WO2014137124A1 - Hydraulic pressure booster cylinder integrated with booster pump device - Google Patents

Hydraulic pressure booster cylinder integrated with booster pump device Download PDF

Info

Publication number
WO2014137124A1
WO2014137124A1 PCT/KR2014/001746 KR2014001746W WO2014137124A1 WO 2014137124 A1 WO2014137124 A1 WO 2014137124A1 KR 2014001746 W KR2014001746 W KR 2014001746W WO 2014137124 A1 WO2014137124 A1 WO 2014137124A1
Authority
WO
WIPO (PCT)
Prior art keywords
pneumatic
chamber
piston
hydraulic
passage
Prior art date
Application number
PCT/KR2014/001746
Other languages
French (fr)
Korean (ko)
Inventor
주재석
Original Assignee
Ju Jae Seak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ju Jae Seak filed Critical Ju Jae Seak
Publication of WO2014137124A1 publication Critical patent/WO2014137124A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/068Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam with valves for gradually putting pneumatic systems under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B3/00Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • F04B9/123Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having only one pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side

Definitions

  • the present invention relates to a cylinder in which a pneumatically operated booster pump device and a pneumatic cylinder are integrated so that the pneumatic cylinder is operated by low speed high speed forward and high pressure low speed forward, and more specifically, operation of the hydraulic cylinder or the pneumatic cylinder
  • the low load allows the piston rod to move forward at high speed, and the high load exerts the boosted output with the booster pump, while compensating for the phenomenon of pressure pulsation when pressurizing the piston rod with one booster pump.
  • a booster pump device-integrated hydraulic booster cylinder configured to continuously pressurize a piston rod with a booster pump device.
  • the booster pump device attaches the booster pump to the hydraulic oil reservoir to operate only the booster pump.
  • the booster pump operates only at the booster pump, and the piston rod operation of the cylinder is slow and consumes a lot of energy.
  • the integrated booster device has a limitation in generating pressurized flow rate because the shared booster is operated only once, and the hydraulic pressure intensifier ⁇ KR 10-0704958 A (Ju Youngdon) 2007.04.02 ⁇ advances the piston rod at low load at high speed and high load
  • the piston rod pressurization is operated only once as a booster, so each cylinder must be manufactured to be customized. If the piston diameter of the piston rod is increased, the booster diameter is also increased, resulting in a high cost.
  • the booster device that integrates booster pump as in the case of hydraulic booster cylinder (KR 10-2011-0107762 A 2011.10.21) operates as a booster pump by moving the piston rod at high speed at low load like a hydraulic booster cylinder.
  • multiple booster pumps are configured to continuously output high power by sequence control.
  • the booster of the next operation in any stroke of the piston of the booster pump in order to lengthen the stroke of the booster pump and to cause the pump piston to be reversed by the pneumatic pressure in the piston at the forward end position of the pump piston and to operate the pistons of the plurality of booster pumps sequentially. It consists of a pneumatic sequence circuit to operate the pump.
  • the sequencer controls a plurality of booster pumps to supply the boosting flow continuously and minimize the pressure pulsation of the pressurized flow.
  • Standardized to increase the mass production effect, to have the advantages of energy-saving booster and pressure continuity of the hydraulic pump is configured to have the same effect of the integrated hydraulic cylinder and hydraulic power unit.
  • 1 is a longitudinal cross-sectional view of the entire assembly according to the present invention.
  • Figure 2 is a longitudinal cross-sectional view of the cylinder piston rod in the reverse state.
  • Figure 3 is a longitudinal sectional view of the piston rod at high speed during low load.
  • FIG. 4 is a longitudinal cross-sectional view of the booster rod 21 after the high speed stroke.
  • FIG 5 is a longitudinal sectional view of the booster rods 21 and 21a after the high speed stroke.
  • FIG. 6 is a longitudinal sectional view of the booster rod 21 after the high speed stroke and the operation of the booster rod 21a.
  • FIG. 7 is a longitudinal sectional view of the booster rod 21 after the high speed stroke and the return of the booster rod 21a.
  • FIG. 8 is a longitudinal sectional view of the secondary pressurization operation of the booster rod 21 and the secondary pressurization operation of the booster rod 21a after the high speed stroke.
  • FIG. 9 is a longitudinal cross-sectional view of the cylinder piston rod in a reverse state.
  • logic rulelock 2 cylinder body
  • 16 single acting pneumatic cylinder 16a, 18a: piston rod
  • FIG. 1 is a longitudinal cross-sectional view showing the whole according to the present invention, in which the cylinder operating chamber 35, the operating chamber 85, the storage chamber 45, the operating chamber 85a filled with hydraulic oil are arranged in the axial direction, and the pump piston ( 4) is inserted into the operating chamber 85, and the pump piston 4a passes through the bore 12
  • the actuating piston 18 is arranged with a piston rod 18a projecting out of the cylinder body 2 for power transmission.
  • a disc piston 19 is fixed between the actuating piston 18 and the piston rod 18a.
  • the disc piston 19 is separated into two pneumatic chambers 25 and 35a. Compressed air is alternately supplied to this pneumatic chamber so that the actuating piston 18 can travel quickly. It consists of a piston rod 16a, poppets 13 and 14, and a spring 17 between the hydraulic passages 15a and 17 so that the poppets 13 and 14 and the poppet 13 are in close contact with the logic block 1 to be sealed.
  • Decompression pilot valve is configured to maintain
  • a check valve 7 is configured between the hydraulic passages 15b and 15c for supplying the working oil to the working chamber 85 to selectively supply the working oil to the working chamber 85.
  • compressed air is supplied to the pneumatic passages 10 and 60, when overpressure occurs in the pneumatic chambers 16b and 35a, the pressure increases in the cylinder operating chamber 35 by the operating piston 18 integrated with the disc piston 19.
  • the piston rod 16a of the pneumatic chamber 16b reverses the poppets 14 and 13 one after another regardless of the reaction force of the spring 17 so that the hydraulic oil in the cylinder operating chamber 35 is the hydraulic passage 15a and the decompression.
  • the type pilot check valve and the hydraulic passage 15 is introduced into the storage chamber 45, the storage chamber piston 3 overcomes the reaction force of the spring 11a and is retracted.
  • the operation chamber 35 has a storage chamber 45 connected to the operating chamber 35 through a decompression type pilot check valve, and the storage chamber 45 by a spring 11a.
  • a low pressure is generated at the upper portion of the cylinder operating chamber 35, and a pump piston 4 supported by the operating chamber 85 and the spring 11 is inserted through the check valve 7b.
  • the storage chamber pressure of this structure is sufficient to fill the cylinder operating chamber 35 with the working oil discharged from the storage chamber 45 during the rapid stroke of the operating piston 18.
  • the reservoir piston 3 can be moved up and down in the axial direction.
  • the booster rods 21 and 21a of the pump pistons 4 and 4a are also sealed to be movable in the axial direction, and the booster rods 21 and 21a are respectively operated against the force of the springs 11 and 11a.
  • the booster rod 21a is inserted into the storage chamber 45 through the storage chamber piston 3 and the booster rod 11 is inserted into the sealed operating chamber 85. .
  • the pump pistons 4 and 4a together with the booster rods 21 and 21a, are provided with compressed air entering through the pneumatic passages 90 and 90a at the top of the pump pistons 4 and 4a. It is driven by the compressed air of the pneumatic chambers 55 and 55a which are controlled and guided to.
  • the compressed air is supplied to the pneumatic passages 20, 90, and 90a, the compressed air is exhausted into the pneumatic passage 40 through the pyrod rod 5.
  • the compressed air of the pneumatic chamber 35a of the cylinder body 2 is exhausted into the pneumatic passage 10, and the pressure of the pneumatic chamber 25 is increased by the compressed air introduced into the pneumatic passage 20, thereby operating piston ( 18) this rapid stroke takes place,
  • the storage chamber piston 3 sends the hydraulic oil of the storage chamber 45 to the operation chamber 85a by the reaction force of the spring 11a.
  • the compressed air introduced into the pneumatic passage (90) pushes the valve spool (6) and raises the air pressure in the pneumatic chamber (55) to lower the pump piston (4) and booster rod (21) of the operating chamber (85)
  • the hydraulic oil is sent to the cylinder operating chamber 35 through the check valve 7b.
  • the pump piston 4 passes the pneumatic passage 30, the compressed air in the pneumatic chamber 55 raises the pressure to the spool operating chamber 75 through the pneumatic passages 30 and 50 and the check valve (8).
  • the valve puff 6 is pushed out to block the pneumatic passage 90 and the pneumatic chamber 55, and the compressed air of the pneumatic chamber 55 is discharged to the exhaust passage 70 so that the pump piston 4
  • the operating oil of the storage chamber 45 is supplied to the operating chamber 85 through the hydraulic passage 15b, the check valve 7, and the hydraulic passage 15c.
  • the pump piston 4a continues to descend so that the hydraulic fluid is continuously supplied to the cylinder operation chamber 35 even when the pump piston 4 is reversed so that the pressure of the hydraulic oil can be continuously acted on the operation piston 18.
  • valve spools 6 and 6a Passes through the valve spools 6 and 6a to the exhaust passages 70 and 70a so that the pump pistons 4 and 4a are raised by the reaction force of the springs 11 and 11a and the upper surfaces of the pump pistons 4 and 4a.
  • the valve spools 6 and 6a are pushed out to close the gap between the fins 22 and 22a and the valve spools 6 and 6a.
  • the single-acting pneumatic cylinder 16 has the piston rod 16a reversed by the reaction force of the spring 16c, the poppets 13 and 14 adhere to the poppet 13 by the reaction force of the spring 17 of the decompression type pilot check valve. 13 is sealed to the logic block 1.
  • the decompression type pilot check valve is opened by the force acting on the poppets 13 and 14 of the decompression type pilot check valve due to the vacuum force of the cylinder operating chamber 35 and the operating oil of the storage chamber 45.
  • the spool 6 is pushed by the pressure of the compressed air flowing into the pneumatic passage 90 so that the pneumatic passage 90 and the pneumatic chamber 55 communicate with each other.
  • the compressed air introduced into the pneumatic passage 9 and the pneumatic passage 9a causes the pump spool 6a to communicate with the pneumatic passage 90a and the pneumatic chamber 55a, thereby to the pneumatic passage 90a.
  • the pressure of the pneumatic chamber 55a is increased by the flow of compressed air, out of reaction force of the spring 11a, and the pump piston 4a and the booster rod 21a are inserted into the bore 12 to pressurize the operating chamber 85a.
  • the pressurized hydraulic oil is introduced into the cylinder operating chamber 35 through the hydraulic passage 15a by opening the poppets 13 and 14 of the decompression type pilot check valve with the pressure of the hydraulic oil through the hydraulic passage 15.
  • Piston 18 and Piston Rod 18a Operating The piston 18 and the piston rod 18a generate displacement force of the working oil corresponding to the displacement amount (cross section area X stroke) of the booster rod 21a.
  • the compressed air of the pneumatic chamber 55 is exhausted into the exhaust passage 70, and the pump piston 4 and the booster rod 21 are raised by the reaction force of the spring 11, so that the upper surface of the pump piston 4 is
  • the pneumatic passage 40 and the spool working chamber 75 pass through the pyrople splice 5 so as to be spaced between the pyrode splice 5 and the fin 22.
  • the pump piston 4 is raised, the pump piston 4a is pushed by the compressed air of the pneumatic chamber 55a so that the booster rod 21a pressurizes the operating chamber 85a. 15), the poppets 13 and 14 of the decompression type pilot check valve are opened at the pressure of the hydraulic oil and flow into the cylinder operating chamber 35 through the hydraulic passage 15a, and the operating piston 18 and the piston rod ( 18a) generates displacement force of the hydraulic oil corresponding to the displacement amount (lateral cross-sectional area X stroke) of the booster rod 21a.
  • the compressed air of the pneumatic chamber 55a is exhausted through the exhaust passage 70a, and the pump piston 4a is lifted by the reaction force of the spring 11a so that the upper surface of the pump piston 4a contacts the valve spool 5a.
  • the close contact between the fin 22a and the valve spool 5a is opened, and the spool working chamber 75a and the pneumatic passage 40a communicate with each other.
  • FIG. 9 shows a state in which the compressed air is supplied to the pneumatic passages 10, 16, 40a, and 40 so that the piston rod 18a and the actuating piston 18 are reversed, and the operation is the same as in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

Disclosed is a hydraulic pressure booster cylinder integrated with a booster pump device. Instead of employing a hydraulic power unit to operate a conventional hydraulic cylinder, the hydraulic pressure booster cylinder integrated with a booster pump device according to the present invention operates at a high speed by means of only the power of the compressed air during a low load, and sequence-controls the operation of a plurality of booster pumps, having a high pressure elevation ratio, by means of pneumatic pressure during a high load, so that the cylinder can continuously work with great power. Therefore, the present invention provides an environmentally-friendly product which saves more energy than the hydraulic power unit and causes less pollution such as noise.

Description

[규칙 제26조에 의한 보정 17.03.2014]  부스터펌프장치 일체형 유압식 증압실린더[Correction according to Rule 26.03.2014] Hydraulic booster cylinder with integrated booster pump
본 발명은 공압을 동력으로 작동되는 부스터펌프 장치와 유공압실린더를 일체화 하여, 유공압실린더가 저압의 고속전진과 고압의 저속전진으로 작동시키는 실린더에 관한 것으로, 더욱 상세히는 유압실린더나 유공압실린더의 작동을 저 부하시는 피스톤로드를 고속으로 전진토록 하고, 고 부하시는 부스터펌프로 증압된 출력을 발휘하는 동시에, 한개의 부스터펌프로 피스톤로드를 가압할 때 압력 맥동현상이 발생하는 현상을 보완하기 위하여 다수의 부스터펌프 장치로 피스톤로드를 연속 가압하도록 구성된 부스터펌프장치 일체형 유압식 증압실린더에 관한 것이다. The present invention relates to a cylinder in which a pneumatically operated booster pump device and a pneumatic cylinder are integrated so that the pneumatic cylinder is operated by low speed high speed forward and high pressure low speed forward, and more specifically, operation of the hydraulic cylinder or the pneumatic cylinder The low load allows the piston rod to move forward at high speed, and the high load exerts the boosted output with the booster pump, while compensating for the phenomenon of pressure pulsation when pressurizing the piston rod with one booster pump. A booster pump device-integrated hydraulic booster cylinder configured to continuously pressurize a piston rod with a booster pump device.
일반적으로 부스터펌프 장치는 부스터펌프를 작동유 저장소에 부착하여 부스터펌프만 작동하는 형태로, 저부하시도 부스터펌프로만 작동되어 실린더의 피스톤로드 작동이 더디고 에너지 소모가 많은 단점이 있었으며, 공유컨버터와 공유 부스터를 일체화한 부스터 장치는 공유 부스터가 1회만 작동되어 가압 유량 발생에 한계가 있으며, 유압식 증압기{KR 10-0704958 A(주영돈) 2007.04.02}는 저 부하시 피스톤로드를 고속 전진시키고 고 부하시는 고출력을 내도록 되어 있으나 피스톤로드 가압을 부스터로 1회만 작동하도록 되어 실린더마다 맞춤형으로 제작해야 되며, 피스톤로드의 피스톤경이 커지면 부스터경도 커져 비용이 많아지는 결함이 있다.In general, the booster pump device attaches the booster pump to the hydraulic oil reservoir to operate only the booster pump. The booster pump operates only at the booster pump, and the piston rod operation of the cylinder is slow and consumes a lot of energy. The integrated booster device has a limitation in generating pressurized flow rate because the shared booster is operated only once, and the hydraulic pressure intensifier {KR 10-0704958 A (Ju Youngdon) 2007.04.02} advances the piston rod at low load at high speed and high load However, the piston rod pressurization is operated only once as a booster, so each cylinder must be manufactured to be customized. If the piston diameter of the piston rod is increased, the booster diameter is also increased, resulting in a high cost.
유압식 증압실린더{KR 10-2011-0107762 A(주재석) 2011.10.21}와 같이 부스터펌프를 일체화한 부스터 장치는 유압식 증압실리더와 같이 저부하시 피스톤로드를 고속 전진하며, 부스터펌프 1개로 작동할때의 압력 맥동현상을 최소화 하기 위하여 다수의 부스터펌프가 시퀀스 제어로 연속적으로 고출력을 내도록 구성된 것이다. The booster device that integrates booster pump as in the case of hydraulic booster cylinder (KR 10-2011-0107762 A 2011.10.21) operates as a booster pump by moving the piston rod at high speed at low load like a hydraulic booster cylinder. In order to minimize pressure pulsation at the time of construction, multiple booster pumps are configured to continuously output high power by sequence control.
압력변환기와 같이 여 저부하시 피스톤로드를 고속으로 작동하게하고 고부하시 부스터펌프를 작동시키는 공압 시퀀스밸브를 일체화하는 과제와, 다수의 부스터펌프를 부착했을때 순차적으로 가압되도록하는 공압제어방법을 해결하는 과제이다. It solves the problem of integrating a pneumatic sequence valve that operates the piston rod at high speed at high loads and a booster pump at high loads, such as a pressure transducer, and a pneumatic control method that sequentially pressurizes when a plurality of booster pumps are attached. It is a task.
부스터펌프의 행정을 길게하고 펌프피스톤의 전진단 위치에서 피스톤내의 공압으로 펌프피스톤이 후진되도록 하는 방법과 다수의 부스터펌프의 피스톤을 순차적으로 작동하도록 부스터펌프의 피스톤의 임의의 행정에서 다음 동작의 부스터펌프가 작동되도록 공압 시퀀스회로로 구성되는 방법이다.The booster of the next operation in any stroke of the piston of the booster pump in order to lengthen the stroke of the booster pump and to cause the pump piston to be reversed by the pneumatic pressure in the piston at the forward end position of the pump piston and to operate the pistons of the plurality of booster pumps sequentially. It consists of a pneumatic sequence circuit to operate the pump.
유압식 압력변환기의 약점인 1회용 부스터 대신에 다수의 부스터펌프를 시퀀스제어 함으로 증압 유량을 연속적으로 공급하는 동시에 가압 유량의 압력 맥동을 최소화한 효과를 가지며, 동시에 실린더의 출력에 관계없이 부스터펌프 잔치를 표준화하여 양산 효과를 높이고, 에너지 절약적인 부스터 장점과 유압 펌프의 압력 연속성을 갖도록 하여 유압실린더와 유압파워 유니트를 일체화한 효과를 같도록 구성된 것이다.Instead of the disposable booster, which is a weak point of the hydraulic pressure converter, the sequencer controls a plurality of booster pumps to supply the boosting flow continuously and minimize the pressure pulsation of the pressurized flow. Standardized to increase the mass production effect, to have the advantages of energy-saving booster and pressure continuity of the hydraulic pump is configured to have the same effect of the integrated hydraulic cylinder and hydraulic power unit.
도 1은 본 발명에 따른 전체를 조립한 종 단면도.1 is a longitudinal cross-sectional view of the entire assembly according to the present invention.
도 2는 실린더 피스톤 로드의 후진 상태에 따른 종 단면도.Figure 2 is a longitudinal cross-sectional view of the cylinder piston rod in the reverse state.
도 3은 저부하시 피스톤 로드의 고속행정에 따른 종 단면도.Figure 3 is a longitudinal sectional view of the piston rod at high speed during low load.
도 4는 고속행정후 부스터 로드(21)의 동작에 따른 종 단면도.4 is a longitudinal cross-sectional view of the booster rod 21 after the high speed stroke.
도 5는 고속행정후 부스터 로드(21, 21a)의 동작에 따른 종 단면도.5 is a longitudinal sectional view of the booster rods 21 and 21a after the high speed stroke.
도 6은 고속행정후 부스터 로드(21)의 복귀와 부스터 로드(21a)의 동작에 따른 종 단면도.6 is a longitudinal sectional view of the booster rod 21 after the high speed stroke and the operation of the booster rod 21a.
도 7은 고속행정후 부스터 로드(21)의 2차 가압동작과 부스터 로드(21a)의 복귀에 따른 종 단면도.7 is a longitudinal sectional view of the booster rod 21 after the high speed stroke and the return of the booster rod 21a.
도 8은 고속행정후 부스터 로드(21)의 2차 가압동작과 부스터 로드(21a)의 2차 가압동작에 따른 종 단면도.8 is a longitudinal sectional view of the secondary pressurization operation of the booster rod 21 and the secondary pressurization operation of the booster rod 21a after the high speed stroke.
도 9는 실린더 피스톤 로드의 후진 상태에 따른 종 단면도.9 is a longitudinal cross-sectional view of the cylinder piston rod in a reverse state.
*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
1: 로직 룰록 2: 실린더 본체1: logic rulelock 2: cylinder body
3: 저장실 피스톤 4, 4a: 펌프 피스톤3: reservoir piston 4, 4a: pump piston
5, 5a: 파이로드 밸브 6, 6a: 밸브 스플5, 5a: Pirod valve 6, 6a: Valve spool
7, 7a, 8, 8a:첵밸브 11, 11a, 16c, 17, 22, 33: 스프링7, 7a, 8, 8a: Check valve 11, 11a, 16c, 17, 22, 33: Spring
12: 보어 13, 14: 포핏12: bore 13, 14: poppet
15, 15a, 15b, 15c, 15d: 유압통로 15, 15a, 15b, 15c, 15d: hydraulic passage
16: 단동형 공압실린더 16a, 18a: 피스톤 로드 16: single acting pneumatic cylinder 16a, 18a: piston rod
16b, 25, 35a, 55, 55a: 공압실 18: 작동 피스톤 16b, 25, 35a, 55, 55a: pneumatic chamber 18: working piston
19: 원판 피스톤 21, 21a: 부스터 로드19: disc piston 21, 21a: booster rod
22, 22a: 첵 35: 실린더 작동실22, 22a: 첵 35: Cylinder operating chamber
45: 저장실 85, 85a: 작동실45: storage room 85, 85a: operating room
70, 70a: 배기통로 75, 75a: 스플 작동실70, 70a: exhaust passage 75, 75a: spool operating chamber
9, 9a, 10, 20, 30, 30a, 40, 40a, 50, 50a, 60, 90, 90a: 공압통로9, 9a, 10, 20, 30, 30a, 40, 40a, 50, 50a, 60, 90, 90a: pneumatic passage
도 1은 본 발명에 따른 전체를 나타낸 종 단면도로, 작동유로 채워진 실린더 작동실(35)과 작동실(85), 저장실(45), 작동실(85a)이 축방향으로 배열되고, 펌프 피스톤(4)은 작동실(85)에 삽입되고, 펌프 피스톤(4a)은 보어(12)를 통하여 1 is a longitudinal cross-sectional view showing the whole according to the present invention, in which the cylinder operating chamber 35, the operating chamber 85, the storage chamber 45, the operating chamber 85a filled with hydraulic oil are arranged in the axial direction, and the pump piston ( 4) is inserted into the operating chamber 85, and the pump piston 4a passes through the bore 12
작동실(85a)에 삽입되도록 구성된다. It is configured to be inserted into the operation chamber 85a.
작동 피스톤(18)은 동력 전달을 위하여 실린더 본체(2)의 외부로 돌출된 피스톤 로드(18a)가 배열된다. 또한, 원판 피스톤(19)이 작동 피스톤(18)과 피스톤 로드(18a) 사이에 고정된다. 상기 원판 피스톤(19)은 2개의 공압실(25, 35a)로 분리된다. 이러한 공압실에는 작동 피스톤(18)이 신속하게 행정할 수 있도록 교대로 압축공기가 공급된다. 유압통로(15a, 17) 사이에는 피스톤 로드(16a)와 포핏(13, 14) 및 스프링(17)으로 구성되어 포핏(13, 14)과 포핏(13)이 로직 불록(1)에 밀착되어 기밀이 유지되도록 구성된 디컴프레션형 피이럿 첵밸브가 구성되며, The actuating piston 18 is arranged with a piston rod 18a projecting out of the cylinder body 2 for power transmission. In addition, a disc piston 19 is fixed between the actuating piston 18 and the piston rod 18a. The disc piston 19 is separated into two pneumatic chambers 25 and 35a. Compressed air is alternately supplied to this pneumatic chamber so that the actuating piston 18 can travel quickly. It consists of a piston rod 16a, poppets 13 and 14, and a spring 17 between the hydraulic passages 15a and 17 so that the poppets 13 and 14 and the poppet 13 are in close contact with the logic block 1 to be sealed. Decompression pilot valve is configured to maintain
작동실(85)에 작동유를 공급하는 유압통로(15b, 15c) 사이에는 첵밸브(7)가 구성되어 선택적으로 작동유를 작동실(85)에 공급된다. 공압통로(10, 60)로 압축공기가 공급 되면 공압실(16b, 35a)에 과압이 발생하면 원판 피스톤(19)과 일체화된 작동 피스톤(18)에 의하여 실린더 작동실(35)을 압력이 상승되고, 공압실(16b)의 피스톤 로드(16a)는 스프링(17)의 반력에 관계없이 포핏(14, 13)을 차례로 후진시켜 실린더 작동실(35)의 작동유가 유압통로(15a), 디컴프레션형 파이럿 첵밸브와 유압통로(15)를 통하여 저장실(45)로 유입되어 저장실 피스톤(3)이 스프링(11a)의 반력을 이겨내어 후진 된다.A check valve 7 is configured between the hydraulic passages 15b and 15c for supplying the working oil to the working chamber 85 to selectively supply the working oil to the working chamber 85. When compressed air is supplied to the pneumatic passages 10 and 60, when overpressure occurs in the pneumatic chambers 16b and 35a, the pressure increases in the cylinder operating chamber 35 by the operating piston 18 integrated with the disc piston 19. The piston rod 16a of the pneumatic chamber 16b reverses the poppets 14 and 13 one after another regardless of the reaction force of the spring 17 so that the hydraulic oil in the cylinder operating chamber 35 is the hydraulic passage 15a and the decompression. Through the type pilot check valve and the hydraulic passage 15 is introduced into the storage chamber 45, the storage chamber piston 3 overcomes the reaction force of the spring 11a and is retracted.
도면에 도시되어 있는 바와 같이, 작동실(35)에는 작동실(35)과 디컴프레션형 파이럿 첵밸브를 통하여 연결되어 있는 저장실(45)이 위치하며, 스프링(11a)에 의하여 상기 저장실(45)에 낮은 압력이 발생 되며, 실린더 작동실(35)의 상부에는 첵밸브(7b)를 통하여 작동실(85)와 스프링(11)에 지지 되는 펌프 피스톤(4)이 삽입되어 있다.As shown in the figure, the operation chamber 35 has a storage chamber 45 connected to the operating chamber 35 through a decompression type pilot check valve, and the storage chamber 45 by a spring 11a. A low pressure is generated at the upper portion of the cylinder operating chamber 35, and a pump piston 4 supported by the operating chamber 85 and the spring 11 is inserted through the check valve 7b.
이러한 구조의 저장실 압력은 작동 피스톤(18)의 급속 행정시 저장실(45)로 부터 배출된 작동유로 실린더 작동실(35)을 채우기에 충분하다. 저장실 피스톤(3)은 축 방향으로 상하 이동이 가능하다. 펌프 피스톤(4, 4a)의 부스터 로드(21, 21a)도 축 방향으로 이동 가능하게 밀봉되어 있으며, 상기 부스터 로드(21, 21a)는 스프링(11, 11a)의 힘에 대항하여 각각 작동실(85, 85a) 쪽으로 하강할 수 있다.부스터 로드(21a)는 저장실 피스톤(3)을 관통하여 저장실(45)내로 삽입되어 있으며, 부스터 로드(11)는 밀봉된 작동실(85)에 삽입되어 있다. The storage chamber pressure of this structure is sufficient to fill the cylinder operating chamber 35 with the working oil discharged from the storage chamber 45 during the rapid stroke of the operating piston 18. The reservoir piston 3 can be moved up and down in the axial direction. The booster rods 21 and 21a of the pump pistons 4 and 4a are also sealed to be movable in the axial direction, and the booster rods 21 and 21a are respectively operated against the force of the springs 11 and 11a. The booster rod 21a is inserted into the storage chamber 45 through the storage chamber piston 3 and the booster rod 11 is inserted into the sealed operating chamber 85. .
펌프 피스톤(4, 4a)은 부스터 로드(21, 21a)와 함께, 펌프 피스톤(4, 4a)의 상부에 있는 공압통로(90, 90a)를 통하여 유입되는 압축공기가 밸브 스플(6, 6a)에 제어되어 안내되는 공압실(55, 55a)의 압축공기에 의해 구동된다. 이러한 압축공기의 공급은 공압통로(20, 90, 90a)로 압축공기가 유입되면 스플 작동실(75)의 기존에 있었던 압축공기는 파이로드 스플(5)를 통하여 공압통로(40)로 배기되며, 동시에 실린더 본체(2)의 공압실(35a)의 압축공기가 공압통로(10)로 배기되고, 공압통로(20)으로 유입된 압축공기로 공압실(25)의 압력이 상승되어 작동 피스톤(18)이 급속 행정이 이루어지며, The pump pistons 4 and 4a, together with the booster rods 21 and 21a, are provided with compressed air entering through the pneumatic passages 90 and 90a at the top of the pump pistons 4 and 4a. It is driven by the compressed air of the pneumatic chambers 55 and 55a which are controlled and guided to. When the compressed air is supplied to the pneumatic passages 20, 90, and 90a, the compressed air is exhausted into the pneumatic passage 40 through the pyrod rod 5. At the same time, the compressed air of the pneumatic chamber 35a of the cylinder body 2 is exhausted into the pneumatic passage 10, and the pressure of the pneumatic chamber 25 is increased by the compressed air introduced into the pneumatic passage 20, thereby operating piston ( 18) this rapid stroke takes place,
한편으로 저장실 피스톤(3)은 스프링(11a)의 반력으로 저장실(45)의 작동유를 작동실(85a)로 보낸다. 한편으로 공압통로(90)으로 유입된 압축공기는 밸브 스플(6)을 밀어내고 공압실(55)의 공기압을 높여 펌프 피스톤(4)이 하강하며 부스터 로드(21)가 작동실(85)의 작동유를 첵밸브(7b)를 통하여 실린더 작동실(35)로 보낸다. 펌프 피스톤(4)이 공압통로(9)를 지나면 공압실(55)의 압축공기가 공압통로(9), 공압통로(9a)로 유입되어 밸브 스플(6a)을 밀어내고 On the other hand, the storage chamber piston 3 sends the hydraulic oil of the storage chamber 45 to the operation chamber 85a by the reaction force of the spring 11a. On the other hand, the compressed air introduced into the pneumatic passage (90) pushes the valve spool (6) and raises the air pressure in the pneumatic chamber (55) to lower the pump piston (4) and booster rod (21) of the operating chamber (85) The hydraulic oil is sent to the cylinder operating chamber 35 through the check valve 7b. When the pump piston (4) passes the pneumatic passage (9), the compressed air in the pneumatic chamber (55) flows into the pneumatic passage (9), pneumatic passage (9a) to push out the valve spool (6a)
공압실(55a)의 압력이 상승되어 스프링(11a)의 반력을 밀어내고 펌프 피스톤(4a)의 부스터 로드(21a)가 보어(12)로 삽입되어 작동실(85a)의 작동유를 밀어내면 작동실(85a)의 작동유는 유압통로(15)를 통하여 디컴프레션형 파이럿 첵밸브을 작동유의 압력으로 열려, 유압통로(15a)를 통하여 실린더 작동실(35)로 유입된다. When the pressure of the pneumatic chamber 55a is raised to push the reaction force of the spring 11a and the booster rod 21a of the pump piston 4a is inserted into the bore 12 to push the hydraulic oil of the operating chamber 85a into the operating chamber. The hydraulic oil of 85a opens the decompression type pilot check valve through the hydraulic passage 15 to the pressure of the hydraulic oil, and flows into the cylinder operating chamber 35 through the hydraulic passage 15a.
한편 펌프 피스톤(4)이 공압통로(30)을 지나면 공압실(55)에 있는 압축공기가 공압통로(30, 50)와 첵밸브(8)를 통하여 스플 작동실(75)에 압력을 상승시켜 밸브 스플(6)을 밀어내어 공압통로(90)와 공압실(55)을 차단되고 공압실(55)의 압축공기는 배기통로(70)로 배출되어 펌프 피스톤(4)이 스프링(11)의 반력으로 상승되며, 이때 저장실(45)의 작동유가 유압통로(15b), 첵밸브(7), 유압통로(15c)를 통하여 작동실(85)에 공급된다. 한편 펌프 피스톤(4a)은 계속 하강하여 펌프 피스톤(4)가 후진시에도 실린더 작동실(35)에 계속해서 작동유를 공급하여 작동 피스톤(18)에 작동유의 압력이 연속 작용 되도록 된다. On the other hand, when the pump piston 4 passes the pneumatic passage 30, the compressed air in the pneumatic chamber 55 raises the pressure to the spool operating chamber 75 through the pneumatic passages 30 and 50 and the check valve (8). The valve puff 6 is pushed out to block the pneumatic passage 90 and the pneumatic chamber 55, and the compressed air of the pneumatic chamber 55 is discharged to the exhaust passage 70 so that the pump piston 4 As the reaction force is raised, the operating oil of the storage chamber 45 is supplied to the operating chamber 85 through the hydraulic passage 15b, the check valve 7, and the hydraulic passage 15c. On the other hand, the pump piston 4a continues to descend so that the hydraulic fluid is continuously supplied to the cylinder operation chamber 35 even when the pump piston 4 is reversed so that the pressure of the hydraulic oil can be continuously acted on the operation piston 18.
펌프 피스톤(4, 4a)의 횡단면이 부스터 로드(21, 21a)의 횡단면보다 훨씬 크기 때문에, 공압실(55, 55a)에서의 공압으로부터 실린더 작동실(35)에서 높은 유압으로 변환이 된다. 또한 작동 피스톤(18)의 횡단면적이 부스터 로드(21, 21a)의 횡단면보다 훨씬 크기 때문에, 실린더 작동실(35) 내부에서 작동 피스톤(18)으로의 동력전달이 이뤄지고, 이에 따라 피스톤 로드(18a)에 상응하는 변위력이 생긴다. 부스터 로드(21a)가 스프링(11a)의 반력으로 작동실(85a)에서 후진시 작동실(85a)에 진공 상태가 발생하지 않토록 저장실(45)의 작동유가 유압통로(15d)와 연결된 첵밸브(7a)를 통하여 작동실(85a)로 보충된다.Since the cross sections of the pump pistons 4 and 4a are much larger than the cross sections of the booster rods 21 and 21a, there is a conversion from pneumatics in the pneumatic chambers 55 and 55a to high hydraulic pressure in the cylinder operating chamber 35. In addition, since the cross sectional area of the actuating piston 18 is much larger than the cross sections of the booster rods 21, 21a, power is transferred from the cylinder actuating chamber 35 to the actuating piston 18, thus providing a piston rod 18a. Displacement force corresponding to When the booster rod 21a is retracted from the operating chamber 85a by the reaction force of the spring 11a, the hydraulic valve in the storage chamber 45 is connected to the hydraulic passage 15d so that no vacuum occurs in the operating chamber 85a. It is supplemented with the operation chamber 85a through 7a.
도 2는 후진시 공압통로(10, 40, 40a)로 압축공기가 유입되어 공압실(35a)이 공압으로 작동 피스톤(18)이 후진되고, 공압통로(40, 40a)로 유입된 압축공기가 파이로드 스플(5, 5a)을 통하여 스플 작동실(75, 75a)의 내부 압력이 상승하여 밸브 스플(6, 6a)이 각각 공압통로(90, 90a)가 차단되고, 공압실(55, 55a)이 밸브 스플(6, 6a)을 통하여 배기통로(70, 70a)로 통하게 되어 펌프 피스톤(4, 4a)가 스프링(11, 11a)의 반력으로 상승되며, 펌프 피스톤(4, 4a)의 상면이 밸브 스플(6, 6a)을 밀어내어 첵(22, 22a)과 밸브 스플(6, 6a) 간의 밀착이 벌어지게 된다. 2 shows that the compressed air flows into the pneumatic passages 10, 40, and 40a during the reverse movement, so that the pneumatic chamber 35a is operated by the pneumatic pressure, and the piston 18 is reversed, and the compressed air introduced into the pneumatic passages 40 and 40a is The internal pressure of the spool operating chambers 75 and 75a rises through the pyrople spools 5 and 5a, so that the valve puffs 6 and 6a block the pneumatic passages 90 and 90a, respectively, and the pneumatic chambers 55 and 55a. ) Passes through the valve spools 6 and 6a to the exhaust passages 70 and 70a so that the pump pistons 4 and 4a are raised by the reaction force of the springs 11 and 11a and the upper surfaces of the pump pistons 4 and 4a. The valve spools 6 and 6a are pushed out to close the gap between the fins 22 and 22a and the valve spools 6 and 6a.
단동형 공압실린더(16)는 스프링(16c)의 반력으로 피스톤 로드(16a)가 후진되고, 디컴프레션형 파이럿 첵밸브의 스프링(17)의 반력으로 포핏(13, 14)이 밀착되고, 포핏(13)이 로직 불록(1)에 밀봉된 것을 나타낸다.The single-acting pneumatic cylinder 16 has the piston rod 16a reversed by the reaction force of the spring 16c, the poppets 13 and 14 adhere to the poppet 13 by the reaction force of the spring 17 of the decompression type pilot check valve. 13 is sealed to the logic block 1.
도 3은 공압통로(20, 90, 90a)로 압축공기가 유입되면 공압통로(20)로 유입된 압축공기가 공압실(25)의 압력이 높아져 원판 피스톤(19)에 작용하여 작동 피스톤(18)과 피스톤 로드(18a)가 급속 하강하며, 동시에 저장실(45)의 작동유는 보어(12)를 통하여 작동실(85a), 유압통로(15), 디컴프레션형 파이럿 첵밸브의 포핏(13, 14)과 유압통로(15a)를 거쳐 실린더 작동실(35)로 유입된다. 3 shows that when compressed air flows into the pneumatic passages 20, 90, and 90a, the compressed air introduced into the pneumatic passage 20 increases in pressure in the pneumatic chamber 25, acting on the disc piston 19 to actuate the piston 18. ) And the piston rod 18a are rapidly descending, and at the same time the hydraulic fluid of the storage chamber 45 passes through the bore 12, the operating chamber 85a, the hydraulic passage 15, and the poppets 13 and 14 of the decompression type pilot valve. And flows into the cylinder operating chamber 35 through the hydraulic passage 15a.
이때 실린더 작동실(35)의 진공력으로 인한 디컴프레션형 파이럿 첵밸브의 포핏(13, 14)에 작용하는 힘과 저장실(45)의 작동유의 힘으로 디컴프레션형 파이럿 첵밸브는 개방되며, 밸브 스플(6)은 공압통로(90)로 유입되는 압축공기의 압력으로 밀려나서 공압통로(90)와 공압실(55)은 통하게 된다.At this time, the decompression type pilot check valve is opened by the force acting on the poppets 13 and 14 of the decompression type pilot check valve due to the vacuum force of the cylinder operating chamber 35 and the operating oil of the storage chamber 45. The spool 6 is pushed by the pressure of the compressed air flowing into the pneumatic passage 90 so that the pneumatic passage 90 and the pneumatic chamber 55 communicate with each other.
도 4는 도 3에서 공압통로(90)을 통하여 공압실(55)로 유입된 압축공기의 공압실(55)의 압력이 상승되어 스프링(11)의 반력을 이겨내어 펌프 피스톤(4)과 부스터 로드(21) 하강 되어 작동실(85)의 작동유에 작용하고, 작동실(85)의 작동유가 첵밸브(7b)을 통하여 실린더 작동실(35)에 유입되어 작동 피스톤(18)과 피스톤 로드(18a)를 부스터 로드(21)의 변위량(횡단면적X행정)에 해당되는 작동유의 변위력을 발생시킨다. 4 is a pressure of the pneumatic chamber 55 of the compressed air introduced into the pneumatic chamber 55 through the pneumatic passage 90 in FIG. 3 to overcome the reaction force of the spring 11 to boost the pump piston 4 and the booster The rod 21 is lowered to act on the hydraulic oil of the operating chamber 85, and the hydraulic oil of the operating chamber 85 flows into the cylinder operating chamber 35 through the check valve 7b to operate the operating piston 18 and the piston rod ( 18a) generates a displacement force of the hydraulic oil corresponding to the displacement amount (cross section area X stroke) of the booster rod 21.
이때 펌프 피스톤(4)이 공압통로(9)를 지나면 공압실(55)의 압축공기가 공압통로(9a)로 유입되어 밸브 스플(6a)를 밀어내어 공압통로(90a)와 공압실(55a)이 통하게 된다. At this time, when the pump piston (4) passes the pneumatic passage (9), the compressed air of the pneumatic chamber (55) flows into the pneumatic passage (9a) to push out the valve spool (6a) to the pneumatic passage (90a) and the pneumatic chamber (55a) This will work.
제 5도는 공압실(55)의 압축공기 압력으로 펌프 피스톤(4)과 부스터 로드(21)이 계속 하강하여, 작동실(85)이 계속하여 가압되고, 가압된 작동유는 첵밸브(7b)를 통하여 실린더 작동실(35)에 유입되어 펌프 피스톤(4)이 공압통로(30)를 지나면 공압실(55)의 압축공기가 공압통로(30, 50)와 첵밸브(8)을 통하여 스플 작동실(75)에 유입되어, 작동 피스톤(18)과 피스톤 로드(18a)를 부스터 로드(21)의 변위량(횡단면적X행정)에 해당되는 작동유의 변위력을 발생시킨다. 5 shows that the pump piston 4 and the booster rod 21 are continuously lowered by the compressed air pressure of the pneumatic chamber 55, and the operating chamber 85 is continuously pressurized, and the pressurized hydraulic oil is applied to the check valve 7b. When the pump piston (4) passes through the pneumatic passage (30) and the pump piston (4) passes through the pneumatic passage (30), the compressed air of the pneumatic chamber (55) through the pneumatic passages (30, 50) and check valve (8) It flows into (75), and the actuating piston 18 and the piston rod 18a generate | occur | produce the displacement force of the hydraulic fluid corresponding to the displacement amount (cross-sectional area X stroke) of the booster rod 21.
또한 펌프 피스톤(4)이 공압통로(30)를 지나면 공압실(55)의 압축공기가 공압통로(30, 50)와 첵밸브(8)를 통하여 스플 작동실(75)에 유입되어, 펌프 스플(6)을 밀어내고 공압실(55)과 배기통로(70)가 통하게 되어 공압실(55)의 압축공기는 배기 된다. In addition, when the pump piston 4 passes the pneumatic passage 30, the compressed air of the pneumatic chamber 55 flows into the spool operating chamber 75 through the pneumatic passages 30 and 50 and the check valve 8, and the pump spool (6) is pushed out and the pneumatic chamber 55 and the exhaust passage 70 pass through, and the compressed air of the pneumatic chamber 55 is exhausted.
한편 제 4도에서 공압통로(9), 공압통로(9a)로 유입된 압축공기에 의해서 펌프 스플(6a)이 공압통로(90a)와 공압실(55a)이 통하게 되어, 공압통로(90a)로 유입된 압축공기로 공압실(55a)의 압력이 상승되어 스프링(11a)의 반력을 벗어나서 펌프 피스톤(4a)과 부스터 로드(21a)가 보어(12)로 삽입되어 작동실(85a)을 가압되고, Meanwhile, in FIG. 4, the compressed air introduced into the pneumatic passage 9 and the pneumatic passage 9a causes the pump spool 6a to communicate with the pneumatic passage 90a and the pneumatic chamber 55a, thereby to the pneumatic passage 90a. The pressure of the pneumatic chamber 55a is increased by the flow of compressed air, out of reaction force of the spring 11a, and the pump piston 4a and the booster rod 21a are inserted into the bore 12 to pressurize the operating chamber 85a. ,
이때 가압된 작동유는 유압통로(15)를 거쳐 작동유의 압력으로 디컴프레션형 파이럿 첵밸브의 포핏(13, 14)를 개방시켜 유압통로(15a)를 통하여 실린더 작동실(35)로 유입되어, 작동 피스톤(18)과 피스톤 로드(18a) 작동 피스톤(18)과 피스톤 로드(18a)를 부스터 로드(21a)의 변위량(횡단면적X행정)에 해당되는 작동유의 변위력을 발생시킨다.At this time, the pressurized hydraulic oil is introduced into the cylinder operating chamber 35 through the hydraulic passage 15a by opening the poppets 13 and 14 of the decompression type pilot check valve with the pressure of the hydraulic oil through the hydraulic passage 15. Piston 18 and Piston Rod 18a Operating The piston 18 and the piston rod 18a generate displacement force of the working oil corresponding to the displacement amount (cross section area X stroke) of the booster rod 21a.
제 6도는 공압실(55)의 압축공기가 배기통로(70)로 배기되고, 스프링(11)의 반력으로 펌프 피스톤(4)과 부스터 로드(21)가 상승 되어 펌프 피스톤(4)의 상면이 파이로드 스플(5)에 접촉되어 파이로드 스플(5)과 첵(22)의 사이가 벌어져 공압통로(40)와 스플 작동실(75)이 통하기 된다. 6, the compressed air of the pneumatic chamber 55 is exhausted into the exhaust passage 70, and the pump piston 4 and the booster rod 21 are raised by the reaction force of the spring 11, so that the upper surface of the pump piston 4 is The pneumatic passage 40 and the spool working chamber 75 pass through the pyrople splice 5 so as to be spaced between the pyrode splice 5 and the fin 22.
한편 펌프 피스톤(4)이 상승되는 순간에도 펌프 피스톤(4a)는 공압실(55a)의 압축공기에 밀려 부스터 로드(21a)가 작동실(85a)을 가압하여, 이때 가압된 작동유는 유압통로(15)를 거쳐 작동유의 압력으로 디컴프레션형 파이럿 첵밸브의 포핏(13, 14)를 개방시켜 유압통로(15a)를 통하여 실린더 작동실(35)로 유입되고, 작동 피스톤(18)과 피스톤 로드(18a)를 부스터 로드(21a)의 변위량(횡단면적X행정)에 해당되는 작동유의 변위력을 발생시킨다. On the other hand, even when the pump piston 4 is raised, the pump piston 4a is pushed by the compressed air of the pneumatic chamber 55a so that the booster rod 21a pressurizes the operating chamber 85a. 15), the poppets 13 and 14 of the decompression type pilot check valve are opened at the pressure of the hydraulic oil and flow into the cylinder operating chamber 35 through the hydraulic passage 15a, and the operating piston 18 and the piston rod ( 18a) generates displacement force of the hydraulic oil corresponding to the displacement amount (lateral cross-sectional area X stroke) of the booster rod 21a.
이때 펌프 피스톤(4a)가 공압통로(90a)를 지나게 되면 공압실(55a)의 압축공기가 공압통로(30a, 50a) 및 첵밸브(8a)를 통하여 스플 작동실(75a)의 압력을 높여 밸브 스플(6a)를 밀어내어 공압실(55a)와 배기통로(70a)가 통하게 된다.At this time, when the pump piston 4a passes through the pneumatic passage 90a, the compressed air of the pneumatic chamber 55a increases the pressure of the spool operating chamber 75a through the pneumatic passages 30a and 50a and the check valve 8a. By pushing out the spool 6a, the pneumatic chamber 55a and the exhaust passage 70a pass.
제 7도는 제 4도에서와 같이 공압통로(90)을 통하여 공압실(55)로 유입된 압축공기의 공압실(55)의 압력이 상승되어 스프링(11)의 반력을 이겨내어 펌프 피스톤(4)과 부스터 로드(21) 하강 되어 작동실(85)의 작동유에 작용하고, 작동실(85)의 작동유가 첵밸브(7b)을 통하여 실린더 작동실(35)에 유입되어 작동 피스톤(18)과 피스톤 로드(18a)를 부스터 로드(21)의 변위량(횡단면적X행정)에 해당되는 작동유의 변위력을 발생시키며, In FIG. 7, as in FIG. 4, the pressure of the pneumatic chamber 55 of the compressed air introduced into the pneumatic chamber 55 through the pneumatic passage 90 is increased to overcome the reaction force of the spring 11 to thereby pump the piston 4. ) And the booster rod 21 are lowered to act on the operating oil of the operating chamber 85, and the operating oil of the operating chamber 85 flows into the cylinder operating chamber 35 through the check valve 7b to operate the piston 18 and the operating piston 18. The piston rod 18a generates a displacement force of the hydraulic oil corresponding to the displacement amount (cross section area X stroke) of the booster rod 21,
공압실(55a)의 압축공기는 배기통로(70a)를 통하여 배기되고, 펌프 피스톤(4a)는 스프링(11a)의 반력에 의하여 상승 되어 펌프 피스톤(4a)의 상면이 밸브 스플(5a)과 접촉되어 첵(22a)과 밸브 스플(5a)의 밀착이 열리게 되어, 스플 작동실(75a)과 공압통로(40a)가 통하게 된다.The compressed air of the pneumatic chamber 55a is exhausted through the exhaust passage 70a, and the pump piston 4a is lifted by the reaction force of the spring 11a so that the upper surface of the pump piston 4a contacts the valve spool 5a. As a result, the close contact between the fin 22a and the valve spool 5a is opened, and the spool working chamber 75a and the pneumatic passage 40a communicate with each other.
제 8도는 제 5도와 같은 동작이 반복되며, 이때 작동 피스톤(18)과 피스톤 로드(18a)에는 부스터 로드(21, 21a)의 변위량(횡단면적X행정)에 해당되는 작동유의 변위력이 추가로 발생 된다.In FIG. 8, the same operation as in FIG. 5 is repeated. At this time, the working piston 18 and the piston rod 18a additionally have a displacement force of the hydraulic oil corresponding to the displacement amount (cross-sectional area X stroke) of the booster rods 21 and 21a. Is generated.
제 9도는 공압통로(10, 16, 40a, 40)로 압축공기가 공급되어 피스톤 로드(18a)와 작동 피스톤(18)이 후진되는 상태를 나타내며, 이때의 동작은 제 2도와 동일 하다.9 shows a state in which the compressed air is supplied to the pneumatic passages 10, 16, 40a, and 40 so that the piston rod 18a and the actuating piston 18 are reversed, and the operation is the same as in FIG.

Claims (9)

  1. 작동유로 채워진 실린더 작동실(35)과 작동실(85), 저장실(45), 작동실(85a)이 축방향으로 배열되고, 펌프 피스톤(4)은 작동실(85)에 삽입되고, 펌프 피스톤(4a)은 보어(12)를 통하여 작동실(85a)에 삽입되도록 구성되고, 작동 피스톤(18)은 동력 전달을 위하여 실린더 본체(2)의 외부로 돌출된 피스톤 로드(18a)가 배열되고, 또한, 원판 피스톤(19)이 작동 피스톤(18)과 피스톤 로드(18a) 사이에 고정되고, 상기 원판 피스톤(19)은 2개의 공압실(25, 35a)로 분리되고, 이러한 공압실에는 작동 피스톤(18)이 신속하게 행정할 수 있도록 교대로 압축공기가 공급되고, 유압통로(15a, 17) 사이에는 피스톤 로드(16a)와 포핏(13, 14) 및 스프링(17)으로 구성되어 포핏(13, 14)과 포핏(13)이 로직 불록(1)에 밀착되어 기밀이 유지되도록 구성된 디컴프레션형 피이럿 첵밸브가 구성되며, 작동실(85)에 작동유를 공급하는 유압통로(15b, 15c) 사이에는 첵밸브(7)가 구성되어 선택적으로 작동유를 작동실(85)에 공급되고, 공압통로(10, 60)로 압축공기가 공급 되면 공압실(16b, 35a)에 과압이 발생하면 원판 피스톤(19)과 일체화된 작동 피스톤(18)에 의하여 실린더 작동실(35)을 압력이 상승되고, 공압실(16b)의 피스톤 로드(16a)는 스프링(17)의 반력에 관계없이 포핏(14, 13)을 차례로 후진시켜 실린더 작동실(35)의 작동유가 유압통로(15a), 디컴프레션형 파이럿 첵밸브와 유압통로(15)를 통하여 저장실(45)로 유입되어 저장실 피스톤(3)이 스프링(11a)의 반력을 이겨내어 후진 되도록 구성되고, 작동실(35)과 디컴프레션형 파이럿 첵밸브를 통하여 연결되어 있는 저장실(45)이 위치하며, 스프링(11a)에 의하여 상기 저장실(45)에 낮은 압력이 발생 되며, 실린더 작동실(35)의 상부에는 첵밸브(7b)를 통하여 작동실(85)와 스프링(11)에 지지 되는 펌프 피스톤(4)이 삽입되고,The cylinder operating chamber 35, the operating chamber 85, the storage chamber 45, and the operating chamber 85a filled with the hydraulic fluid are arranged in the axial direction, the pump piston 4 is inserted into the operating chamber 85, and the pump piston 4a is configured to be inserted into the operating chamber 85a through the bore 12, the working piston 18 is arranged with a piston rod 18a protruding out of the cylinder body 2 for power transmission, In addition, a disc piston 19 is fixed between the actuating piston 18 and the piston rod 18a, and the disc piston 19 is separated into two pneumatic chambers 25 and 35a, and in this pneumatic chamber an actuating piston. Compressed air is alternately supplied to allow 18 to travel quickly, and between the hydraulic passages 15a and 17 is composed of a piston rod 16a, poppets 13 and 14 and a spring 17 to poppet 13 , 14) and poppet (13) are in close contact with the logic block (1) is composed of a decompression pilot valve check valve is configured to maintain the airtight, A check valve 7 is configured between the hydraulic passages 15b and 15c for supplying the hydraulic oil to selectively supply the hydraulic oil to the operating chamber 85, and to supply the compressed air to the pneumatic passages 10 and 60, thereby providing a pneumatic chamber ( When the overpressure occurs in the 16b, 35a, the pressure is increased in the cylinder operating chamber 35 by the operating piston 18 integrated with the disc piston 19, and the piston rod 16a of the pneumatic chamber 16b is a spring ( Regardless of the reaction force of 17), the poppets 14 and 13 are sequentially retracted so that the hydraulic oil in the cylinder operating chamber 35 passes through the hydraulic passage 15a, the decompression type pilot check valve and the hydraulic passage 15. The storage chamber 45 is constructed so that the storage chamber piston 3 reverses the reaction force of the spring 11a and is connected to the operation chamber 35 through a decompression type pilot valve. Low pressure is generated in the storage chamber 45 by 11a), and the upper portion of the cylinder operating chamber 35 The pump piston (4) supported by the operating chamber (85) and the spring (11) is inserted through the valve (7b),
    이러한 구조의 저장실 압력은 작동 피스톤(18)의 급속 행정시 저장실(45)로 부터 배출된 작동유로 실린더 작동실(35)을 채우기에 충분하고, 저장실 피스톤(3)은 축 방향으로 상하 이동이 가능하고, 펌프 피스톤(4, 4a)의 부스터 로드(21, 21a)도 축 방향으로 이동 가능하게 밀봉되어 있으며, 펌프 피스톤(4, 4a)의 상단은 스프링(11, 11a)의 반력으로 상승시 파이로드 스플(5, 5a)과 접촉하여 첵(22, 22a)과 파이로드 스플(5, 5a) 사이에 틈세가 생기도록 구성되고, 상기 부스터 로드(21, 21a)는 스프링(11, 11a)의 힘에 대항하여 각각 작동실(85, 85a) 쪽으로 하강할 수 있고, 부스터 로드(21a)는 저장실 피스톤(3)을 관통하여 저장실(45)내로 삽입되어 있으며, 부스터 로드(11)는 밀봉된 작동실(85)에 삽입되어 있고, 펌프 피스톤(4, 4a)은 부스터 로드(21, 21a)와 함께, 펌프 피스톤(4, 4a)의 상부에 있는 공압통로(90, 90a)를 통하여 유입되는 압축공기가 밸브 스플(6, 6a)에 제어되어 안내되는 공압실(55, 55a)의 압축공기에 의해 구동되고, 이러한 압축공기의 공급은 공압통로(20, 90, 90a)로 압축공기가 유입되면 스플 작동실(75)의 기존에 있었던 압축공기는 파이로드 스플(5)를 통하여 공압통로(40)로 배기되며, 동시에 실린더 본체(2)의 공압실(35a)의 압축공기가 공압통로(10)로 배기되고, 공압통로(20)으로 유입된 압축공기로 공압실(25)의 압력이 상승되어 작동 피스톤(18)이 급속 행정이 이루어지며, 한편으로 저장실 피스톤(3)은 스프링(11a)의 반력으로 저장실(45)의 작동유를 작동실(85a)로 보내고, 한편으로 공압통로(90)으로 유입된 압축공기는 밸브 스플(6)을 밀어내고 공압실(55)의 공기압을 높여 펌프 피스톤(4)이 하강하며 부스터 로드(21)가 작동실(85)의 작동유를 첵밸브(7b)를 통하여 실린더 작동실(35)로 보내고, 펌프 피스톤(4)이 공압통로(9)를 지나면 공압실(55)의 압축공기가 공압통로(9), 공압통로(9a)로 유입되어 밸브 스플(6a)을 밀어내고 공압실(55a)의 압력이 상승되어 스프링(11a)의 반력을 밀어내고 보어(12)로 삽입되어 작동실(85a)의 작동유를 밀어내면 작동실(85a)의 작동유는 유압통로(15)를 통하여 디컴프레션형 파이럿 첵밸브을 작동유의 압력으로 열려, 유압통로(15a)를 통하여 실린더 작동실(35)로 유입되도록 구성하고, 한편 펌프 피스톤(4)이 공압통로(30)을 지나면 공압실(55)에 있는 압축공기가 공압통로(30, 50)와 첵밸브(8)를 통하여 스플 작동실(75)에 압력을 상승시켜 밸브 스플(6)을 밀어내어 공압통로(90)와 공압실(55)을 차단되고 공압실(55)의 압축공기는 배기통로(70)로 배출되어 펌프 피스톤(4)이 스프링(11)의 반력으로 상승되며, 이때 저장실(45)의 작동유가 유압통로(15b), 첵밸브(7), 유압통로(15c)를 통하여 작동실(85)에 공급되고, 한편 펌프 피스톤(4a)은 계속 하강하여 펌프 피스톤(4)가 후진시에도 실린더 작동실(35)에 계속해서 작동유를 공급하여 작동 피스톤(18)에 작동유의 압력이 연속 작용 되도록 다수의 부스터 펌프로 구성되고, 부스터 로드(21a)가 스프링(11a)의 반력으로 작동실(85a)에서 후진시, 작동실(85a)에 진공 상태가 발생하지 않토록 저장실(45)의 작동유가 유압통로(15d)와 연결된 첵밸브(7a)를 통하여 작동실(85a)로 보충되는 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더.The storage chamber pressure of this structure is sufficient to fill the cylinder operating chamber 35 with the working oil discharged from the storage chamber 45 during the rapid stroke of the operating piston 18, and the storage chamber piston 3 can move up and down in the axial direction. In addition, the booster rods 21 and 21a of the pump pistons 4 and 4a are also sealed to be movable in the axial direction, and the upper end of the pump pistons 4 and 4a is pied when raised by the reaction force of the springs 11 and 11a. A gap is formed between the fins 22, 22a and the pyroples 5, 5a in contact with the rod spools 5, 5a, and the booster rods 21, 21a of the springs 11, 11a. Can be lowered to the operating chambers 85 and 85a respectively against the force, the booster rod 21a is inserted into the storage chamber 45 through the storage chamber piston 3 and the booster rod 11 is sealed It is inserted into the seal 85, and the pump pistons 4 and 4a, together with the booster rods 21 and 21a, are on the top of the pump pistons 4 and 4a. The compressed air flowing in through the pneumatic passages 90 and 90a in the air is driven by the compressed air in the pneumatic chambers 55 and 55a, which are controlled and guided to the valve spools 6 and 6a. When the compressed air flows into the passages 20, 90, and 90a, the compressed air existing in the spool working chamber 75 is exhausted into the pneumatic passage 40 through the pylon rod spool 5, and at the same time the cylinder body 2 The compressed air of the pneumatic chamber 35a of the air is exhausted into the pneumatic passage 10, and the pressure of the pneumatic chamber 25 is increased by the compressed air introduced into the pneumatic passage 20, so that the operating piston 18 is rapidly stroked. On the other hand, the reservoir piston 3 sends the hydraulic oil of the reservoir 45 to the operation chamber 85a by the reaction force of the spring 11a, and the compressed air introduced into the pneumatic passage 90 is the valve spool 6 The pump piston (4) lowers and the booster rod (21) acts as the operating chamber (85). The oil is sent to the cylinder operation chamber 35 through the check valve 7b, and when the pump piston 4 passes the pneumatic passage 9, the compressed air of the pneumatic chamber 55 is pneumatic passage 9, pneumatic passage 9a. ) Flows into the valve spool (6a) and the pressure in the pneumatic chamber (55a) is raised to push the reaction force of the spring (11a) is inserted into the bore (12) to push the hydraulic oil of the operating chamber (85a) operating chamber The hydraulic fluid of 85a is configured to open the decompression type pilot check valve through the hydraulic passage 15 to the pressure of the hydraulic oil, and to flow into the cylinder operating chamber 35 through the hydraulic passage 15a, while the pump piston 4 After passing through the pneumatic passage (30), the compressed air in the pneumatic chamber (55) increases the pressure in the spool operating chamber (75) through the pneumatic passages (30, 50) and the check valve (8) to open the valve spool (6). Pushing out blocks the pneumatic passage 90 and the pneumatic chamber 55, and the compressed air of the pneumatic chamber 55 is discharged to the exhaust passage 70, so that the pump piston 4 is a spring ( 11), the hydraulic fluid of the storage chamber 45 is supplied to the operating chamber 85 through the hydraulic passage 15b, the check valve 7, the hydraulic passage 15c, and the pump piston 4a. Is continuously lowered and consists of a plurality of booster pumps to continuously supply the hydraulic oil to the cylinder operating chamber 35 even when the pump piston 4 is reversed, so that the pressure of the hydraulic oil is continuously acted on the operating piston 18, and the booster rod ( When 21a is retracted from the operation chamber 85a by the reaction force of the spring 11a, the hydraulic valve 7a connected to the hydraulic passage 15d is connected to the hydraulic passage 15d so that no vacuum occurs in the operation chamber 85a. Booster pump device integrated hydraulic booster cylinder, characterized in that the supplementary to the operating chamber (85a) through.
  2. 제 1항에 있어서 스프링(11, 11a)의 반력을 받는 펌프 피스톤(4, 4a)이 후진시 파이로드 스플(5, 5a)에 접촉되고, 펌프 피스톤(4)의 상부에 공압통로(30,50), 첵밸브(8)가 스플 작동실(75)로 통하게 되고, 공압실(55)과 공압통로(90), 배기통로(70)의 연결을 제어하는 밸브 스플(6)이 구성되고, 한편으로 펌프 피스톤(4a)의 상부에 공압통로(30a,50a), 첵밸브(8a)가 스플 작동실(75a)로 통하게 되고, 공압실(55a)과 공압통로(90a), 배기통로(70a)의 연결을 제어하는 밸브 스플(6a)이 구성되어, 공압통로(9), 공압통로(9a)로 통하게 구성된 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더.The pump piston (4, 4a) of the reaction force of the spring (11, 11a) is in contact with the piston rods (5, 5a) at the time of reversing, and the pneumatic passage (30) in the upper portion of the pump piston (4). 50, the check valve 8 is led to the spool operation chamber 75, the valve spool 6 for controlling the connection of the pneumatic chamber 55, the pneumatic passage 90, the exhaust passage 70 is configured, On the other hand, the pneumatic passages 30a and 50a and the check valve 8a are led to the spool operation chamber 75a at the upper portion of the pump piston 4a, and the pneumatic chamber 55a, the pneumatic passage 90a and the exhaust passage 70a are provided. A booster pump device-integrated hydraulic booster cylinder, characterized in that the valve spool (6a) for controlling the connection of the) is configured to pass through the pneumatic passage (9), the pneumatic passage (9a).
  3. 제 2항에 있어서 펌프 피스톤(4)이 임의의 위치에 착설된 공압실(55)의 압축공기가 공압통로(9), 공압통로(9a)로 연결되어 스플 피스톤(6a)에 작용하도록 구성된 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더.3. The compressed air of the pneumatic chamber 55, in which the pump piston 4 is installed at an arbitrary position, is connected to the pneumatic passage 9 and the pneumatic passage 9a, so that the pump piston 4 is configured to act on the spool piston 6a. Hydraulic booster cylinder with integrated booster pump device.
  4. 제 2항에 있어서 스프링(11)의 반력을 받는 펌프 피스톤(4)이 후진시 파이로드 스플(5)에 접촉되고, 펌프 피스톤(4)의 상부에 공압통로(30,50), 첵밸브(8)가 스플 작동실(75)로 통하게 되고, 공압실(55)과 공압통로(90), 배기통로(70)의 연결을 제어하는 밸브 스플(6)이 구성되는 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더.The pump piston (4) under the reaction force of the spring (11) is brought into contact with the piston rod (5) when retracted, and the pneumatic passages (30, 50), the check valve (3) are provided on the upper part of the pump piston (4). A booster pump device, characterized in that 8 is connected to the spool operation chamber 75, and a valve spool 6 for controlling the connection between the pneumatic chamber 55, the pneumatic passage 90 and the exhaust passage 70 is configured. Integral hydraulic booster cylinder.
  5. 제 2항에 있어서 스프링(11a)의 반력을 받는 펌프 피스톤(4a)이 후진시 파이로드 스플(5a)에 접촉되고, 펌프 피스톤(4a)의 상부에 공압통로(30a, 50a), 첵밸브(8a)가 스플 작동실(75a)로 통하게 되고, 공압실(55a)과 공압통로(90a), 배기통로(70a)의 연결을 제어하는 밸브 스플(6a)이 구성되는 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더. 3. The pump piston (4a) according to claim 2, wherein the pump piston (4a) receives a reaction force from the spring (11a) is in contact with the piston rod (5a) at the time of reversing, and the pneumatic passages (30a, 50a) and the check valve are provided on the upper portion of the pump piston (4a). The booster pump device characterized in that 8a) is led to the spool operation chamber 75a, and a valve spool 6a for controlling the connection between the pneumatic chamber 55a, the pneumatic passage 90a, and the exhaust passage 70a is provided. Integral hydraulic booster cylinder.
  6. 제 1항에 있어서, 로직 불록(1)에 단동형 공압실린더(16)와 피스톤 로드(16a), 포핏(14, 13)과 스프링(17)으로 디컴프레션형 파이럿 첵밸브가 구성되고, 디컴프레션형 파이럿 첵밸브는 작동실(85a), 유압통로(15)와 작동실(85), 유압통로(15a)로 연결되는 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더.The decompression type pilot check valve according to claim 1, wherein a decompression type pilot check valve is formed in the logic block (1) with a single-acting pneumatic cylinder (16), a piston rod (16a), poppets (14, 13), and a spring (17). Type pilot check valve is a booster pump device integrated hydraulic booster cylinder, characterized in that connected to the operating chamber (85a), the hydraulic passage (15) and the operating chamber (85), the hydraulic passage (15a).
  7. 제 1항에 있어서, 작동실(85)에 첵밸브(7b), 작동실(85a)에 첵밸브(7a)와 보어(12)로 구성되고, 저장실(45)이 유압통로(15b), 첵밸브(7), 유압통로(15c)로 작동실(85)에 연결되는 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더. 2. The hydraulic chamber (15) of claim 1, wherein the hydraulic valve (15b), the hydraulic valve (15b), the hydraulic valve (15b) and the bore (12). Booster pump device integrated hydraulic booster cylinder, characterized in that connected to the operating chamber 85 by the valve (7), the hydraulic passage (15c).
  8. 제 1항에 있어서, 압축공기가 공압통로(10, 40a, 40)로 연결된 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더. 2. The booster pump integrated hydraulic booster cylinder according to claim 1, wherein the compressed air is connected to the pneumatic passages (10, 40a, 40).
  9. 제 1항에 있어서, 압축공기가 공압통로(20, 90a, 90)로 연결된 것을 특징으로 하는 부스터펌프장치 일체형 유압식 증압실린더.2. The booster pump integrated hydraulic booster cylinder according to claim 1, wherein the compressed air is connected to the pneumatic passages (20, 90a, 90).
PCT/KR2014/001746 2013-03-04 2014-03-04 Hydraulic pressure booster cylinder integrated with booster pump device WO2014137124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130022655A KR101655420B1 (en) 2013-03-04 2013-03-04 Hydraulic Power Cylinder with Booser Pump Equipment
KR10-2013-0022655 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014137124A1 true WO2014137124A1 (en) 2014-09-12

Family

ID=51491590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001746 WO2014137124A1 (en) 2013-03-04 2014-03-04 Hydraulic pressure booster cylinder integrated with booster pump device

Country Status (2)

Country Link
KR (1) KR101655420B1 (en)
WO (1) WO2014137124A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443461A (en) * 2016-01-05 2016-03-30 谭伟雄 Pneumatic-hydraulic pressure cylinder with multiple times of prepressing and pressure boosting and working method thereof
CN105443371A (en) * 2015-12-02 2016-03-30 苏州格莱富机械科技有限公司 Pneumatic pressure boosting device
KR20160115510A (en) * 2015-03-27 2016-10-06 주식회사 하이시스 Hydraulic cylinder integrally incoporating buster pump
CN107725503A (en) * 2017-04-28 2018-02-23 深圳市畅安达精密工业有限公司 A kind of oil cylinder structure of hydraulic and hydraulic system with spring assist
CN108006005A (en) * 2018-01-30 2018-05-08 东莞市巨力气动液压设备有限公司 A kind of high pressure forced oil device and oil gas isolated form pneumohydraulic pressure-cylinder
CN108730744A (en) * 2018-06-14 2018-11-02 宁波威曼智能科技有限公司 A kind of cylinder barrel inner wall oil dispersing device
CN109854482A (en) * 2019-01-18 2019-06-07 宁波市爱托普气动液压有限公司 A kind of gas-liquid booster pump
CN113605857A (en) * 2021-08-23 2021-11-05 瀚中(南京)科技有限公司 High-low pressure pilot valve and high-low pressure emergency cut-off device for pipeline
CN114060349A (en) * 2021-12-02 2022-02-18 杭州富阳诺德液压技术有限公司 Portable oil pipe blockage breaking device and working method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947997B2 (en) * 2018-04-13 2021-03-16 The Boeing Company Aircraft hydraulic system with a dual spool valve and methods of use
CN108679007B (en) * 2018-05-18 2019-11-08 安徽绿动能源有限公司 A kind of compact single-acting hydraulic booster

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001069088A1 (en) * 2000-03-15 2001-09-20 Jae Seak Ju Hydraulic pressure booster cylinder
JP2003013904A (en) * 2001-06-27 2003-01-15 Karasawa Fine Ltd Hydraulic intensifier
KR20050045086A (en) * 2003-11-10 2005-05-17 현대자동차주식회사 Pressure intensifying cylinder
KR20110070951A (en) * 2009-12-19 2011-06-27 주재석 Fluid pressure cylinder with booster pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530717B1 (en) * 2002-03-11 2005-11-28 주재석 Pressor cylinder
KR100704958B1 (en) * 2006-04-12 2007-04-09 주영돈 Hydraulic pressure transformers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001069088A1 (en) * 2000-03-15 2001-09-20 Jae Seak Ju Hydraulic pressure booster cylinder
JP2003013904A (en) * 2001-06-27 2003-01-15 Karasawa Fine Ltd Hydraulic intensifier
KR20050045086A (en) * 2003-11-10 2005-05-17 현대자동차주식회사 Pressure intensifying cylinder
KR20110070951A (en) * 2009-12-19 2011-06-27 주재석 Fluid pressure cylinder with booster pump

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511760A (en) * 2015-03-27 2018-04-26 クァク、チャン スン Hydraulic cylinder with integrated booster pump
KR20160115510A (en) * 2015-03-27 2016-10-06 주식회사 하이시스 Hydraulic cylinder integrally incoporating buster pump
CN107660258B (en) * 2015-03-27 2019-08-09 郭仓淳 Booster pump integrated formula hydraulic cylinder
WO2016159482A1 (en) * 2015-03-27 2016-10-06 주식회사 하이시스 Hydraulic cylinder integrally comprising booster pump
KR101712262B1 (en) 2015-03-27 2017-03-03 곽창순 Hydraulic cylinder integrally incoporating buster pump
CN107660258A (en) * 2015-03-27 2018-02-02 郭仓淳 Booster pump integrated formula hydraulic cylinder
CN105443371A (en) * 2015-12-02 2016-03-30 苏州格莱富机械科技有限公司 Pneumatic pressure boosting device
CN105443461B (en) * 2016-01-05 2018-03-13 谭伟雄 A kind of multiple-prepressing, the pneumohydraulic pressure-cylinder of supercharging and its method of work
CN105443461A (en) * 2016-01-05 2016-03-30 谭伟雄 Pneumatic-hydraulic pressure cylinder with multiple times of prepressing and pressure boosting and working method thereof
CN107725503A (en) * 2017-04-28 2018-02-23 深圳市畅安达精密工业有限公司 A kind of oil cylinder structure of hydraulic and hydraulic system with spring assist
CN107725503B (en) * 2017-04-28 2024-02-02 深圳甄创科技有限公司 Hydraulic cylinder structure with spring assistance and hydraulic system
CN108006005A (en) * 2018-01-30 2018-05-08 东莞市巨力气动液压设备有限公司 A kind of high pressure forced oil device and oil gas isolated form pneumohydraulic pressure-cylinder
CN108006005B (en) * 2018-01-30 2024-01-12 江西意哥尔科技有限公司 High-pressure oil device and oil-gas isolated gas-liquid booster cylinder
CN108730744A (en) * 2018-06-14 2018-11-02 宁波威曼智能科技有限公司 A kind of cylinder barrel inner wall oil dispersing device
CN109854482B (en) * 2019-01-18 2024-03-08 宁波市爱托普气动液压有限公司 Gas-liquid booster pump
CN109854482A (en) * 2019-01-18 2019-06-07 宁波市爱托普气动液压有限公司 A kind of gas-liquid booster pump
CN113605857A (en) * 2021-08-23 2021-11-05 瀚中(南京)科技有限公司 High-low pressure pilot valve and high-low pressure emergency cut-off device for pipeline
CN114060349A (en) * 2021-12-02 2022-02-18 杭州富阳诺德液压技术有限公司 Portable oil pipe blockage breaking device and working method thereof

Also Published As

Publication number Publication date
KR101655420B1 (en) 2016-09-22
KR20140108860A (en) 2014-09-15

Similar Documents

Publication Publication Date Title
WO2014137124A1 (en) Hydraulic pressure booster cylinder integrated with booster pump device
US5638676A (en) Fluid power cylinder
DE602005005562D1 (en) Hydraulic actuator of a parking brake and method of operation of such a device
JP6628909B1 (en) High efficiency and low wear return cylinder for hydraulic press and method of operation thereof
WO2013058602A2 (en) Hydraulic pressure booster cylinder
CN113819106B (en) Mechanical automatic reversing valve and use method thereof
US3502001A (en) Fluid operated cylinder
CN103867524B (en) A kind of double-action two-stage hydraulic cylinder
CN108612709B (en) A kind of reciprocating air compressor of hydraulic-driven
EP0428406A1 (en) Reciprocating actuator
WO2012144691A1 (en) Double-acting multi-stage pneumatic cylinder
WO2016159482A1 (en) Hydraulic cylinder integrally comprising booster pump
KR100296178B1 (en) Hydraulic cylinder
CN215058516U (en) Reciprocating automatic reversing supercharger
JPH0417284B2 (en)
JPH09158901A (en) In-line pressure intensifier
US2697985A (en) Well pump and operating mechanism therefor
CN210003589U (en) high-flow constant-pressure-difference automatic conversion hydraulic valve bank
CN113911928B (en) Hydraulic system of luffing mechanism of crank arm type overhead working truck
GB2311331A (en) Hydraulic ram booster
CN102889261B (en) Balancing valve, hydraulic cylinder telescoping control loop and hydraulic device
CN219950278U (en) Hydraulic system for controlling sequential expansion
KR20030073462A (en) Pressor cylinder
CN108869464B (en) Hydraulic device, hot chamber die casting machine and use method of hydraulic device
SU1569446A2 (en) Hydraulic drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.12.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 14759815

Country of ref document: EP

Kind code of ref document: A1