WO2014156889A1 - Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film - Google Patents

Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film Download PDF

Info

Publication number
WO2014156889A1
WO2014156889A1 PCT/JP2014/057551 JP2014057551W WO2014156889A1 WO 2014156889 A1 WO2014156889 A1 WO 2014156889A1 JP 2014057551 W JP2014057551 W JP 2014057551W WO 2014156889 A1 WO2014156889 A1 WO 2014156889A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
light
layer
light transmissive
transmitting
Prior art date
Application number
PCT/JP2014/057551
Other languages
French (fr)
Japanese (ja)
Inventor
勝紀 武藤
潤也 紅林
中谷 康弘
林 秀樹
Original Assignee
積水ナノコートテクノロジー株式会社
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ナノコートテクノロジー株式会社, 積水化学工業株式会社 filed Critical 積水ナノコートテクノロジー株式会社
Priority to CN201480002169.9A priority Critical patent/CN104718582B/en
Priority to KR1020157004289A priority patent/KR101554847B1/en
Publication of WO2014156889A1 publication Critical patent/WO2014156889A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a laminated film, a film roll thereof, a light-transmitting conductive film obtainable therefrom, and a touch panel using the same.
  • Light transmissive conductive film obtained by laminating a light transmissive conductive layer made of indium tin oxide (ITO) or the like on a light transmissive support layer made of PET or the like as a light transmissive conductive film mounted on a touch panel. Many films are used. In this light-transmitting conductive film, the light-transmitting conductive layer is usually disposed so as to be the outermost layer. This light-transmitting conductive film is once wound up as a film roll after being manufactured and then transported from the manufacturing site to the next destination, where it is rewound at the destination to obtain a film state for further processing. Usually made or used.
  • a so-called protective film is stuck on the surface of the light-transmitting conductive film opposite to the light-transmitting conductive layer, and a laminated film (Patent Document 1).
  • a laminated film wound up as a film roll, the surfaces of the light-transmitting conductive layer and the protective film are adjacent to each other.
  • the light-transmitting conductive film is sometimes used after forming a light-transmitting conductive layer as a grid-like electrode (so-called patterning).
  • the patterning of the light-transmitting conductive layer is a so-called etching process in which a region that is not desired to be removed is protected by a protective film called an etching resist and then chemical treatment is performed, and only the unprotected region is removed from the light-transmitting conductive layer. Is done.
  • This etching process is performed after the film roll formed by winding the above-described laminated film is rewound into a film state. Specifically, the treatment with an etching resist and the treatment with an etching solution are sequentially performed in a film state.
  • This laminated film is finally used for applications such as mounting on a touch panel as a light-transmitting conductive film after peeling off the protective film.
  • the etching resist film is on the protective film side.
  • the present inventors have found that there is a problem of adhering to the surface. If such an etching resist film adheres to the protective film side, problems such as difficulty in finding appearance defects and the like occur in subsequent processes, which is not preferable.
  • An object of the present invention is to provide a laminated film in which an etching resist film is difficult to adhere to the surface on the protective film side after the etching resist is removed.
  • the present invention is as follows.
  • Item 1 (A) a light transmissive conductive film; and (B) a protective film
  • the light-transmitting conductive film (A) is (A-1) a light transmissive support layer; and (A-2) one or more light transmissive conductive layers, and at least one outermost layer is one light transmissive conductive layer (A-2).
  • a light transmissive conductive film comprising: At least one of the light transmissive conductive layers (A-2) as the outermost layer of the light transmissive conductive film (A) is disposed on one surface of the laminated film, The protective film (B) is disposed on the other surface of the laminated film, and the contact angle with respect to water of the surface on the protective film (B) side is 70 ° or more, and the laminated film .
  • Item 2 The laminated film according to Item 1, wherein the Haze value is 5% or less.
  • Item 3. The laminated film according to Item 1 or 2, wherein the light transmissive conductive layer (A-2) contains indium tin oxide.
  • Item 4. A film roll obtained by winding up the laminated film according to any one of Items 1 to 3.
  • Item 4. A light-transmitting conductive film obtainable by a method comprising a step of obtaining a light-transmitting conductive film (A) by peeling the protective film (B) from the laminated film according to any one of Items 1 to 3. .
  • Item 6. A touch panel comprising the light transmissive conductive film according to Item 5.
  • the present invention it is possible to reduce the amount of the etching resist film adhering to the surface on the protective film side after performing the etching treatment.
  • the laminate of the present invention comprising a light-transmitting conductive film (A) having a light-transmitting conductive layer (A-2) disposed on one side of the light-transmitting support layer (A-1), and a protective film (B). It is sectional drawing which shows a film.
  • the laminate of the present invention comprising a light-transmitting conductive film (A) having a light-transmitting conductive layer (A-2) disposed on both sides of a light-transmitting support layer (A-1), and a protective film (B) It is sectional drawing which shows a film.
  • FIG. 3 is a cross-sectional view showing a laminated film of the present invention comprising a protective film (B) having an adhesive layer (B-2) disposed on one side of the protective layer (B-1).
  • a light transmissive conductive layer (A-2), a light transmissive underlayer (A-3), and a hard coat layer (A-4) are further provided on one surface of the light transmissive support layer (A-1).
  • A-2) having a light transmissive conductive layer (A-2) disposed on one side of the light transmissive support layer (A-1); and an oligomer on one side of the protective layer (B-1).
  • the laminated film of the present invention is a film having a configuration in which two or more films are laminated, (A) a light transmissive conductive film; (B) Contains a protective film.
  • the light transmissive conductive film (A) is: (A-1) a light transmissive support layer; and (A-2) a light transmissive conductive layer; Each containing one or more At least one outermost layer is configured as one light-transmissive conductive layer (A-2). That is, the light transmissive conductive film (A) may contain two or more light transmissive conductive layers (A-2).
  • the light transmissive conductive film (A) One light-transmitting conductive layer (A-2) may be disposed so as to be the outermost layer on one surface of the light-transmitting support layer (A-1), and another light-transmitting conductive layer ( A-2) may be disposed on the other surface of the light-transmissive support layer (A-1). In the latter case, the further light transmissive conductive layer (A-2) may be disposed on the other surface of the light transmissive support layer (A-1) so as to be the outermost layer.
  • the laminated film of the present invention at least one of the light transmissive conductive layers (A-2) disposed in the outermost layer of the light transmissive conductive film (A) is formed on one surface of the laminated film (“light transmissive”).
  • the protective film (B) is disposed on the conductive conductive layer (A-2) side) and the protective film (B) is the other surface of the laminated film (the “protective film (B) side surface”) Is located).
  • the light-transmitting conductive layer (A-2) and the protective film (B) may be disposed on the surface, respectively.
  • the light-transmitting conductive film (A) and the protective film (B) Other structures such as another film may be interposed therebetween.
  • any light transmissive The conductive conductive layer (A-2) may be disposed on the surface of the laminated film.
  • the surface on the protective film (B) side of the laminated film of the present invention has a contact angle with water of 70 ° or more.
  • FIG. 1 shows an embodiment of the laminated film of the present invention.
  • the light transmissive conductive film (A-2) is directly (that is, adjacent) to one surface of the light transmissive support layer (A-1).
  • the arrangement is arranged.
  • the light transmissive conductive layer (A-2) is the outermost layer of the surface of the light transmissive support layer (A-1).
  • the light transmissive conductive layer (A-2) is disposed on one surface of the laminated film, and the protective film (B) is disposed on the other surface of the laminated film.
  • FIG. 2 shows another aspect of the laminated film of the present invention.
  • the light transmissive conductive film has a configuration in which the light transmissive conductive layer (A-2) is directly disposed on both sides of the light transmissive support layer (A-1).
  • the two light transmissive conductive layers (A-2) are the outermost layers on both surfaces of the light transmissive support layer (A-1).
  • one arbitrary light-transmissive conductive layer (A-2) is disposed on one surface of the laminated film, and the protective film (B) is disposed on the other surface of the laminated film.
  • Light transmissive conductive film A
  • “light-transmitting” means having a property of transmitting light (translucent).
  • “Light transmissivity” includes transparency.
  • “Light transmissivity” means, for example, the property that the total light transmittance is 80% or more, preferably 85% or more, more preferably 88% or more. In the present invention, the total light transmittance is measured based on JIS-K-7105 using a haze meter (trade name: NDH-2000 manufactured by Nippon Denshoku Co., Ltd. or equivalent).
  • the thickness of each layer is determined using a commercially available reflection spectral film thickness meter (Otsuka Electronics, FE-3000 (product name), or equivalent). Alternatively, it may be obtained by observation using a commercially available transmission electron microscope. Specifically, a film to be measured is thinly cut in a direction perpendicular to the film surface using a microtome or a focused ion beam, and the cross section is observed.
  • a reflection spectral film thickness meter Otsuka Electronics, FE-3000 (product name), or equivalent.
  • the light transmissive support layer (A ⁇ ) when referring to the relative positional relationship between two layers among a plurality of layers arranged on one surface of the light transmissive support layer (A-1), the light transmissive support layer (A ⁇ ) is referred to.
  • the light transmissive support layer (A ⁇ ) On the basis of 1), one layer having a large distance from the light transmissive support layer (A-1) may be referred to as an “upper” layer or the like.
  • the light-transmitting support layer refers to a light-transmitting conductive film containing a light-transmitting conductive layer that plays a role of supporting a layer including the light-transmitting conductive layer.
  • the light transmissive support layer (A-1) is not particularly limited.
  • a conductive film for a touch panel that is normally used as a light transmissive support layer can be used.
  • the material for the light transmissive support layer (A-1) is not particularly limited, and examples thereof include various organic polymers.
  • the organic polymer is not particularly limited.
  • examples thereof include resins, polyamide resins, polyvinyl chloride resins, polyacetal resins, polyvinylidene chloride resins, and polyphenylene sulfide resins.
  • polyester-type resin For example, a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN), etc. are mentioned.
  • the material of the light transmissive support layer (A-1) is preferably a polyester resin, and particularly preferably PET.
  • the light transmissive support layer (A-1) may be composed of any one of them, or may be composed of a plurality of types. Further, a plurality of light-transmitting support layers may be bonded with an adhesive or the like. When a plurality of light-transmitting support layers are used, a plurality of the same types may be used, or a plurality of types may be used.
  • the thickness of the light transmissive support layer (A-1) is not particularly limited, and examples thereof include a range of 2 to 300 ⁇ m.
  • Light transmissive conductive layer (A-2) In the laminated film of the present invention, at least one light transmissive conductive layer (A-2) is directly or via one or more other layers on at least one surface of the light transmissive support layer (A-1). Are arranged to be the outermost layer.
  • the light-transmitting conductive layer (A-2) may be disposed at least one layer on each side of the light-transmitting support layer (A-1).
  • the light-transmitting conductive layer means a layer containing a conductive substance, conducting electricity and transmitting visible light.
  • the light-transmitting conductive layer (A-2) is not particularly limited, and for example, a layer normally used as a light-transmitting conductive layer in a conductive film for a touch panel can be used.
  • the material of the light transmissive conductive layer (A-2) is not particularly limited, and examples thereof include indium oxide, zinc oxide, tin oxide, and titanium oxide.
  • the light transmissive conductive layer (A-2) is preferably a light transmissive conductive layer containing indium oxide doped with a dopant in terms of achieving both transparency and conductivity.
  • the light transmissive conductive layer (A-2) may be a light transmissive conductive layer made of indium oxide doped with a dopant. Although it does not specifically limit as a dopant, For example, a tin oxide, a zinc oxide, those mixtures, etc. are mentioned.
  • indium oxide doped with tin oxide is used as the material of the light transmissive conductive layer (A-2), indium (III) oxide (In 2 O 3 ) is doped with tin (IV) oxide (SnO 2 ).
  • Tin-doped indium oxide; ITO is preferred.
  • the addition amount of SnO 2 is not particularly limited, and examples thereof include 1 to 15% by weight, preferably 2 to 10% by weight, and more preferably 3 to 8% by weight.
  • a material in which another dopant is added to indium tin oxide within a range where the total amount of dopant does not exceed the numerical range shown on the left may be used as a material for the light transmissive conductive layer (A-2). Although it does not specifically limit as another dopant in the left, For example, selenium etc. are mentioned.
  • the light transmissive conductive layer (A-2) may be composed of any one of the various materials described above, or may be composed of a plurality of types.
  • the light transmissive conductive layer (A-2) is not particularly limited, but may be a crystalline or amorphous body, or a mixture thereof.
  • the thickness of the light transmissive conductive layer (A-2) is not particularly limited, but is usually 5 to 50 nm.
  • the thickness of the light transmissive conductive layer (A-2) is preferably 10 to 40 nm, more preferably 12 to 35 nm, and still more preferably 15 to 30 nm.
  • the method for disposing the light transmissive conductive layer (A-2) may be either wet or dry, and is not particularly limited.
  • Specific examples of the method for disposing the light transmissive conductive layer (A-2) include, for example, a sputtering method, a vacuum deposition method, an ion plating method, a CVD method, and a pulse laser deposition method.
  • a method including a step of baking a conductive substance is preferable.
  • a baking method For example, the drum heating at the time of performing sputtering etc., a hot-air type baking furnace, a far-infrared baking furnace, etc. can be mentioned as an example.
  • the firing temperature is not particularly limited, but is usually 30 to 250 ° C., preferably 50 to 200 ° C., more preferably 80 to 180 ° C., and further preferably 100 to 160 ° C.
  • the firing time is preferably 3 minutes to 180 minutes, more preferably 5 minutes to 120 minutes, and even more preferably 10 minutes to 90 minutes.
  • the atmosphere for performing firing include air, an inert gas such as nitrogen or argon, oxygen, hydrogenated nitrogen, or a combination of two or more of these under vacuum.
  • the light transmissive conductive film (A) further contains a light transmissive underlayer (A-3), and at least one light transmissive conductive layer (A-2) is at least a light transmissive underlayer (A). -3) may be disposed on the surface of the light transmissive support layer (A-1).
  • the light transmissive conductive layer (A-2) may be disposed adjacent to the light transmissive underlayer (A-3).
  • FIG. 3 shows one embodiment of the laminated film of the present invention.
  • the light transmissive underlayer (A-3) is disposed directly on one surface of the light transmissive support layer (A-1).
  • the light transmissive underlayer (A-3) is disposed via the transmissive underlayer (A-3).
  • Other configurations are the same as those in FIG. 5 described later.
  • the material of the light transmissive underlayer (A-3) is not particularly limited, but may be, for example, a dielectric material.
  • the material for the light-transmitting underlayer (A-3) is not particularly limited. Examples include oxane, polysilazane, and acrylic silica hybrid.
  • the light transmissive underlayer (A-3) may be composed of any one of them, or may be composed of a plurality of types.
  • As the light transmissive underlayer (A-3), a light transmissive underlayer containing SiO x (x 1.0 to 2.0) is preferable.
  • One layer of the light-transmitting underlayer (A-3) may be disposed.
  • two or more layers may be arranged adjacent to each other or separated from each other via other layers.
  • Two or more light-transmitting underlayers (A-3) are preferably arranged adjacent to each other. Examples of such embodiments include, for example, stacking composed of adjacent SiO 2 layers and SiO x layers, and stacking composed of adjacent SiO 2 layers and SiO x N y layers.
  • the order of the SiO 2 layer and the SiO x layer is arbitrary, but the light transmissive underlayer made of SiO 2 on the light transmissive support layer (A-1) side (B-2)
  • the thickness per layer of the light-transmitting underlayer (A-3) is not particularly limited, and examples thereof include 15 to 25 nm. When two or more layers are disposed adjacent to each other, the total thickness of all the light-transmitting underlayers (A-3) adjacent to each other may be within the above range.
  • the refractive index of the light-transmitting underlayer (A-3) is not particularly limited as long as the light-transmitting conductive film (A) can be used as a touch panel application. For example, it is preferably 1.4 to 1.5.
  • a method of disposing the light-transmitting underlayer (A-3) as a dry method, for example, a method of laminating on an adjacent layer by a sputtering method, an ion plating method, a vacuum deposition method, or a pulse laser deposition method, etc. Can be mentioned.
  • the light transmissive conductive film (A) has a hard coat layer (A-4) in place of the light transmissive underlayer (A-3) or in addition to the light transmissive underlayer (A-3). And at least one light transmissive conductive layer (A-2) may be disposed on the surface of the light transmissive support layer (A-1) via at least the hard coat layer (A-4). .
  • the light transmissive conductive film (A) includes both the light transmissive undercoat layer (A-3) and the hard coat layer (A-4) on the same surface of the light transmissive support layer (A-1)
  • the light transmissive underlayer (A-3) is disposed on the surface of the light transmissive support layer (A-1) via at least the hard coat layer (A-4).
  • the light-transmitting underlayer (A-3) is preferably disposed adjacent to the hard coat layer (A-4).
  • the hard coat layer (A-4) is preferably disposed adjacent to at least one surface of the light transmissive support layer (A-1).
  • One layer of the hard coat layer (A-4) may be disposed.
  • two or more layers may be arranged adjacent to each other or separated from each other via other layers.
  • the hard coat layer (A-4) may be disposed on both surfaces of the light transmissive support layer (A-1).
  • FIG. 6 shows an embodiment of the laminated film of the present invention.
  • one hard coat layer (A-4) is disposed directly on one surface of the light transmissive support layer (A-1).
  • a light-transmitting underlayer (A-3) is further disposed through the coat layer (A-4), and the light-transmitting conductive layer (A-2) is disposed through the light-transmitting underlayer (A-3). It is further arranged.
  • the other hard coat layer (A-4) is directly disposed on the other surface of the light-transmitting support layer (A-1).
  • Other configurations are the same as those in FIG. 5 described later.
  • the hard coat layer refers to a layer that plays a role in preventing scratches on the plastic surface.
  • the hard coat layer (A-4) is not particularly limited, and for example, a layer normally used as a hard coat layer in a light-transmitting conductive film for a touch panel can be used.
  • the material of the hard coat layer (A-4) is not particularly limited, and examples thereof include acrylic resins, silicone resins, urethane resins, melamine resins, and alkyd resins. Examples of the material for the hard coat layer (A-4) further include those obtained by dispersing colloidal particles such as silica, zirconia, titania and alumina in the resin.
  • the hard coat layer (A-4) may be composed of any one of them, or may be composed of a plurality of types.
  • the hard coat layer (A-4) is preferably an acrylic resin in which zirconia particles are dispersed.
  • the thickness per layer of the hard coat layer (A-4) is not particularly limited, and examples thereof include 0.03 to 10 ⁇ m, 0.5 to 5 ⁇ m, and 1 to 3 ⁇ m.
  • the total thickness of all the hard coat layers (A-4) adjacent to each other may be within the above range. In the example list shown on the left, the following are more preferable than the above.
  • the refractive index of the hard coat layer (A-4) is not particularly limited as long as the light-transmitting conductive film (A) can be used for touch panel applications, and examples thereof include 1.4 to 1.7.
  • the hard coat layer (A-4) may have a higher refractive index than the light-transmitting underlayer (A-3).
  • the light-transmitting underlayer (A-3) is preferably disposed adjacent to one surface of the hard coat layer (A-4).
  • the method of disposing the hard coat layer (A-4) is not particularly limited, and examples thereof include a method of applying to a film and curing with heat, a method of curing with active energy rays such as ultraviolet rays and electron beams, and the like. It is done. From the viewpoint of productivity, a method of curing with ultraviolet rays is preferable.
  • the light-transmitting conductive film of the present invention is formed on at least one surface of the light-transmitting support layer (A-1), in addition to the light-transmitting conductive layer (A-2), the light-transmitting underlayer (A- 3) At least one layer selected from the group consisting of the hard coat layer (A-4) and at least one other layer different from them (A-5) may be further disposed.
  • the other layer (A-5) is not particularly limited, and examples thereof include an adhesive layer.
  • the adhesive layer is a layer that is disposed adjacent to each other between the two layers and is disposed to adhere the two layers to each other. Although it does not specifically limit as a contact bonding layer, For example, what is normally used as a contact bonding layer in the transparent conductive film for touchscreens can be used.
  • the adhesive layer may be composed of any one of these, or may be composed of a plurality of types.
  • the protective film (B) refers to a film that is used by being attached to a light-transmitting conductive film for the purpose of protecting the light-transmitting conductive film mainly when wound as a film roll. .
  • the surfaces of the light transmissive conductive layer and the protective film are adjacent to each other, thereby protecting the light transmissive conductive layer.
  • the protective film (B) is not particularly limited, and can be selected in a wide range from those usually used for this purpose.
  • a protective film (B) is not specifically limited, For example, polyester, a polypropylene, polyethylene, etc. are mentioned. Among these, polyester is preferable in terms of heat resistance.
  • the protective film (B) has a surface facing the light-transmitting conductive layer (A-2) in a state of being wound as a film roll, that is, in other words, the surface on the protective film (B) side of the laminated film is a surface
  • the contact angle with respect to water is 70 ° or more.
  • the contact angle with water is measured as follows. Measurement is performed using an automatic contact angle meter (DM500) manufactured by Kyowa Interface Science Co., Ltd. or its equivalent. Specifically, the sample is cut out, 1 ⁇ L of distilled water is slowly dropped from a height of 5 mm with a syringe, the syringe is quickly separated from the sample, and is further left for 3 seconds. After leaving, the contact angle (angle formed by the tangent line between the hard coat layer surface and the droplet) is observed and measured with a CCD camera. The same operation is repeated 10 times, and the average value is taken as the contact angle with water in the present invention.
  • DM500 automatic contact angle meter
  • the laminated film of the present invention has no problem as long as the haze value is usually at least 5% or less. Therefore, the Haze value of the protective film (B) can be appropriately set within a range where the Haze value of the entire film is 5% or less. In the left column, the Haze value of the entire laminated film is preferably 3% or less, and more preferably 2.5% or less.
  • the thermal shrinkage rates of the protective film (B) and the light-transmitting conductive film (A) can be suppressed.
  • the thickness of the protective film (B) is not particularly limited, but is usually 25 to 125 ⁇ m.
  • the thickness of the protective film (B) is not particularly limited, but it is preferable if the total thickness is 170 ⁇ m or more in a state where the transparent conductive film and the protective film are bonded together. More preferably, the total thickness is 170 to 270 ⁇ m.
  • the thermal shrinkage rates of the protective film (B) and the light-transmitting conductive film (A) can be suppressed.
  • positioning a protective film (B) is not specifically limited, Usually, it can arrange
  • the protective film (B) may have a laminated structure.
  • the protective film (B) is mainly composed of a layer having the configuration and characteristics described in 1.2 above (for convenience, the “protective layer (B-1
  • an adhesive layer (B-2) may be contained.
  • the adhesive layer (B-2) refers to a layer used for the purpose of disposing the protective film (B) on the surface of the light transmissive conductive film (A).
  • the adhesive layer (B-2) is not particularly limited, and can be selected from a wide range of materials usually used for this purpose.
  • an acrylic pressure-sensitive adhesive or a silicone-based pressure-sensitive adhesive is used for this purpose from the viewpoint of processability. Therefore, for example, the pressure-sensitive adhesive layer (B-2) can be formed by appropriately selecting them.
  • the protective film (B) is disposed on the surface of the light-transmitting conductive film via the adhesive layer (B-2). Therefore, the surface of the protective film (B) opposite to the adhesive layer (B-2) has a contact angle with water of 70 ° or more.
  • FIG. 5 shows one embodiment of the conductive film of the present invention.
  • the protective film (B) has the same configuration as that shown in FIG. 1 except that the protective film (B) is composed of a protective layer (B-1) and an adhesive layer (B-2).
  • Oligomer block layer (B-3) In the protective film (B), the layer having the configuration and characteristics described in 1.2 above is used as a main layer (protective layer (B-1)), in addition to the adhesive layer (B-2), or Instead of the layer (B-2), an oligomer block layer (B-3) may be contained.
  • the oligomer block layer (B-3) is used for the purpose of preventing the oligomer from being deposited on the film surface after heat treatment (for example, heat treatment at 150 ° C. for 1 hour) and causing the appearance of the film to become cloudy. It refers to the layer.
  • the material for the oligomer block layer (B-3) can be selected from a wide range of materials usually used for this purpose. More specifically, it can be appropriately selected from those capable of forming a transparent film, and may be an inorganic material, an organic material, or a composite material thereof.
  • the thickness of the oligomer block layer (B-3) is not particularly limited, but is preferably 0.01 to 2 ⁇ m.
  • the protective film (B) is disposed so that the oligomer block layer (B-3) is located on the outermost surface. Therefore, the surface of the oligomer block layer (B-3) needs to have a contact angle with water of 70 ° or more.
  • FIG. 6 shows one embodiment of the conductive film of the present invention.
  • the protective film (B) has the same configuration as that shown in FIG. 1 except that the protective film (B-1) is composed of a protective layer (B-1) and an oligomer block layer (B-3). .
  • the light transmissive conductive film (A) obtained by peeling the protective film (B) from the laminated film of the present invention can be used for the production of touch panels and the like. . Details of the touch panel are as described in 3.
  • the film roll of the present invention is a film roll formed by winding up the laminated film of the present invention.
  • the film roll of the present invention is usually formed by winding the laminated film of the present invention having a width of 0.2 to 2 m and a length of 10 to 1000 m.
  • the film roll of the present invention is not particularly limited, but can be obtained, for example, as follows. On the light-transmitting support layer (A-1), a layer serving as a base of the light-transmitting conductive layer (A-2) and other layers are arranged as necessary, and on the opposite surface. A protective film (B) is stuck and a film roll is created by winding up this laminated film. At this time, the laminated film may be surface-treated.
  • the film roll of the present invention can be obtained by charging this film roll into the sputtering apparatus as it is and forming the light-transmitting conductive layer (A-1) while winding it into a roll.
  • the protective film (B) is further peeled off from the sheet-like laminated film subjected to various processing as required, thereby translucent conductive.
  • a film (A) is obtained and can be used as a transparent electrode for a touch panel.
  • the touch panel of the present invention contains a light transmissive conductive film (A) obtained by peeling the protective film (B) from the laminated film of the present invention, and further contains other members as necessary. It contains.
  • the touch panel of the present invention is not particularly limited, but may be a capacitive touch panel, for example.
  • Specific examples of the configuration of the capacitive touch panel according to the present invention include the following configurations.
  • the protective layer (1) side is used so that the operation screen side faces, and the glass (5) side faces the side opposite to the operation screen.
  • (1) Protective layer (2) Light transmissive conductive film of the present invention (Y-axis direction) (3) Insulating layer (4) Light transmissive conductive film of the present invention (X-axis direction) (5) Glass
  • the capacitive touch panel of the present invention is not particularly limited, for example, it can be produced by combining the above (1) to (5) and other members as required according to a usual method. it can.
  • multilayer film of this invention may contain the process included in the manufacturing method of a transparent electroconductive film (A).
  • the method for producing the light transmissive conductive film (A) includes the step of forming a light transmissive underlayer on at least one surface of the light transmissive support layer (A-1) in addition to the light transmissive conductive layer (A-2). (A-3), a hard coat layer (A-4), and a step of disposing at least one kind of layer selected from the group consisting of at least one kind of other layer (A-5) different from them, respectively. You may go out.
  • the method for producing a laminated film of the present invention may include a step included in the method for producing a protective film (B).
  • the adhesive layer (B-2) is disposed on one surface of the protective layer (B-1), and / or the oligomer block layer (B-3) is disposed on the other surface.
  • Each of the steps may be included.
  • the step of arranging each layer is as described for each layer.
  • the light transmissive support layer is formed on at least one surface of the light transmissive support layer (A-1).
  • the order of arrangement is not particularly limited.
  • another layer may be disposed on one surface of a layer that is not the light-transmitting support layer (A-1) (for example, the light-transmitting conductive layer (A-2)).
  • one composite layer is obtained by arranging two or more layers adjacent to each other on the one hand, or at the same time, two or more layers are similarly disposed adjacent to each other on the other side.
  • one type of composite layer may be obtained, and these two types of composite layers may be further arranged adjacent to each other.
  • multilayer film of this invention is replaced with the above, or in addition to the above, on one surface of a transparent electroconductive film (A), directly or through another film, a protective film ( A step of arranging B) may be included.
  • Example 1.1 Preparation of Hard Coat Material 1.1.1 Hard Coat 1 (H1) A liquid hard coating material (solid content concentration) is added to a photopolymerizer-containing acrylic oligomer by adding a mixed solvent obtained by mixing toluene and methyl isobutyl ketone (MIBK) at a ratio of 5: 5 (weight ratio). : 40% by weight). 1.1.2 Protective film 1 part by weight of an isocyanate-based crosslinking agent is blended with 100 parts by weight of solid content of adhesive SK Dyne 1473H (solid content 30%) manufactured by Soken Chemical Co. A pressure-sensitive adhesive solution adjusted to 10% was prepared.
  • MIBK methyl isobutyl ketone
  • a substrate provided with an oligomer block layer on one side was used as a base material for the PET film. The contact angle of the oligomer block layer was measured and found to be 80 °.
  • This protective film is referred to as “protective film R1”.
  • Example 1 With a 125 ⁇ m thick easily adhesive polyester film (trade name: A4300, manufactured by Toyobo Co., Ltd.) as a light-transmitting support layer, a liquid hard coat material (H1) is applied to one surface thereof with a bar coater, Further, the coated film was heat-dried using a dryer oven under the conditions of 100 ° C. ⁇ 1 minute. Next, the coated film after drying was irradiated with ultraviolet rays (irradiation amount: 300 mJ / cm 2 ) to dispose a hard coat layer having a thickness of about 2 ⁇ m on the light-transmitting support layer.
  • a liquid hard coat material H1
  • irradiation amount 300 mJ / cm 2
  • a protective film R1 was laminated on one side of the hard coat film.
  • a light transmissive conductive layer was formed by magnetron sputtering. Specifically, after the inside of the chamber is evacuated to 5 ⁇ 10 ⁇ 4 Pa or less, a mixed gas composed of 95% Ar gas and 5% oxygen gas is introduced into the chamber, and the pressure in the chamber is reduced to 0. 0. 0. Sputtering was performed at 2 to 0.3 Pa. Sputtering was performed so that the film thickness of the finally obtained transparent conductive layer was 20 nm.
  • the sheet resistance value after annealing of the obtained film was 150 ⁇ / ⁇ .
  • Examples 2-4 Processing was carried out in the same manner as in Example 1 except that protective films (R2 to R4) having the contact angles shown in Table 1 as the contact angle of the oligomer block layer of the protective film were used. 2. Comparative Examples 1 and 2 Processing was carried out in the same manner as in Example 1 except that protective films (R5, R6) having the contact angles shown in Table 1 as the contact angle of the oligomer block layer of the protective film were used. 3.
  • Various evaluation methods Various evaluation methods were performed as follows.
  • the resist cured film was swelled and peeled off from the film substrate by dipping in an alkaline solution, specifically 250 ml of a 3% strength by weight sodium hydroxide aqueous solution.
  • the cured resist film was crushed to an appropriate size using an ultrasonic homogenizer to obtain an alkaline liquid in which a fine resist film was dispersed. 3.1.2 Evaluation Method After the alkali solution is lightly stirred to uniformly disperse the fine resist film, the laminated films obtained in Examples and Comparative Examples are immediately immersed, and the surface on the protective film side A resist film was attached to the film.
  • the resist film adhering to the surface on the protective film side can be easily removed by gently washing with pure water.
  • the protective film side can be removed by shaking the laminated film slightly in pure water.
  • the case where the resist film adhering to the surface was removed was marked as ⁇ , and the case where the resist film was not removed was marked as x.
  • Light transmissive conductive film (A) 111 Light-transmissive support layer (A-1) 112 Light transmissive conductive layer (A-2) 113 Light transmissive underlayer (A-3) 114 Hard coat layer (A-4) 12 Protective film (B) 121 Protective layer (B-1) 122 Adhesive layer (B-2) 123 Oligomer block layer (B-3)

Abstract

Provided is a multilayer film which comprises a light-transmitting conductive film (A) and a protective film (B), and which is not susceptible to adhesion of resist dust to the protective film (B)-side surface after having the light-transmitting conductive film (A) subjected to etching. This multilayer film is characterized in that: the light-transmitting conductive film (A) contains one or more light-transmitting supporting layers (A-1) and one or more light-transmitting conductive layers (A-2), and at least one outermost layer of the light-transmitting conductive film (A) is a light-transmitting conductive layer (A-2); at least one light-transmitting conductive layer (A-2) that forms one outermost layer of the light-transmitting conductive film (A) is arranged on one surface of the laminated film; the protective film (B) is arranged on the other surface of the laminated film; and the protective film (B)-side surface has a contact angle with water of 70° or more.

Description

積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネルLAMINATED FILM, FILM ROLL THEREOF, LIGHT TRANSMITTING CONDUCTIVE FILM OBTAINED FROM THE SAME, AND TOUCH PANEL USING THE SAME
 本発明は、積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネルに関する。 The present invention relates to a laminated film, a film roll thereof, a light-transmitting conductive film obtainable therefrom, and a touch panel using the same.
 タッチパネルに搭載される光透過性導電性フィルムとして、PET等からなる光透過性支持層の上に酸化インジウムスズ(ITO)等からなる光透過性導電層を積層して得られる光透過性導電性フィルムが数多く使用されている。この光透過性導電性フィルムにおいては、通常、光透過性導電層が最外層となるように配置されている。この光透過性導電性フィルムは製造後、フィルムロールとしていったん巻き取られた上で製造地から次の目的地まで運搬され、その目的地において巻き戻すことによりフィルムの状態とした上でさらなる加工がなされ、あるいは使用されるのが通常である。 Light transmissive conductive film obtained by laminating a light transmissive conductive layer made of indium tin oxide (ITO) or the like on a light transmissive support layer made of PET or the like as a light transmissive conductive film mounted on a touch panel. Many films are used. In this light-transmitting conductive film, the light-transmitting conductive layer is usually disposed so as to be the outermost layer. This light-transmitting conductive film is once wound up as a film roll after being manufactured and then transported from the manufacturing site to the next destination, where it is rewound at the destination to obtain a film state for further processing. Usually made or used.
 このようにフィルムロールとして巻き取る際に光透過性導電性フィルムを保護する目的で、いわゆる保護フィルムを光透過性導電性フィルムの光透過性導電層とは反対側の面に貼付して積層フィルムとすることがある(特許文献1)。この積層フィルムがフィルムロールとして巻き取られると、光透過性導電層と保護フィルムの表面同士が互いに隣接した状態となる。 For the purpose of protecting the light-transmitting conductive film when wound up as a film roll in this way, a so-called protective film is stuck on the surface of the light-transmitting conductive film opposite to the light-transmitting conductive layer, and a laminated film (Patent Document 1). When this laminated film is wound up as a film roll, the surfaces of the light-transmitting conductive layer and the protective film are adjacent to each other.
 光透過性導電性フィルムは、光透過性導電層を、例えば格子状等の電極として成形(いわゆるパターニング)した上で使用されることがある。光透過性導電層のパターニングは、除去したくない領域をエッチングレジストと呼ばれる保護膜で保護した上で薬品処理を行い、保護されていない領域のみについて光透過性導電層を除去する、いわゆるエッチング処理により行われる。 The light-transmitting conductive film is sometimes used after forming a light-transmitting conductive layer as a grid-like electrode (so-called patterning). The patterning of the light-transmitting conductive layer is a so-called etching process in which a region that is not desired to be removed is protected by a protective film called an etching resist and then chemical treatment is performed, and only the unprotected region is removed from the light-transmitting conductive layer. Is done.
 このエッチング処理は、上述の積層フィルムを巻き取ってなるフィルムロールを巻き戻し、フィルムの状態とした上で行われる。具体的には、フィルムの状態で、エッチングレジストによる処理、及びエッチング液による処理を順次行う。 This etching process is performed after the film roll formed by winding the above-described laminated film is rewound into a film state. Specifically, the treatment with an etching resist and the treatment with an etching solution are sequentially performed in a film state.
 この積層フィルムは、最終的に、保護フィルムを剥離した上で、光透過性導電性フィルムとしてタッチパネルに搭載する等の用途に使用される。 This laminated film is finally used for applications such as mounting on a touch panel as a light-transmitting conductive film after peeling off the protective film.
特開2001-332132号公報JP 2001-332132 A
 前述の積層フィルムに対して、エッチングレジストによる処理、及びエッチング液による処理を順次行うことによってエッチング処理を行った後、さらに薬品処理によりエッチングレジストを除去する際に、エッチングレジスト粕が保護フィルム側の表面に付着してしまうという問題があることを本発明者らは見出した。このようなエッチングレジスト粕が保護フィルム側に付着していると、その後の諸工程において、例えば、外観欠点等を発見し難いといった問題を生じ、好ましくない。 After performing the etching treatment by sequentially performing the treatment with the etching resist and the treatment with the etching liquid on the above-described laminated film, when the etching resist is further removed by the chemical treatment, the etching resist film is on the protective film side. The present inventors have found that there is a problem of adhering to the surface. If such an etching resist film adheres to the protective film side, problems such as difficulty in finding appearance defects and the like occur in subsequent processes, which is not preferable.
 本発明は、エッチングレジストの除去処理を行った後にエッチングレジスト粕が保護フィルム側の表面に付着しにくい積層フィルムを提供することを課題とする。 An object of the present invention is to provide a laminated film in which an etching resist film is difficult to adhere to the surface on the protective film side after the etching resist is removed.
 本発明者らは、上記課題を解決するべく鋭意検討を重ね、本発明を完成させた。具体的には、本発明者らは、水に対する接触角が所定の範囲内にある表面を有する保護フィルムを用いることによって、上記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明は、次に掲げるものである。 The inventors of the present invention have intensively studied to solve the above problems and completed the present invention. Specifically, the present inventors have found that the above problems can be solved by using a protective film having a surface with a contact angle with water in a predetermined range, and have completed the present invention. That is, the present invention is as follows.
 項1.
 (A)光透過性導電性フィルム;及び
 (B)保護フィルム
 を含有する積層フィルムであって、
 前記光透過性導電性フィルム(A)が、
 (A-1)光透過性支持層;及び
 (A-2)光透過性導電層
 をそれぞれ一以上含有し、かつ
 少なくとも一方の最外層が一の光透過性導電層(A-2)である光透過性導電性フィルムであって、
 前記光透過性導電性フィルム(A)の最外層の前記光透過性導電層(A-2)の少なくとも一が、前記積層フィルムの一方の表面に配置され、
 保護フィルム(B)が、前記積層フィルムの他方の表面に配置されており、かつ
 前記保護フィルム(B)側の前記表面の水に対する接触角が70°以上であることを特徴とする、積層フィルム。
Item 1.
(A) a light transmissive conductive film; and (B) a protective film
The light-transmitting conductive film (A) is
(A-1) a light transmissive support layer; and (A-2) one or more light transmissive conductive layers, and at least one outermost layer is one light transmissive conductive layer (A-2). A light transmissive conductive film comprising:
At least one of the light transmissive conductive layers (A-2) as the outermost layer of the light transmissive conductive film (A) is disposed on one surface of the laminated film,
The protective film (B) is disposed on the other surface of the laminated film, and the contact angle with respect to water of the surface on the protective film (B) side is 70 ° or more, and the laminated film .
 項2.
 Haze値が、5%以下である、項1に記載の積層フィルム。
Item 2.
Item 2. The laminated film according to Item 1, wherein the Haze value is 5% or less.
 項3.
 前記光透過性導電層(A-2)が、酸化インジウムスズを含む、項1又は2に記載の積層フィルム。
Item 3.
Item 3. The laminated film according to Item 1 or 2, wherein the light transmissive conductive layer (A-2) contains indium tin oxide.
 項4.
 項1~3のいずれかに記載の積層フィルムを巻き取ってなるフィルムロール。
Item 4.
Item 4. A film roll obtained by winding up the laminated film according to any one of Items 1 to 3.
 項5.
 項1~3のいずれかに記載の積層フィルムから保護フィルム(B)を剥離することにより光透過性導電性フィルム(A)を得る工程を含有する方法により得られうる、光透過性導電性フィルム。
Item 5.
Item 4. A light-transmitting conductive film obtainable by a method comprising a step of obtaining a light-transmitting conductive film (A) by peeling the protective film (B) from the laminated film according to any one of Items 1 to 3. .
 項6.
 項5に記載の光透過性導電性フィルムを含有する、タッチパネル。
Item 6.
Item 6. A touch panel comprising the light transmissive conductive film according to Item 5.
 本発明によれば、エッチング処理を行った後に、エッチングレジスト粕が保護フィルム側の表面に付着する量を低減することができる。 According to the present invention, it is possible to reduce the amount of the etching resist film adhering to the surface on the protective film side after performing the etching treatment.
光透過性支持層(A-1)の片面に光透過性導電層(A-2)が配置されている光透過性導電性フィルム(A)、及び保護フィルム(B)からなる本発明の積層フィルムを示す断面図である。The laminate of the present invention comprising a light-transmitting conductive film (A) having a light-transmitting conductive layer (A-2) disposed on one side of the light-transmitting support layer (A-1), and a protective film (B). It is sectional drawing which shows a film. 光透過性支持層(A-1)の両面に光透過性導電層(A-2)が配置されている光透過性導電性フィルム(A)、及び保護フィルム(B)からなる本発明の積層フィルムを示す断面図である。The laminate of the present invention comprising a light-transmitting conductive film (A) having a light-transmitting conductive layer (A-2) disposed on both sides of a light-transmitting support layer (A-1), and a protective film (B) It is sectional drawing which shows a film. 光透過性支持層(A-1)の片面に光透過性導電層(A-2)及び光透過性下地層(A-3)が配置されている光透過性導電性フィルム(A);及び保護層(B-1)の片面に粘着層(B-2)が配置されている保護フィルム(B)からなる本発明の積層フィルムを示す断面図である。A light transmissive conductive film (A) in which a light transmissive conductive layer (A-2) and a light transmissive underlayer (A-3) are disposed on one side of the light transmissive support layer (A-1); and FIG. 3 is a cross-sectional view showing a laminated film of the present invention comprising a protective film (B) having an adhesive layer (B-2) disposed on one side of the protective layer (B-1). 光透過性支持層(A-1)の一方の面に光透過性導電層(A-2)、光透過性下地層(A-3)及びハードコート層(A-4)が、さらに光透過性支持層(A-1)の他方の面に別のハードコート層(A-4)がそれぞれ配置されている光透過性導電性フィルム(A);及び保護層(B-1)の片面に粘着層(B-2)が配置されている保護フィルム(B)からなる本発明の積層フィルムを示す断面図である。A light transmissive conductive layer (A-2), a light transmissive underlayer (A-3), and a hard coat layer (A-4) are further provided on one surface of the light transmissive support layer (A-1). A transparent conductive film (A) in which another hard coat layer (A-4) is disposed on the other surface of the transparent support layer (A-1); and on one surface of the protective layer (B-1). It is sectional drawing which shows the laminated | multilayer film of this invention which consists of a protective film (B) in which the adhesion layer (B-2) is arrange | positioned. 光透過性支持層(A-1)の片面に光透過性導電層(A-2)が配置されている光透過性導電性フィルム(A);及び保護層(B-1)の片面に粘着層(B-2)が配置されている保護フィルム(B)からなる本発明の積層フィルムを示す断面図である。Light transmissive conductive film (A-2) having light transmissive conductive layer (A-2) disposed on one side of light transmissive support layer (A-1); and adhesive on one side of protective layer (B-1) It is sectional drawing which shows the laminated | multilayer film of this invention which consists of a protective film (B) in which the layer (B-2) is arrange | positioned. 光透過性支持層(A-1)の片面に光透過性導電層(A-2)が配置されている光透過性導電性フィルム(A);及び保護層(B-1)の片面にオリゴマーブロック層(B-3)が配置されている保護フィルム(B)からなる本発明の積層フィルムを示す断面図である。A light transmissive conductive film (A-2) having a light transmissive conductive layer (A-2) disposed on one side of the light transmissive support layer (A-1); and an oligomer on one side of the protective layer (B-1). It is sectional drawing which shows the laminated | multilayer film of this invention which consists of a protective film (B) in which the block layer (B-3) is arrange | positioned.
 1. 積層フィルム
 本発明の積層フィルムは、二以上のフィルムが積層した構成を備えるフィルムであって、
 (A)光透過性導電性フィルム;
 (B)保護フィルム
 を含有する。
1. Laminated film The laminated film of the present invention is a film having a configuration in which two or more films are laminated,
(A) a light transmissive conductive film;
(B) Contains a protective film.
 本発明の積層フィルムにおいて、光透過性導電性フィルム(A)は、
 (A-1)光透過性支持層;及び
 (A-2)光透過性導電層;
 をそれぞれ一以上含有し、
 少なくとも一方の最外層が一の光透過性導電層(A-2)であるという構成を備える。すなわち、光透過性導電性フィルム(A)は、二以上の光透過性導電層(A-2)を含有していてもよく、また、この場合、光透過性導電性フィルム(A)は、一の光透過性導電層(A-2)が光透過性支持層(A-1)の一方の面に最外層となるように配置されていればよく、さらに別の光透過性導電層(A-2)が光透過性支持層(A-1)の他方の面に配置されていてもよい。後者のときはさらに、当該別の光透過性導電層(A-2)が光透過性支持層(A-1)の他方の面に最外層となるように配置されていてもよい。
In the laminated film of the present invention, the light transmissive conductive film (A) is:
(A-1) a light transmissive support layer; and (A-2) a light transmissive conductive layer;
Each containing one or more
At least one outermost layer is configured as one light-transmissive conductive layer (A-2). That is, the light transmissive conductive film (A) may contain two or more light transmissive conductive layers (A-2). In this case, the light transmissive conductive film (A) One light-transmitting conductive layer (A-2) may be disposed so as to be the outermost layer on one surface of the light-transmitting support layer (A-1), and another light-transmitting conductive layer ( A-2) may be disposed on the other surface of the light-transmissive support layer (A-1). In the latter case, the further light transmissive conductive layer (A-2) may be disposed on the other surface of the light transmissive support layer (A-1) so as to be the outermost layer.
 本発明の積層フィルムにおいては、光透過性導電性フィルム(A)の最外層に配置されている光透過性導電層(A-2)の少なくとも一が、積層フィルムの一方の表面(「光透過性導電層(A-2)側の表面」ということがある。)に配置されており、かつ保護フィルム(B)が積層フィルムの他方の表面(「保護フィルム(B)側の表面」ということがある。)に配置されている。本発明の積層フィルムは、光透過性導電層(A-2)及び保護フィルム(B)がそれぞれ表面に配置されていればよく、光透過性導電性フィルム(A)と保護フィルム(B)の間に別のフィルム等、その他の構造が介在していてもよい。また、前述のように光透過性支持層(A-1)の両方の面に最外層となるようにそれぞれ光透過性導電層(A-2)が配置されているときは、いずれの光透過性導電層(A-2)が積層フィルムの表面に配置されていてもよい。 In the laminated film of the present invention, at least one of the light transmissive conductive layers (A-2) disposed in the outermost layer of the light transmissive conductive film (A) is formed on one surface of the laminated film (“light transmissive”). The protective film (B) is disposed on the conductive conductive layer (A-2) side) and the protective film (B) is the other surface of the laminated film (the “protective film (B) side surface”) Is located). In the laminated film of the present invention, the light-transmitting conductive layer (A-2) and the protective film (B) may be disposed on the surface, respectively. The light-transmitting conductive film (A) and the protective film (B) Other structures such as another film may be interposed therebetween. Further, as described above, when the light transmissive conductive layer (A-2) is disposed on both sides of the light transmissive support layer (A-1) so as to be the outermost layer, any light transmissive The conductive conductive layer (A-2) may be disposed on the surface of the laminated film.
 さらに、本発明の積層フィルムの保護フィルム(B)側の表面は、水に対する接触角が70°以上である。このことにより、本発明の積層フィルムは、光透過性導電層(A-2)のエッチング処理を行った後にエッチングレジストを除去した際に、エッチングレジスト粕が保護フィルム側の表面に付着する量が低減されている。 Furthermore, the surface on the protective film (B) side of the laminated film of the present invention has a contact angle with water of 70 ° or more. Thus, in the laminated film of the present invention, when the etching resist is removed after performing the etching treatment of the light transmissive conductive layer (A-2), the amount of the etching resist film attached to the surface on the protective film side is reduced. Has been reduced.
 図1に、本発明の積層フィルムの一態様を示す。この態様では、まず、光透過性導電性フィルムが、光透過性支持層(A-1)の一方の面に、直接(すなわち、隣接して)、光透過性導電層(A-2)が配置されている構成を備える。このとき、光透過性導電層(A-2)は、光透過性支持層(A-1)の当該面の最外層となっている。そして、この光透過性導電層(A-2)が積層フィルムの一方の表面に、かつ保護フィルム(B)が積層フィルムの他方の表面に、それぞれ配置されている。 FIG. 1 shows an embodiment of the laminated film of the present invention. In this embodiment, first, the light transmissive conductive film (A-2) is directly (that is, adjacent) to one surface of the light transmissive support layer (A-1). The arrangement is arranged. At this time, the light transmissive conductive layer (A-2) is the outermost layer of the surface of the light transmissive support layer (A-1). The light transmissive conductive layer (A-2) is disposed on one surface of the laminated film, and the protective film (B) is disposed on the other surface of the laminated film.
 図2に、本発明の積層フィルムの別の態様を示す。この態様では、まず、光透過性導電性フィルムが、光透過性支持層(A-1)の両方の面に、直接、光透過性導電層(A-2)がそれぞれ配置されている構成を備える。このとき、二つの光透過性導電層(A-2)は光透過性支持層(A-1)の両方の面の最外層となっている。さらに、任意の一方の光透過性導電層(A-2)が積層フィルムの一方の表面に、かつ保護フィルム(B)が積層フィルムの他方の表面に、それぞれ配置されている。 FIG. 2 shows another aspect of the laminated film of the present invention. In this embodiment, first, the light transmissive conductive film has a configuration in which the light transmissive conductive layer (A-2) is directly disposed on both sides of the light transmissive support layer (A-1). Prepare. At this time, the two light transmissive conductive layers (A-2) are the outermost layers on both surfaces of the light transmissive support layer (A-1). Furthermore, one arbitrary light-transmissive conductive layer (A-2) is disposed on one surface of the laminated film, and the protective film (B) is disposed on the other surface of the laminated film.
 1.1 光透過性導電性フィルム(A)
 本発明において「光透過性」とは、光を透過させる性質を有する(translucent)ことを意味する。「光透過性」には、透明(transparent)が含まれる。「光透過性」とは、例えば、全光線透過率が80%以上、好ましくは85%以上、より好ましくは88%以上である性質をいう。本発明において全光線透過率は、ヘーズメーター(日本電色社製、商品名:NDH-2000、またはその同等品)を用いてJIS-K-7105に基づいて測定する。
1.1 Light transmissive conductive film (A)
In the present invention, “light-transmitting” means having a property of transmitting light (translucent). “Light transmissivity” includes transparency. “Light transmissivity” means, for example, the property that the total light transmittance is 80% or more, preferably 85% or more, more preferably 88% or more. In the present invention, the total light transmittance is measured based on JIS-K-7105 using a haze meter (trade name: NDH-2000 manufactured by Nippon Denshoku Co., Ltd. or equivalent).
 本発明において、各層の厚さは、市販の反射分光膜厚計(大塚電子、FE-3000(製品名)、又はその同等品)を用いて求める。又は、代替的に、市販の透過型電子顕微鏡を用いた観察により求めてもよい。具体的には、ミクロトーム又はフォーカスイオンビームなどを用いて測定対象となるフィルムをフィルム面に対して垂直方向に薄く切断し、その断面を観察する。 In the present invention, the thickness of each layer is determined using a commercially available reflection spectral film thickness meter (Otsuka Electronics, FE-3000 (product name), or equivalent). Alternatively, it may be obtained by observation using a commercially available transmission electron microscope. Specifically, a film to be measured is thinly cut in a direction perpendicular to the film surface using a microtome or a focused ion beam, and the cross section is observed.
 本明細書において、光透過性支持層(A-1)の一方の面に配置される複数の層のうち二つの層の相対的な位置関係について言及する場合、光透過性支持層(A-1)を基準にして、光透過性支持層(A-1)からの距離が大きい一方の層を「上の」層等ということがある。 In this specification, when referring to the relative positional relationship between two layers among a plurality of layers arranged on one surface of the light transmissive support layer (A-1), the light transmissive support layer (A−) is referred to. On the basis of 1), one layer having a large distance from the light transmissive support layer (A-1) may be referred to as an “upper” layer or the like.
 1.1.1 光透過性支持層(A-1)
 本発明において光透過性支持層とは、光透過性導電層を含有する光透過性導電性フィルムにおいて、光透過性導電層を含む層を支持する役割を果たすものをいう。光透過性支持層(A-1)としては、特に限定されないが、例えば、タッチパネル用導電性フィルムにおいて、光透過性支持層として通常用いられるものを用いることができる。
1.1.1 Light transmissive support layer (A-1)
In the present invention, the light-transmitting support layer refers to a light-transmitting conductive film containing a light-transmitting conductive layer that plays a role of supporting a layer including the light-transmitting conductive layer. The light transmissive support layer (A-1) is not particularly limited. For example, a conductive film for a touch panel that is normally used as a light transmissive support layer can be used.
 光透過性支持層(A-1)の素材は、特に限定されないが、例えば、各種の有機高分子等を挙げることができる。有機高分子としては、特に限定されないが、例えば、ポリエステル系樹脂、アセテート系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアクリル系樹脂、ポリメタクリル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリ塩化ビニル系樹脂、ポリアセタール系樹脂、ポリ塩化ビニリデン系樹脂及びポリフェニレンサルファイド系樹脂等が挙げられる。ポリエステル系樹脂としては、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)等が挙げられる。光透過性支持層(A-1)の素材は、ポリエステル系樹脂が好ましく、中でも特にPETが好ましい。光透過性支持層(A-1)は、これらのうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。また、複数の光透過性支持層を粘着剤等で貼り合
わせたものであってもよい。複数の光透過性支持層を使用する場合は、同種のものを複数使用してもよいし、複数種のものを使用してもよい。
The material for the light transmissive support layer (A-1) is not particularly limited, and examples thereof include various organic polymers. The organic polymer is not particularly limited. For example, polyester resin, acetate resin, polyether resin, polycarbonate resin, polyacrylic resin, polymethacrylic resin, polystyrene resin, polyolefin resin, polyimide resin, etc. Examples thereof include resins, polyamide resins, polyvinyl chloride resins, polyacetal resins, polyvinylidene chloride resins, and polyphenylene sulfide resins. Although it does not specifically limit as polyester-type resin, For example, a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN), etc. are mentioned. The material of the light transmissive support layer (A-1) is preferably a polyester resin, and particularly preferably PET. The light transmissive support layer (A-1) may be composed of any one of them, or may be composed of a plurality of types. Further, a plurality of light-transmitting support layers may be bonded with an adhesive or the like. When a plurality of light-transmitting support layers are used, a plurality of the same types may be used, or a plurality of types may be used.
 光透過性支持層(A-1)の厚さは、特に限定されないが、例えば、2~300μmの範囲が挙げられる。 The thickness of the light transmissive support layer (A-1) is not particularly limited, and examples thereof include a range of 2 to 300 μm.
 1.1.2 光透過性導電層(A-2)
 本発明の積層フィルムにおいては、少なくとも一の光透過性導電層(A-2)が、光透過性支持層(A-1)の少なくとも一方の面に、直接又は一以上の他の層を介して最外層となるように配置されている。
1.1.2 Light transmissive conductive layer (A-2)
In the laminated film of the present invention, at least one light transmissive conductive layer (A-2) is directly or via one or more other layers on at least one surface of the light transmissive support layer (A-1). Are arranged to be the outermost layer.
 光透過性導電層(A-2)は、光透過性支持層(A-1)の両方の面にそれぞれ少なくとも一層ずつ配置されていてもよい。 The light-transmitting conductive layer (A-2) may be disposed at least one layer on each side of the light-transmitting support layer (A-1).
 本発明において光透過性導電層とは、導電性物質を含有し、電気を導通しかつ可視光を透過する役割を果たすものをいう。光透過性導電層(A-2)としては、特に限定されないが、例えば、タッチパネル用導電性フィルムにおいて光透過性導電層として通常用いられるものを用いることができる。 In the present invention, the light-transmitting conductive layer means a layer containing a conductive substance, conducting electricity and transmitting visible light. The light-transmitting conductive layer (A-2) is not particularly limited, and for example, a layer normally used as a light-transmitting conductive layer in a conductive film for a touch panel can be used.
 光透過性導電層(A-2)の素材は、特に限定されないが、例えば、酸化インジウム、酸化亜鉛、酸化錫及び酸化チタン等が挙げられる。光透過性導電層(A-2)としては、透明性と導電性を両立する点で酸化インジウムにドーパントをドープしたものを含む光透過性導電層が好ましい。光透過性導電層(A-2)は、酸化インジウムにドーパントをドープしたものからなる光透過性導電層であってもよい。ドーパントとしては、特に限定されないが、例えば、酸化スズ及び酸化亜鉛、並びにそれらの混合物等が挙げられる。 The material of the light transmissive conductive layer (A-2) is not particularly limited, and examples thereof include indium oxide, zinc oxide, tin oxide, and titanium oxide. The light transmissive conductive layer (A-2) is preferably a light transmissive conductive layer containing indium oxide doped with a dopant in terms of achieving both transparency and conductivity. The light transmissive conductive layer (A-2) may be a light transmissive conductive layer made of indium oxide doped with a dopant. Although it does not specifically limit as a dopant, For example, a tin oxide, a zinc oxide, those mixtures, etc. are mentioned.
 光透過性導電層(A-2)の素材として酸化インジウムに酸化スズをドープしたものを用いる場合は、酸化インジウム(III)(In)に酸化スズ(IV)(SnO)をドープしたもの(tin-doped indium oxide;ITO)が好ましい。この場合、SnOの添加量としては、特に限定されないが、例えば、1~15重量%、好ましくは2~10重量%、より好ましくは3~8重量%等が挙げられる。また、ドーパントの総量が左記の数値範囲を超えない範囲で、酸化インジウムスズにさらに他のドーパントが加えられたものを光透過性導電層(A-2)の素材として用いてもよい。左記において他のドーパントとしては、特に限定されないが、例えばセレン等が挙げられる。 When indium oxide doped with tin oxide is used as the material of the light transmissive conductive layer (A-2), indium (III) oxide (In 2 O 3 ) is doped with tin (IV) oxide (SnO 2 ). (Tin-doped indium oxide; ITO) is preferred. In this case, the addition amount of SnO 2 is not particularly limited, and examples thereof include 1 to 15% by weight, preferably 2 to 10% by weight, and more preferably 3 to 8% by weight. Further, a material in which another dopant is added to indium tin oxide within a range where the total amount of dopant does not exceed the numerical range shown on the left may be used as a material for the light transmissive conductive layer (A-2). Although it does not specifically limit as another dopant in the left, For example, selenium etc. are mentioned.
 光透過性導電層(A-2)は、上記の各種素材のうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。 The light transmissive conductive layer (A-2) may be composed of any one of the various materials described above, or may be composed of a plurality of types.
 光透過性導電層(A-2)は、特に限定されないが、結晶体若しくは非晶質体、又はそれらの混合体であってもよい。 The light transmissive conductive layer (A-2) is not particularly limited, but may be a crystalline or amorphous body, or a mixture thereof.
 光透過性導電層(A-2)の厚さは、特に限定されないが、通常は5~50nmである。光透過性導電層(A-2)の厚さは、好ましくは10~40nm、より好ましくは12~35nm、さらに好ましくは15~30nmである。 The thickness of the light transmissive conductive layer (A-2) is not particularly limited, but is usually 5 to 50 nm. The thickness of the light transmissive conductive layer (A-2) is preferably 10 to 40 nm, more preferably 12 to 35 nm, and still more preferably 15 to 30 nm.
 光透過性導電層(A-2)を配置する方法は、湿式及び乾式のいずれであってもよく、特に限定されない。光透過性導電層(A-2)を配置する方法の具体例として、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、CVD法及びパルスレーザーデポジション法等が挙げられる。 The method for disposing the light transmissive conductive layer (A-2) may be either wet or dry, and is not particularly limited. Specific examples of the method for disposing the light transmissive conductive layer (A-2) include, for example, a sputtering method, a vacuum deposition method, an ion plating method, a CVD method, and a pulse laser deposition method.
 光透過性導電層(B)を形成する方法としては、導電性物質を焼成する工程を含有する方法が好ましい。焼成方法としては、特に限定されないが、例えばスパッタリング等を行う際のドラム加熱や、熱風式焼成炉、遠赤外線焼成炉などを例として挙げることができる。焼成温度は、特に限定されないが、通常は30~250℃であり、好ましくは50~200℃、より好ましくは80~180℃、さらに好ましくは100~160℃である。焼成時間は、好ましくは3分~180分、より好ましくは5分~120分、さらに好ましくは10分~90分である。焼成を行う雰囲気としては、真空下、大気、窒素やアルゴンなどの不活性ガス、酸素、若しくは水素添加窒素等、又はこれらのうち二種以上の組合せが挙げられる。導電性物質を焼成することにより、導電性物質の結晶化が促進される。 As a method for forming the light transmissive conductive layer (B), a method including a step of baking a conductive substance is preferable. Although it does not specifically limit as a baking method, For example, the drum heating at the time of performing sputtering etc., a hot-air type baking furnace, a far-infrared baking furnace, etc. can be mentioned as an example. The firing temperature is not particularly limited, but is usually 30 to 250 ° C., preferably 50 to 200 ° C., more preferably 80 to 180 ° C., and further preferably 100 to 160 ° C. The firing time is preferably 3 minutes to 180 minutes, more preferably 5 minutes to 120 minutes, and even more preferably 10 minutes to 90 minutes. Examples of the atmosphere for performing firing include air, an inert gas such as nitrogen or argon, oxygen, hydrogenated nitrogen, or a combination of two or more of these under vacuum. By firing the conductive material, crystallization of the conductive material is promoted.
 1.1.3 光透過性下地層(A-3)
 光透過性導電性フィルム(A)は、さらに、光透過性下地層(A-3)を含有し、かつ少なくとも一方の光透過性導電層(A-2)が少なくとも光透過性下地層(A-3)を介して光透過性支持層(A-1)の面に配置されていてもよい。
1.1.3 Light transmissive underlayer (A-3)
The light transmissive conductive film (A) further contains a light transmissive underlayer (A-3), and at least one light transmissive conductive layer (A-2) is at least a light transmissive underlayer (A). -3) may be disposed on the surface of the light transmissive support layer (A-1).
 光透過性導電層(A-2)は、光透過性下地層(A-3)に隣接して配置されていてもよい。 The light transmissive conductive layer (A-2) may be disposed adjacent to the light transmissive underlayer (A-3).
 図3に、本発明の積層フィルムの一態様を示す。この態様では、光透過性導電性フィルム(A)において、光透過性支持層(A-1)の一方の面に直接、光透過性下地層(A-3)が配置されており、この光透過性下地層(A-3)を介して、光透過性下地層(A-3)が配置されている。その他の構成は、後述する図5と同じである。 FIG. 3 shows one embodiment of the laminated film of the present invention. In this embodiment, in the light transmissive conductive film (A), the light transmissive underlayer (A-3) is disposed directly on one surface of the light transmissive support layer (A-1). The light transmissive underlayer (A-3) is disposed via the transmissive underlayer (A-3). Other configurations are the same as those in FIG. 5 described later.
 光透過性下地層(A-3)の素材は、特に限定されないが、例えば、誘電性を有するものであってもよい。光透過性下地層(A-3)の素材としては、特に限定されないが、例えば、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、シリコンアルコキシド、アルキルシロキサン及びその縮合物、ポリシロキサン、シルセスキオキサン、ポリシラザン及びアクリルシリカハイブリッド等が挙げられる。光透過性下地層(A-3)は、これらのうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。光透過性下地層(A-3)としては、ポリシラザン、アクリルシリカハイブリッド及びSiO(x=1.0~2.0)からなる群より選択される1種を含む光透過性下地層が好ましい。光透過性下地層(A-3)は、ポリシラザン、アクリルシリカハイブリッド及びSiO(x=1.0~2.0)からなる群より選択される1種からなる光透過性下地層であってもよい。光透過性下地層(A-3)としては、SiO(x=1.0~2.0)を含む光透過性下地層が好ましい。光透過性下地層(A-3)は、SiO(x=1.0~2.0)からなる光透過性下地層であってもよい。以下、例えば、SiO(x=1.0~2.0)からなる光透過性下地層を、SiO層というように略記する場合がある。 The material of the light transmissive underlayer (A-3) is not particularly limited, but may be, for example, a dielectric material. The material for the light-transmitting underlayer (A-3) is not particularly limited. Examples include oxane, polysilazane, and acrylic silica hybrid. The light transmissive underlayer (A-3) may be composed of any one of them, or may be composed of a plurality of types. The light-transmitting underlayer (A-3) is preferably a light-transmitting underlayer including one selected from the group consisting of polysilazane, acrylic silica hybrid, and SiO x (x = 1.0 to 2.0). . The light-transmitting underlayer (A-3) is a light-transmitting underlayer made of one selected from the group consisting of polysilazane, acrylic silica hybrid, and SiO x (x = 1.0 to 2.0). Also good. As the light transmissive underlayer (A-3), a light transmissive underlayer containing SiO x (x = 1.0 to 2.0) is preferable. The light transmissive underlayer (A-3) may be a light transmissive underlayer made of SiO x (x = 1.0 to 2.0). Hereinafter, for example, a light-transmitting underlayer made of SiO x (x = 1.0 to 2.0) may be abbreviated as an SiO x layer.
 光透過性下地層(A-3)は、一層が配置されていてもよい。あるいは二層以上が互いに隣接して、または他の層を介して互いに離間して配置されていてもよい。光透過性下地層(A-3)が二層以上互いに隣接して配置されているのが好ましい。このような態様の例としては、例えば、隣接するSiO層及びSiO層からなる積層(stacking)、及び隣接するSiO層及びSiO層からなる積層が挙げられる。例えば二層が互いに隣接して配置されている場合、SiO層及びSiO層の順序は任意であるが、光透過性支持層(A-1)側にSiOからなる光透過性下地層(B-2)、光透過性導電層(A-2)側にSiO(x=1.0~2.0)からなる光透過性下地層(C-2)を配置させるのが好ましい。 One layer of the light-transmitting underlayer (A-3) may be disposed. Alternatively, two or more layers may be arranged adjacent to each other or separated from each other via other layers. Two or more light-transmitting underlayers (A-3) are preferably arranged adjacent to each other. Examples of such embodiments include, for example, stacking composed of adjacent SiO 2 layers and SiO x layers, and stacking composed of adjacent SiO 2 layers and SiO x N y layers. For example, when two layers are arranged adjacent to each other, the order of the SiO 2 layer and the SiO x layer is arbitrary, but the light transmissive underlayer made of SiO 2 on the light transmissive support layer (A-1) side (B-2) A light-transmitting underlayer (C-2) made of SiO x (x = 1.0 to 2.0) is preferably disposed on the light-transmitting conductive layer (A-2) side.
 光透過性下地層(A-3)の一層あたりの厚さとしては、特に限定されないが、例えば15~25nm等が挙げられる。二層以上が互いに隣接して配置されている場合は互いに隣接している全ての光透過性下地層(A-3)の合計厚さが上記範囲内であればよい。 The thickness per layer of the light-transmitting underlayer (A-3) is not particularly limited, and examples thereof include 15 to 25 nm. When two or more layers are disposed adjacent to each other, the total thickness of all the light-transmitting underlayers (A-3) adjacent to each other may be within the above range.
 光透過性下地層(A-3)の屈折率は、光透過性導電性フィルム(A)が、タッチパネル用途として使用できる限り特に限定されないが、例えば、1.4~1.5が好ましい。 The refractive index of the light-transmitting underlayer (A-3) is not particularly limited as long as the light-transmitting conductive film (A) can be used as a touch panel application. For example, it is preferably 1.4 to 1.5.
 光透過性下地層(A-3)を配置する方法として、乾式としては、例えば、スパッタリング法、イオンプレーティング法、真空蒸着法及びパルスレーザーデポジション法により隣接する層上に積層する方法等が挙げられる。 As a method of disposing the light-transmitting underlayer (A-3), as a dry method, for example, a method of laminating on an adjacent layer by a sputtering method, an ion plating method, a vacuum deposition method, or a pulse laser deposition method, etc. Can be mentioned.
 1.1.4 ハードコート層(A-4)
 光透過性導電性フィルム(A)は、光透過性下地層(A-3)の代わりに、あるいは光透過性下地層(A-3)に加えてさらに、ハードコート層(A-4)を含有し、かつ少なくとも一方の光透過性導電層(A-2)が、少なくともハードコート層(A-4)を介して光透過性支持層(A-1)の面に配置されていてもよい。
1.1.4 Hard coat layer (A-4)
The light transmissive conductive film (A) has a hard coat layer (A-4) in place of the light transmissive underlayer (A-3) or in addition to the light transmissive underlayer (A-3). And at least one light transmissive conductive layer (A-2) may be disposed on the surface of the light transmissive support layer (A-1) via at least the hard coat layer (A-4). .
 光透過性導電性フィルム(A)が光透過性下地層(A-3)及びハードコート層(A-4)の両者を光透過性支持層(A-1)の同じ面に含む場合は、その光透過性下地層(A-3)が、少なくともそのハードコート層(A-4)を介して光透過性支持層(A-1)の面に配置されている。この場合、光透過性下地層(A-3)は、好ましくはハードコート層(A-4)に隣接して配置されている。 When the light transmissive conductive film (A) includes both the light transmissive undercoat layer (A-3) and the hard coat layer (A-4) on the same surface of the light transmissive support layer (A-1), The light transmissive underlayer (A-3) is disposed on the surface of the light transmissive support layer (A-1) via at least the hard coat layer (A-4). In this case, the light-transmitting underlayer (A-3) is preferably disposed adjacent to the hard coat layer (A-4).
 ハードコート層(A-4)は、好ましくは光透過性支持層(A-1)の少なくとも一方の面に隣接して配置されている。 The hard coat layer (A-4) is preferably disposed adjacent to at least one surface of the light transmissive support layer (A-1).
 ハードコート層(A-4)は、一層が配置されていてもよい。あるいは二層以上が互いに隣接して、または他の層を介して互いに離間して配置されていてもよい。 One layer of the hard coat layer (A-4) may be disposed. Alternatively, two or more layers may be arranged adjacent to each other or separated from each other via other layers.
 ハードコート層(A-4)は、光透過性支持層(A-1)の両面に配置されていてもよい。 The hard coat layer (A-4) may be disposed on both surfaces of the light transmissive support layer (A-1).
 図6に、本発明の積層フィルムの一態様を示す。この態様では、光透過性導電性フィルム(A)において、光透過性支持層(A-1)の一方の面に直接、一方のハードコート層(A-4)が配置されており、このハードコート層(A-4)を介して光透過性下地層(A-3)がさらに配置され、この光透過性下地層(A-3)を介して光透過性導電層(A-2)がさらに配置されている。また、光透過性支持層(A-1)の他方の面にも直接、他方のハードコート層(A-4)が配置されている。その他の構成は、後述する図5と同じである。 FIG. 6 shows an embodiment of the laminated film of the present invention. In this embodiment, in the light transmissive conductive film (A), one hard coat layer (A-4) is disposed directly on one surface of the light transmissive support layer (A-1). A light-transmitting underlayer (A-3) is further disposed through the coat layer (A-4), and the light-transmitting conductive layer (A-2) is disposed through the light-transmitting underlayer (A-3). It is further arranged. Further, the other hard coat layer (A-4) is directly disposed on the other surface of the light-transmitting support layer (A-1). Other configurations are the same as those in FIG. 5 described later.
 本発明においてハードコート層とは、プラスチック表面の傷つきを防止する役割を果たすものをいう。ハードコート層(A-4)としては、特に限定されないが、例えば、タッチパネル用光透過性導電性フィルムにおいてハードコート層として通常用いられるものを用いることができる。 In the present invention, the hard coat layer refers to a layer that plays a role in preventing scratches on the plastic surface. The hard coat layer (A-4) is not particularly limited, and for example, a layer normally used as a hard coat layer in a light-transmitting conductive film for a touch panel can be used.
 ハードコート層(A-4)の素材は、特に限定されないが、例えば、アクリル系樹脂、シリコーン系樹脂、ウレタン系樹脂、メラミン系樹脂及びアルキド系樹脂等が挙げられる。ハードコート層(A-4)の素材としては、さらに、シリカ、ジルコニア、チタニア及びアルミナ等のコロイド粒子等を上記樹脂中に分散させたものも挙げられる。ハードコート層(A-4)は、これらのうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。ハードコート層(A-4)としては、ジルコニア粒子を分散したアクリル樹脂が好ましい。 The material of the hard coat layer (A-4) is not particularly limited, and examples thereof include acrylic resins, silicone resins, urethane resins, melamine resins, and alkyd resins. Examples of the material for the hard coat layer (A-4) further include those obtained by dispersing colloidal particles such as silica, zirconia, titania and alumina in the resin. The hard coat layer (A-4) may be composed of any one of them, or may be composed of a plurality of types. The hard coat layer (A-4) is preferably an acrylic resin in which zirconia particles are dispersed.
 ハードコート層(A-4)の一層あたりの厚さは、特に限定されないが、例えば0.03~10μm、0.5~5μm、及び1~3μm等が挙げられる。二層以上が互いに隣接して配置されている場合は互いに隣接している全てのハードコート層(A-4)の合計厚さが上記範囲内であればよい。左記の例示列挙においては後出のものが前出のものよりも好ましい。 The thickness per layer of the hard coat layer (A-4) is not particularly limited, and examples thereof include 0.03 to 10 μm, 0.5 to 5 μm, and 1 to 3 μm. When two or more layers are arranged adjacent to each other, the total thickness of all the hard coat layers (A-4) adjacent to each other may be within the above range. In the example list shown on the left, the following are more preferable than the above.
 ハードコート層(A-4)の屈折率は、光透過性導電性フィルム(A)が、タッチパネル用途として使用できる限り特に限定されないが、例えば、1.4~1.7等が挙げられる。 The refractive index of the hard coat layer (A-4) is not particularly limited as long as the light-transmitting conductive film (A) can be used for touch panel applications, and examples thereof include 1.4 to 1.7.
 ハードコート層(A-4)は、光透過性下地層(A-3)よりも高い屈折率を有していてもよい。この場合、光透過性下地層(A-3)は好ましくはハードコート層(A-4)の一方の面に隣接して配置されている。このような構成を採ることにより、光透過性下地層(A-3)及びハードコート層(A-4)の光学干渉作用により光透過性導電性フィルム(A)の透過率が向上するので好ましい。また、このような構成を採ることにより、パターン化された光透過性導電層(A-2)のパターン見えが軽減される。 The hard coat layer (A-4) may have a higher refractive index than the light-transmitting underlayer (A-3). In this case, the light-transmitting underlayer (A-3) is preferably disposed adjacent to one surface of the hard coat layer (A-4). By adopting such a configuration, the transmittance of the light transmissive conductive film (A) is improved by the optical interference action of the light transmissive underlayer (A-3) and the hard coat layer (A-4), which is preferable. . Further, by adopting such a configuration, the pattern appearance of the patterned light-transmitting conductive layer (A-2) is reduced.
 ハードコート層(A-4)を配置する方法としては、特に限定されないが、例えば、フィルムに塗布して、熱で硬化する方法、紫外線や電子線などの活性エネルギー線で硬化する方法等が挙げられる。生産性の点で、紫外線により硬化する方法が好ましい。 The method of disposing the hard coat layer (A-4) is not particularly limited, and examples thereof include a method of applying to a film and curing with heat, a method of curing with active energy rays such as ultraviolet rays and electron beams, and the like. It is done. From the viewpoint of productivity, a method of curing with ultraviolet rays is preferable.
 1.1.5 その他の層(A-5)
本発明の光透過性導電性フィルムは、光透過性支持層(A-1)の少なくとも一方の面に、光透過性導電層(A-2)に加えて、光透過性下地層(A-3)、ハードコート層(A-4)及びそれらと異なる少なくとも1種のその他の層(A-5)からなる群より選択される少なくとも1種の層がさらに配置されていてもよい。
1.1.5 Other layers (A-5)
The light-transmitting conductive film of the present invention is formed on at least one surface of the light-transmitting support layer (A-1), in addition to the light-transmitting conductive layer (A-2), the light-transmitting underlayer (A- 3) At least one layer selected from the group consisting of the hard coat layer (A-4) and at least one other layer different from them (A-5) may be further disposed.
 その他の層(A-5)としては、特に限定されないが、例えば、接着層等が挙げられる。 The other layer (A-5) is not particularly limited, and examples thereof include an adhesive layer.
 接着層とは、二層の間に当該二層と互いに隣接して配置され、当該二層間を互いに接着するために配置される層である。接着層としては、特に限定されないが、例えば、タッチパネル用光透過性導電性フィルムにおいて接着層として通常用いられるものを用いることができる。接着層は、これらのうちいずれか単独からなるものであってもよいし、複数種からなるものであってもあってもよい。 The adhesive layer is a layer that is disposed adjacent to each other between the two layers and is disposed to adhere the two layers to each other. Although it does not specifically limit as a contact bonding layer, For example, what is normally used as a contact bonding layer in the transparent conductive film for touchscreens can be used. The adhesive layer may be composed of any one of these, or may be composed of a plurality of types.
 1.2 保護フィルム(B)
 本発明において、保護フィルム(B)とは、主にフィルムロールとして巻き取る際に光透過性導電性フィルムを保護する目的で光透過性導電性フィルムに貼付して使用されるフィルムのことをいう。巻き取られた状態では光透過性導電層と保護フィルムの表面同士が互いに隣接した状態となり、これにより光透過性導電層が保護される。
1.2 Protective film (B)
In the present invention, the protective film (B) refers to a film that is used by being attached to a light-transmitting conductive film for the purpose of protecting the light-transmitting conductive film mainly when wound as a film roll. . In the wound state, the surfaces of the light transmissive conductive layer and the protective film are adjacent to each other, thereby protecting the light transmissive conductive layer.
 保護フィルム(B)としては、特に限定されず、通常この目的で使用されるものの中から広範囲に選択することができる。 The protective film (B) is not particularly limited, and can be selected in a wide range from those usually used for this purpose.
 保護フイルム(B)の素材は、特に限定されないが、例えば、ポリエステル、ポリプロピレン及びポリエチレン等が挙げられる。これらの中でも、耐熱性の点においてポリエス
テルが好ましい。
Although the raw material of a protective film (B) is not specifically limited, For example, polyester, a polypropylene, polyethylene, etc. are mentioned. Among these, polyester is preferable in terms of heat resistance.
 保護フィルム(B)は、フィルムロールとして巻き取られた状態で光透過性導電層(A-2)と対向する表面、すなわち、言い換えれば、積層フィルムの保護フィルム(B)側の面が、表面の水に対する接触角が70°以上である。このことにより、本発明の積層フィルムは、光透過性導電層(A-2)のエッチング処理を行った後に、エッチングレジスト粕が保護フィルム側の表面に付着する量が低減されている。エッチングレジスト粕の付着量の低減という点では、この表面が、水に対する接触角が80°以上であればより好ましい。 The protective film (B) has a surface facing the light-transmitting conductive layer (A-2) in a state of being wound as a film roll, that is, in other words, the surface on the protective film (B) side of the laminated film is a surface The contact angle with respect to water is 70 ° or more. As a result, in the laminated film of the present invention, after the light-transmitting conductive layer (A-2) is etched, the amount of the etching resist film adhering to the surface on the protective film side is reduced. In terms of reducing the adhesion amount of the etching resist soot, it is more preferable that the surface has a water contact angle of 80 ° or more.
 なお、本発明において水に対する接触角は、次のようにして測定する。協和界面科学株式会社製の自動接触角計(DM500)又はその同等品を用いて測定する。具体的には、サンプルを切り出し5mmの高さから1μLの蒸留水をシリンジにてゆっくりと着滴後、シリンジを速やかにサンプルから離し、さらに3秒間放置する。放置後、その接触角(ハードコート層表面と液滴の接線が成す角)をCCDカメラで観察して測定する。同様の操作を10回繰り返し、その平均値を、本発明における水に対する接触角とする。 In the present invention, the contact angle with water is measured as follows. Measurement is performed using an automatic contact angle meter (DM500) manufactured by Kyowa Interface Science Co., Ltd. or its equivalent. Specifically, the sample is cut out, 1 μL of distilled water is slowly dropped from a height of 5 mm with a syringe, the syringe is quickly separated from the sample, and is further left for 3 seconds. After leaving, the contact angle (angle formed by the tangent line between the hard coat layer surface and the droplet) is observed and measured with a CCD camera. The same operation is repeated 10 times, and the average value is taken as the contact angle with water in the present invention.
 本発明の積層フィルムは、通常Haze値が少なくとも5%以下であれば問題はない。したがって、保護フィルム(B)のHaze値は、フィルム全体としてのHaze値が5%以下となる範囲内で適宜設定することができる。左記において、積層フィルム全体としてのHaze値が3%以下であれば好ましく、2.5%以下であればより好ましい。 The laminated film of the present invention has no problem as long as the haze value is usually at least 5% or less. Therefore, the Haze value of the protective film (B) can be appropriately set within a range where the Haze value of the entire film is 5% or less. In the left column, the Haze value of the entire laminated film is preferably 3% or less, and more preferably 2.5% or less.
 保護フィルム(B)と、光透過性導電性フィルム(A)の熱収縮率を互いに概ね近い数値とすることにより、積層フィルムとしたときにカールしてしまう程度を抑制できる。 By setting the thermal shrinkage rates of the protective film (B) and the light-transmitting conductive film (A) to values close to each other, the degree of curling when a laminated film is formed can be suppressed.
 保護フィルム(B)の厚さは、特に限定されないが、通常は25~125μmである。 The thickness of the protective film (B) is not particularly limited, but is usually 25 to 125 μm.
 保護フィルム(B)の厚さは、特に限定されないが、透明導電性フィルムと保護フィルムを貼り合わせた状態で合計厚さが170μm以上であれば好ましい。この合計厚さが、170~270μmであればより好ましい。 The thickness of the protective film (B) is not particularly limited, but it is preferable if the total thickness is 170 μm or more in a state where the transparent conductive film and the protective film are bonded together. More preferably, the total thickness is 170 to 270 μm.
 保護フィルム(B)と、光透過性導電性フィルム(A)の熱収縮率を互いに概ね近い数値とすることにより、積層フィルムとしたときにカールしてしまう程度を抑制できる。 By setting the thermal shrinkage rates of the protective film (B) and the light-transmitting conductive film (A) to values close to each other, the degree of curling when a laminated film is formed can be suppressed.
 保護フィルム(B)を配置する方法は、特に限定されないが、通常、後述する粘着層を介して隣接面に貼付することにより配置することができる。 Although the method of arrange | positioning a protective film (B) is not specifically limited, Usually, it can arrange | position by sticking to an adjacent surface through the adhesion layer mentioned later.
 1.2.1 粘着層(B-2)
 保護フィルム(B)は、積層構造となっていてもよく、この場合、上記1.2で説明した構成及び特性を備える層を主体となる層として(これを便宜上、「保護層(B-1)」と呼ぶ。)、さらに、例えば、粘着層(B-2)を含有していてもよい。
1.2.1 Adhesive layer (B-2)
The protective film (B) may have a laminated structure. In this case, the protective film (B) is mainly composed of a layer having the configuration and characteristics described in 1.2 above (for convenience, the “protective layer (B-1 In addition, for example, an adhesive layer (B-2) may be contained.
 粘着層(B-2)とは、保護フィルム(B)を光透過性導電性フィルム(A)の面に配置する目的で使用される層のことをいう。 The adhesive layer (B-2) refers to a layer used for the purpose of disposing the protective film (B) on the surface of the light transmissive conductive film (A).
 粘着層(B-2)としては、特に限定されず、通常この目的で使用されるものの中から広範囲に選択することができる。一般に、この目的では加工性の観点からアクリル系粘着剤又はシリコーン系粘着剤等が使用される。したがって、例えば、これらを適宜選択して粘着層(B-2)を形成することもできる。 The adhesive layer (B-2) is not particularly limited, and can be selected from a wide range of materials usually used for this purpose. In general, an acrylic pressure-sensitive adhesive or a silicone-based pressure-sensitive adhesive is used for this purpose from the viewpoint of processability. Therefore, for example, the pressure-sensitive adhesive layer (B-2) can be formed by appropriately selecting them.
 本発明の積層フィルムにおいては、この場合、保護フィルム(B)が、この粘着層(B-2)を介して光透過性導電性フィルムの面に配置されている。したがって、保護フィルム(B)の面のうち、粘着層(B-2)とは反対側の面が、水に対する接触角が70°以上である。 In the laminated film of the present invention, in this case, the protective film (B) is disposed on the surface of the light-transmitting conductive film via the adhesive layer (B-2). Therefore, the surface of the protective film (B) opposite to the adhesive layer (B-2) has a contact angle with water of 70 ° or more.
 図5に、本発明の導電性フィルムの一態様を示す。この態様では、保護フィルム(B)が、保護層(B-1)及び粘着層(B-2)からなるものである点を除けば、図1に示す態様と同様の構成となっている。 FIG. 5 shows one embodiment of the conductive film of the present invention. In this embodiment, the protective film (B) has the same configuration as that shown in FIG. 1 except that the protective film (B) is composed of a protective layer (B-1) and an adhesive layer (B-2).
 1.2.2 オリゴマーブロック層(B-3)
 保護フィルム(B)は、上記1.2で説明した構成及び特性を備える層を主体となる層(保護層(B-1))として、粘着層(B-2)に加えて、あるいは、粘着層(B-2)に代えて、オリゴマーブロック層(B-3)を含有していてもよい。
1.2.2 Oligomer block layer (B-3)
In the protective film (B), the layer having the configuration and characteristics described in 1.2 above is used as a main layer (protective layer (B-1)), in addition to the adhesive layer (B-2), or Instead of the layer (B-2), an oligomer block layer (B-3) may be contained.
 オリゴマーブロック層(B-3)とは、熱処理(例えば、150℃で1時間の熱処理)を行った後にフィルム表面にオリゴマーが析出し、フィルムの外観が白濁することを防止する目的で使用される層のことをいう。 The oligomer block layer (B-3) is used for the purpose of preventing the oligomer from being deposited on the film surface after heat treatment (for example, heat treatment at 150 ° C. for 1 hour) and causing the appearance of the film to become cloudy. It refers to the layer.
 オリゴマーブロック層(B-3)の材料としては、通常この目的のために用いられる材料の中から広範に選択できる。より具体的には、透明な膜を形成しうるものから適宜選択することができ、無機物、有機物又はそれらの複合材料であってもよい。 The material for the oligomer block layer (B-3) can be selected from a wide range of materials usually used for this purpose. More specifically, it can be appropriately selected from those capable of forming a transparent film, and may be an inorganic material, an organic material, or a composite material thereof.
 オリゴマーブロック層(B-3)の厚さは、特に限定されないが、0.01~2μmであれば好ましい。 The thickness of the oligomer block layer (B-3) is not particularly limited, but is preferably 0.01 to 2 μm.
 本発明の積層フィルムにおいては、この場合、保護フィルム(B)が、このオリゴマーブロック層(B-3)が最表面に位置するように配置される。したがって、オリゴマーブロック層(B-3)の表面が、水に対する接触角が70°以上である必要がある。 In the laminated film of the present invention, in this case, the protective film (B) is disposed so that the oligomer block layer (B-3) is located on the outermost surface. Therefore, the surface of the oligomer block layer (B-3) needs to have a contact angle with water of 70 ° or more.
 図6に、本発明の導電性フィルムの一態様を示す。この態様では、保護フィルム(B)が、保護層(B-1)及びオリゴマーブロック層(B-3)からなるものである点を除けば、図1に示す態様と同様の構成となっている。 FIG. 6 shows one embodiment of the conductive film of the present invention. In this embodiment, the protective film (B) has the same configuration as that shown in FIG. 1 except that the protective film (B-1) is composed of a protective layer (B-1) and an oligomer block layer (B-3). .
 1.3 本発明の積層フィルムの用途
 本発明の積層フィルムから保護フィルム(B)を剥離することにより得られる光透過性導電性フィルム(A)を、タッチパネルの製造のため等に用いることができる。タッチパネルについて詳細は、3で説明する通りである。
1.3 Use of the laminated film of the present invention The light transmissive conductive film (A) obtained by peeling the protective film (B) from the laminated film of the present invention can be used for the production of touch panels and the like. . Details of the touch panel are as described in 3.
 2. 本発明のフィルムロール
 本発明のフィルムロールは、本発明の積層フィルムを巻き取ってなるフィルムロールである。
2. Film Roll of the Present Invention The film roll of the present invention is a film roll formed by winding up the laminated film of the present invention.
 特に限定されないが、本発明のフィルムロールは、通常、幅0.2~2mかつ長さ10~1000mの本発明の積層フィルムを巻き取ってなる。 Although not particularly limited, the film roll of the present invention is usually formed by winding the laminated film of the present invention having a width of 0.2 to 2 m and a length of 10 to 1000 m.
 本発明のフィルムロールは、特に限定されないが、例えば次のようにして得ることができる。光透過性支持層(A-1)の上に、必要に応じて光透過性導電層(A-2)の下地となる層、及びその他の層を配置した上で、その反対側の面に保護フィルム(B)を貼付して、この積層フィルムを巻き取ることによりフィルムロールを作成する。この際、この積層フィルムは表面処理されていてもよい。このフィルムロールをスパッタ装置にロール状のまま投入し、ロール状に巻き取りながら光透過性導電層(A-1)を形成することにより、本発明のフィルムロールを得ることができる。 The film roll of the present invention is not particularly limited, but can be obtained, for example, as follows. On the light-transmitting support layer (A-1), a layer serving as a base of the light-transmitting conductive layer (A-2) and other layers are arranged as necessary, and on the opposite surface. A protective film (B) is stuck and a film roll is created by winding up this laminated film. At this time, the laminated film may be surface-treated. The film roll of the present invention can be obtained by charging this film roll into the sputtering apparatus as it is and forming the light-transmitting conductive layer (A-1) while winding it into a roll.
 このロール状に巻取った積層フィルムをシート状に裁断した後、必要に応じて種々の加工を施したシート状の積層フィルムから、さらに保護フィルム(B)を剥離することにより光透過性導電性フィルム(A)を得て、これをタッチパネル用の透明電極等として使用することができる。 After the laminated film wound up in a roll shape is cut into a sheet shape, the protective film (B) is further peeled off from the sheet-like laminated film subjected to various processing as required, thereby translucent conductive. A film (A) is obtained and can be used as a transparent electrode for a touch panel.
 3. 本発明のタッチパネル
 本発明のタッチパネルは、本発明の積層フィルムから保護フィルム(B)を剥離することにより得られる光透過性導電性フィルム(A)を含有し、さらに必要に応じてその他の部材を含有してなる。
3. Touch Panel of the Present Invention The touch panel of the present invention contains a light transmissive conductive film (A) obtained by peeling the protective film (B) from the laminated film of the present invention, and further contains other members as necessary. It contains.
 本発明のタッチパネルは、特に限定されないが、例えば静電容量型タッチパネルであってもよい。本発明の静電容量型タッチパネルの具体的な構成例としては、次のような構成が挙げられる。なお、保護層(1)側が操作画面側を、ガラス(5)側が操作画面とは反対側を向くようにして使用される。
(1)保護層
(2)本発明の光透過性導電性フィルム(Y軸方向)
(3)絶縁層
(4)本発明の光透過性導電性フィルム(X軸方向)
(5)ガラス
 本発明の静電容量型タッチパネルは、特に限定されないが、例えば、上記(1)~(5)、並びに必要に応じてその他の部材を通常の方法に従って組み合わせることにより製造することができる。
The touch panel of the present invention is not particularly limited, but may be a capacitive touch panel, for example. Specific examples of the configuration of the capacitive touch panel according to the present invention include the following configurations. The protective layer (1) side is used so that the operation screen side faces, and the glass (5) side faces the side opposite to the operation screen.
(1) Protective layer (2) Light transmissive conductive film of the present invention (Y-axis direction)
(3) Insulating layer (4) Light transmissive conductive film of the present invention (X-axis direction)
(5) Glass Although the capacitive touch panel of the present invention is not particularly limited, for example, it can be produced by combining the above (1) to (5) and other members as required according to a usual method. it can.
 4. 本発明の積層フィルムの製造方法
 本発明の積層フィルムの製造方法は、光透過性導電性フィルム(A)の製造方法に含まれる工程を含有していてもよい。光透過性導電性フィルム(A)の製造方法は、光透過性支持層(A-1)の少なくとも一方の面に、光透過性導電層(A-2)に加えて、光透過性下地層(A-3)、ハードコート層(A-4)及びそれらと異なる少なくとも1種のその他の層(A-5)からなる群より選択される少なくとも1種の層をそれぞれ配置する工程をそれぞれ含んでいてもよい。
4). The manufacturing method of the laminated | multilayer film of this invention The manufacturing method of the laminated | multilayer film of this invention may contain the process included in the manufacturing method of a transparent electroconductive film (A). The method for producing the light transmissive conductive film (A) includes the step of forming a light transmissive underlayer on at least one surface of the light transmissive support layer (A-1) in addition to the light transmissive conductive layer (A-2). (A-3), a hard coat layer (A-4), and a step of disposing at least one kind of layer selected from the group consisting of at least one kind of other layer (A-5) different from them, respectively. You may go out.
 本発明の積層フィルムの製造方法は、保護フィルム(B)の製造方法に含まれる工程を含有していてもよい。保護フィルム(B)の製造方法は、保護層(B-1)の一方の面に、粘着層(B-2)、及び/又はその他方の面にオリゴマーブロック層(B-3)をそれぞれ配置する工程をそれぞれ含んでいてもよい。 The method for producing a laminated film of the present invention may include a step included in the method for producing a protective film (B). In the production method of the protective film (B), the adhesive layer (B-2) is disposed on one surface of the protective layer (B-1), and / or the oligomer block layer (B-3) is disposed on the other surface. Each of the steps may be included.
 上記のそれぞれの工程において、それぞれの層を配置する工程は、それぞれの層について説明した通りである。光透過性導電層(A-2)に加えて、少なくとも1種の他の層を配置する場合は、例えば、光透過性支持層(A-1)の少なくとも一方の面に光透過性支持層(A-1)側から順次配置させてもよいが、配置の順番は特に限定されない。例えば、最初に光透過性支持層(A-1)ではない層(例えば、光透過性導電層(A-2))の一方の面に他の層を配置させてもよい。あるいは、一方で2種以上の層を互いに隣接するように配置させることにより1種の複合層を得てから、又はそれと同時に、他方で同様に2種以上の層を互いに隣接するように配置させることにより1種の複合層を得て、これらの2種の複合層をさらに互いに隣接するように配置させてもよい。 In each of the above steps, the step of arranging each layer is as described for each layer. When at least one other layer is arranged in addition to the light transmissive conductive layer (A-2), for example, the light transmissive support layer is formed on at least one surface of the light transmissive support layer (A-1). Although it may be arranged sequentially from the (A-1) side, the order of arrangement is not particularly limited. For example, first, another layer may be disposed on one surface of a layer that is not the light-transmitting support layer (A-1) (for example, the light-transmitting conductive layer (A-2)). Alternatively, one composite layer is obtained by arranging two or more layers adjacent to each other on the one hand, or at the same time, two or more layers are similarly disposed adjacent to each other on the other side. Thus, one type of composite layer may be obtained, and these two types of composite layers may be further arranged adjacent to each other.
 また、本発明の積層フィルムの製造方法は、上記に代えて、あるいは上記に加えて、光透過性導電性フィルム(A)の一方の面に、直接、又は他のフィルムを介して保護フィルム(B)を配置する工程を含んでいてもよい。 Moreover, the manufacturing method of the laminated | multilayer film of this invention is replaced with the above, or in addition to the above, on one surface of a transparent electroconductive film (A), directly or through another film, a protective film ( A step of arranging B) may be included.
 以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
1.実施例
1.1 ハードコート用材料の調製
1.1.1 ハードコート1(H1)
 光重合剤含有アクリル系オリゴマーに、トルエンとメチルイソブチルケトン(MIBK)とを5:5(重量比)の割合にて混合してなる混合溶媒を加えて、液状のハードコート用材料(固形分濃度:40重量%)を調製した。
1.1.2 保護フィルム
 綜研化学社製粘着剤SKダイン1473H(固形分30%)の固形分100重量部に対してイソシアネート系架橋剤1重量部を配合し、さらに酢酸エチルを加え固形分濃度を10%に調整した粘着剤溶液を調製した。これをPETフィルム上に厚みが10μmになるように塗布し、100℃で2分間乾燥して、粘着剤層を形成した。さらに、40℃の条件下で72時間エージングして表面保護フィルムを得た。PETフィルムの基材としては片面にオリゴマーブロック層が付与されたものを用いた。オリゴマーブロック層の接触角を測定したところ80°であった。この保護フィルムを、「保護フィルムR1」という。
1.2 実施例1
 厚さ125μmの易接着性ポリエステルフィルム(東洋紡株式会社製、商品名:A4300)を光透過性支持層として、その一方の面に、液状のハードコート用材料(H1)をバーコーターで塗布し、さらにその塗工膜を、ドライヤーオーブンを用いて、100℃×1分の条件で加熱乾燥した。次いで、乾燥後の塗工膜に対して紫外線を照射することにより(照射量:300mJ/cm)、光透過性支持層上に厚さ約2μmのハードコート層を配置した。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
1. Example 1.1 Preparation of Hard Coat Material 1.1.1 Hard Coat 1 (H1)
A liquid hard coating material (solid content concentration) is added to a photopolymerizer-containing acrylic oligomer by adding a mixed solvent obtained by mixing toluene and methyl isobutyl ketone (MIBK) at a ratio of 5: 5 (weight ratio). : 40% by weight).
1.1.2 Protective film 1 part by weight of an isocyanate-based crosslinking agent is blended with 100 parts by weight of solid content of adhesive SK Dyne 1473H (solid content 30%) manufactured by Soken Chemical Co. A pressure-sensitive adhesive solution adjusted to 10% was prepared. This was applied on a PET film so as to have a thickness of 10 μm, and dried at 100 ° C. for 2 minutes to form an adhesive layer. Further, the film was aged for 72 hours at 40 ° C. to obtain a surface protective film. As a base material for the PET film, a substrate provided with an oligomer block layer on one side was used. The contact angle of the oligomer block layer was measured and found to be 80 °. This protective film is referred to as “protective film R1”.
1.2 Example 1
With a 125 μm thick easily adhesive polyester film (trade name: A4300, manufactured by Toyobo Co., Ltd.) as a light-transmitting support layer, a liquid hard coat material (H1) is applied to one surface thereof with a bar coater, Further, the coated film was heat-dried using a dryer oven under the conditions of 100 ° C. × 1 minute. Next, the coated film after drying was irradiated with ultraviolet rays (irradiation amount: 300 mJ / cm 2 ) to dispose a hard coat layer having a thickness of about 2 μm on the light-transmitting support layer.
 光透過性支持層の他方の面に対しても同一の作業を施すことにより、光透過性支持層の両面に厚さ約2μmのハードコート層が配置されているフィルム(ハードコートフィルム)のロールを得た。このフィルムロールを巻き上げる前にハードコートフィルムの片面に保護フィルムR1をラミネートした。 A roll of a film (hard coat film) in which a hard coat layer having a thickness of about 2 μm is disposed on both surfaces of the light transmissive support layer by performing the same operation on the other surface of the light transmissive support layer. Got. Before winding up the film roll, a protective film R1 was laminated on one side of the hard coat film.
 このようにして得られたフィルムの、保護フィルムR1をラミネートした面とは反対側の面に、酸化インジウム95重量%及び酸化スズ5重量%からなる焼結体材料をターゲット材として用いて、DCマグネトロンスパッタリング法により、光透過性導電層を形成した。具体的には、チャンバー内を5×10-4Pa以下となるまで真空排気した後に、かかるチャンバー内にArガス95%及び酸素ガス5%からなる混合ガスを導入し、チャンバー内圧力を0.2~0.3Paとしてスパッタリングを実施した。なお、最終的に得られる透明導電層の膜厚が20nmとなるように、スパッタリングを実施した。得られた膜のアニール処理後(150℃、1時間)のシート抵抗値は150Ω/□であった。
1.3 実施例2~4
 保護フィルムのオリゴマーブロック層の接触角が表1に記載の接触角である保護フィルム(R2~R4)を用いた以外は全て実施例1と同様に加工を行った。
2.比較例1および2
 保護フィルムのオリゴマーブロック層の接触角が表1に記載の接触角である保護フィル
ム(R5、R6)を用いた以外は全て実施例1と同様に加工を行った。
3.各種評価方法
 各種評価方法は以下の通り行った。
3.1 レジスト粕付着確認方法
3.1.1 レジスト粕の準備
 耐酸レジストには、互応化学工業製の紫外線硬化型エッチングレジスト(TPER-194B-2)を用いた。該レジスト剤を適当なフィルム基材の表面に薄く塗布した後、積算光量1,000mJ/cmの紫外線を照射して、レジスト剤を硬化させた。
Using a sintered body material composed of 95% by weight of indium oxide and 5% by weight of tin oxide as a target material on the surface opposite to the surface on which the protective film R1 was laminated of the film thus obtained, A light transmissive conductive layer was formed by magnetron sputtering. Specifically, after the inside of the chamber is evacuated to 5 × 10 −4 Pa or less, a mixed gas composed of 95% Ar gas and 5% oxygen gas is introduced into the chamber, and the pressure in the chamber is reduced to 0. 0. Sputtering was performed at 2 to 0.3 Pa. Sputtering was performed so that the film thickness of the finally obtained transparent conductive layer was 20 nm. The sheet resistance value after annealing of the obtained film (150 ° C., 1 hour) was 150Ω / □.
1.3 Examples 2-4
Processing was carried out in the same manner as in Example 1 except that protective films (R2 to R4) having the contact angles shown in Table 1 as the contact angle of the oligomer block layer of the protective film were used.
2. Comparative Examples 1 and 2
Processing was carried out in the same manner as in Example 1 except that protective films (R5, R6) having the contact angles shown in Table 1 as the contact angle of the oligomer block layer of the protective film were used.
3. Various evaluation methods Various evaluation methods were performed as follows.
3.1 Method for Confirming Resist Soot Adherence 3.1.1 Preparation of Resist Soot As an acid resistant resist, an ultraviolet curable etching resist (TPER-194B-2) manufactured by Kyoyo Chemical Industry was used. After thinly applying the resist agent on the surface of an appropriate film base material, the resist agent was cured by irradiating with an ultraviolet ray having an integrated light quantity of 1,000 mJ / cm 2 .
 続いて、アルカリ液、具体的には3%重量濃度の水酸化ナトリウム水溶液250mlに浸漬して、レジストの硬化皮膜をフィルム基材から膨潤剥離させた。 Subsequently, the resist cured film was swelled and peeled off from the film substrate by dipping in an alkaline solution, specifically 250 ml of a 3% strength by weight sodium hydroxide aqueous solution.
 フィルム基材を回収した後、超音波ホモジナイザを用いてレジストの硬化皮膜を適当な大きさに破砕することで、微細なレジスト膜が分散したアルカリ液を得た。
3.1.2 評価の仕方
 該アルカリ液を軽く撹拌して、微細レジスト膜を均一に分散させた後、実施例及び比較例でそれぞれ得られた積層フィルムを直ちに浸漬し、保護フィルム側の面にレジスト膜を付着させた。
After recovering the film substrate, the cured resist film was crushed to an appropriate size using an ultrasonic homogenizer to obtain an alkaline liquid in which a fine resist film was dispersed.
3.1.2 Evaluation Method After the alkali solution is lightly stirred to uniformly disperse the fine resist film, the laminated films obtained in Examples and Comparative Examples are immediately immersed, and the surface on the protective film side A resist film was attached to the film.
 続いて、純水で静かに洗浄することで、保護フィルム側の面に付着したレジスト膜が容易に除去できたものは◎、純水中に積層フィルムを若干振とうすることで、保護フィルム側の面に付着したレジスト膜が除去できたものは〇、除去出来ないものを×とした。 Subsequently, the resist film adhering to the surface on the protective film side can be easily removed by gently washing with pure water. ◎, the protective film side can be removed by shaking the laminated film slightly in pure water. The case where the resist film adhering to the surface was removed was marked as ◯, and the case where the resist film was not removed was marked as x.
 評価結果を表1に示す。少なくとも接触角が53.1~68.1°の保護フィルムを用いた場合は、保護フィルム面に付着したレジスト粕を除去しにくく、一方、少なくとも接触角が71.0~85.0°の保護フィルムを用いた場合は、保護フィルム面に付着したレジスト粕を除去しやすいことが判った。 Evaluation results are shown in Table 1. When a protective film with a contact angle of 53.1 to 68.1 ° is used, it is difficult to remove the resist film adhering to the protective film surface, while at least a contact angle of 71.0 to 85.0 ° is protected. In the case of using a film, it was found that the resist film adhering to the protective film surface can be easily removed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
1    積層フィルム
11   光透過性導電性フィルム(A)
111  光透過性支持層(A-1)
112  光透過性導電層(A-2)
113  光透過性下地層(A-3)
114  ハードコート層(A-4)
12   保護フィルム(B)
121  保護層(B-1)
122  粘着層(B-2)
123  オリゴマーブロック層(B-3)
1 Laminated film 11 Light transmissive conductive film (A)
111 Light-transmissive support layer (A-1)
112 Light transmissive conductive layer (A-2)
113 Light transmissive underlayer (A-3)
114 Hard coat layer (A-4)
12 Protective film (B)
121 Protective layer (B-1)
122 Adhesive layer (B-2)
123 Oligomer block layer (B-3)

Claims (5)

  1. (A)光透過性導電性フィルム;及び
    (B)保護フィルム
    を含有する積層フィルムであって、
    前記光透過性導電性フィルム(A)が、
    (A-1)光透過性支持層;及び
    (A-2)光透過性導電層
    をそれぞれ一以上含有し、かつ
    少なくとも一方の最外層が一の光透過性導電層(A-2)である光透過性導電性フィルムであって、
    前記光透過性導電性フィルム(A)の最外層の前記光透過性導電層(A-2)の少なくとも一が、前記積層フィルムの一方の表面に配置され、
    保護フィルム(B)が、前記積層フィルムの他方の表面に配置されており、かつ
    前記保護フィルム(B)側の前記表面の水に対する接触角が70°以上であることを特徴とする、積層フィルム。
    (A) a light transmissive conductive film; and (B) a laminated film containing a protective film,
    The light-transmitting conductive film (A) is
    (A-1) a light transmissive support layer; and (A-2) one or more light transmissive conductive layers, and at least one outermost layer is one light transmissive conductive layer (A-2). A light transmissive conductive film comprising:
    At least one of the light transmissive conductive layers (A-2) as the outermost layer of the light transmissive conductive film (A) is disposed on one surface of the laminated film,
    The protective film (B) is disposed on the other surface of the laminated film, and the contact angle with respect to water of the surface on the protective film (B) side is 70 ° or more, and the laminated film .
  2. 前記光透過性導電層(A-2)が、酸化インジウムスズを含む、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the light transmissive conductive layer (A-2) contains indium tin oxide.
  3. 請求項1又は2に記載の積層フィルムを巻き取ってなるフィルムロール。 The film roll formed by winding up the laminated | multilayer film of Claim 1 or 2.
  4. 請求項1~3のいずれかに記載の積層フィルムから保護フィルム(B)を剥離することにより光透過性導電性フィルム(A)を得る工程を含有する方法により得られうる、光透過性導電性フィルム。 A light transmissive conductive material obtainable by a method comprising a step of obtaining a light transmissive conductive film (A) by peeling the protective film (B) from the laminated film according to any one of claims 1 to 3. the film.
  5. 請求項4に記載の光透過性導電性フィルムを含有する、タッチパネル。 A touch panel containing the light transmissive conductive film according to claim 4.
PCT/JP2014/057551 2013-03-25 2014-03-19 Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film WO2014156889A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480002169.9A CN104718582B (en) 2013-03-25 2014-03-19 Stack membrane and its film roll and can light transmitting conductive film therefrom and utilize its touch pad
KR1020157004289A KR101554847B1 (en) 2013-03-25 2014-03-19 Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-063042 2013-03-25
JP2013063042 2013-03-25
JP2014037549A JP5651259B2 (en) 2013-03-25 2014-02-27 LAMINATED FILM, FILM ROLL THEREOF, LIGHT TRANSMITTING CONDUCTIVE FILM OBTAINED FROM THE SAME, AND TOUCH PANEL USING THE SAME
JP2014-037549 2014-02-27

Publications (1)

Publication Number Publication Date
WO2014156889A1 true WO2014156889A1 (en) 2014-10-02

Family

ID=51623868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057551 WO2014156889A1 (en) 2013-03-25 2014-03-19 Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film

Country Status (5)

Country Link
JP (1) JP5651259B2 (en)
KR (1) KR101554847B1 (en)
CN (1) CN104718582B (en)
TW (1) TWI614141B (en)
WO (1) WO2014156889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080959A (en) * 2015-10-26 2017-05-18 積水化学工業株式会社 Optically-transparent conductive film, and production method of annealed optically-transparent conductive film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957133B2 (en) * 2014-11-20 2016-07-27 日東電工株式会社 Transparent conductive film with protective film
WO2016080246A1 (en) * 2014-11-20 2016-05-26 日東電工株式会社 Transparent electroconductive film with protective film
JP6563254B2 (en) * 2015-06-03 2019-08-21 日東電工株式会社 Laminated body, method for manufacturing touch panel sensor, and touch panel sensor
JP7120225B2 (en) * 2017-05-31 2022-08-17 日本ゼオン株式会社 Touch sensor substrate and manufacturing method thereof, touch sensor member and manufacturing method thereof, and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212523A (en) * 2001-01-18 2002-07-31 Mitsui Chemicals Inc Surface-protecting film and method for using the same
WO2008099932A1 (en) * 2007-02-16 2008-08-21 Kaneka Corporation Transparent electroconductive film and process for producing the same
JP2009123685A (en) * 2007-10-26 2009-06-04 Teijin Ltd Transparent conductive laminated body and touch panel
JP2011167848A (en) * 2010-02-16 2011-09-01 Toray Ind Inc Conductive laminate and touch panel produced by using the same
JP2012073849A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Protection film and touch panel display device
JP2013010298A (en) * 2011-06-30 2013-01-17 Oji Holdings Corp Conductive laminated body and touch panel using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776754B2 (en) * 2000-05-22 2011-09-21 日東電工株式会社 Transparent conductive film with protective film and method of using the same
US20030176585A1 (en) * 2000-06-28 2003-09-18 Hironobu Iyama Insulating resin composition, adhesive resin composition and adhesive sheeting
TWI418929B (en) * 2005-12-26 2013-12-11 Kimoto Kk Surface protection film
JP4922148B2 (en) * 2007-02-15 2012-04-25 富士フイルム株式会社 Barrier laminate, barrier film substrate, production method thereof, and device
US20130063393A1 (en) * 2010-03-04 2013-03-14 Susumu Kurishima Functional laminated plate, and transparent electrically conductive laminated plate for touch panel and touch panel produced using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212523A (en) * 2001-01-18 2002-07-31 Mitsui Chemicals Inc Surface-protecting film and method for using the same
WO2008099932A1 (en) * 2007-02-16 2008-08-21 Kaneka Corporation Transparent electroconductive film and process for producing the same
JP2009123685A (en) * 2007-10-26 2009-06-04 Teijin Ltd Transparent conductive laminated body and touch panel
JP2011167848A (en) * 2010-02-16 2011-09-01 Toray Ind Inc Conductive laminate and touch panel produced by using the same
JP2012073849A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Protection film and touch panel display device
JP2013010298A (en) * 2011-06-30 2013-01-17 Oji Holdings Corp Conductive laminated body and touch panel using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080959A (en) * 2015-10-26 2017-05-18 積水化学工業株式会社 Optically-transparent conductive film, and production method of annealed optically-transparent conductive film

Also Published As

Publication number Publication date
KR101554847B1 (en) 2015-09-21
CN104718582B (en) 2018-01-02
CN104718582A (en) 2015-06-17
TWI614141B (en) 2018-02-11
JP5651259B2 (en) 2015-01-07
TW201437033A (en) 2014-10-01
JP2014209440A (en) 2014-11-06
KR20150029759A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2014156889A1 (en) Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film
JP6577886B2 (en) Light transmissive conductive film, film roll thereof, and touch panel having the same
JP5235315B2 (en) Manufacturing method of substrate with transparent electrode
JP5767744B1 (en) Light transmissive conductive film and touch panel having the same
JP5986981B2 (en) Light transmissive conductive film and capacitive touch panel having the same
JP5876892B2 (en) LAMINATED FILM, FILM ROLL THEREOF, LIGHT TRANSMITTING CONDUCTIVE FILM OBTAINED FROM THE SAME
JP6010078B2 (en) Light transmissive conductive film, method for producing the same, and use thereof
JP6397203B2 (en) Conductive film, method for producing the same, and touch panel containing the same
JP6134419B1 (en) Light transmissive conductive film and light transmissive film with hard coat
JP5987045B2 (en) Light transmissive conductive film, method for producing the same, and use thereof
JP6666688B2 (en) Light transmitting conductive film and light transmitting film with hard coat
JP6637286B2 (en) Light transmitting conductive film and light transmitting film with hard coat
WO2016152325A1 (en) Light-transmitting electroconductive film and touch panel having same
JP2014186279A (en) Light-transmitting conductive film and touch panel having the same
JP6475461B2 (en) Light transmissive conductive film
JP5564145B1 (en) Light transmissive conductive film, method for producing the same, and use thereof
JP2016150578A (en) Light transmitting conductive film, method for production thereof and use thereof
JP2015173109A (en) Method of producing light-transmitting conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157004289

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775384

Country of ref document: EP

Kind code of ref document: A1