WO2014153973A1 - 一种抗电势诱导衰减的太阳能电池的制备工艺 - Google Patents

一种抗电势诱导衰减的太阳能电池的制备工艺 Download PDF

Info

Publication number
WO2014153973A1
WO2014153973A1 PCT/CN2013/087918 CN2013087918W WO2014153973A1 WO 2014153973 A1 WO2014153973 A1 WO 2014153973A1 CN 2013087918 W CN2013087918 W CN 2013087918W WO 2014153973 A1 WO2014153973 A1 WO 2014153973A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
thickness
refractive index
preparation process
Prior art date
Application number
PCT/CN2013/087918
Other languages
English (en)
French (fr)
Inventor
鲁伟明
钱晓峰
初仁龙
符欣
庄飞
闫路
王启战
***
费存勇
郑直
Original Assignee
泰通(泰州)工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰通(泰州)工业有限公司 filed Critical 泰通(泰州)工业有限公司
Publication of WO2014153973A1 publication Critical patent/WO2014153973A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of solar cells, and more particularly to a process for preparing a solar cell resistant to potential induced attenuation.
  • BACKGROUND OF THE INVENTION Potential-induced attenuation was first discovered by Sunpower in 2005.
  • the solar cell module has long been exposed to high voltage, causing leakage current between the glass and the encapsulation material.
  • a large amount of electric charge is accumulated on the surface of the cell sheet, which deteriorates the passivation effect on the surface of the cell, resulting in an open circuit voltage, a short circuit current and a reduced fill factor, and the component is made. Performance is below design standards.
  • SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide a solar cell manufacturing process capable of ensuring stable performance of a photovoltaic module in a high-voltage working environment.
  • a process for preparing a solar cell resistant to potential induced attenuation comprising the steps of: (a) cleaning a silicon wafer, removing a damage layer, (b) placing the silicon wafer in a tube diffusion furnace for diffusion; (c) removing the diffused silicon wafer from the phosphorous silica glass and the back junction; (d) growing a layer of silicon dioxide on the surface of the emitter, A layer of silicon nitride is deposited, or a silicon nitride passivation antireflection layer is deposited directly on the surface of the emitter; (e) screen printed back electrode and front side electrode; (f) sintered and tested for sorting.
  • the step (d) of growing silicon dioxide is thermal oxidation, plasma vapor deposition, chemical oxidation or UV oxidation.
  • the step (d) grows silica to have a thickness of 5-40 nm.
  • the specific process steps of the step (d) are as follows:
  • silicon nitride film and ammonia gas filling silicon nitride film and ammonia gas to deposit silicon nitride film at a temperature of 375 ° C to 500 ° C, a flow ratio of silicon germanium to ammonia gas of 0.4 to 0.06, a thickness of 40 to 85 nm, and a refractive index of 2.0 ⁇ 2.2.
  • the step (d) controls the total thickness of the silicon oxide film and the silicon nitride film in the silicon nitride layer grown on the surface of the silicon oxide to be 75-85 nm.
  • the silicon nitride passivation antireflection layer deposited directly on the emitter surface in the step (d) may be a single layer film or a multilayer film or a gradient film; the single layer film has a refractive index greater than 2.1, the thickness is 40 ⁇ 75nm ; the refractive index of the first film of the double film is greater than 2.4, the thickness is 20 ⁇ 30nm, the refractive index of the second film is 2.1 ⁇ 2.4, the thickness is 50 ⁇ 60nm ; the third film is a refractive index of more than 2.5, a thickness of 10 to 20 nm, a refractive index of the second film of 2.2 to 2.5, a thickness of 20 to 30 nm, a refractive index of the third film of 2.0 to 2.2, a thickness of 30 to 40 nm ; a gradient The refractive index of the film is from 2.5 to 2.1 from the bottom to the top, and the thickness is from thin to thick.
  • the present invention is advantageous in that: the preparation process of the solar cell with resistance to potential-induced attenuation can improve the resistance to potential-induced attenuation of the solar cell and its fabricated components, thereby ensuring that the component is high. Stable performance in voltage working environments. detailed description:
  • the silicon wafer is cleaned, the damaged layer is removed, and the velvet is removed; the silicon wafer is placed in a tube diffusion furnace for diffusion, the diffusion resistance is 50 ⁇ / ⁇ , and the junction depth is 0.35 ⁇ ; the diffused silicon wafer is removed from the phosphorous silicon glass and Removing the back junction; depositing a silicon nitride passivation antireflection layer on the emitter surface; the antireflection layer is a single layer film, thickness 70nm, refraction The rate was 2.2; screen printed front and back electrodes; sintered and tested for sorting.
  • the silicon wafer is cleaned, the layer is damaged, and the velvet is removed; the silicon wafer is placed in a tube diffusion furnace for diffusion, the diffusion resistance is 55 ⁇ / ⁇ , and the junction depth is 0.30 ⁇ ; the diffused silicon wafer is removed from the phosphorous silicon glass and Removing the back junction; depositing a silicon nitride passivation antireflection layer on the emitter surface; the antireflection layer is a two-layer film, the first film has a thickness of 20 nm, a refractive index of 2.5, and the thickness of the second film is 50 nm, and the refractive index 2.1; screen printed front and back electrodes; sintered and tested for sorting.
  • the silicon wafer is cleaned, the damaged layer is removed, and the velvet is removed; the silicon wafer is placed in a tube diffusion furnace for diffusion, the diffusion resistance is 50 ⁇ / ⁇ , and the junction depth is 0.35 ⁇ ; the diffused silicon wafer is removed from the phosphorous silicon glass and Removing the back junction; depositing a silicon nitride passivation anti-reflection layer on the emitter surface; the anti-reflection layer is a three-layer film, the first film has a thickness of 10 nm, a refractive index of 2.5, and the thickness of the second film is 20 nm, and the refractive index 2.2; the third film has a thickness of 40 n and a refractive index of 2.1; screen printed front and back electrodes; sintered and tested for sorting.
  • the silicon wafer is cleaned, the damaged layer is removed, and the velvet is removed; the silicon wafer is placed in a tube diffusion furnace for diffusion, the diffusion resistance is 60 ⁇ / ⁇ , and the junction depth is 0.35 ⁇ ; the diffused silicon wafer is removed from the phosphorous silicon glass and The back junction is removed; the silicon nitride passivation antireflection layer is deposited on the emitter surface; the antireflection layer is a three layer film, the first film has a thickness of 30 nm, the refractive index is 2.4, and the thickness of the second film is 30 nm. 2.2; the third film has a thickness of 10 n and a refractive index of 2.0; screen printed front and back electrodes; sintered and tested for sorting.
  • the silicon wafer is cleaned, the damaged layer is removed, and the fleece is removed; the silicon wafer is placed in a tube diffusion furnace for diffusion, the diffusion resistance is 65 ⁇ / ⁇ , and the junction depth is 0.35 ⁇ ; the diffused silicon wafer is removed from the phosphorous silicon glass and Remove the back knot;
  • the surface of the emitter is thermally grown with a layer of silicon dioxide having a thickness of 15 nm; a silicon nitride passivation antireflection layer is deposited on the silicon dioxide film; the antireflection layer is a gradient film, and the refractive index is decreased from bottom to top from 2.5. To 2.0, the total thickness is 60 nm; the front electrode and the back electrode are printed from the screen; sintered and tested for sorting.
  • the silicon wafer is cleaned, the damaged layer is removed, and the velvet is removed; the silicon wafer is placed in a tube diffusion furnace for diffusion, the diffusion resistance is 85 ⁇ / port, and the junction depth is 0.35 ⁇ ⁇ ; the diffused silicon wafer is removed. Phosphorus glass and removing the back junction; depositing a layer of silicon dioxide on the surface of the emitter with a thickness of 15 nm; depositing a silicon nitride passivation antireflection layer on the silicon dioxide film; the antireflection layer is a single layer film, refractive index 2 10, total thickness of 60 nm ; screen printed front and back electrodes; sintered and tested for sorting.
  • the preparation process of the solar cell with anti-potential induced attenuation can improve the resistance to potential-induced attenuation of the solar cell and its fabricated components, thereby ensuring the stability of the component in a high-voltage working environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种抗电势诱导衰减的太阳能电池的制备工艺,包括如下步骤:(a)将硅片清洗,去损伤层,制绒;(b)将硅片放入管式扩散炉中,进行扩散;(c)将扩散后的硅片去除磷硅玻璃和背结;(d)在发射极表面生长一层二氧化硅,再沉积一层氮化硅,或者直接在发射极表面沉积氮化硅钝化减反射层;(e)丝网印刷背电极和正面电极;(f)烧结并测试分选。这种抗电势诱导衰减的太阳能电池的制备工艺可以提高太阳能电池及其制成的组件的抗电势诱导衰减的能力,从而保证组件在高电压工作环境中性能的稳定。

Description

说 明 书 一种抗电势诱导衰减的太阳能电池的制备工艺 技术领域: 本发明涉及太阳能电池领域, 尤其涉及一种抗电势诱导衰减的太阳能电池 的制备工艺。 背景技术: 电势诱导衰减最早是 Sunpower在 2005年发现的。 太阳能电池组件长期在 高电压作用下使得玻璃, 封装材料之间存在漏电流, 大量电荷聚集在电池片表 面, 使得电池表面的钝化效果恶化, 导致开路电压, 短路电流和填充因子降低, 使组件性能低于设计标准。 发明内容: 本发明所要解决的技术问题是, 提供一种能够保证光伏组件在高压工作环 境中性能稳定的一种抗电势诱导衰减的太阳能电池的制备工艺。
为了解决上述技术问题, 本发明是通过以下技术方案实现的: 一种抗电势 诱导衰减的太阳能电池的制备工艺, 其特征是, 包括如下步骤: (a) 将硅片清 洗, 去损伤层, 制绒; (b ) 将硅片放入管式扩散炉中, 进行扩散; (c ) 将扩散 后的硅片去除磷硅玻璃和背结; (d ) 在发射极表面生长一层二氧化硅, 再沉积 一层氮化硅, 或者直接在发射极表面沉积氮化硅钝化减反射层; (e ) 丝网印刷 背电极和正面电极; (f ) 烧结并测试分选。
优选的, 所述步骤 (b ) 中扩散后的方阻值为 50〜80 Ω /口, 结深为 0. 25〜
0. 35 μ πι。
优选的, 所述步骤 (d) 生长二氧化硅的方法为热氧化、 等离子体气相沉积 法、 化学氧化法或 UV氧化法。
优选的, 所述步骤 (d) 生长二氧化硅的厚度为 5_40nm。 优选的, 所述步骤 (d) 的具体工艺步骤如下:
(1) 将扩散后的硅片放入石墨舟上;
(2) 充入氨气进行表面轰击;
(3)充入硅垸和氨气进行氮化硅薄膜的沉积, 温度为 375°C〜500°C, 硅垸 和氨气的流量比为 0.4〜0.06, 厚度为 40〜85nm, 折射率为 2.0〜2.2。
优选的, 所述步骤 (d) 在氧化硅表面生长的氮化硅层中氧化硅膜和氮化硅 膜总厚度控制在 75_85nm。
优选的, 所述步骤 (d) 中在发射极表面直接沉积的氮化硅钝化减反射层可 以是单层膜也可以是多层膜或者是梯度膜; 所述单层膜的折射率大于 2.1, 厚度 为 40〜75nm; 双层膜第一层膜的折射率大于 2.4, 厚度为 20〜30nm, 第二层膜 的折射率为 2.1〜2.4, 厚度为 50〜60nm; 三层膜的第一层折射率大于 2.5, 厚 度为 10〜20nm, 第二层膜的折射率为 2.2〜2.5, 厚度为 20〜30nm, 第三层膜的 折射率为 2.0〜2.2, 厚度为 30〜40nm; 梯度膜的折射率由下往上为 2.5〜2.1, 厚度由薄到厚。
与现有技术相比, 本发明的有益之处在于: 这种抗电势诱导衰减的太阳能 电池的制备工艺可以提高太阳能电池及其制成的组件的抗电势诱导衰减的能 力, 从而保证组件在高电压工作环境中性能的稳定。 具体实施方式:
下面通过具体实施方式对本发明进行详细描述。
实例一:
将硅片清洗, 去损伤层, 制绒; 将硅片放入管式扩散炉中进行扩散, 扩散后 方阻为 50Ω/口, 结深为 0.35μπι; 将扩散后的硅片去除磷硅玻璃并去除背结; 发射极表面沉积氮化硅钝化减反射层; 减反射层为单层膜, 厚度为 70nm, 折射 率为 2.2; 丝网印刷正面电极和背电极; 烧结并测试分选。
实例二:
将硅片清洗, 去损伤层, 制绒; 将硅片放入管式扩散炉中进行扩散, 扩散后 方阻为 55Ω/口, 结深为 0.30μπι; 将扩散后的硅片去除磷硅玻璃并去除背结; 发射极表面沉积氮化硅钝化减反射层; 减反射层为双层膜, 第一层膜的厚度为 20nm, 折射率为 2.5, 第二层膜的厚度为 50nm, 折射率为 2.1; 丝网印刷正面电 极和背电极; 烧结并测试分选。
实例三:
将硅片清洗, 去损伤层, 制绒; 将硅片放入管式扩散炉中进行扩散, 扩散后 方阻为 50Ω/口, 结深为 0.35μπι; 将扩散后的硅片去除磷硅玻璃并去除背结; 发射极表面沉积氮化硅钝化减反射层; 减反射层为三层膜, 第一层膜的厚度为 10nm, 折射率为 2.5, 第二层膜的厚度为 20nm, 折射率为 2.2; 第三层膜的厚度 为 40n, 折射率为 2.1; 丝网印刷正面电极和背电极; 烧结并测试分选。
实例四:
将硅片清洗, 去损伤层, 制绒; 将硅片放入管式扩散炉中进行扩散, 扩散后 方阻为 60Ω/口, 结深为 0.35μπι; 将扩散后的硅片去除磷硅玻璃并去除背结; 发射极表面沉积氮化硅钝化减反射层; 减反射层为三层膜, 第一层膜的厚度为 30nm, 折射率为 2.4, 第二层膜的厚度为 30nm, 折射率为 2.2; 第三层膜的厚度 为 10n, 折射率为 2.0; 丝网印刷正面电极和背电极; 烧结并测试分选。
实例五:
将硅片清洗, 去损伤层, 制绒; 将硅片放入管式扩散炉中进行扩散, 扩散 后方阻为 65Ω/口,结深为 0.35μπι;将扩散后的硅片去除磷硅玻璃并去除背结; 发射极表面热生长一层二氧化硅层, 厚度为 15nm; 在二氧化硅薄膜上沉积氮化 硅钝化减反射层; 减反射层为梯度膜, 折射率从下往上从 2. 5递减至 2. 0, 总厚 度为 60nm; 从丝网印刷正面电极和背电极; 烧结并测试分选。
实例六:
将硅片清洗, 去损伤层, 制绒; 将硅片放入管式扩散炉中进行扩散, 扩散 后方阻为 85 Ω /口,结深为 0. 35 μ πι;将扩散后的硅片去除磷硅玻璃并去除背结; 发射极表面沉积一层二氧化硅层, 厚度为 15nm; 在二氧化硅薄膜上沉积氮化硅 钝化减反射层; 减反射层为单层膜, 折射率 2. 10, 总厚度为 60nm; 从丝网印刷 正面电极和背电极; 烧结并测试分选。
抗电势诱导衰减的太阳能电池的制备工艺可以提高太阳能电池及其制成的 组件的抗电势诱导衰减的能力, 从而保证组件在高电压工作环境中性能的稳定。
需要强调的是: 以上仅是本发明的较佳实施例而已, 并非对本发明作任何 形式上的限制, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围内。

Claims

权 利 要 求 书 、 一种抗电势诱导衰减的太阳能电池的制备工艺,其特征是,包括如下步骤: (a) 将硅片清洗, 去损伤层, 制绒; (b) 将硅片放入管式扩散炉中, 进行扩散; (c) 将扩散后的硅片去除磷硅玻璃和背结; (d)在发射极表面生长一层二氧化硅, 再沉积一层氮化硅, 或者直接在发 射极表面沉积氮化硅钝化减反射层; (e) 丝网印刷背电极和正面电极; (f) 烧结并测试分选。 、 根据权利要求 1所述的抗电势诱导衰减的太阳能电池的制备工艺, 其特征 是, 所述步骤(b)中扩散后的方阻值为 50〜80Ω/口, 结深为 0.25〜0.35 μ m。 、 根据权利要求 1所述的抗电势诱导衰减的太阳能电池的制备工艺, 其特征 是, 所述步骤 (d) 生长二氧化硅的方法为热氧化、 等离子体气相沉积法、 化学氧化法或 UV氧化法。 、 根据权利要求 1所述的抗电势诱导衰减的太阳能电池的制备工艺, 其特征 是, 所述步骤 (d) 中生长二氧化硅的厚度为 5_40nm。 、 根据权利要求 1所述的抗电势诱导衰减的太阳能电池的制备工艺, 其特征 是, 所述步骤 (d) 的具体工艺步骤如下:
(1) 将扩散后的硅片放入石墨舟上;
(2) 充入氨气进行表面轰击;
(3)充入硅垸和氨气进行氮化硅薄膜的沉积, 温度为 375°C〜500°C, 硅垸 和氨气的流量比为 0.4〜0.06,厚度为 40〜85nm,折射率为 2.0〜2.2。 、 根据权利要求 1所述的抗电势诱导衰减的太阳能电池的制备工艺, 其特征 是, 所述步骤 (d ) 在氧化硅表面生长的氮化硅层中氧化硅膜和氮化硅膜 总厚度控制在 75_85nm。
根据权利要求 1所述的抗电势诱导衰减的太阳能电池的制备工艺, 其特征 是, 所述步骤 (d ) 中在发射极表面直接沉积的氮化硅钝化减反射层可以 是单层膜也可以是多层膜或者是梯度膜; 所述单层膜的折射率大于 2. 1, 厚度为 40〜75nm; 双层膜第一层膜的折射率大于 2. 4, 厚度为 20〜30nm, 第二层膜的折射率为 2. 1〜2. 4, 厚度为 50〜60nm; 三层膜的第一层折射 率大于 2. 5, 厚度为 10〜20nm, 第二层膜的折射率为 2. 2〜2. 5, 厚度为 20〜30nm, 第三层膜的折射率为 2. 0〜2. 2, 厚度为 30〜40nm; 梯度膜的 折射率由下往上为 2. 5〜2. 1, 厚度由薄到厚。
PCT/CN2013/087918 2013-03-25 2013-11-27 一种抗电势诱导衰减的太阳能电池的制备工艺 WO2014153973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310096087.2 2013-03-25
CN2013100960872A CN103165754A (zh) 2013-03-25 2013-03-25 一种抗电势诱导衰减的太阳能电池的制备工艺

Publications (1)

Publication Number Publication Date
WO2014153973A1 true WO2014153973A1 (zh) 2014-10-02

Family

ID=48588675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087918 WO2014153973A1 (zh) 2013-03-25 2013-11-27 一种抗电势诱导衰减的太阳能电池的制备工艺

Country Status (2)

Country Link
CN (1) CN103165754A (zh)
WO (1) WO2014153973A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165754A (zh) * 2013-03-25 2013-06-19 泰通(泰州)工业有限公司 一种抗电势诱导衰减的太阳能电池的制备工艺
CN103606599A (zh) * 2013-11-30 2014-02-26 浙江光隆能源科技股份有限公司 一种高折射率氮化硅减反射膜的制作方法
CN103943722B (zh) * 2014-04-03 2016-09-14 苏州阿特斯阳光电力科技有限公司 一种抗pid太阳能电池制作方法
CN104241403A (zh) * 2014-09-01 2014-12-24 奥特斯维能源(太仓)有限公司 一种晶硅电池多层钝化减反膜及其制作方法
CN104900761A (zh) * 2015-05-29 2015-09-09 安徽旭能光伏电力有限公司 一种晶体硅太阳能电池生产工艺
CN105140306B (zh) * 2015-07-27 2017-03-29 尚德太阳能电力有限公司 抗pid效应的太阳能电池结构及生产方法
CN105355723B (zh) * 2015-12-14 2019-12-27 内蒙古日月太阳能科技有限责任公司 晶体硅太阳电池二氧化硅钝化膜的制备方法
CN105483832B (zh) * 2015-12-29 2018-01-19 辛煜 一种抗电势诱导衰减效应的晶硅表面氧化装置及其方法
CN106253850B (zh) * 2016-08-29 2018-09-14 奥特斯维能源(太仓)有限公司 一种减反射膜抗pid性能的测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199760A (zh) * 2011-04-28 2011-09-28 浙江鸿禧光伏科技股份有限公司 一种双层氮化硅减反膜的制作方法
CN102629643A (zh) * 2012-04-16 2012-08-08 中利腾晖光伏科技有限公司 高方阻太阳能电池制作方法
CN102931284A (zh) * 2012-11-14 2013-02-13 东方电气集团(宜兴)迈吉太阳能科技有限公司 一种晶体硅太阳能电池SiOx-SiNx叠层膜的制备方法
CN102969402A (zh) * 2012-12-12 2013-03-13 泰州德通电气有限公司 一种浅结太阳能电池的制备工艺
CN102969404A (zh) * 2012-12-12 2013-03-13 泰通(泰州)工业有限公司 一种高效太阳能电池的制备工艺
CN102983211A (zh) * 2012-10-22 2013-03-20 江苏晨电太阳能光电科技有限公司 一种制备用于多晶硅太阳能电池的三层减反射膜的方法
CN103165754A (zh) * 2013-03-25 2013-06-19 泰通(泰州)工业有限公司 一种抗电势诱导衰减的太阳能电池的制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199760A (zh) * 2011-04-28 2011-09-28 浙江鸿禧光伏科技股份有限公司 一种双层氮化硅减反膜的制作方法
CN102629643A (zh) * 2012-04-16 2012-08-08 中利腾晖光伏科技有限公司 高方阻太阳能电池制作方法
CN102983211A (zh) * 2012-10-22 2013-03-20 江苏晨电太阳能光电科技有限公司 一种制备用于多晶硅太阳能电池的三层减反射膜的方法
CN102931284A (zh) * 2012-11-14 2013-02-13 东方电气集团(宜兴)迈吉太阳能科技有限公司 一种晶体硅太阳能电池SiOx-SiNx叠层膜的制备方法
CN102969402A (zh) * 2012-12-12 2013-03-13 泰州德通电气有限公司 一种浅结太阳能电池的制备工艺
CN102969404A (zh) * 2012-12-12 2013-03-13 泰通(泰州)工业有限公司 一种高效太阳能电池的制备工艺
CN103165754A (zh) * 2013-03-25 2013-06-19 泰通(泰州)工业有限公司 一种抗电势诱导衰减的太阳能电池的制备工艺

Also Published As

Publication number Publication date
CN103165754A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2014153973A1 (zh) 一种抗电势诱导衰减的太阳能电池的制备工艺
JP6788144B1 (ja) 太陽電池モジュール、太陽電池及びその製造方法
CN102290473B (zh) 一种背面点接触晶体硅太阳电池及制备方法
JP7082235B1 (ja) 太陽電池及びその製造方法、太陽電池モジュール
TWI463682B (zh) 異質接面太陽能電池
WO2012008436A1 (ja) 太陽電池の製造方法及び製膜装置
CN108231917B (zh) 一种perc太阳能电池及其制备方法
CN104538464A (zh) 一种硅异质结太阳能电池及其制作方法
CN110534590A (zh) 一种提高太阳电池长波响应的氮化硅薄膜及其制备方法
JP5729595B2 (ja) 太陽電池用透明導電膜およびその製造方法
CN109314152A (zh) 太阳能电池及其制造方法以及太阳能电池模块
CN102738252A (zh) 一种双面钝化的mwt太阳电池及其制造方法
Huang et al. 20.0% Efficiency Si nano/microstructures based solar cells with excellent broadband spectral response
WO2023020515A1 (zh) 异质结太阳能电池及其制作方法、异质结光伏组件
CN104465885B (zh) 全背电极太阳能电池形成局域金属化的生产方法
CN107068774A (zh) 太阳能电池减反钝化膜及其制备方法及太阳能电池片
CN106653872B (zh) 一种抗pid效应的太阳能电池
CN105470347A (zh) 一种perc电池的制作方法
JP6072904B2 (ja) 光起電力素子及びその製造方法
CN114914328B (zh) 一种双面太阳能电池及其制备方法
US20150287845A1 (en) Pid-resistant solar cell structure and fabrication method thereof
TW201424014A (zh) 抗高電場衰減太陽能電池結構及其製作方法
CN105405910A (zh) 一种异质结太阳能电池及其制备方法与太阳能电池组件
TW201521210A (zh) 光發電元件及其製造方法
TW201436247A (zh) 光伏元件及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880075

Country of ref document: EP

Kind code of ref document: A1