。この割れは、溶接熱影響部の旧オーステナイト粒界に沿って生じており、「この割れは溶融金属脆化割れ」であると判断される。耐溶融金属脆化割れ性の評価は、最大割れ長さが0.1mm以下の場合は合格(○)とし、0.1mmを超える場合は不合格(×)とした。
 その評価結果を表4に示す。鋼A~JおよびOは合格であったが、鋼K~Nの4種は不合格であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明で規定する還元熱処理の範囲において、良好なめっき密着性が得られることがわかる。
 1  試験片
 2  ボス
 3  溶接ビード
 4  ビード重なり部
 5  切断面

Claims (8)

  1.  めっき原板である鋼板とその表面上に形成された溶融亜鉛系めっき層との界面から10μm以内の鋼板内部に、Si単独酸化物、Mn単独酸化物、Cr単独酸化物、Si-Mn系複合酸化物、Si-Cr系複合酸化物、Mn-Cr系複合酸化物、Si-Mn-Cr系複合酸化物の少なくとも1種以上が存在するめっき密着性に優れた溶融亜鉛系めっき鋼板。
  2.  めっき原板である鋼板は、質量%で、Si:0.01~1.00%、Mn:0.10~2.50%、Cr:0.05~1.00%の群から選ばれる1種以上を含有する化学組成を有するものである請求項1に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
  3.  めっき原板である鋼板は、質量%で、C:0.01~0.20%、P:0.030%以下、S:0.010%以下、Ti:0.010~0.150%、sol.Al:0.100%以下、N:0.010%未満、B:0.0003~0.0100%と、さらにSi:0.01~1.00%、Mn:0.10~2.50%、Cr:0.05~1.00%の群から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなる化学組成を有するものである請求項1に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
  4.  めっき原板である鋼板は、質量%で、さらにNb:0.10%以下、Mo:0.50%以下を含有する化学組成を有するものである請求項3に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
  5.  溶融亜鉛系めっきの組成が、質量%でAl:1.0~22.0%、Mg:0.1~10.0%、残部がZnおよび不可避的不純物である請求項1~4のいずれか1項に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
  6.  溶融亜鉛系めっきの組成が、さらに、質量%で、Ti:0.10%以下、B:0.05%以下、Si:2.0%以下の群から選ばれる1種以上を含有するものである請求項5に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
  7.  質量%で、C:0.01~0.20%、P:0.030%以下、S:0.010%以下、Ti:0.010~0.150%、sol.Al:0.100%以下、N:0.010%未満、B:0.0003~0.0100%と、さらにSi:0.01~1.00%、Mn:0.10~2.50%、Cr:0.05~1.00%の群から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなる鋼板をめっき原板として熱間圧延し、還元熱処理に引き続いて、質量%でAl:1.0~22.0%、Mg:0.1~10.0%、残部がZnおよび不可避的不純物である組成の溶融亜鉛系めっきを施して溶融亜鉛系めっき鋼板を製造するにあたり、
     めっき原板の熱間圧延工程において巻取り温度を550~700℃の範囲とし、
     還元熱処理工程において、還元熱処理の炉内で鋼板表面温度が750℃以上に保持される時間を「保持時間」、当該炉内での鋼板表面の最高到達温度を「還元熱処理温度」と定義するとき、
     還元熱処理温度を750~860℃とし、
     還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度が下記の条件Aを満たす場合は保持時間を250秒以内、条件Bを満たす場合は保持時間を200秒以内、条件Cを満たす場合は保持時間を150秒以内として還元熱処理を行うめっき密着性に優れた溶融亜鉛系めっき鋼板の製造方法。
     還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度(質量%):
    A; Si:0.15%以下、かつMn:0.8%以下、
    B; Si:0.6%以下、かつMn:1.5%以下、ただしAを満たさない、
    C; Si:0.6%超え、またはMn:1.5%超え。
  8.  溶融亜鉛系めっきの組成が、さらに、質量%で、Ti:0.10%以下、B:0.05%以下、Si:2.0%以下の群から選ばれる1種以上を含有するものである請求項7に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板の製造方法。
PCT/JP2014/058208 2013-03-27 2014-03-25 めっき密着性に優れた溶融亜鉛系めっき鋼板およびその製造方法 WO2014157155A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
SG11201507737QA SG11201507737QA (en) 2013-03-27 2014-03-25 Hot-dip zinc alloy coated steel sheet excellent in coatingadhesion, and method for producing the same
CN201480018101.XA CN105051238B (zh) 2013-03-27 2014-03-25 镀敷密合性优异的熔融锌系镀敷钢板及其制造方法
NZ711709A NZ711709A (en) 2013-03-27 2014-03-25 Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same
MX2015013368A MX366702B (es) 2013-03-27 2014-03-25 Hoja de acero revestida con aleación de zinc por inmersión en caliente excelente en adherencia de revestimiento, y método para producir la misma.
CA2904131A CA2904131C (en) 2013-03-27 2014-03-25 Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same
BR112015024016A BR112015024016A2 (pt) 2013-03-27 2014-03-25 chapa de aço revestida com liga de zinco por imersão a quente excelente em adesão de revestimento e método para produzir a mesma
AU2014245876A AU2014245876B2 (en) 2013-03-27 2014-03-25 Hot-dip zinc alloy coated steel sheet excellent in coating adhesion , and method for producing the same
KR1020157024871A KR102014062B1 (ko) 2013-03-27 2014-03-25 도금 밀착성이 우수한 용융 아연계 도금 강판 및 그 제조 방법
EP14774669.7A EP2980259A4 (en) 2013-03-27 2014-03-25 FIRE-PLATED STEEL PLATE WITH EXCELLENT COATING TERMINATION AND METHOD FOR THE PRODUCTION THEREOF
US14/773,398 US9523142B2 (en) 2013-03-27 2014-03-25 Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same
US15/345,887 US20170051379A1 (en) 2013-03-27 2016-11-08 Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-066576 2013-03-27
JP2013066576 2013-03-27
JP2014060809A JP5826321B2 (ja) 2013-03-27 2014-03-24 めっき密着性に優れた溶融亜鉛系めっき鋼板の製造方法
JP2014-060809 2014-03-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/773,398 A-371-Of-International US9523142B2 (en) 2013-03-27 2014-03-25 Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same
US15/345,887 Division US20170051379A1 (en) 2013-03-27 2016-11-08 Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same

Publications (1)

Publication Number Publication Date
WO2014157155A1 true WO2014157155A1 (ja) 2014-10-02

Family

ID=51624126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058208 WO2014157155A1 (ja) 2013-03-27 2014-03-25 めっき密着性に優れた溶融亜鉛系めっき鋼板およびその製造方法

Country Status (13)

Country Link
US (1) US9523142B2 (ja)
EP (1) EP2980259A4 (ja)
JP (1) JP5826321B2 (ja)
KR (1) KR102014062B1 (ja)
CN (1) CN105051238B (ja)
AU (1) AU2014245876B2 (ja)
BR (1) BR112015024016A2 (ja)
CA (1) CA2904131C (ja)
MX (1) MX366702B (ja)
MY (1) MY172243A (ja)
NZ (1) NZ711709A (ja)
SG (2) SG11201507737QA (ja)
WO (1) WO2014157155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975454B2 (en) * 2015-12-15 2021-04-13 Posco Ultra-high strength steel sheet having excellent phosphatability and bendability

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051436B2 (ja) * 2014-12-24 2022-04-11 ポスコ 溶接性及び加工部耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
JP6209175B2 (ja) * 2015-03-03 2017-10-04 日新製鋼株式会社 めっき表面外観およびバーリング性に優れた溶融Zn−Al−Mg系めっき鋼板の製造方法
KR102075182B1 (ko) * 2015-12-24 2020-02-10 주식회사 포스코 도금성이 우수한 고강도 용융 아연계 도금 강재 및 그 제조방법
US11473180B2 (en) 2016-01-27 2022-10-18 Jfe Steel Corporation High-yield-ratio high-strength galvanized steel sheet and method for manufacturing the same
US10492602B2 (en) * 2017-01-26 2019-12-03 Bose Corporation Electronics enclosure mounting
JP7059091B2 (ja) 2018-04-24 2022-04-25 モレックス エルエルシー 電子部品
TWI676508B (zh) * 2018-05-18 2019-11-11 日商日本製鐵股份有限公司 Al系鍍敷鋼板及其製造方法
CN114686651A (zh) * 2020-12-31 2022-07-01 通用汽车环球科技运作有限责任公司 具有降低的液态金属致脆(lme)敏感性的锌涂覆的钢
CN113564483A (zh) * 2021-08-06 2021-10-29 云南中科安居环保新材料有限公司 一种高强度轻钢别墅龙骨精品抗震钢材制备工艺
CN113751530B (zh) * 2021-09-28 2024-03-26 攀钢集团攀枝花钢钒有限公司 一种用于冲压用热浸镀带钢镀层附着力检验的方法
WO2023238938A1 (ja) * 2022-06-10 2023-12-14 日本製鉄株式会社 溶融めっき鋼板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003238A (ja) 2001-06-22 2003-01-08 Nisshin Steel Co Ltd 耐食性に優れたZn−Al−Mg系溶融めっき鋼材
JP2006097063A (ja) 2004-09-29 2006-04-13 Nisshin Steel Co Ltd 高強度溶融Zn−Al−Mg合金めっき鋼板の製造方法
JP2007211279A (ja) * 2006-02-08 2007-08-23 Nippon Steel Corp 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2008007842A (ja) 2006-06-30 2008-01-17 Nippon Steel Corp 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2011214041A (ja) 2010-03-31 2011-10-27 Nisshin Steel Co Ltd 溶融亜鉛系めっき高張力鋼板の製造法
JP2011219783A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011231346A (ja) * 2010-04-23 2011-11-17 Nisshin Steel Co Ltd 溶融亜鉛系めっき高張力鋼板の製造法
JP2012126994A (ja) * 2010-11-26 2012-07-05 Jfe Steel Corp 溶融Al−Zn系めっき鋼板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608155B2 (en) * 2006-09-27 2009-10-27 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JP5264234B2 (ja) * 2008-03-24 2013-08-14 日新製鋼株式会社 耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板およびその製造方法
JP5391607B2 (ja) * 2008-08-05 2014-01-15 Jfeスチール株式会社 外観に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003238A (ja) 2001-06-22 2003-01-08 Nisshin Steel Co Ltd 耐食性に優れたZn−Al−Mg系溶融めっき鋼材
JP2006097063A (ja) 2004-09-29 2006-04-13 Nisshin Steel Co Ltd 高強度溶融Zn−Al−Mg合金めっき鋼板の製造方法
JP2007211279A (ja) * 2006-02-08 2007-08-23 Nippon Steel Corp 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2008007842A (ja) 2006-06-30 2008-01-17 Nippon Steel Corp 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2011219783A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011214041A (ja) 2010-03-31 2011-10-27 Nisshin Steel Co Ltd 溶融亜鉛系めっき高張力鋼板の製造法
JP2011231346A (ja) * 2010-04-23 2011-11-17 Nisshin Steel Co Ltd 溶融亜鉛系めっき高張力鋼板の製造法
JP2012126994A (ja) * 2010-11-26 2012-07-05 Jfe Steel Corp 溶融Al−Zn系めっき鋼板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975454B2 (en) * 2015-12-15 2021-04-13 Posco Ultra-high strength steel sheet having excellent phosphatability and bendability

Also Published As

Publication number Publication date
MX366702B (es) 2019-07-22
US20160024632A1 (en) 2016-01-28
MY172243A (en) 2019-11-19
CN105051238A (zh) 2015-11-11
SG10201707903VA (en) 2017-11-29
EP2980259A4 (en) 2016-11-30
JP5826321B2 (ja) 2015-12-02
US9523142B2 (en) 2016-12-20
AU2014245876A1 (en) 2015-10-08
MX2015013368A (es) 2016-01-08
KR20150133708A (ko) 2015-11-30
SG11201507737QA (en) 2015-10-29
JP2014208902A (ja) 2014-11-06
CN105051238B (zh) 2017-10-10
AU2014245876B2 (en) 2018-06-14
CA2904131C (en) 2019-10-22
CA2904131A1 (en) 2014-10-02
EP2980259A1 (en) 2016-02-03
BR112015024016A2 (pt) 2017-07-18
KR102014062B1 (ko) 2019-08-27
NZ711709A (en) 2020-07-31

Similar Documents

Publication Publication Date Title
JP5826321B2 (ja) めっき密着性に優れた溶融亜鉛系めっき鋼板の製造方法
JP5676642B2 (ja) 表面特性に優れた熱間プレス用亜鉛めっき鋼板並びにこれを利用した熱間プレス成形部品及びその製造方法
JP5636683B2 (ja) 密着性に優れた高強度合金化溶融亜鉛めっき鋼板および製造方法
JP6094649B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法
WO2010104086A1 (ja) 耐溶融金属脆化割れ性に優れた亜鉛系合金めっき鋼材
WO2017090236A1 (ja) 高強度溶融亜鉛めっき鋼板の製造方法、高強度溶融亜鉛めっき鋼板用熱延鋼板の製造方法、高強度溶融亜鉛めっき鋼板用冷延鋼板の製造方法、および高強度溶融亜鉛めっき鋼板
JPWO2016002141A1 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
WO2020148944A1 (ja) 溶融亜鉛めっき鋼板の製造方法
JP2017115205A (ja) めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法
US11377712B2 (en) Hot dipped high manganese steel and manufacturing method therefor
JP2019504205A (ja) めっき性及び溶接性に優れたオーステナイト系溶融アルミニウムめっき鋼板及びその製造方法
JP5667363B2 (ja) 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP5660796B2 (ja) 溶融亜鉛系めっき高張力鋼板の製造法
JP2013087314A (ja) めっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2014019935A (ja) 表面安定性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP2011117062A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP6801496B2 (ja) 曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法
KR101736640B1 (ko) 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법
JP5495921B2 (ja) 溶融亜鉛系めっき高張力鋼板の製造法
JP2020506286A (ja) 犠牲防食性及びめっき性に優れた高マンガン溶融アルミニウムめっき鋼板及びその製造方法
JP2016006230A (ja) めっき密着性に優れた溶融亜鉛系めっき鋼板
JP5935720B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP5640661B2 (ja) 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP6958459B2 (ja) 溶融Zn−Al−Mg合金めっき鋼板およびその製造方法
KR102031459B1 (ko) 도금성이 우수한 초고강도 고망간 용융아연도금강판 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018101.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2904131

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14773398

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157024871

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013368

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2014774669

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014245876

Country of ref document: AU

Date of ref document: 20140325

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201506908

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024016

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112015024016

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150917