WO2014156098A1 - リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法 - Google Patents

リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法 Download PDF

Info

Publication number
WO2014156098A1
WO2014156098A1 PCT/JP2014/001632 JP2014001632W WO2014156098A1 WO 2014156098 A1 WO2014156098 A1 WO 2014156098A1 JP 2014001632 W JP2014001632 W JP 2014001632W WO 2014156098 A1 WO2014156098 A1 WO 2014156098A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
lithium ion
ion secondary
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2014/001632
Other languages
English (en)
French (fr)
Inventor
洋平 八木下
浩平 山口
片山 美和
亙 小田
明美 井波
祥記 久保
精二 岡崎
坂本 明男
Original Assignee
エム・ティー・カーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・ティー・カーボン株式会社 filed Critical エム・ティー・カーボン株式会社
Priority to KR1020157030389A priority Critical patent/KR20150138265A/ko
Priority to US14/780,880 priority patent/US20160056464A1/en
Priority to EP14772668.1A priority patent/EP2960972A4/en
Priority to CN201480018903.0A priority patent/CN105144442A/zh
Publication of WO2014156098A1 publication Critical patent/WO2014156098A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the technology disclosed in this specification relates to a carbon material used for a negative electrode of a lithium ion secondary battery and a manufacturing method thereof.
  • Lithium ion secondary batteries are lighter and have higher capacity than conventional secondary batteries such as nickel cadmium batteries, nickel metal hydride batteries, and lead batteries, so portable electronic devices such as mobile phones and notebook computers Has been put to practical use as a power source for driving.
  • a graphite-based carbon material is generally used as a carbon material capable of inserting and extracting lithium ions.
  • JP 2012-46419 A Japanese Patent No. 4171259
  • An object of the present invention is to provide a carbon material for a negative electrode of a lithium ion secondary battery that has a high balance between initial efficiency and cycle characteristics and can be densified.
  • the inventors of the present application have come up with the present invention as a result of earnestly examining the influence of the amount of impurities contained in the raw material and the heat-treated product and the change of the particle shape accompanying the reforming treatment on the surface of the carbon material on the filling properties and battery characteristics. .
  • the amorphous carbon material according to an embodiment of the present invention is for a lithium ion secondary battery negative electrode, has a circularity of 0.7 to 0.9, and an average particle size of 1 ⁇ m to 30 ⁇ m.
  • the total transition metal content is 700 ppm or more and 2500 ppm or less.
  • the graphitic carbon material obtained by graphitizing this amorphous carbon material is for a lithium ion secondary battery negative electrode, and the circularity is 0.7 or more and 0.9 or less, and the average particle size Is 1 ⁇ m or more and 30 ⁇ m or less, the crystallite size Lc (006) calculated from the X-ray wide angle diffraction line is 20 nm or more and 27 nm or less, and is defined as a value indicating the amount of lithium occlusion sites in the crystallite.
  • Lc (006) / C0 (006) is 30 or more and 40 or less.
  • the method for producing a carbon material for a negative electrode of a lithium ion secondary battery according to an embodiment of the present invention has an optically isotropic structure ratio of 75% or more and a total transition metal content of 1000 ppm to 2500 ppm.
  • the amorphous carbon material according to one embodiment of the present invention can provide a negative electrode for a lithium ion secondary battery that can reduce the irreversible capacity of the lithium ion secondary battery and has a high packing density.
  • the lithium ion secondary battery having excellent initial efficiency, input / output characteristics, and cycle characteristics of a lithium ion secondary battery, and having a high energy density.
  • a negative electrode of a battery can be provided.
  • FIG. 1 (a) is a scanning microscope image showing raw coke immediately after being pulverized and classified and then subjected to compression shear treatment
  • FIG. 1 (b) is a non-coated image after carbonization after surface treatment of raw coke. It is a scanning microscope image which shows a crystalline carbon material.
  • FIG.1 (c) is a scanning microscope image which shows the graphitic carbon material obtained by graphitizing the amorphous carbon material shown in FIG.1 (b).
  • FIG. 2 (a) is a scanning microscopic image showing raw coke that has not been subjected to compression shearing after being crushed and classified
  • (b) is the non-coke after carbonizing the raw coke shown in (a). It is a scanning microscope image which shows a crystalline carbon material.
  • FIG.2 (c) is a scanning microscope image which shows the graphitic carbon material obtained by graphitizing the amorphous carbon material shown in FIG.2 (b).
  • FIG. 3 is a diagram illustrating an example of a lithium ion secondary battery including a negative electrode using the carbon material of the present embodiment.
  • FIG. 4 is a diagram schematically showing the relationship between the carbonization (and graphitization) temperature of a carbon material and the capacity when the carbon material is used as a negative electrode material.
  • amorphous carbon material and graphitic carbon material according to the present invention, a method for producing the carbon material, and a lithium ion secondary battery using the carbon material as a negative electrode material will be described below.
  • a method for producing the carbon material and a lithium ion secondary battery using the carbon material as a negative electrode material will be described below.
  • the “carbonization step of coke” is a step of removing volatile components (VM) contained in the coke by heating, and the “graphitization step” is a method of changing the crystal structure of the carbon material by heating to change the graphitic quality. This is a step of producing a carbon material.
  • the carbon material according to an embodiment of the present invention includes an amorphous carbon material and a graphitic carbon material used as a negative electrode material for a lithium ion secondary battery.
  • the amorphous carbon material is an intermediate for producing the graphitic carbon material, but can itself be used as a negative electrode material for a lithium ion secondary battery.
  • these carbon materials will be described in detail.
  • the carbon material according to the present embodiment has an optically isotropic texture ratio of at least 75% or more, a total transition metal content of 1000 ppm to 2500 ppm, a nitrogen content of 1 to 4 wt%, and a predetermined amount. It differs from conventional carbon materials in that it is made using petroleum-based non-acicular raw coke containing impurities as a raw material (precursor).
  • Raw coke is a coke containing volatile components, obtained by using a coking facility such as a delayed coker, etc., and heating and heating heavy oil to about 300 ° C to 700 ° C to perform pyrolysis and polycondensation. It is. A compressive shear stress is applied to the raw coke, and carbonization / graphitization is performed under thermal energy control, thereby generating lattice strain in a predetermined range in the carbon material.
  • the inventors of the present application consider the relationship between the optically isotropic texture ratio and impurity content of the raw material and the occurrence of lattice strain after carbonization and graphitization as follows.
  • the coke used as the precursor of the carbon material according to the present embodiment is petroleum-based non-acicular raw coke, and in a cross section observed with a polarizing microscope, the optically isotropic structure is uniformly dispersed and 75% or more. It exists. Coke having an optically isotropic texture ratio of less than 75% is not suitable because it is difficult to introduce strain due to excessive development of crystallites. A method for calculating the optically isotropic texture will be described in detail later.
  • optical anisotropic structures means that the optical anisotropic structure (domain) in which the carbon network is laminated in the raw material coke is small, and the direction of the carbon network is not oriented in one direction around it. Indicates the state.
  • the boundary part of the domain gives a spatial restriction on the growth direction of the crystallite in the process of developing the carbon network surface by heat treatment. Spatial restriction is that the growth of crystallites is hindered by the energy to maintain the domain shape. Therefore, it can be said that the spatial limitation on crystal growth is larger as the optical anisotropic texture ratio is lower, that is, each domain is smaller and separated.
  • the reaction proceeds in the direction of forming a carbon hexagonal network surface having a more stable structure at high temperatures.
  • a graphitization temperature exceeding 2900 ° C. the growth of crystallites becomes dominant in the graphitizable carbon material, and the effect of spatial growth inhibition due to the high optical isotropic texture is only Keeping children small is difficult.
  • the crystallinity in the crystallite is reduced in a temperature range relatively lower than the temperature required for conventional graphitization. Since the height can be increased, the crystallite size can be reduced. Therefore, according to the graphitic carbon material of the present embodiment, it is possible to increase the lithium diffusion rate in the particles due to the small crystallite size, and high input / output while maintaining the capacity due to crystalline carbon. Characteristics can be obtained.
  • the carbon network is oriented in a random direction, the direction in which the crystallites expand and contract during charge / discharge is dispersed, and the amount of deformation of the particles is reduced.
  • a lithium insertion / extraction route can be secured in all directions. Thereby, even if charging / discharging is repeated, the electrical contact between the particles and the lithium diffusion path are easily maintained, so that a graphitic carbon material having excellent cycle characteristics can be obtained.
  • the lithium diffusion path is more easily maintained as compared with a material in which the direction of the carbon network is aligned, so that a lithium ion desorption reaction occurs quickly even during rapid charge / discharge. Can be made.
  • a phenomenon that is a notable issue with graphitic carbon materials is that the lithium ion desorption reaction does not catch up during rapid charge / discharge and the battery voltage suddenly reaches the upper or lower limit, preventing the reaction from proceeding further. Can be made difficult to occur.
  • petroleum-based non-acicular coke may contain metal porphyrins or petroleum porphyrins, in which transition metal ions mainly composed of nickel and vanadium are coordinated at the center of the porphyrin ring as impurities derived from crude oil.
  • the porphyrin referred to here includes a compound having a basic skeleton of a porphine ring in which five-membered pyrrole rings containing nitrogen are linked in a ring shape and modified with side chains.
  • the porphyrin ring itself is taken into the carbon network structure together with the coordinated transition metal ion by the formation of a carbon-carbon bond. Since metal porphyrins are stable to heat to some extent, they do not decompose at the carbonization temperature and remain in the carbon network, but also function as a catalyst when the carbon network is formed in the surroundings. Also brings the effect of enhancing sex. This local change is considered to cause distortion inside the carbon material particles or to form crystal defects that occlude lithium.
  • the presence of the porphyrin ring itself gives a large distortion to the carbon network surface.
  • the presence of the porphyrin ring and the transition metal ion coordinated inside it has a positive effect on the electronic state of the carbon network surface, or the functional group is removed by partially promoting carbon crystallization. Therefore, it is considered that it greatly contributes to the improvement of the initial efficiency and the cycle characteristics.
  • the effect of this metal porphyrin can be obtained not only in the graphitic carbon material but also in the amorphous carbon material.
  • the carbon material of the present embodiment is considered to be excellent in lithium ion diffusibility.
  • the porphyrin complex undergoes thermal decomposition and most of the nitrogen volatilizes.
  • the force to hold the transition metal in the carbon material becomes weaker, and the transition metal diffuses and volatilizes from the low boiling point.
  • the part of the porphyrin ring from which nitrogen is lost seems to retain defects because there is no free carbon nearby that can compensate for this.
  • the transition metal remaining without being volatilized enters the carbon layer (or the defective portion of the carbon plane) and is considered not to participate in the reaction in which lithium is inserted and desorbed between the graphite layers.
  • the remaining transition metal is presumed to act as a pillar that prevents expansion and contraction of the interlayer spacing and prevents the collapse of the structure.
  • the metal component is intentionally left by performing graphitization at a relatively low temperature (for example, 2300 ° C. or higher and 2900 ° C. or lower) that does not volatilize and remove the metal component. Therefore, a carbon material having a distribution in the a-axis and c-axis directions is produced by selecting a raw material containing a predetermined amount of the transition metal porphyrin and carbonizing and graphitizing while controlling the thermal history.
  • the carbon material (amorphous carbon material and graphitic carbon material) according to the present embodiment is different from the conventional carbon material in the above formula (1) with respect to the raw coke whose particle size is adjusted by pulverization and classification. It is produced by applying a compressive shear stress so that the required circularity is in the range of 0.7 to 0.9.
  • the degree of circularity is an index indicating how close the contour of the projected image of the particle is to a perfect circle, and the upper limit is 1 for the case of a perfect circle, and the longer the circumference of the projected image, that is, the more unevenness or the sharper the angle is. The more the shape, the lower the value obtained.
  • Shape processing (surface treatment) by compressive shear stress is such that compression acts preferentially in the major axis direction of the particle, introduces roundness to the acute angle part, and causes unevenness of the particle surface. It is what makes it smooth. For example, when flat crushed crushed particles are used as the raw material, the processing is performed so that the thickness is an ellipse when viewed from the side, and the crushing surface is unevenly smoothed when viewed from above. . In addition, the specific surface area of carbon material particle becomes small by the process by this compressive shear stress.
  • one of the advantages of using raw coke is that when mechanical energy is applied while heating within a predetermined range, it is softened moderately and its shape tends to change. Furthermore, shape processing at the stage of raw coke has the effect of disturbing the alignment state before the development of the carbon network surface, particularly on the particle surface. Therefore, after the heat treatment, a carbon material having a coating layer that is uniform and thin on its surface and closer to the amorphous portion than the central portion can be obtained.
  • the carbon material according to this embodiment is different from the prior art in that it is graphitized by controlling the thermal history.
  • the graphitization temperature of the carbon material according to the present embodiment is 2300 ° C. or higher and 2900 ° C. or lower where the transition metal derived from the metal porphyrin contained in the raw coke as impurities remains in the crystal and the graphitization catalytic effect easily acts. .
  • the carbon material of the present embodiment it is possible to provide a negative electrode with low irreversible capacity, high energy density per volume, and excellent lithium ion diffusibility and conductivity. Moreover, the carbon material of this embodiment can be utilized also as a negative electrode material of a lithium ion capacitor, and a capacitor with high output density and high reliability can be realized.
  • FIG. 1 (a) is a scanning microscope image showing raw coke immediately after being pulverized and classified and subjected to compression shear treatment (ie, surface treatment), (b) It is a scanning microscope image which shows the amorphous carbon material after carbonizing, after surface-treating raw coke.
  • FIG. 1 (a) is a scanning microscope image showing raw coke immediately after being pulverized and classified and subjected to compression shear treatment (ie, surface treatment), (b) It is a scanning microscope image which shows the amorphous carbon material after carbonizing, after surface-treating raw coke.
  • (a) is a scanning microscope image showing raw coke when not subjected to compressive shearing after being pulverized and classified, and (b) is a non-scanned image after carbonizing the raw coke shown in (a). It is a scanning microscope image which shows a crystalline carbon material.
  • the amorphous carbon material according to one embodiment of the present invention has a circularity of 0.7 to 0.9, more preferably 0.75 to 0.87.
  • the circularity degree of the raw coke which is a raw material is about 0.6.
  • the amorphous carbon material of the present embodiment is scale-like by receiving the above-described compressive shear stress.
  • the surface is rounded and the surface irregularities are also reduced.
  • the packing density and the electrode density can be increased.
  • the circularity is less than 0.7, the particles are attracted to each other, and the packing density and the electrode density are lowered.
  • the circularity exceeds 0.9, it is close to a true sphere, so that the packing density is not sufficiently increased, and the number of contact points between the particles is not preferable.
  • This improvement effect such as packing density is not only obtained when the amorphous carbon material of the present embodiment is used as it is as the negative electrode material of a lithium ion secondary battery, but also the amorphous carbon material is produced as an intermediate material.
  • the obtained graphitic carbon material can also be obtained when used as a negative electrode material.
  • the average particle size (hereinafter also referred to as “D50”) of the amorphous carbon material is, for example, preferably from 1 ⁇ m to 30 ⁇ m, more preferably from 3 ⁇ m to 30 ⁇ m, and particularly preferably about 10 ⁇ m. If the average particle size is less than 1 ⁇ m, the energy required for crushing the coke becomes enormous, which is not practical. On the other hand, if the average particle size is 3 ⁇ m or more, the existing pulverizer can efficiently pulverize. It becomes possible. On the other hand, when the average particle size exceeds 30 ⁇ m, it may be difficult to make a slurry of the carbon material for producing the negative electrode. The amorphous carbon material does not substantially contain particles exceeding 45 ⁇ m.
  • the total transition metal content is 700 ppm or more and 2500 ppm or less. This is because coke used as a raw material contains a total of about 1000 ppm to 2500 ppm of transition metals. Transition metals mainly include nickel and vanadium.
  • the amorphous carbon material of the present embodiment preferably contains 250 ppm or more of vanadium.
  • the amorphous carbon material of the present embodiment includes a transition metal containing vanadium, so that it can be used as an intermediate material of a graphitic carbon material having both high input / output characteristics and excellent cycle characteristics. It has become.
  • the amorphous carbon material has a low initial discharge and initial efficiency as compared with the graphitic carbon material, but has an excellent cycle retention ratio due to low crystallinity. Therefore, the amorphous carbon material of the present embodiment is preferably used as a negative electrode material of a battery having a relatively small capacity such as a lithium-ion secondary battery for a hybrid vehicle and frequently charged and discharged.
  • FIG. 1 (c) is a scanning microscope image showing the graphitic carbon material obtained by graphitizing the amorphous carbon material shown in FIG. 1 (b).
  • (C) is a scanning microscope image showing a graphitic carbon material obtained by graphitizing the amorphous carbon material shown in FIG. 2 (b).
  • the roundness of the raw coke particles as a raw material is 0.7 or more and 0.9 or less, more preferably 0.75 or more and 0. .87 or less.
  • the packing density and the electrode density can be improved.
  • the average particle diameter of the graphitic carbon material is 1 ⁇ m or more and 30 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m. As shown in FIGS. 1A and 1B and FIGS. 2A and 2B, the circularity and the average particle diameter are almost unchanged before and after graphitization.
  • the crystallite size Lc (006) calculated from the X-ray wide angle diffraction line of the graphitic carbon material of the present embodiment is 20 nm or more and 27 nm or less, and a value indicating the amount of lithium occlusion sites in the crystallite.
  • the compressive shear stress is applied to the raw coke as a raw material, so that the size of the crystallite is suppressed to be small.
  • the decomposition of the electrolyte solution due to the co-insertion of lithium ions and a solvent is not only suppressed, but the lithium diffusion rate in the particles is increased as compared with the case where the particles are large. It is possible to obtain high input / output characteristics while maintaining the capacity with crystalline carbon.
  • the total transition metal content is 100 ppm to 2500 ppm, more preferably 200 ppm to 2400 ppm. Further, most of the transition metal remaining in the graphitic carbon material is vanadium, and the content thereof is 100 ppm or more (2500 ppm or less). The vanadium content is more preferably 250 ppm or more.
  • the remaining transition metal such as vanadium suppresses the expansion and contraction of the layer spacing when lithium is inserted into or separated from the graphite layer.
  • the graphitic carbon material described above is used as a negative electrode material for lithium ion secondary batteries for various devices or a negative electrode material for lithium ion capacitors.
  • the graphitic carbon material has higher initial discharge and initial efficiency than the amorphous carbon material, and has a large battery capacity. Therefore, the graphitic carbon material of the present embodiment is particularly preferably used as a negative electrode material for a battery that requires a large capacity, such as a lithium ion secondary battery for an electric vehicle (EV).
  • EV electric vehicle
  • FIG. 3 is a diagram illustrating an example of a lithium ion secondary battery including a negative electrode using the carbon material of the present embodiment.
  • a lithium ion secondary battery 10 includes a negative electrode 11, a negative electrode current collector 12, a positive electrode 13, a positive electrode current collector 14, and a negative electrode 11 and a positive electrode 13. And an exterior 16 made of an aluminum laminate film or the like.
  • the negative electrode 11 for example, one in which the carbon material of the present embodiment described above is applied to both surfaces or one surface of a metal foil is used.
  • the average particle diameter and circularity of the applied graphite material are not substantially changed before and after the battery manufacturing process, and are 1 ⁇ m or more and 30 ⁇ m or less and 0.7 or more and 0.9 or less, respectively.
  • shape and constituent materials of members other than the negative electrode 11 such as the negative electrode current collector 12, the positive electrode 13, the positive electrode current collector 14, the separator 15, and the exterior 16, general materials can be applied.
  • the lithium ion secondary battery according to this embodiment has the negative electrode coated with the above-described carbon material, the energy density is high, the irreversible capacity is kept small, and the battery has excellent cycle characteristics. .
  • coke having an optically isotropic texture ratio of less than 75% has a large optical anisotropy domain, and crystallites grow too much when heat-treated, and therefore is not suitable as a raw material for the carbon material according to the present embodiment.
  • This petroleum-based non-needle raw coke is pulverized by a mechanical pulverizer such as a super rotor mill (Nisshin Engineering Co., Ltd.), a jet mill (Nihon Pneumatic Kogyo Co., Ltd.) or the like.
  • a mechanical pulverizer such as a super rotor mill (Nisshin Engineering Co., Ltd.), a jet mill (Nihon Pneumatic Kogyo Co., Ltd.) or the like.
  • a mechanical pulverizer such as a super rotor mill (Nisshin Engineering Co., Ltd.), a jet mill (Nihon Pneumatic Kogyo Co., Ltd.) or the like.
  • a mechanical pulverizer such as a super rotor mill (Nisshin Engineering Co., Ltd.), a jet mill (Nihon Pneumatic Kogyo Co., Ltd.) or the like.
  • the average particle size (D50) after pulverization is 1 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size is based on measurement by a laser diffraction particle size distribution meter.
  • D50 is less than 1 ⁇ m, the necessary pulverization energy becomes enormous, which is not realistic.
  • D50 exceeds 30 ⁇ m, particles having a suitable size as a negative electrode material for a lithium ion secondary battery cannot be obtained.
  • the above pulverized product can be classified and combined.
  • the classifier include a precision air classifier such as a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.), an elbow jet (manufactured by Nittetsu Mining Co., Ltd.), a class seal (manufactured by Seishin Enterprise Co., Ltd.), and the like.
  • Classification is not limited to after pulverization, and can be appropriately performed after shape processing or after heat treatment, and each may be performed under conditions such that a particle size distribution necessary for the subsequent steps can be obtained.
  • shape processing surface treatment
  • a device to be used a device capable of simultaneously applying stresses such as shearing, compression, and collision may be used, but it is not particularly limited to the structure and principle of the device.
  • a ball-type kneader such as a rotary ball mill
  • a wheel-type kneader such as an edge runner
  • a hybridization system manufactured by Nara Machinery Co., Ltd.
  • mechanofusion manufactured by Hosokawa Micron
  • nobilta manufactured by Hosokawa Micron
  • COMPOSI Joint Coke industry
  • an apparatus having a structure in which compaction or compressive stress is applied to the powder in the gap between the blade of the rotating blade and the housing is preferable.
  • the temperature applied to the powder is controlled to be 60 ° C to 300 ° C during processing, moderate stickiness is generated by the volatile matter contained in the raw coke, and the scraped portion adheres to the particles instantly. As a result, the shape change is promoted.
  • the circularity of the powder obtained after shape processing by compressive shear stress is greater than 0.7 and 0.9 or less because the raw coke used for the raw material has a circularity of about 0.6.
  • the circularity of the powder is desirably 0.75 or more and 0.87 or less. Particles processed to a degree of circularity exceeding 0.9 are not suitable because they are close to true spheres, so the packing density does not increase and the number of contact points between the particles decreases.
  • the range of the circularity of the particles is preferably from 0.75 to 0.85.
  • the method of carbonization is not particularly limited.
  • the heat treatment is performed in an atmosphere of an inert gas such as nitrogen or argon with a maximum temperature of 900 ° C. to 1500 ° C. and a holding time at the maximum temperature of longer than 0 hour and not longer than 10 hours.
  • an inert gas such as nitrogen or argon
  • the method of doing is mentioned.
  • FIG. 4 is a diagram schematically showing the relationship between the carbonization (and graphitization) temperature of the carbon material and the capacity when the carbon material is used as the negative electrode material.
  • the carbonization temperature is set to 1500 ° C.
  • the carbonization temperature is preferably 1000 ° C. or higher and 1500 ° C. or lower. This is because, when the carbonization temperature is 900 ° C. or more and less than 1000 ° C., the effect of low molecular hydrocarbons or the like is not a problem when graphitizing is performed later. This is because an increase in the irreversible capacity due to the remaining of the like.
  • a known furnace such as an Atchison furnace or a direct current heating furnace can be used.
  • the heat treatment is performed at 2300 ° C. to 2900 ° C. in a non-oxidizing atmosphere. If it is lower than 2300 ° C, the catalytic effect of the transition metal is difficult to act, so graphitization is insufficient, and if it exceeds 2900 ° C, the transition metal is removed from the inside of the crystallite and the characteristics of the raw material cannot be utilized. This temperature range is not suitable for this step.
  • the temperature increase rate for the heat treatment does not particularly affect the performance within the range of the maximum temperature increase rate and the minimum temperature increase rate in a known apparatus. In view of the temperature variation in the furnace, the particularly preferred graphitization temperature is 2400 ° C. or higher and 2800 ° C. or lower.
  • the counts of the polishing plates are # 500, # 1000, and # 2000 in this order, and finally the mirror polishing is performed using alumina (trade name: Baikalox type 0.3CR, particle size 0.3 ⁇ m, manufacturing company: Baikowski). To do.
  • the polished sample was observed using a polarizing microscope (manufactured by Nikon Corporation) at a magnification of 500 times at observation angles of 0 degrees and 45 degrees, and each image was taken into a Keyence digital microscope VHX-2000.
  • the color of the optically anisotropic domain changes depending on the orientation of the crystallite.
  • optical isotropic domains always show the same color.
  • a portion where the color does not change is extracted from the binarized image, and the area ratio of the optically isotropic portion is calculated.
  • a portion having a threshold value of 0 to 34 and a portion having a threshold value of 239 to 255 are set as pure massenders.
  • the black part was treated as a void.
  • B Measurement of transition metal content in raw material Using a Hitachi ratio beam spectrophotometer U-5100, coke as a raw material was quantitatively analyzed according to an emission spectroscopic analysis method.
  • the X-ray wide angle diffraction method is used to measure and analyze the crystallite size Lc of the graphite powder. (006) and Lc (112) were calculated.
  • the X-ray diffraction apparatus was RINT manufactured by Rigaku Corporation, the X-ray source was CuK ⁇ ray (using a K ⁇ filter monochromator), and the applied voltage and current to the X-ray tube were 40 kV and 40 mA.
  • the obtained diffraction pattern was subjected to smoothing processing and background removal on the measurement data, and then subjected to absorption correction, polarization correction, and Lorentz correction. Further, using the peak position and value width of the (422) diffraction line of the Si standard sample, the (006) diffraction line and (112) diffraction line of the graphite powder are corrected, and the crystallite size and lattice constant are calculated. did.
  • the crystallite size was calculated from the half-value width of the corrected peak using the following Scherrer equation (Equation (2)), and the lattice constant was determined by using the following formula obtained by modifying the Bragg equation: Calculated from d (006). C0 (006) can be converted by multiplying d (006) by 6. Measurement and analysis were performed 5 times each, and the average values were defined as Lc (006), Lc (112), and C0 (006).
  • Electrode sheet paste 0.1 part by mass of KF polymer L1320 (N-methylpyrrolidone (NMP) solution containing 12% by mass of polyvinylidene fluoride (PVDF)) is added to 1 part by mass of carbon material particles, and a planetary mixer is used. The mixture was kneaded to obtain a main agent stock solution.
  • KF polymer L1320 N-methylpyrrolidone (NMP) solution containing 12% by mass of polyvinylidene fluoride (PVDF)
  • NMP N-methylpyrrolidone
  • PVDF polyvinylidene fluoride
  • Electrode sheet preparation NMP was added to the main agent stock solution to adjust the viscosity, and then applied onto a high purity copper foil to a thickness of 75 ⁇ m using a doctor blade. After the coated sheet was dried, the electrode was pressed to 1 ⁇ 10 3 to 3 ⁇ 10 3 kg / cm using a small roll press. Further, this was vacuum-dried at 120 ° C. for 1 hour, and punched out for an assembly type cell 18 mm ⁇ or a laminate cell.
  • the assembly type cell was produced as follows. The following operations were performed in a dry argon atmosphere with a dew point of -80 ° C. or lower.
  • Electrode sheet paste For the negative electrode, paste preparation was performed in the same manner as the above-described single electrode evaluation.
  • the positive electrode paste was prepared as follows.
  • Electrode sheet preparation NMP was added to the main agent stock solution to adjust the viscosity, and then applied onto a high purity copper foil to a thickness of 75 ⁇ m using a doctor blade. This was pressed using a small roll press to adjust the electrode density to 2.8 g / cc. Furthermore, this sample was vacuum-dried at 120 ° C. for 1 hour, and then punched out to a predetermined size using a punching die for full-cell electrodes.
  • coke A which is petroleum non-acicular coke
  • coke B which is petroleum acicular coke
  • Table 1 shows the isotropic texture ratio, transition metal content, and vanadium content of coke A and B.
  • Coke A had much higher transition metal content, vanadium content, and nitrogen content than coke B.
  • Example 1-4 Coke A was pulverized and classified so that D50 was 10 ⁇ m, and surface treatment (application of compressive shear stress) was performed so that the circularity was 0.70, 0.82, 0.88, and 0.90, respectively. . Thereafter, heat treatment was performed at 1400 ° C. to obtain an amorphous carbon material. These samples were measured for powder physical properties and the aforementioned monopolar battery characteristics (electrode density, initial discharge, and initial efficiency). For the samples according to Examples 2, 3, and 4, the full cell cycle characteristics (cycle retention rate) were also measured.
  • Example 5-7 The samples according to Example 2 were heat-treated at 2400 ° C., 2800 ° C., and 2600 ° C., respectively, to obtain a graphitic carbon material. These samples were measured for powder physical properties and the aforementioned monopolar battery characteristics. For the samples according to Examples 5 and 6, the full cell cycle characteristics were also measured.
  • Example 8> The sample according to Example 1 was heat-treated at 2600 ° C. to obtain a graphitic carbon material. The powder physical properties and monopolar battery characteristics of this sample were measured.
  • Example 9 The sample according to Example 3 was heat-treated at 2600 ° C. to obtain a graphitic carbon material. The powder physical properties and monopolar battery characteristics of this sample were measured.
  • Example 10 The sample according to Example 4 was heat-treated at 2600 ° C. to obtain a graphitic carbon material. The powder physical properties and monopolar battery characteristics of this sample were measured.
  • Coke A was pulverized and classified so that D50 was 10 ⁇ m, and was heat-treated at 1400 ° C. without surface treatment to obtain an amorphous carbon material. This sample was measured for powder physical properties, monopolar battery characteristics, and full cell cycle characteristics.
  • Coke A was pulverized and classified so that D50 was 10 ⁇ m, and surface treatment was performed so that the circularity was 0.92. Thereafter, heat treatment was performed at 1400 ° C. to obtain an amorphous carbon material. This sample was measured for powder physical properties, single electrode battery characteristics, and full cell cycle characteristics.
  • Coke B was pulverized and classified so that D50 was 10 ⁇ m, and heat treatment was performed at 1400 ° C. without surface treatment to obtain an amorphous carbon material. This sample was measured for powder physical properties, monopolar battery characteristics, and full cell cycle characteristics.
  • Coke B was pulverized and classified so that D50 was 10 ⁇ m, and surface treatment was performed so that the circularity was 0.70 and 0.90, respectively. Thereafter, heat treatment was performed at 1400 ° C. to obtain an amorphous carbon material. The powder physical properties and monopolar battery characteristics of these samples were measured.
  • Example 6 The sample according to Example 2 was heat-treated at 2250 ° C. to obtain a graphitic carbon material. This sample was measured for powder physical properties, single electrode battery characteristics, and full cell cycle characteristics.
  • Comparative Examples 7 and 8 The samples according to Comparative Example 1 were heat-treated at 2800 ° C. and 3000 ° C., respectively, to obtain a graphitic carbon material. These samples were measured for powder physical properties, monopolar battery characteristics, and full cell cycle characteristics.
  • Comparative Example 9 The sample according to Comparative Example 2 was heat treated at 2800 ° C. to obtain a graphitic carbon material. This sample was measured for powder physical properties, single electrode battery characteristics, and full cell cycle characteristics.
  • Comparative Example 10 The sample according to Comparative Example 3 was heat-treated at 2400 ° C. to obtain a graphitic carbon material. This sample was measured for powder physical properties, monopolar battery characteristics, and full cell cycle characteristics.
  • Comparative Examples 11 and 12 The samples according to Comparative Examples 4 and 5 were each heat-treated at 2600 ° C. to obtain a graphitic carbon material. The powder physical properties and monopolar battery characteristics of these samples were measured.
  • Table 4 shows the powder properties of the graphitic carbon materials according to Example 5-10 and Comparative Example 6-12, and Table 5 shows the battery characteristics of these samples.
  • the amorphous carbon materials of Examples 1 to 4 have a circularity of 0.70, 0.82, 0.88, and 0.90, respectively, and electrode densities of 1.30, 1.33, 1.34, and It was 1.34 (g / cm 3 ).
  • the initial discharge capacities are 240, 240, 237, and 235 (mAh / g), respectively.
  • the initial efficiencies are 81%, 82%, 82%, and 81%, respectively. High cycle characteristics were maintained as unmeasured, 90%, 88% and 86%, respectively.
  • the amorphous carbon material of Comparative Example 1 has a circularity of 0.65 and an electrode density of 1.22 (g / cm 3 ), which is reduced by about 9% compared to the Example. Furthermore, the initial efficiency was 70%. This is presumably because the electrode efficiency was not increased because the surface treatment was not performed, and the initial efficiency was lowered because the surface activity was high. At this time, the capacity retention rate at 60 ° C. and 300 cycles was 82%.
  • the amorphous carbon material of Comparative Example 2 has a circularity of 0.92, an electrode density of 1.32 (g / cm 3 ), and a capacity retention rate at 60 ° C. and 300 cycles is as large as 35%. Decreased. This is presumably because the surface treatment was excessive, the electrode density was low, the contact area between the particles was small, and the conductive path was broken by the cycle.
  • the raw material coke B was used for the amorphous carbon material of Comparative Example 3, and the capacity retention rate at 60 ° C. and 300 cycles was 77%.
  • the amount of transition metal in this material is as low as 140 ppm and the amount of vanadium is as low as 3 ppm, and since the crystal growth has already progressed compared to coke A, the expansion and contraction of the material in the charge / discharge cycle is more than in the case of using coke A. It is estimated that it was big.
  • the amorphous carbon materials according to Comparative Examples 4 and 5 each use coke B as a material, and the initial efficiency is higher than the amorphous carbon materials according to Examples 1 and 4 having the same circularity. Was slightly higher, but the initial discharge was significantly less. This is presumably because the amorphous carbon materials according to Comparative Examples 4 and 5 have a small amount of lithium storage sites as the amorphous carbon material.
  • the circularity of each of Examples 5 and 6 was 0.82, Lc (006) was 20 and 26 (nm), respectively, and Lc (006) / C0 (006) was 30 and 39, respectively. .
  • the electrode density was 1.39 (g / cm 3 ), and the capacity retention ratios at 60 ° C. and 300 cycles were 87% and 85%, respectively, maintaining high cycle characteristics.
  • Examples 7, 8, 9, and 10 coke A is used as a raw material, and the circularity is 0.82, 0.70, 0.88, and 0.90, respectively.
  • the graphitization temperatures of Examples 7, 8, 9, and 10 are both 2600 ° C.
  • the electrode densities were 1.39, 1.34, 1.40, and 1.41 (g / cm 3 ), all of which were high values.
  • the initial discharges were 299, 305, 298, and 295 mAh / g, respectively, and the initial efficiencies were all 95%.
  • the degree of circularity is within an appropriate range of 0.7 or more and 0.9 or less
  • the graphitization temperature is 2600 ° C.
  • coke A having a large transition metal content is used as a material. Both initial efficiency and initial discharge showed high values.
  • Comparative Example 6 has a circularity of 0.82 as in Examples 5 and 6, and maintains a high cycle characteristic with a capacity retention rate of 86% at 60 ° C. and 300 cycles, but the heat treatment temperature is 2250.
  • Lc (006) was 16 (nm)
  • Lc (006) / C0 (006) was as low as 24, and the initial discharge capacity was greatly reduced to 270 (mAh / g).
  • the graphitic carbon material according to Comparative Example 7 has a circularity of 0.64 and an electrode density of 1.28, which is about 8 compared with the graphitic carbon materials according to Examples 5, 6, 7, and 9. % Decrease.
  • Lc (006) was 38 (nm)
  • Lc (006) / C0 (006) was 56
  • the capacity retention rate at 60 ° C. and 300 cycles was 80%. Since this material is not surface-treated, the electrode density is low. Further, it is presumed that the crystal growth is slightly due to the higher graphitization temperature than Example 5, and the cycle characteristics are slightly inferior.
  • Example 6 and Comparative Example 7 the graphitization temperature is the same at 2800 ° C., but the graphitic carbon material according to Comparative Example 7 has inferior cycle characteristics than the graphitic carbon material according to Example 6. Yes. This is thought to be due to peeling between the graphite carbon surfaces.
  • the graphitic carbon material according to Comparative Example 8 has a heat treatment temperature of 3000 ° C., Lc (006) of 50 (nm), Lc (006) / C0 (006) of 74, and 60 ° C. at 300 cycles.
  • the capacity retention rate of was 66%.
  • the circularity was 0.64 and the electrode density was 1.28. Since this material is treated at a high temperature of 3000 ° C., crystal growth progresses, particle expansion / contraction is large, and it is presumed that deterioration of cycle characteristics is remarkable.
  • the graphitic carbon material according to Comparative Example 9 had a circularity of 0.92, but an electrode density of 1.37. It is considered that the packing density was lowered because the circularity was too high. Moreover, this material was a material which cannot be charged / discharged.
  • the graphitic carbon material according to Comparative Example 10 has Lc (006) of 69 (nm), Lc (006) / C0 (006) of 102, and a capacity retention rate at 60 ° C. and 300 cycles is 81%. Met.
  • the amount of transition metal in this material is as low as 10 ppm and the amount of vanadium is as low as 3 ppm, and it is estimated that the expansion and contraction of the material in the charge / discharge cycle was greater than when using the raw material coke A.
  • the graphitic carbon materials according to Comparative Examples 11 and 12 are made of coke B, the circularity is 0.7 and 0.9, respectively, and the graphitization temperature is 2600 ° C. 10 is only different from the raw material coke.
  • Comparative Examples 11 and 12 since the coke B whose crystal growth is progressing is used as a material, it can be seen that the initial discharge is high although the initial efficiency is slightly lower than those in Examples 8 and 10.
  • the capacity retention rate at 60 ° C. and 300 cycles of the graphitic carbon materials according to Comparative Examples 11 and 12 is significantly lower than that of Examples 8 and 10. Presumed to be.
  • lithium ion 2 having excellent filling properties and cycle characteristics can be obtained. It was demonstrated that a carbon material for a secondary battery negative electrode can be produced.
  • the amorphous carbon material according to an example of the present embodiment can be effectively used for, for example, an electric storage such as a hybrid electric vehicle, solar power generation, and wind power generation.
  • the graphitic carbon material according to an example of the present embodiment can be effectively used for stationary lithium ion batteries for electric vehicles and houses, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

非晶質炭素材料は、リチウムイオン二次電池の負極材料として用いられ、円形度が0.7以上0.9以下であり、平均粒径が1μm以上30μm以下であり、遷移金属含有率の合計が700ppm以上2500ppm以下である。

Description

リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法
 本明細書に開示された技術は、リチウムイオン二次電池の負極等に使用される炭素材料、及びその製造方法に関する。
 リチウムイオン二次電池は、従来の二次電池であるニッケルカドミウム電池、ニッケル水素電池、鉛電池に比較し、軽量で高容量を有することから、ポータブル電子機器、例えば、携帯電話、ノート型パソコンなどの駆動用電源として実用化されている。
 リチウムイオン二次電池の負極には、リチウムイオンを吸蔵及び放出し得る炭素材料として黒鉛系炭素材料が一般に用いられている。
 黒鉛系材料については、リチウムイオンと電解液が同時に黒鉛層間に共挿入し、電解液の分解や黒鉛の剥離を引き起こすという問題が知られており、その解決に向けて、黒鉛のエッジ部分を優先してピッチで被覆する(特許文献1参照)、黒鉛前駆体にメカノケミカル処理を施した後、黒鉛化することで表面の結晶性を核の結晶性に比べて相対的に低くする(特許文献2参照)、などの方法が提案され、改良が重ねられている。
特開2012-46419公報 特許第4171259号公報
 ところで、フラットな放電電位を示し、高容量であることを特徴とする黒鉛材料に対し、近年、傾斜型の放電電位と入出力特性を重視する車載用電池などの用途において、非晶質系炭素材料が選択される場面が増えつつある。
 そこで、本願発明者らが先に挙げた黒鉛材料の製造過程の途中で得られる非晶質炭素材料を評価したところ、十分な初期効率及び充填性を有する非晶質炭素材料を得ることは難しかった。
 また、黒鉛材料についても、従来の方法では、初期効率やサイクル特性、及び高密度化などの特性をバランス良く高いレベルで備えた材料を得ることは難しかった。
 本発明の目的は、初期効率とサイクル特性とをバランス良く高いレベルで有し、且つ高密度化できるリチウムイオン二次電池負極用炭素材料を提供することにある。
 本願発明者らは、原料及び熱処理品に含まれる不純物量と、炭素材料表面の改質処理に伴う粒子形状の変化が充填性及び電池特性に及ぼす影響を鋭意検討した結果、本発明に想到した。
 すなわち、本発明の一実施形態に係る非晶質炭素材料は、リチウムイオン二次電池負極用であって、円形度が0.7以上0.9以下であり、平均粒径が1μm以上30μm以下であり、遷移金属含有率の合計が700ppm以上2500ppm以下である。
 さらに、この非晶質炭素材料を黒鉛化することで得られる黒鉛質炭素材料は、リチウムイオン二次電池負極用であって、円形度が0.7以上0.9以下であり、平均粒径が1μm以上30μm以下であり、X線広角回折線から算出される結晶子の大きさLc(006)が20nm以上27nm以下であり、且つ、結晶子中のリチウム吸蔵サイト量を示す値として定義したLc(006)/C0(006)が30以上40以下である。
 また、本発明の一実施形態に係るリチウムイオン二次電池負極用炭素材料の製造方法は、光学等方性組織率が75%以上、遷移金属含有率の合計が1000ppm以上2500ppm以下の石油系非針状生コークスを粉砕及び分級する工程と、粉砕及び分級された前記石油系非針状生コークスに、圧縮剪断応力を付与して前記石油系針状生コークスの円形度を0.7以上0.9以下にする工程と、圧縮剪断応力が付与された前記石油系非針状生コークスを900℃以上1500℃以下の温度で炭化して非晶質炭素材料を生成する工程とを含んでいる。
 本発明の一実施形態に係る非晶質炭素材料によれば、リチウムイオン二次電池の不可逆容量を低減でき、且つ、充填密度が高いリチウムイオン二次電池の負極を提供することができる。
 また、この非晶質炭素材料を黒鉛化して得られる黒鉛質炭素材料によれば、例えばリチウムイオン二次電池の初期効率と入出力特性、そしてサイクル特性に優れ、エネルギー密度の高いリチウムイオン二次電池の負極を提供しうる。
図1(a)は、粉砕及び分級された後、圧縮剪断処理を行った直後の生コークスを示す走査型顕微鏡画像であり、(b)は、生コークスを表面処理した後に炭化した後の非晶質炭素材料を示す走査型顕微鏡画像である。図1(c)は、図1(b)に示す非晶質炭素材料を黒鉛化して得られた黒鉛質炭素材料を示す走査型顕微鏡画像である。 図2(a)は、粉砕及び分級された後、圧縮剪断処理を受けていない生コークスを示す走査型顕微鏡画像であり、(b)は、(a)に示す生コークスを炭化した後の非晶質炭素材料を示す走査型顕微鏡画像である。図2(c)は、図2(b)に示す非晶質炭素材料を黒鉛化して得られた黒鉛質炭素材料を示す走査型顕微鏡画像である。 図3は、本実施形態の炭素材料を用いた負極を備えたリチウムイオン二次電池の一例を示す図である。 図4は、炭素材料の炭化(及び黒鉛化)温度と、当該炭素材料を負極材料として用いた場合の容量との関係を概略的に示す図である。
 本発明に係る非晶質炭素材料及び黒鉛質炭素材料、並びに当該炭素材料の製造方法と、さらに当該炭素材料を負極材料として用いたリチウムイオン二次電池について以下に説明する。なお、以下で説明するのは実施形態の一例であって、構成材料、構成材料又は部材の形状、加工や熱処理の条件等は本発明の趣旨を逸脱しない範囲において適宜変更可能である。
 -語句の定義-
 本明細書中で用いる「円形度」とは、粒子等の丸さの指標であって、次式(1)で求められる値である。
 (円形度)={4×π×(投影面の面積)}/{(周囲長)} ・・・(1)
 また、「コークスの炭化工程」とは、加熱によりコークスに含まれる揮発成分(VM)を除去する工程であり、「黒鉛化工程」とは、加熱により炭素材料の結晶構造を変化させ、黒鉛質炭素材料を生成する工程である。
  (実施形態)
 -炭素材料の説明-
 本発明の一実施形態に係る炭素材料には、非晶質炭素材料と、リチウムイオン二次電池用の負極材料として用いられる黒鉛質炭素材料とが含まれる。非晶質炭素材料は黒鉛質炭素材料を作製する際の中間体であるが、それ自体をリチウムイオン二次電池用の負極材料として用いることもできる。以下、これら炭素材料について詳細に説明する。
 まず、本実施形態に係る炭素材料は、光学等方性組織率が少なくとも75%以上であり、且つ遷移金属含有率の合計が1000ppm以上2500ppm以下、窒素含有量が1~4wt%で所定量の不純物を含有する石油系非針状生コークスを原料(前駆体)として用いて作製されている点が従来の炭素材料と異なっている。
 生コークスは、例えばディレードコーカー等のコークス化設備を用い、重質油を300℃以上700℃以下程度に加熱して熱分解・重縮合を行うことにより得られる、揮発成分を含んだ状態のコークスである。この生コークスに対し、圧縮剪断応力を付与し、熱エネルギー制御下で炭化・黒鉛化を行うことによって、炭素材料に所定の範囲の格子歪を発生させている。
 原料の光学等方性組織率及び不純物含有率と、炭化後、黒鉛化後の格子歪の発生との関係を、本願発明者らは次のように考えている。
 本実施形態に係る炭素材料の前駆体として使用するコークスは、石油系非針状生コークスであって、偏光顕微鏡で観察した断面において、光学等方性組織が均等に分散した上で75%以上存在するものである。光学等方性組織率が75%未満のコークスは結晶子が発達しすぎているために歪みを導入し難いので適さない。光学等方性組織率の算出方法は後に詳述する。
 光学等方性組織が多いということは、原料コークス中で炭素網目が積層している光学異方性組織(ドメイン)が小さく、また、その周りでは炭素網目の向きが一方向に配向していない状態を示している。このドメインの境界部は、熱処理で炭素網面が発達する過程において、結晶子の成長方向に対する空間的な制限を付与する。空間的な制限とは、結晶子の成長が、ドメイン形状を維持しようとするエネルギーにより阻害されることである。そのため、光学異方性組織率が低い、すなわち各ドメインが小さく、離れているほど結晶成長に対する空間的な制限は大きいと言える。
 ところが、材料に与えられる熱エネルギーが大きくなるに従って、高温でより安定な構造である炭素六角網面を形成する方向に反応が進行する。特に、2900℃を超えるような黒鉛化温度にまで達すると易黒鉛化炭素材料では結晶子の成長が優勢になり、光学等方性組織率が高いことによる空間的な成長阻害の効果だけでは結晶子を小さく保つのは難しくなる。
 しかし、後述する本実施形態のように、遷移金属やポルフィリン等の不純物が共存する条件下では、従来の黒鉛化に必要とされる温度よりも比較的低い温度領域で結晶子内の結晶性を高くすることができるので、結晶子サイズを小さく抑えることが可能である。従って、本実施形態の黒鉛質炭素材料によれば、個々の結晶子サイズが小さいことによって、粒子内のリチウム拡散速度を高めることが可能となり、結晶性炭素に依る容量を維持したまま高い入出力特性を得ることができる。
 さらに、炭素網目がランダムな方向に向いていることから、充放電時の結晶子の膨張及び収縮する方向が分散されて粒子の変形量が小さくなる。また、リチウムの挿入脱離経路を全方向に確保できる。これにより、充放電を繰り返しても粒子同士の電気的接点やリチウム拡散経路が保持され易くなるので、サイクル特性にも優れる黒鉛質炭素材料を得ることができる。
 さらに、本実施形態の黒鉛質炭素材料によれば、炭素網目の方向が揃っている材料に比べてリチウム拡散経路が保持されやすいので、急速充放電時にもリチウムイオンの脱離反応を速やかに生じさせることができる。このため、黒鉛質炭素材料に顕著な課題である、「急速充放電時にリチウムイオンの脱離反応が追い付かずに電池の電圧が急激に上限もしくは下限に達して反応がそれ以上進まなくなる」という現象を生じにくくすることができる。
 また、石油系非針状コークスには原油由来の不純物として、ニッケル、バナジウムを主とした遷移金属イオンがポルフィリン環の中心に配位してなる金属ポルフィリン、又は石油ポルフィリンが含まれていることが公に知られている。ここで言うポルフィリンとは、窒素を含むピロール五員環が4分子で環状に結びついたポルフィン環を基本骨格とし、側鎖などで修飾された化合物も含む。
 この金属ポルフィリンが原料コークス中で加熱されると、まず、炭素―炭素結合の形成によってポルフィリン環そのものが、配位している遷移金属イオンと共に炭素網目構造の中に取り込まれる。金属ポルフィリンは熱に対してある程度安定であるので、炭化温度程度では分解せずに炭素網目の中に残存するばかりか、周囲で炭素網目が形成される際に触媒として機能し、局所的な結晶性を高める効果をももたらす。この局所的な変化によって炭素材料の粒子内部に歪みが生じたり、リチウムを吸蔵する結晶欠陥が形成されたりすると考えられる。
 また、ポルフィリン環そのものの存在が炭素網面に大きな歪みを与える。さらに、ポルフィリン環やその内部に配位している遷移金属イオンの存在が炭素網面の電子状態に良い影響を与える、あるいは、炭素結晶化の部分的促進によって官能基を除去するなどの効果を及ぼすことによって、初期効率ひいてはサイクル特性の改善に大きく貢献していると考えられる。この金属ポルフィリンの効果は黒鉛質炭素材料だけでなく、非晶質炭素材料においても得られる。
 また、ポルフィリン環の中心部は溶媒和したリチウムイオンが容易に通れる大きさであるため、本来なら層間しか移動できないリチウムイオンがこの「穴」を通じてc軸方向にも移動することができる。この効果によって本実施形態の炭素材料は、リチウムイオン拡散性に優れると考えられる。
 この遷移金属ポルフィリンを取り込んだ非晶質炭素材料を、黒鉛化に至る程の高温で熱処理すると、ポルフィリン錯体は熱分解を起こし、窒素はほとんどが揮発する。すると、遷移金属を炭素材料中に繋ぎ止める力が弱くなって遷移金属は拡散し、沸点の低いものから揮発していく。ポルフィリン環の窒素が抜けた部分は、これを補填できるフリーの炭素が近隣にないために欠陥が保持されると思われる。揮発せずに残った遷移金属は、炭素層間(もしくは炭素平面の欠陥部)に入り込んで存在しており、リチウムが黒鉛層間に挿入され、脱離する反応には関与しないと考えられる。
 また、残った遷移金属は、層間隔の膨張及び収縮を防ぎ、構造の崩壊を防ぐピラーとして作用すると推定される。本実施形態の黒鉛質炭素材料の製造方法では、金属成分を全て揮発除去しない、比較的低温(例えば2300℃以上2900℃以下)で黒鉛化を行うことによって、敢えて金属成分を残存させている。従って、遷移金属ポルフィリンを所定量含有している原料を選択し、熱履歴を制御しながら炭化及び黒鉛化することによって、a軸、c軸方向に分布をもつ炭素材料が作製される。
 また、本実施形態に係る炭素材料(非晶質炭素材料及び黒鉛質炭素材料)は、従来の炭素材料と異なり、粉砕及び分級によって粒度が調整された生コークスに対して上式(1)で求められる円形度が0.7以上0.9以下の範囲になるように圧縮剪断応力を加えることで、作製される。円形度は粒子の投影像の輪郭がどれだけ真円に近いかを表わす指標であり、真円の場合を上限の1として投影像の周囲長が長くなるほど、すなわち凹凸が多かったり、鋭角を持つ形状であったりするほど、得られる値は低くなる。
 本実態形態に係る圧縮剪断応力による形状加工(表面処理)は、圧縮が粒子の長軸方向に対して優先的に作用するものであり、鋭角部分に丸みを導入し、また粒子表面の凹凸を滑らかにするものである。例えば原料に扁平な鱗片状の粉砕粒子を用いた場合、側面から見ると厚みが大きい楕円に、また、上から見ると破砕面の凹凸が均されてなだらかな曲面になるように行う処理を指す。なお、この圧縮剪断応力による加工により、炭素材料粒子の比表面積は小さくなる。
 炭素材料に圧縮剪断応力を始めとする力学的エネルギーを加えた場合、当該力学的エネルギーは、ドメイン内部よりもドメイン境界部に優先的に付与され、且つ吸収される。よって、ドメイン境界部が相対的に少ない熱処理品や光学的異方性組織率が高い炭素材料では、ドメイン内部に直接衝撃が伝わり、層間や炭素網目内に亀裂が入り易いと言える。層間や炭素網目内に生じた亀裂は電荷的に不安定であり、電解液の分解反応や、粒子の崩壊を引き起こす原因となる。そのため、ドメイン内部にダメージを与えずに処理が行えるように、生コークスの段階で形状加工を行うことが望ましい。
 また、所定の範囲で加温しながら力学的エネルギーを加えると適度に軟化して形状が変化し易いことも、生コークスを使用する利点の一つである。さらに、生コークスの段階で形状加工することにより、特に粒子表面で、炭素網面が発達する前の配列状態を乱す効果がもたらされる。そのため、熱処理後、その表面に均一で薄い、中心部分よりも非晶質寄りな被覆層を持つ炭素材料が得られる。
 次に、本実施形態に係る炭素材料が従来技術と異なる点として、熱履歴を制御して黒鉛化されている点が挙げられる。
 本実施形態に係る炭素材料の黒鉛化温度は、不純物として生コークスが含んでいる金属ポルフィリン由来の遷移金属が結晶内に留まり、黒鉛化触媒効果が作用し易い、2300℃以上2900℃以下である。
 以上のことから、本実施形態の炭素材料によれば、不可逆容量が少なく、体積当たりのエネルギー密度が高く、リチウムイオン拡散性と導電性に優れる負極を提供することが可能となる。また、本実施形態の炭素材料は、リチウムイオンキャパシタの負極材料としても活用でき、出力密度が高く、且つ信頼性の高いキャパシタを実現することができる。
 -炭素材料の具体構成の説明-
 上述の点を踏まえ、本実施形態の炭素材料の具体構成を、非晶質炭素材料と黒鉛質炭素材料とに分けて説明する。
(a)非晶質炭素材料の構成
 図1(a)は、粉砕及び分級され、圧縮剪断処理(すなわち表面処理)を受けた直後の生コークスを示す走査型顕微鏡画像であり、(b)は、生コークスを表面処理した後に炭化した後の非晶質炭素材料を示す走査型顕微鏡画像である。図2(a)は、粉砕及び分級された後に圧縮剪断処理を受けない場合の生コークスを示す走査型顕微鏡画像であり、(b)は、(a)に示す生コークスを炭化した後の非晶質炭素材料を示す走査型顕微鏡画像である。
 本発明の一実施形態に係る非晶質炭素材料は、円形度が0.7以上0.9以下であり、より好ましくは0.75以上0.87以下である。なお、原料である生コークスの円形度は約0.6である。
 図1(a)、(b)と図2(a)、(b)との比較から明かなように、本実施形態の非晶質炭素材料は、上述の圧縮剪断応力を受けることで鱗状の表面が丸められ、表面の凹凸も小さくなっている。
 円形度が0.7以上0.9以下であるので、この非晶質炭素材料によれば、充填密度及び電極密度を上げることができる。円形度が0.7未満であると粒子同士の引っかかりが大きくなって充填密度及び電極密度が低くなる。逆に、円形度が0.9を超えると真球に近いため充填密度が十分に上がらず、また、粒子同士の接点が少なくなるので好ましくない。この充填密度等の向上効果は、本実施形態の非晶質炭素材料をそのままリチウムイオン二次電池の負極材料として使用する場合に得られるだけでなく、当該非晶質炭素材料を中間材料として作製された黒鉛質炭素材料を負極材料として使用する場合にも得ることができる。
 また、非晶質炭素材料の平均粒径(以下、「D50」とも表記)は、例えば1μm以上30μm以下であれば好ましく、3μm以上30μm以下であればより好ましく、10μm程度であれば特に好ましい。平均粒径が1μm未満であるとコークスの粉砕に必要なエネルギーが莫大なものになるので現実的ではない一方、平均粒径が3μm以上であれば、既存の粉砕装置では効率良く粉砕することが可能となる。また、平均粒径が30μmを超えると負極を作製するために行う炭素材料のスラリー化が困難になる場合がある。なお、非晶質炭素材料には、実質的に45μmを超える粒子は含まれない。
 また、本実施形態の非晶質炭素材料において、遷移金属含有率の合計は700ppm以上2500ppm以下となっている。これは、原料として用いるコークスに遷移金属が合計1000ppm以上2500ppm以下程度含まれていることに起因する。遷移金属としては、主としてニッケルやバナジウム等が含まれる。
 また、本実施形態の非晶質炭素材料は、バナジウムを250ppm以上含有していることが好ましい。
 このように、本実施形態の非晶質炭素材料は、バナジウムを含む遷移金属を含んでいることで、高い入出力特性と優れたサイクル特性とを併せ持つ黒鉛質炭素材料の中間材料として利用可能となっている。
 また、一般的に、非晶質炭素材料は、黒鉛質炭素材料に比べて初期放電及び初期効率が低いものの、結晶性が低いため
に優れたサイクル維持率を有している。従って、本実施形態の非晶質炭素材料は、ハイブリッド自動車用のリチウムイオン二次電池等、比較的容量が小さく、急速な充放電が頻繁に行われる電池の負極材料として好ましく用いられる。
(b)黒鉛質炭素材料の構成
 図1(c)は、図1(b)に示す非晶質炭素材料を黒鉛化して得られた黒鉛質炭素材料を示す走査型顕微鏡画像であり、図2(c)は、図2(b)に示す非晶質炭素材料を黒鉛化して得られた黒鉛質炭素材料を示す走査型顕微鏡画像である。
 図1(c)から分かるように、本実施形態に係る黒鉛質炭素材料は、原料となる生コークス粒子の円形度が0.7以上0.9以下であり、より好ましくは0.75以上0.87以下である。このため、本実施形態の黒鉛質炭素材料によれば、リチウムイオン二次電池の負極材料として用いられた場合に、充填密度及び電極密度を向上させることができる。
 また、黒鉛質炭素材料の平均粒径は1μm以上30μm以下、より好ましくは3μm以上30μm以下、特に好ましくは10μmになっている。図1(a)、(b)及び図2(a)、(b)に示すように、円形度及び平均粒径は、黒鉛化の前後でほぼ変化しない。
 さらに、本実施形態の黒鉛質炭素材料のX線広角回折線から算出される結晶子の大きさLc(006)は20nm以上27nm以下であり、且つ、結晶子中のリチウム吸蔵サイト量を示す値として定義したLc(006)/C0(006)が30以上40以下となっている。このように、原料となる生コークスに圧縮剪断応力を印加していることにより、結晶子のサイズは小さく抑えられている。
 この構成によれば、粒子が大きい場合に比べて、負極材料として用いた場合に、リチウムイオンと溶媒の共挿入による電解液の分解が抑制されるだけでなく、粒子内のリチウム拡散速度を高めることが可能となり、結晶性炭素により容量を維持したまま高い入出力特性を得ることができる。
 また、本実施形態の黒鉛質炭素材料では、遷移金属含有率の合計は100ppm以上2500ppm以下、より好ましくは200ppm以上2400ppm以下となっている。また、黒鉛質炭素材料に残留する遷移金属のうちほとんどがバナジウムであり、その含有率は、100ppm以上(2500ppm以下)となっている。バナジウムの含有率は250ppm以上であることがより好ましい。
 このように、バナジウム等の遷移金属が残留していることにより、リチウムが黒鉛層間に挿入され、又は離脱する際に層間隔の膨張及び収縮が抑えられている。
 以上で説明した黒鉛質炭素材料は、各種機器用のリチウムイオン二次電池の負極材料、あるいはリチウムイオンキャパシタ用の負極材料として用いられる。一般的に、黒鉛質炭素材料は、非晶質炭素材料よりも初期放電及び初期効率が高くなっており、電池容量も大きい。従って、本実施形態の黒鉛質炭素材料は、電気自動車(EV)用のリチウムイオン二次電池等、大容量が必要とされる電池の負極材料として特に好ましく用いられる。
 -リチウムイオン二次電池の構成-
 図3は、本実施形態の炭素材料を用いた負極を備えたリチウムイオン二次電池の一例を示す図である。
 同図に示すように、本実施形態に係るリチウムイオン二次電池10は、負極11と、負極集電体12と、正極13と、正極集電体14と、負極11と正極13との間に介在するセパレータ15と、アルミニウムラミネートフィルム等で構成された外装16とを備えている。
 負極11としては、例えば、金属箔の両面又は片面に上述の本実施形態の炭素材料が塗布されたものが用いられる。この塗布された黒鉛材料の平均粒径及び円形度は、電池の製造工程の前後でほぼ変化せず、それぞれ1μm以上30μm以下、及び0.7以上0.9以下となっている。負極集電体12、正極13、正極集電体14、セパレータ15及び外装16等、負極11以外の部材の形状や構成材料については一般的なものを適用することができる。
 本実施形態に係るリチウムイオン二次電池は、上述の炭素材料が塗布された負極を有しているので、エネルギー密度が高く、不可逆容量が小さく抑えられ、且つ優れたサイクル特性を有している。
 なお、これはリチウムイオン二次電池の一例であって、各部材の形状や電極数、大きさ等は適宜変更してもよい。
 -炭素材料の製造方法-
 次に、本実施形態に係る炭素材料の製造方法について説明する。
(a)非晶質炭素材料の製造 
 まず、原料として石油系非針状生コークスを用いる。偏光顕微鏡で観察した断面において、光学等方性組織が均等に分散した上で光学等方性組織率が75%以上、より好ましくは85%以上存在し、且つ遷移金属含有率の合計が1000ppm以上2500ppm以下であり、例えば、窒素含有量が1wt%以上4wt%以下である石油系非針状生コークスを使用する。
 なお、光学等方性組織率が75%未満のコークスは、光学異方性のドメインが大きく、熱処理すると結晶子が成長しすぎるので本実施形態に係る炭素材料の原料としては適さない。
 この石油系非針状生コークスを機械式粉砕機、例えばスーパーローターミル(日清エンジニアリング社製)、ジェットミル(日本ニューマチック工業社製)等で粉砕する。非針状コークスは前述の通り、主な破断面として露出するドメイン境界部がランダムな方向を向いているため、粉砕後の形状は針状コークス粉砕品に比べるとアスペクト比が小さい。
 粉砕後の平均粒径(D50)は、1μm以上30μm以下とする。平均粒径は、レーザー回折式粒度分布計による測定に基づく。D50が1μm未満の場合は、必要な粉砕エネルギーが莫大なものになるので現実的ではない。また、D50が30μmを超えると、リチウムイオン二次電池の負極材料として適当な大きさの粒子が得られないので好ましくない。
 上記粉砕品は分級を併せて行うことができる。分級装置としては、精密空気分級機、例えば、ターボクラシファイヤー(日清エンジニアリング社製)、エルボージェット(日鉄鉱業社製)、クラッシール(セイシン企業社製)等が挙げられる。分級は粉砕後に限らず、形状加工後でも熱処理後でも適宜行うことができ、各々、後の工程に必要な粒度分布が得られるような条件で処理すればよい。
 次いで、生コークス粉末に、圧縮応力と剪断応力を付与する形状加工処理(表面処理)を行う。使用する装置としては、剪断、圧縮、衝突などの応力を同時にかけることが可能な装置を用いればよいが、特に装置の構造及び原理に限定されるものではない。例えば、回転式のボールミルなどのボール型混練機、エッジランナーなどのホイール型混練機、ハイブリダイゼーションシステム(奈良機械製作所製)、メカノフュージョン(ホソカワミクロン社製)、ノビルタ(ホソカワミクロン社製)、COMPOSI(日本コークス工業社製)などがある。特に回転するブレードの羽根とハウジングの間隙で、粉体に圧密、圧縮応力が加わる構造の装置が好ましい。処理時には粉体に加わる温度が60℃~300℃になるよう制御して行うと、生コークスに含まれる揮発分によって適度な粘着性が発生し、削られた部分が瞬時に粒子に付着する作用が働くため、形状変化が促進される。
 圧縮剪断応力による形状加工後に得られる粉体の円形度は、原料に用いる生コークスが円形度0.6程度であるため、0.7より大きく0.9以下になる。粉体の円形度は、望ましくは0.75以上0.87以下である。0.9を超える円形度まで処理した粒子では、真球に近いために充填密度が上がらず、また、粒子同士の接点が少なくなるので適さない。特に粒子の円形度の範囲が0.75以上0.85以下であることが好ましい。
 炭化の方法は特に限定されないが、例えば、窒素、アルゴンなどの不活性ガス雰囲気下で最高到達温度900℃以上1500℃以下、最高到達温度での保持時間は0時間より長く10時間以下にして熱処理する方法が挙げられる。
 900℃を下回る温度ではコークス中に残った低分子炭化水素や官能基などによって不可逆容量が大きくなり過ぎる。
 ここで、図4は、炭素材料の炭化(及び黒鉛化)温度と、当該炭素材料を負極材料として用いた場合の容量との関係を概略的に示す図である。同図に示すように、コークスを含む種々の炭素原料を炭化及び黒鉛化する場合、条件によって多少の違いはあるものの、概ね1500℃以上2000℃以下、特に1800℃以上2000℃以下で処理した場合に容量が最も低くなることが知られている。このため、本実施形態では、炭化温度の上限を1500℃としている。
 また、本実施形態の非晶質炭素材料をそのまま負極材料として使用する場合には、炭化温度が1000℃以上1500℃以下であることが好ましい。これは、炭化温度が900℃以上1000℃未満の場合、後に黒鉛化処理をする場合には低分子炭化水素等の影響が問題にならないが、そのまま負極材料として用いる場合には、低分子炭化水素等の残留による不可逆容量の増大が生じるためである。
 熱処理後の処理について、凝集状態を解消するための軽度の解砕処理程度であれば問題はないが、新たな粉砕面が出る程の強度な力を粉体に加える処理は、先の形状加工の効果が薄れてしまうので好ましくない。
 このようにして、上述の非晶質炭素材料を得ることができる。
(b)黒鉛質炭素材料の製造 
 黒鉛質炭素材料を得る場合には下記の方法で上記非晶質炭素材料を黒鉛化する。
 黒鉛化工程には、アチソン炉、直接通電加熱炉などの公知の炉を用いることができる。
 ただし、これらの炉はブリーズと称される詰め物を、製品の間に敷き詰めて通電するため、温度制御がし難く、また、場所によって温度の差異も大きなものである。本実施形態の黒鉛質炭素材料を製造するには熱履歴を制御することが重要であるので、温度制御可能なバッチ炉あるいは連続炉の使用が好ましい。
 熱処理は、非酸化雰囲気下2300℃以上2900℃以下で行う。2300℃より低いと、遷移金属の触媒効果が作用し難いために黒鉛化が不十分であり、2900℃を超えると、遷移金属が結晶子内から除去されて原料の特性が生かせないので、これらの温度範囲は本工程に適さない。熱処理のための昇温速度については、公知の装置における最速昇温速度及び最低昇温速度の範囲内では特に性能に大きく影響しない。なお、炉内における温度のバラツキを考慮に入れると、特に好ましい黒鉛化温度は2400℃以上2800℃以下である。
 黒鉛化品の処理について、炭化後と同様に、凝集状態を解消するための軽度の解砕処理程度であれば行っても問題はないが、新たな粉砕面が出る程の強度な力が粉体に加わる処理は、先の形状加工の効果が薄れてしまうので好ましくない。
 このようにして上記の黒鉛質炭素材料を得ることができる。
 以下、実施例及び比較例に基づき本出願に係る発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 -測定方法の説明-
(a)原料の光学等方性組織率の測定
 プラスチック製サンプル容器の底に少量の観察用試料を入れ、冷間埋込樹脂(商品名:冷間埋込樹脂#105、製造会社:ジャパンコンポジット(株))と硬化剤(商品名:硬化剤(M剤)、製造会社:日本油脂(株))との混合物をゆっくりと流し入れ、静置して凝固させる。次に、凝固したサンプルを取り出し、研磨板回転式の研磨機を用いて、測定する面を研磨する。研磨は、回転面に研磨面を押し付けるように行う。研磨板の回転は1000rpmとする。研磨板の番手は、#500、#1000、#2000の順に行い、最後はアルミナ(商品名:バイカロックス タイプ0.3CR,粒子径0.3μm,製造会社:バイコウスキー)を用いて鏡面研磨する。研磨したサンプルを500倍の倍率の偏光顕微鏡((株)ニコン製)を用いて、観察角度0度と45度において観測し、各画像をキーエンス製デジタルマイクロスコープVHX-2000に取り込んだ。
 取り込んだ2枚の観測画像について、それぞれ同じ地点から正方形の領域(100μm四方)を切り抜き、その範囲内の全粒子に対して以下の解析を行い、平均値を求めた。
 光学異方性ドメインは結晶子の向きにより色が変化する。一方、光学等方性ドメインは常に同じ色を示す。この性質を用いて、色が変化しない部分を二値化イメージにより抽出し、光学等方性部分の面積率を算出する。二値化する際には、しきい値が0~34の部分と239~255の部分をピュアマセンダと設定する。なお、黒色部分は空隙として扱った。
(b)原料中の遷移金属含有率の測定 
 日立レシオビーム分光光度計U-5100を用いて発光分光分析法に従って、原料となるコークスを定量分析した。
(c)原料中の窒素含有量の測定 
 JIS M8813(セミミクロケルダール法)に従って、原料となるコークス中の窒素含有量を測定した。
(d)炭素材料の遷移金属含有率の測定 
 SPS-5000(セイコー電子工業製)を用い、ICP(誘導結合高周波プラズマ発光分析)法により試料に含まれるバナジウムをはじめとする遷移金属を定量分析した。
(e)炭素材料の窒素含有量の測定 
 TC-600(LECO社製)を用い、不活性ガス搬送融解-熱伝導度法によって炭素材料中の窒素含有量を定量分析した。
(f)円形度の測定
 粒子が積層しないように、且つ扁平な粒子は扁平面がシートに平行に配列するように分散固定したシートを走査型電子顕微鏡(S-4800 日立ハイテク社製)によってシートの真上から撮影し、画像をA像くん(旭化成エンジニアリング社製)で解析した。本実施例では、粒子300個の平均値を試料の円形度とした。
(g)結晶子の大きさ及び格子定数の測定
 黒鉛粉末に、内部標準としてSi標準試料を10質量%混合し、当該混合試料をガラス製試料ホルダー(直径25mm×厚さ0.2mm)に詰め、日本学術振興会117委員会が定めた方法(炭素2006,No.221,P.52-60)に基づき、X線広角回折法で測定、解析を行い、黒鉛粉末の結晶子の大きさLc(006)及びLc(112)を算出した。X線回折装置は(株)リガク社製RINTを、X線源はCuKα線(Kβフィルターモノクロメータを使用)をそれぞれ用い、X線管球への印加電圧及び電流は40kV及び40mAとした。
 得られた回折図形について、測定データにスムージング処理及びバックグラウンド除去を施した後、吸収補正、偏光補正、Lorentz補正を施した。さらに、Si標準試料の(422)回折線のピーク位置、及び値幅を用いて、黒鉛粉末の(006)回折線及び(112)回折線に対して補正を行い、結晶子サイズならびに格子定数を算出した。なお、結晶子サイズは、補正ピークの半値幅から以下のScherrerの式(式(2))を用いて計算し、格子定数は、Braggの式を変形した以下の式を用いて求めた面間隔d(006)から計算した。C0(006)はd(006)を6倍することで換算できる。測定・解析は5回ずつ実施し、その平均値をLc(006)及びLc(112)、C0(006)とした。
  L=K×λ/(β0×cosθB) ・・・(2)(Scherrerの式)
 ここで、L:結晶サイズ(nm)
     K:形状因子定数(=1.0)
     λ:X線の波長(=0.15406nm)
     θB:ブラッグ角
     β0:半値幅(補正値)
  d=λ/(2sinθ) ・・・(3)(Braggの式を変形したもの)
 ここで、d:面間隔(nm)
     λ:測定に用いたCuKα線波長(=0.15418nm)
     θ:回折角度(補正値)
(h)平均粒子径の測定
 レーザー回折散乱式粒度分布測定装置LMS-2000e((株)セイシン企業製)を用いて測定した。
(i)ハーフセル評価用の電池作製と評価試験
 単極の電池評価は組立式セルを用いて行った。
 電極シート作製用ペースト調製:
 炭素材料粒子1質量部に呉羽化学製KFポリマーL1320(ポリビニリデンフルオダイド(PVDF)を12質量%含有したN-メチルピロリドン(NMP)溶液品)0.1質量部を加え、プラネタリーミキサーにて混練し、主剤原液とした。
 電極シート作製:
 主剤原液にNMPを加え、粘度を調整した後、高純度銅箔上にドクターブレードを用いて75μm厚に塗布した。塗布後のシートを乾燥させた後、小型ロールプレスを用いて、電極に対し1×10~3×10kg/cmとなるようにプレスした。さらにこれを120℃、1時間真空乾燥し、組立式セル用18mmφ、またはラミネートセル用に打ち抜いた。
 組立式セルの作製:
 下記のようにして組立式セルを作製した。なお、以下の操作は露点-80℃以下の乾燥アルゴン雰囲気下で実施した。
 ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、前記炭素電極と金属リチウム箔をセパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード2400)で挟み込み積層した。この積層体に、電解液(EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)を3:7の割合で混合したものを溶媒とし、これに電解質としてLiPFを1mol/Lの濃度で溶解したもの)を加えて試験用セルとした。
 単極充放電試験:
 充電は0.2Cで10mVまで定電流充電(CC充電)を行い、0.05Cまで電流が減衰したところで充電完了とした。放電は0.2Cで定電流放電(CC放電)を行い、2.5Vでカットオフした。
(j)フルセル評価用の電池作製と評価試験
 充放電サイクル評価はラミネートタイプのフルセル(正極:市販の三元系正極材、負極:本願実施例又は比較例)を用いて行った。
 電極シート作製用ペースト調製:
 負極は上述の単極評価時同様にペースト調製を行った。正極ペーストは以下のようにして調製した。
 市販の三元系正極材100質量部に対し上記KFポリマーL1320中のPVDFが4質量部、導電剤(デンカブラック;電気化学工業(株)製)を3質量部となるよう加え、プラネタリーミキサーで混練し、主剤原液とした。
 電極シート作製:
 主剤原液にNMPを加え、粘度を調整した後、高純度銅箔上にドクターブレードを用いて75μm厚に塗布した。小型ロールプレスを用いてこれをプレスし、電極密度が2.8g/ccとなるよう調整した。さらにこの試料を120℃、1時間真空乾燥し、その後フルセル電極用打ち抜き型を用いて所定のサイズに打ち抜いた。
 フルセル作製:
 露点が-40℃に管理されたドライルーム内で、ラミネートセル用に打ち抜いた正極・負極両方の電極の端子部分に超音波溶接機でタブリードを溶接し、上記電極及びセパレータをラミネートフィルムの内部に設置し、電解液注液口以外を融着した後に、前記電解液を真空含浸させた。その後、残り一辺を融着してラミネートセルを組み立てた。
 フルセルサイクル試験:
 60℃の恒温槽内で、1Cで4.1VまでのCC充電と、1Cで2.7VまでのCC放電とを1サイクルとして、300サイクル繰り返した。
 -実施例及び比較例に係る炭素材料の作製-
 下記の実施例及び比較例の原料コークスとして、石油系非針状コークスであるコークスAと、石油系針状コークスであるコークスBとを用いた。コークスA、Bの等方性組織率、遷移金属含有量、バナジウム含有量を表1に示す。コークスAは、コークスBに比べて遷移金属含有量、バナジウム含有量、窒素含有量のいずれも非常に多かった。
Figure JPOXMLDOC01-appb-T000001
 <実施例1-4>
 コークスAを、D50が10μmとなるよう粉砕及び分級し、円形度がそれぞれ0.70、0.82、0.88、0.90となるように表面処理(圧縮剪断応力の印加)を行った。その後1400℃で熱処理を行い、非晶質炭素材料を得た。これらの試料について粉体物性及び前述の単極電池特性(電極密度、初期放電、及び初期効率)を測定した。実施例2、3、4に係る試料については、フルセルサイクル特性(サイクル維持率)も測定した。
 <実施例5-7>
 実施例2に係る試料をそれぞれ2400℃、2800℃、2600℃で熱処理し、黒鉛質炭素材料を得た。これらの試料について粉体物性及び前述の単極電池特性を測定した。実施例5、6に係る試料については、フルセルサイクル特性も測定した。
 <実施例8>
 実施例1に係る試料を2600℃で熱処理し、黒鉛質炭素材料を得た。この試料について粉体物性及び単極電池特性を測定した。
 <実施例9>
 実施例3に係る試料を2600℃で熱処理し、黒鉛質炭素材料を得た。この試料について粉体物性及び単極電池特性を測定した。
 <実施例10>
 実施例4に係る試料を2600℃で熱処理し、黒鉛質炭素材料を得た。この試料について粉体物性及び単極電池特性を測定した。
 <比較例1>
 コークスAを、D50が10μmとなるよう粉砕及び分級を行い、表面処理を行わず1400℃で熱処理を行い、非晶質炭素材料を得た。この試料について粉体物性、単極電池特性及びフルセルサイクル特性を測定した。
 <比較例2>
 コークスAを、D50が10μmとなるよう粉砕及び分級を行い、円形度が0.92となるよう表面処理を行った。その後1400℃で熱処理を行い、非晶質炭素材料を得た。この試料について粉体物性及び単極電池特性、フルセルサイクル特性を測定した。
 <比較例3>
 コークスBをD50が10μmとなるよう粉砕及び分級を行い、表面処理を行わず1400℃で熱処理を行い、非晶質炭素材料を得た。この試料について粉体物性、単極電池特性及びフルセルサイクル特性を測定した。
 <比較例4、5>
 コークスBを、D50が10μmとなるよう粉砕及び分級し、円形度がそれぞれ0.70、0.90となるように表面処理を行った。その後1400℃で熱処理を行い、非晶質炭素材料を得た。これらの試料について粉体物性及び単極電池特性を測定した。
 <比較例6>
 実施例2に係る試料を2250℃で熱処理し、黒鉛質炭素材料を得た。この試料について粉体物性及び単極電池特性、フルセルサイクル特性を測定した。
 <比較例7、8>
 比較例1に係る試料をそれぞれ2800℃、3000℃で熱処理し、黒鉛質炭素材料を得た。これらの試料について粉体物性、単極電池特性及びフルセルサイクル特性を測定した。
 <比較例9>
 比較例2に係る試料を2800℃で熱処理し、黒鉛質炭素材料を得た。この試料について粉体物性、単極電池特性、及びフルセルサイクル特性を測定した。
 <比較例10>
 比較例3に係る試料を2400℃で熱処理し、黒鉛質炭素材料を得た。この試料について粉体物性、単極電池特性及びフルセルサイクル特性を測定した。
 <比較例11、12>
 比較例4、5に係る試料をそれぞれ2600℃で熱処理し、黒鉛質炭素材料を得た。これらの試料について粉体物性及び単極電池特性を測定した。
 -試験結果と考察-
 実施例1-4、及び比較例1-5に係る非晶質炭素材料の粉体物性を表2に、また、それら試料の電池特性を表3にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例5-10、及び比較例6-12に係る黒鉛質炭素材料の粉体物性を表4に、それら試料の電池特性を表5にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~4の非晶質炭素材料は円形度がそれぞれ0.70、0.82、0.88、0.90であり、電極密度はそれぞれ1.30、1.33、1.34、1.34(g/cm)であった。また、初期放電容量はそれぞれ240、240、237、235(mAh/g)であり、初期効率はそれぞれ81%、82%、82%、81%であり、60℃300サイクルでの容量維持率はそれぞれ未測定、90%、88%、86%と高サイクル特性が維持されていた。
 一方、比較例1の非晶質炭素材料は、円形度が0.65であり、電極密度が1.22(g/cm)、であり、実施例と比較して約9%減少し、さらに初期効率が70%であった。これは、表面処理を行っていないために電極密度が上がらず、さらに表面活性が高いため初期効率が低下したからと考えられる。なお、このときの60℃、300サイクルでの容量維持率は82%であった。
 比較例2の非晶質炭素材料は、円形度が0.92であり、電極密度は1.32(g/cm)であり、60℃、300サイクルでの容量維持率は35%と大幅に減少した。これは、表面処理が過剰であったため電極密度が低くなり、粒子同士の接触面積が小さく、サイクルによる導電パスの断裂が進んだためと推測される。
 比較例3の非晶質炭素材料は、原料コークスBを用いており、60℃、300サイクルでの容量維持率は77%であった。本材料中の遷移金属量は140ppm、バナジウム量は3ppmと低く、コークスAよりもすでに結晶成長が進んでいる材料であるため、充放電サイクルにおける材料の膨張収縮がコークスAを用いた場合よりも大きかったと推測される。
 また、比較例4、5に係る非晶質炭素材料は、それぞれコークスBを材料として用いており、円形度がそれぞれ同じである実施例1、4に係る非晶質炭素材料と比べて初期効率は若干高かったものの、初期放電は大幅に少なかった。これは、比較例4、5に係る非晶質炭素材料では、非晶質炭素材料としてのリチウム吸蔵サイトの量が少ないからであると考えられる。
 また、実施例5、6の円形度は共に0.82であり、Lc(006)はそれぞれ20、26(nm)であり、Lc(006)/C0(006)はそれぞれ30、39であった。また、電極密度はともに1.39(g/cm)であり、60℃、300サイクルでの容量維持率はそれぞれ87%、85%と高サイクル特性が維持されていた。
 実施例7、8、9、10は、共にコークスAを原料とし、円形度はそれぞれ0.82、0.70、0.88、0.90となっている。実施例7、8、9、10の黒鉛化温度は共に2600℃である。これらの実施例に係る黒鉛質炭素材料では、電極密度はそれぞれ1.39、1.34、1.40、1.41(g/cm)といずれも高い値となっていた。また、初期放電はそれぞれ299、305、298、295mAh/gであり、初期効率はいずれも95%であった。これら実施例では、円形度が0.7以上0.9以下と適切な範囲内にあり、黒鉛化温度も2600℃であり、遷移金属の含有量が大きいコークスAを材料として用いているので、初期効率及び初期放電は共に高い値を示した。
 一方、比較例6は実施例5、6と同様円形度が0.82であり、60℃、300サイクルでの容量維持率も86%と高サイクル特性を維持しているが、熱処理温度が2250℃であり、Lc(006)は16(nm)であり、Lc(006)/C0(006)は24と低く、初期放電容量が270(mAh/g)と大幅に減少していた。
 比較例7に係る黒鉛質炭素材料は、円形度が0.64であり、電極密度が1.28であり、実施例5、6、7、9に係る黒鉛質炭素材料と比較して約8%減少していた。また、Lc(006)は38(nm)であり、Lc(006)/C0(006)は56であり、60℃、300サイクルでの容量維持率は80%であった。本材料は表面処理を行っていないため電極密度が低い。さらに、実施例5よりも黒鉛化温度が高い分、僅かに結晶成長しており、サイクル特性もやや劣っていると推測される。また、実施例6と比較例7では、黒鉛化温度が2800℃で同一であるが、比較例7に係る黒鉛質炭素材料では、実施例6に係る黒鉛質炭素材料よりもサイクル特性が劣っている。これは、黒鉛炭素面間の剥離によるものと考えられる。
 比較例8に係る黒鉛質炭素材料は、熱処理温度が3000℃であり、Lc(006)は50(nm)であり、Lc(006)/C0(006)は74であり、60℃300サイクルでの容量維持率は66%であった。また、円形度は0.64であり、電極密度は1.28であった。本材料は3000℃という高温処理のため、結晶成長が進み、粒子の膨張収縮が大きく、サイクル特性の劣化が顕著だったと推測される。
 比較例9に係る黒鉛質炭素材料は、円形度が0.92であったが、電極密度が1.37だった。円形度が高すぎて充填密度が下がったと考えられる。また、本材料は充放電できない材料であった。
 比較例10に係る黒鉛質炭素材料は、Lc(006)が69(nm)であり、Lc(006)/C0(006)は102であり、60℃、300サイクルでの容量維持率は81%であった。本材料中の遷移金属量は10ppm、バナジウム量は3ppmと低く、結晶成長が進んでいる材料であるため、充放電サイクルにおける材料の膨張収縮が原料コークスAを用いた場合よりも大きかったと推測される。
 また、比較例11、12に係る黒鉛質炭素材料は、コークスBを材料としており、円形度はそれぞれ0.7、0.9、黒鉛化温度は共に2600℃となっており、実施例8、10とは原料コークスが異なるだけとなっている。比較例11、12では、結晶成長が進んでいるコークスBを材料としているので、実施例8、10に比べて初期効率は若干低いものの、初期放電は高くなっていることが分かる。しかしながら、比較例8、10に係る黒鉛質炭素材料の測定結果から比較例11、12に係る黒鉛質炭素材料の60℃、300サイクルでの容量維持率は実施例8、10に比べて大きく落ちるものと推測される。
 以上のように、原料及び熱処理品に一定以上含まれる不純物量と、炭素材料表面の改質処理に伴う粒子形状、及び熱処理温度を制御することにより、充填性及びサイクル特性に優れたリチウムイオン二次電池負極用炭素材料が製造できることが実証された。
 本実施形態の一例に係る非晶質炭素材料は、例えばハイブリッド電気自動車や、太陽光発電、風力発電などの蓄電などに有効に利用できる。また、本実施形態の一例に係る黒鉛質炭素材料は、例えば電気自動車用、住宅向けなどの定置用リチウムイオン電池などに有効に利用できる。
10   リチウムイオン二次電池
11   負極
12   負極集電体
13   正極
14   正極集電体
15   セパレータ
16   外装

Claims (12)

  1.  円形度が0.7以上0.9以下であり、
     平均粒径が1μm以上30μm以下であり、
     遷移金属含有率の合計が700ppm以上2500ppm以下である、リチウムイオン二次電池負極用の非晶質炭素材料。
  2.  請求項1に記載のリチウムイオン二次電池負極用の非晶質炭素材料において、
     バナジウムを250ppm以上含有している、リチウムイオン二次電池負極用の非晶質炭素材料。
  3.  円形度が0.7以上0.9以下であり、平均粒径が1μm以上30μm以下であり、
     遷移金属含有率の合計は100ppm以上2500ppm以下である、リチウムイオン二次電池負極用の黒鉛質炭素材料。
  4.  請求項3に記載のリチウムイオン二次電池負極用の黒鉛質炭素材料において、
     X線広角回折線から算出される結晶子の大きさLc(006)が20nm以上27nm以下であり、且つ、結晶子中のリチウム吸蔵サイト量を示す値として定義したLc(006)/C0(006)が30以上40以下である、リチウムイオン二次電池負極用の黒鉛質炭素材料。
  5.  請求項3又は4に記載のリチウムイオン二次電池負極用の黒鉛質炭素材料において、
     バナジウムを100ppm以上含有している、リチウムイオン二次電池負極用の黒鉛質炭素材料。
  6.  光学等方性組織率が75%以上、遷移金属含有率の合計が1000ppm以上2500ppm以下の石油系非針状生コークスを粉砕及び分級する工程と、
     粉砕及び分級された前記石油系非針状生コークスに、圧縮剪断応力を付与して前記石油系針状生コークスの円形度を0.7以上0.9以下にする工程と、
     圧縮剪断応力が付与された前記石油系非針状生コークスを900℃以上1500℃以下の温度で炭化して非晶質炭素材料を生成する工程とを含む、リチウムイオン二次電池負極用炭素材料の製造方法。
  7.  請求項6に記載のリチウムイオン二次電池負極用炭素材料の製造方法において、
     前記石油系非針状生コークスを炭化する工程では、前記石油系非針状生コークスを、1000℃以上1500℃以下の温度で炭化する、リチウムイオン二次電池負極用炭素材料の製造方法。
  8.  請求項6又は7に記載のリチウムイオン二次電池負極用炭素材料の製造方法において、
     前記非晶質炭素材料に、2300℃以上2900℃以下の温度を加えて黒鉛質炭素材料を生成する工程をさらに含む、リチウムイオン二次電池負極用炭素材料の製造方法。
  9.  請求項8に記載のリチウムイオン二次電池負極用炭素材料の製造方法において、
     前記黒鉛質炭素材料に含まれる遷移金属の含有率の合計が、100ppm以上2500ppm以下である、リチウムイオン二次電池負極用炭素材料の製造方法。
  10.  請求項7~9のうちいずれか1つに記載のリチウムイオン二次電池負極用炭素材料の製造方法において、
     粉砕及び分級される前記石油系非針状生コークスの窒素含有率は、1wt%以上4wt%以下である、リチウムイオン二次電池負極用炭素材料の製造方法。
  11.  請求項7~10のうちいずれか1つに記載のリチウムイオン二次電池負極用炭素材料の製造方法において、
     粉砕及び分級される前の前記石油系非針状生コークスの光学等方性組織率は85%以上である、リチウムイオン二次電池負極用炭素材料の製造方法。
  12.  請求項1又は2に記載のリチウムイオン二次電池負極用の非晶質炭素材料、又は請求項3~5のうちいずれか1つに記載のリチウムイオン二次電池負極用の黒鉛質炭素材料が負極材料として用いられている、リチウムイオン二次電池。
PCT/JP2014/001632 2013-03-28 2014-03-20 リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法 WO2014156098A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157030389A KR20150138265A (ko) 2013-03-28 2014-03-20 리튬이온 이차전지 음극용 비정질 탄소재료 및 흑연질 탄소재료, 이들을 이용한 리튬이온 이차전지, 및 리튬이온 이차전지 음극용 탄소재료의 제조방법
US14/780,880 US20160056464A1 (en) 2013-03-28 2014-03-20 Amorphous Carbon Material And Graphite Carbon Material For Negative Electrodes Of Lithium Ion Secondary Batteries, Lithium Ion Secondary Battery Using Same, And Method For Producing Carbon Material For Negative Electrodes Of Lithium Ion Secondary Batteries
EP14772668.1A EP2960972A4 (en) 2013-03-28 2014-03-20 AMORPHOUS CARBON MATERIAL AND GRAPHITE CARBON MATERIAL FOR NEGATIVE ELECTRODES OF LITHIUM-ION SECONDARY BATTERIES, LITHIUM-ION SECONDARY BATTERY USING SAME, AND PROCESS FOR PRODUCING CARBON MATERIAL FOR NEGATIVE ELECTRODES OF LITHIUM-ION SECONDARY BATTERIES
CN201480018903.0A CN105144442A (zh) 2013-03-28 2014-03-20 锂离子二次电池负极用非晶质碳材料和石墨质碳材料、用这些材料制成的锂离子二次电池、以及锂离子二次电池负极用碳材料的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013070015A JP2014194852A (ja) 2013-03-28 2013-03-28 リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法
JP2013-070015 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014156098A1 true WO2014156098A1 (ja) 2014-10-02

Family

ID=51623112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001632 WO2014156098A1 (ja) 2013-03-28 2014-03-20 リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法

Country Status (7)

Country Link
US (1) US20160056464A1 (ja)
EP (1) EP2960972A4 (ja)
JP (1) JP2014194852A (ja)
KR (1) KR20150138265A (ja)
CN (1) CN105144442A (ja)
TW (1) TW201445799A (ja)
WO (1) WO2014156098A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287078B2 (ja) * 2013-11-05 2018-03-07 戸田工業株式会社 ケイ素含有非晶質炭素材料及びリチウムイオン二次電池の製造方法
CN110168787B (zh) * 2017-01-06 2022-05-03 昭和电工材料株式会社 锂离子二次电池用负极材、锂离子二次电池用负极和锂离子二次电池
KR20190019430A (ko) * 2017-08-17 2019-02-27 주식회사 포스코 리튬 이차 전지용 음극 활물질의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102301644B1 (ko) * 2020-12-21 2021-09-10 주식회사 포스코 리튬 이차전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN112830784B (zh) * 2021-01-20 2022-07-22 郑州大学 一种玻璃碳体材料及其制备方法
JP7280914B2 (ja) * 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
CN117935995A (zh) * 2024-03-21 2024-04-26 江苏众钠能源科技有限公司 用于离子电池的硬碳材料筛选方法和装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263612A (ja) * 1998-03-18 1999-09-28 Kansai Coke & Chem Co Ltd 鱗片状天然黒鉛改質粒子、その製造法、および二次電池
JP2004063456A (ja) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp 電極用炭素材料の製造方法
JP2005050807A (ja) * 2003-07-16 2005-02-24 Kansai Coke & Chem Co Ltd リチウムイオン二次電池用負極材料およびその製造方法、並びに、該負極材料を使用したリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2005158718A (ja) * 2003-10-31 2005-06-16 Showa Denko Kk 電池電極用炭素材料、その製造方法及び用途
JP2007172901A (ja) * 2005-12-20 2007-07-05 Showa Denko Kk 黒鉛材料、電池電極用炭素材料、及び電池
JP4171259B2 (ja) 2001-09-26 2008-10-22 Jfeケミカル株式会社 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP2009184915A (ja) * 2000-10-25 2009-08-20 Hydro Quebec ポテト形状で、表面に不純物が僅かな割合でしか存在しないグラファイト粒子、およびその製法
JP2009238584A (ja) * 2008-03-27 2009-10-15 Hitachi Chem Co Ltd リチウムイオン二次電池負極用炭素粒子、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2010110441A1 (ja) * 2009-03-27 2010-09-30 三菱化学株式会社 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池
JP2012046419A (ja) 2007-01-31 2012-03-08 Chuo Denki Kogyo Co Ltd 炭素材料の製造方法
WO2013051564A1 (ja) * 2011-10-04 2013-04-11 戸田工業株式会社 球形炭素材及び球形炭素材の製造方法
WO2013058347A1 (ja) * 2011-10-21 2013-04-25 昭和電工株式会社 リチウムイオン電池用電極材料の製造方法
WO2014002477A1 (ja) * 2012-06-29 2014-01-03 エム・ティー・カーボン株式会社 リチウムイオン二次電池負極用の黒鉛材料、それを用いたリチウムイオン二次電池及びリチウムイオン二次電池用の黒鉛材料の製造方法
WO2014046144A1 (ja) * 2012-09-19 2014-03-27 三菱化学株式会社 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023616A (ja) * 1999-07-08 2001-01-26 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極材料およびその製造方法
JP4781659B2 (ja) * 2003-11-06 2011-09-28 昭和電工株式会社 負極材料用黒鉛粒子、その製造方法及びそれを用いた電池
JP5242210B2 (ja) * 2008-03-24 2013-07-24 新日鉄住金化学株式会社 非水電解質二次電池負極用活物質および非水電解質二次電池の製造方法
JP5173555B2 (ja) * 2008-04-24 2013-04-03 Jfeケミカル株式会社 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263612A (ja) * 1998-03-18 1999-09-28 Kansai Coke & Chem Co Ltd 鱗片状天然黒鉛改質粒子、その製造法、および二次電池
JP2009184915A (ja) * 2000-10-25 2009-08-20 Hydro Quebec ポテト形状で、表面に不純物が僅かな割合でしか存在しないグラファイト粒子、およびその製法
JP4171259B2 (ja) 2001-09-26 2008-10-22 Jfeケミカル株式会社 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP2004063456A (ja) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp 電極用炭素材料の製造方法
JP2005050807A (ja) * 2003-07-16 2005-02-24 Kansai Coke & Chem Co Ltd リチウムイオン二次電池用負極材料およびその製造方法、並びに、該負極材料を使用したリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2005158718A (ja) * 2003-10-31 2005-06-16 Showa Denko Kk 電池電極用炭素材料、その製造方法及び用途
JP2007172901A (ja) * 2005-12-20 2007-07-05 Showa Denko Kk 黒鉛材料、電池電極用炭素材料、及び電池
JP2012046419A (ja) 2007-01-31 2012-03-08 Chuo Denki Kogyo Co Ltd 炭素材料の製造方法
JP2009238584A (ja) * 2008-03-27 2009-10-15 Hitachi Chem Co Ltd リチウムイオン二次電池負極用炭素粒子、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2010110441A1 (ja) * 2009-03-27 2010-09-30 三菱化学株式会社 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池
WO2013051564A1 (ja) * 2011-10-04 2013-04-11 戸田工業株式会社 球形炭素材及び球形炭素材の製造方法
WO2013058347A1 (ja) * 2011-10-21 2013-04-25 昭和電工株式会社 リチウムイオン電池用電極材料の製造方法
WO2014002477A1 (ja) * 2012-06-29 2014-01-03 エム・ティー・カーボン株式会社 リチウムイオン二次電池負極用の黒鉛材料、それを用いたリチウムイオン二次電池及びリチウムイオン二次電池用の黒鉛材料の製造方法
WO2014046144A1 (ja) * 2012-09-19 2014-03-27 三菱化学株式会社 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARBON, 2006, pages 52 - 60
See also references of EP2960972A4 *

Also Published As

Publication number Publication date
US20160056464A1 (en) 2016-02-25
KR20150138265A (ko) 2015-12-09
CN105144442A (zh) 2015-12-09
EP2960972A4 (en) 2016-02-17
JP2014194852A (ja) 2014-10-09
TW201445799A (zh) 2014-12-01
EP2960972A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
US20200185721A1 (en) Carbon material and nonaqueous secondary battery using carbon material
WO2014156098A1 (ja) リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法
KR102324577B1 (ko) 리튬 이온 2 차 전지용 부극 활물질 및 그 제조 방법
JP5269231B1 (ja) リチウムイオン二次電池負極用の黒鉛材料、それを用いたリチウムイオン二次電池及びリチウムイオン二次電池用の黒鉛材料の製造方法
CN115571875A (zh) 碳材料、碳材料的制造方法、以及使用了碳材料的非水系二次电池
JP6906891B2 (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
WO1997018160A1 (fr) Materiau de cathode pour accumulateur au lithium, procede de fabrication associe et accumulateur utilisant ledit materiau
JP6617403B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP2007039290A (ja) 非水系二次電池用負極材料に適した炭素粉末
JP2016110969A (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP2014067639A (ja) 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池
JP2016178074A (ja) 炭素材、及び、非水系二次電池
Xiao et al. Green & efficient regeneration of graphite anode from spent lithium ion batteries enabled by asphalt coating
JP6736845B2 (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP2018170247A (ja) リチウム二次電池用複合活物質およびその製造方法
WO2015068361A1 (ja) ケイ素含有非晶質炭素材料及びその製造方法、リチウムイオン二次電池
JP6379565B2 (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池
JP2014067636A (ja) 非水系二次電池負極用複合炭素材、及び負極並びに、非水系二次電池
JP6801171B2 (ja) 炭素材、及び、非水系二次電池
JP2015219989A (ja) リチウムイオン2次電池用負極活物質およびその製造方法
Zhang et al. Synthesis of porous Si/C by pyrolyzing toluene as anode in lithium-ion batteries with excellent lithium storage performance
JP6993216B2 (ja) ケイ素含有非晶質炭素材料、リチウムイオン二次電池
JP2016184581A (ja) 非水系二次電池用負極材の製造方法
JP7009049B2 (ja) リチウムイオン二次電池負極用炭素材料、その中間体、その製造方法、及びそれを用いた負極又は電池
JP6672755B2 (ja) 炭素材、及び、非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018903.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014772668

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14780880

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157030389

Country of ref document: KR

Kind code of ref document: A