WO2014148490A1 - Substrate processing apparatus, and method for manufacturing semiconductor device - Google Patents

Substrate processing apparatus, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2014148490A1
WO2014148490A1 PCT/JP2014/057342 JP2014057342W WO2014148490A1 WO 2014148490 A1 WO2014148490 A1 WO 2014148490A1 JP 2014057342 W JP2014057342 W JP 2014057342W WO 2014148490 A1 WO2014148490 A1 WO 2014148490A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
plasma generation
processing
plasma
substrates
Prior art date
Application number
PCT/JP2014/057342
Other languages
French (fr)
Japanese (ja)
Inventor
竹林 基成
智 高野
上田 立志
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2014148490A1 publication Critical patent/WO2014148490A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device having a process for processing a substrate, and a substrate processing apparatus for performing a process related to the substrate processing method.
  • a substrate processing step of forming a thin film on a substrate may be performed as one step of a manufacturing process of a semiconductor device such as a flash memory or a DRAM (Dynamic Random Access Memory).
  • a substrate processing apparatus for performing such a process a thin film deposition apparatus including a reaction chamber for simultaneously forming a thin film on a plurality of substrates placed on a susceptor is known (see, for example, Patent Document 1).
  • a thin film deposition apparatus for example, a plurality of substrates are placed on a circular susceptor in a circumferential manner at equal intervals, and a thin film is simultaneously formed.
  • a plurality of substrates are placed circumferentially at equal intervals, and the intervals between the substrates are reduced in order to place as many substrates as possible.
  • five substrates are placed on a circular susceptor circumferentially and at equal intervals, the susceptor is rotated, and an oxide film generation process using plasma is performed.
  • an oxide film having a predetermined film thickness n (n is an arbitrary unit) is generated on the substrate every time the susceptor is rotated once.
  • n is an arbitrary unit
  • FIG. 7 is a diagram for explaining the film thickness distribution of the substrate formed by the oxide film generation process.
  • the film thickness on the right side of the substrate is thick and the film thickness on the left side is thin. That is, in FIG. 7, the film thickness of A is the thickest and the film thickness of B is the thinnest. Further, it was found that the film thickness difference between A and B corresponds to a predetermined film thickness n.
  • one of the causes is plasma ignition on the substrate.
  • the film is not formed on the left side of the substrate that has already passed the plasma region, but only on the right side of the substrate that reaches the plasma region. Thereafter, the substrate is rotated a plurality of times. As a result, the film thickness on the right side of the plasma-ignited substrate is increased by a predetermined film thickness n.
  • An object of the present invention is to provide a substrate processing apparatus and a method of manufacturing a semiconductor device that can suppress non-uniform substrate processing when a plurality of substrates are placed on a susceptor to perform substrate processing. It is in.
  • a typical configuration of the substrate processing apparatus according to the present invention for solving the above-described problems is as follows. That is, a processing chamber for processing the substrate, and a substrate supporting table provided in the processing chamber, wherein a plurality of substrate mounting portions for mounting the substrate are arranged on the same circumference of the surface of the substrate supporting table.
  • a substrate support base arranged such that a first distance between the substrate placement parts adjacent in the circumferential direction is larger than a second distance between other substrate placement parts;
  • the substrate processing apparatus which has a control part which controls the plasma generation operation
  • another typical configuration of the method for manufacturing a semiconductor device according to the present invention is as follows. That is, in the step of arranging the plurality of substrates on the same circumference, the first distance between the adjacent substrates in the circumferential direction is arranged to be larger than the second distance between the other substrates.
  • a step a step of rotating a plurality of substrates arranged on the same circumference in the circumferential direction, a step of supplying gas to the plurality of substrates arranged on the same circumference, and the same
  • a plasma generation start step for starting plasma generation between the substrates having the first distance while a plurality of substrates arranged on a circumference are rotating; and, after the plasma generation start step, And a step of processing a plurality of substrates arranged on the same circumference, and a method of manufacturing a semiconductor device having a ridge.
  • the substrate processing apparatus includes a first transfer chamber 103 configured in a load lock chamber structure that can withstand a pressure (negative pressure) less than atmospheric pressure such as a vacuum state. Yes.
  • the casing 101 of the first transfer chamber 103 is formed in a box shape with a pentagonal plan view and closed both upper and lower ends.
  • a first substrate transfer machine 112 capable of simultaneously transferring two substrates 200 under a negative pressure is installed.
  • the first substrate transfer machine 112 may be one that can transfer a single substrate 200.
  • the first substrate transfer machine 112 is configured to be moved up and down by the first substrate transfer machine elevator 115 while maintaining the airtightness of the first transfer chamber 103.
  • the second substrate transfer machine 124 installed in the second transfer chamber 121 picks up the substrate 200 from the pod 100. Further, the second substrate transfer machine 124 carries the substrate 200 into the preliminary chamber 122 and transfers the substrate 200 to the substrate support 140. During this transfer operation, the gate valve 126 on the first transfer chamber 103 side of the preliminary chamber 122 is closed, and the negative pressure in the first transfer chamber 103 is maintained. When the transfer of the substrate 200 stored in the pod 100 to the substrate support 140 is completed, the gate valve 128 is closed and the inside of the preliminary chamber 122 is exhausted to a negative pressure by an exhaust device (not shown).
  • the substrate 200 placed on the susceptor 217 has a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge. It moves in the order of the area 204b.
  • the first processing gas as the first gas is supplied into the first processing region 201a
  • the second processing as the second gas is supplied into the second processing region 201b.
  • a gas is supplied, and an inert gas is supplied into the first purge region 204a and the second purge region 204b. Therefore, by rotating the susceptor 217, the first processing gas, the inert gas, the second processing gas, and the inert gas are supplied onto the substrate 200 in this order.
  • the configurations of the susceptor 217 and the gas supply system will be described later.
  • the center of the reaction vessel 203 has the center of the rotation shaft, and is configured to be rotatable.
  • a susceptor 217 is provided as a substrate support.
  • the susceptor 217 is formed of a non-metallic material such as carbon (C), aluminum nitride (AlN), ceramics, or quartz so that metal contamination of the substrate 200 can be reduced. In the case of substrate processing not considering metal contamination, aluminum (Al) may be used.
  • the susceptor 217 is electrically insulated from the reaction vessel 203.
  • the substrate mounting portion 217b includes a case where the substrate 200 is supported on the surface of the susceptor 217.
  • the substrate platform 217b is a part of the susceptor 217, and the boundary between the substrate platform 217b and the susceptor 217 is not visible.
  • the susceptor 217 is provided with a lifting mechanism 268 that lifts and lowers the susceptor 217.
  • the susceptor 217 is provided with a plurality of through holes 217a.
  • a plurality of substrate push-up pins 266 that push up the substrate 200 and support the back surface of the substrate 200 when the substrate 200 is carried into and out of the reaction vessel 203 are provided on the bottom surface of the reaction vessel 203 described above.
  • the through-hole 217a and the board push-up pin 266 pass through the through-hole 217a in a state where the board push-up pin 266 is not in contact with the susceptor 217 when the board push-up pin 266 is raised or when the susceptor 217 is lowered by the lifting mechanism 268. Are arranged with each other.
  • the size of the start / stop region 208 in the rotation direction (the size between the front end 208a and the rear end 208b) was set.
  • a gas supply mechanism 250 including a first processing gas introduction mechanism 251, a second processing gas introduction mechanism 252, and an inert gas introduction mechanism 253 is provided above the reaction vessel 203. It has been.
  • the gas supply mechanism 250 is airtightly provided above the center of the susceptor 217 and at an opening formed above the reaction vessel 203.
  • a first gas outlet 254 is provided on the side wall of the first processing gas introduction mechanism 251.
  • a second gas outlet 255 is provided on the side wall of the second processing gas introduction mechanism 252.
  • a first inert gas outlet 256 and a second inert gas outlet 257 are provided on the side wall of the inert gas introduction mechanism 253 so as to face each other.
  • the gas supply mechanism 250 supplies the first processing gas from the first processing gas introduction mechanism 251 into the first processing region 201a, and the second processing gas introduction mechanism 252 supplies the first processing gas into the second processing region 201b.
  • the second processing gas is supplied, and the inert gas is supplied from the inert gas introduction mechanism 253 into the first purge region 204a and the second purge region 204b.
  • the gas supply mechanism 250 can supply each processing gas and inert gas individually to each region without mixing them, and can supply each processing gas and inert gas to each region in parallel. It is configured to be able to.
  • the first gas supply pipe 232a is connected to the upstream side of the first processing gas introduction mechanism 251.
  • a source gas supply source 232b On the upstream side of the first gas supply pipe 232a, a source gas supply source 232b, a mass flow controller (MFC) 232c as a flow rate controller (flow rate control unit), and a valve 232d as an on-off valve are provided in order from the upstream direction. It has been.
  • MFC mass flow controller
  • a silicon-containing gas includes a mass flow controller 232c, a valve 232d, a first processing gas introduction mechanism 251 and a first gas. It is supplied into the first processing region 201a via the jet port 254.
  • a silicon-containing gas for example, a trisilylamine ((SiH 3 ) 3 N, abbreviation: TSA) gas can be used as a precursor.
  • TSA trisilylamine
  • the first processing gas may be any of solid, liquid, and gas at normal temperature and pressure, but is described as a gas here.
  • a vaporizer (not shown) may be provided between the source gas supply source 232b and the mass flow controller 232c.
  • HMDS hexamethyldisilazane
  • Si [N (CH 3) 2] 3 H trisdimethylaminosilane
  • 3DMAS bistally butylaminosilane
  • BTBAS bistally butylaminosilane
  • a material having a higher degree of adhesion than the second gas described later is used.
  • the second gas for example, oxygen (O 2 ) gas, which is an oxygen-containing gas
  • oxygen (O 2 ) gas which is an oxygen-containing gas
  • the gas is supplied into the second processing region 201b through the processing gas introduction mechanism 252 and the second gas ejection port 255.
  • the oxygen gas that is the second processing gas is brought into a plasma state by the plasma generation unit 206 and exposed to the substrate 200.
  • the oxygen gas that is the second processing gas may be activated by adjusting the temperature of the heater 218 and the pressure in the reaction vessel 203 within a predetermined range.
  • ozone (O 3 ) gas or water vapor (H 2 O) may be used as the oxygen-containing gas.
  • a material having a lower adhesion than the first gas is used.
  • a first inert gas supply pipe 234a is connected to the upstream side of the inert gas introduction mechanism 253.
  • an inert gas supply source 234b On the upstream side of the first inert gas supply pipe 234a, in order from the upstream direction, a mass flow controller (MFC) 234c that is a flow rate controller (flow rate control unit), and a valve that is an on-off valve 234d is provided.
  • MFC mass flow controller
  • an inert gas composed of, for example, nitrogen (N 2 ) gas is supplied to the mass flow controller 234c, the valve 234d, the inert gas introduction mechanism 253, and the first inert gas ejection port.
  • the gas is supplied into the first purge region 204a and the second purge region 204b through 256 and the second inert gas outlet 257, respectively.
  • the inert gas supplied into the first purge region 204a and the second purge region 204b acts as a purge gas in the film forming step (S106) described later.
  • a rare gas such as helium (He) gas, neon (Ne) gas, or argon (Ar) gas can be used as the inert gas.
  • N 2 gas is used as an inert gas, such as a mass flow controller 235c, a valve 235d, a first gas supply pipe 232a, a first process gas introduction mechanism 251 and a first process gas.
  • the gas is supplied into the first processing region 201a through the gas outlet 254.
  • the inert gas supplied into the first processing region 201a acts as a carrier gas or a dilution gas in the film forming step (S106).
  • the downstream end of the third inert gas supply pipe 236a is connected to the downstream side of the valve 233d of the second gas supply pipe 233a.
  • an inert gas supply source 236b a mass flow controller (MFC) 236c that is a flow rate controller (flow rate control unit), and a valve 236d that is an on-off valve are provided.
  • MFC mass flow controller
  • N 2 gas is used as an inert gas, such as a mass flow controller 236c, a valve 236d, a second gas supply pipe 233a, a second process gas introduction mechanism 252 and a second process gas.
  • the gas is supplied into the second processing region 201b via the gas outlet 255.
  • the inert gas supplied into the second processing region 201b acts as a carrier gas or a dilution gas in the film forming step (S106), similarly to the inert gas supplied into the first processing region 201a.
  • the third inert gas supply unit 236 is mainly configured by the third inert gas supply pipe 236a, the mass flow controller 236c, and the valve 236d.
  • the inert gas supply source 236b, the second gas supply pipe 233a, the second process gas introduction mechanism 252 and the second gas jet outlet 255 may be included in the third inert gas supply unit.
  • the inert gas supply part is mainly comprised by the 1st to 3rd inert gas supply part.
  • a gas supply part is comprised by the soot process gas supply part and an inert gas supply part.
  • the APC valve 243 is an open / close valve that can open and close the valve to evacuate or stop evacuation of the reaction vessel 203, and further adjust the valve opening to adjust the pressure.
  • the exhaust part is mainly constituted by the exhaust pipe 231, the APC valve 243 and the flow rate control valve 245. Note that a vacuum pump 246 may be included in the exhaust part.
  • control part 300 which is a spear control part (control means) performs control of each structure demonstrated above. That is, the control unit 300 opens and closes the gate valve, transports the substrate by the substrate transfer machine, places the substrate on the susceptor, rotates the susceptor, heats the substrate on the susceptor, controls gas supply and discharge in the processing chamber, and generates plasma. Control the start and stop of the.
  • trisilylamine that is a silicon-containing gas is used as the first gas
  • oxygen gas that is an oxygen-containing gas is used as the second processing gas
  • a silicon oxide film is formed as an insulating film on the substrate 200.
  • SiO 2 film hereinafter, also simply referred to as SiO film
  • substrate carrying-in / placement process (S101))
  • substrate carrying-in / placement process which carries in the board
  • the substrate push-up pin 266 is raised to the transfer position of the substrate 200, and the substrate push-up pin 266 is passed through the through hole 217a of the susceptor 217.
  • the substrate push-up pin 266 is in a state of protruding by a predetermined height from the surface of the susceptor 217.
  • the gate valve 151 is opened, and a predetermined number (for example, five) of substrates 200 (processing substrates) is loaded into the reaction vessel 203 using the first substrate transfer machine 112. Then, the susceptor 217 is placed on the same surface of the susceptor 217 so that the substrates 200 do not overlap with each other about the rotation axis (not shown). Accordingly, the substrate 200 is supported in a horizontal posture on the substrate push-up pins 266 protruding from the surface of the susceptor 217.
  • a predetermined number for example, five
  • the first substrate transfer machine 112 is retracted out of the reaction vessel 203, the gate valve 151 is closed, and the inside of the reaction vessel 203 is sealed. Thereafter, the substrate push-up pin 266 is lowered to mount the substrate mounted on the susceptor 217 on the bottom surface of each of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. The substrate 200 is placed on the placement portion 217b.
  • N 2 gas as a purge gas is supplied from the inert gas supply unit into the reaction vessel 203 while the reaction vessel 203 is exhausted by the exhaust unit.
  • N 2 gas as a purge gas is supplied from the inert gas supply unit into the reaction vessel 203 while the reaction vessel 203 is exhausted by the exhaust unit.
  • the vacuum pump 246 is always operated at least from the substrate loading / mounting step (S101) to the completion of the substrate unloading step (S110) described later.
  • the temperature of the heater 218 is adjusted by controlling the power supply to the heater 218 based on the temperature information detected by the temperature sensor 274.
  • the surface temperature of the substrate 200 when the surface temperature of the substrate 200 is heated to 750 ° C. or higher, impurity diffusion occurs in the source region, the drain region, and the like formed on the surface of the substrate 200, The characteristics may deteriorate and the performance of the semiconductor device may deteriorate.
  • the temperature of the susceptor 217 as described above, it is possible to suppress the diffusion of impurities in the source region and the drain region formed on the surface of the substrate 200, the deterioration of circuit characteristics, and the deterioration of the performance of the semiconductor device.
  • the rotation mechanism 267 is operated to start the rotation of the susceptor 217.
  • the rotation speed of the susceptor 217 is controlled by the control unit 300 to a predetermined first speed.
  • the first speed is, for example, 1 rotation / second.
  • a gas supply / pressure adjustment step of supplying a processing gas and an inert gas and adjusting the inside of the reaction vessel 203 to a desired pressure will be described.
  • a desired rotation speed first speed
  • at least the valves 232d, 233d, and 234d are opened, and supply of the processing gas and the inert gas to the processing region 201 and the purge region 204 is started. That is, by opening the valve 232d and supplying TSA gas into the first processing region 201a, and opening the valve 233d and supplying oxygen gas into the second processing region 201b, the processing gas is supplied from the processing gas supply unit. Supply.
  • the inert gas is supplied from the inert gas supply unit by opening the valve 234d and supplying the N 2 gas which is an inert gas into the first purge region 204a and the second purge region 204b.
  • N 2 gas which is an inert gas into the first purge region 204a and the second purge region 204b.
  • the valve 235d When supplying the TSA gas into the first processing region 201a, the valve 235d is opened, and N 2 gas as a carrier gas or a dilution gas is supplied from the second inert gas supply pipe 235a into the first processing region 201a. It is preferable to supply to. Thereby, supply of TSA gas into the 1st processing field 201a can be promoted.
  • the exhaust pipe is opened while the valve 233d is opened and oxygen gas is supplied from the second gas supply pipe 233a to the second processing region 201b through the second processing gas introduction mechanism 252 and the second gas outlet 255. Exhaust from 231.
  • the mass flow controller 233c is adjusted so that the flow rate of the oxygen gas becomes a predetermined flow rate.
  • the supply flow rate of the oxygen gas controlled by the mass flow controller 233c is, for example, a flow rate in the range of 1000 sccm to 10,000 sccm.
  • the valve 236d When supplying oxygen gas into the second processing region 201b, the valve 236d is opened, and N 2 gas as carrier gas or dilution gas is supplied from the third inert gas supply pipe 236a into the second processing region 201b. It is preferable to supply to. Thereby, supply of oxygen gas into the second processing region 201b can be promoted.
  • valve 232d, the valve 233d, and the valve 234d are opened, and N 2 gas that is an inert gas as a purge gas is supplied from the first inert gas supply pipe 234a to the inert gas introduction mechanism 253 and the first inert gas jet.
  • the exhaust gas is exhausted while being supplied to the first purge region 204a and the second purge region 204b through the outlet 256 and the second inert gas outlet 257, respectively.
  • the mass flow controller 234c is adjusted so that the flow rate of the N 2 gas becomes a predetermined flow rate.
  • the first processing region 201a and the second processing region 201b from the first purge region 204a and the second purge region 204b.
  • the inert gas By injecting the inert gas toward the inside, it is possible to suppress intrusion of the processing gas into the first purge region 204a and the second purge region 204b.
  • the reaction vessel 203 is evacuated by a vacuum pump 246 so that the reaction vessel 203 has a desired pressure (for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa).
  • a desired pressure for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa.
  • the pressure in the reaction vessel 203 is measured by a pressure sensor (not shown), and the opening degree of the APC valve 243 is feedback controlled based on the measured pressure information.
  • the temperature of the heater 218 is set to such a temperature that the temperature of the substrate 200 becomes a temperature within the range of 200 ° C. to 400 ° C., for example.
  • the plasma generation unit 206 starts plasma generation. That is, when the plasma generation start / stop region 208 of the susceptor 217 reaches the second processing region 201b, supply of electric power from the high-frequency power source 206b to the electrodes constituting the plasma generation unit 206 is started. As a result, plasma is ignited in the plasma generation start / stop region 208 located in the second processing region 201b to generate plasma.
  • the plasma discharge is stable until the plasma generation start / stop region 208 passes the position of the plasma generation unit 206, that is, while the plasma generation start / stop region 208 is at a position overlapping the plasma generation unit 206.
  • the rotational speed (first speed) of the susceptor 217 is set. Note that the time until the plasma discharge is stabilized is measured in advance through experiments or the like, and the first speed is set according to the time.
  • the rotation speed of the susceptor 217 is set to The speed is increased to a second speed higher than the speed of 1.
  • the second speed is the rotational speed of the susceptor 217 in the film forming process described later.
  • the plasma generation unit 206 when the plasma generation unit 206 starts plasma generation, the plasma generation unit 206 has started plasma generation more than the rotational speed of the susceptor 217 in a state where the plasma generation start / stop region 208 overlaps the plasma generation unit 206. Thereafter, the rotation speed of the susceptor 217 is increased in a state where the plasma generation start / stop region 208 does not overlap the plasma generation unit 206.
  • the oxygen gas supplied into the second processing region 201b and passed below the plasma generation unit 206 becomes a plasma state in the second processing region 201b, and the active species contained therein
  • the substrate 200 rotated and carried into the second processing region 201b is subjected to plasma processing.
  • the substrates W1 to W5 are carried into the second processing region 201b in this order.
  • the substrate 200 that is first transported into the second processing region 201b is the substrate W1 that is located next to the plasma generation start / stop region 208 (rear in the rotation direction). It is.
  • the substrate W1 is also referred to as a substrate that first passes through the plasma generation start / stop region 208 among the substrates transferred to the reaction vessel 203 after plasma generation.
  • Oxygen gas has a high reaction temperature, and it is difficult to react at the processing temperature of the substrate 200 and the pressure in the reaction vessel 203 as described above.
  • the oxygen gas is brought into a plasma state, and the active species contained therein are When supplied, the film forming process can be performed even in a temperature range of 400 ° C. or less, for example.
  • the required processing temperature is different between the first processing gas and the second processing gas, it is necessary to increase the processing temperature by controlling the heater 218 in accordance with the temperature of the processing gas having the lower processing temperature.
  • the other processing gas may be supplied in a plasma state.
  • the substrate 200 can be processed at a low temperature, and for example, thermal damage to the substrate 200 having a wiring weak to heat such as aluminum can be suppressed.
  • generation of foreign substances such as products due to incomplete reaction of the processing gas can be suppressed, and the uniformity and withstand voltage characteristics of the thin film formed on the substrate 200 can be improved.
  • productivity of substrate processing can be improved, for example, the oxidation processing time can be shortened by the high oxidizing power of oxygen gas in a plasma state.
  • the substrate 200 repeats moving in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. Therefore, as shown in FIG. 6, the substrate 200 is alternately supplied with a TSA gas, an N 2 gas (purge), an oxygen gas in a plasma state, and an N 2 gas (purge) alternately for a predetermined number of times. Will be implemented.
  • a TSA gas an N 2 gas (purge)
  • an oxygen gas in a plasma state an N 2 gas (purge) alternately for a predetermined number of times.
  • TSA gas is supplied to the surface of the substrate 200 that has passed through the first processing area 201a and the portion of the susceptor 217 where the substrate is not placed, and silicon is deposited on the substrate 200. A containing layer is formed.
  • gas is ejected in the horizontal direction from the first processing gas introduction mechanism 251 through the first gas ejection port 254.
  • the ejected gas collides with, for example, a current plate (not shown), and the direction of the gas flow is changed to the direction of the susceptor 217, that is, the vertical direction.
  • the gas can be easily stored in the space above the susceptor 217, and the gas is directed toward the susceptor 217. It becomes easy. Thus, a large amount of gas can be supplied to the substrate 200.
  • the oxygen gas in a plasma state is supplied to the portion where the substrate 200 and the susceptor 217 that pass through the second processing region 201b are not placed.
  • a silicon oxide layer (SiO layer) is formed on the substrate 200.
  • the oxygen gas in the plasma state reacts with at least a part of the silicon-containing layer formed on the substrate 200 in the first processing region 201a.
  • the silicon-containing layer is oxidized and modified into a SiO layer containing silicon and oxygen.
  • ⁇ ⁇ Gas is ejected from the second processing gas introduction mechanism 252 through the second gas ejection port 255 in the horizontal direction into the second processing region 201b.
  • one rotation of the susceptor 217 is set to one cycle, that is, the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region.
  • a SiO film having a predetermined thickness can be formed on the substrate 200.
  • it is confirmed whether or not the above-described cycle has been performed a predetermined number of times.
  • the heel cycle is performed a predetermined number of times, it is determined that the desired film thickness has been reached, and the film forming process is terminated. If the cycle has not been performed a predetermined number of times, that is, it is determined that the desired film thickness has not been reached, the process returns to S202 and the cycle process continues.
  • the plasma generation start / stop region 208 is set to the second.
  • the rotation of the susceptor 217 is stopped (S109).
  • the substrate W5 is also referred to as a substrate that finally passes through the plasma generation start / stop region 208 in a state where plasma is generated among the substrates transferred to the reaction vessel 203.
  • the process returns to S101.
  • the conditions such as the temperature of the substrate 200, the pressure in the reaction vessel 203, the flow rate of each gas, the power applied to the plasma generation unit 206, the processing time, etc. Adjust as desired.
  • a silicon-containing gas and an oxygen-containing gas are used as the processing gas and the SiO film is formed on the substrate 200.
  • the present invention is not limited to this. That is, for example, a hafnium oxide film (HfO film) using a hafnium (Hf) -containing gas and an oxygen-containing gas, a zirconium (Zr) -containing gas and an oxygen-containing gas, a titanium (Ti) -containing gas, and an oxygen-containing gas as the processing gas.
  • a high-k film such as zirconium oxide (ZrO film) or titanium oxide film (TiO film) may be formed on the substrate 200.
  • ammonia (NH 3 ) gas which is a nitrogen (N) -containing gas, or the like may be used as the processing gas to be converted into plasma.
  • the film forming process using plasma has been described as an example.
  • the present invention is not limited to the film forming process, and can be applied to other plasma processes such as an etching process.
  • the plasma generation is stopped at a position where the plasma generation start / stop region 208 overlaps the second processing region 201b, but after the susceptor is rotated a predetermined number of times.
  • the plasma generation can be configured to stop at a position where the plasma generation start / stop region 208 does not overlap the second processing region 201b, for example, a position such as the first processing region 201a or the first purge region 204a. is there. Even with this configuration, since plasma generation starts at a position where the plasma generation start / stop region 208 overlaps the second processing region 201b, the in-plane uniformity of plasma processing with respect to the substrate is improved compared to the conventional case.
  • the plasma generation start / stop region 208 does not start at the position where the plasma generation start / stop region 208 overlaps the second processing region 201b, the plasma generation start / stop region 208 does not start at the position where it overlaps the second processing region 201b. If it is configured to stop the plasma generation, it is possible to improve the in-plane uniformity of the plasma processing for the substrate as compared with the conventional case. That is, if plasma generation is started or stopped at a position where the plasma generation start / stop region 208 overlaps the second processing region 201b, the in-plane uniformity of plasma processing with respect to the substrate can be improved compared to the conventional case. Can be improved.
  • a plurality of substrate mounting portions 217b are arranged on the same circumference of the surface of the susceptor 217, and the first distance between the adjacent substrate mounting portions 217b is between other substrate mounting portions.
  • a plasma generation start / stop region 208 is disposed at a position larger than the second distance.
  • a plurality of substrate platforms 217b may be equally arranged on the same circumference of the surface of the susceptor 217, and the plasma generation start / stop region 208 may be arranged between adjacent substrate platforms 217b. Even in such a configuration, since it is possible to suppress the start or stop of plasma generation immediately above the substrate 200 as compared to the conventional case, the in-plane uniformity of the plasma processing with respect to the substrate can be improved as compared with the conventional case. it can.
  • gas is supplied from the central portion of the reaction vessel 203 toward the periphery of each processing region.
  • a gas supply nozzle is provided for each processing region, and gas is supplied from the gas supply nozzle to each processing region. It can also be configured to supply
  • oxygen gas is supplied to the processing chamber, and the plasma generation unit 206 generates plasma.
  • the present invention is not limited to this, and a remote plasma method for generating plasma outside the processing chamber, Alternatively, ozone having a high energy level may be used.
  • the inert gas introduction mechanism 253 of the gas supply mechanism 250 is common to the first purge region 204a and the second purge region 204b. However, the inert gas introduction mechanism is provided separately. May be.
  • the substrate push-up pins 266 are moved up and down to move the substrate 200 to the processing position and the transfer position.
  • the substrate 200 is moved to the processing position by moving the susceptor 217 up and down using the lifting mechanism 268. Or may be moved to the transport position.
  • a processing chamber for processing a substrate and a substrate supporting base provided in the processing chamber, wherein a substrate mounting portion for mounting the substrate is provided on the same circumference of the surface of the substrate supporting base.
  • a plurality of substrate support bases arranged such that a first distance between adjacent substrate placement portions in the circumferential direction is larger than a second distance between other substrate placement portions;
  • a rotation mechanism that rotates the support table in the circumferential direction;
  • a plasma generation unit that is provided at a position facing the surface of the substrate support table and generates plasma in the processing chamber; and the rotation operation of the rotation mechanism and the A substrate processing apparatus comprising: a control unit that controls a plasma generation operation of a plasma generation unit;
  • a plasma generation start region where the plasma generation unit starts plasma generation is set between the substrate placement units having the first distance, and the control unit is configured so that the substrate support is rotating.
  • the control unit is configured such that the rotation speed of the substrate support after the plasma generation unit starts plasma generation is higher than the rotation speed of the substrate support when the plasma generation unit starts plasma generation.
  • the control unit controls the plasma generation unit to stop plasma generation in a state where the plasma generation start region is in a position overlapping the plasma generation unit while the substrate support is rotating.
  • the substrate processing apparatus according to 2 or appendix 3.
  • a processing chamber for processing a substrate a substrate support provided in the processing chamber, wherein a plurality of substrates are arranged on the same circumference of the surface of the substrate support, A rotation mechanism that rotates the substrate support table in the circumferential direction, a plasma generation unit that is provided at a position facing the surface of the substrate support table and generates plasma in the processing chamber, and a rotation operation of the rotation mechanism.
  • a control unit for controlling the plasma generation operation of the plasma generation unit, and between the substrates arranged adjacent to each other on the substrate support base, the plasma generation start that the plasma generation unit starts plasma generation starts An area is set, and the control unit controls the plasma generation unit with a plasma in a state where the plasma generation start region overlaps the plasma generation unit while the substrate support is rotating.
  • a substrate processing apparatus that controls to start generation.
  • a processing chamber for processing a substrate and a substrate supporting table provided in the processing chamber, wherein a plurality of substrates are arranged on the same circumference on the surface of the substrate supporting table.
  • Rotation that rotates the substrate support table and the substrate support table arranged so that the first distance between the adjacent substrates in the circumferential direction is larger than the second distance between the other substrates in the circumferential direction.
  • a mechanism a plasma generator that is provided at a position facing the surface of the substrate support, and that generates plasma in the processing chamber; and a control that controls the rotation operation of the rotation mechanism and the plasma generation operation of the plasma generator.
  • a substrate processing apparatus having a ridge.
  • a plurality of substrate support bases arranged such that a first distance between adjacent substrate placement portions in the circumferential direction is larger than a second distance between other substrate placement portions;
  • a rotation mechanism that rotates the support table in the circumferential direction, a plasma generation unit that is provided at a position facing the surface of the substrate support table, generates plasma in the processing chamber, and supplies gas to the processing chamber
  • a method of manufacturing a semiconductor device using a gas supply unit and a substrate processing apparatus having a ridge, wherein the substrate is loaded into the processing chamber and the loaded substrate is placed on the substrate placement portion; and the substrate support Rotate the table in the circumferential direction A step of supplying a gas into the processing chamber, and a state where the plasma generation unit is between the substrate mounting units having the first distance while the substrate support is rotating.
  • the present invention provides a substrate processing apparatus and a semiconductor device manufacturing method capable of suppressing non-uniform substrate processing when a plurality of substrates are placed on a susceptor to perform substrate processing. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

Nonuniformities in substrate processing are minimized when a plurality of substrates are mounted on a susceptor and processed. This substrate processing apparatus comprises: a processing chamber for processing substrates; a substrate support platform provided inside the substrate processing chamber, substrate mounting parts for mounting the substrates being disposed in a plural number on the same circumference on the surface of the substrate support platform, and the substrate support platform being disposed such that a first distance between adjacent substrate mounting parts in the circumferential direction is greater than a second distance between other substrate mounting parts; a rotation mechanism for causing the substrate support platform to rotate in the circumferential direction; a plasma generation unit provided in a position facing the surface of the substrate support platform, the plasma generation unit generating plasma inside the processing chamber; and a control unit for controlling the rotation action of the rotation mechanism and the plasma generation action of the plasma generation unit.

Description

基板処理装置、及び半導体装置の製造方法Substrate processing apparatus and semiconductor device manufacturing method
  本発明は、基板を処理する工程を有する半導体装置の製造方法、基板処理方法に係る工程を実施する基板処理装置に関する。 The present invention relates to a method for manufacturing a semiconductor device having a process for processing a substrate, and a substrate processing apparatus for performing a process related to the substrate processing method.
  例えばフラッシュメモリやDRAM(Dynamic Random Access Memory)等の半導体装置の製造工程の一工程として、基板上に薄膜を形成する基板処理工程が実施されることがある。係る工程を実施する基板処理装置として、サセプタ上に載置された複数の基板上に同時に薄膜を形成する反応チャンバを備えた薄膜蒸着装置が知られている(例えば特許文献1参照)。このような薄膜蒸着装置では、例えば、円形のサセプタ上に複数の基板を円周状かつ等間隔に載置し、同時に薄膜を形成する。 A substrate processing step of forming a thin film on a substrate may be performed as one step of a manufacturing process of a semiconductor device such as a flash memory or a DRAM (Dynamic Random Access Memory). As a substrate processing apparatus for performing such a process, a thin film deposition apparatus including a reaction chamber for simultaneously forming a thin film on a plurality of substrates placed on a susceptor is known (see, for example, Patent Document 1). In such a thin film deposition apparatus, for example, a plurality of substrates are placed on a circular susceptor in a circumferential manner at equal intervals, and a thin film is simultaneously formed.
特表2008-524842号公報Special table 2008-524842
  しかしながら、上述の基板処理装置では、複数の基板を円周状かつ等間隔に載置し、なるべく多くの基板を載置するために基板間の間隔を小さくしている。このような従来装置において、例えば、円形のサセプタ上に5枚の基板を円周状かつ等間隔に載置し、該サセプタを回転させ、プラズマを用いた酸化膜生成処理が行われる。この酸化膜生成処理においては、サセプタを1回転する毎に、基板上に所定膜厚n(nは任意単位)の酸化膜が生成されるようになっている。この酸化膜生成処理の結果、5枚の基板のうち1枚について、基板面内の膜厚分布の均一性異常が発生した。 However, in the above-described substrate processing apparatus, a plurality of substrates are placed circumferentially at equal intervals, and the intervals between the substrates are reduced in order to place as many substrates as possible. In such a conventional apparatus, for example, five substrates are placed on a circular susceptor circumferentially and at equal intervals, the susceptor is rotated, and an oxide film generation process using plasma is performed. In this oxide film generation process, an oxide film having a predetermined film thickness n (n is an arbitrary unit) is generated on the substrate every time the susceptor is rotated once. As a result of this oxide film generation process, an abnormality in the uniformity of the film thickness distribution in the substrate surface occurred on one of the five substrates.
  図7は、上記酸化膜生成処理で成膜した基板の膜厚分布を説明する図である。図7において、基板の右側の膜厚が厚く、左側の膜厚が薄くなる傾向が見られる。すなわち、図7中、Aの膜厚が最も厚く、Bの膜厚が最も薄い。また、AとBの膜厚差は、所定膜厚nに相当していることが解った。 FIG. 7 is a diagram for explaining the film thickness distribution of the substrate formed by the oxide film generation process. In FIG. 7, there is a tendency that the film thickness on the right side of the substrate is thick and the film thickness on the left side is thin. That is, in FIG. 7, the film thickness of A is the thickest and the film thickness of B is the thinnest. Further, it was found that the film thickness difference between A and B corresponds to a predetermined film thickness n.
  本発明の発明者等は、上記基板面内の膜厚分布の均一性異常が発生する原因を調べた結果、基板上でプラズマ着火が行われることが原因の1つであることを突き止めた。例えば、回転中の基板の中心付近でプラズマ着火が行われると、プラズマ領域を既に過ぎている基板の左側には成膜されず、これからプラズマ領域に達する基板の右側にのみ成膜される。その後、基板は複数回ほど回転されるが、結果として、プラズマ着火された基板の右側の膜厚が所定膜厚n分だけ厚くなる。 As a result of investigating the cause of the abnormality in the uniformity of the film thickness distribution in the substrate surface, the inventors of the present invention have found that one of the causes is plasma ignition on the substrate. For example, when plasma ignition is performed near the center of the rotating substrate, the film is not formed on the left side of the substrate that has already passed the plasma region, but only on the right side of the substrate that reaches the plasma region. Thereafter, the substrate is rotated a plurality of times. As a result, the film thickness on the right side of the plasma-ignited substrate is increased by a predetermined film thickness n.
  本発明の目的は、サセプタ上に複数の基板を載置して基板処理する際に、基板処理が不均一になることを抑制することのできる基板処理装置および半導体装置の製造方法を提供することにある。 An object of the present invention is to provide a substrate processing apparatus and a method of manufacturing a semiconductor device that can suppress non-uniform substrate processing when a plurality of substrates are placed on a susceptor to perform substrate processing. It is in.
  前記課題を解決するための、本発明に係る基板処理装置の代表的な構成は、次のとおりである。すなわち、  基板を処理するための処理室と、  前記処理室内に設けられた基板支持台であって、該基板支持台表面の同一円周上に、基板を載置する基板載置部が複数配置され、前記円周方向において隣り合う基板載置部間の第1の距離が、他の基板載置部間の第2の距離より大きくなるように配置された基板支持台と、  前記基板支持台を、前記円周方向に回転させる回転機構と、  前記基板支持台の表面と対向する位置に設けられ、前記処理室内にプラズマを生成するプラズマ生成部と、  前記回転機構の回転動作と前記プラズマ生成部のプラズマ生成動作とを制御する制御部と、  を有する基板処理装置。 A typical configuration of the substrate processing apparatus according to the present invention for solving the above-described problems is as follows. That is, a processing chamber for processing the substrate, and a substrate supporting table provided in the processing chamber, wherein a plurality of substrate mounting portions for mounting the substrate are arranged on the same circumference of the surface of the substrate supporting table. And a substrate support base arranged such that a first distance between the substrate placement parts adjacent in the circumferential direction is larger than a second distance between other substrate placement parts; , A rotating mechanism for rotating the rotating mechanism in the circumferential direction, a plasma generating unit for generating plasma in the processing chamber provided at a position facing the surface of the substrate support table, and a rotating operation of the rotating mechanism and the plasma generating The substrate processing apparatus which has a control part which controls the plasma generation operation | movement of a part, and a collar.
  また、本発明に係る半導体装置の製造方法の他の代表的な構成は、次のとおりである。すなわち、  複数の基板を同一円周上に配置する工程であって、前記円周方向において隣り合う基板間の第1の距離が、他の基板間の第2の距離より大きくなるように配置する工程と、  前記同一円周上に配置された複数の基板を前記円周方向に回転させる工程と、  前記同一円周上に配置された複数の基板に対してガスを供給する工程と、  前記同一円周上に配置された複数の基板が回転中に、前記第1の距離を有する基板間においてプラズマ生成を開始するプラズマ生成開始工程と、  前記プラズマ生成開始工程の後、前記生成されるプラズマを用いて前記同一円周上に配置された複数の基板を処理する工程と、  を有する半導体装置の製造方法。 In addition, another typical configuration of the method for manufacturing a semiconductor device according to the present invention is as follows. That is, in the step of arranging the plurality of substrates on the same circumference, the first distance between the adjacent substrates in the circumferential direction is arranged to be larger than the second distance between the other substrates. A step, a step of rotating a plurality of substrates arranged on the same circumference in the circumferential direction, a step of supplying gas to the plurality of substrates arranged on the same circumference, and the same A plasma generation start step for starting plasma generation between the substrates having the first distance while a plurality of substrates arranged on a circumference are rotating; and, after the plasma generation start step, And a step of processing a plurality of substrates arranged on the same circumference, and a method of manufacturing a semiconductor device having a ridge.
  上記の構成によれば、サセプタ上に複数の基板を載置して基板処理する際に、基板処理が不均一になることを抑制することができる。 れ ば According to the above configuration, when a plurality of substrates are placed on the susceptor and the substrate processing is performed, it is possible to prevent the substrate processing from becoming uneven.
本発明の実施形態に係る基板処理装置の概略構成図である。It is a schematic block diagram of the substrate processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る基板処理装置の概略構成図である。It is a schematic block diagram of the substrate processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る基板処理室の説明図である。It is explanatory drawing of the substrate processing chamber which concerns on embodiment of this invention. 本発明の実施形態に係る基板処理室の説明図である。It is explanatory drawing of the substrate processing chamber which concerns on embodiment of this invention. 本発明の実施形態に係る基板処理工程を説明するフローチャートである。It is a flowchart explaining the substrate processing process which concerns on embodiment of this invention. 本発明の実施形態に係る成膜工程を説明するフローチャートである。It is a flowchart explaining the film-forming process which concerns on embodiment of this invention. 従来の基板処理装置で成膜した基板の膜厚分布を説明する図である。It is a figure explaining the film thickness distribution of the board | substrate formed into a film with the conventional substrate processing apparatus.
<本実施形態>(1)基板処理装置の構成  まずは、本実施形態に係る基板処理装置の構成の概要について、図1及び図2を参照しながら説明する。図1は、本実施形態に係る多枚葉式の基板処理装置10の概略構成図であり、上面から見た上面図である。図2は、本実施形態に係る多枚葉式の基板処理装置10の概略構成図であり、側面から見た縦断面図である。  なお、本実施形態に係る基板処理装置においては、製品としての処理基板200などの基板を搬送するキャリヤとしては、FOUP(Front Opening Unified Pod 。以下、ポッドという。)が使用されている。また、以下の説明において、前後左右は図1を基準とする。すなわち、図1に示されているX1の方向を右、X2方向を左、Y1方向を前、Y2方向を後ろとする。 <Embodiment> (1) Configuration of Substrate Processing Apparatus First, an outline of a configuration of a substrate processing apparatus according to the present embodiment will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a multi-wafer type substrate processing apparatus 10 according to the present embodiment, and is a top view as viewed from above. FIG. 2 is a schematic configuration diagram of the multi-wafer type substrate processing apparatus 10 according to the present embodiment, and is a longitudinal sectional view as viewed from the side. Note that in the substrate processing apparatus according to the present embodiment, FOUP (FrontFOpening Unified Pod, hereinafter referred to as a pod) is used as a carrier for transporting a substrate such as the processing substrate 200 as a product. In the following description, front, rear, left and right are based on FIG. That is, the X1 direction shown in FIG. 1 is the right, the X2 direction is the left, the Y1 direction is the front, and the Y2 direction is the back.
  図1および図2に示されているように、基板処理装置は真空状態などの大気圧未満の圧力(負圧)に耐え得るロードロックチャンバ構造に構成された第一の搬送室103を備えている。第一の搬送室103の筐体101は平面視が五角形で上下両端が閉塞した箱形状に形成されている。第一の搬送室103には負圧下で二枚の基板200を同時に移載出来る第一の基板移載機112が設置されている。ここで、第一の基板移載機112は、一枚の基板200を移載出来る物でも良い。第一の基板移載機112は、第一の基板移載機エレベータ115によって、第一の搬送室103の気密性を維持しつつ昇降できるように構成されている。 As shown in FIGS. 1 and 2, the substrate processing apparatus includes a first transfer chamber 103 configured in a load lock chamber structure that can withstand a pressure (negative pressure) less than atmospheric pressure such as a vacuum state. Yes. The casing 101 of the first transfer chamber 103 is formed in a box shape with a pentagonal plan view and closed both upper and lower ends. In the first transfer chamber 103, a first substrate transfer machine 112 capable of simultaneously transferring two substrates 200 under a negative pressure is installed. Here, the first substrate transfer machine 112 may be one that can transfer a single substrate 200. The first substrate transfer machine 112 is configured to be moved up and down by the first substrate transfer machine elevator 115 while maintaining the airtightness of the first transfer chamber 103.
  筐体101の五枚の側壁のうち前側に位置する二枚の側壁には、搬入用の予備室と搬出用の予備室とを併用可能な予備室122と123がそれぞれゲートバルブ126,127を介して連結されており、それぞれ負圧に耐え得る構造で構成されている。さらに、予備室(ロードロック室)122,123には基板支持台140により2枚の基板200を積み重ねるように置くことが可能である。 Of the five side walls of the casing 101, two side walls located on the front side are provided with spare chambers 122 and 123 in which a spare chamber for loading and a spare chamber for unloading can be used in combination with gate valves 126 and 127, respectively. Are connected to each other, and each has a structure capable of withstanding negative pressure. Furthermore, two substrates 200 can be stacked in the reserve chambers (load lock chambers) 122 and 123 by the substrate support stand 140.
  予備室122,123には、基板の間に隔壁板(中間プレート)141が設置される。複数枚の処理済基板が予備室122または123に入る場合、先に入った処理済の冷却途中の基板が、次に入った処理済基板の熱影響で温度の下がり具合が遅くなるような熱干渉を、隔壁板を設けることで防止できる。 In the spare chambers 122 and 123, a partition plate (intermediate plate) 141 is installed between the substrates. When a plurality of processed substrates enter the preparatory chamber 122 or 123, the heat of the previously processed substrate being cooled is slowed down due to the thermal effect of the processed substrate that has entered next. Interference can be prevented by providing a partition plate.
  ここで、一般的な冷却効率を上げるための手法を説明する。予備室122および123、隔壁板141には冷却水やチラーなどを流す。このような構造とすることで、壁面温度を低く抑え、どのスロットに入った処理済基板であっても冷却効率を上げることができる。負圧においては、基板と隔壁板の距離が離れすぎていると熱交換による冷却効率が低下するため、冷却効率を向上させる手法として、基板支持台(ピン)に置いたあと、基板支持台を上下させ、予備室壁面に近づけるための駆動機構を設ける場合もある。 Here, a general method for increasing the cooling efficiency will be described. Cooling water, a chiller, or the like is allowed to flow through the preliminary chambers 122 and 123 and the partition plate 141. With such a structure, the wall surface temperature can be kept low, and the cooling efficiency can be increased for any processed substrate in any slot. At negative pressure, if the distance between the substrate and the partition plate is too far, the cooling efficiency due to heat exchange will decrease. Therefore, as a method to improve the cooling efficiency, after placing the substrate support on the substrate support (pin), There is a case where a drive mechanism is provided for moving up and down to approach the spare chamber wall surface.
  予備室122および予備室123の前側には、略大気圧下で用いられる第二の搬送室121がゲートバルブ128、129を介して連結されている。第二の搬送室121には基板200を移載する第二の基板移載機124が設置されている。第二の基板移載機124は第二の搬送室121に設置された第二の基板移載機エレベータ131によって昇降されるように構成されているとともに、リニアアクチュエータ132によって左右方向に往復移動されるように構成されている。 A second transfer chamber 121 used under substantially atmospheric pressure is connected to the front side of the spare chamber 122 and the spare chamber 123 via gate valves 128 and 129. A second substrate transfer machine 124 for transferring the substrate 200 is installed in the second transfer chamber 121. The second substrate transfer machine 124 is configured to be moved up and down by a second substrate transfer machine elevator 131 installed in the second transfer chamber 121 and is reciprocated in the left-right direction by a linear actuator 132. It is comprised so that.
  図1に示されているように、第二の搬送室121の左側にはノッチまたはオリフラ合わせ装置106を設置させることも出来る。また、図2に示されているように、第二の搬送室121の上部にはクリーンエアを供給するクリーンユニット118が設置されている。 As shown in FIG. 1, a notch or orientation flat aligning device 106 can be installed on the left side of the second transfer chamber 121. Further, as shown in FIG. 2, a clean unit 118 for supplying clean air is installed in the upper part of the second transfer chamber 121.
  図1および図2に示されているように、第二の搬送室121の筐体125の前側には、基板200を第二の搬送室121に対して搬入搬出するための基板搬入搬出口134と、ポッドオープナ108が設置されている。基板搬入搬出口134を挟んでポッドオープナ108と反対側、すなわち筐体125の外側にはロードポート(IOステージ)105が設置されている。ポッドオープナ108は、ポッド100のキャップ100aを開閉すると共に基板搬入搬出口134を閉塞可能なクロージャ142と、クロージャ142を駆動する駆動機構136とを備えており、ロードポート105に載置されたポッド100のキャップ100aを開閉することにより、ポッド100に対する基板200の出し入れを可能にする。また、ポッド100は図示しない工程内搬送装置(OHTなど)によって、ロードポート105に対して、供給および排出されるようになっている。 As shown in FIGS. 1 and 2, on the front side of the casing 125 of the second transfer chamber 121, a substrate loading / unloading port 134 for loading and unloading the substrate 200 to and from the second transfer chamber 121. A pod opener 108 is installed. A load port (IO stage) 105 is installed on the opposite side of the pod opener 108 across the substrate loading / unloading port 134, that is, on the outside of the housing 125. The pod opener 108 includes a closure 142 that can open and close the cap 100 a of the pod 100 and close the substrate loading / unloading port 134, and a drive mechanism 136 that drives the closure 142, and the pod placed on the load port 105. By opening and closing the cap 100a of 100, the substrate 200 can be taken in and out of the pod 100. The pod 100 is supplied to and discharged from the load port 105 by an in-process transfer device (OHT or the like) (not shown).
  図1に示されているように、第一の搬送室筐体101の五枚の側壁のうち後ろ側(背面側)に位置する四枚の側壁には、基板に所望の処理を行う第一の処理炉202aと、第二の処理炉202b、第三の処理炉202c、第四の処理炉202dがゲートバルブ150、151、152、153を介してそれぞれ隣接して連結されている。 As shown in FIG. 1, the four side walls located on the rear side (back side) among the five side walls of the first transfer chamber casing 101 are subjected to a desired process on the substrate. The second processing furnace 202a, the second processing furnace 202b, the third processing furnace 202c, and the fourth processing furnace 202d are connected to each other through gate valves 150, 151, 152, and 153, respectively.
  以下、前記構成を有する基板処理装置を使用した処理工程を説明する。以下の制御は、図1および図2に示されているように、コントローラ300によって制御される。コントローラ300は、前記構成において、装置全体を制御している。 Hereinafter, processing steps using the substrate processing apparatus having the above-described configuration will be described. The following control is controlled by the controller 300 as shown in FIGS. 1 and 2. The controller 300 controls the entire apparatus in the above configuration.
  基板200は最大25枚がポッド100に収納された状態で、処理工程を実施する基板処理装置へ工程内搬送装置によって搬送されて来る。図1および図2に示されているように、搬送されて来たポッド100はロードポート105の上に工程内搬送装置から受け渡されて載置される。ポッド100のキャップ100aがポッドオープナ108によって取り外され、ポッド100の基板出し入れ口が開放される。 The substrate 200 is transported by the in-process transport apparatus to the substrate processing apparatus that performs the processing process in a state where a maximum of 25 substrates 200 are stored in the pod 100. As shown in FIG. 1 and FIG. 2, the pod 100 that has been transported is delivered and placed on the load port 105 from the in-process transport device. The cap 100a of the pod 100 is removed by the pod opener 108, and the substrate outlet of the pod 100 is opened.
  ポッド100がポッドオープナ108により開放された後、第二の搬送室121に設置された第二の基板移載機124は、ポッド100から基板200をピックアップする。更に、第二の基板移載機124は、基板200を予備室122に搬入し、基板200を基板支持台140に移載する。この移載作業の間、予備室122の第一の搬送室103側のゲートバルブ126は閉じられており、第一の搬送室103内の負圧は維持されている。ポッド100に収納されていた基板200の基板支持台140への移載が完了すると、ゲートバルブ128が閉じられ、予備室122内が排気装置(図示せず)によって負圧に排気される。 After the pod 100 is opened by the pod opener 108, the second substrate transfer machine 124 installed in the second transfer chamber 121 picks up the substrate 200 from the pod 100. Further, the second substrate transfer machine 124 carries the substrate 200 into the preliminary chamber 122 and transfers the substrate 200 to the substrate support 140. During this transfer operation, the gate valve 126 on the first transfer chamber 103 side of the preliminary chamber 122 is closed, and the negative pressure in the first transfer chamber 103 is maintained. When the transfer of the substrate 200 stored in the pod 100 to the substrate support 140 is completed, the gate valve 128 is closed and the inside of the preliminary chamber 122 is exhausted to a negative pressure by an exhaust device (not shown).
  予備室122内が予め設定された圧力値となると、ゲートバルブ126が開かれ、予備室122と第一の搬送室103とが連通される。続いて、第一の搬送室103の第一の基板移載機112は、基板支持台140から基板200を第一の搬送室103に搬入する。ゲートバルブ126が閉じられた後、ゲートバルブ151が開かれ、第一の搬送室103と第二の処理炉202bとが連通される。そして、第一の基板移載機112は、基板200を第二の処理炉202bに搬入する。所定枚数の基板200が処理炉202bに搬入され、ゲートバルブ151が閉じられた後、第二の処理炉202内に処理ガスが供給され、基板200に対して所望の処理が施される。 When the pressure in the preliminary chamber 122 reaches a preset pressure value, the gate valve 126 is opened, and the preliminary chamber 122 and the first transfer chamber 103 communicate with each other. Subsequently, the first substrate transfer machine 112 in the first transfer chamber 103 carries the substrate 200 from the substrate support base 140 into the first transfer chamber 103. After the gate valve 126 is closed, the gate valve 151 is opened, and the first transfer chamber 103 and the second processing furnace 202b are communicated with each other. Then, the first substrate transfer machine 112 carries the substrate 200 into the second processing furnace 202b. After a predetermined number of substrates 200 are loaded into the processing furnace 202b and the gate valve 151 is closed, a processing gas is supplied into the second processing furnace 202, and a desired process is performed on the substrate 200.
  第二の処理炉202bで基板200に対する処理が完了すると、ゲートバルブ151が開かれ、基板200は第一の基板移載機112によって第一の搬送室103に搬出される。搬出後、ゲートバルブ151は閉じられる。  続いて、ゲートバルブ127が開かれ、第一の基板移載機112は第二の処理炉202bから搬出した基板200を予備室123の基板支持台140へ搬送し、処理済みの基板200は冷却される。 処理 When the processing on the substrate 200 is completed in the second processing furnace 202b, the gate valve 151 is opened, and the substrate 200 is carried out to the first transfer chamber 103 by the first substrate transfer machine 112. After unloading, the gate valve 151 is closed. Subsequently, the gate valve 127 is opened, and the first substrate transfer machine 112 transports the substrate 200 unloaded from the second processing furnace 202b to the substrate support 140 in the preliminary chamber 123, and the processed substrate 200 is cooled. Is done.
  予備室123に処理済み基板200を搬送し、予め設定された冷却時間が経過すると、予備室123が不活性ガスにより略大気圧に戻される。予備室123内が略大気圧に戻されると、ゲートバルブ129が開かれ、ロードポート105に載置された空のポッド100のキャップ100aがポッドオープナ108によって開かれる。 When the processed substrate 200 is transferred to the preliminary chamber 123 and a preset cooling time has elapsed, the preliminary chamber 123 is returned to approximately atmospheric pressure by the inert gas. When the inside of the preliminary chamber 123 is returned to substantially atmospheric pressure, the gate valve 129 is opened, and the cap 100 a of the empty pod 100 placed on the load port 105 is opened by the pod opener 108.
  続いて、第二の搬送室121の第二の基板移載機124は、予備室123の基板支持台140から基板200を第二の搬送室121に搬出し、第二の搬送室121の基板搬入搬出口134を通してポッド100に収納して行く。 Subsequently, the second substrate transfer device 124 in the second transfer chamber 121 carries the substrate 200 out of the substrate support 140 in the spare chamber 123 to the second transfer chamber 121, and the substrate in the second transfer chamber 121. It is stored in the pod 100 through the carry-in / out port 134.
  ここで、ポッド100のキャップ100aは、最大25枚の基板が戻されるまでずっと空け続けていても良く、空きのポッド100に収納せずに基板を搬出してきたポッドに戻しても良い。 キ ャ ッ プ Here, the cap 100a of the pod 100 may continue to be emptied until a maximum of 25 substrates are returned, or may be returned to the pod from which the substrate is carried out without being stored in the empty pod 100.
  以上の動作が繰り返されることによって25枚の処理済み基板200がポッド100への収納が完了すると、ポッド100のキャップ100aがポッドオープナ108によって閉じられる。閉じられたポッド100はロードポート105の上から次の工程へ工程内搬送装置によって搬送されて行く。 When the storage of the 25 processed substrates 200 in the pod 100 is completed by repeating the above operations, the cap 100a of the pod 100 is closed by the pod opener 108. The closed pod 100 is transported from the top of the load port 105 to the next process by the in-process transport device.
  以上の動作は第二の処理炉202bおよび予備室122、123が使用される場合を例にして説明したが、第一の処理炉202aおよび第三の処理炉202c、第四の処理炉202dが使用される場合についても同様の動作が実施される。 The above operation has been described by taking the case where the second processing furnace 202b and the spare chambers 122 and 123 are used as an example. However, the first processing furnace 202a, the third processing furnace 202c, and the fourth processing furnace 202d The same operation is performed when used.
  また、ここでは4つの処理室で説明したが、それに限らず、対応する基板や形成する膜の種類によって、処理室数を決定しても良い。 Although the four processing chambers have been described here, the number of processing chambers may be determined depending on the type of the corresponding substrate and the film to be formed.
  また、上述の基板処理装置では、予備室122を搬入用、予備室123を搬出用としたが、予備室123を搬入用、予備室122を搬出用としても良いし、予備室122または予備室123を搬入用と搬出用として併用しても良い。 In the above-described substrate processing apparatus, the spare chamber 122 is used for carrying in and the spare chamber 123 is used for carrying out. However, the spare chamber 123 may be used for carrying in, and the spare chamber 122 may be used for carrying out, or the spare chamber 122 or the spare chamber may be used. 123 may be used in combination for loading and unloading.
  予備室122または予備室123を搬入用と搬出用を専用とすることによって、クロスコンタミネーションを低減することができ、併用とすることによって基板の搬送効率を向上させることができる。 By dedicating the spare chamber 122 or the spare chamber 123 for loading and unloading, cross-contamination can be reduced, and the combined use can improve the substrate transport efficiency.
  また、全ての処理炉で同じ処理を行っても良いし、各処理炉で別の処理を行っても良い。例えば、第一の処理炉202aと第二の処理炉202bで別の処理を行う場合、第一の処理炉202aで基板200にある処理を行った後、続けて第二の処理炉202bで別の処理を行わせてもよい。第一の処理炉202aで基板200にある処理を行った後、第二の処理炉202bで別の処理を行わせる場合、予備室122または予備室123を経由するようにしてもよい。 Moreover, the same processing may be performed in all the processing furnaces, or different processing may be performed in each processing furnace. For example, when different processing is performed in the first processing furnace 202a and the second processing furnace 202b, after the processing on the substrate 200 is performed in the first processing furnace 202a, the second processing furnace 202b continues. May be performed. In the case where another processing is performed in the second processing furnace 202b after the processing on the substrate 200 is performed in the first processing furnace 202a, the processing may be performed via the spare chamber 122 or the spare chamber 123.
  また、処理炉は少なくとも、処理炉202a~202bのいずれか1箇所の連結が成されていれば良く、処理炉202cと202dの2箇所など、処理炉202aから202dの最大4箇所の範囲において可能な組合せであればいくつ連結しても良い。 In addition, it is sufficient that at least one of the processing furnaces 202a to 202b is connected to the processing furnace, and it is possible in a range of up to four processing furnaces 202a to 202d, such as two processing furnaces 202c and 202d. Any number of combinations may be connected.
  また、装置で処理する基板の枚数は、一枚でも良く、複数枚でも良い。同様に予備室122または123において、クーリングする基板についても一枚でも良く、複数枚でも良い。処理済基板をクーリング出来る枚数は、予備室122および123のスロットに投入可能な最大5枚の範囲内であれば、どのような組合せでも良い。 In addition, the number of substrates to be processed by the apparatus may be one or plural. Similarly, in the preliminary chamber 122 or 123, a single substrate or a plurality of substrates may be cooled. The number of processed substrates that can be cooled may be any combination as long as it is within a range of up to five sheets that can be inserted into the slots of the spare chambers 122 and 123.
  また、予備室123内で処理済みの基板を搬入して冷却を行っている途中で予備室122のゲートバルブを開閉し処理炉に基板を搬入し、基板の処理を行っても良い。同様に、予備室122内で処理済みの基板を搬入して冷却を行っている途中で予備室123のゲートバルブを開閉し処理炉に基板を搬入し、基板の処理を行っても良い。 Alternatively, the substrate may be processed by loading the substrate into the processing furnace by opening and closing the gate valve of the preliminary chamber 122 while the processed substrate is being carried in the preliminary chamber 123 and being cooled. Similarly, the substrate may be processed by bringing the substrate into the processing furnace by opening and closing the gate valve of the preliminary chamber 123 while the processed substrate is being carried in the preliminary chamber 122 and being cooled.
  ここで、十分な冷却時間を経ずに略大気側のゲートバルブ128,129を開くと、基板200の輻射熱によって予備室122または123または予備室の周りに接続されている電気部品に損害を与える可能性がある。そのため、高温な基板をクーリングする場合は、予備室122内に処理済みの大きな輻射熱を持つ基板を搬入して冷却を行っている途中で、予備室123のゲートバルブを開閉し処理炉に基板を搬入し、基板の処理を行うことが出来る。同様に、予備室123内に処理済みの基板を搬入して冷却を行っている途中で、予備室122のゲートバルブを開閉し処理炉に基板を搬入し、基板の処理を行うことも出来る。 Here, if the gate valves 128 and 129 on the substantially atmospheric side are opened without sufficient cooling time, the radiant heat of the substrate 200 damages the spare chamber 122 or 123 or the electrical components connected around the spare chamber. there is a possibility. Therefore, when cooling a high-temperature substrate, the substrate having a large radiant heat that has been processed is transferred into the preliminary chamber 122 and cooling is performed, and the gate valve of the preliminary chamber 123 is opened and closed to place the substrate in the processing furnace. Carry in and process substrates. Similarly, while the processed substrate is being carried into the spare chamber 123 and cooling is being performed, the gate valve of the spare chamber 122 can be opened and closed, and the substrate can be carried into the processing furnace to process the substrate.
(2)プロセスチャンバの構成  続いて、本実施形態に係る処理炉としてのプロセスチャンバ202の構成について、主に図3~図4を用いて説明する。このプロセスチャンバ202は、例えば上述した第一の処理炉202bである。図3は、本実施形態に係る処理炉の横断面概略図である。図4は、本実施形態に係る処理炉の縦断面概略図であり、図3に示す処理炉のA-A’線断面図である。 (2) Configuration of Process Chamber Next, the configuration of the process chamber 202 as a processing furnace according to the present embodiment will be described mainly with reference to FIGS. The process chamber 202 is, for example, the first processing furnace 202b described above. FIG. 3 is a schematic cross-sectional view of the processing furnace according to the present embodiment. FIG. 4 is a schematic vertical cross-sectional view of the processing furnace according to the present embodiment, and is a cross-sectional view taken along line A-A ′ of the processing furnace shown in FIG. 3.
(反応容器)  図3~図4に示すように、処理炉としてのプロセスチャンバ202は、筒状の気密容器である反応容器203を備えている。反応容器203内には、基板200の処理空間207である処理室が形成されている。反応容器203内の処理空間207の上側には、中心部から放射状に延びる4枚の仕切板205が設けられている。4枚の仕切板205は、処理空間207を4つの領域、すなわち、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bに仕切るように構成されている。言い換えれば、処理領域とパージ領域が隣接した状態で配置されている。なお、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bは、後述するサセプタ(基板支持台)217の回転方向に沿って、この順番に配列するように構成されている。 (Reaction vessel) As shown in FIGS. 3 to 4, the process chamber 202 as a processing furnace includes a reaction vessel 203 which is a cylindrical airtight vessel. A processing chamber which is a processing space 207 for the substrate 200 is formed in the reaction vessel 203. On the upper side of the processing space 207 in the reaction vessel 203, four partition plates 205 extending radially from the center are provided. The four partition plates 205 are configured to partition the processing space 207 into four regions, that is, a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge region 204b. Has been. In other words, the processing area and the purge area are arranged adjacent to each other. The first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b are arranged in this order along the rotation direction of a susceptor (substrate support) 217 described later. It is configured to be arranged.
  後述するように、サセプタ217を回転させることで、サセプタ217上に載置された基板200は、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bの順に移動することとなる。また、後述するように、第一の処理領域201a内には第一のガスとしての第一の処理ガスが供給され、第二の処理領域201b内には第二のガスとしての第二の処理ガスが供給され、第一のパージ領域204a内及び第二のパージ領域204b内には不活性ガスが供給されるように構成されている。そのため、サセプタ217を回転させることで、基板200上には、第一の処理ガス、不活性ガス、第二の処理ガス、不活性ガスが、この順に供給されることとなる。サセプタ217及びガス供給系の構成については後述する。 As will be described later, by rotating the susceptor 217, the substrate 200 placed on the susceptor 217 has a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge. It moves in the order of the area 204b. As will be described later, the first processing gas as the first gas is supplied into the first processing region 201a, and the second processing as the second gas is supplied into the second processing region 201b. A gas is supplied, and an inert gas is supplied into the first purge region 204a and the second purge region 204b. Therefore, by rotating the susceptor 217, the first processing gas, the inert gas, the second processing gas, and the inert gas are supplied onto the substrate 200 in this order. The configurations of the susceptor 217 and the gas supply system will be described later.
  仕切板205の端部と反応容器203の側壁との間には、所定の幅の隙間が設けられており、この隙間をガスが通過できるように構成されている。この隙間を介し、第一のパージ領域204a内及び第二のパージ領域204b内から第一の処理領域201a内及び第二の処理領域201b内に向けて不活性ガスを噴出させるようにする。このようにすることで、第一のパージ領域204a内及び第二のパージ領域204b内への処理ガスの侵入を抑制することができ、処理ガスの反応を防止することができるように構成されている。 A gap having a predetermined width is provided between the end of the partition plate 205 and the side wall of the reaction vessel 203 so that gas can pass through the gap. Through this gap, an inert gas is ejected from the first purge region 204a and the second purge region 204b toward the first processing region 201a and the second processing region 201b. By doing so, the processing gas can be prevented from entering the first purge region 204a and the second purge region 204b, and the reaction of the processing gas can be prevented. Yes.
  なお、本実施形態では、各仕切板205の間の角度をそれぞれ90度としたが、本発明はこれに限定されるものではない。すなわち、基板200への各種ガスの供給時間等を考慮して、例えば第二の処理領域201bを形成する2枚の仕切板205の間の角度を大きくしたりする等、適宜変更してもよい。 In the present embodiment, the angle between the partition plates 205 is 90 degrees, but the present invention is not limited to this. That is, in consideration of the supply time of various gases to the substrate 200, for example, the angle between the two partition plates 205 forming the second processing region 201b may be increased or the like may be changed as appropriate. .
  また、各処理領域を仕切板205で仕切ったが、それに限るものではなく、処理領域201aと201bそれぞれに供給されるガスを混合させないようにできる構成であればよい。 In addition, although each processing region is partitioned by the partition plate 205, the present invention is not limited to this, and any configuration may be used as long as the gases supplied to the processing regions 201a and 201b are not mixed.
(サセプタ)  図3~図4に示すように、仕切板205の下方、すなわち反応容器203内の底側中央には、反応容器203の中心に回転軸の中心を有し、回転自在に構成された基板支持台としてのサセプタ217が設けられている。サセプタ217は、基板200の金属汚染を低減することができるように、例えば、カーボン(C)、窒化アルミニウム(AlN)、セラミックス、石英等の非金属材料で形成されている。金属汚染を考慮しない基板処理である場合は、アルミニウム(Al)で形成しても良い。なお、サセプタ217は、反応容器203とは電気的に絶縁されている。 (Susceptor) As shown in FIGS. 3 to 4, below the partition plate 205, that is, at the bottom center in the reaction vessel 203, the center of the reaction vessel 203 has the center of the rotation shaft, and is configured to be rotatable. A susceptor 217 is provided as a substrate support. The susceptor 217 is formed of a non-metallic material such as carbon (C), aluminum nitride (AlN), ceramics, or quartz so that metal contamination of the substrate 200 can be reduced. In the case of substrate processing not considering metal contamination, aluminum (Al) may be used. The susceptor 217 is electrically insulated from the reaction vessel 203.
  図3に示すように、サセプタ217は、反応容器203内にて、複数枚(本実施形態では例えば5枚)の基板200(W1~W5)を同一面上に、かつ同一円周上に並べるように構成されている。さらに、サセプタ217は、隣り合う特定の2枚の基板200の間の間隔を、隣り合う他の基板200間の間隔よりも大きくして支持するように構成されている。換言すれば、特定の2枚の基板200の中心間の第1の距離が、他の2枚の基板200の中心間の第2の距離よりも大きくなるように構成されている。更に換言すれば、隣り合う特定の基板載置部217b(後述)の中心間の間隔を、隣り合う他の基板載置部217bの中心間の間隔よりも大きくして支持するように構成されている。図3の例では、基板W1とW5の中心間の距離Cが、例えば基板W3とW4の中心間の距離Dや基板W1とW2の中心間の距離よりも大きい。そして、間隔の大きい第1の距離を有する基板W1とW5の間に、プラズマ生成開始/停止領域208が設けられている。プラズマ生成開始/停止領域208については後述する。 As shown in FIG. 3, the susceptor 217 arranges a plurality of (for example, five in this embodiment) substrates 200 (W1 to W5) on the same surface and on the same circumference in the reaction vessel 203. It is configured as follows. Further, the susceptor 217 is configured to support the gap between the two adjacent specific substrates 200 larger than the interval between the other adjacent substrates 200. In other words, the first distance between the centers of the two specific substrates 200 is configured to be larger than the second distance between the centers of the other two substrates 200. In other words, the distance between the centers of specific adjacent substrate mounting portions 217b (described later) is set to be larger than the interval between the centers of other adjacent substrate mounting portions 217b. Yes. In the example of FIG. 3, the distance C between the centers of the substrates W1 and W5 is larger than, for example, the distance D between the centers of the substrates W3 and W4 and the distance between the centers of the substrates W1 and W2. A plasma generation start / stop region 208 is provided between the substrates W1 and W5 having the first distance with a large interval. The plasma generation start / stop region 208 will be described later.
  なお、上記の同一面上とは、完全な同一面に限られるものではなく、サセプタ217を上面から見たときに、図3に示すように、複数枚の基板200が互いに重ならないように並べられていればよい。また、上記の同一円周上とは、完全な同一円周に限られるものではなく、複数枚の基板200の処理の均一性が所定の許容範囲内に収まる程度であればよい。この処理均一性の許容範囲は、処理内容により異なる。このように、サセプタ217は、複数の基板200を互いに重ならないよう同心円状に載置する載置面を有し、該載置面が反応容器203の天井と対向するように構成されている。 The above-mentioned same plane is not limited to the completely same plane, and when the susceptor 217 is viewed from the top, a plurality of substrates 200 are arranged so as not to overlap each other as shown in FIG. It only has to be done. Further, the above-mentioned same circumference is not limited to the same circumference, but may be any degree as long as the processing uniformity of the plurality of substrates 200 falls within a predetermined allowable range. The allowable range of processing uniformity varies depending on the processing content. Thus, the susceptor 217 has a mounting surface on which the plurality of substrates 200 are mounted concentrically so as not to overlap each other, and the mounting surface is configured to face the ceiling of the reaction vessel 203.
  また、サセプタ217表面における基板200の支持位置には、基板載置部217bが、処理する基板200の枚数に対応して複数設けられている。基板載置部217bは、例えば上面から見て円形状であり、側面から見て凹形状としてもよい。この場合、基板載置部の直径は基板200の直径よりもわずかに大きくなるように構成することが好ましい。この基板載置部217b内に基板200を載置することにより、基板200の位置決めを容易に行うことができる。更には、サセプタ217の回転に伴う遠心力により基板200がサセプタ217から飛び出してしまう場合等で発生する位置ズレを防止できるようになる。  なお、基板載置部217bは、サセプタ217表面において基板200の支持位置を意味する場合も含む。この場合、基板載置部217bは、サセプタ217の一部であり、基板載置部217bとサセプタ217の境界は視認できない。 In addition, a plurality of substrate platforms 217b are provided at the support position of the substrate 200 on the surface of the susceptor 217 corresponding to the number of substrates 200 to be processed. For example, the substrate platform 217b may have a circular shape when viewed from the top surface and a concave shape when viewed from the side surface. In this case, it is preferable that the diameter of the substrate mounting portion is configured to be slightly larger than the diameter of the substrate 200. By placing the substrate 200 in the substrate placement portion 217b, the substrate 200 can be easily positioned. Further, it is possible to prevent positional deviation that occurs when the substrate 200 jumps out of the susceptor 217 due to the centrifugal force accompanying the rotation of the susceptor 217. Note that the substrate mounting portion 217b includes a case where the substrate 200 is supported on the surface of the susceptor 217. In this case, the substrate platform 217b is a part of the susceptor 217, and the boundary between the substrate platform 217b and the susceptor 217 is not visible.
  図4に示すように、サセプタ217には、サセプタ217を昇降させる昇降機構268が設けられている。サセプタ217には、貫通孔217aが複数設けられている。上述の反応容器203の底面には、反応容器203内への基板200の搬入・搬出時に、基板200を突き上げて、基板200の裏面を支持する基板突き上げピン266が複数設けられている。貫通孔217a及び基板突き上げピン266は、基板突き上げピン266が上昇した時、又は昇降機構268によりサセプタ217が下降した時に、基板突き上げピン266がサセプタ217とは非接触な状態で貫通孔217aを突き抜けるように、互いに配置されている。 As shown in FIG. 4, the susceptor 217 is provided with a lifting mechanism 268 that lifts and lowers the susceptor 217. The susceptor 217 is provided with a plurality of through holes 217a. A plurality of substrate push-up pins 266 that push up the substrate 200 and support the back surface of the substrate 200 when the substrate 200 is carried into and out of the reaction vessel 203 are provided on the bottom surface of the reaction vessel 203 described above. The through-hole 217a and the board push-up pin 266 pass through the through-hole 217a in a state where the board push-up pin 266 is not in contact with the susceptor 217 when the board push-up pin 266 is raised or when the susceptor 217 is lowered by the lifting mechanism 268. Are arranged with each other.
  昇降機構268には、サセプタ217を回転させる回転機構267が設けられている。回転機構267の図示しない回転軸は、サセプタ217に接続されている。回転機構267を作動させることで、サセプタ217は、サセプタ217の載置面と平行な方向に回転するように構成されている。回転機構267には、後述する制御部300が、カップリング部267aを介して接続されている。カップリング部267aは、回転側と固定側との間を金属ブラシ等により電気的に接続するスリップリング機構として構成されている。これにより、サセプタ217の回転が妨げられないようになっている。制御部300は、サセプタ217を所定の速度で所定時間回転させるように、回転機構267への通電具合を制御するように構成されている。上述したように、サセプタ217を回転させることにより、サセプタ217上に載置された基板200は、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b及び第二のパージ領域204bをこの順番に移動することとなる。 The elevating mechanism 268 is provided with a rotation mechanism 267 that rotates the susceptor 217. A rotation shaft (not shown) of the rotation mechanism 267 is connected to the susceptor 217. By operating the rotation mechanism 267, the susceptor 217 is configured to rotate in a direction parallel to the mounting surface of the susceptor 217. A control unit 300 described later is connected to the rotation mechanism 267 through a coupling unit 267a. The coupling portion 267a is configured as a slip ring mechanism that electrically connects the rotating side and the fixed side with a metal brush or the like. This prevents the rotation of the susceptor 217 from being hindered. The controller 300 is configured to control the energization of the rotation mechanism 267 so that the susceptor 217 is rotated at a predetermined speed for a predetermined time. As described above, by rotating the susceptor 217, the substrate 200 placed on the susceptor 217 has the first processing region 201 a, the first purge region 204 a, the second processing region 201 b, and the second purge region. The region 204b is moved in this order.
(加熱部)  サセプタ217の内部には、加熱部としてのヒータ218が一体的に埋め込まれている。ヒータ218に電力が供給されると、基板載置部217bに載置された基板200を加熱する。例えば、基板200の表面が所定温度(例えば室温~1000℃程度)にまで加熱されるようになっている。なお、ヒータ218は、サセプタ217に載置されたそれぞれの基板200を個別に加熱するように、同一面上に複数(例えば5つ)設けてもよい。 (Heating unit) A heater 218 as a heating unit is integrally embedded in the susceptor 217. When power is supplied to the heater 218, the substrate 200 placed on the substrate platform 217b is heated. For example, the surface of the substrate 200 is heated to a predetermined temperature (for example, room temperature to about 1000 ° C.). A plurality (for example, five) of heaters 218 may be provided on the same surface so as to individually heat the respective substrates 200 placed on the susceptor 217.
  サセプタ217には温度センサ274が設けられている。ヒータ218及び温度センサ274には、電力供給線222を介して、温度調整器223、電力調整器224及びヒータ電源225が電気的に接続されている。温度センサ274により検出された温度情報に基づいて、ヒータ218への通電具合が制御されるように構成されている。 The heel susceptor 217 is provided with a temperature sensor 274. A temperature regulator 223, a power regulator 224, and a heater power source 225 are electrically connected to the heater 218 and the temperature sensor 274 via a power supply line 222. Based on the temperature information detected by the temperature sensor 274, the power supply to the heater 218 is controlled.
(プラズマ生成部)  図3~図4に示すように、第二の処理領域201bの上方であって反応容器天井203aの内側には、処理空間207内にプラズマを生成するプラズマ生成部206が設けられている。プラズマ生成部206は、本実施形態では例えば二本の電極を用い、電極に電力を投入することで、電極間にプラズマを生成する。プラズマ生成部206には高周波電力を供給する高周波電源206bがインピーダンス整合回路206aを介して接続されている。プラズマ生成部に高周波電力が供給されると、ガスがプラズマ状態となる。つまり、プラズマ生成部206が、プラズマ生成を開始する。  こうして、第二の処理領域201b内に供給され、プラズマ生成部206の下方を通過した第二の処理ガス(本実施形態では酸素ガス)は、第二の処理領域201b内でプラズマ状態となり、これに含まれる活性種が基板200に供給される。  なお、プラズマ生成部206は、例えば基板処理装置10外に設けられたプラズマ生成装置で生成されたプラズマを処理空間207内に供給するリモートプラズマ生成部であってもよい。 (Plasma Generator) As shown in FIGS. 3 to 4, a plasma generator 206 for generating plasma in the processing space 207 is provided above the second processing region 201b and inside the reaction vessel ceiling 203a. It has been. In the present embodiment, the plasma generation unit 206 uses, for example, two electrodes, and generates plasma between the electrodes by applying power to the electrodes. A high frequency power source 206b for supplying high frequency power is connected to the plasma generating unit 206 via an impedance matching circuit 206a. When high-frequency power is supplied to the plasma generation unit, the gas enters a plasma state. That is, the plasma generation unit 206 starts plasma generation. Thus, the second processing gas (oxygen gas in the present embodiment) that is supplied into the second processing region 201b and passes below the plasma generation unit 206 becomes a plasma state in the second processing region 201b. Is supplied to the substrate 200. Note that the plasma generator 206 may be a remote plasma generator that supplies plasma generated by a plasma generator provided outside the substrate processing apparatus 10 into the processing space 207, for example.
(プラズマ生成開始/停止領域)  図3に示すように、基板200間の距離の大きい基板W1とW5の間に、プラズマ着火及びプラズマ停止が行われるプラズマ生成開始/停止領域208が設けられている。つまり、プラズマ生成開始/停止領域208は、プラズマ着火が行われるプラズマ生成開始領域であり、また、プラズマ停止が行われるプラズマ生成停止領域でもある。このように、サセプタ217は、基板200を載置する基板載置部217bが、同一円周上に複数配置され、円周方向に隣り合う基板載置部間の第1の距離が、他の基板載置部間の第2の距離より大きくなるように配置されている。 (Plasma Generation Start / Stop Area) As shown in FIG. 3, a plasma generation start / stop area 208 where plasma ignition and plasma stop are performed is provided between the substrates W1 and W5 having a large distance between the substrates 200. . That is, the plasma generation start / stop region 208 is a plasma generation start region where plasma ignition is performed, and is also a plasma generation stop region where plasma is stopped. As described above, the susceptor 217 includes a plurality of substrate placement portions 217b on which the substrate 200 is placed on the same circumference, and the first distance between the substrate placement portions adjacent to each other in the circumferential direction is different from that of the other susceptor 217. It arrange | positions so that it may become larger than the 2nd distance between board | substrate mounting parts.
  そして、サセプタ217が回転中に、プラズマ生成開始/停止領域208がプラズマ生成部206の下方にくると、プラズマ着火及びプラズマ停止が行われる。換言すると、サセプタ217が回転中に、プラズマ生成開始領域208がプラズマ生成部206に重なる位置にある状態で、プラズマ生成部206がプラズマ生成を開始する。また、サセプタ217が回転中に、プラズマ生成開始領域208がプラズマ生成部206に重なる位置にある状態で、プラズマ生成部206がプラズマ生成を停止する。 When the plasma generation start / stop region 208 comes below the plasma generation unit 206 while the susceptor 217 is rotating, plasma ignition and plasma stop are performed. In other words, while the susceptor 217 is rotating, the plasma generation unit 206 starts plasma generation in a state where the plasma generation start region 208 is in a position overlapping the plasma generation unit 206. Further, while the susceptor 217 is rotating, the plasma generation unit 206 stops the plasma generation in a state where the plasma generation start region 208 is in a position overlapping the plasma generation unit 206.
  詳しくは、プラズマ生成開始/停止領域208の回転方向における先端208aがプラズマ生成部206の下方にさしかかると、プラズマ生成部206のプラズマ放電が開始されるように、プラズマ生成部206に高周波電力が供給される。そして、プラズマ生成開始/停止領域208の回転方向における後端208bがプラズマ生成部206の下方にさしかかるまでの間に、プラズマ放電が安定するように構成されている。また、基板処理(例えば成膜処理)が終了した後、プラズマ生成開始/停止領域208の先端208aがプラズマ生成部206の下方にさしかかると、プラズマ生成部206への高周波電力が停止される。 Specifically, when the tip 208a in the rotation direction of the plasma generation start / stop region 208 reaches below the plasma generation unit 206, high frequency power is supplied to the plasma generation unit 206 so that plasma discharge of the plasma generation unit 206 is started. Is done. The plasma discharge is stabilized until the rear end 208b in the rotation direction of the plasma generation start / stop region 208 reaches below the plasma generation unit 206. Further, when the tip 208a of the plasma generation start / stop region 208 reaches below the plasma generation unit 206 after the substrate processing (for example, film formation processing) is finished, the high frequency power to the plasma generation unit 206 is stopped.
  プラズマ着火及びプラズマ停止は、コントローラ300により自動制御されるが、回転中のサセプタ217において、プラズマ着火又はプラズマ停止が行われる位置は一定ではない。本発明の発明者等は、プラズマ着火又はプラズマ停止が行われる位置が変動する原因を調べた結果、電極(プラズマ生成部206)の表面に基板処理に起因する薄膜が付着すること(理由a)や、高周波電源206bに対してコントローラ300がプラズマ着火命令又はプラズマ停止命令を発行する時間が一定ではないこと(理由b)が原因であることを突き止めた。また、プラズマ着火した後、プラズマ放電が安定するまでには一定の時間を要する(理由c)。プラズマ放電が安定するとは、プラズマ放電により生成される活性種の量や活性エネルギーが、基板処理結果(例えば膜厚)が所定の範囲内に収まるような範囲内になることをいう。 Plasma ignition and plasma stop are automatically controlled by the controller 300, but in the rotating susceptor 217, the position where plasma ignition or plasma stop is performed is not constant. As a result of investigating the cause of the fluctuation of the position where plasma ignition or plasma stop is performed, the inventors of the present invention adhere to a thin film resulting from substrate processing on the surface of the electrode (plasma generation unit 206) (reason a) In addition, it has been found that the reason why the controller 300 issues a plasma ignition command or a plasma stop command to the high-frequency power source 206b is not constant (reason b). Further, after plasma ignition, a certain time is required until the plasma discharge is stabilized (reason c). The phrase “plasma discharge is stable” means that the amount and active energy of active species generated by the plasma discharge are within a range where the substrate processing result (for example, film thickness) is within a predetermined range.
  以上の理由a~cにより、回転中のサセプタ217において、プラズマ着火又はプラズマ停止が行われる位置や、プラズマ放電が安定する位置が変動することになる。そうすると、サセプタ217上に例えば5枚の基板200を均等な間隔で配置した従来技術では、回転中の基板200上でプラズマ着火又はプラズマ停止が行われ可能性があり、また、回転中の基板200上でプラズマ放電が不安定である可能性がある。 For the reasons a to c above, in the rotating susceptor 217, the position where the plasma is ignited or stopped and the position where the plasma discharge is stabilized fluctuate. Then, in the conventional technology in which, for example, five substrates 200 are arranged on the susceptor 217 at equal intervals, there is a possibility that plasma ignition or plasma stop may be performed on the rotating substrate 200, and the rotating substrate 200 is rotated. Above, the plasma discharge may be unstable.
  本実施形態では、基板200間の間隔の大きい場所にプラズマ生成開始/停止領域208を設け、該プラズマ生成開始/停止領域208上で、プラズマ着火及びプラズマ停止を行うように構成した。また、該プラズマ生成開始/停止領域208上で、プラズマ放電が安定するように構成した。具体的には、上記理由aや理由bにより、プラズマ着火又はプラズマ停止が行われる位置が変動しても、プラズマ着火又はプラズマ停止が行われる位置がプラズマ生成開始/停止領域208内に収まるように、サセプタ217の回転速度と、プラズマ生成開始/停止領域208の回転方向における大きさ(先端208aと後端208bの間の大きさ)を設定した。また、上記理由cにより、プラズマ放電が安定するまでの時間が変動しても、プラズマ放電が安定する位置がプラズマ生成開始/停止領域208内に収まるように、サセプタ217の回転速度と、プラズマ生成開始/停止領域208の回転方向における大きさ(先端208aと後端208bの間の大きさ)を設定した。 In the present embodiment, the plasma generation start / stop region 208 is provided at a place where the distance between the substrates 200 is large, and the plasma ignition and plasma stop are performed on the plasma generation start / stop region 208. The plasma discharge is stabilized on the plasma generation start / stop region 208. Specifically, even if the position where the plasma ignition or plasma stop is performed fluctuates due to the reason a or the reason b, the position where the plasma ignition or plasma stop is performed is within the plasma generation start / stop region 208. The rotation speed of the susceptor 217 and the size of the plasma generation start / stop region 208 in the rotation direction (the size between the front end 208a and the rear end 208b) were set. For the above reason c, the rotational speed of the susceptor 217 and the plasma generation so that the position where the plasma discharge stabilizes is within the plasma generation start / stop region 208 even if the time until the plasma discharge stabilizes fluctuates. The size of the start / stop region 208 in the rotation direction (the size between the front end 208a and the rear end 208b) was set.
  なお、図3に示すプラズマ生成開始/停止領域208の大きさや形状(台形)は概念的なものであり、厳密なものではない。プラズマ生成開始/停止領域208の大きさは、基板載置部217bを内包し基板載置部217bよりも大きい場合もあるし、基板載置部217bよりも小さい場合もある。要は、プラズマ生成開始/停止領域208に隣接する基板載置部217bに載置される基板200が、プラズマ着火又はプラズマ停止による膜厚への悪影響を受けない大きさや形状であればよい。  プラズマ生成開始/停止領域208の大きさは、例えば、サセプタ217の回転速度を1rpmとした場合、図3に示す台形のプラズマ生成開始/停止領域208の先端208aと後端208bを660mm、短辺208cを120mm、長辺208dを480mmとすることができる。このようにすると、プラズマ生成開始/停止領域208内において、プラズマ着火とプラズマ停止及びプラズマ安定化を行うことができる。 Note that the size and shape (trapezoid) of the plasma generation start / stop region 208 shown in FIG. 3 are conceptual and not strict. The size of the plasma generation start / stop region 208 includes the substrate platform 217b and may be larger than the substrate platform 217b or may be smaller than the substrate platform 217b. In short, the substrate 200 placed on the substrate placement unit 217b adjacent to the plasma generation start / stop region 208 may be any size or shape that does not adversely affect the film thickness due to plasma ignition or plasma stop. For example, when the rotation speed of the susceptor 217 is 1 rpm, the front end 208a and the rear end 208b of the trapezoidal plasma generation start / stop region 208 shown in FIG. 208c can be 120 mm, and the long side 208d can be 480 mm. Thus, plasma ignition, plasma stop, and plasma stabilization can be performed in the plasma generation start / stop region 208.
(処理ガス供給部)  反応容器203の上側には、第一の処理ガス導入機構251と、第二の処理ガス導入機構252と、不活性ガス導入機構253と、を備えるガス供給機構250が設けられている。ガス供給機構250は、サセプタ217の中心部の上方であって、反応容器203の上側に開設された開口に気密に設けられている。第一の処理ガス導入機構251の側壁には、第一のガス噴出口254が設けられている。第二の処理ガス導入機構252の側壁には、第二のガス噴出口255が設けられている。不活性ガス導入機構253の側壁には、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257がそれぞれ対向するように設けられている。 (Processing gas supply unit) A gas supply mechanism 250 including a first processing gas introduction mechanism 251, a second processing gas introduction mechanism 252, and an inert gas introduction mechanism 253 is provided above the reaction vessel 203. It has been. The gas supply mechanism 250 is airtightly provided above the center of the susceptor 217 and at an opening formed above the reaction vessel 203. A first gas outlet 254 is provided on the side wall of the first processing gas introduction mechanism 251. A second gas outlet 255 is provided on the side wall of the second processing gas introduction mechanism 252. A first inert gas outlet 256 and a second inert gas outlet 257 are provided on the side wall of the inert gas introduction mechanism 253 so as to face each other.
  ガス供給機構250は、第一の処理ガス導入機構251から第一の処理領域201a内に第一の処理ガスを供給し、第二の処理ガス導入機構252から第二の処理領域201b内に第二の処理ガスを供給し、不活性ガス導入機構253から第一のパージ領域204a内及び第二のパージ領域204b内に不活性ガスを供給するように構成されている。ガス供給機構250は、各処理ガス及び不活性ガスを混合させずに個別に各領域に供給することができ、更には、各処理ガス及び不活性ガスを併行して各領域に供給することができるように構成されている。 The gas supply mechanism 250 supplies the first processing gas from the first processing gas introduction mechanism 251 into the first processing region 201a, and the second processing gas introduction mechanism 252 supplies the first processing gas into the second processing region 201b. The second processing gas is supplied, and the inert gas is supplied from the inert gas introduction mechanism 253 into the first purge region 204a and the second purge region 204b. The gas supply mechanism 250 can supply each processing gas and inert gas individually to each region without mixing them, and can supply each processing gas and inert gas to each region in parallel. It is configured to be able to.
  第一の処理ガス導入機構251の上流側には、第一のガス供給管232aが接続されている。第一のガス供給管232aの上流側には、上流方向から順に、原料ガス供給源232b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)232c、及び開閉弁であるバルブ232dが設けられている。 The first gas supply pipe 232a is connected to the upstream side of the first processing gas introduction mechanism 251. On the upstream side of the first gas supply pipe 232a, a source gas supply source 232b, a mass flow controller (MFC) 232c as a flow rate controller (flow rate control unit), and a valve 232d as an on-off valve are provided in order from the upstream direction. It has been.
  第一のガス供給管232aからは、第一のガス(第一の処理ガス)として、例えば、シリコン含有ガスが、マスフローコントローラ232c、バルブ232d、第一の処理ガス導入機構251及び第一のガス噴出口254を介して、第一の処理領域201a内に供給される。シリコン含有ガスとしては、例えばプリカーサーとして、トリシリルアミン((SiHN、略称:TSA)ガスを用いることができる。なお、第一の処理ガスは、常温常圧で固体、液体、及び気体のいずれであっても良いが、ここでは気体として説明する。第一の処理ガスが常温常圧で液体の場合は、原料ガス供給源232bとマスフローコントローラ232cとの間に、図示しない気化器を設ければよい。 From the first gas supply pipe 232a, as the first gas (first processing gas), for example, a silicon-containing gas includes a mass flow controller 232c, a valve 232d, a first processing gas introduction mechanism 251 and a first gas. It is supplied into the first processing region 201a via the jet port 254. As the silicon-containing gas, for example, a trisilylamine ((SiH 3 ) 3 N, abbreviation: TSA) gas can be used as a precursor. Note that the first processing gas may be any of solid, liquid, and gas at normal temperature and pressure, but is described as a gas here. When the first processing gas is liquid at normal temperature and pressure, a vaporizer (not shown) may be provided between the source gas supply source 232b and the mass flow controller 232c.
  なお、シリコン含有ガスとしては、TSAの他に、例えば有機シリコン材料であるヘキサメチルジシラザン(C19NSi、略称:HMDS)、トリスジメチルアミノシラン(Si[N(CH3)2]3H、略称:3DMAS)、ビスターシャリブチルアミノシラン(SiH(NH(C))、略称:BTBAS)等を用いることができる。  これら、第一のガスは、後述する第二のガスより粘着度の高い材料が用いられる。 As the silicon-containing gas, in addition to TSA, for example, hexamethyldisilazane (C 6 H 19 NSi 2 , abbreviation: HMDS), trisdimethylaminosilane (Si [N (CH 3) 2] 3 H), which is an organic silicon material, Abbreviations: 3DMAS), bistally butylaminosilane (SiH 2 (NH (C 4 H 9 )) 2 , abbreviations: BTBAS) and the like can be used. For these first gases, a material having a higher degree of adhesion than the second gas described later is used.
  第二の処理ガス導入機構252の上流側には、第二のガス供給管233aが接続されている。第二のガス供給管233aの上流側には、上流方向から順に、原料ガス供給源233b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)233c、及び開閉弁であるバルブ233dが設けられている。 A second gas supply pipe 233a is connected to the upstream side of the second processing gas introduction mechanism 252. On the upstream side of the second gas supply pipe 233a, a source gas supply source 233b, a mass flow controller (MFC) 233c that is a flow rate controller (flow rate control unit), and a valve 233d that is an on-off valve are provided in order from the upstream direction. It has been.
  第二のガス供給管233aからは、第二のガス(第二の処理ガス、反応ガス)として、例えば酸素含有ガスである酸素(O)ガスが、マスフローコントローラ233c、バルブ233d、第二の処理ガス導入機構252及び第二のガス噴出口255を介して、第二の処理領域201b内に供給される。第二の処理ガスである酸素ガスは、プラズマ生成部206によりプラズマ状態とされ、基板200上に晒される。なお、第二の処理ガスである酸素ガスは、ヒータ218の温度及び反応容器203内の圧力を所定の範囲に調整し、熱で活性化させてもよい。なお、酸素含有ガスとしては、オゾン(O)ガスや水蒸気(HO)を用いてもよい。  これら第二のガスは、第一のガスより粘着度の低い材料が用いられる。 From the second gas supply pipe 233a, as the second gas (second processing gas, reaction gas), for example, oxygen (O 2 ) gas, which is an oxygen-containing gas, is supplied from the mass flow controller 233c, the valve 233d, and the second gas. The gas is supplied into the second processing region 201b through the processing gas introduction mechanism 252 and the second gas ejection port 255. The oxygen gas that is the second processing gas is brought into a plasma state by the plasma generation unit 206 and exposed to the substrate 200. The oxygen gas that is the second processing gas may be activated by adjusting the temperature of the heater 218 and the pressure in the reaction vessel 203 within a predetermined range. Note that ozone (O 3 ) gas or water vapor (H 2 O) may be used as the oxygen-containing gas. For the second gas, a material having a lower adhesion than the first gas is used.
  主に、第一のガス供給管232a、マスフローコントローラ232c及びバルブ232dにより、第一の処理ガス供給部(シリコン含有ガス供給系ともいう)232が構成される。なお、原料ガス供給源232b、第一の処理ガス導入機構251及び第一のガス噴出口254を、第一の処理ガス供給部に含めて考えてもよい。また、主に、第二のガス供給管233a、マスフローコントローラ233c及びバルブ233dにより、第二の処理ガス供給部(酸素含有ガス供給系ともいう)233が構成される。なお、原料ガス供給源233b、第二の処理ガス導入機構252及び第二のガス噴出口255を、第二の処理ガス供給部に含めて考えてもよい。そして、主に、第一の処理ガス供給部及び第二の処理ガス供給部により、処理ガス供給部が構成される。 The first process gas supply unit (also referred to as a silicon-containing gas supply system) 232 is mainly configured by the first gas supply pipe 232a, the mass flow controller 232c, and the valve 232d. The source gas supply source 232b, the first process gas introduction mechanism 251 and the first gas jet outlet 254 may be included in the first process gas supply unit. In addition, a second processing gas supply unit (also referred to as an oxygen-containing gas supply system) 233 is mainly configured by the second gas supply pipe 233a, the mass flow controller 233c, and the valve 233d. The source gas supply source 233b, the second process gas introduction mechanism 252 and the second gas jet outlet 255 may be included in the second process gas supply unit. And a process gas supply part is mainly comprised by the 1st process gas supply part and the 2nd process gas supply part.
(不活性ガス供給部)  不活性ガス導入機構253の上流側には、第一の不活性ガス供給管234aが接続されている。第一の不活性ガス供給管234aの上流側には、上流方向から順に、不活性ガス供給源234b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234c、及び開閉弁であるバルブ234dが設けられている。 (Inert Gas Supply Unit) A first inert gas supply pipe 234a is connected to the upstream side of the inert gas introduction mechanism 253. On the upstream side of the first inert gas supply pipe 234a, in order from the upstream direction, an inert gas supply source 234b, a mass flow controller (MFC) 234c that is a flow rate controller (flow rate control unit), and a valve that is an on-off valve 234d is provided.
  第一の不活性ガス供給管234aからは、例えば窒素(N)ガスで構成される不活性ガスが、マスフローコントローラ234c、バルブ234d、不活性ガス導入機構253、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257を介して、第一のパージ領域204a内及び第二のパージ領域204b内にそれぞれ供給される。第一のパージ領域204a内及び第二のパージ領域204b内に供給される不活性ガスは、後述する成膜工程(S106)ではパージガスとして作用する。なお、不活性ガスとして、Nガスのほか、例えばヘリウム(He)ガス、ネオン(Ne)ガス、アルゴン(Ar)ガス等の希ガスを用いることができる。 From the first inert gas supply pipe 234a, an inert gas composed of, for example, nitrogen (N 2 ) gas is supplied to the mass flow controller 234c, the valve 234d, the inert gas introduction mechanism 253, and the first inert gas ejection port. The gas is supplied into the first purge region 204a and the second purge region 204b through 256 and the second inert gas outlet 257, respectively. The inert gas supplied into the first purge region 204a and the second purge region 204b acts as a purge gas in the film forming step (S106) described later. In addition to N 2 gas, for example, a rare gas such as helium (He) gas, neon (Ne) gas, or argon (Ar) gas can be used as the inert gas.
  第一のガス供給管232aのバルブ232dよりも下流側には、第二の不活性ガス供給管235aの下流端が接続されている。上流方向から順に、不活性ガス供給源235b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)235c、及び開閉弁であるバルブ235dが設けられている。 The downstream end of the second inert gas supply pipe 235a is connected to the downstream side of the valve 232d of the first gas supply pipe 232a. In order from the upstream direction, an inert gas supply source 235b, a mass flow controller (MFC) 235c that is a flow rate controller (flow rate control unit), and a valve 235d that is an on-off valve are provided.
  第二の不活性ガス供給管235aからは、不活性ガスとして、例えばNガスが、マスフローコントローラ235c、バルブ235d、第一のガス供給管232a、第一の処理ガス導入機構251及び第一のガス噴出口254を介して、第一の処理領域201a内に供給される。第一の処理領域201a内に供給される不活性ガスは、成膜工程(S106)ではキャリアガス或いは希釈ガスとして作用する。 From the second inert gas supply pipe 235a, for example, N 2 gas is used as an inert gas, such as a mass flow controller 235c, a valve 235d, a first gas supply pipe 232a, a first process gas introduction mechanism 251 and a first process gas. The gas is supplied into the first processing region 201a through the gas outlet 254. The inert gas supplied into the first processing region 201a acts as a carrier gas or a dilution gas in the film forming step (S106).
  また、第二のガス供給管233aのバルブ233dよりも下流側には、第三の不活性ガス供給管236aの下流端が接続されている。上流方向から順に、不活性ガス供給源236b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)236c、及び開閉弁であるバルブ236dが設けられている。 The downstream end of the third inert gas supply pipe 236a is connected to the downstream side of the valve 233d of the second gas supply pipe 233a. In order from the upstream direction, an inert gas supply source 236b, a mass flow controller (MFC) 236c that is a flow rate controller (flow rate control unit), and a valve 236d that is an on-off valve are provided.
  第三の不活性ガス供給管236aからは、不活性ガスとして、例えばNガスが、マスフローコントローラ236c、バルブ236d、第二のガス供給管233a、第二の処理ガス導入機構252及び第二のガス噴出口255を介して、第二の処理領域201b内に供給される。第二の処理領域201b内に供給される不活性ガスは、第一の処理領域201a内に供給される不活性ガスと同様に、成膜工程(S106)ではキャリアガス或いは希釈ガスとして作用する。 From the third inert gas supply pipe 236a, for example, N 2 gas is used as an inert gas, such as a mass flow controller 236c, a valve 236d, a second gas supply pipe 233a, a second process gas introduction mechanism 252 and a second process gas. The gas is supplied into the second processing region 201b via the gas outlet 255. The inert gas supplied into the second processing region 201b acts as a carrier gas or a dilution gas in the film forming step (S106), similarly to the inert gas supplied into the first processing region 201a.
  主に、第一の不活性ガス供給管234a、マスフローコントローラ234c及びバルブ234dにより第一の不活性ガス供給部234が構成される。なお、不活性ガス供給源234b、不活性ガス導入機構253、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257を、第一の不活性ガス供給部234に含めて考えてもよい。 The first inert gas supply unit 234 is mainly composed of the first inert gas supply pipe 234a, the mass flow controller 234c, and the valve 234d. It should be noted that the inert gas supply source 234b, the inert gas introduction mechanism 253, the first inert gas outlet 256, and the second inert gas outlet 257 are included in the first inert gas supply unit 234. May be.
  また、主に、第二の不活性ガス供給管235a、マスフローコントローラ235c及びバルブ235dにより第二の不活性ガス供給部235が構成される。なお、不活性ガス供給源235b、第一のガス供給管232a、第一の処理ガス導入機構251及び第一のガス噴出口254を、第二の不活性ガス供給部235に含めて考えてもよい。 In addition, the second inert gas supply unit 235 is mainly configured by the second inert gas supply pipe 235a, the mass flow controller 235c, and the valve 235d. Note that the inert gas supply source 235b, the first gas supply pipe 232a, the first process gas introduction mechanism 251 and the first gas outlet 254 may be included in the second inert gas supply unit 235. Good.
  また、主に、第三の不活性ガス供給管236a、マスフローコントローラ236c及びバルブ236dにより第三の不活性ガス供給部236が構成される。なお、不活性ガス供給源236b、第二のガス供給管233a、第二の処理ガス導入機構252及び第二のガス噴出口255を、第三の不活性ガス供給部に含めて考えてもよい。そして、主に、第一から第三の不活性ガス供給部により、不活性ガス供給部が構成される。 In addition, the third inert gas supply unit 236 is mainly configured by the third inert gas supply pipe 236a, the mass flow controller 236c, and the valve 236d. The inert gas supply source 236b, the second gas supply pipe 233a, the second process gas introduction mechanism 252 and the second gas jet outlet 255 may be included in the third inert gas supply unit. . And the inert gas supply part is mainly comprised by the 1st to 3rd inert gas supply part.
(ガス供給部)  処理ガス供給部と不活性ガス供給部により、ガス供給部が構成される。 (Gas supply part) A gas supply part is comprised by the soot process gas supply part and an inert gas supply part.
(排気部)  図4に示すように、反応容器203には、処理領域201a,201b内及びパージ領域204a,204b内の雰囲気を排気する排気管231が設けられている。排気管231には、ガス流量を制御する流量制御器(流量制御部)としての流量制御バルブ245、及び圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ243を介して、真空排気装置としての真空ポンプ246が接続されており、反応容器203内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。なお、APCバルブ243は、弁を開閉して反応容器203内の真空排気や真空排気停止ができ、更に弁開度を調節して圧力調整可能となっている開閉弁である。主に、排気管231、APCバルブ243及び流量制御バルブ245により排気部が構成される。なお、排気部には、真空ポンプ246を含めても良い。 (Exhaust Portion) As shown in FIG. 4, the reaction vessel 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing regions 201a and 201b and the purge regions 204a and 204b. The exhaust pipe 231 is evacuated via a flow rate control valve 245 as a flow rate controller (flow rate control unit) for controlling the gas flow rate and an APC (Auto Pressure Controller) valve 243 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 serving as an exhaust device is connected, and is configured so that vacuum exhaust can be performed so that the pressure in the reaction vessel 203 becomes a predetermined pressure (degree of vacuum). The APC valve 243 is an open / close valve that can open and close the valve to evacuate or stop evacuation of the reaction vessel 203, and further adjust the valve opening to adjust the pressure. The exhaust part is mainly constituted by the exhaust pipe 231, the APC valve 243 and the flow rate control valve 245. Note that a vacuum pump 246 may be included in the exhaust part.
(サセプタの周辺構造)  図3に示すように、反応容器203には、第一の搬送室筐体101がゲートバルブ150から153のいずれかを介して隣接するように設けられている。例えば、ゲートバルブ151が開かれることで、反応容器203内と第一の搬送室筐体101とが連通するようになっている。第一の基板移載機112はポッドから第二の基板移載機124を介して、サセプタ217の載置部217bとの間で、基板200を搬送する。  前述したように、サセプタ217には、基板200を載置する載置部217bが複数、形成されている。本実施形態においては、基板W1~W5を載置する載置部217bのそれぞれが、逆時計回り方向に五つ設けられ、サセプタ217が順時計回り方向に回転することで、五つの載置部217bが一括して回転される。 (Surrounding structure of susceptor) As shown in FIG. 3, the reaction container 203 is provided with a first transfer chamber casing 101 adjacent to one another via any one of gate valves 150 to 153. For example, when the gate valve 151 is opened, the inside of the reaction vessel 203 and the first transfer chamber casing 101 communicate with each other. The first substrate transfer machine 112 transports the substrate 200 from the pod to the placement unit 217 b of the susceptor 217 via the second substrate transfer machine 124. As described above, the susceptor 217 has a plurality of mounting portions 217b on which the substrate 200 is mounted. In the present embodiment, each of the five placement portions 217b on which the substrates W1 to W5 are placed is provided in the counterclockwise direction, and the susceptor 217 rotates in the counterclockwise direction. 217b is rotated together.
(制御部)  制御部(制御手段)である制御部300は、以上説明した各構成の制御を行うものである。すなわち、制御部300は、ゲートバルブの開閉、基板移載機による基板搬送、サセプタ上への基板載置、サセプタの回転動作、サセプタ上の基板加熱、処理室内のガス供給及び排出制御、プラズマ生成の開始及び停止等を制御する。 (Control part) The control part 300 which is a spear control part (control means) performs control of each structure demonstrated above. That is, the control unit 300 opens and closes the gate valve, transports the substrate by the substrate transfer machine, places the substrate on the susceptor, rotates the susceptor, heats the substrate on the susceptor, controls gas supply and discharge in the processing chamber, and generates plasma. Control the start and stop of the.
(3)基板処理工程  続いて、本実施形態にかかる半導体製造工程の一工程として、上述した反応容器203を備えるプロセスチャンバ202bを用いて実施される基板処理工程について、図5及び図6を用いて説明する。図5は、本実施形態に係る基板処理工程を示すフロー図であり、図6は、本実施形態に係る基板処理工程における成膜工程での基板への処理を示すフロー図である。なお、以下の説明において、基板処理装置10のプロセスチャンバ202の構成各部の動作は、制御部300により制御される。 (3) Substrate Processing Step Next, as a step of the semiconductor manufacturing process according to the present embodiment, a substrate processing step performed using the process chamber 202b including the reaction vessel 203 described above will be described with reference to FIGS. I will explain. FIG. 5 is a flowchart showing a substrate processing process according to the present embodiment, and FIG. 6 is a flowchart showing a process on the substrate in the film forming process in the substrate processing process according to the present embodiment. In the following description, the operation of each part of the process chamber 202 of the substrate processing apparatus 10 is controlled by the control unit 300.
  ここでは、第一のガスとして、シリコン含有ガスであるトリシリルアミン(TSA)を用い、第二の処理ガスとして、酸素含有ガスである酸素ガスを用い、基板200上に絶縁膜として酸化シリコン膜(SiO膜、以下、単にSiO膜ともいう)を形成する例について説明する。 Here, trisilylamine (TSA) that is a silicon-containing gas is used as the first gas, oxygen gas that is an oxygen-containing gas is used as the second processing gas, and a silicon oxide film is formed as an insulating film on the substrate 200. An example of forming (SiO 2 film, hereinafter, also simply referred to as SiO film) will be described.
(基板搬入・載置工程(S101))  基板200を反応容器203内へ搬入し、基板載置部217b上に載置する基板搬入・載置工程について説明する。  まず、基板200の搬送位置まで基板突き上げピン266を上昇させ、サセプタ217の貫通孔217aに基板突き上げピン266を貫通させる。その結果、基板突き上げピン266が、サセプタ217表面よりも所定の高さ分だけ突出した状態となる。続いて、ゲートバルブ151を開き、第一の基板移載機112を用いて、反応容器203内に所定枚数(例えば5枚)の基板200(処理基板)を搬入する。そして、サセプタ217の図示しない回転軸を中心として、各基板200が重ならないように、サセプタ217の同一面上に載置する。これにより、基板200は、サセプタ217の表面から突出した基板突き上げピン266上に水平姿勢で支持される。 (Substrate carrying-in / placement process (S101)) The board | substrate carrying-in / placement process which carries in the board | substrate 200 in the reaction container 203 and places it on the board | substrate mounting part 217b is demonstrated. First, the substrate push-up pin 266 is raised to the transfer position of the substrate 200, and the substrate push-up pin 266 is passed through the through hole 217a of the susceptor 217. As a result, the substrate push-up pin 266 is in a state of protruding by a predetermined height from the surface of the susceptor 217. Subsequently, the gate valve 151 is opened, and a predetermined number (for example, five) of substrates 200 (processing substrates) is loaded into the reaction vessel 203 using the first substrate transfer machine 112. Then, the susceptor 217 is placed on the same surface of the susceptor 217 so that the substrates 200 do not overlap with each other about the rotation axis (not shown). Accordingly, the substrate 200 is supported in a horizontal posture on the substrate push-up pins 266 protruding from the surface of the susceptor 217.
  反応容器203内に基板200を搬入したら、第一の基板移載機112を反応容器203外へ退避させ、ゲートバルブ151を閉じて反応容器203内を密閉する。その後、基板突き上げピン266を下降させて、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bの各底面のサセプタ217に設けられた基板載置部217b上に基板200を載置する。 し た ら After loading the substrate 200 into the reaction vessel 203, the first substrate transfer machine 112 is retracted out of the reaction vessel 203, the gate valve 151 is closed, and the inside of the reaction vessel 203 is sealed. Thereafter, the substrate push-up pin 266 is lowered to mount the substrate mounted on the susceptor 217 on the bottom surface of each of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. The substrate 200 is placed on the placement portion 217b.
  なお、基板200を反応容器203内に搬入する際には、排気部により反応容器203内を排気しつつ、不活性ガス供給部から反応容器203内にパージガスとしてのNガスを供給することが好ましい。すなわち、真空ポンプ246を作動させ、APCバルブ243を開けることにより、反応容器203内を排気しつつ、少なくとも第一の不活性ガス供給部のバルブ234dを開けることにより、反応容器203内にNガスを供給することが好ましい。これにより、処理領域201内へのパーティクルの侵入や、基板200上へのパーティクルの付着を抑制することが可能となる。ここで、さらに第二の不活性ガス供給部及び第三の不活性ガス供給部から不活性ガスを供給してもよい。なお、真空ポンプ246は、少なくとも基板搬入・載置工程(S101)から後述する基板搬出工程(S110)が終了するまでの間は、常に作動させた状態とする。 When the substrate 200 is carried into the reaction vessel 203, N 2 gas as a purge gas is supplied from the inert gas supply unit into the reaction vessel 203 while the reaction vessel 203 is exhausted by the exhaust unit. preferable. That is, by operating the vacuum pump 246 and opening the APC valve 243, while exhausting the inside of the reaction vessel 203, at least the valve 234 d of the first inert gas supply unit is opened, whereby N 2 is introduced into the reaction vessel 203. It is preferable to supply gas. Thereby, it is possible to suppress intrusion of particles into the processing region 201 and adhesion of particles onto the substrate 200. Here, the inert gas may be further supplied from the second inert gas supply unit and the third inert gas supply unit. The vacuum pump 246 is always operated at least from the substrate loading / mounting step (S101) to the completion of the substrate unloading step (S110) described later.
  また、基板200を反応容器203内に搬入する前に、サセプタ217の内部に埋め込まれたヒータ218に電力を供給し、サセプタ217の表面が所定の温度となるように加熱する。この際、ヒータ218の温度は、温度センサ274により検出された温度情報に基づいてヒータ218への通電具合を制御することによって調整される。 In addition, before carrying the substrate 200 into the reaction vessel 203, electric power is supplied to the heater 218 embedded in the susceptor 217 to heat the surface of the susceptor 217 to a predetermined temperature. At this time, the temperature of the heater 218 is adjusted by controlling the power supply to the heater 218 based on the temperature information detected by the temperature sensor 274.
  なお、シリコンで構成される基板200の加熱処理では、基板200の表面温度を750℃以上にまで加熱すると、基板200の表面に形成されたソース領域やドレイン領域等に不純物の拡散が生じ、回路特性が劣化し、半導体デバイスの性能が低下してしまう場合がある。サセプタ217の温度を上述のように制限することにより、基板200の表面に形成されたソース領域やドレイン領域における不純物の拡散、回路特性の劣化、半導体デバイスの性能の低下を抑制できる。 Note that in the heat treatment of the substrate 200 made of silicon, when the surface temperature of the substrate 200 is heated to 750 ° C. or higher, impurity diffusion occurs in the source region, the drain region, and the like formed on the surface of the substrate 200, The characteristics may deteriorate and the performance of the semiconductor device may deteriorate. By limiting the temperature of the susceptor 217 as described above, it is possible to suppress the diffusion of impurities in the source region and the drain region formed on the surface of the substrate 200, the deterioration of circuit characteristics, and the deterioration of the performance of the semiconductor device.
(サセプタの回転開始(S102))  所定枚数(例えば5枚)の基板200を基板載置部217b上に載置した後、回転機構267を作動して、サセプタ217の回転を開始させる。この際、サセプタ217の回転速度は制御部300によって、所定の第1の速度に制御される。第1の速度は、例えば1回転/秒である。サセプタ217を回転させることにより、基板200は、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bの順に移動を開始し、各領域を基板200が通過する。 (Start of susceptor rotation (S102)) After a predetermined number (for example, five) of substrates 200 are placed on the substrate platform 217b, the rotation mechanism 267 is operated to start the rotation of the susceptor 217. At this time, the rotation speed of the susceptor 217 is controlled by the control unit 300 to a predetermined first speed. The first speed is, for example, 1 rotation / second. By rotating the susceptor 217, the substrate 200 starts moving in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. 200 passes.
(ガス供給・圧力調整工程(S103))  処理ガス及び不活性ガスを供給し、反応容器203内を所望の圧力に調整するガス供給・圧力調整工程について説明する。  サセプタ217が所望とする回転速度(第1の速度)に到達したら、少なくともバルブ232d,233d及び234dを開け、処理ガス及び不活性ガスの処理領域201及びパージ領域204への供給を開始する。すなわち、バルブ232dを開けて第一の処理領域201a内にTSAガスを供給し、バルブ233dを開けて第二の処理領域201b内に酸素ガスを供給することで、処理ガス供給部から処理ガスを供給する。さらにバルブ234dを開けて第一のパージ領域204a及び第二のパージ領域204b内に不活性ガスであるNガスを供給することで、不活性ガス供給部から不活性ガスを供給する。このとき、TSAガス、酸素ガス、不活性ガスは、併行して、それぞれの領域に供給される。 (Gas Supply / Pressure Adjustment Step (S103)) A gas supply / pressure adjustment step of supplying a processing gas and an inert gas and adjusting the inside of the reaction vessel 203 to a desired pressure will be described. When the susceptor 217 reaches a desired rotation speed (first speed), at least the valves 232d, 233d, and 234d are opened, and supply of the processing gas and the inert gas to the processing region 201 and the purge region 204 is started. That is, by opening the valve 232d and supplying TSA gas into the first processing region 201a, and opening the valve 233d and supplying oxygen gas into the second processing region 201b, the processing gas is supplied from the processing gas supply unit. Supply. Further, the inert gas is supplied from the inert gas supply unit by opening the valve 234d and supplying the N 2 gas which is an inert gas into the first purge region 204a and the second purge region 204b. At this time, TSA gas, oxygen gas, and inert gas are supplied to the respective regions in parallel.
  具体的には、バルブ232dを開け、第一のガス供給管232aから第一の処理ガス導入機構251及び第一のガス噴出口254を介して第一の処理領域201aにTSAガスを供給しつつ、排気管231から排気する。このとき、TSAガスの流量が所定の流量となるように、マスフローコントローラ232cを調整する。なお、マスフローコントローラ232cで制御するTSAガスの供給流量は、例えば100sccm~5000sccmの範囲内の流量とする。 Specifically, the valve 232d is opened, and TSA gas is supplied from the first gas supply pipe 232a to the first processing region 201a through the first processing gas introduction mechanism 251 and the first gas jet port 254. Then, the exhaust pipe 231 is exhausted. At this time, the mass flow controller 232c is adjusted so that the flow rate of the TSA gas becomes a predetermined flow rate. The supply flow rate of the TSA gas controlled by the mass flow controller 232c is, for example, a flow rate in the range of 100 sccm to 5000 sccm.
  TSAガスを第一の処理領域201a内に供給する際には、バルブ235dを開け、第二の不活性ガス供給管235aからキャリアガス或いは希釈ガスとしてのNガスを第一の処理領域201a内に供給することが好ましい。これにより、第一の処理領域201a内へのTSAガスの供給を促進させることができる。 When supplying the TSA gas into the first processing region 201a, the valve 235d is opened, and N 2 gas as a carrier gas or a dilution gas is supplied from the second inert gas supply pipe 235a into the first processing region 201a. It is preferable to supply to. Thereby, supply of TSA gas into the 1st processing field 201a can be promoted.
  また、バルブ233dを開け、第二のガス供給管233aから第二の処理ガス導入機構252及び第二のガス噴出口255を介して第二の処理領域201bに酸素ガスを供給しつつ、排気管231から排気する。このとき、酸素ガスの流量が所定の流量となるように、マスフローコントローラ233cを調整する。なお、マスフローコントローラ233cで制御する酸素ガスの供給流量は、例えば1000sccm~10000sccmの範囲内の流量とする。 Further, the exhaust pipe is opened while the valve 233d is opened and oxygen gas is supplied from the second gas supply pipe 233a to the second processing region 201b through the second processing gas introduction mechanism 252 and the second gas outlet 255. Exhaust from 231. At this time, the mass flow controller 233c is adjusted so that the flow rate of the oxygen gas becomes a predetermined flow rate. Note that the supply flow rate of the oxygen gas controlled by the mass flow controller 233c is, for example, a flow rate in the range of 1000 sccm to 10,000 sccm.
  酸素ガスを第二の処理領域201b内に供給する際には、バルブ236dを開け、第三の不活性ガス供給管236aからキャリアガス或いは希釈ガスとしてのNガスを第二の処理領域201b内に供給することが好ましい。これにより、第二の処理領域201b内への酸素ガスの供給を促進することができる。 When supplying oxygen gas into the second processing region 201b, the valve 236d is opened, and N 2 gas as carrier gas or dilution gas is supplied from the third inert gas supply pipe 236a into the second processing region 201b. It is preferable to supply to. Thereby, supply of oxygen gas into the second processing region 201b can be promoted.
  また、バルブ232d、バルブ233d、バルブ234dを開け、パージガスとしての不活性ガスであるNガスを、第一の不活性ガス供給管234aから不活性ガス導入機構253、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257を介して第一のパージ領域204a及び第二のパージ領域204bにそれぞれ供給しつつ排気する。このとき、Nガスの流量が所定の流量となるように、マスフローコントローラ234cを調整する。なお、仕切板205の端部と反応容器203の側壁との隙間を介し、第一のパージ領域204a内及び第二のパージ領域204b内から第一の処理領域201a内及び第二の処理領域201b内に向けて不活性ガスを噴出させることで、第一のパージ領域204a内及び第二のパージ領域204b内への処理ガスの侵入を抑制することができる。 Further, the valve 232d, the valve 233d, and the valve 234d are opened, and N 2 gas that is an inert gas as a purge gas is supplied from the first inert gas supply pipe 234a to the inert gas introduction mechanism 253 and the first inert gas jet. The exhaust gas is exhausted while being supplied to the first purge region 204a and the second purge region 204b through the outlet 256 and the second inert gas outlet 257, respectively. At this time, the mass flow controller 234c is adjusted so that the flow rate of the N 2 gas becomes a predetermined flow rate. Note that, through the gap between the end portion of the partition plate 205 and the side wall of the reaction vessel 203, the first processing region 201a and the second processing region 201b from the first purge region 204a and the second purge region 204b. By injecting the inert gas toward the inside, it is possible to suppress intrusion of the processing gas into the first purge region 204a and the second purge region 204b.
  また、ガス供給と併行して、反応容器203内が所望の圧力(例えば0.1Pa~300Pa、好ましくは20Pa~40Pa)となるように、反応容器203内を真空ポンプ246によって真空排気する。この際、反応容器203内の圧力は図中省略の圧力センサで測定され、この測定された圧力情報に基づきAPCバルブ243の開度をフィードバック制御する。このときヒータ218の温度は、基板200の温度が、例えば200℃~400℃の範囲内の温度となるような温度に設定する。 In parallel with the gas supply, the reaction vessel 203 is evacuated by a vacuum pump 246 so that the reaction vessel 203 has a desired pressure (for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa). At this time, the pressure in the reaction vessel 203 is measured by a pressure sensor (not shown), and the opening degree of the APC valve 243 is feedback controlled based on the measured pressure information. At this time, the temperature of the heater 218 is set to such a temperature that the temperature of the substrate 200 becomes a temperature within the range of 200 ° C. to 400 ° C., for example.
(プラズマ生成開始(S104))  次に、サセプタ217が回転中に、プラズマ生成開始/停止領域208がプラズマ生成部206と重なる位置にさしかかると、プラズマ生成部206でプラズマ生成を開始する。つまり、サセプタ217のプラズマ生成開始/停止領域208が第二の処理領域201bにさしかかると、プラズマ生成部206を構成する電極に、高周波電源206bから電力の供給を開始する。これにより、第二の処理領域201b内に位置しているプラズマ生成開始/停止領域208においてプラズマ着火されてプラズマが生成される。  このとき、プラズマ生成開始/停止領域208がプラズマ生成部206の位置を通過するまでの間、つまり、プラズマ生成開始/停止領域208がプラズマ生成部206と重なる位置にある間に、プラズマ放電が安定するように、サセプタ217の回転速度(第1の速度)が設定されている。なお、プラズマ放電が安定するまでの時間は、予め実験等により計測しておき、その時間に応じて第1の速度が設定される。 (Plasma Generation Start (S104)) Next, when the plasma generation start / stop region 208 reaches a position where it overlaps the plasma generation unit 206 while the susceptor 217 is rotating, the plasma generation unit 206 starts plasma generation. That is, when the plasma generation start / stop region 208 of the susceptor 217 reaches the second processing region 201b, supply of electric power from the high-frequency power source 206b to the electrodes constituting the plasma generation unit 206 is started. As a result, plasma is ignited in the plasma generation start / stop region 208 located in the second processing region 201b to generate plasma. At this time, the plasma discharge is stable until the plasma generation start / stop region 208 passes the position of the plasma generation unit 206, that is, while the plasma generation start / stop region 208 is at a position overlapping the plasma generation unit 206. Thus, the rotational speed (first speed) of the susceptor 217 is set. Note that the time until the plasma discharge is stabilized is measured in advance through experiments or the like, and the first speed is set according to the time.
(サセプタの回転速度上昇(S105))  プラズマ放電が安定した後、換言すると、プラズマ生成開始/停止領域208がプラズマ生成部206と重なる位置を過ぎた後、サセプタ217の回転速度を、上述した第1の速度よりも速い第2の速度に上昇させる。第2の速度は、後述する成膜工程におけるサセプタ217の回転速度である。このようにすることで、基板処理時間を短縮することができる。  こうして、プラズマ生成部206がプラズマ生成を開始する前のサセプタ217の回転速度やプラズマ生成を開始する際のサセプタ217の回転速度よりも、プラズマ生成部206がプラズマ生成を開始しプラズマ放電が安定した後のサセプタ217の回転速度を大きくする。詳しくは、プラズマ生成部206がプラズマ生成を開始する際の、プラズマ生成開始/停止領域208がプラズマ生成部206と重なる状態におけるサセプタ217の回転速度よりも、プラズマ生成部206がプラズマ生成を開始した後、プラズマ生成開始/停止領域208がプラズマ生成部206と重ならない状態におけるサセプタ217の回転速度を大きくする。 (Increase in susceptor rotation speed (S105)) After the plasma discharge is stabilized, in other words, after the position where the plasma generation start / stop region 208 overlaps the plasma generation unit 206, the rotation speed of the susceptor 217 is set to The speed is increased to a second speed higher than the speed of 1. The second speed is the rotational speed of the susceptor 217 in the film forming process described later. By doing so, the substrate processing time can be shortened. Thus, the plasma generation unit 206 starts plasma generation and the plasma discharge is more stable than the rotation speed of the susceptor 217 before the plasma generation unit 206 starts plasma generation and the rotation speed of the susceptor 217 when plasma generation starts. The rotational speed of the subsequent susceptor 217 is increased. Specifically, when the plasma generation unit 206 starts plasma generation, the plasma generation unit 206 has started plasma generation more than the rotational speed of the susceptor 217 in a state where the plasma generation start / stop region 208 overlaps the plasma generation unit 206. Thereafter, the rotation speed of the susceptor 217 is increased in a state where the plasma generation start / stop region 208 does not overlap the plasma generation unit 206.
(成膜工程(S106))  第二の処理領域201b内に供給され、プラズマ生成部206の下方を通過した酸素ガスは、第二の処理領域201b内でプラズマ状態となり、これに含まれる活性種により、第二の処理領域201b内に回転して運ばれてくる基板200をプラズマ処理する。サセプタ217が第2の速度になった後、基板W1~W5が、この順に第二の処理領域201b内に運ばれてくる。サセプタ217が第2の速度になった後、最初に第二の処理領域201b内に運ばれてくる基板200は、プラズマ生成開始/停止領域208の隣(回転方向における後方)に位置する基板W1である。基板W1は、プラズマ生成後、反応容器203に搬送された基板の内、最初にプラズマ生成開始/停止領域208を通過する基板とも呼ぶ。 (Film Forming Step (S106)) ガ ス The oxygen gas supplied into the second processing region 201b and passed below the plasma generation unit 206 becomes a plasma state in the second processing region 201b, and the active species contained therein Thus, the substrate 200 rotated and carried into the second processing region 201b is subjected to plasma processing. After the susceptor 217 reaches the second speed, the substrates W1 to W5 are carried into the second processing region 201b in this order. After the susceptor 217 reaches the second speed, the substrate 200 that is first transported into the second processing region 201b is the substrate W1 that is located next to the plasma generation start / stop region 208 (rear in the rotation direction). It is. The substrate W1 is also referred to as a substrate that first passes through the plasma generation start / stop region 208 among the substrates transferred to the reaction vessel 203 after plasma generation.
  酸素ガスは反応温度が高く、上述のような基板200の処理温度、反応容器203内の圧力では反応しづらいが、本実施形態のように酸素ガスをプラズマ状態とし、これに含まれる活性種を供給するようにすると、例えば400℃以下の温度帯でも成膜処理を行うことができる。なお、第一の処理ガスと第二の処理ガスとで要求する処理温度が異なる場合、処理温度が低い方の処理ガスの温度に合わせてヒータ218を制御し、処理温度を高くする必要のある他方の処理ガスを、プラズマ状態として供給するとよい。このようにプラズマを利用することにより基板200を低温で処理することができ、例えばアルミニウム等の熱に弱い配線等を有する基板200に対する熱ダメージを抑制することが可能となる。また、処理ガスの不完全反応による生成物等の異物の発生を抑制することができ、基板200上に形成する薄膜の均質性や耐電圧特性等を向上させることができる。また、プラズマ状態とした酸素ガスの高い酸化力によって、酸化処理時間を短縮することができる等、基板処理の生産性を向上させることができる。 Oxygen gas has a high reaction temperature, and it is difficult to react at the processing temperature of the substrate 200 and the pressure in the reaction vessel 203 as described above. However, as in this embodiment, the oxygen gas is brought into a plasma state, and the active species contained therein are When supplied, the film forming process can be performed even in a temperature range of 400 ° C. or less, for example. When the required processing temperature is different between the first processing gas and the second processing gas, it is necessary to increase the processing temperature by controlling the heater 218 in accordance with the temperature of the processing gas having the lower processing temperature. The other processing gas may be supplied in a plasma state. By using plasma in this way, the substrate 200 can be processed at a low temperature, and for example, thermal damage to the substrate 200 having a wiring weak to heat such as aluminum can be suppressed. In addition, generation of foreign substances such as products due to incomplete reaction of the processing gas can be suppressed, and the uniformity and withstand voltage characteristics of the thin film formed on the substrate 200 can be improved. In addition, productivity of substrate processing can be improved, for example, the oxidation processing time can be shortened by the high oxidizing power of oxygen gas in a plasma state.
  上述したように、サセプタ217を回転させることにより、基板200は、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bの順に移動を繰り返す。そのため、図6に示すように、基板200には、TSAガスの供給、Nガスの供給(パージ)、プラズマ状態とされた酸素ガスの供給、N2ガスの供給(パージ)が交互に所定回数実施されることになる。ここで、成膜処理シーケンスの詳細について、図6を用いて説明する。 As described above, by rotating the susceptor 217, the substrate 200 repeats moving in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. Therefore, as shown in FIG. 6, the substrate 200 is alternately supplied with a TSA gas, an N 2 gas (purge), an oxygen gas in a plasma state, and an N 2 gas (purge) alternately for a predetermined number of times. Will be implemented. Here, the details of the film forming process sequence will be described with reference to FIG.
(第一の処理ガス領域通過(S202))  まず、第一の処理領域201aを通過した基板200表面及びサセプタ217の基板が載置されていない部分にTSAガスが供給され、基板200上にシリコン含有層が形成される。  第一の処理領域201aには、第一の処理ガス導入機構251から第一のガス噴出口254を通して、水平方向にガスが噴出される。該噴出されたガスは、例えば整流板(不図示)に衝突し、ガス流の方向が、サセプタ217の方向、つまり垂直方向に変換される。このように、第一の処理領域201aにおいて、反応容器天井203aに整流板を設けるように構成すると、サセプタ217の上方の空間にガスを溜め込み易くなり、また、ガスを、サセプタ217の方向に向けることが容易となる。こうして、基板200に対して多量のガスを供給することができる。 (First Processing Gas Area Passing (S202)) First, TSA gas is supplied to the surface of the substrate 200 that has passed through the first processing area 201a and the portion of the susceptor 217 where the substrate is not placed, and silicon is deposited on the substrate 200. A containing layer is formed. In the first processing region 201a, gas is ejected in the horizontal direction from the first processing gas introduction mechanism 251 through the first gas ejection port 254. The ejected gas collides with, for example, a current plate (not shown), and the direction of the gas flow is changed to the direction of the susceptor 217, that is, the vertical direction. As described above, in the first processing region 201a, when the current plate is provided on the reaction vessel ceiling 203a, the gas can be easily stored in the space above the susceptor 217, and the gas is directed toward the susceptor 217. It becomes easy. Thus, a large amount of gas can be supplied to the substrate 200.
(第一のパージ領域通過(S204))  次に、シリコン含有層が形成された基板200が第一のパージ領域204aを通過する。このとき、第一のパージ領域204aを通過する基板200に対して不活性ガスであるNガスが供給される。 (First Purge Region Passing (S204)) Next, the substrate 200 on which the silicon-containing layer is formed passes through the first purge region 204a. At this time, N 2 gas that is an inert gas is supplied to the substrate 200 that passes through the first purge region 204a.
(第二の処理ガス領域通過(S206))  次に、第二の処理領域201bを通過する基板200及びサセプタ217の基板が載置されていない部分に、プラズマ状態となった酸素ガスが供給される。こうして、基板200上にはシリコン酸化層(SiO層)が形成される。すなわち、プラズマ状態となった酸素ガスは、第一の処理領域201aで基板200上に形成されたシリコン含有層の少なくとも一部と反応する。これにより、シリコン含有層は酸化されて、シリコン及び酸素を含むSiO層へと改質される。  第二の処理領域201bには、第二の処理ガス導入機構252から第二のガス噴出口255を通して、水平方向にガスが噴出される。該噴出されたガスは、例えば整流板(不図示)に衝突し、ガス流の方向が、サセプタ217に向かう方向、つまり垂直方向に変換される。このように、第二の処理領域201bにおいて、反応容器天井203aに整流板を設けるように構成すると、サセプタ217の上方の空間にガスを溜め込み易くなり、また、ガスを、サセプタ217の方向に向けることが容易となる。こうして、基板200に対して多量のガスを供給することができる。 (Second Processing Gas Region Passing (S206)) Next, the oxygen gas in a plasma state is supplied to the portion where the substrate 200 and the susceptor 217 that pass through the second processing region 201b are not placed. The Thus, a silicon oxide layer (SiO layer) is formed on the substrate 200. In other words, the oxygen gas in the plasma state reacts with at least a part of the silicon-containing layer formed on the substrate 200 in the first processing region 201a. As a result, the silicon-containing layer is oxidized and modified into a SiO layer containing silicon and oxygen.ガ ス Gas is ejected from the second processing gas introduction mechanism 252 through the second gas ejection port 255 in the horizontal direction into the second processing region 201b. The ejected gas collides with, for example, a rectifying plate (not shown), and the direction of the gas flow is converted to a direction toward the susceptor 217, that is, a vertical direction. As described above, in the second processing region 201b, when the rectifying plate is provided on the reaction vessel ceiling 203a, the gas can be easily stored in the space above the susceptor 217, and the gas is directed toward the susceptor 217. It becomes easy. Thus, a large amount of gas can be supplied to the substrate 200.
(第二のパージ領域通過(S208))  そして、第二の処理領域201bでSiO層が形成された基板200が第二のパージ領域204bを通過する。このとき、第二のパージ領域204bを通過する基板200に対して不活性ガスであるNガスが供給される。 (Passing second purge region (S208)) Then, the substrate 200 on which the SiO layer is formed in the second processing region 201b passes through the second purge region 204b. At this time, N 2 gas, which is an inert gas, is supplied to the substrate 200 that passes through the second purge region 204b.
(サイクル数の確認(S210))  このように、サセプタ217の1回転を1サイクルとし、すなわち第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b及び第二のパージ領域204bの基板200の通過を1サイクルとし、このサイクルを少なくとも1回以上行うことにより、基板200上に所定膜厚のSiO膜を成膜することができる。  ここでは、前述のサイクルを所定回数実施したか否かを確認する。  サイクルを所定の回数実施した場合、所望の膜厚に到達できたと判断し、成膜処理を終了する。サイクルを所定の回数実施しなかった場合、即ち所望の膜厚に到達できなかったと判断し、S202に戻りサイクル処理を継続する。 (Confirmation of the number of cycles (S210)) As described above, one rotation of the susceptor 217 is set to one cycle, that is, the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region. By passing 204b through the substrate 200 as one cycle and performing this cycle at least once, a SiO film having a predetermined thickness can be formed on the substrate 200. Here, it is confirmed whether or not the above-described cycle has been performed a predetermined number of times. When the heel cycle is performed a predetermined number of times, it is determined that the desired film thickness has been reached, and the film forming process is terminated. If the cycle has not been performed a predetermined number of times, that is, it is determined that the desired film thickness has not been reached, the process returns to S202 and the cycle process continues.
(プラズマ生成等の停止(S107~S109))  S210にて、前述のサイクルを所定回数実施し、基板200上に所望の膜厚のSiO膜が形成されたと判断した後、TSAガス及び酸素ガスの第一の処理領域201a及び第二の処理領域201bへの供給を停止する(S107)。このとき、プラズマ生成部206でのプラズマ生成も停止する(S108)。さらに、ヒータ218の通電量を制御して温度を低くするか、あるいはヒータ218への通電を停止する。更に、サセプタ217の回転を停止する(S109)。 (Stop of Plasma Generation (S107 to S109)) In S210, the above-described cycle is performed a predetermined number of times, and it is determined that the SiO film having a desired film thickness is formed on the substrate 200. Supply to the first processing area 201a and the second processing area 201b is stopped (S107). At this time, plasma generation in the plasma generation unit 206 is also stopped (S108). Further, the energization amount of the heater 218 is controlled to lower the temperature, or the energization to the heater 218 is stopped. Further, the rotation of the susceptor 217 is stopped (S109).
  詳しくは、S210にて前述のサイクルを所定回数実施したことを確認した後、つまり、最後のサイクルにおける基板W5が第二の処理領域201bを通過した後、プラズマ生成開始/停止領域208が第二の処理領域201bにさしかかると、サセプタ217の回転を停止する(S109)。ここで、基板W5は、反応容器203に搬送された基板の内、プラズマが生成された状態で、最後にプラズマ生成開始/停止領域208を通過する基板とも呼ぶ。 Specifically, after confirming that the above-mentioned cycle has been performed a predetermined number of times in S210, that is, after the substrate W5 in the last cycle has passed the second processing region 201b, the plasma generation start / stop region 208 is set to the second. When the process area 201b is reached, the rotation of the susceptor 217 is stopped (S109). Here, the substrate W5 is also referred to as a substrate that finally passes through the plasma generation start / stop region 208 in a state where plasma is generated among the substrates transferred to the reaction vessel 203.
  そして、サセプタ217の回転が停止し、プラズマ生成開始/停止領域208が第二の処理領域201bに位置する状態において、少なくともバルブ232d及びバルブ233dを閉じ、TSAガス及び酸素ガスの第一の処理領域201a及び第二の処理領域201bへの供給を停止する(S107)。上記のガス供給停止と併行して、プラズマ生成部206への電力供給も停止する(S108)。また、上記のガス供給停止と併行して、ヒータ218への通電量を減少させる。 Then, in a state where the rotation of the susceptor 217 is stopped and the plasma generation start / stop region 208 is located in the second processing region 201b, at least the valve 232d and the valve 233d are closed, and the first processing region of TSA gas and oxygen gas The supply to 201a and the second processing area 201b is stopped (S107). In parallel with the gas supply stop, the power supply to the plasma generation unit 206 is also stopped (S108). Further, in parallel with the gas supply stop, the energization amount to the heater 218 is decreased.
  なお、上記ステップS109においてサセプタ217の回転を停止させるのではなく、サセプタ217の回転速度を第2の速度からより低速の第3の速度へ低下させ、該第3の速度でサセプタ217が回転中に、プラズマ生成開始/停止領域208が第二の処理領域201bに位置する状態において、TSAガス及び酸素ガスの第一の処理領域201a及び第二の処理領域201bへの供給を停止し、プラズマ生成部206への電力供給を停止し、ヒータ218への通電量を減少させるように構成してもよい。  また、ガス供給停止工程(S107)、プラズマ生成停止工程(S108)、サセプタ回転停止工程(S109)は、適宜、順序を入れ替えた構成とすることも可能である。 In step S109, the rotation of the susceptor 217 is not stopped, but the rotation speed of the susceptor 217 is decreased from the second speed to the lower third speed, and the susceptor 217 is rotating at the third speed. In addition, in the state where the plasma generation start / stop region 208 is located in the second processing region 201b, the supply of the TSA gas and the oxygen gas to the first processing region 201a and the second processing region 201b is stopped to generate plasma. The power supply to the unit 206 may be stopped and the energization amount to the heater 218 may be reduced. In addition, the gas supply stop step (S107), the plasma generation stop step (S108), and the susceptor rotation stop step (S109) can be appropriately changed in order.
(基板搬出工程(S110))  上記プラズマ生成等の停止(S107~S109)が終了した後、次のように基板を搬出する。  まず、基板突き上げピン266を上昇させ、サセプタ217の表面から突出させた基板突き上げピン266上に基板200を支持させる。そして、ゲートバルブ151を開き、第一の基板移載機112を用いて、反応容器203内の5枚の基板200を、反応容器203の外へ搬出する。そして、5枚単位の多枚葉処理を所定回数実施した場合は(S111でYes)、本実施形態に係る基板処理工程を終了する。5枚単位の多枚葉処理を所定回数実施していない場合は(S111でNo)、S101に戻る。  なお、上記において、基板200の温度、反応容器203内の圧力、各ガスの流量、プラズマ生成部206に印加する電力、処理時間等の条件等は、改質対象の膜の材料や膜厚等によって任意に調整する。 (Substrate Unloading Step (S110)) 停止 After the stop of plasma generation or the like (S107 to S109) is completed, the substrate is unloaded as follows. First, the substrate push-up pins 266 are raised, and the substrate 200 is supported on the substrate push-up pins 266 that protrude from the surface of the susceptor 217. Then, the gate valve 151 is opened, and the five substrates 200 in the reaction vessel 203 are carried out of the reaction vessel 203 using the first substrate transfer machine 112. When the multi-sheet processing in units of five is performed a predetermined number of times (Yes in S111), the substrate processing process according to the present embodiment is terminated. If the multi-sheet processing of 5 sheets has not been performed a predetermined number of times (No in S111), the process returns to S101. In the above, the conditions such as the temperature of the substrate 200, the pressure in the reaction vessel 203, the flow rate of each gas, the power applied to the plasma generation unit 206, the processing time, etc. Adjust as desired.
  なお、上述したサセプタの回転開始(S102)とガス供給・圧力調整工程(S103)は、順序を入れ替えてもよい。この場合、ガス供給・圧力調整を行い、その後、サセプタ217の回転を開始させる。サセプタ217の回転速度が安定した後、プラズマ生成を開始する(S104)。 Note that the above-described rotation start of the susceptor (S102) and the gas supply / pressure adjustment step (S103) may be interchanged. In this case, gas supply and pressure adjustment are performed, and then the rotation of the susceptor 217 is started. After the rotation speed of the susceptor 217 is stabilized, plasma generation is started (S104).
(4)本実施形態に係る効果  本実施形態によれば、少なくとも以下に示す効果を奏する。  (a)サセプタの表面上において、基板載置部を同一円周上に複数配置し、該円周方向において隣り合う基板載置部間の第1の距離が、他の基板載置部間の第2の距離より大きくなるように構成したので、第1の距離を有する基板載置部間においてプラズマ生成を開始し安定させることができる。その結果、基板に対するプラズマ処理の基板面内均一性を向上することができる。  (b)上記第1の距離を有する基板載置部間においてプラズマ生成を停止するように構成したので、さらに、基板に対するプラズマ処理の基板面内均一性を向上することができる。  (c)プラズマ生成を開始する際のサセプタの回転速度よりも、プラズマ放電が安定した後のサセプタの回転速度を大きくするので、基板処理効率を向上することができる。  (d)サセプタの回転中にプラズマ生成を開始するように構成したので、プラズマ生成中にサセプタの回転を開始する場合よりも、基板に対するプラズマ処理の基板面内均一性を向上することが容易にできる。 (4) Effects according to this embodiment According to this embodiment, at least the following effects are obtained. (A) On the surface of the susceptor, a plurality of substrate mounting portions are arranged on the same circumference, and a first distance between adjacent substrate mounting portions in the circumferential direction is between other substrate mounting portions. Since it is configured to be larger than the second distance, plasma generation can be started and stabilized between the substrate mounting portions having the first distance. As a result, the in-plane uniformity of the plasma processing for the substrate can be improved. (B) Since the plasma generation is stopped between the substrate mounting portions having the first distance, the in-plane uniformity of the plasma processing with respect to the substrate can be further improved. (C) Since the rotation speed of the susceptor after the plasma discharge is stabilized is made larger than the rotation speed of the susceptor at the start of plasma generation, the substrate processing efficiency can be improved. (D) Since the plasma generation is started during the rotation of the susceptor, it is easier to improve the in-plane uniformity of the plasma processing with respect to the substrate than when the rotation of the susceptor is started during the plasma generation. it can.
<本発明の他の実施形態>  以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 <Other Embodiments of the Present Invention> Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. is there.
  例えば、上述の実施形態では、処理ガスとしてシリコン含有ガス及び酸素含有ガスを用い、基板200上にSiO膜を形成しているが、これに限られるものではない。すなわち、処理ガスとして、例えばハフニウム(Hf)含有ガス及び酸素含有ガス、ジルコニウム(Zr)含有ガス及び酸素含有ガス、チタン(Ti)含有ガス及び酸素含有ガスを用いて、酸化ハフニウム膜(HfO膜)、酸化ジルコニウム(ZrO膜)、酸化チタン膜(TiO膜)等のHigh-k膜等を基板200上に形成してもよい。また、プラズマ化する処理ガスとして、酸素含有ガスのほかに、窒素(N)含有ガスであるアンモニア(NH)ガス等を用いてもよい。 For example, in the above-described embodiment, a silicon-containing gas and an oxygen-containing gas are used as the processing gas and the SiO film is formed on the substrate 200. However, the present invention is not limited to this. That is, for example, a hafnium oxide film (HfO film) using a hafnium (Hf) -containing gas and an oxygen-containing gas, a zirconium (Zr) -containing gas and an oxygen-containing gas, a titanium (Ti) -containing gas, and an oxygen-containing gas as the processing gas. Alternatively, a high-k film such as zirconium oxide (ZrO film) or titanium oxide film (TiO film) may be formed on the substrate 200. In addition to the oxygen-containing gas, ammonia (NH 3 ) gas, which is a nitrogen (N) -containing gas, or the like may be used as the processing gas to be converted into plasma.
  また、上述の実施形態では、プラズマによる成膜処理を例として説明したが、本発明は、成膜処理に限らず、エッチング処理等の他のプラズマ処理についても適用可能である。 In the above-described embodiment, the film forming process using plasma has been described as an example. However, the present invention is not limited to the film forming process, and can be applied to other plasma processes such as an etching process.
  また、上述の実施形態では、サセプタを所定回数回転させた後、プラズマ生成開始/停止領域208が第二の処理領域201bに重なる位置でプラズマ生成を停止したが、サセプタを所定回数回転させた後、プラズマ生成開始/停止領域208が第二の処理領域201bに重ならない位置、例えば第一の処理領域201aや第一のパージ領域204aなどの位置でプラズマ生成を停止するよう構成することも可能である。このように構成しても、プラズマ生成開始/停止領域208が第二の処理領域201bに重なる位置でプラズマ生成を開始するので、従来に比べて、基板に対するプラズマ処理の基板面内均一性を向上することができる。  また、逆に、プラズマ生成開始/停止領域208が第二の処理領域201bに重なる位置でプラズマ生成を開始しなくても、プラズマ生成開始/停止領域208が第二の処理領域201bに重なる位置でプラズマ生成を停止するよう構成すれば、従来に比べて、基板に対するプラズマ処理の基板面内均一性を向上することができる。  すなわち、プラズマ生成開始/停止領域208が第二の処理領域201bに重なる位置でプラズマ生成を開始するか又は停止するよう構成すれば、従来に比べて、基板に対するプラズマ処理の基板面内均一性を向上することができる。 In the above-described embodiment, after the susceptor is rotated a predetermined number of times, the plasma generation is stopped at a position where the plasma generation start / stop region 208 overlaps the second processing region 201b, but after the susceptor is rotated a predetermined number of times. The plasma generation can be configured to stop at a position where the plasma generation start / stop region 208 does not overlap the second processing region 201b, for example, a position such as the first processing region 201a or the first purge region 204a. is there. Even with this configuration, since plasma generation starts at a position where the plasma generation start / stop region 208 overlaps the second processing region 201b, the in-plane uniformity of plasma processing with respect to the substrate is improved compared to the conventional case. can do. Conversely, even if the plasma generation start / stop region 208 does not start at the position where the plasma generation start / stop region 208 overlaps the second processing region 201b, the plasma generation start / stop region 208 does not start at the position where it overlaps the second processing region 201b. If it is configured to stop the plasma generation, it is possible to improve the in-plane uniformity of the plasma processing for the substrate as compared with the conventional case. That is, if plasma generation is started or stopped at a position where the plasma generation start / stop region 208 overlaps the second processing region 201b, the in-plane uniformity of plasma processing with respect to the substrate can be improved compared to the conventional case. Can be improved.
  また、上述の実施形態では、サセプタ217表面の同一円周上に基板載置部217bを複数配置し、隣り合う基板載置部217b間の第1の距離が、他の基板載置部間の第2の距離より大きくなる位置に、プラズマ生成開始/停止領域208を配置した。しかし、サセプタ217表面の同一円周上に基板載置部217bを複数均等に配置し、隣り合う基板載置部217b間にプラズマ生成開始/停止領域208を配置するよう構成することもできる。このように構成した場合でも、基板200の真上でプラズマ生成を開始又は停止することを従来よりも抑制できるので、従来に比べて、基板に対するプラズマ処理の基板面内均一性を向上することができる。 In the above-described embodiment, a plurality of substrate mounting portions 217b are arranged on the same circumference of the surface of the susceptor 217, and the first distance between the adjacent substrate mounting portions 217b is between other substrate mounting portions. A plasma generation start / stop region 208 is disposed at a position larger than the second distance. However, a plurality of substrate platforms 217b may be equally arranged on the same circumference of the surface of the susceptor 217, and the plasma generation start / stop region 208 may be arranged between adjacent substrate platforms 217b. Even in such a configuration, since it is possible to suppress the start or stop of plasma generation immediately above the substrate 200 as compared to the conventional case, the in-plane uniformity of the plasma processing with respect to the substrate can be improved as compared with the conventional case. it can.
  また、上述の実施形態では、反応容器203の中央部から各処理領域の周辺に向けてガスを供給したが、各処理領域毎にガス供給ノズルを設け、該ガス供給ノズルから各処理領域にガスを供給するよう構成することも可能である。 In the above-described embodiment, gas is supplied from the central portion of the reaction vessel 203 toward the periphery of each processing region. However, a gas supply nozzle is provided for each processing region, and gas is supplied from the gas supply nozzle to each processing region. It can also be configured to supply
  また、上述の実施形態では、酸素ガスを処理室に供給し、プラズマ生成部206でプラズマを生成していたが、これに限るものではなく、処理室の外でプラズマを生成するリモートプラズマ方法や、エネルギーレベルの高いオゾンを用いても良い。 In the above-described embodiment, oxygen gas is supplied to the processing chamber, and the plasma generation unit 206 generates plasma. However, the present invention is not limited to this, and a remote plasma method for generating plasma outside the processing chamber, Alternatively, ozone having a high energy level may be used.
  また、上述の実施形態では、ガス供給機構250の不活性ガス導入機構253を、第一のパージ領域204aと第二のパージ領域204bとで共通としたが、不活性ガス導入機構は個別に設けてもよい。 In the above-described embodiment, the inert gas introduction mechanism 253 of the gas supply mechanism 250 is common to the first purge region 204a and the second purge region 204b. However, the inert gas introduction mechanism is provided separately. May be.
  また、上述の実施形態では、基板突き上げピン266が昇降することで基板200を処理位置や搬送位置に移動させたが、昇降機構268を用い、サセプタ217を昇降させることで、基板200を処理位置や搬送位置に移動させてもよい。 In the above-described embodiment, the substrate push-up pins 266 are moved up and down to move the substrate 200 to the processing position and the transfer position. However, the substrate 200 is moved to the processing position by moving the susceptor 217 up and down using the lifting mechanism 268. Or may be moved to the transport position.
  以下に、付記として本発明の態様を記す。<付記1>  基板を処理するための処理室と、  前記処理室内に設けられた基板支持台であって、該基板支持台表面の同一円周上に、基板を載置する基板載置部が複数配置され、前記円周方向において隣り合う基板載置部間の第1の距離が、他の基板載置部間の第2の距離より大きくなるように配置された基板支持台と、  前記基板支持台を、前記円周方向に回転させる回転機構と、  前記基板支持台の表面と対向する位置に設けられ、前記処理室内にプラズマを生成するプラズマ生成部と、  前記回転機構の回転動作と前記プラズマ生成部のプラズマ生成動作とを制御する制御部と、  を有する基板処理装置。 態 様 Below, the aspects of the present invention will be described as additional notes. <Supplementary Note 1> A processing chamber for processing a substrate, and a substrate supporting base provided in the processing chamber, wherein a substrate mounting portion for mounting the substrate is provided on the same circumference of the surface of the substrate supporting base. A plurality of substrate support bases arranged such that a first distance between adjacent substrate placement portions in the circumferential direction is larger than a second distance between other substrate placement portions; A rotation mechanism that rotates the support table in the circumferential direction; a plasma generation unit that is provided at a position facing the surface of the substrate support table and generates plasma in the processing chamber; and the rotation operation of the rotation mechanism and the A substrate processing apparatus comprising: a control unit that controls a plasma generation operation of a plasma generation unit;
<付記2>  前記第1の距離を有する基板載置部間には、前記プラズマ生成部がプラズマ生成を開始するプラズマ生成開始領域が設定され、  前記制御部は、前記基板支持台が回転中に、前記プラズマ生成開始領域が前記プラズマ生成部と重なる位置にある状態で、前記プラズマ生成部にプラズマ生成を開始させるよう制御する付記1記載の基板処理装置。 <Supplementary Note 2> A plasma generation start region where the plasma generation unit starts plasma generation is set between the substrate placement units having the first distance, and the control unit is configured so that the substrate support is rotating. The substrate processing apparatus according to claim 1, wherein the plasma generation unit is controlled to start plasma generation in a state where the plasma generation start region is in a position overlapping the plasma generation unit.
<付記3>  前記制御部は、前記プラズマ生成部がプラズマ生成を開始する際の前記基板支持台の回転速度よりも、前記プラズマ生成部がプラズマ生成を開始した後の前記基板支持台の回転速度を大きくするよう制御する付記2記載の基板処理装置。 <Supplementary Note 3> The control unit is configured such that the rotation speed of the substrate support after the plasma generation unit starts plasma generation is higher than the rotation speed of the substrate support when the plasma generation unit starts plasma generation. The substrate processing apparatus according to appendix 2, wherein the substrate processing apparatus is controlled to increase the size.
<付記4>  前記制御部は、前記基板支持台が回転中に、前記プラズマ生成開始領域が前記プラズマ生成部と重なる位置にある状態で、前記プラズマ生成部にプラズマ生成を停止させるよう制御する付記2又は付記3記載の基板処理装置。 <Supplementary Note 4> 記 The control unit controls the plasma generation unit to stop plasma generation in a state where the plasma generation start region is in a position overlapping the plasma generation unit while the substrate support is rotating. The substrate processing apparatus according to 2 or appendix 3.
<付記5>  基板を処理するための処理室と、  前記処理室内に設けられた基板支持台であって、該基板支持台表面の同一円周上に基板が複数配置される基板支持台と、  前記基板支持台を、前記円周方向に回転させる回転機構と、  前記基板支持台の表面と対向する位置に設けられ、前記処理室内にプラズマを生成するプラズマ生成部と、  前記回転機構の回転動作と前記プラズマ生成部のプラズマ生成動作とを制御する制御部とを有し、  前記基板支持台上に隣り合って配置される基板間には、前記プラズマ生成部がプラズマ生成を開始するプラズマ生成開始領域が設定され、  前記制御部は、前記基板支持台が回転中に、前記プラズマ生成開始領域が前記プラズマ生成部と重なる位置にある状態で、前記プラズマ生成部にプラズマ生成を開始させるよう制御する基板処理装置。 <Supplementary Note 5> A processing chamber for processing a substrate, a substrate support provided in the processing chamber, wherein a plurality of substrates are arranged on the same circumference of the surface of the substrate support, A rotation mechanism that rotates the substrate support table in the circumferential direction, a plasma generation unit that is provided at a position facing the surface of the substrate support table and generates plasma in the processing chamber, and a rotation operation of the rotation mechanism. And a control unit for controlling the plasma generation operation of the plasma generation unit, and between the substrates arranged adjacent to each other on the substrate support base, the plasma generation start that the plasma generation unit starts plasma generation starts An area is set, and the control unit controls the plasma generation unit with a plasma in a state where the plasma generation start region overlaps the plasma generation unit while the substrate support is rotating. A substrate processing apparatus that controls to start generation.
<付記6>  基板を処理するための処理室と、  前記処理室内に設けられた基板支持台であって、該基板支持台の表面上に、基板が同一円周上に複数配置され、該円周方向において隣り合う基板間の第1の距離が、他の基板間の第2の距離より大きくなるように配置された基板支持台と、  前記基板支持台を、前記円周方向に回転させる回転機構と、  前記基板支持台の表面と対向する位置に設けられ、前記処理室内にプラズマを生成するプラズマ生成部と、  前記回転機構の回転動作と前記プラズマ生成部のプラズマ生成動作とを制御する制御部と、  を有する基板処理装置。 <Supplementary Note 6> A processing chamber for processing a substrate, and a substrate supporting table provided in the processing chamber, wherein a plurality of substrates are arranged on the same circumference on the surface of the substrate supporting table. Rotation that rotates the substrate support table and the substrate support table arranged so that the first distance between the adjacent substrates in the circumferential direction is larger than the second distance between the other substrates in the circumferential direction. A mechanism, a plasma generator that is provided at a position facing the surface of the substrate support, and that generates plasma in the processing chamber; and a control that controls the rotation operation of the rotation mechanism and the plasma generation operation of the plasma generator. And a substrate processing apparatus having a ridge.
<付記7>  基板を処理するための処理室と、  前記処理室内に設けられた基板支持台であって、該基板支持台表面の同一円周上に、基板を載置する基板載置部が複数配置され、前記円周方向において隣り合う基板載置部間の第1の距離が、他の基板載置部間の第2の距離より大きくなるように配置された基板支持台と、  前記基板支持台を、前記円周方向に回転させる回転機構と、  前記基板支持台の表面と対向する位置に設けられ、前記処理室内にプラズマを生成するプラズマ生成部と、  前記処理室内へガスを供給するガス供給部と、  を有する基板処理装置を用いた半導体装置の製造方法であって、  前記処理室内に基板を搬入し前記基板載置部に前記搬入した基板を載置する工程と、  前記基板支持台を前記円周方向に回転させる工程と、  前記処理室内にガスを供給する工程と、  前記基板支持台が回転中に、前記プラズマ生成部が前記第1の距離を有する基板載置部間にある状態で、前記プラズマ生成部にプラズマ生成を開始させるプラズマ生成開始工程と、  前記プラズマ生成開始工程の後、前記プラズマ生成部で生成されるプラズマを用いて前記基板載置部に載置された基板を処理する工程と、  前記基板支持台の回転を停止させる工程と、  前記処理室内へのガス供給を停止する工程と、  前記処理室内から基板を搬出する工程と、  を有する半導体装置の製造方法。 <Supplementary Note 7> A processing chamber for processing a substrate, and a substrate supporting table provided in the processing chamber, wherein a substrate mounting portion for mounting the substrate is provided on the same circumference of the surface of the substrate supporting table. A plurality of substrate support bases arranged such that a first distance between adjacent substrate placement portions in the circumferential direction is larger than a second distance between other substrate placement portions; A rotation mechanism that rotates the support table in the circumferential direction, a plasma generation unit that is provided at a position facing the surface of the substrate support table, generates plasma in the processing chamber, and supplies gas to the processing chamber A method of manufacturing a semiconductor device using a gas supply unit and a substrate processing apparatus having a ridge, wherein the substrate is loaded into the processing chamber and the loaded substrate is placed on the substrate placement portion; and the substrate support Rotate the table in the circumferential direction A step of supplying a gas into the processing chamber, and a state where the plasma generation unit is between the substrate mounting units having the first distance while the substrate support is rotating. A plasma generation start step for starting plasma generation, and a step of processing a substrate placed on the substrate placement portion using plasma generated by the plasma generation portion after the plasma generation start step, and A step of stopping rotation of the substrate support, a step of stopping gas supply to the processing chamber, a step of unloading the substrate from the processing chamber, and a method of manufacturing a semiconductor device having a rod.
<付記8>  複数の基板を同一円周上に配置する工程であって、前記円周方向において隣り合う基板間の第1の距離が、他の基板間の第2の距離より大きくなるように配置する工程と、  前記同一円周上に配置される複数の基板の表面と対向する位置にプラズマ生成部を設ける工程と、  前記同一円周上に配置された複数の基板を前記円周方向に回転させる工程と、  前記同一円周上に配置された複数の基板に対してガスを供給する工程と、  前記同一円周上に配置された複数の基板が回転中に、前記プラズマ生成部が前記第1の距離を有する基板間にある状態で、前記プラズマ生成部にプラズマ生成を開始させるプラズマ生成開始工程と、  前記プラズマ生成開始工程の後、前記プラズマ生成部で生成されるプラズマを用いて前記同一円周上に配置された複数の基板を処理する工程と、  を有する半導体装置の製造方法。 <Supplementary Note 8> A step of arranging a plurality of substrates on the same circumference so that a first distance between adjacent substrates in the circumferential direction is larger than a second distance between other substrates. A step of providing a plasma generating unit at a position facing the surface of the plurality of substrates disposed on the same circumference, and a step of arranging the plurality of substrates disposed on the same circumference in the circumferential direction. A step of rotating, a step of supplying gas to a plurality of substrates arranged on the same circumference, and a step of rotating the plurality of substrates arranged on the same circumference, A plasma generation start step for causing the plasma generation unit to start plasma generation in a state between the substrates having a first distance; and after the plasma generation start step, using the plasma generated by the plasma generation unit Same The method of manufacturing a semiconductor device having a step, the processing a plurality of substrates arranged on a circumference.
<付記9>  複数の基板を同一円周上に配置する工程であって、前記円周方向において隣り合う基板間の第1の距離が、他の基板間の第2の距離より大きくなるように配置する工程と、  前記同一円周上に配置された複数の基板を前記円周方向に回転させる工程と、  前記同一円周上に配置された複数の基板に対してガスを供給する工程と、  前記同一円周上に配置された複数の基板が回転中に、前記第1の距離を有する基板間においてプラズマ生成を開始するプラズマ生成開始工程と、  前記プラズマ生成開始工程の後、前記生成されるプラズマを用いて前記同一円周上に配置された複数の基板を処理する工程と、  を有する半導体装置の製造方法。 <Supplementary Note 9> A step of arranging a plurality of substrates on the same circumference so that a first distance between adjacent substrates in the circumferential direction is larger than a second distance between other substrates. A step of arranging, a step of rotating a plurality of substrates arranged on the same circumference in the circumferential direction, and a step of supplying a gas to the plurality of substrates arranged on the same circumference, A plurality of substrates arranged on the same circumference are rotated, and a plasma generation start step for starting plasma generation between the substrates having the first distance is generated after the plasma generation start step. A step of processing a plurality of substrates disposed on the same circumference using plasma; and a method of manufacturing a semiconductor device having a ridge.
 以上述べたように、本発明は、サセプタ上に複数の基板を載置して基板処理する際に、基板処理が不均一になることを抑制することのできる基板処理装置および半導体装置の製造方法に利用することができる。 As described above, the present invention provides a substrate processing apparatus and a semiconductor device manufacturing method capable of suppressing non-uniform substrate processing when a plurality of substrates are placed on a susceptor to perform substrate processing. Can be used.
  10・・基板処理装置、100・・ポッド、100a・・キャップ、101・・第一の搬送室筐体、103・・第一の搬送室、105・・ロードポート(I/Oステージ)、106・・ノッチ合わせ装置、108・・ポッドオープナ、112・・第一の基板移載機、115・・第一の基板移載機エレベータ、118・・クリーンユニット、121・・第二の搬送室、122,123・・予備室、124・・第二の基板移載機、125・・第二の搬送室筐体、126,127・・ゲートバルブ、128,129・・ゲートバルブ、131・・第二の基板移載機エレベータ、132・・リニアアクチュエータ、134・・基板搬入搬出口、136・・駆動機構、140・・基板支持台、141・・隔壁板、142・・クロージャ、150,151,152,153・・ゲートバルブ、200・・基板、201a・・第一の処理領域、201b・・第二の処理領域、202a・・第一の処理炉、202b・・第二の処理炉、202c・・第三の処理炉、202d・・第四の処理炉、203・・反応容器、203a・・反応容器天井、204a・・第一のパージ領域、204b・・第二のパージ領域、205・・仕切板、206・・プラズマ生成部、206a・・インピーダンス整合回路、206b・・高周波電源、207・・処理空間、208・・プラズマ生成開始/停止領域、217・・サセプタ(基板支持台)、217a・・貫通孔、217b・・基板載置部、218・・ヒータ、222・・電力供給線、223・・温度調整器、224・・電力調整器、225・・ヒータ電源、231・・排気管、232・・第一の処理ガス供給部、232a・・第一のガス供給管、232b・・原料ガス供給源、232c・・MFC、232d・・バルブ、233・・第二の処理ガス供給部、233a・・第二のガス供給管、233b・・原料ガス供給源、233c・・MFC、233d・・バルブ、234・・第一の不活性ガス供給部、234a・・第一の不活性ガス供給管、234b・・不活性ガス供給源、234c・・MFC、234d・・バルブ、235・・第二の不活性ガス供給部、235a・・第二の不活性ガス供給管、235b・・不活性ガス供給源、235c・・MFC、235d・・バルブ、236・・第三の不活性ガス供給部、236a・・第三の不活性ガス供給管、236b・・不活性ガス供給源、236c・・MFC、236d・・バルブ、243・・APCバルブ、245・・流量制御バルブ、246・・真空ポンプ、250・・ガス供給機構、251・・第一の処理ガス導入機構、252・・第二の処理ガス導入機構、253・・不活性ガス導入機構、254・・第一のガス噴出口、255・・第二のガス噴出口、256・・第一の不活性ガス噴出口、257・・第二の不活性ガス噴出口、266・・基板突き上げピン、267・・回転機構、267a・・カップリング部、268・・昇降機構、274・・温度センサ、300・・コントローラ。 10 .... Substrate processing apparatus, 100 ... pod, 100a ... cap, 101 ... first transfer chamber housing, 103 ... first transfer chamber, 105 ... load port (I / O stage), 106 .. Notch aligning device 108 .. Pod opener 112.. First substrate transfer machine 115 115 First substrate transfer machine elevator 118 118 Clean unit 121 Second transfer chamber 122, 123 ··· Preliminary chamber, 124 ··· Second substrate transfer machine, 125 · · Second transfer chamber housing, 126, 127 · · Gate valve, 128, 129 · · Gate valve, 131 ··· Second substrate transfer machine elevator, 132 ... Linear actuator, 134 ... Substrate loading / unloading port, 136 ... Drive mechanism, 140 ... Substrate support base, 141 ... Bulkhead plate, 142 ... Closure, 150, 15 1, 152, 153... Gate valve, 200... Substrate, 201 a... First processing area, 201 b... Second processing area, 202 a. 202c, third processing furnace, 202d, fourth processing furnace, 203, reaction vessel, 203a, reaction vessel ceiling, 204a, first purge area, 204b, second purge area, 205 ·· Partition plate, 206 ··· Plasma generation unit, 206a · · Impedance matching circuit, 206b · · High-frequency power supply, 207 · · Processing space, 208 · · Plasma generation start / stop region, 217 · · Susceptor (substrate support base ) 217a .. Through-hole 217b .. Substrate placing portion 218 .. Heater 222 .. Power supply line 223 .. Temperature regulator 224 .. Power regulator 225. 1 .... exhaust pipe, 232 ... first process gas supply unit, 232a ... first gas supply pipe, 232b ... source gas supply source, 232c ... MFC, 232d ... valve, 233 ... second Gas supply pipe, 233a, second gas supply pipe, 233b, raw material gas supply source, 233c, MFC, 233d, valve, 234, first inert gas supply section, 234a, second One inert gas supply pipe, 234b .. Inert gas supply source, 234c .. MFC, 234d .. valve, 235 .. Second inert gas supply section, 235a .. Second inert gas supply pipe 235b ... inert gas supply source 235c ... MFC 235d ... valve 236 ... third inert gas supply unit 236a ... third inert gas supply pipe 236b ... inert gas Supply source, 236c FC, 236d, valve, 243, APC valve, 245, flow rate control valve, 246, vacuum pump, 250, gas supply mechanism, 251, first process gas introduction mechanism, 252, second Process gas introduction mechanism, 253... Inert gas introduction mechanism, 254... First gas jet outlet, 255... Second gas jet outlet, 256 .. First inert gas jet outlet, 257. Two inert gas outlets 266... Substrate push-up pin 267... Rotation mechanism 267 a... Coupling part 268... Lift mechanism 274 ... temperature sensor 300 controller

Claims (10)

  1. 基板を処理するための処理室と、  前記処理室内に設けられた基板支持台であって、該基板支持台表面の同一円周上に、基板を載置する基板載置部が複数配置され、前記円周方向において隣り合う基板載置部間の第1の距離が、他の基板載置部間の第2の距離より大きくなるように配置された基板支持台と、  前記基板支持台を、前記円周方向に回転させる回転機構と、  前記基板支持台の表面と対向する位置に設けられ、前記処理室内にプラズマを生成するプラズマ生成部と、  前記回転機構の回転動作と前記プラズマ生成部のプラズマ生成動作とを制御する制御部と、  を有する基板処理装置。 A processing chamber for processing a substrate, and a substrate support base provided in the processing chamber, wherein a plurality of substrate mounting portions for mounting the substrate are disposed on the same circumference of the surface of the substrate support base, A substrate support that is arranged such that a first distance between adjacent substrate placement portions in the circumferential direction is greater than a second distance between other substrate placement portions; A rotation mechanism that rotates in the circumferential direction; a plasma generation unit that is provided at a position facing the surface of the substrate support; and that generates plasma in the processing chamber; and the rotation operation of the rotation mechanism and the plasma generation unit A substrate processing apparatus having a control unit for controlling a plasma generation operation and a ridge.
  2. 請求項1に記載された基板処理装置であって、  前記第1の距離を有する基板載置部間には、前記プラズマ生成部がプラズマ生成を開始するプラズマ生成開始領域が設定され、  前記制御部は、前記基板支持台が回転中に、前記プラズマ生成開始領域が前記プラズマ生成部と重なる位置にある状態で、前記プラズマ生成部にプラズマ生成を開始させるよう制御する基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein a plasma generation start region in which the plasma generation unit starts plasma generation is set between the substrate mounting units having the first distance, and the control unit A substrate processing apparatus for controlling the plasma generation unit to start plasma generation in a state where the plasma generation start region is in a position overlapping the plasma generation unit while the substrate support is rotating.
  3. 請求項2に記載された基板処理装置であって、  前記制御部は、前記プラズマ生成部がプラズマ生成を開始する際の前記基板支持台の回転速度よりも、前記プラズマ生成部がプラズマ生成を開始した後の前記基板支持台の回転速度を大きくするよう制御する基板処理装置。 3. The substrate processing apparatus according to claim 2, wherein the control unit starts the plasma generation from the rotation speed of the substrate support when the plasma generation unit starts plasma generation. A substrate processing apparatus for controlling to increase the rotational speed of the substrate support after the processing.
  4. 請求項2又は請求項3に記載された基板処理装置であって、  前記制御部は、前記基板支持台が回転中に、前記プラズマ生成開始領域が前記プラズマ生成部と重なる位置にある状態で、前記プラズマ生成部にプラズマ生成を停止させるよう制御する基板処理装置。 4. The substrate processing apparatus according to claim 2, wherein the control unit is in a state where the plasma generation start region overlaps the plasma generation unit while the substrate support is rotating. A substrate processing apparatus for controlling the plasma generation unit to stop plasma generation.
  5. 基板を処理するための処理室と、  前記処理室内に設けられた基板支持台であって、該基板支持台表面の同一円周上に基板が複数配置される基板支持台と、  前記基板支持台を、前記円周方向に回転させる回転機構と、  前記基板支持台の表面と対向する位置に設けられ、前記処理室内にプラズマを生成するプラズマ生成部と、  前記回転機構の回転動作と前記プラズマ生成部のプラズマ生成動作とを制御する制御部とを有し、  前記基板支持台上に隣り合って配置される基板間には、前記プラズマ生成部がプラズマ生成を開始するプラズマ生成開始領域が設定され、  前記制御部は、前記基板支持台が回転中に、前記プラズマ生成開始領域が前記プラズマ生成部と重なる位置にある状態で、前記プラズマ生成部がプラズマ生成を開始するよう制御する基板処理装置。 A processing chamber for processing a substrate; a substrate support provided in the processing chamber, wherein the substrate is provided with a plurality of substrates on the same circumference of the surface of the substrate support; and the substrate support , A rotating mechanism for rotating the rotating mechanism in the circumferential direction, a plasma generating unit that generates plasma in the processing chamber, and a rotating operation of the rotating mechanism and the plasma generating A plasma generation start region in which the plasma generation unit starts plasma generation is set between the substrates arranged adjacent to each other on the substrate support base. The control unit starts the plasma generation in a state where the plasma generation start region is in a position overlapping the plasma generation unit while the substrate support is rotating. A substrate processing apparatus for controlling so.
  6. 請求項5に記載された基板処理装置であって、  前記制御部は、前記プラズマ生成部がプラズマ生成を開始する際の前記基板支持台の回転速度よりも、前記プラズマ生成部がプラズマ生成を開始した後の前記基板支持台の回転速度を大きくするよう制御する基板処理装置。 6. The substrate processing apparatus according to claim 5, wherein the control unit starts the plasma generation from the rotation speed of the substrate support when the plasma generation unit starts plasma generation. A substrate processing apparatus for controlling to increase the rotational speed of the substrate support after the processing.
  7. 複数の基板を同一円周上に配置する工程であって、前記円周方向において隣り合う基板間の第1の距離が、他の基板間の第2の距離より大きくなるように配置する工程と、  前記同一円周上に配置された複数の基板を前記円周方向に回転させる工程と、  前記同一円周上に配置された複数の基板に対してガスを供給する工程と、  前記同一円周上に配置された複数の基板が回転中に、前記第1の距離を有する基板間においてプラズマ生成を開始するプラズマ生成開始工程と、  前記プラズマ生成開始工程の後、前記生成されるプラズマを用いて前記同一円周上に配置された複数の基板を処理する工程と、  を有する半導体装置の製造方法。 Disposing a plurality of substrates on the same circumference, wherein the first distance between adjacent substrates in the circumferential direction is greater than the second distance between other substrates; A step of rotating the plurality of substrates arranged on the same circumference in the circumferential direction, a step of supplying gas to the plurality of substrates arranged on the same circumference, and the same circumference A plasma generation start step for starting plasma generation between the substrates having the first distance while the plurality of substrates disposed on the substrate are rotating; and, after the plasma generation start step, using the generated plasma A step of processing a plurality of substrates arranged on the same circumference, and a method of manufacturing a semiconductor device having a ridge.
  8. 請求項7に記載された半導体装置の製造方法であって、  前記第1の距離を有する基板間には、プラズマ生成を開始するプラズマ生成開始領域が設定され、  前記プラズマ生成開始工程では、前記複数の基板が回転中に、前記プラズマ生成開始領域が前記プラズマ生成部と重なる位置にある状態で、プラズマ生成を開始させる半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 7, wherein a plasma generation start region for starting plasma generation is set between the substrates having the first distance, and in the plasma generation start step, A method of manufacturing a semiconductor device, wherein plasma generation is started while the plasma generation start region is in a position overlapping the plasma generation unit while the substrate is rotating.
  9. 請求項8に記載された半導体装置の製造方法であって、プラズマ生成を開始する際の前記複数の基板の回転速度よりも、プラズマ生成を開始した後の前記複数の基板の回転速度を大きくするよう制御する半導体装置の製造方法。 9. The method of manufacturing a semiconductor device according to claim 8, wherein a rotation speed of the plurality of substrates after starting the plasma generation is made larger than a rotation speed of the plurality of substrates when starting the plasma generation. A method of manufacturing a semiconductor device to be controlled.
  10. 請求項8又は請求項9に記載された半導体装置の製造方法であって、 前記基複数の基板が回転中に、前記プラズマ生成開始領域が前記プラズマ生成部と重なる位置にある状態で、前記プラズマ生成部にプラズマ生成を停止させるよう制御する半導体装置の製造方法。   10. The method of manufacturing a semiconductor device according to claim 8, wherein the plasma generation start region is in a position overlapping with the plasma generation unit while the plurality of substrates are rotating. A method for manufacturing a semiconductor device, wherein the generation unit is controlled to stop plasma generation.
PCT/JP2014/057342 2013-03-22 2014-03-18 Substrate processing apparatus, and method for manufacturing semiconductor device WO2014148490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-060871 2013-03-22
JP2013060871 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148490A1 true WO2014148490A1 (en) 2014-09-25

Family

ID=51580168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057342 WO2014148490A1 (en) 2013-03-22 2014-03-18 Substrate processing apparatus, and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2014148490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046976A1 (en) * 2014-09-26 2016-03-31 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
CN112750717A (en) * 2019-10-30 2021-05-04 夏泰鑫半导体(青岛)有限公司 Front-end and rear-end module of equipment and semiconductor processing station with front-end and rear-end modules of equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151507A (en) * 2000-11-15 2002-05-24 Sekisui Chem Co Ltd Semiconductor element manufacturing method and apparatus thereof
JP2005268709A (en) * 2004-03-22 2005-09-29 Seiko Epson Corp Surface treatment apparatus and surface treatment method
JP2006124767A (en) * 2004-10-28 2006-05-18 Olympus Corp Sputtering method and sputtering system
JP2007247066A (en) * 2006-03-15 2007-09-27 Asm Japan Kk Semiconductor-processing apparatus with rotating susceptor
WO2008056556A1 (en) * 2006-11-08 2008-05-15 Nissin Electric Co., Ltd. Method and device for forming silicon dot and silicon dot and method and device for forming substrate with insulating film
JP2011134996A (en) * 2009-12-25 2011-07-07 Tokyo Electron Ltd Film deposition apparatus
JP2012084581A (en) * 2010-10-07 2012-04-26 Sharp Corp Vapor phase epitaxial growth device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151507A (en) * 2000-11-15 2002-05-24 Sekisui Chem Co Ltd Semiconductor element manufacturing method and apparatus thereof
JP2005268709A (en) * 2004-03-22 2005-09-29 Seiko Epson Corp Surface treatment apparatus and surface treatment method
JP2006124767A (en) * 2004-10-28 2006-05-18 Olympus Corp Sputtering method and sputtering system
JP2007247066A (en) * 2006-03-15 2007-09-27 Asm Japan Kk Semiconductor-processing apparatus with rotating susceptor
WO2008056556A1 (en) * 2006-11-08 2008-05-15 Nissin Electric Co., Ltd. Method and device for forming silicon dot and silicon dot and method and device for forming substrate with insulating film
JP2011134996A (en) * 2009-12-25 2011-07-07 Tokyo Electron Ltd Film deposition apparatus
JP2012084581A (en) * 2010-10-07 2012-04-26 Sharp Corp Vapor phase epitaxial growth device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046976A1 (en) * 2014-09-26 2016-03-31 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JPWO2016046976A1 (en) * 2014-09-26 2017-07-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
CN112750717A (en) * 2019-10-30 2021-05-04 夏泰鑫半导体(青岛)有限公司 Front-end and rear-end module of equipment and semiconductor processing station with front-end and rear-end modules of equipment
CN112750717B (en) * 2019-10-30 2022-12-02 夏泰鑫半导体(青岛)有限公司 Front-end and rear-end module of equipment and semiconductor processing station with front-end and rear-end modules of equipment

Similar Documents

Publication Publication Date Title
JP6095172B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JP6000665B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
KR101850186B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and method of processing substrate
KR101752075B1 (en) Semiconductor device manufacturing method, substrate processing device and recording medium
TWI511178B (en) A substrate processing apparatus, a cover body, and a semiconductor device
KR101745075B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and storage medium
WO2014157358A1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
JP2014195043A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and gas supply/discharge method
JP2014060309A (en) Substrate processing apparatus and semiconductor device manufacturing method
JP6332746B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP2017034013A (en) Substrate processing apparatus, semiconductor device manufacturing method and program
JP2014192484A (en) Semiconductor device manufacturing method and substrate processing apparatus
WO2016043221A1 (en) Substrate treatment device, cleaning method, method for manufacturing semiconductor device, and recording medium
JP6276428B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and susceptor
WO2014148490A1 (en) Substrate processing apparatus, and method for manufacturing semiconductor device
KR101590823B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and method of supplying and discharging gas
JP2015015272A (en) Semiconductor device manufacturing method and substrate processing apparatus
JP6307316B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2015185757A (en) Substrate processing apparatus and semiconductor device manufacturing method
JP6224263B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP2014175483A (en) Substrate processing apparatus and method for manufacturing semiconductor device
KR101614276B1 (en) Substrate processing apparatus, lid and method of manufacturing semiconductor device
JP2014192304A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2014187258A (en) Substrate processing apparatus, and method for manufacturing semiconductor device
JP2017183341A (en) Substrate processing device, method of manufacturing semiconductor device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP