WO2014157029A1 - ワイヤレス給電装置 - Google Patents

ワイヤレス給電装置 Download PDF

Info

Publication number
WO2014157029A1
WO2014157029A1 PCT/JP2014/057974 JP2014057974W WO2014157029A1 WO 2014157029 A1 WO2014157029 A1 WO 2014157029A1 JP 2014057974 W JP2014057974 W JP 2014057974W WO 2014157029 A1 WO2014157029 A1 WO 2014157029A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
power
power transmission
circuit
wireless power
Prior art date
Application number
PCT/JP2014/057974
Other languages
English (en)
French (fr)
Inventor
細谷達也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015508452A priority Critical patent/JP6164287B2/ja
Priority to GB1515626.8A priority patent/GB2526972B/en
Publication of WO2014157029A1 publication Critical patent/WO2014157029A1/ja
Priority to US14/855,771 priority patent/US10224750B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • H02J7/025

Definitions

  • the present invention relates to a wireless power feeding apparatus including a power transmitting apparatus and a power receiving apparatus.
  • a conventional non-contact charging system includes a power transmission device including a primary coil in a charging stand or the like, and a portable electronic device including a secondary coil and a rechargeable battery.
  • the user places the portable electronic device on the power transmission device.
  • the primary side coil of the power transmission device and the secondary side coil of the portable electronic device are electromagnetically coupled (magnetic field coupling), and power is supplied to the charging device side to charge the secondary battery.
  • the power transmission coil and the power reception coil act as an insulating transformer using electromagnetic induction, and are merely used as a transformer using magnetic coupling.
  • transformers that use electromagnetic induction it is important to efficiently convert from electricity to magnetism and electricity by linking the magnetic flux generated by the current flowing in the primary winding to the secondary winding and flowing the current. ing.
  • the present invention relates to an apparatus for performing wireless power feeding by forming electromagnetic resonance coupling.
  • electromagnetic resonance coupling When performing wireless power feeding by electromagnetic resonance coupling, there are the following problems.
  • An object of the present invention is to provide a wireless power feeding apparatus that has high power transmission efficiency and can sufficiently ensure electromagnetic compatibility (EMC).
  • the wireless power supply apparatus of the present invention is configured as follows.
  • a power transmission device including a direct current power source for supplying electric energy and a power transmission device electrically connected to the direct current power source;
  • a power receiving device comprising a load that consumes electrical energy, and a power receiving device electrically connected to the load;
  • a power transmission resonance circuit composed of inductive impedance of the power transmission device, parasitic capacitance of the power transmission device or capacitive impedance of a resonance capacitor by an external capacitor;
  • a switching element that is electrically connected to the power transmission resonance circuit and intermittently supplies the DC power to the power transmission resonance circuit by turning on and off, and a switching control circuit that controls the switch element to generate a resonance current in the power transmission resonance circuit
  • a power transmission switching circuit including: A power receiving resonance circuit configured by an inductive impedance of the power receiving device and a parasitic capacitance of the power receiving device or a capacitive impedance of a resonance capacitor by an external capacitor; A power receiving load circuit that is electrically connected to the power receiving resonance circuit and supplies electric energy generated by a resonance current
  • the power receiving device forms an electromagnetic resonance field that itself vibrates with energy
  • the power receiving device generates a resonance current by obtaining electric energy from the resonance field, and forms a new electromagnetic resonance field by the resonance current
  • the power transmitting device or the power receiving device is a fractal shape device having a linear conductor pattern whose part is a self-similar portion as a whole when viewed as a geometric figure, and an electromagnetic wave in a space around the fractal shape device. It is characterized by increased field energy.
  • the parasitic inductive impedance or capacitive impedance of the fractal shaped device can be used as an electric circuit parameter forming the electromagnetic resonance field.
  • the resonance field is obtained from the power transmission device or the power reception device by a factor of 1 with respect to a product of a switching period Ts [second] that is the reciprocal of the switching frequency fs and the speed of light (approximately 300,000 [km / s]) It is preferably formed in a range of 5 or less. With this configuration, a resonance field is formed within a 1/5 wavelength range from each coil, and wireless power feeding can be performed appropriately within that range.
  • a resonance apparatus including at least one resonance device disposed in a near-field space where the power transmission device and the power reception device exist;
  • a resonant resonance circuit composed of an inductive impedance and a capacitive impedance or an external impedance of the resonant device,
  • the resonance device generates a resonance current by obtaining electric energy from the resonance field, and forms a new electromagnetic resonance field by the resonance current.
  • the resonant device is a fractal shape device having a linear conductor pattern that is partially self-similar when viewed as a geometric figure, and increases the electromagnetic field energy in the space around the fractal shape device. It is preferable.
  • the parasitic inductive impedance or capacitive impedance of the fractal shaped device can be used as an electric circuit parameter forming the electromagnetic resonance field.
  • the linear conductor pattern of the power transmitting device or the power receiving device has a step (generation) number n of 2 or more, and the outer shape is approximately square, triangular, approximately cubic, or a polygonal line. preferable.
  • the linear conductor pattern of the resonance device has a step (generation) number n of 2 or more and has an outer shape of approximately square, triangle, approximately cube, or a broken line.
  • the space filling rate of the space filling curve can be further increased.
  • a linear conductor pattern can be formed in the range extended in a longitudinal direction.
  • a device corresponding to a three-dimensional direction can be configured.
  • the emission of electromagnetic noise to the outside can be suppressed.
  • the linear conductor pattern of the power transmitting device and the linear conductor pattern of the power receiving device are fractal shaped devices having different step (generation) numbers n as necessary.
  • the linear conductor pattern of the resonance device and the linear conductor pattern of the power transmission device or the power receiving device may be fractal devices having different number of steps (generations) n as necessary. preferable.
  • the power receiving load circuit has a rectifier circuit and supplies DC electric energy to the load.
  • the resonance frequencies independently possessed by the power transmission resonance circuit and the power reception resonance circuit coincide with each other within a range of ⁇ 30%. This facilitates the setting of the switching frequency that forms the resonance field.
  • the resonance frequencies independently possessed by the power transmission resonance circuit and the resonance resonance circuit coincide with each other within a range of ⁇ 30%. This facilitates the setting of the switching frequency that forms the resonance field.
  • the switching element is an FET
  • the power transmission switching circuit includes a parasitic capacitance of the FET and an antiparallel diode.
  • the switching circuit can be configured by using the parasitic capacitance of the FET and the anti-parallel diode, and the number of components can be reduced, so that the wireless power supply apparatus can be highly efficient and reduced in size and weight.
  • the switching control circuit for the resonance frequency fr of which the imaginary part X of the equivalent input impedance of the power transmission resonance circuit as viewed from the input side to which the power transmission switching circuit is connected is 0, It is preferable that the switching frequency fs is set so that the imaginary part X has a relationship of X ⁇ 0 with the switching frequency fs of fs ⁇ fr. This makes it possible to perform a ZVS (zero voltage switching) operation of the switching element in response to a change in load. Therefore, switching loss is reduced, efficiency can be increased, and the wireless power feeding apparatus can be reduced in size and weight.
  • the switching control circuit is configured to perform a zero voltage switching operation by controlling the switch element to turn on when the voltage across the switch element decreases to near zero voltage. . This allows the switching loss to be further reduced by turning on when the voltage across the switch element drops to near zero voltage, thereby improving efficiency and reducing the size and weight of the wireless power feeder. Can be planned.
  • a plurality of the resonance devices are arranged in the near field space. Accordingly, by arranging a plurality of resonance devices in the near-field space where the power transmission device and the power reception device exist, the resonance field can be effectively expanded, and the degree of freedom in the positions of the power transmission device and the power reception device can be increased.
  • the resonance frequencies independently possessed by the plurality of resonance resonance circuits coincide within a range of ⁇ 30%. This facilitates expansion of the resonance field.
  • the resonance field can be expanded by arranging a plurality of power transmission devices, and the electromagnetic field energy of the resonance field can be increased by making the switching frequency of each power transmission device substantially the same.
  • the resonance frequency of the power receiving resonance circuit included in each power receiving device is the same within a range of ⁇ 30%. Accordingly, the resonance field can be expanded by arranging a plurality of power receiving devices, and more electrical energy can be harvested by the plurality of power receiving devices.
  • each of the power receiving devices is configured to collect electric energy received by the power receiving device and supply it to the load. Thereby, the electric energy which can be supplied to load can be enlarged easily.
  • a switching frequency of each power transmission device is an ISM (Industry-Science-Medical) band.
  • ISM Industry-Science-Medical
  • the power transmission device includes a filter that removes frequency components other than the switching frequency. Thereby, the interference by the electromagnetic noise with respect to a peripheral device is suppressed, and electromagnetic compatibility can be acquired.
  • the power transmitting device and the power receiving device include a communication circuit that communicates via radio waves.
  • the power transmission device and the power reception device have the roles of power transmission and signal transmission, and the device can be reduced in size and weight. Further, it is possible to transmit an appropriate amount of power from the power transmission device to an appropriate target power receiving device at an appropriate timing.
  • the resonance device includes a communication circuit that communicates with the power transmission device or the power reception device via radio waves.
  • the resonance apparatus has a role of power transmission and signal transmission, and can achieve a reduction in size and weight of the apparatus.
  • communication from the power receiving apparatus to an appropriate target power transmitting apparatus can be performed at an appropriate timing, and it is easy to receive an appropriate amount of power.
  • the present invention has the following effects.
  • the parasitic inductive impedance or capacitive impedance of the fractal shaped device can be used as an electric circuit parameter forming the electromagnetic resonance field.
  • FIG. 1 is a circuit diagram of a wireless power feeding apparatus according to the first embodiment.
  • FIG. 2 is a circuit diagram in which the power transmission device np and the power reception device ns of the wireless power feeder according to the first embodiment are replaced with equivalent circuits.
  • FIG. 3 is a diagram showing an example of a linear conductor pattern of a fractal shaped device.
  • FIG. 4 is a diagram illustrating an example of the direction of the current flowing through the linear conductor pattern of the power transmission device np and the power receiving device ns and the direction of the magnetic flux distributed along the linear conductor pattern.
  • FIG. 5 is a diagram illustrating the relationship of the coupling coefficient with respect to the distance between the power transmission device np and the power reception device ns.
  • FIG. 6 is a waveform diagram of each part of FIGS.
  • FIGS. 7A to 7E are linear conductor patterns based on Peano curves having different primary shapes, and each represents a pattern with a predetermined number of steps.
  • FIG. 8 shows a so-called shellpinski gasket type pattern by a line segment set.
  • FIG. 9 is a diagram illustrating a linear conductor pattern based on a so-called Koch curve.
  • FIG. 10 is a diagram showing a linear conductor pattern by a solid Peano curve.
  • FIG. 11 is a diagram illustrating the frequency characteristics of the input impedance of the wireless power feeding apparatus according to the third embodiment when the entire load side is viewed from the input of the power transmission resonance circuit.
  • FIG. 12 is a diagram illustrating a frequency characteristic of reactance of input impedance of the wireless power supply apparatus according to the fourth embodiment when the entire load side is viewed from the input of the power transmission resonance circuit.
  • FIG. 13 is a circuit diagram of a power transmission device in a wireless power supply apparatus according to the fifth embodiment.
  • FIG. 14 is a circuit diagram of a power transmission device in another wireless power supply device according to the fifth embodiment.
  • FIGS. 15A and 15B are circuit diagrams of the power receiving device in the wireless power feeding device in which the power receiving side rectifier circuit is configured by a diode bridge circuit including diodes Ds1, Ds2, Ds3, and Ds4.
  • 16A and 16B are circuit diagrams of the power receiving device in the wireless power feeding device in which the power receiving side rectifier circuit is configured by a half-wave rectifier circuit.
  • 17A and 17B are circuit diagrams of the power receiving device in the wireless power feeding device in which the power receiving side rectifier circuit is configured by a voltage doubler rectifier circuit.
  • 18A and 18B are circuit diagrams of the power receiving device in the wireless power feeding device in which the power receiving side rectifier circuit is configured by a voltage doubler rectifier circuit.
  • FIGS. 19A and 19B are circuit diagrams of a power receiving device in a wireless power feeding device configured to include power receiving devices ns1 and ns2 each having a center tap.
  • FIG. 20 is a diagram illustrating a state in which the resonance device nsm is disposed between the power transmission device np and the power reception device ns.
  • FIG. 21 is a diagram illustrating a state in which a resonance device is disposed close to the power transmission device.
  • FIG. 22 is a conceptual diagram showing how the electromagnetic resonance field is enlarged.
  • FIG. 23 shows an example in which a resonance field is strengthened by arranging a plurality of power transmission devices and a plurality of power reception devices.
  • FIG. 24 is a schematic configuration diagram of a wireless power supply apparatus including a plurality of power transmission apparatuses and a plurality of power reception apparatuses.
  • FIG. 25 is a circuit diagram of a wireless power feeder according to the ninth embodiment.
  • FIG. 26 is a circuit diagram of the wireless power feeder according to the tenth embodiment.
  • FIG. 27 is a circuit diagram of the wireless power feeder of the eleventh embodiment.
  • FIG. 28 is a diagram illustrating an example of the arrangement of the power transmission device, the power reception device, and the resonance device, and the shapes of the power transmission device, the power reception device, and the resonance device.
  • FIG. 29 is an equivalent basic circuit diagram of a conventional low power efficiency system as a comparative example.
  • FIG. 29 is an equivalent basic circuit diagram of a conventional low power efficiency system as a comparative example.
  • the power transmission device includes a resonance circuit including a capacitor Cr, an inductor Lp, and a resistor Ri
  • the power reception device includes a resonance circuit including a capacitor Crs, an inductor Ls, and a resistor Ris.
  • the inductors Lp and Ls are each configured by a loop-shaped or spiral-shaped coil.
  • the resonance device is directly connected to the DC voltage power source and the switching circuit.
  • the loss associated with the transmission of power becomes very small, and the conversion efficiency for converting the power supply power into the energy of the resonance field is higher than in the conventional method.
  • the conversion efficiency from the power source to the resonance field is high, the use of new wireless power transmission using a large number of resonance devices is facilitated.
  • the DC resonant switching circuit uses advanced circuit technology such as “optimum ZVS (zero voltage switching) operation” that is useful for Class D inverters with very low power loss such as switching loss in high-speed switching operation.
  • optimum ZVS (zero voltage switching) operation is useful for Class D inverters with very low power loss such as switching loss in high-speed switching operation.
  • the DC resonance type wireless power feeder is different from the one that simply uses a 0 ⁇ class D inverter or class E inverter for the wireless power feeder.
  • class D inverters and class E inverters the load seen from the power transmission device is handled so that it can be regarded as an almost constant 50 ⁇ pure resistance. Basically, appropriate resonance occurs only when the load is 50 ⁇ , and power can be supplied to the load.
  • the load seen from the power transmission device is not fixed. That is, the apparent load varies depending on the coupling state. Furthermore, the power consumption of the load also changes. For this reason, in the DC resonance method according to the present invention, resonance is caused by using DC power by operating at a switching frequency such that the reactance of the load impedance viewed from the power transmission device is zero. In this way, impedance matching becomes unnecessary.
  • the wireless power supply apparatus of the present invention is characterized by a simpler system configuration and higher total power efficiency of the system including the power supply than a conventional magnetic resonance system.
  • the efficiency of power transmission does not greatly decrease even if the load changes greatly due to a change in transmission distance or a plurality of power transmission partners.
  • FIG. 1 is a circuit diagram of a wireless power feeding apparatus according to the first embodiment.
  • FIG. 2 is a circuit diagram in which the power transmitting device np and the power receiving device ns of the wireless power feeder are replaced with equivalent circuits.
  • the features of the wireless power feeder shown in FIGS. 1 and 2 are as follows.
  • Configuration using fractal-shaped device for power transmission / reception device ⁇ Configuration for wireless power feeding by generating electromagnetic resonance coupling by switching technology ⁇ DC power supply to multiple resonance circuit including power transmission / reception device by turning on / off switching element
  • ZVS zero voltage switching
  • FIG. 3 is a diagram showing an example of a linear conductor pattern of a fractal shaped device.
  • This pattern is also a pattern obtained by recursively performing the operation of using the basic form shown in (a) as a generator and replacing each line segment with a similar form of the generator.
  • FIG. 3 It is a “space filling curve” proposed by Peano (1858-1932) that covers a wide surface with a continuous curve.
  • the “space filling curve” can be said to be a line that covers the broadened surface through all the regions obtained by dividing (equally dividing) the broadened surface without self-intersection. That is, there is a regularity that the divided areas and the lines correspond one-to-one.
  • the curve shown in FIG. 3 is one of the space filling curves devised in 1891 by the German mathematician Dufit Hilbert and is called the Hilbert curve.
  • a Hilbert curve is a two-dimensional curve that follows a 2 ⁇ n square area (grid) so that it passes through all points while always connecting adjacent areas. For example, if you have a 64 x 64 grid (2 ⁇ 6 squares), you will go through all the grids with a Hilbert curve with 5 steps.
  • the “space filling curve” is generally called the Peano curve in a broad sense.
  • FIG. 4 is a diagram showing an example of the direction of current flowing in the linear conductor patterns of the power transmission device np and the power receiving device ns and the direction of magnetic flux distributed along the linear conductor pattern.
  • the power transmission device np and the power reception device ns have the same structure.
  • the arrow in FIG. 4 represents the direction of the instantaneous magnetic flux density vector.
  • FIG. 5 is a diagram illustrating the relationship of the coupling coefficient with respect to the distance between the power transmission device np and the power reception device ns.
  • each characteristic line is a characteristic in a linear conductor pattern having a different number of steps.
  • the route is as shown in FIG.
  • the fractal device whose linear conductor is Peano-shaped is suitable for short-distance power transmission.
  • FIG. 6 is a waveform diagram of each part of FIGS.
  • the mutual inductance of the power transmission device np is Lm
  • the leakage inductance of the power transmission device np is Lr
  • the mutual inductance of the power receiving device ns is Lms
  • the leakage inductance of the power receiving device ns is Lrs.
  • the gate-source voltages of the switch elements Q1, Q2 are vgs1, vgs2, and the drain-source voltages are vds1, vds2.
  • Switch elements Q1 and Q2 are alternately turned on and off with a short dead time when both switch elements are turned off, and the ZVS operation is performed by commutating currents flowing through Q1 and Q2 during the dead time period.
  • the operation in each state in one switching cycle is as follows.
  • the diode Dds1 becomes conductive.
  • the switch element Q1 is turned on during the conduction period of the diode Dds1, the ZVS operation is performed, and the switch element Q1 becomes conductive.
  • the mutual inductance Lm, Lms and mutual capacitance Cm are formed by mutual induction between the power transmitting device np and the power receiving device ns.
  • the circuit and the power receiving resonance circuit resonate, and a resonance current flows through the mutual inductances Lm and Lms to form an electromagnetic resonance coupling, and power is transmitted from the power transmission circuit to the power receiving circuit.
  • a resonance current flows through the capacitor Cr and the leakage inductance Lr.
  • a resonance current flows through the capacitor Crs and the leakage inductance Lrs, and is rectified by the switch elements Q3 and Q4 to supply power to the load.
  • the diode Dds2 becomes conductive.
  • the switch element Q2 is turned on during the conduction period of the diode Dds2, a ZVS operation is performed, and the switch element Q2 becomes conductive.
  • An equivalent mutual inductance Lm, Lms is formed by mutual induction between the power transmitting device np and the power receiving device ns. Resonance with the circuit causes a resonance current to flow through the mutual inductances Lm and Lms, forming electromagnetic resonance coupling, and power is transmitted from the power transmission circuit to the power reception circuit.
  • a resonance current flows through the capacitor Cr and the leakage inductance Lr.
  • a resonance current flows through the capacitor Crs and the leakage inductance Lrs, and is rectified by the switch elements Q3 and Q4 to supply power to the load.
  • the switching control circuit 20 detects the current flowing through the power receiving device ns, and alternately turns on and off the switch elements Q3 and Q4 in synchronization with the polarity inversion.
  • the switching timing signals of the switching elements Q1 and Q2 are transmitted from the power transmission device Txp to the power receiving device Rxp, and on the power receiving device Rxp side, the switching elements Q3 and Q4 are driven in synchronization with the switching timing of the switching elements Q1 and Q2. It may be configured.
  • the power transmission apparatus described above constitutes a power transmission resonance circuit together with the power transmission device np, and inputs a DC power source Vi to generate a resonance current in the power transmission resonance circuit. As a result, an electromagnetic resonance field is generated.
  • the resonance field is obtained from the power transmission device np, the resonance device nsm, or the power reception device ns with respect to the product of the switching period Ts [second] which is the reciprocal of the switching frequency fs and the speed of light (about 300,000 [km / s]). It is formed in the range of 5 or less. That is, a resonance field is formed within a range of 1/5 wavelength from each device. For example, when the switching frequency is 10 MHz, one wavelength is about 30 m, and wireless power feeding can be performed in a range within about 6 m of 1/5.
  • the device can be miniaturized.
  • the self-inductance of the entire fractal device is smaller than when a simple square coil (or circular coil) is used. Therefore, it is not necessary to reduce the size in order to obtain a desired inductance, and a predetermined coupling between devices separated to some extent can be obtained.
  • the magnetic energy distribution in the coil can be controlled by appropriately setting the relative arrangement of opposing devices by utilizing the device shape.
  • the effects of the power transmission system constituted by the wireless power feeding device of the present invention are as follows.
  • -A wireless power supply system with low power loss can be configured by directly converting direct current electric energy and electromagnetic field energy.
  • -Electromagnetic field energy can be generated from a DC power source.
  • -DC power can be obtained from electromagnetic energy by providing a rectifier circuit in the load circuit.
  • -A simple wireless power supply device can be configured.
  • ⁇ Transmission power can be controlled by a switching control circuit that controls the switching operation.
  • the power loss of the switching element can be greatly reduced by performing the ZVS operation of the switching element.
  • Second Embodiment In the second embodiment, some examples of the linear conductor pattern of the fractal shaped device are shown.
  • 7A to 7E are all linear conductor patterns based on Peano curves having different primary shapes, each representing a pattern with a predetermined number of steps.
  • FIG. 8 shows a so-called shellpinski gasket type pattern based on a set of line segments.
  • the linear conductor pattern may have a fractal shape whose outer shape is a triangle.
  • FIG. 9 is a diagram showing a linear conductor pattern by a so-called Koch curve.
  • the linear conductor pattern may be a polygonal fractal shape. By setting it as a polygonal line shape, a linear conductor pattern can be formed in the range extended in a longitudinal direction.
  • three line segment sets shown in FIG. 9 may be connected to form a so-called Koch snowflake-like linear conductor pattern starting from a triangle. According to the structure, radiation of electromagnetic noise to the outside can be suppressed.
  • FIG. 10 is a diagram showing a linear conductor pattern based on a solid Peano curve.
  • the linear conductor pattern may be a fractal shape whose outer shape is substantially cubic.
  • FIG. 11 is a diagram illustrating the frequency characteristics of the input impedance of the wireless power feeding apparatus according to the third embodiment when the entire load side is viewed from the input of the power transmission resonance circuit.
  • the resonance capacitors Cr and Crs are values at which the resonance frequency is around 10 MHz.
  • the switching frequency fs is set to 10 MHz, for example.
  • an electromagnetic field resonance field can be formed.
  • the resonance energy of the electromagnetic field increases, and the amount of electromagnetic field energy transmitted increases.
  • large electric power can be transmitted to a more distant place across the space.
  • the wireless power feeding device can be highly efficient, reduced in size and weight.
  • the switching control circuit of the wireless power feeder according to the fourth embodiment is operated in a state where the resonance frequency fr is lower than the switching frequency fs. That is, the input impedance of the multiple resonance circuit viewed from the switching circuit is inductive.
  • FIG. 12 is a diagram illustrating frequency characteristics of reactance of input impedance of the wireless power feeding apparatus according to the fourth embodiment when the entire load side is viewed from the input of the power transmission resonance circuit.
  • the resonance capacitors Cr and Crs are values at which the resonance frequency is around 10 MHz.
  • the single peak characteristic at which the reactance is zero is one.
  • the inductive property and the capacitive property are switched at the three frequencies.
  • This delay current charges and discharges the parasitic capacitors Cds1 and Cds2 of the switch element (FET) during the dead time. For this reason, for example, in a bimodal characteristic with a large magnetic coupling, the operating switching frequency fs needs to be within a frequency range in which the input impedance is inductive.
  • the ZVS operation of the switching element can be performed over the entire load range. Therefore, the power loss of the switching element can be greatly reduced. Further, high efficiency can be achieved by reducing the switching loss, and the wireless power feeding apparatus can be reduced in size and weight.
  • FIG. 13 is a circuit diagram of a power transmission device in a wireless power supply apparatus according to the fifth embodiment.
  • an inductor Lf having an inductance value large enough to generate a current source that can be regarded as a direct current relative to the alternating current flowing through the power transmission device np from the input direct current voltage is provided, and is provided on the power transmission side. Is provided with only one switch element Q1.
  • the inductance value of the inductor Lf is sufficiently larger than the inductance value of the power transmission device np, becomes high impedance at the switching frequency, and the fluctuation of the flowing current is sufficiently small.
  • FIG. 14 is a circuit diagram of a power transmission apparatus in another wireless power supply apparatus according to the fifth embodiment.
  • a bridge circuit including four switch elements Q1 to Q4 is configured.
  • the switch elements Q1 and Q4 are both turned on and off, and the switch elements Q2 and Q3 are both turned on and off.
  • the switch elements Q1 and Q2 are alternately turned on and off.
  • the power transmission switching circuit may have a full bridge configuration, and the resonance current may be generated by alternately turning on and off two sets of four switch elements connected in a bridge.
  • the wireless power supply apparatus can be made highly efficient and small and light.
  • FIGS. 15 to 19 is a circuit diagram of a power receiving device in the wireless power feeding device according to the sixth embodiment.
  • the power receiving side rectifier circuit is constituted by a diode bridge circuit including diodes Ds1, Ds2, Ds3, and Ds4.
  • diodes Ds1, Ds2, Ds3, and Ds4 diodes
  • two resonance capacitors Crs1 and Crs2 are provided, and the divided voltages of the two resonance capacitors Crs1 and Crs2 are rectified.
  • the power-receiving-side rectifier circuit constitutes a half-wave rectifier circuit.
  • the diode Ds1 rectifies the current flowing through the resonant capacitor Crs and supplies the current to the load.
  • two resonance capacitors Crs1 and Crs2 are provided, and the divided voltages of the two resonance capacitors Crs1 and Crs2 are rectified.
  • the power receiving side rectifier circuit constitutes a voltage doubler rectifier circuit.
  • the diodes Ds1 and Ds2 rectify the current flowing through the resonant capacitors Crs1 and Crs2, and supply a voltage doubler to the load.
  • three resonance capacitors Crs, Crs1, and Crs2 are provided, and the divided voltages of the three resonance capacitors Crs, Crs1, and Crs2 are rectified.
  • the power reception side rectifier circuit constitutes a voltage doubler rectifier circuit.
  • the diodes Ds1 and Ds2 double voltage rectify the current flowing through the resonant capacitor Crs and supply the voltage to the load.
  • the power receiving apparatus includes power receiving devices ns1 and ns2 having center taps.
  • a rectifier circuit is connected to each of the two power receiving devices ns1 and ns2.
  • a center tap type rectifier circuit is configured.
  • the power receiving devices ns1, ns2 are not necessarily provided by pulling out the center tap, and two loop coils may be connected in series. Further, since the two loop coils do not necessarily have to be coupled, the power receiving devices ns1 and ns2 may be orthogonal to each other. As a result, the azimuth angle range (directivity) in which the power transmitting device np and the power receiving devices ns1 and ns2 can be coupled is widened. In the example of FIG.
  • two resonance capacitors Crs1 and Crs3 are connected to the power receiving device ns1, and the divided voltages of the two resonance capacitors Crs1 and Crs3 are rectified.
  • two resonance capacitors Crs2 and Crs4 are connected to the power receiving device ns2, and the divided voltages of the two resonance capacitors Crs2 and Crs4 are configured to be rectified.
  • a wireless power feeding apparatus including a resonance apparatus including at least one resonance device arranged in a near-field space where a power transmission device and a power reception device exist is shown.
  • FIG. 20 is a diagram illustrating a state in which the resonance device nsm is disposed between the power transmission device np and the power reception device ns.
  • FIG. 21 is a diagram illustrating a state in which the resonance device FRxp is disposed close to the power transmission device Txp.
  • the resonance device nsm has the same configuration as the power transmission device np and the power reception device ns.
  • the circuits connected to the power transmission device np and the power reception device ns are the same as those shown in FIGS.
  • a capacitor C is connected to the resonance device nsm.
  • the resonance device nsm and the capacitor C constitute a resonance resonance circuit.
  • This resonant resonance circuit comprises a resonant circuit with the inductive impedance, capacitive impedance, and capacitor C of the resonant device nsm.
  • the resonance device nsm is a fractal device with a linear conductor pattern whose part is self-similar to the whole when viewed as a geometric figure, and increases the electromagnetic energy of the space around it.
  • FIG. 22 is a conceptual diagram showing an expansion state of the electromagnetic field resonance field.
  • the power transmission device forms an electromagnetic field resonance field from a DC voltage.
  • the power receiving device expands the electromagnetic resonance field.
  • the electromagnetic field resonance field is further expanded. That is, the resonance device nsm generates a resonance current by obtaining electric energy from the resonance field by the power transmission device np, and forms (enlarges) a new electromagnetic field resonance field by this resonance current.
  • the resonance device is placed in the electromagnetic field resonance field, the electromagnetic field resonance field is further expanded.
  • the power transmission device, the power reception device, and the resonance device exist in the near field at the power transmission frequency.
  • the effects of the wireless power feeder equipped with the resonance device are as follows.
  • the electromagnetic field resonance field can be expanded by using a resonance device.
  • the transmission distance between power transmission and reception can be increased by the resonance device.
  • the region having a high magnetic flux density distribution can be concentrated in a specific space according to the arrangement of the resonance device.
  • the maximum value of the magnetic flux density is about 4 times that when the resonance device is not used, for example.
  • the distance between the power transmitting device or the power receiving device and the resonant device is halved, and considering that the electromagnetic field energy decreases in inverse proportion to the square of the distance, the energy due to the magnetic flux density is about 4 times.
  • FIG. 23 and 24 are schematic configuration diagrams of a wireless power feeding apparatus including a plurality of power transmission apparatuses and a plurality of power reception apparatuses.
  • FIG. 23 shows an example in which a resonance field is strengthened by arranging a plurality of power transmission devices and a plurality of power reception devices.
  • FIG. 24 shows an example in which a resonance field is enlarged by arranging a plurality of power transmission devices and a plurality of power reception devices.
  • the electromagnetic resonance field can be expanded by a plurality of power transmission devices and a plurality of power reception devices. Moreover, transmission power can be increased by a plurality of power transmission devices. In addition, power can be supplied to a plurality of loads separated from each other by a plurality of power receiving devices. Moreover, the electromagnetic field resonance field can be expanded by a plurality of power transmission devices and a plurality of resonance devices, and the degree of freedom of position at which the power reception device can receive power can be increased.
  • FIG. 25 is a circuit diagram of a wireless power feeder according to the ninth embodiment.
  • a filter 30 is provided between the power transmission device np and the power transmission circuit.
  • a filter 40 is provided between the power receiving device ns and the power receiving circuit.
  • the other configuration is the same as that shown in FIG.
  • the filters 30 and 40 are band-pass filters that transmit power at a resonance frequency and remove (reflect) power at a frequency other than the resonance frequency. By providing such a filter, generation of unnecessary noise can be suppressed, thereby reducing electromagnetic interference problems with peripheral devices and obtaining electromagnetic compatibility (EMC).
  • EMC electromagnetic compatibility
  • ISMIn Industry-Science-Medical
  • a frequency around 6.7 MHz, 13.56 MHz, or 27.12 MHz is used.
  • FIG. 26 is a circuit diagram of the wireless power feeder according to the tenth embodiment.
  • a power transmission device Txp including the power transmission device np, a resonance device FRxp including the resonance device nsm, and a power reception device Rxp including the power reception device ns are included.
  • the power receiving device Rxp includes a power receiving circuit and a power receiving device ns1 including a resonant capacitor Crs1, rectifier diodes D41 and D31, and a smoothing capacitor Co1, a power receiving circuit and a power receiving device ns2 including a resonant capacitor Crs2, rectifier diodes D42 and D32, and a smoothing capacitor Co2. , A resonance capacitor Crs3, rectifier diodes D43 and D33, and a smoothing capacitor Co3 and a set of a power receiving circuit and a power receiving device ns3. The outputs of the three power receiving circuits are connected in parallel to supply DC power to one load Ro.
  • a resonance device FRxp using the resonance device nsm1 and the resonance capacitor Crsm1 and a resonance device FRxp using the resonance device nsm2 and the resonance capacitor Crsm2 are provided.
  • Resonance devices nsm1 and nsm2 are fractal devices with a cubic outer shape.
  • the conductor pattern is a three-dimensional Hilbert curved conductor pattern shown in FIG.
  • the power transmitting device np and the power receiving devices ns1, ns2, and ns3 are Hilbert curved conductor patterns having a square outer shape.
  • the outer shapes of the power transmitting device np and the power receiving devices ns1, ns2, and ns3 are almost the same size as one surface of the resonant devices nsm1 and nsm2. The number of steps is the same.
  • a plurality of power receiving devices may be arranged at different positions, and the electric energy received by each power receiving device may be collected and supplied to the load.
  • power can be supplied to power receiving devices in various three-dimensional directions. Also, the electric energy that can be supplied to the load can be easily increased.
  • FIG. 27 is a circuit diagram of the wireless power feeder of the eleventh embodiment.
  • the power transmission apparatus includes a communication circuit 50 that operates using the input power source Vi as a power source and uses the power transmission device np as a communication coil (near-field antenna).
  • the power receiving apparatus includes a communication circuit 60 that operates using the rectified and smoothed voltage as a power source and uses the power receiving device ns as a communication coil (near-field antenna). That is, the power transmission device np and the power receiving device ns serve both as power transmission and signal communication. Thereby, size reduction and weight reduction of a power transmission apparatus can be achieved.
  • the communication signal is superimposed by modulating the power transmission frequency as the carrier frequency. Accordingly, communication signals are also communicated via the electromagnetic resonance field.
  • various data and timing signals can be transmitted from the power transmission apparatus to an appropriate (target) power reception apparatus.
  • various data and timing signals can be transmitted from the power receiving apparatus to an appropriate (target) power transmitting apparatus.
  • various states on the power transmission device side or various states on the power reception device side can be exchanged.
  • the power receiving device can perform synchronous rectification in synchronization with switching of the switch element of the power transmitting device.
  • Signal transmission unlike power transmission, does not lead to increased loss even if power transmission efficiency is poor, so the communication signal may be independent of the frequency for power transmission.
  • the communication circuits 50 and 60 are provided in the power transmission device and the power reception device, but the resonance device FRxp may include a communication circuit together with the rectifying and smoothing circuit.
  • FIG. 28 is a diagram illustrating an example of the arrangement of the power transmission device, the power reception device, and the resonance device, and the shapes of the power transmission device, the power reception device, and the resonance device.
  • the power transmission device np of the power transmission device Txp is a Hilbert curve with four steps
  • the resonance device nsm of the resonance device FRxp is a Hilbert curve with three steps
  • the power reception device ns of the power reception device Rxp is a Hilbert curve with two steps.
  • the outer sizes of the power transmission device np and the resonance device nsm are substantially equal, but the size of the power reception device ns is 1/4 of the outer size of the resonance device nsm. Therefore, the pattern of the power receiving device ns matches a part of the pattern of the resonant device nsm.
  • the linear conductor pattern to be coupled may be a fractal shape device having a relationship in which the number of steps (generations) is different.
  • the magnetic field due to each line segment of a linear conductor pattern with a small number of steps corresponds to the average magnetic field due to a plurality of continuous line segments with a large number of steps due to the fractal shape feature that the part is a similar shape of the whole. Therefore, even fractal-shaped devices having different relations in the number of steps (generations) n are coupled to each other.
  • the entire one linear conductor pattern matches a part of the other linear conductor pattern. As a result, a high degree of binding can be obtained.
  • the electric energy received by the plurality of power receiving apparatuses may be collected and DC power may be supplied to one or a plurality of loads.
  • the fractal device in which the linear conductor pattern spreads along the surface is expressed as a planar device, but the entire surface may be curved or bent.
  • Cds1, Cds2, Cds3, Cds4 Parasitic capacitors Cm ... Mutual capacitance Co1, Co2, Co3 ... Smoothing capacitors Cr, Crs ... Resonant capacitor Crs1, Crs2, Crs3, Crs4 ... Resonant capacitor Crsm1, Crsm2 ... Resonant capacitors D41, D31 ... Rectifier diode D42, D32 ... Rectifier diode D43, D33 ... Rectifier diode Dds1, Dds2 ... Diodes Ds1, Ds2, Ds3, Ds4 ... Diodes FRxp ... resonance device Lf... Inductor Lm, Lms ... Mutual inductance Lp, Ls ...
  • Inductor Lr, Lrs ... Leakage inductance np ... Power transmission device ns, ns1, ns2, ns3 ... Power receiving device nsm, nsm1, nsm2 ... resonance devices Q1, Q2, Q3, Q4 ... Switch elements Ri, Ris ... resistance Ro ... load Rxp ... Power receiving device Txp: power transmission device 20: switching control circuit 30, 40: filter 50, 60: communication circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 送電装置(Txp)および受電装置(Rxp)は空間を隔てて配置され、送電デバイス(np)は、送電スイッチング回路の動作により直流電源(Vi)から電気エネルギーを取り出して共振電流を発生させるとともに、この共振電流によりスイッチング周波数で周期的に変化する電磁界を空間に直接つくり、空間そのものがエネルギーをもって振動する電磁界共鳴フィールドを形成する。受電デバイス(ns)は、共鳴フィールドから電気エネルギーを得ることにより共振電流を発生させるとともに、この共振電流により新たな電磁界共鳴フィールドを形成する。送電デバイス(np)または受電デバイス(ns)は、幾何学的な図形としてみた場合に、部分が全体の自己相似になっている線状導体パターンによるフラクタル形状デバイスであり、フラクタル形状デバイスの周辺における空間の電磁界エネルギーを高める。

Description

ワイヤレス給電装置
 本発明は、送電装置および受電装置を備えるワイヤレス給電装置に関するものである。
 近年、電子機器の小型軽量化および低消費電力化、さらには電池容量の増大化に伴い、電池駆動の電子機器が増加している。また、近距離では機器間のデータ通信を無線で行う利用形態も増えている。これらの事情に伴って電力についても近距離での給電技術が注目されている。
 例えば、従来の非接触型の充電システムは、特許文献1に示されるように、充電台等に一次側コイルを備える送電装置と、二次コイルおよび充電電池を備えた携帯電子機器とで構成されていて、ユーザは携帯電子機器を送電装置に載置する。これにより、送電装置の一次側コイルと携帯電子機器の二次側コイルとが電磁誘導結合(磁界結合)して充電装置側へ電力が供給され、二次電池が充電される。
特開2008-206327号公報
 特許文献1の非接触型の充電システムにおいては、送電コイルと受電コイルとは電磁誘導を利用した絶縁トランスとして作用し、磁気結合を利用した変圧器として利用しているに過ぎない。電磁誘導を利用したトランスでは、1次巻線に流れる電流により発生した磁束を2次巻線に鎖交させて電流を流し、電気から磁気、そして電気へと効率よく変換することが重要となっている。
 電磁誘導を利用したワイヤレス給電装置においては、電力変換効率を高めるために、1次巻線と2次巻線との磁気結合度を如何に高めるかが重要となっている。しかしながら、磁気飽和を防止するため、または物理的な制約により、トランスの磁気結合度を大きくすることが困難な場合も多く、結果的に高い電力変換効率が得られない。
 また、近年、共鳴方式を用いたワイヤレス給電技術の研究開発が活発化している。2007年にMIT(マサチューセッツ工科大学)より報告され注目を集めた、周波数10MHz、伝送距離2mでの電力伝送実験では、電力効率が約15%と非常に低い。その主な理由は、コルピッツ発振回路を用いて高周波交流電流を発生させたためと推察される。コルピッツ発振回路における電力増幅回路において、交流電流を発生させる段階で多くの電力を失っていると考えられる。ワイヤレス給電における最重要課題は、高効率な高周波交流電流の発生であるといっても過言ではない。
 本発明は電磁界共鳴結合を形成してワイヤレス給電を行う装置に関する。電磁界共鳴結合でワイヤレス給電を行う場合には次のような課題がある。
(a) 従来の磁界共鳴技術では、磁束を発生させるための電力源には高周波交流源を適用しており、A級増幅回路のリニアアンプなどが用いられてきた。しかしながら、電力増幅回路は電力損失が大きく、例えばA級増幅回路では、交流電力を発生させるための電力効率は、理論上の最高でも50%である。すなわち、電力増幅回路を用いると電力効率の非常に悪いワイヤレス給電システムが構成される。
(b) 一方、電磁界共鳴技術では、送受電デバイスに、ヘリカルコイル、デバイス、スパイラルコイル、メアンダラインアンテナなどを用いることができる。しかし、これまでの送受電装置においては、送受電デバイスから放射される電磁雑音により周辺機器に悪影響を与え、電磁両立性(EMC: Electromagnetic Compatibility)において課題があった。
 本発明の目的は、電力伝送効率が高く、電磁両立性(EMC)を充分に確保できるようにした、ワイヤレス給電装置を提供することにある。
 本発明のワイヤレス給電装置は次のように構成される。
(1) 電気エネルギーを供給する直流電源と、この直流電源に電気的に接続される送電デバイスとを備えた送電装置と、
 電気エネルギーを消費する負荷と、この負荷に電気的に接続された受電デバイスとを備えた受電装置と、
 前記送電デバイスが有する誘導性インピーダンス、前記送電デバイスの寄生容量または外部キャパシタによる共振キャパシタの容量性インピーダンスとで構成される送電共振回路と、
 前記送電共振回路に電気的に接続され、オンオフにより前記送電共振回路に前記直流電源を断続的に与えるスイッチ素子と、このスイッチ素子を制御して前記送電共振回路に共振電流を発生させるスイッチング制御回路と、を含む送電スイッチング回路と、
 前記受電デバイスが有する誘導性インピーダンスと、前記受電デバイスの寄生容量または外部キャパシタによる共振キャパシタの容量性インピーダンスとで構成される受電共振回路と、
 前記受電共振回路に電気的に接続され、共振電流による電気エネルギーを前記負荷へ供給する受電負荷回路と、を備え、
 前記送電装置および前記受電装置は空間を隔てて配置され、
 前記送電デバイスは、前記送電スイッチング回路の動作により前記直流電源から電気エネルギーを取り出して共振電流を発生させるとともに、この共振電流によりスイッチング周波数fsで周期的に変化する電磁界を空間に直接つくり、空間そのものがエネルギーをもって振動する電磁界共鳴フィールドを形成し、
 前記受電デバイスは、前記共鳴フィールドから電気エネルギーを得ることにより共振電流を発生させるとともに、この共振電流により新たな電磁界共鳴フィールドを形成し、
 前記送電デバイスまたは前記受電デバイスは、幾何学的な図形としてみた場合に、部分が全体の自己相似になっている線状導体パターンによるフラクタル形状デバイスであり、前記フラクタル形状デバイスの周辺における空間の電磁界エネルギーを高めたことを特徴とする。
 上記構成により、次のような効果を奏する。
・フラクタル形状デバイスを用いることにより、電磁界共鳴フィールドの不要な拡大を抑制し、電磁界エネルギーを蓄えることができる。
・フラクタル形状デバイスが有する寄生的な誘導性インピーダンスもしくは容量性インピーダンスを、電磁界共鳴フィールドを形成する電気回路パラメータとして用いることができる。
・電気エネルギーと電磁界エネルギーを直接的に変換するデバイスとしてフラクタル形状デバイスを用いることにより、エネルギー損失を低減して、ワイヤレス給電装置の高効率化を図ることができる。
・目的とするワイヤレス給電を実現しながら、電磁界エネルギーの不要な広がりを抑えることができる。
・フラクタル形状デバイスを用いることにより、放射電磁雑音を抑制して、電磁的両立性を高め、人体や周辺機器への悪影響を抑制することができる。
(2) 前記共鳴フィールドは、前記送電デバイスまたは前記受電デバイスから、前記スイッチング周波数fsの逆数であるスイッチング周期Ts[秒]と光速(約30万[km/s])の積に対して1/5以下の範囲に形成されることが好ましい。この構成により、各コイルから1/5波長の範囲以内に共鳴フィールドが形成され、その範囲において適切にワイヤレス給電を行うことができる。
(3) 前記送電デバイスおよび前記受電デバイスが存在する近傍界の空間に配置される少なくとも1つの共鳴デバイスを含む共鳴装置と、
 前記共鳴デバイスが有する誘導性インピーダンスおよび容量性インピーダンスまたは外部インピーダンスで構成される共鳴共振回路と、を備え、
 前記共鳴デバイスは、前記共鳴フィールドから電気エネルギーを得ることにより共振電流を発生させるとともに、この共振電流により新たな電磁界共鳴フィールドを形成し、
 前記共鳴デバイスは、幾何学的な図形としてみた場合に、部分が全体の自己相似になっている線状導体パターンによるフラクタル形状デバイスであり、前記フラクタル形状デバイスの周辺における空間の電磁界エネルギーを高めるものであることが好ましい。
 上記構成により、次のような効果を奏する。
・フラクタル形状デバイスを用いることにより、電磁界共鳴フィールドの不要な拡大を抑制し、電磁界エネルギーを蓄えることができる。
・フラクタル形状デバイスが有する寄生的な誘導性インピーダンスもしくは容量性インピーダンスを、電磁界共鳴フィールドを形成する電気回路パラメータとして用いることができる。
・目的とするワイヤレス給電を実現しながら、電磁界エネルギーの不要な広がりを抑えることができる。
・フラクタル形状デバイスを用いることにより、放射電磁雑音を抑制して、電磁的両立性を高め、人体や周辺機器への悪影響を抑制することができる。
(4) 前記送電デバイスまたは前記受電デバイスの前記線状導体パターンは、ステップ(世代)数nが2以上であり、外形がほぼ正方形、三角形、ほぼ立方体のいずれか、または折れ線状であることが好ましい。
(5) 前記共鳴デバイスの前記線状導体パターンは、ステップ(世代)数nが2以上であり、外形がほぼ正方形、三角形、ほぼ立方体のいずれか、または折れ線状であることが好ましい。
 上記(4)(5)の構成により、次のような効果を奏する。
・正方形とすることで、空間充填曲線の空間充填率をより高めることができる。
・三角形とすることで、デバイスの配置制約に対応することができる。
・折れ線状とすることで、長手方向に延びる範囲に線状導体パターンを形成することができる。
・立方体とすることで、3次元方向に対応したデバイスを構成できる。
・多角形とすることで、外部への電磁雑音の放射を抑制できる。
(6) 前記送電デバイスの前記線状導体パターンと、前記受電デバイスの前記線状導体パターンとは、必要に応じて、ステップ(世代)数nが異なるフラクタル形状デバイスであることが好ましい。
 上記構成により、デバイスの配置制約に対応することができる。
(7) 前記共鳴デバイスの前記線状導体パターンと、前記送電デバイスまたは前記受電デバイスの前記線状導体パターンとは、必要に応じて、ステップ(世代)数nが異なるフラクタル形状デバイスであることが好ましい。
 上記構成により、デバイスの配置制約に対応することができる。
(8) 前記受電負荷回路は、整流回路を有し、直流の電気エネルギーを前記負荷に供給するものであることが好ましい。
 上記構成により、直流の電気エネルギーを負荷に供給することができ、直流電圧を供給することで、負荷を並列接続することで複数の負荷への電力供給が可能となる。
(9) 前記スイッチング制御回路は、前記送電共振回路の、前記送電スイッチング回路が接続される入力から負荷側全体をみた等価的な入力インピーダンスの虚部Xが0となる共振周波数frに対して、スイッチング周波数fsが、fs=fr±30%の関係であることが好ましい。これにより、送電共振回路の入力から負荷側全体をみた等価的な入力インピーダンスの虚部Xがほぼ0となる共振周波数でスイッチングされて、高エネルギーの共鳴フィールドを形成することができる。
(10) 前記送電共振回路と前記受電共振回路のそれぞれが独立に有する共振周波数は、±30%の範囲内で一致していることが好ましい。これにより、共鳴フィールドを形成するスイッチング周波数の設定が容易となる。
(11) 前記送電共振回路と前記共鳴共振回路のそれぞれが独立に有する共振周波数は、±30%の範囲内で一致していることが好ましい。このことにより、共鳴フィールドを形成するスイッチング周波数の設定が容易となる。
(12) 前記スイッチ素子はFETであり、前記送電スイッチング回路は前記FETの寄生容量、および逆並列ダイオードを含むことが好ましい。これにより、FETの寄生容量、逆並列ダイオードを利用してスイッチング回路を構成でき、部品数を削減して、ワイヤレス給電装置の高効率化、小型軽量化を図ることができる。
(13) 前記スイッチング制御回路は、前記送電共振回路の、前記送電スイッチング回路が接続される入力から負荷側全体をみた等価的な入力インピーダンスの虚部Xが0となる共振周波数frに対して、スイッチング周波数fsをfs≧frの関係にして、前記虚部XがX≧0の関係となるスイッチング周波数fsが設定されていることが好ましい。これにより、負荷の変化に対してスイッチング素子のZVS(ゼロ電圧スイッチング)動作を行うことが可能となる。そのため、スイッチング損失が低減され高効率化を図ることができ、ワイヤレス給電装置の小型軽量化を図ることができる。
(14) 前記スイッチング制御回路は、前記スイッチ素子の両端電圧がゼロ電圧付近に低下した際に前記スイッチ素子をターンオンするように制御してゼロ電圧スイッチング動作をするように構成されていることが好ましい。これにより、スイッチ素子の両端電圧がゼロ電圧付近に低下した際にターンオンすることで、スイッチング損失をより低減でき、そのことで、高効率化を図ることができ、ワイヤレス給電装置の小型軽量化を図ることができる。
(15) 前記共鳴装置は、前記近傍界の空間に複数配置されていることが好ましい。これにより、共鳴装置を送電デバイスと受電デバイスが存在する近傍界の空間に複数配置することで、共鳴フィールドを効果的に拡大でき、送電装置および受電装置の位置自由度を高めることができる。
(16) 複数の前記共鳴共振回路がそれぞれ独立に有する共振周波数は、±30%の範囲内で一致していることが好ましい。これにより、共鳴フィールドの拡大が容易になる。
(17) 前記送電装置は複数配置され、それぞれの送電装置が有するスイッチング周波数は、±30%の範囲内で同一であることが好ましい。これにより、送電装置が複数配置されることで共鳴フィールドを拡大でき、それぞれの送電装置のスイッチング周波数をほぼ同一とすることで、共鳴フィールドの電磁界エネルギーを大きくできる。
(18) 前記受電装置は複数配置され、それぞれの受電装置が有する受電共振回路の共振周波数は、±30%の範囲内で同一であることが好ましい。これにより、受電装置が複数配置されることにより共鳴フィールドを拡大できるとともに、複数の受電装置により、より大きな電気エネルギーを収穫できる。
(19) 前記受電デバイスは複数配置され、それぞれの受電デバイスが受電する電気エネルギーを集めて負荷に供給されるように構成されていることが好ましい。これにより、負荷に供給可能な電気エネルギーを容易に大きくできる。
(20) 前記送電装置は複数配置され、それぞれの送電装置が有するスイッチング周波数はISM (Industry-Science-Medical) バンドであることが好ましい。これにより、周辺機器への電磁雑音による干渉が抑制され、電磁両立性(EMC)を得ることができる。
(21) 前記送電装置は、前記スイッチング周波数以外の周波数成分を除去するフィルタを備えていることが好ましい。これにより、周辺機器への電磁雑音による干渉が抑制され、電磁両立性を得ることができる。
(22) 前記送電装置および前記受電装置は電波を介して通信する通信回路を備えていることが好ましい。これにより、送電装置および受電装置は、電力の送電と信号の発信の役割を兼ね備えることになり、装置の小型軽量化を達成することができる。また、送電装置から適切な対象の受電装置に適切なタイミングで適切な電力量を伝送することができる。
(23) 前記共鳴装置は前記送電装置または前記受電装置との間で電波を介して通信する通信回路を備えていることが好ましい。これにより、共鳴装置は、電力の送電と信号の発信の役割を兼ね備えることになり装置の小型軽量化を達成することができる。また、受電装置から適切な対象の送電装置へ適切なタイミングで通信を行うことができ、適切な電力量の受電が容易となる。
 本発明によれば、次のような効果を奏する。
・フラクタル形状デバイスを用いることにより、電磁界共鳴フィールドの不要な拡大を抑制し、電磁界エネルギーを蓄えることができる。
・フラクタル形状デバイスが有する寄生的な誘導性インピーダンスもしくは容量性インピーダンスを、電磁界共鳴フィールドを形成する電気回路パラメータとして用いることができる。
・電気エネルギーと電磁界エネルギーを直接的に変換するデバイスとしてフラクタル形状デバイスを用いることにより、エネルギー損失を低減して、ワイヤレス給電装置の高効率化を図ることができる。
・目的とするワイヤレス給電を実現しながら、電磁界エネルギーの不要な広がりを抑えることができる。
・フラクタル形状デバイスを用いることにより、放射電磁雑音を抑制して、電磁的両立性を高め、人体や周辺機器への悪影響を抑制することができる。
図1は第1の実施形態に係るワイヤレス給電装置の回路図である。 図2は第1の実施形態に係るワイヤレス給電装置の送電デバイスnpおよび受電デバイスnsを等価回路に置換して表した回路図である。 図3はフラクタル形状デバイスの線状導体パターンの例を示す図である。 図4は送電デバイスnpおよび受電デバイスnsの線状導体パターンに流れる電流の向きおよび線状導体パターンに沿って分布する磁束の向きの例を示す図である。 図5は、送電デバイスnpと受電デバイスnsとの間の距離に対する結合係数の関係を示す図である。 図6は図1、図2各部の波形図である。 図7(A)~(E)はいずれも、1次の形状が異なるペアノ曲線による線状導体パターンであり、それぞれ所定ステップ数でのパターンを表したものである。 図8は、線分集合による、いわゆるシェルピンスキーのギャスケット型のパターンを表したものである。 図9は、いわゆるコッホ曲線による線状導体パターンを表す図である。 図10は、立体ペアノ曲線による線状導体パターンを示す図である。 図11は、第3の実施形態に係るワイヤレス給電装置の、送電共振回路の入力から負荷側全体をみた入力インピーダンスの周波数特性を示す図である。 図12は、第4の実施形態に係るワイヤレス給電装置の、送電共振回路の入力から負荷側全体をみた入力インピーダンスのリアクタンスの周波数特性を示す図である。 図13は第5の実施形態に係るワイヤレス給電装置における送電装置の回路図である。 図14は第5の実施形態に係る別のワイヤレス給電装置における送電装置の回路図である。 図15(A)、図15(B)は、受電側整流回路がダイオードDs1,Ds2,Ds3,Ds4によるダイオードブリッジ回路で構成されたワイヤレス給電装置における受電装置の回路図である。 図16(A)、図16(B)は、受電側整流回路が半波整流回路で構成されたワイヤレス給電装置における受電装置の回路図である。 図17(A)、図17(B)は、受電側整流回路が倍電圧整流回路で構成されたワイヤレス給電装置における受電装置の回路図である。 図18(A)、図18(B)は、受電側整流回路が倍電圧整流回路で構成されたワイヤレス給電装置における受電装置の回路図である。 図19(A)、図19(B)は、受電装置がセンタータップを有する受電デバイスns1,ns2を備えて構成されたワイヤレス給電装置における受電装置の回路図である。 図20は送電デバイスnpおよび受電デバイスnsの間に共鳴デバイスnsmを配置した様子を示す図である。 図21は送電装置に共鳴装置を近接配置した状態を示す図である。 図22は電磁界共鳴フィールドの拡大の様子を示す概念図である。 図23は複数の送電装置および複数の受電装置を配置して共鳴フィールドを強めた例である。 図24は複数の送電装置および複数の受電装置を備えるワイヤレス給電装置の概略構成図である。 図25は第9の実施形態に係るワイヤレス給電装置の回路図である。 図26は第10の実施形態のワイヤレス給電装置の回路図である。 図27は第11の実施形態のワイヤレス給電装置の回路図である。 図28は、送電装置、受電装置および共鳴装置の配置と、送電デバイス、受電デバイスおよび共鳴デバイスの形状の例を示す図である。 図29は比較例としての従来の低電力効率システムの等価的な基本回路図である。
 本発明の具体的な実施の形態を示す前に、本発明の特徴の一つである「直流共鳴方式」のワイヤレス給電装置の優位性について説明する。
 図29は比較例としての従来の低電力効率システムの等価的な基本回路図である。送電装置に、キャパシタCr、インダクタLp、抵抗Riによる共振回路が構成されていて、受電装置に、キャパシタCrs、インダクタLs、抵抗Risによる共振回路が構成されている。インダクタLp,Lsはそれぞれループ状やスパイラル状のコイルで構成されている。
 これに対して、本発明に係る直流共鳴方式では、直流電圧電源とスイッチング回路に共鳴デバイスが直接つながる形になる。この結果、電力の伝送に伴う損失が非常に小さくなり、従来方式に比べて電源電力を共鳴フィールドのエネルギーに変換する変換効率が高くなる。しかも、電源電力から共鳴フィールドへの変換効率が高いことで、多数の共鳴デバイスを利用した新しいワイヤレス電力伝送の用途も容易になる。
 直流共鳴方式でのスイッチング回路には、高速スイッチング動作においてスイッチング損失などの電力損失が非常に小さいD級インバータなどで有用な「最適ZVS(zero voltage switching)動作」などの高度な回路技術を用いる。この回路構成であれば、出力インピーダンスはほぼ0Ωとなる。等価的な内部抵抗以外にはエネルギーを消費するものはほとんどなく、電磁界エネルギーもほとんど消費されない。
 ただし、直流共鳴方式のワイヤレス給電装置は、単純に0ΩのD級インバータやE級インバータをワイヤレス給電装置に利用したものとも異なる。D級インバータやE級インバータでは、送電デバイスから見た負荷はほぼ一定の50Ωの純抵抗と見なせるように扱っている。基本的には、負荷が50Ωの場合のみ適切な共振が起こり、負荷に電力を供給することが可能となる。
 一方、ワイヤレス給電では、送電デバイスから見た負荷は確定しない。つまり結合状態により見かけ上の負荷は変化する。さらに、負荷の消費電力も変化する。このため、本発明に係る直流共鳴方式では、送電デバイスから見た負荷インピーダンスのリアクタンスが0となるようなスイッチング周波数にて動作をさせることで直流の電力を用いて共鳴を引き起こしている。こうすれば、インピーダンス整合は不要となる。
 本発明のワイヤレス給電装置は従来の磁界共鳴方式によるシステムに比べて、システム構成がよりシンプルで、電源を含めたシステムの全電力効率が高いという特徴がある。また、伝送距離が変化したり、電力の伝送相手が複数になったりして負荷が大きく変化しても、電力伝送の効率が大きく低下しないという特徴もある。
 本発明の特徴の一つである「フラクタルデバイス」を用いた優位性については、各実施形態に基づいて以降に説明する。
《第1の実施形態》
 図1は第1の実施形態に係るワイヤレス給電装置の回路図である。また、図2はこのワイヤレス給電装置の送電デバイスnpおよび受電デバイスnsを等価回路に置換して表した回路図である。
 図1、図2に示すワイヤレス給電装置の特徴は次のとおりである。
・送受電デバイスにフラクタル形状デバイスを用いた構成
・スイッチング技術により電磁界共鳴結合を生じさせてワイヤレス給電を行う構成
・スイッチング素子をオンオフさせることにより、送受電デバイスを含めた複共振回路に直流電源を断続的に与えて、送受電デバイスに共振電流を発生させる構成
・スイッチング素子がZVS(ゼロ電圧スイッチング)動作を行う構成
 送電デバイスnpおよび受電デバイスnsは、いずれも幾何学的な図形としてみた場合に、部分が全体の自己相似になっている線状導体パターンによるフラクタル形状デバイスである。先ず、この送電デバイスnpおよび受電デバイスnsの構成について図3を参照して示す。図3はフラクタル形状デバイスの線状導体パターンの例を示す図である。(a)はステップ(世代)数nが1のとき(n=1)のパターン、(b)はn=2のときのパターン、(c)はn=3のときのパターン、(d)はn=4のときのパターン、(e)はn=5のときのパターンである。このパターンは、(a)に示す基本形をジェネレータとし、各線分をジェネレータの相似形に置換する、という操作を再帰的に行ったパターンでもある。
 この図3の例は、数学者J.ペアノ(1858-1932)が提言した、広がりのある面を連続な曲線で覆う「空間充填曲線」である。ここで、「空間充填曲線」は、広がりのある面を分割(等分割)した全ての領域を自己交差せずに通って、前記広がりのある面を覆う線と言うことができる。すなわち、分割した領域と線とが一対一で対応するという規則性を有する。その結果、幾何学的な図形としてみた場合に、「部分が全体の自己相似になっている」フラクタル形状となる。図3に示した曲線はドイツの数学者ダフィット・ヒルベルトが1891年に考案した空間充填曲線の一つであり、ヒルベルト曲線と呼ばれる。ヒルベルト曲線は、2次元であれば、2^n四方の領域(グリッド)を、必ず隣り合う領域を繋ぎながら全ての点を通るような辿りかたをする曲線である。例えば、64×64のグリッド(2^6 四方)だとステップ数5のヒルベルト曲線で全てのグリッドを巡回する。
 なお、ペアノ自身が提案した曲線でなくても、「空間充填曲線」は一般に広義のペアノ曲線と呼ばれている。
 図4は上記送電デバイスnpおよび受電デバイスnsの線状導体パターンに流れる電流の向きおよび線状導体パターンに沿って分布する磁束の向きの例を示す図である。この例では、送電デバイスnpおよび受電デバイスnsの構造は同じである。図4中の矢印は、瞬時の磁束密度ベクトルの方向を表している。
 基本形状要素(ステップ数n=1における形状)では磁束が局所的に存在するため、互いに誘起電圧を相殺する局所的な自己インダクタンスが面上に分布する。そのため、ステップ数nが大きくなるほど、磁界の極性が反転する領域が互いに入り組んで、いたる所に差動コイル構造が構成される。そのため、局所的に磁束が閉じて、デバイスから離れた位置に磁束が広がりにくい。すなわち、各部で結合した磁束が送電デバイスnpおよび受電デバイスnsの近傍で閉じて拡散しない。また、送電デバイスnpおよび受電デバイスnsの線状導体パターン同士が対向したときに、電力伝送効率が最大となる。
 図5は、送電デバイスnpと受電デバイスnsとの間の距離に対する結合係数の関係を示す図である。ここで各特性ラインは、ステップ数の異なる線状導体パターンでの特性である。“Peano-1”はステップ数n=2、“Peano-2”はステップ数n=3、“Peano-3はステップ数n=4、のペアノ曲線であり、空間分割パターンおよびそれらを通る線の経路は図3に示したものである。
 図5から明らかなように、ステップ数が大きい程(次数が高い程)、送電デバイスnpと受電デバイスnsとの間の距離に対する結合係数の減衰を大きくできる。このように、線状導体がペアノ形状であるフラクタルデバイスは近距離電力伝送用に適する。
 なお、このようなフラクタル形状デバイスによれば、GHz帯以上の特定条件下で電磁界を閉じ込める性質があり、その性質を利用することもできる。
 次に、図1、図2に示したワイヤレス給電装置の詳細な動作を、図6を参照して説明する。図6は図1、図2各部の波形図である。
 送電デバイスnpの相互インダクタンスをLm、送電デバイスnpの漏れインダクタンスをLr、受電デバイスnsの相互インダクタンスをLms、受電デバイスnsの漏れインダクタンスをLrsとする。また、スイッチ素子Q1,Q2のゲート・ソース間電圧をvgs1,vgs2、ドレイン・ソース間電圧をvds1,vds2とする。
 スイッチ素子Q1,Q2は、両スイッチ素子がオフとなる短いデットタイムを挟んで交互にオンオフされ、デットタイム期間にQ1,Q2に流れる電流をそれぞれ転流させてZVS動作を行う。1スイッチング周期における各状態での動作は次のとおりである。
(1) 状態1 時刻t1~t2
 先ず、ダイオードDds1が導通する。ダイオードDds1の導通期間においてスイッチ素子Q1をターンオンすることでZVS動作が行われ、スイッチ素子Q1は導通する。送電デバイスnpと受電デバイスnsとの間に相互誘導によって等価的な相互インダクタンスLm,Lmsおよび相互キャパシタンスCmが形成され、Cr,Lr,Lm,Lms,Crs,Lrsからなる複共振回路において、送電共振回路と受電共振回路とが共鳴して、相互インダクタンスLm,Lmsに共振電流が流れ、電磁界共鳴結合を形成して、送電回路から受電回路へ電力が伝送される。送電側では、キャパシタCr、漏れインダクタンスLrに共振電流が流れる。受電側では、キャパシタCrsおよび漏れインダクタンスLrsに共振電流が流れ、スイッチ素子Q3,Q4により整流されて負荷に電力が供給される。
 スイッチ素子Q1がターンオフすると状態2となる。
(2) 状態2 時刻t2~t3
 送電装置Txp側では、漏れインダクタンスLrに流れていた電流irにより、寄生キャパシタCds1は充電され、寄生キャパシタCds2は放電される。電圧vds1が電圧Vi、電圧vds2が0VになるとダイオードDds2が導通して状態3となる。
(3) 状態3 時刻t3~t4
 先ず、ダイオードDds2は導通する。ダイオードDds2の導通期間においてスイッチ素子Q2をターンオンすることでZVS動作が行われ、スイッチ素子Q2は導通する。送電デバイスnpと受電デバイスnsとの間に相互誘導によって等価的な相互インダクタンスLm,Lmsが形成され、Cr,Lr,Lm,Lms,Crs,Lrsからなる複共振回路において、送電共振回路と受電共振回路とが共鳴して、相互インダクタンスLm,Lmsに共振電流が流れ、電磁界共鳴結合を形成して送電回路から受電回路へ電力が伝送される。送電側では、キャパシタCr、漏れインダクタンスLrに共振電流が流れる。受電側では、キャパシタCrs、漏れインダクタンスLrsに共振電流が流れ、スイッチ素子Q3,Q4により整流されて負荷に電力が供給される。
 スイッチ素子Q2がターンオフすると状態4となる。
(4) 状態4 時刻t4~t1
 送電装置Txp側では、漏れインダクタンスLrに流れていた電流irにより、寄生キャパシタCds1は放電され、寄生キャパシタCds2は充電される。電圧vds1が0V、電圧vds2がViになるとダイオードDds1は導通して再び状態1となる。
 以後、状態1~4を周期的に繰り返す。
 なお、図1に示した例では、スイッチング制御回路20は受電デバイスnsに流れる電流を検出し、その極性反転に同期してスイッチ素子Q3,Q4を交互にオンオフするようにしたが、送電装置側のスイッチ素子Q1,Q2のスイッチングタイミング信号を送電装置Txpから受電装置Rxpへ伝送し、受電装置Rxp側で、スイッチ素子Q1,Q2のスイッチングタイミングに同期してスイッチ素子Q3,Q4を駆動するように構成してもよい。
 以上に示した送電装置は送電デバイスnpと共に送電共振回路を構成し、直流電源Viを入力して送電共振回路に共振電流を発生させる。これにより電磁界共鳴フィールドが生成される。
 前記共鳴フィールドは、送電デバイスnp、共鳴デバイスnsmまたは受電デバイスnsから、スイッチング周波数fsの逆数であるスイッチング周期Ts[秒]と光速(約30万[km/s])の積に対して1/5以下の範囲に形成される。すなわち、各デバイスから1/5波長の範囲以内に共鳴フィールドが形成される。例えば、スイッチング周波数が10MHzの場合、1波長は約30mであり、その1/5の約6m以内の範囲においてワイヤレス給電を行うことができる。
 本発明のフラクタル形状デバイスを用いることにより、次のような効果を奏する。
・フラクタル形状の基本形状要素(ステップ数n=1における形状)が差動コイルとして機能するので、電磁界共鳴フィールドの不要な拡大を抑制し、電磁界エネルギーを蓄えることができる。
・線長当たりの面積が小さいので、デバイスが小型化できる。
・単純な方形コイル(もしくは円形コイル)とした場合に比べて、フラクタルデバイス全体の自己インダクタンスは小さくなる。そのため、所望のインダクタンスを得るためにサイズを縮小化する必要がなく、ある程度離れたデバイス間での所定の結合が得られる。
・基本形状要素では磁束が局所的に存在するため、互いに誘起電圧を相殺する局所的な自己インダクタンスが分布する。そのため、見かけ上の自己インダクタンスを小さくしながら、外部キャパシタンスを接続するなどして、共鳴現象を引き起こす適切な条件を設定することが可能となる、という利点がある。
・基本要素内で局所的に磁束が閉じるため、デバイスから離れた位置に磁束が広がりにくい。
・デバイス形状を活かして、対向するデバイスの相対的な配置などを適切に設定することで、コイル内の磁気エネルギー分布の制御が可能である。
 本発明のワイヤレス給電装置により構成される電力伝送システムとしての効果は次のとおりである。
・直流の電気エネルギーと電磁界エネルギーを直接的に変換することにより電力損失の少ないワイヤレス給電システムを構成できる。
・直流電源から電磁界エネルギーを形成することができる。
・負荷回路に整流回路を備えることで、電磁界エネルギーから直流電力を得ることができる。
・直流電力から直流電力へのワイヤレス給電が可能である。
・シンプルなワイヤレス給電装置を構成することができる。
・スイッチング動作を制御するスイッチング制御回路により伝送電力が制御できる。
・スイッチング素子がZVS動作を行うことでスイッチング素子の電力損失を大きく低減することができる。
《第2の実施形態》
 第2の実施形態では、フラクタル形状デバイスの線状導体パターンの幾つかの例を示す。
 図7(A)~(E)はいずれも、1次の形状が異なるペアノ曲線による線状導体パターンであり、それぞれ所定ステップ数でのパターンを表したものである。
 図8は、線分集合による、いわゆるシェルピンスキーのギャスケット型のパターンを表したものである。(a)はステップ数n=1、(b)はステップ数n=2、(c)はステップ数n=3、(d)はステップ数n=4、のときの線状導体パターンを表す図である。
 このように、線状導体パターンは、外形が三角形になるフラクタル形状であってもよい。
 図9は、いわゆるコッホ曲線による線状導体パターンを表す図である。(a)はステップ数n=0、(b)はステップ数n=1、(c)はステップ数n=2、(d)はステップ数n=3、(e)はステップ数n=4、のときのパターンである。
 このように、線状導体パターンは、折れ線状のフラクタル形状であってもよい。折れ線状とすることで、長手方向に延びる範囲に線状導体パターンを形成することができる。
 また、図9に示した線分集合を3つ連結して、三角形からスタートする、いわゆるコッホ雪片状の線状導体パターンを形成してもよい。その構造によれば、外部への電磁雑音の放射を抑制できる。
 図10は、立体ペアノ曲線による線状導体パターンを示す図である。(a)はステップ数n=1、(b)はステップ数n=2、(c)(d)はステップ数n=3、のときのパターンである。なお、(d)は線状導体の太さについても立体的に表している。
 このように、線状導体パターンは、外形がほぼ立方体になるフラクタル形状であってもよい。
《第3の実施形態》
 第3の実施形態に係るワイヤレス給電装置のスイッチング制御回路は、スイッチング周波数をfsとし、送電スイッチング回路に接続される送電共振回路から負荷側全体をみた入力インピーダンスのリアクタンスXで表すと、X=0となる共鳴周波数をfaとして、スイッチング周波数fsを共鳴周波数fa付近(fs=fr±30%)にて動作させる。
 図11は、第3の実施形態に係るワイヤレス給電装置の、送電共振回路の入力から負荷側全体をみた入力インピーダンスの周波数特性を示す図である。ここで共振キャパシタCr,Crs は共振周波数が10MHz 付近となる値である。負荷抵抗Ro= 10Ωとし、距離dx を0.15,0.5,2.0,5.0,7.0cm と変化させたとき、前記入力インピーダンスおよび入力インピーダンスが極小となる共振周波数frは、図中矢印で示すように推移する。
 例えば電力伝送距離dx=7cm(70mm)のとき、共振周波数fr≒10MHzであるので、スイッチング周波数fsは例えば10MHzとする。
 このようにスイッチング周波数fsを共鳴周波数fa付近にて動作させることにより、電磁界共鳴フィールドを形成することができる。共鳴周波数では、電磁界の共鳴エネルギーが大きくなり、電磁界エネルギーの送電量が大きくなる。その結果、空間を隔ててより離れたところへ大きな電力を伝送することができる。また、ワイヤレス給電装置の高効率化、小型軽量化を図ることができる。
《第4の実施形態》
 第4の実施形態に係るワイヤレス給電装置のスイッチング制御回路は、前記共振周波数frがスイッチング周波数fsより低い状態で動作させる。すなわち、スイッチング回路から見た複共振回路の入力インピーダンスを誘導性とする。
 図12は、第4の実施形態に係るワイヤレス給電装置の、送電共振回路の入力から負荷側全体をみた入力インピーダンスのリアクタンスの周波数特性を示す図である。ここで共振キャパシタCr,Crs は共振周波数が10MHz 付近となる値である。負荷抵抗Ro= 10Ωとし、距離dx を0.15,0.5,2.0,5.0,7.0cm と変化させたとき、前記リアクタンスは図10に示すように変位する。
 距離dxが大きくなるに伴い、リアクタンスが0となる周波数が3つ、極大値が2つとなる双峰特性から、リアクタンスが0となる周波数が1つとなる単峰特性になることが分かる。入力インピーダンスのリアクタンスに注目すると3つの周波数を境に誘導性と容量性が入れ替わることが分かる。図12中の3つの丸印はdx=0.5cmにおいて、誘導性と容量性が入れ替わる周波数を示している。ZVS動作を実現するためには、入力インピーダンスを誘導性にして、電圧に対する遅れ電流を生成することが必要である。この遅れ電流によりデッドタイムにおいてスイッチ素子(FET)の寄生キャパシタCds1、Cds2 の充放電を行う。このため、例えば磁気結合が大きい双峰特性においては、動作スイッチング周波数fs は前記入力インピーダンスが誘導性となる周波数範囲内であることが必要である。
 このようにして、スイッチング周波数を定めることで、全負荷範囲に亘ってスイッチング素子のZVS動作を行うことが可能となる。したがって、スイッチング素子の電力損失を大きく低減できる。また、スイッチング損失を低減することで高効率化を図ることができ、ワイヤレス給電装置を小型軽量化できる。
《第5の実施形態》
 図13は第5の実施形態に係るワイヤレス給電装置における送電装置の回路図である。図13の例では、入力される直流電圧から、送電デバイスnpに流す交流電流に対して相対的に直流電流とみなせる電流源を生成できる大きさのインダクタンス値をもつインダクタLfを備え、送電側には1つのスイッチ素子Q1のみを設けている。インダクタLfのインダクタンス値は、送電デバイスnpのインダクタンス値よりも十分に大きく、スイッチング周波数において高インピーダンスとなるものであり、流れる電流の変動は十分に小さい。
 図14は第5の実施形態に係る別のワイヤレス給電装置における送電装置の回路図である。図14の例では、4つのスイッチ素子Q1~Q4によるブリッジ回路が構成されている。スイッチ素子Q1,Q4は共にオンオフし、スイッチ素子Q2,Q3は共にオフオンする。そして、スイッチ素子Q1,Q2は交互にオンオフする。このように、送電スイッチング回路をフルブリッジ構成とし、ブリッジ接続された4つのスイッチ素子を2組ずつ交互にオンオフすることで共振電流を発生させるようにしてもよい。
 このように、送電装置側のスイッチ素子をブリッジ構成とすることで、各スイッチ素子に印加される電圧が低減され、ワイヤレス給電装置の高効率化、小型軽量化を図ることができる。
《第6の実施形態》
 図15~図19の各図は第6の実施形態に係るワイヤレス給電装置における受電装置の回路図である。
 図15(A)、図15(B)の例では、受電側整流回路はダイオードDs1,Ds2,Ds3,Ds4によるダイオードブリッジ回路で構成されている。図15(B)の例では、2つの共振キャパシタCrs1,Crs2を備え、この2つの共振キャパシタCrs1,Crs2の分圧電圧を整流するように構成されている。
 図16(A)、図16(B)の例では、受電側整流回路は半波整流回路を構成している。ダイオードDs1は共振キャパシタCrsに流れる電流を整流して負荷へ電流を供給する。図16(B)の例では、2つの共振キャパシタCrs1,Crs2を備え、この2つの共振キャパシタCrs1,Crs2の分圧電圧を整流するように構成されている。
 図17(A)、図17(B)の例では、受電側整流回路は倍電圧整流回路を構成している。ダイオードDs1,Ds2は共振キャパシタCrs1,Crs2に流れる電流を整流し、負荷へ倍電圧を供給する。図15(B)の例では、3つの共振キャパシタCrs,Crs1,Crs2を備え、この3つの共振キャパシタCrs,Crs1,Crs2の分圧電圧を整流するように構成されている。
 図18(A)、図18(B)の例では、受電側整流回路は倍電圧整流回路を構成している。ダイオードDs1,Ds2は共振キャパシタCrsに流れる電流を倍電圧整流し、負荷へ倍電圧を供給する。
 図19(A)、図19(B)の例では、受電装置はセンタータップを有する受電デバイスns1,ns2を備えている。この2つの受電デバイスns1,ns2にそれぞれ整流回路が接続されている。これによりセンタータップ方式の整流回路が構成されている。受電デバイスns1,ns2は必ずしもセンタータップを引き出すことで設けなくてもよく、2つのループコイルを直列接続してもよい。また、この2つのループコイル同士は必ずしも結合している必要はないので、受電デバイスns1,ns2は互いに直交していてもよい。そのことにより、送電デバイスnpと受電デバイスns1,ns2との結合可能な方位角範囲(指向性)が広くなる。図19(B)の例では、受電デバイスns1に2つの共振キャパシタCrs1,Crs3が接続され、この2つの共振キャパシタCrs1,Crs3の分圧電圧を整流するように構成されている。同様に、受電デバイスns2に2つの共振キャパシタCrs2,Crs4が接続され、この2つの共振キャパシタCrs2,Crs4の分圧電圧を整流するように構成されている。
《第7の実施形態》
 第7の実施形態では、送電デバイスおよび受電デバイスが存在する近傍界の空間に配置される少なくとも1つの共鳴デバイスを含む共鳴装置を備えたワイヤレス給電装置について示す。
 図20は送電デバイスnpおよび受電デバイスnsの間に共鳴デバイスnsmを配置した様子を示す図である。図21は送電装置Txpに共鳴装置FRxpを近接配置した状態を示す図である。共鳴デバイスnsmは送電デバイスnpおよび受電デバイスnsと同じ構成である。送電デバイスnpおよび受電デバイスnsに接続される回路は図1、図2に示したものと同じである。共鳴デバイスnsmにはキャパシタCが接続されている。この共鳴デバイスnsmとキャパシタCとによって、共鳴共振回路が構成されている。この共鳴共振回路は、共鳴デバイスnsmの誘導性インピーダンス、容量性インピーダンスおよびキャパシタCとで共振回路を構成する。
 共鳴デバイスnsmは、幾何学的な図形としてみた場合に、部分が全体の自己相似になっている線状導体パターンによるフラクタル形状デバイスであり、その周辺における空間の電磁界エネルギーを高める。
 図22は電磁界共鳴フィールドの拡大の様子を示す概念図である。先ず、送電装置は直流電圧より電磁界共鳴フィールドを形成する。この電磁界共鳴フィールド中に受電装置を置くと、受電装置は電磁界共鳴フィールドを拡大する。そして、この電磁界共鳴フィールドに共鳴装置を置くとさらに電磁界共鳴フィールドは拡大する。すなわち、共鳴デバイスnsmは、送電デバイスnpによる共鳴フィールドから電気エネルギーを得ることにより共振電流を発生させるとともに、この共振電流により新たな電磁界共鳴フィールドを形成(拡大)する。そして、この電磁界共鳴フィールドに共鳴装置を置くとさらに電磁界共鳴フィールドは拡大する。送電装置、受電装置および共鳴装置は、電力伝送周波数における近傍界に存在する。
 共鳴装置を備えたワイヤレス給電装置の効果は次のとおりである。
・共鳴デバイスを用いることにより電磁界共鳴フィールドを拡大することができる。
・共鳴デバイスにより送受電間の伝送距離を大きくすることができる。
・共鳴デバイスが有する容量性インピーダンスを共振キャパシタとして用いることにより、外部の共振キャパシタが不要になる。
・共鳴デバイス面全体に比較的高い磁束密度を持つ領域をつくることができる。
・共鳴デバイスの近傍に磁束密度分布の高い領域が生じるので、この共鳴デバイスの配置に応じて、磁束密度分布の高い領域を特定の空間に集中させることができる。
・磁束密度の最大値は、例えば、共鳴デバイスを使用しないときの約4倍となる。共鳴デバイスを使用することで、送電デバイスまたは受電デバイスと共鳴デバイスとの距離は、半分となり、電磁界エネルギーが距離の2乗に反比例して小さくなることを考慮すると、磁束密度によるエネルギーは、約4倍になる。
《第8の実施形態》
 図23、図24は、複数の送電装置および複数の受電装置を備えるワイヤレス給電装置の概略構成図である。特に図23は複数の送電装置、複数の受電装置を配置して共鳴フィールドを強めた例である。図24は複数の送電装置、複数の受電装置を配置して共鳴フィールドを拡大した例である。
 このように、複数の送電装置、複数の受電装置により、電磁界共鳴フィールドを拡大できる。また、複数の送電装置により伝送電力を大きくすることができる。また、複数の受電装置により、空間を隔てた複数の負荷に電力を供給することができる。また、複数の送電装置、複数の共鳴装置により、電磁界共鳴フィールドを拡大し、受電装置の受電することができる位置自由度を高めることができる。
《第9の実施形態》
 図25は第9の実施形態に係るワイヤレス給電装置の回路図である。この例では、送電デバイスnpと送電回路との間にフィルタ30を設けている。また、受電デバイスnsと受電回路との間にフィルタ40を設けている。その他は図1に示した構成と同じである。
 上記フィルタ30,40は共鳴周波数の電力を透過し、共鳴周波数以外の周波数の電力を除去(反射)する帯域通過フィルタである。このようなフィルタを設けることにより、不要雑音の発生が抑制され、そのことで周辺機器に対する電磁干渉問題を低減して電磁両立性(EMC)を得ることができる。
 電磁界共鳴周波数として、ISM (Industry-Science-Medical) バンドを用いることにより、周辺機器に対する電磁干渉問題を低減することができる。このISMバンドとして、例えば6.7MHz、または13.56MHz、または27.12MHz付近の周波数を利用する。
《第10の実施形態》
 図26は第10の実施形態のワイヤレス給電装置の回路図である。送電デバイスnpを備える送電装置Txpと、共鳴デバイスnsmを備える共鳴装置FRxpと、受電デバイスnsを備える受電装置Rxpとを含んでいる。
 受電装置Rxpは、共振キャパシタCrs1、整流ダイオードD41,D31、および平滑キャパシタCo1による受電回路と受電デバイスns1の組、共振キャパシタCrs2、整流ダイオードD42,D32、および平滑キャパシタCo2による受電回路と受電デバイスns2の組、共振キャパシタCrs3、整流ダイオードD43,D33、および平滑キャパシタCo3による受電回路と受電デバイスns3の組を備えている。そして、3つの受電回路の出力を並列接続して1つの負荷Roへ直流電力を供給するように構成されている。
 この例では、共鳴デバイスnsm1および共振キャパシタCrsm1による共鳴装置FRxpと共鳴デバイスnsm2および共振キャパシタCrsm2による共鳴装置FRxpとを備えている。
 共鳴デバイスnsm1,nsm2は外形が立方体形状のフラクタルデバイスである。例えば図10に示した立体ヒルベルト曲線状の導体パターンで構成される。送電デバイスnpおよび受電デバイスns1,ns2,ns3 は外形が正方形のヒルベルト曲線状の導体パターンである。送電デバイスnpおよび受電デバイスns1,ns2,ns3 の外形は、共鳴デバイスnsm1,nsm2の一面とほぼ同じ大きさである。また、ステップ数はそれぞれ同じである。
 このように、複数の受電デバイスがそれぞれ異なった位置に配置され、それぞれの受電デバイスが受電する電気エネルギーを集めて負荷に供給されるように構成してもよい。これにより、様々な3次元方向の受電デバイスへ給電が可能である。また、負荷に供給可能な電気エネルギーを容易に大きくできる。
《第11の実施形態》
 図27は第11の実施形態のワイヤレス給電装置の回路図である。このワイヤレス給電装置において、送電装置には、入力電源Viを電源として動作し、送電デバイスnpを通信用のコイル(近傍界アンテナ)として利用する通信回路50を備えている。また、受電装置には、整流平滑電圧を電源として動作し、受電デバイスnsを通信用のコイル(近傍界アンテナ)として利用する通信回路60を備えている。すなわち、送電デバイスnpおよび受電デバイスnsは電力伝送と信号通信の役割を兼ねる。これにより、送電装置の小型軽量化を達成できる。
 通信信号は電力伝送の周波数をキャリア周波数とし、それを変調することで重畳される。したがって、通信信号も電磁界共鳴フィールドを介して通信される。この通信により、送電装置から適切な(目的の)受電装置へ各種データやタイミング信号を伝送できる。または、受電装置から適切な(目的の)送電装置へ各種データやタイミング信号を伝送できる。例えば、送電装置側の各種状態または受電装置側の各種状態を相互にやりとりできる。あるいは、受電装置は送電装置のスイッチ素子のスイッチングに同期して同期整流することもできる。
 信号伝送は電力伝送とは異なり、電力伝送効率が悪くても損失増大には繋がらないので、上記通信信号は電力伝送用の周波数とは独立させてもよい。
 図27に示した例では、送電装置および受電装置に通信回路50,60を設けたが、共鳴装置FRxpに、整流平滑回路と共に通信回路を備えてもよい。
《第12の実施形態》
 第12の実施形態では、送電デバイス、受電デバイスおよび共鳴デバイスの線状導体パターンがそれぞれ異なる例を示す。
 図28は、送電装置、受電装置および共鳴装置の配置と、送電デバイス、受電デバイスおよび共鳴デバイスの形状の例を示す図である。図28において、送電装置Txpの送電デバイスnpはステップ数4のヒルベルト曲線、共鳴装置FRxpの共鳴デバイスnsmはステップ数3のヒルベルト曲線、受電装置Rxpの受電デバイスnsはステップ数2のヒルベルト曲線である。但し、送電デバイスnpと共鳴デバイスnsmの外形サイズはほぼ等しいが、受電デバイスnsのサイズは共鳴デバイスnsmの外形サイズの1/4である。したがって、受電デバイスnsのパターンは共鳴デバイスnsmのパターンの一部と一致する。
 この例の送電デバイスnpと共鳴デバイスnsmとの関係のように、結合する線状導体パターンは、ステップ(世代)数nが異なる関係のフラクタル形状デバイスであってもよい。部分が全体の相似形、というフラクタル形状の特徴により、ステップ数の小さい線状導体パターンの各線分による磁界は、ステップ数の大きい線状導体パターンの連続する複数線分による平均的な磁界に対応するので、ステップ(世代)数nが異なる関係のフラクタル形状デバイスであっても互いに結合する。
 また、この例の共鳴デバイスnsmと受電デバイスnsとの関係のように、フラクタルデバイスのサイズが異なっていても、一方の線状導体パターンの全体が他方の線状導体パターンの一部に一致することによって、高い結合度が得られる。
 このような構成により、デバイスの配置制約に対応することができる。
 以上に示した実施形態では、共通の送電装置からそれぞれ受電する複数の受電装置を備えた例を示したが、共通の受電装置に対して複数の送電装置から給電するようにしてもよい。
 また、複数の受電装置により受電された電気エネルギーを集めて1つまたは複数の負荷に直流電力を供給されるように構成してもよい。
 また、以上に示した幾つかの実施形態において、線状導体パターンが面に沿って広がるフラクタルデバイスは、平面状のデバイスとして表したが、上記面全体が湾曲または屈曲していてもよい。
Cds1,Cds2,Cds3,Cds4…寄生キャパシタ
Cm…相互キャパシタンス
Co1,Co2,Co3…平滑キャパシタ
Cr,Crs…共振キャパシタ
Crs1,Crs2,Crs3,Crs4…共振キャパシタ
Crsm1,Crsm2…共振キャパシタ
D41,D31…整流ダイオード
D42,D32…整流ダイオード
D43,D33…整流ダイオード
Dds1,Dds2…ダイオード
Ds1,Ds2,Ds3,Ds4…ダイオード
FRxp…共鳴装置
Lf…インダクタ
Lm,Lms…相互インダクタンス
Lp,Ls…インダクタ
Lr,Lrs…漏れインダクタンス
np…送電デバイス
ns,ns1,ns2,ns3…受電デバイス
nsm,nsm1,nsm2…共鳴デバイス
Q1,Q2,Q3,Q4…スイッチ素子
Ri,Ris…抵抗
Ro…負荷
Rxp…受電装置
Txp…送電装置
20…スイッチング制御回路
30,40…フィルタ
50,60…通信回路

Claims (23)

  1.  電気エネルギーを供給する直流電源と、この直流電源に電気的に接続される送電デバイスとを備えた送電装置と、
     電気エネルギーを消費する負荷と、この負荷に電気的に接続された受電デバイスとを備えた受電装置と、
     前記送電デバイスが有する誘導性インピーダンス、前記送電デバイスの寄生容量または外部キャパシタによる共振キャパシタの容量性インピーダンスとで構成される送電共振回路と、
     前記送電共振回路に電気的に接続され、オンオフにより前記送電共振回路に前記直流電源を断続的に与えるスイッチ素子と、このスイッチ素子を制御して前記送電共振回路に共振電流を発生させるスイッチング制御回路と、を含む送電スイッチング回路と、
     前記受電デバイスが有する誘導性インピーダンスと、前記受電デバイスの寄生容量または外部キャパシタによる共振キャパシタの容量性インピーダンスとで構成される受電共振回路と、
     前記受電共振回路に電気的に接続され、共振電流による電気エネルギーを前記負荷へ供給する受電負荷回路と、を備え、
     前記送電装置および前記受電装置は空間を隔てて配置され、
     前記送電デバイスは、前記送電スイッチング回路の動作により前記直流電源から電気エネルギーを取り出して共振電流を発生させるとともに、この共振電流によりスイッチング周波数fsで周期的に変化する電磁界を空間につくり、空間そのものがエネルギーをもって振動する電磁界共鳴フィールドを形成し、
     前記受電デバイスは、前記共鳴フィールドから電気エネルギーを得ることにより共振電流を発生させるとともに、この共振電流により新たな電磁界共鳴フィールドを形成し、
     前記送電デバイスまたは前記受電デバイスは、幾何学的な図形としてみた場合に、部分が全体の自己相似になっている線状導体パターンによるフラクタル形状デバイスであり、前記フラクタル形状デバイスの周辺における空間の電磁界エネルギーを高めたことを特徴とするワイヤレス給電装置。
  2.  前記共鳴フィールドは、前記送電デバイスまたは前記受電デバイスから、前記スイッチング周波数fsの逆数であるスイッチング周期Ts[秒]と光速(約30万[km/s])の積に対して1/5以下の範囲に形成される、請求項1に記載のワイヤレス給電装置。
  3.  前記送電デバイスおよび前記受電デバイスが存在する近傍界の空間に配置される少なくとも1つの共鳴デバイスを含む共鳴装置と、
     前記共鳴デバイスが有する誘導性インピーダンスおよび容量性インピーダンスまたは外部インピーダンスで構成される共鳴共振回路と、を備え、
     前記共鳴デバイスは、前記共鳴フィールドから電気エネルギーを得ることにより共振電流を発生させるとともに、この共振電流により新たな電磁界共鳴フィールドを形成し、
     前記共鳴デバイスは、幾何学的な図形としてみた場合に、部分が全体の自己相似になっている線状導体パターンによるフラクタル形状デバイスであり、前記フラクタル形状デバイスの周辺における空間の電磁界エネルギーを高めた、請求項1または2に記載のワイヤレス給電装置。
  4.  前記送電デバイスまたは前記受電デバイスの前記線状導体パターンは、ステップ数nが2以上であり、外形がほぼ正方形、三角形、ほぼ立方体のいずれか、または折れ線状である、請求項1または2に記載のワイヤレス給電装置。
  5.  前記共鳴デバイスの前記線状導体パターンは、ステップ数nが2以上であり、外形がほぼ正方形、三角形、ほぼ立方体のいずれか、または折れ線状である、請求項3に記載のワイヤレス給電装置。
  6.  前記送電デバイスの前記線状導体パターンと、前記受電デバイスの前記線状導体パターンとは、ステップ数nが異なるフラクタル形状デバイスである、請求項4に記載のワイヤレス給電装置。
  7.  前記共鳴デバイスの前記線状導体パターンと、前記送電デバイスまたは前記受電デバイスの前記線状導体パターンとは、ステップ数nが異なるフラクタル形状デバイスである、請求項5に記載のワイヤレス給電装置。
  8.  前記受電負荷回路は、整流回路を有し、直流の電気エネルギーを前記負荷に供給する、請求項1~7のいずれかに記載のワイヤレス給電装置。
  9.  前記スイッチング制御回路は、前記送電共振回路の、前記送電スイッチング回路が接続される入力から負荷側全体をみた等価的な入力インピーダンスの虚部Xが0となる共振周波数frに対して、スイッチング周波数fsが、fs=fr±30%の関係である、請求項1~8のいずれかに記載のワイヤレス給電装置。
  10.  前記送電共振回路と前記受電共振回路のそれぞれが独立に有する共振周波数は、±30%の範囲内で一致している、請求項1~9のいずれかに記載のワイヤレス給電装置。
  11.  前記送電共振回路と前記共鳴共振回路のそれぞれが独立に有する共振周波数は、±30%の範囲内で一致している、請求項3,5,7のいずれかに記載のワイヤレス給電装置。
  12.  前記スイッチ素子はFETであり、前記送電スイッチング回路は前記FETの寄生容量、および逆並列ダイオードを含む、請求項1~11のいずれかに記載のワイヤレス給電装置。
  13.  前記スイッチング制御回路は、前記送電共振回路の、前記送電スイッチング回路が接続される入力から負荷側全体をみた等価的な入力インピーダンスの虚部Xが0となる共振周波数frに対して、スイッチング周波数fsをfs≧frの関係にして、前記虚部XがX≧0の関係となるスイッチング周波数fsが設定された、請求項1~12のいずれかに記載のワイヤレス給電装置。
  14.  前記スイッチング制御回路は、前記スイッチ素子の両端電圧がゼロ電圧付近に低下した際に前記スイッチ素子をターンオンするように制御してゼロ電圧スイッチング動作をするように構成されている、請求項1~13のいずれかに記載のワイヤレス給電装置。
  15.  前記共鳴装置は、前記近傍界の空間に複数配置された、請求項3,5,7,11のいずれかに記載のワイヤレス給電装置。
  16.  複数の前記共鳴共振回路がそれぞれ独立に有する共振周波数は、±30%の範囲内で一致している、請求項15に記載のワイヤレス給電装置。
  17.  前記送電装置は複数配置され、それぞれの送電装置が有するスイッチング周波数は、±30%の範囲内で同一である、請求項1~16のいずれかに記載のワイヤレス給電装置。
  18.  前記受電装置は複数配置され、それぞれの受電装置が有する受電共振回路の共振周波数は、±30%の範囲内で同一である、請求項1~17のいずれかに記載のワイヤレス給電装置。
  19.  前記受電デバイスは複数配置され、それぞれの受電デバイスが受電する電気エネルギーを集めて負荷に供給されることを特徴とする請求項1~18のいずれかに記載のワイヤレス給電装置。
  20.  前記送電装置は複数配置され、それぞれの送電装置が有するスイッチング周波数はISM (Industry-Science-Medical) バンドである、請求項1~19のいずれかに記載のワイヤレス給電装置。
  21.  前記送電装置は、前記スイッチング周波数以外の周波数成分を除去するフィルタを備えた、請求項1~20のいずれかに記載のワイヤレス給電装置。
  22.  前記送電装置および前記受電装置は電波を介して通信する通信回路を備えた、請求項1~21のいずれかに記載のワイヤレス給電装置。
  23.  前記共鳴装置は前記送電装置または前記受電装置との間で電波を介して通信する通信回路を備えた、請求項3,5,7,11,15,16のいずれかに記載のワイヤレス給電装置。
PCT/JP2014/057974 2013-03-27 2014-03-24 ワイヤレス給電装置 WO2014157029A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015508452A JP6164287B2 (ja) 2013-03-27 2014-03-24 ワイヤレス給電装置
GB1515626.8A GB2526972B (en) 2013-03-27 2014-03-24 Wireless power transmission apparatus
US14/855,771 US10224750B2 (en) 2013-03-27 2015-09-16 Wireless power transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013067064 2013-03-27
JP2013-067064 2013-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/855,771 Continuation US10224750B2 (en) 2013-03-27 2015-09-16 Wireless power transmission apparatus

Publications (1)

Publication Number Publication Date
WO2014157029A1 true WO2014157029A1 (ja) 2014-10-02

Family

ID=51624004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057974 WO2014157029A1 (ja) 2013-03-27 2014-03-24 ワイヤレス給電装置

Country Status (4)

Country Link
US (1) US10224750B2 (ja)
JP (1) JP6164287B2 (ja)
GB (1) GB2526972B (ja)
WO (1) WO2014157029A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022868A (ja) * 2015-07-10 2017-01-26 船井電機株式会社 給電装置および給電方法
JP2017112821A (ja) * 2015-12-14 2017-06-22 パナソニックIpマネジメント株式会社 電力伝送システム及びコントローラ
JP2019186427A (ja) * 2018-04-12 2019-10-24 日本無線株式会社 非接触電力伝送コイル、非接触電力伝送装置及び非接触電力伝送システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242311B2 (ja) * 2013-10-29 2017-12-06 パナソニック株式会社 無線送電装置及び無線電力伝送システム
CN106560981B (zh) * 2015-10-02 2021-04-27 松下知识产权经营株式会社 无线电力传输***
US10266060B2 (en) * 2016-02-19 2019-04-23 Ford Global Technologies, Llc SS-L wireless power transfer compensation circuit
US11206060B2 (en) * 2017-09-21 2021-12-21 Enphase Energy, Inc. Apparatus for communicating across an isolation barrier
TWI837850B (zh) * 2022-09-29 2024-04-01 國防部軍備局生產製造中心第二0二廠 非接觸式直流電源供給裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160499A (ja) * 2010-01-29 2011-08-18 Q Factor Inc 給電装置
JP2012254006A (ja) * 2011-05-31 2012-12-20 General Electric Co <Ge> 可搬型画像検出器における無接点型電力伝達のシステム及び方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019695B2 (en) * 1997-11-07 2006-03-28 Nathan Cohen Fractal antenna ground counterpoise, ground planes, and loading elements and microstrip patch antennas with fractal structure
US6476766B1 (en) * 1997-11-07 2002-11-05 Nathan Cohen Fractal antenna ground counterpoise, ground planes, and loading elements and microstrip patch antennas with fractal structure
US6084285A (en) * 1997-10-20 2000-07-04 The Board Of Trustees Of The Leland Stanford Junior University Lateral flux capacitor having fractal-shaped perimeters
US7782633B2 (en) * 2004-08-27 2010-08-24 Hokushin Denki Co., Ltd. Non-contact power transmission device
US7423265B2 (en) * 2004-10-22 2008-09-09 The Board Of Trustees Of The Leland Stanford Junior University Near-field aperture having a fractal iterate shape
JP4930093B2 (ja) 2007-02-21 2012-05-09 セイコーエプソン株式会社 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
US8405552B2 (en) 2007-04-16 2013-03-26 Samsung Thales Co., Ltd. Multi-resonant broadband antenna
US8278784B2 (en) 2008-07-28 2012-10-02 Qualcomm Incorporated Wireless power transmission for electronic devices
KR20110062841A (ko) * 2009-12-04 2011-06-10 한국전자통신연구원 무선 전력 전송 장치
EP2670023A4 (en) * 2011-01-26 2016-11-02 Murata Manufacturing Co ENERGY TRANSMISSION SYSTEM
DE102011007058A1 (de) * 2011-04-08 2012-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrische Leiterbahn
AU2012289855A1 (en) * 2011-08-04 2014-03-13 Witricity Corporation Tunable wireless power architectures
US20140333150A1 (en) * 2012-01-26 2014-11-13 Pioneer Corporation Power transmitting apparatus and power transmitting method
US9225388B2 (en) * 2012-07-03 2015-12-29 Intel Corporation Transmitting magnetic field through metal chassis using fractal surfaces
CN102749598B (zh) * 2012-07-27 2015-04-08 中国计量学院 基于分形交替阻抗微带线的磁共振射频线圈

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160499A (ja) * 2010-01-29 2011-08-18 Q Factor Inc 給電装置
JP2012254006A (ja) * 2011-05-31 2012-12-20 General Electric Co <Ge> 可搬型画像検出器における無接点型電力伝達のシステム及び方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022868A (ja) * 2015-07-10 2017-01-26 船井電機株式会社 給電装置および給電方法
JP2017112821A (ja) * 2015-12-14 2017-06-22 パナソニックIpマネジメント株式会社 電力伝送システム及びコントローラ
JP2019186427A (ja) * 2018-04-12 2019-10-24 日本無線株式会社 非接触電力伝送コイル、非接触電力伝送装置及び非接触電力伝送システム
JP7266968B2 (ja) 2018-04-12 2023-05-01 日本無線株式会社 非接触電力伝送装置及び非接触電力伝送システム

Also Published As

Publication number Publication date
JP6164287B2 (ja) 2017-07-19
US20160006270A1 (en) 2016-01-07
JPWO2014157029A1 (ja) 2017-02-16
US10224750B2 (en) 2019-03-05
GB2526972B (en) 2020-04-29
GB201515626D0 (en) 2015-10-21
GB2526972A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6115626B2 (ja) ワイヤレス給電装置
JP6601538B2 (ja) ワイヤレス給電装置
JP6164288B2 (ja) ワイヤレス給電装置
JP6164287B2 (ja) ワイヤレス給電装置
JP5787027B2 (ja) 電力伝送システム
JP6288519B2 (ja) 無線電力伝送システム
KR101349557B1 (ko) 무선전력 수신장치 및 무선전력 전달 방법
KR101382920B1 (ko) 무선전력 송신장치
KR20140076993A (ko) 무선 전력 장치
KR101736160B1 (ko) 하나의 동일평면상에 공진코일과 공진루프를 평면화시킨 스마트 2d형 자기공진 무선전력송수신장치
KR101396497B1 (ko) 중계장치를 이용한 무선 전력 전송장치
KR101786086B1 (ko) 누설 자속을 최소화한 무선 전력 송신기 및 수신기
Ali et al. A Critical analysis of a wireless power transmission (WPT) with an improvement method for a non-radiative WPT
KR20120116799A (ko) 무선 전력 송수신용 코일 및 상기 코일을 사용한 송신기 및 수신기
WO2014014388A1 (ru) Беспроводная зарядная система для маломощных потребителей электрической энергии

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508452

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1515626

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140324

WWE Wipo information: entry into national phase

Ref document number: 1515626.8

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772634

Country of ref document: EP

Kind code of ref document: A1