WO2014136269A1 - Remaining life estimation device - Google Patents

Remaining life estimation device Download PDF

Info

Publication number
WO2014136269A1
WO2014136269A1 PCT/JP2013/056518 JP2013056518W WO2014136269A1 WO 2014136269 A1 WO2014136269 A1 WO 2014136269A1 JP 2013056518 W JP2013056518 W JP 2013056518W WO 2014136269 A1 WO2014136269 A1 WO 2014136269A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
remaining life
pipe
rod
measured
Prior art date
Application number
PCT/JP2013/056518
Other languages
French (fr)
Japanese (ja)
Inventor
田中 誠
秀雄 石丸
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2013/056518 priority Critical patent/WO2014136269A1/en
Priority to JP2013530471A priority patent/JP5426055B1/en
Publication of WO2014136269A1 publication Critical patent/WO2014136269A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance

Definitions

  • the present invention relates to a remaining life estimation apparatus.
  • a strain measuring apparatus for estimating the remaining life of a device under test for example, Patent Document 1.
  • the amount of strain of the object to be measured is measured based on the capacitance value determined according to the length of the rod-shaped electrode inserted into the cylindrical electrode.
  • the value of the capacitance in this strain measuring device decreases substantially linearly as the amount of strain of the object to be measured increases. For this reason, when the amount of strain of the object to be measured is relatively small, the measurement accuracy of the amount of distortion may be reduced, and the estimation accuracy of the remaining life of the object to be measured may be decreased.
  • the main present invention that solves the above-described problems includes a first electrode body that has a cylindrical electrode and is attached to the object to be measured, and a rod-shaped electrode that is inserted into the cylindrical electrode, and the object to be measured
  • the remaining life is due to the capacitance value determined according to the length of the second electrode body attached to the cylindrical electrode and the length of the rod-shaped electrode inserted into the cylindrical electrode being changed due to distortion of the object to be measured.
  • the tubular electrode and the rod-like electrode As the length of the rod-like electrode inserted into the tubular electrode becomes shorter, the tubular electrode and the rod-like electrode It is a remaining life estimation apparatus characterized by having a truncated cone shape so that the area facing the rod-shaped electrode is reduced and the distance between the cylindrical electrode and the rod-shaped electrode is increased.
  • FIG. 1 is a perspective view showing a part of the remaining life diagnosis apparatus in the present embodiment.
  • the measurement cables 4A and 4B (FIG. 3) are omitted for convenience of explanation.
  • the remaining life diagnosis apparatus 900 (remaining life estimation apparatus) is an apparatus for diagnosing (estimating) the remaining life of boilers, turbines, pipes, etc. provided in, for example, a thermal power plant.
  • the remaining life diagnosis apparatus 900 diagnoses the remaining life of a metal pipe 400 (measurement object) having a relatively high temperature of, for example, 600 ° C. or higher. The remaining life of the pipe 400 and the pipe 400 will be described later.
  • the remaining life diagnosis apparatus 900 includes a first measurement apparatus 100 (first electrode body), a second measurement apparatus 200 (second electrode body), and a diagnosis apparatus 9 (FIG. 9).
  • the Z axis is an axis along the height direction (vertical direction) where the first measuring device 100 and the second measuring device 200 are erected, and + Z is the first measuring device 100 from the pipe 400.
  • Z indicates the upward direction toward the second measuring device 200 (the direction away from the pipe 400 in the vertical direction), and ⁇ Z indicates the downward direction from the first measuring apparatus 100 and the second measuring apparatus 200 toward the pipe 400 (the pipe in the vertical direction). (Direction approaching 400).
  • the X axis is an axis along the direction in which the first measuring device 100 and the second measuring device 200 are adjacent to each other, + X indicates the direction from the first measuring device 100 to the second measuring device 200, and ⁇ X is The direction from the second measuring device 200 toward the first measuring device 100 is indicated.
  • the Y axis is an axis orthogonal to the X axis and the Z axis, + Y indicates the direction from one side surface to the other side surface of the first measuring device 100, and -Y indicates the first measuring device. The direction from the other side surface to the one side surface in 100 is shown.
  • the first measuring device 100 and the second measuring device 200 measure the strain amount of the measurement target portion 403 in the metal pipe 400
  • the first measurement device 100 and the second measurement device 200 are arranged on both sides of the measurement target portion 403 in the longitudinal direction (X axis) of the pipe 400. It is a device provided.
  • the first measuring device 100 and the second measuring device 200 function as sensors for measuring the amount of strain in the longitudinal direction of the pipe 400 in the measurement target portion 403.
  • the first measuring device 100 and the second measuring device 200 will be described later.
  • Diagnostic device 9 is a device that estimates the remaining life of piping 400. The diagnostic device 9 will be described later.
  • the pipe 400 is a metal pipe that is provided in a thermal power plant and has a relatively high temperature of, for example, 600 ° C. or higher.
  • the pipe 400 is formed by welding the first pipe 401 and the second pipe 402 in the longitudinal direction (X axis) of the pipe 400.
  • the measurement target portion 403 which is a welded portion of the first pipe 401 and the second pipe 402, may be distorted due to, for example, aging due to creep or the like.
  • a crack may occur depending on the amount of distortion of the measurement target portion 403.
  • FIG. 2 is a diagram showing the relationship between the amount of distortion and the lifetime consumption rate in the present embodiment.
  • the vertical axis in FIG. 2 indicates the strain amount of the pipe 400.
  • the horizontal axis in FIG. 2 indicates the lifetime consumption rate of the pipe 400.
  • FIG. 2 is obtained based on, for example, experiments or simulations.
  • the strain amount of the pipe 400 is, for example, the amount of displacement of the pipe 400 according to the deformation of the pipe 400.
  • the strain amount of the pipe 400 is a displacement amount in the longitudinal direction (X axis) of the pipe 400.
  • Lifetime consumption rate of piping The lifetime consumption rate of the pipe 400 indicates a ratio based on an elapsed time (elapsed period) from when the pipe 400 is provided.
  • the lifetime consumption rate of the pipe 400 indicates the ratio of the elapsed period from the time when the pipe 400 is provided to the present time with respect to the lifetime of the pipe 400.
  • the service life of the pipe 400 is a period from when the pipe 400 is provided to when the pipe 400 is destroyed due to deterioration over time due to creep or the like.
  • the destruction of the pipe 400 means that the strain amount of the pipe 400 becomes larger than a predetermined amount, for example, the pipe 400 is cracked and the pipe 400 is broken.
  • the fact that the lifetime consumption rate of the pipe 400 is 0 (%) indicates that the elapsed time from when the pipe 400 is provided is 0 hour. That is, the fact that the lifetime consumption rate of the pipe 400 is 0 (%) indicates the time when the pipe 400 is provided.
  • the fact that the lifetime consumption rate of the pipe 400 is 100 (%) indicates that time has passed by the life of the pipe 400 since the pipe 400 was provided. That is, that the lifetime consumption rate of the pipe 400 is 100 (%) indicates that the pipe 400 is cracked and the pipe 400 is broken.
  • the strain amount of the pipe 400 is substantially zero.
  • the strain amount of the pipe 400 varies from approximately 0 to Za2. In the middle of the life, the strain amount of the pipe 400 increases substantially linearly as the life consumption rate of the pipe 400 increases.
  • the strain amount of the pipe 400 varies from approximately Za2 to Za3.
  • the strain amount of the pipe 400 increases nonlinearly as the life consumption rate of the pipe 400 increases.
  • the variation range of the distortion amount with respect to the predetermined lifetime consumption rate range at the end of the lifetime is larger than the variation range of the strain amount with respect to the predetermined lifetime consumption rate range in the middle of the lifetime.
  • the fluctuation range of the strain amount of the pipe 400 at a predetermined elapsed time (for example, one year) at the end of the life is the fluctuation range of the strain amount of the pipe 400 at a predetermined elapsed time (for example, one year) at the middle of the life. Will be bigger.
  • the fluctuation range of the strain amount of the pipe 400 at a predetermined elapsed time (for example, one year) at the beginning of the life is the fluctuation width of the strain amount of the pipe 400 at a predetermined elapsed time (for example, one year) at the middle of the lifetime. Will be smaller.
  • the remaining life of the pipe 400 is a period from the present time until the life consumption rate of the pipe 400 reaches 100 (%).
  • the remaining life of the pipe 400 may be the remaining life consumption rate from the current time until the life consumption rate of the pipe 400 reaches 100 (%).
  • FIG. 3 is a cross-sectional view showing a part of the remaining life diagnosis apparatus in the present embodiment.
  • FIG. 3 shows the first measuring device 100 and the second measuring device 200 in a state viewed from the XZ plane passing through the approximate center of the first measuring device 100 in FIG. 1 toward the + Y direction.
  • FIG. 4 is a perspective view showing the first electrode and the second electrode in the present embodiment.
  • the inside of the 1st electrode 14 is a state which cannot be seen, it is shown with the dotted line for convenience of explanation.
  • the first measuring apparatus 100 is fixed to the first pipe 401 by welding, for example.
  • the first measuring apparatus 100 includes a housing 11 (first case), legs 12 (first legs), a fixing member 13 (first support member), and a first electrode 14 (tubular electrode).
  • the housing 11 is, for example, a metal housing for holding the first electrode 14 in a state where the first electrode 14 is accommodated.
  • the outer shape of the housing 11 has, for example, a substantially rectangular column shape.
  • the casing 11 has a hollow structure so that the first electrode 14 can be accommodated therein.
  • the inner diameter of the housing 11 is made larger than the outer diameter of the first electrode 14 so that the first electrode 14 can be accommodated inside the housing 11.
  • the casing 11 is welded to the first pipe 401 via the metal legs 12.
  • the leg 12 protrudes from the housing 11 toward the first piping 401 between the first piping 401 and the housing 11 and is fixed to the first piping 401.
  • the fixing member 13 is an insulating member such as ceramics for fixing the first electrode 14 inside the housing 11.
  • the fixing member 13 supports the first electrode 14 so that the first electrode 14 does not contact the housing 11 inside the housing 11.
  • the first electrode 14 is a metal member for forming the capacitor Ca (FIG. 8) together with the second electrode 24 (rod-like electrode). That is, the first electrode 14 functions as one of the two electrodes in the capacitor Ca.
  • the first electrode 14 extends in a rod shape along the longitudinal direction (X axis) of the pipe 400.
  • the external shape of the 1st electrode 14 exhibits elongate cylindrical shape, for example.
  • the 1st electrode 14 is provided with the insertion hole 14a so that the 2nd electrode 24 can be inserted in the inside so that advancement / retraction is possible, and exhibits a hollow structure. That is, the first electrode 14 has a cylindrical shape.
  • the capacitance value of the capacitor Ca with respect to the distance G ⁇ b> 1 between the first measuring device 100 and the second measuring device 200 in the longitudinal direction of the pipe 400 is nonlinear depending on the value of the distance G ⁇ b> 1.
  • the shape of the frustoconical shape is changed so as to change. That is, the inside of the first electrode 14 has a truncated cone shape in which the inner diameter of the first electrode 14 increases from the first measuring device 100 side ( ⁇ X) toward the second measuring device 200 side (+ X). Yes.
  • Second measuring device The second measuring device 200 is fixed to the second pipe 402 by, for example, welding.
  • the second measuring apparatus 200 includes a casing 21 (second case), legs 22 (second legs), a fixing member 23 (second support member), and a second electrode 24.
  • the housing 21 is, for example, a metal housing for holding the second electrode 24 in a state where the second electrode 24 is accommodated.
  • the outer shape of the housing 21 has, for example, a substantially rectangular column shape.
  • the casing 21 has a hollow structure so that the second electrode 24 can be accommodated therein.
  • the inner diameter of the housing 21 is larger than the outer diameter of the second electrode 24 so that the second electrode 24 can be accommodated inside the housing 21.
  • the casing 21 is welded to the second pipe 402 through metal legs 22.
  • the leg 22 protrudes from the housing 21 toward the second piping 402 between the second piping 402 and the housing 21 and is fixed to the second piping 402.
  • the fixing member 23 is an insulating member such as ceramics for fixing the second electrode 24 inside the housing 21.
  • the fixing member 23 supports the second electrode 24 so that the second electrode 24 does not contact the casing 21 inside the casing 21.
  • the second electrode 24 is a metal member for forming the capacitor Ca (FIG. 8) together with the first electrode 14. That is, the second electrode 24 functions as the other electrode of the two electrodes in the capacitor Ca.
  • the second electrode 14 extends in a rod shape along the longitudinal direction (X axis) of the pipe 400.
  • the external shape of the 2nd electrode 14 exhibits elongate truncated cone shape, for example. That is, the second electrode 24 has a truncated cone shape such that the outer diameter of the second electrode 24 increases from the first measuring device 100 side ( ⁇ X) toward the second measuring device 200 side (+ X). .
  • the inside of the first electrode 14 and the second electrode 24 are arranged such that the surface of the first electrode 14 facing the second electrode 24 and the surface of the second electrode 24 facing the first electrode 14 are substantially parallel to each other. It has a truncated cone shape.
  • the end 24 a of the second electrode 24 is inserted into the insertion hole 14 a of the first electrode 14.
  • the second electrode 24 is inserted into the insertion hole 14 a so as not to contact the first electrode 14.
  • the outer surface of the end 24 a (hereinafter also referred to as “insertion portion of the second electrode 24”) inserted into the first electrode 14 in the second electrode 24 is the first electrode 14 in the insertion hole 14 a. It will face the inner surface of the.
  • the insertion portion of the second electrode 24 functions as the other electrode of the capacitor Ca, and a part of the first electrode 14 facing the insertion portion of the second electrode 24 (hereinafter referred to as “opposing portion of the first electrode 14”). Will also function as one electrode of the capacitor Ca.
  • the capacitance value of the capacitor Ca includes the area of the insertion portion of the second electrode 24, the area of the facing portion of the first electrode 14, and the second electrode in the direction in which the second electrode 24 and the first electrode 14 face each other. It is determined according to the distance from 24 to the first electrode 14 (for example, distances D1 and D2 in FIG. 5). Therefore, the value of the capacitance of the capacitor Ca is determined according to the distance G1 between the first measuring device 100 and the second measuring device 200 in the longitudinal direction of the pipe 400.
  • FIG. 5 is a cross-sectional view showing the first electrode and the second electrode in the present embodiment.
  • 5 shows the first electrode 14 and the second electrode 24 in FIG. A part of the second electrode 24 is omitted for convenience of explanation.
  • the second electrode 24 provided at the first position is indicated by a solid line for convenience of explanation, and the second electrode 24 provided at the second position is indicated by a dotted line for convenience of explanation. It is shown.
  • the first position and the second position are relative positions of the second electrode 24 with respect to the first electrode 14, which are determined based on the strain amount of the pipe 400.
  • the remaining life of the pipe 400 (lifetime consumption rate of the pipe 400) is associated with the strain amount of the pipe 400 as described above.
  • the value of the capacitance of the capacitor Ca is determined according to the distance G1 between the first measuring device 100 and the second measuring device 200 in the longitudinal direction of the pipe 400.
  • the distance G1 is determined according to the strain amount of the pipe 400. Therefore, the remaining life of the pipe 400 can be estimated based on the value of the capacitance of the capacitor Ca.
  • the value of the capacitance of the capacitor Ca is determined according to the relative position of the second electrode 24 with respect to the first electrode 14.
  • the capacitance value Ca2 of the capacitor Ca will be described.
  • the first position is, for example, a substantially central position inside the first electrode 14 in the X axis and the Y axis.
  • the second position is, for example, a position substantially at the center of the first electrode 14 in the X axis and the Y axis, and a position moved by ⁇ x to the + X side from the first position in the longitudinal direction of the pipe 400 (X axis).
  • the inside of the first electrode 14 and the second electrode have a tapered shape such that the inner surface 141 of the first electrode 14 and the outer surface 241 of the second electrode are parallel to each other. That is, the inclination angle ⁇ 1 of the inner surface 141 of the first electrode 14 with respect to the longitudinal direction of the pipe 400 and the inclination angle ⁇ 2 of the outer surface 241 of the second electrode 24 with respect to the longitudinal direction of the pipe 400 are similar to each other.
  • the area of the inner surface 141 in the facing portion of the first electrode 14 and the area of the outer surface 241 in the insertion portion of the second electrode 24 are the same for convenience of explanation.
  • the capacitance value Ca1 of the capacitor Ca when the second electrode 24 is provided at the first position is as shown in the following Equation 1.
  • Equation 1 S indicates the area of the inner surface 141 in the facing portion of the first electrode 14 and the area of the outer surface 241 in the insertion portion of the second electrode 24.
  • represents the dielectric constant.
  • D1 indicates a distance between the outer surface 241 and the inner surface 141 in a direction orthogonal to the outer surface 241 and the facing surface 141.
  • the second electrode 24 is provided at the second position (dotted line in FIG. 5). It will be.
  • the capacitance value Ca2 of the capacitor Ca at this time is as shown in the following equation 2.
  • Equation 2 the area of the inner surface 141 at the portion facing the first electrode 14 and the area of the outer surface 241 at the insertion portion of the second electrode 24 are approximately shown as S (1 ⁇ x / L1). Has been. Moreover, in Formula 2, it is shown that the distance between the outer surface 241 and the inner surface 141 is D1 + ⁇ x * sin ( ⁇ 2). That is, as the length of the second electrode 24 inserted into the first electrode 14 becomes shorter, the facing area between the first electrode 14 and the second electrode 24 becomes smaller and the first electrode 14 and the second electrode 24 The distance between is longer.
  • Expressions 1 and 2 indicate that the capacitance value of the capacitor Ca with respect to the moving distance of the second electrode 24 changes nonlinearly. That is, when the second electrode moves from the first position to the second position, the area of the inner surface 141 in the portion facing the first electrode 14 and the area of the outer surface 241 in the insertion portion of the second electrode 24 are reduced. It is shown that the distance to the inner surface 141 increases. Further, it is shown that the capacitance value of the capacitor Ca is determined according to the inclination angle ⁇ 2 ( ⁇ 1).
  • FIG. 6 is a diagram illustrating the relationship between the capacitance of the capacitor and the strain amount of the piping in the present embodiment.
  • shaft of FIG. 6 has shown the value of the electrostatic capacitance of the capacitor
  • the horizontal axis in FIG. 6 indicates the amount of distortion of the pipe 400.
  • the strain amount Z1 of the pipe 400 is the strain amount of the pipe 400 in the middle of the life shown in FIG. That is, the strain amount Z1 is greater than 0 (FIG. 2) and less than or equal to the strain amount Za2.
  • the strain amounts Z2 and Z3 of the pipe 400 are strain amounts of the pipe 400 at the end of the life shown in FIG. That is, the strain amounts Z2 and Z3 are larger than the strain amount Za2 (FIG. 2) and less than or equal to the strain amount Za3. Further, it is assumed that the variation range Z11 of the strain amount from 0 to the strain amount Z1 and the variation range Z21 of the strain amount from the strain amount Z2 to the strain amount Z3 are similar to each other. FIG. 6 is obtained based on, for example, experiments or simulations.
  • the straight line 71 indicates, for example, the value of the capacitance of the capacitor Ca with respect to the strain amount of the pipe 400 when the inclination angle ⁇ 2 ( ⁇ 1) is 0 degree. That is, the straight line 71 indicates the value of the capacitance of the capacitor Ca when the inside of the first electrode 14 and the second electrode 24 are not tapered but have, for example, a cylindrical shape. Since the tilt angle ⁇ 1 and the tilt angle ⁇ 2 are similar to each other, only the tilt angle ⁇ 2 will be described, and the description of the angle of the tilt angle ⁇ 1 will be omitted.
  • a curve 72 indicates, for example, the value of the capacitance of the capacitor Ca with respect to the strain amount of the pipe 400 when the inclination angle ⁇ 2 is a predetermined angle (for example, an angle larger than 0 degree and smaller than 90 degrees).
  • the value of the capacitance of the capacitor Ca is determined according to the amount of strain of the pipe 400 and the inclination angle ⁇ 2.
  • the capacitance variation width C21 with respect to the strain amount variation width Z11 and the capacitance variation width C22 with respect to the strain amount width Z21 are similar to each other.
  • the capacitance fluctuation range (for example, C21) with respect to the predetermined fluctuation range of the strain amount at the middle of the life and the capacitance fluctuation range (for example, C22) with respect to the predetermined fluctuation range of the strain amount at the end of the life are mutually
  • the fluctuation range is the same.
  • the capacitance fluctuation range (for example, C11) with respect to the predetermined fluctuation range of the strain amount at the middle of the life is larger than the capacitance fluctuation range (for example, C12) with respect to the predetermined fluctuation range of the strain amount at the end of the life.
  • FIG. 7 is a diagram illustrating the relationship between the lifetime consumption rate of the pipe and the capacitance of the capacitor in the present embodiment.
  • shaft of FIG. 7 has shown the value of the electrostatic capacitance of the capacitor
  • the horizontal axis in FIG. 7 indicates the lifetime consumption rate of the pipe 400.
  • a curve 711 indicates the value of the capacitance of the capacitor Ca with respect to the lifetime consumption rate of the pipe 400 when the inclination angle ⁇ 2 is 0 degree, for example.
  • the capacitances of the capacitors Ca with respect to the lifetime consumption rates 0 (%) and Ta3 (%) of the pipe 400 are the capacitances C1 and C8.
  • the lifetime consumption rate Ta3 indicates the lifetime consumption rate in the middle of the lifetime. That is, the lifetime consumption rate Ta3 is a value between the lifetime consumption rate Ta1 and the lifetime consumption rate Ta2. Further, the capacitance C8 is a value smaller than the capacitance C1.
  • the curve 721 indicates the value of the capacitance of the capacitor Ca with respect to the life consumption rate of the pipe 400 when the inclination angle ⁇ 2 is a predetermined angle (for example, 40 degrees), for example.
  • the capacitances of the capacitors Ca with respect to the lifetime consumption rates 0 (%) and Ta3 (%) of the pipe 400 are the capacitances C1 and C9.
  • the capacitance C9 is a value smaller than the capacitance C8 and larger than 0.
  • the capacitance fluctuation range C32 (curve 721) until the lifetime consumption rate becomes 0 (%) to Ta3 (%) is the time until the lifetime consumption rate becomes 0 (%) to Ta3 (%). It becomes larger than the fluctuation range C31 (curve 711) of the capacitance. That is, when the inclination angle ⁇ 2 is set to a predetermined angle (for example, 40 degrees), the fluctuation range of the capacitance value with respect to the fluctuation range of the lifetime consumption rate in the middle of the lifetime becomes relatively large. That is, it is possible to improve the estimation accuracy of the remaining life (lifetime consumption rate) of the pipe 400 based on the capacitance value of the capacitor Ca in the middle of the life.
  • a predetermined angle for example, 40 degrees
  • FIG. 8 is a circuit diagram showing an equivalent circuit of the remaining life diagnosis apparatus in the present embodiment.
  • the capacitor Ca is a capacitor formed by the first electrode 14 and the second electrode 24, for example.
  • the diagnostic device 9 has a first terminal 901 and a second terminal 902.
  • the first terminal 901 is, for example, a terminal for applying an alternating voltage.
  • the first terminal 901 also functions as a terminal for applying (outputting) a current flowing through the conductive wire 41A based on the capacitance of the capacitor Ca, for example.
  • the second terminal 902 is, for example, a terminal for detecting a current that has passed through the capacitor Ca by an applied voltage.
  • the second terminal 902 is, for example, a terminal for applying an AC voltage
  • the first terminal 901 is a terminal for detecting a current that has passed through the capacitor Ca by, for example, the applied voltage. It is good also as being.
  • the diagnostic device 9 is connected to the first electrode 14 and the second electrode 24 via the measurement cables 4A and 4B (FIG. 3) in order to measure the capacitance of the capacitor Ca. Specifically, the first terminal 901 of the diagnostic device 9 is connected to the first electrode 14 via the conductive wire 41A of the measurement cable 4A. The second terminal 902 of the diagnostic device 9 is connected to the second electrode 24 via the conductive wire 41B of the measurement cable 4B.
  • the measurement cables 4A and 4B are, for example, coaxial cables.
  • the conductive wires 41A and 41B indicate the inner conductors of the measurement cables 4A and 4B, respectively, and the conductive wires 42A and 42B indicate the outer conductors of the measurement cables 4A and 4B, respectively.
  • one end of each of the conductive wires 42A and 42B is connected to the casings 11 and 21 relatively firmly, for example, but in FIG. 3, it is connected at one point for convenience of explanation. It is shown.
  • FIG. 9 is a block diagram illustrating functions of the diagnostic device according to the present embodiment.
  • the diagnostic device 9 is a device that estimates the remaining life of the pipe 400 based on the capacitance value of the capacitor Ca.
  • the diagnostic device 9 includes a capacitance measurement unit 91, a strain detection unit 92, a remaining life diagnosis unit 93 (estimation device), a storage unit 94 (storage device), and a display unit 95.
  • the capacitance measuring unit 91 measures the capacitance of the capacitor Ca formed by the first electrode 14 and the second electrode 24. For example, the capacitance measuring unit 91 applies (outputs) an AC voltage from one of the first terminal 901 and the second terminal 902, and when the voltage is output, the capacitor is connected via the conductive lines 41A and 42A. An alternating current passing through Ca (hereinafter also referred to as “detection current”) is detected by either the first terminal 901 or the second terminal 902. For example, the capacitance measuring unit 91 calculates the capacitance of the capacitor Ca based on the value of the applied (output) AC voltage and the value of the detected current.
  • the strain detection unit 92 calculates the strain amount of the measurement target portion 403 based on the measurement result of the capacitance measurement unit 91. For example, the strain detection unit 92 performs the first time based on the value of the capacitance of the capacitor Ca at the first time and the value of the capacitance of the capacitor Ca at the second time after the first time. The distortion amount of the measurement target portion 403 in a predetermined time (predetermined period) from the first time to the second time is calculated.
  • the value of the capacitance of the capacitor Ca is determined according to the distance G1 (FIG. 3) between the first measuring device 100 and the second measuring device 200. That is, the value of the capacitance of the capacitor Ca is determined according to the length of the second electrode 24 inserted into the first electrode 14.
  • the distance G1 is a length corresponding to the amount of distortion of the measurement target portion 403. Therefore, for example, the fluctuation range of the capacitance value of the capacitor Ca in a predetermined time is determined according to the fluctuation range of the distance G1 in the predetermined time. That is, the strain amount of the measurement target portion 403 corresponding to the fluctuation range of the distance G1 in a predetermined time can be obtained based on the fluctuation range of the capacitance value of the capacitor Ca.
  • the strain detection unit 92 calculates the strain amount of the measurement target portion 403 based on the difference between the capacitance value of the capacitor Ca at the first time and the capacitance value of the capacitor Ca at the second time. To do.
  • the strain detection unit 92 calculates the strain amount of the measurement target portion 403 based on the measurement result of the capacitance measurement unit 91 and the information stored in the storage unit 94, for example.
  • the remaining life diagnosis unit 93 estimates the remaining life of the pipe 400 based on the measurement result of the capacitance measuring unit 91 and the like. For example, the remaining life diagnosis unit 93 calculates the remaining life of the pipe 400 based on the fluctuation range of the capacitance of the capacitor Ca from the first time to the second time after the first time. That is, the remaining life diagnosis unit 93 estimates the remaining life by changing the capacitance value of the capacitor Ca due to the distortion of the pipe 400.
  • information for example, data indicated by a curve 712 in FIG. 7
  • the remaining life diagnosis unit 93 estimates the remaining life of the pipe 400 based on the measurement result of the capacitance measuring unit 91 and the information stored in the storage unit 94.
  • the remaining life diagnosis apparatus 900 measures, for example, the capacitance of the capacitor Ca when the pipe 400 is provided in the thermal power plant (first time). Thereafter, the remaining life diagnosis apparatus 900 measures the capacitance of the capacitor Ca when a predetermined time has elapsed from the first time (second time). The remaining life diagnosis apparatus 900 estimates the remaining life of the pipe 400 in the second time based on, for example, the fluctuation range of the capacitance of the capacitor Ca from the first time to the second time after the first time. To do. For example, when the above-mentioned second time is a time in the middle of the life, the fluctuation range of the capacitance of the above-described capacitor Ca is relatively large. Therefore, in the remaining life diagnosis apparatus 900, it is possible to estimate the remaining life of the pipe 400 at the second time in the middle of the life with relatively high accuracy.
  • the remaining life diagnosis apparatus 900 includes the first measurement apparatus 100, the second measurement apparatus 200, and the diagnosis apparatus 9.
  • the first measuring device 100 has a first electrode 14 having a cylindrical shape and is attached to a pipe 400.
  • the second measuring device 200 has a second electrode 24 having a rod shape and is attached to the pipe 400.
  • the second electrode 24 is inserted into the first electrode 14.
  • the diagnostic device 9 estimates the remaining life of the pipe 400 by changing the capacitance value of the capacitor Ca due to the distortion of the pipe 400. Note that the value of the capacitance of the capacitor Ca is determined according to the length of the second electrode 24 inserted into the first electrode 14.
  • At least one of the inside of the first electrode 14 and the second electrode 24 has an opposing area between the first electrode 14 and the second electrode 24 as the length of the second electrode 24 inserted into the first electrode 14 becomes shorter.
  • a truncated cone shape is formed so that the distance between the first electrode 14 and the second electrode 24 becomes longer as the distance becomes smaller.
  • the inside of the first electrode 14 has a truncated cone shape in which the inner diameter of the first electrode 14 increases from the first measuring device 100 side ( ⁇ X) toward the second measuring device 200 side (+ X). Yes.
  • the facing area between the first electrode 14 and the second electrode 24 is reliably reduced and the first electrode 14 and the second electrode 24
  • the distance between the electrodes 24 can be reliably increased. Therefore, in the remaining life diagnosis apparatus 900, for example, it is possible to reliably improve the estimation accuracy of the remaining life of the pipe 400 in the middle of the life.
  • the second measuring device 200 side inside the first electrode 14 has a large diameter, the second electrode 24 can be easily inserted into the first electrode 14. That is, it is possible to provide an easy-to-use remaining life diagnostic apparatus 900 that can be easily assembled.
  • the second electrode 24 has a truncated cone shape in which the outer diameter of the second electrode 24 increases from the first measuring device 100 side ( ⁇ X) toward the second measuring device 200 side (+ X). .
  • the first measuring device 100 side of the second electrode 24 has a small diameter, the second electrode 24 can be easily inserted into the first electrode 14. That is, it is possible to provide an easy-to-use remaining life diagnostic apparatus 900 that can be easily assembled.
  • the inside of the first electrode 14 and the second electrode 24 are arranged such that the surface of the first electrode 14 facing the second electrode 24 and the surface of the second electrode 24 facing the first electrode 14 are substantially parallel to each other. It has a truncated cone shape.
  • the fluctuation range of the strain amount of the pipe 400 with respect to the passage of time is relatively small.
  • the fluctuation range of the capacitance value of the capacitor Ca with respect to the passage of time can be reliably increased. Can do. Therefore, it is possible to reliably improve the estimation accuracy of the remaining life of the pipe 400 in the middle of the life.
  • the second electrode 24 can be inserted into the first electrode 14 by the length of the first electrode 14.
  • the amount of distortion of the pipe 400 that can be detected by the remaining life diagnosis apparatus 900 can be increased. That is, in the remaining life diagnosis apparatus 900, the value of the capacitance of the capacitor Ca increases with the passage of time even when the fluctuation range of the strain amount of the pipe 400 with respect to the passage of time is relatively large, for example, at the end of the life (FIG. 2). Will change. Therefore, it is possible to improve the estimation accuracy of the remaining life of the pipe 400 in both the middle life and the last life.
  • the first measuring device 100 includes a housing 11 and a fixing member 13.
  • the casing 11 is a metal casing that is attached to the pipe 400 in a state in which the first electrode 14 is accommodated so that the second electrode 24 is inserted into the first electrode 14.
  • the inner diameter of the housing 11 is made larger than the outer diameter of the first electrode 14 so that the first electrode 14 can be accommodated inside the housing 11.
  • the fixing member 13 is an insulating member that supports the first electrode 14 so that the first electrode 14 does not contact the housing 11 inside the housing 11.
  • the second measuring apparatus 200 includes a housing 21 and a fixing member 23.
  • the casing 21 is a metal casing that is attached to the pipe 400 in a state in which the second electrode 24 is accommodated so that the second electrode 24 is inserted into the first electrode 14.
  • the inner diameter of the housing 21 is larger than the outer diameter of the second electrode 24 so that the second electrode 24 can be accommodated inside the housing 21.
  • the fixing member 23 is an insulating member that supports the second electrode 24 so that the second electrode 24 does not contact the casing 21 inside the casing 21.
  • the first measuring apparatus 100 further has metal legs 12 that protrude from the casing 11 toward the pipe 400 between the pipe 400 and the casing 11 and are fixed to the pipe 400.
  • the second measuring apparatus 200 further has a metal leg 22 that is fixed to the pipe 400 and protrudes from the casing 21 toward the pipe 400 between the pipe 400 and the casing 21.
  • the pipe 400 includes a first pipe 401 and a second pipe 402 connected to the first pipe 401.
  • the legs 12 and 22 are fixed to the first pipe 401 and the second pipe 402, respectively.
  • the distortion amount of the measurement target portion 403 such as the welded portion of the pipe 400 can be reflected on the capacitance value of the capacitor Ca.
  • the remaining life diagnosis apparatus 900 for example, the remaining life of the pipe 400 is determined based on the strain amount of the measurement target portion 403 that easily cracks with time at a relatively high temperature (for example, 600 ° C. or higher). Will be estimated. Therefore, the remaining life diagnosis apparatus 900 can improve the estimation accuracy of the remaining life of the pipe 400.
  • the diagnostic device 9 of the remaining life diagnostic device 900 includes a storage unit 94.
  • the storage unit 94 stores in advance information indicating the remaining life of the pipe 400 with respect to the capacitance value of the capacitor Ca (for example, data indicated by a curve 712 in FIG. 7).
  • the remaining life diagnosis unit 93 estimates the remaining life of the pipe 400 based on the information stored in the storage unit 94. With these configurations, for example, based on the environment in which the pipe 400 is provided, information indicating the remaining life of the pipe 400 with respect to the capacitance value of the capacitor Ca can be stored in the storage unit 94 in advance.
  • the remaining life of the pipe 400 with respect to the capacitance value of the capacitor Ca can be determined based on the temperature of the gas supplied into the pipe 400 or the like. Therefore, information indicating the environment in which the pipe 400 is provided can be reflected in the estimation of the remaining life of the pipe 400. Therefore, the remaining life diagnosis apparatus 900 can improve the estimation accuracy of the remaining life of the pipe 400. In addition, since a complicated calculation for estimating the remaining life of the pipe 400 is not required, it is possible to quickly estimate the remaining life of the pipe 400.
  • the remaining life diagnosis unit 93 of the remaining life diagnosis apparatus 900 performs the second time based on the fluctuation range of the capacitance value of the capacitor Ca from the first time to the second time after the first time.
  • the remaining life of the pipe 400 is estimated.
  • the fluctuation range of the capacitance of the capacitor Ca with respect to the passage of time becomes relatively large. Therefore, the estimation accuracy of the remaining life of the pipe 400 can be improved.
  • both the inside of the first electrode 14 and the second electrode 24 have a truncated cone shape, but the present invention is not limited to this.
  • the inside of the first electrode 14 may have a cylindrical shape
  • the second electrode 24 may have a truncated cone shape.
  • the inside of the first electrode 14 may have a truncated cone shape
  • the second electrode 24 may have a cylindrical shape.
  • both the inside of the first electrode 14 and the second electrode 24 may have a polygonal frustum shape, may have a conical shape, and have a polygonal pyramid shape. It is good as well.
  • the remaining life diagnosis part 93 demonstrated estimating the remaining life of the piping 400 based on the measurement result of the electrostatic capacitance measurement part 91, etc., it is not limited to this. Absent.
  • the remaining life diagnosis unit 93 may estimate the remaining life of the pipe 400 based on the calculation result of the strain detection unit 92 or the like. In this case, the remaining life diagnosis unit 93 calculates the remaining life of the pipe 400 based on, for example, the fluctuation range of the strain amount of the pipe 400 from the first time to the second time after the first time.
  • information in which the fluctuation range of the strain amount of the pipe 400 is associated with the remaining life of the pipe 400 is stored in the storage unit 94 in advance.
  • the remaining life diagnosis unit 93 estimates the remaining life of the pipe 400 based on the calculation result of the strain detection unit 92 and the information stored in the storage unit 94.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

[Solution] This remaining life estimation device comprises: a first electrode body that includes a tubular electrode and that is attached to an object to be measured; a second electrode body that includes a rod-shaped electrode to be inserted inside said tubular electrode, and that is attached to said object to be measured; and an estimation device that estimates the remaining life on the basis of a change in the value of capacitance determined according to the length of said rod-shaped electrode inserted into said tubular electrode, said change in capacitance value being caused by a strain in said object to be measured. Said rod-shaped electrode and/or the inside of said tubular electrode have/has a truncated cone shape which is shaped such that, as the length of said rod-shaped electrode inserted into said tubular electrode becomes shorter, the area in which said tubular electrode and said rod-shaped electrode oppose one another decreases and the distance between said tubular electrode and said rod-shaped electrode increases.

Description

余寿命推定装置Remaining life estimation device
 本発明は、余寿命推定装置に関する。 The present invention relates to a remaining life estimation apparatus.
 例えば、被測定物の余寿命を推定するための歪測定装置が知られている(例えば特許文献1)。 For example, a strain measuring apparatus for estimating the remaining life of a device under test is known (for example, Patent Document 1).
特開2012-202953号公報JP 2012-202953 A
 例えば、特許文献1の歪測定装置においては、筒状電極に挿入される棒状電極の長さに応じて定まる静電容量の値に基づいて、被測定物の歪量が測定される。この歪測定装置における静電容量の値は、被測定物の歪量が増加するにつれて略線形的に減少する。このため、被測定物の歪量が比較的小さい場合、当該歪量の測定精度が低下し、被測定物の余寿命の推定精度が低下する虞がある。 For example, in the strain measuring apparatus of Patent Document 1, the amount of strain of the object to be measured is measured based on the capacitance value determined according to the length of the rod-shaped electrode inserted into the cylindrical electrode. The value of the capacitance in this strain measuring device decreases substantially linearly as the amount of strain of the object to be measured increases. For this reason, when the amount of strain of the object to be measured is relatively small, the measurement accuracy of the amount of distortion may be reduced, and the estimation accuracy of the remaining life of the object to be measured may be decreased.
 前述した課題を解決する主たる本発明は、筒状電極を有し、被測定物に取り付けられる第1電極体と、前記筒状電極の内部に挿入される棒状電極を有し、前記被測定物に取り付けられる第2電極体と、前記筒状電極に挿入される前記棒状電極の長さに応じて定まる静電容量の値が、前記被測定物の歪みに起因して変化することにより余寿命を推定する推定装置と、を備え、前記筒状電極の内部と前記棒状電極の少なくとも一方は、前記筒状電極に挿入される前記棒状電極の長さが短くなるにつれて、前記筒状電極と前記棒状電極との対向面積が小さくなるとともに前記筒状電極と前記棒状電極との間の距離が長くなるように、円錐台形状を呈していることを特徴とする余寿命推定装置である。 The main present invention that solves the above-described problems includes a first electrode body that has a cylindrical electrode and is attached to the object to be measured, and a rod-shaped electrode that is inserted into the cylindrical electrode, and the object to be measured The remaining life is due to the capacitance value determined according to the length of the second electrode body attached to the cylindrical electrode and the length of the rod-shaped electrode inserted into the cylindrical electrode being changed due to distortion of the object to be measured. And at least one of the inside of the cylindrical electrode and the rod-like electrode, as the length of the rod-like electrode inserted into the tubular electrode becomes shorter, the tubular electrode and the rod-like electrode It is a remaining life estimation apparatus characterized by having a truncated cone shape so that the area facing the rod-shaped electrode is reduced and the distance between the cylindrical electrode and the rod-shaped electrode is increased.
 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。 Other features of the present invention will become apparent from the accompanying drawings and the description of the present specification.
 本発明によれば、被測定物の余寿命の推定精度を向上させることができる。 According to the present invention, it is possible to improve the estimation accuracy of the remaining life of the object to be measured.
本発明の実施形態における余寿命診断装置の一部を示す斜視図である。It is a perspective view which shows a part of remaining life diagnostic apparatus in embodiment of this invention. 本発明の実施形態における歪量と寿命消費率との関係を示す図である。It is a figure which shows the relationship between the distortion amount and lifetime consumption rate in embodiment of this invention. 本発明の実施形態における余寿命診断装置の一部を示す断面図である。It is sectional drawing which shows a part of remaining life diagnostic apparatus in embodiment of this invention. 本発明の実施形態における第1電極及び第2電極を示す斜視図である。It is a perspective view which shows the 1st electrode and 2nd electrode in embodiment of this invention. 本発明の実施形態における第1電極及び第2電極を示す断面図である。It is sectional drawing which shows the 1st electrode and 2nd electrode in embodiment of this invention. 本発明の実施形態におけるコンデンサの静電容量と配管の歪量との関係を示す図である。It is a figure which shows the relationship between the electrostatic capacitance of the capacitor | condenser in embodiment of this invention, and the distortion amount of piping. 本発明の実施形態における配管の寿命消費率とコンデンサの静電容量との関係を示す図である。It is a figure which shows the relationship between the lifetime consumption rate of piping and the electrostatic capacitance of a capacitor | condenser in embodiment of this invention. 本発明の実施形態における余寿命診断装置の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the remaining life diagnosis apparatus in embodiment of this invention. 本発明の実施形態における診断装置の機能を示すブロック図である。It is a block diagram which shows the function of the diagnostic apparatus in embodiment of this invention.
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。 At least the following matters will become clear from the description of this specification and the accompanying drawings.
===余寿命診断装置===
 以下、図1を参照して、本実施形態における余寿命診断装置について説明する。図1は、本実施形態における余寿命診断装置の一部を示す斜視図である。尚、図1においては、説明の便宜上、測定ケーブル4A、4B(図3)は省略されている。
=== remaining life diagnosis device ===
Hereinafter, the remaining life diagnosis apparatus according to the present embodiment will be described with reference to FIG. FIG. 1 is a perspective view showing a part of the remaining life diagnosis apparatus in the present embodiment. In FIG. 1, the measurement cables 4A and 4B (FIG. 3) are omitted for convenience of explanation.
 余寿命診断装置900(余寿命推定装置)は、例えば火力発電所に設けられた、ボイラ、タービン、配管等々の余寿命を診断(推定)するための装置である。余寿命診断装置900は、例えば600℃以上の比較的高温となっている金属製の配管400(被測定物)の余寿命を診断する。尚、配管400、配管400の余寿命については、後述する。 The remaining life diagnosis apparatus 900 (remaining life estimation apparatus) is an apparatus for diagnosing (estimating) the remaining life of boilers, turbines, pipes, etc. provided in, for example, a thermal power plant. The remaining life diagnosis apparatus 900 diagnoses the remaining life of a metal pipe 400 (measurement object) having a relatively high temperature of, for example, 600 ° C. or higher. The remaining life of the pipe 400 and the pipe 400 will be described later.
 余寿命診断装置900は、第1測定装置100(第1電極体)、第2測定装置200(第2電極体)、診断装置9(図9)を有する。尚、本実施形態において、Z軸は、第1測定装置100及び第2測定装置200が立設する高さ方向(垂直方向)に沿う軸であり、+Zは、配管400から第1測定装置100及び第2測定装置200に向かう上方向(垂直方向において配管400から離れる方向)を示し、-Zは、第1測定装置100及び第2測定装置200から配管400に向かう下方向(垂直方向において配管400に近づく方向)を示すものとする。又、X軸は、第1測定装置100及び第2測定装置200が隣接する方向に沿う軸であり、+Xは、第1測定装置100から第2測定装置200に向かう方向を示し、-Xは、第2測定装置200から第1測定装置100に向かう方向を示すものとする。又、Y軸は、X軸及びZ軸に対して直行する軸であり、+Yは、第1測定装置100における一方の側面から他方の側面に向かう方向を示し、-Yは、第1測定装置100における他方の側面から一方の側面に向かう方向を示すものとする。 The remaining life diagnosis apparatus 900 includes a first measurement apparatus 100 (first electrode body), a second measurement apparatus 200 (second electrode body), and a diagnosis apparatus 9 (FIG. 9). In the present embodiment, the Z axis is an axis along the height direction (vertical direction) where the first measuring device 100 and the second measuring device 200 are erected, and + Z is the first measuring device 100 from the pipe 400. And Z indicates the upward direction toward the second measuring device 200 (the direction away from the pipe 400 in the vertical direction), and −Z indicates the downward direction from the first measuring apparatus 100 and the second measuring apparatus 200 toward the pipe 400 (the pipe in the vertical direction). (Direction approaching 400). The X axis is an axis along the direction in which the first measuring device 100 and the second measuring device 200 are adjacent to each other, + X indicates the direction from the first measuring device 100 to the second measuring device 200, and −X is The direction from the second measuring device 200 toward the first measuring device 100 is indicated. The Y axis is an axis orthogonal to the X axis and the Z axis, + Y indicates the direction from one side surface to the other side surface of the first measuring device 100, and -Y indicates the first measuring device. The direction from the other side surface to the one side surface in 100 is shown.
 第1測定装置100及び第2測定装置200は、金属製の配管400における測定対象部分403の歪量を測定する際に、配管400の長手方向(X軸)において、測定対象部分403の両側に設けられる装置である。第1測定装置100及び第2測定装置200は、測定対象部分403における当該配管400の長手方向の歪量を測定するためのセンサとして機能する。尚、第1測定装置100、第2測定装置200については、後述する。 When the first measuring device 100 and the second measuring device 200 measure the strain amount of the measurement target portion 403 in the metal pipe 400, the first measurement device 100 and the second measurement device 200 are arranged on both sides of the measurement target portion 403 in the longitudinal direction (X axis) of the pipe 400. It is a device provided. The first measuring device 100 and the second measuring device 200 function as sensors for measuring the amount of strain in the longitudinal direction of the pipe 400 in the measurement target portion 403. The first measuring device 100 and the second measuring device 200 will be described later.
 診断装置9は、配管400の余寿命を推定する装置である。尚、診断装置9については、後述する。 Diagnostic device 9 is a device that estimates the remaining life of piping 400. The diagnostic device 9 will be described later.
===配管===
 以下、図1を参照して、本実施形態における配管について説明する。
=== Piping ===
Hereinafter, the piping in the present embodiment will be described with reference to FIG.
 配管400は、火力発電所に設けられ、例えば600℃以上の比較的高温となっている金属製の配管である。配管400は、配管400の長手方向(X軸)において第1配管401及び第2配管402が溶接されて形成される。 The pipe 400 is a metal pipe that is provided in a thermal power plant and has a relatively high temperature of, for example, 600 ° C. or higher. The pipe 400 is formed by welding the first pipe 401 and the second pipe 402 in the longitudinal direction (X axis) of the pipe 400.
 配管400においては、第1配管401及び第2配管402の溶接部分である測定対象部分403が、例えば、例えばクリープ等による経年劣化により歪むことがある。この場合、測定対象部分403においては、測定対象部分403の歪量に応じて、例えば、亀裂が生じることがある。 In the pipe 400, the measurement target portion 403, which is a welded portion of the first pipe 401 and the second pipe 402, may be distorted due to, for example, aging due to creep or the like. In this case, in the measurement target portion 403, for example, a crack may occur depending on the amount of distortion of the measurement target portion 403.
===配管の余寿命===
 以下、図2を参照して、本実施形態における配管の余寿命について説明する。図2は、本実施形態における歪量と寿命消費率との関係を示す図である。尚、図2の縦軸は、配管400の歪量を示している。図2の横軸は、配管400の寿命消費率を示している。図2は、例えば、実験又はシミュレーション等に基づいて求められる。
=== Piping remaining life ===
Hereinafter, the remaining life of the piping in this embodiment will be described with reference to FIG. FIG. 2 is a diagram showing the relationship between the amount of distortion and the lifetime consumption rate in the present embodiment. Note that the vertical axis in FIG. 2 indicates the strain amount of the pipe 400. The horizontal axis in FIG. 2 indicates the lifetime consumption rate of the pipe 400. FIG. 2 is obtained based on, for example, experiments or simulations.
=配管の歪量=
 配管400の歪量は、例えば、配管400の変形に応じた、当該配管400の変位量のことである。配管400の歪量は、配管400の長手方向(X軸)における変位量である。
= Strain of piping =
The strain amount of the pipe 400 is, for example, the amount of displacement of the pipe 400 according to the deformation of the pipe 400. The strain amount of the pipe 400 is a displacement amount in the longitudinal direction (X axis) of the pipe 400.
=配管の寿命消費率=
 配管400の寿命消費率は、配管400が設けられた時からの経過時間(経過期間)に基づく割合を示している。配管400の寿命消費率は、配管400の寿命に対する、配管400が設けられた時から現時点までの経過期間の割合を示している。配管400の寿命とは、配管400が設けられた時から、例えばクリープ等による経年劣化より配管400が破壊されるまでの期間のことである。配管400の破壊とは、配管400の歪量が所定量よりも大きくなり、例えば、配管400に亀裂が入り配管400が破断することである。
= Lifetime consumption rate of piping =
The lifetime consumption rate of the pipe 400 indicates a ratio based on an elapsed time (elapsed period) from when the pipe 400 is provided. The lifetime consumption rate of the pipe 400 indicates the ratio of the elapsed period from the time when the pipe 400 is provided to the present time with respect to the lifetime of the pipe 400. The service life of the pipe 400 is a period from when the pipe 400 is provided to when the pipe 400 is destroyed due to deterioration over time due to creep or the like. The destruction of the pipe 400 means that the strain amount of the pipe 400 becomes larger than a predetermined amount, for example, the pipe 400 is cracked and the pipe 400 is broken.
 つまり、例えば、配管400の寿命消費率が0(%)であるということは、配管400が設けられた時からの経過時間が0時間であるということを示す。つまり、配管400の寿命消費率が0(%)であるということは、配管400が設けられた時を示している。 That is, for example, the fact that the lifetime consumption rate of the pipe 400 is 0 (%) indicates that the elapsed time from when the pipe 400 is provided is 0 hour. That is, the fact that the lifetime consumption rate of the pipe 400 is 0 (%) indicates the time when the pipe 400 is provided.
 又、例えば、配管400の寿命消費率が100(%)であるということは、配管400が設けられた時からの配管400の寿命だけ時間が経過したことを示している。つまり、配管400の寿命消費率が100(%)であるということは、配管400に亀裂が入り配管400が破断する時を示している。 Further, for example, the fact that the lifetime consumption rate of the pipe 400 is 100 (%) indicates that time has passed by the life of the pipe 400 since the pipe 400 was provided. That is, that the lifetime consumption rate of the pipe 400 is 100 (%) indicates that the pipe 400 is cracked and the pipe 400 is broken.
 配管400の寿命消費率が0(%)~Ta1の間(以下、「寿命初期」とも称する)中においては、配管400の歪量は略0となっている。 When the lifetime consumption rate of the pipe 400 is between 0 (%) and Ta1 (hereinafter also referred to as “early life”), the strain amount of the pipe 400 is substantially zero.
 配管400の寿命消費率がTa1~Ta2の間(以下、「寿命中期」とも称する)においては、配管400の歪量は略0からZa2まで変動している。寿命中期においては、配管400の歪量は、配管400の寿命消費率が大きくなるにつれて、略線形的に大きくなっている。 When the lifetime consumption rate of the pipe 400 is between Ta1 and Ta2 (hereinafter also referred to as “mid-lifetime”), the strain amount of the pipe 400 varies from approximately 0 to Za2. In the middle of the life, the strain amount of the pipe 400 increases substantially linearly as the life consumption rate of the pipe 400 increases.
 配管400の寿命消費率がTa2~100(%)の間(以下、「寿命末期」とも称する)においては、配管400の歪量は略Za2からZa3まで変動している。寿命末期においては、配管400の歪量は、配管400の寿命消費率が大きくなるにつれて、非線形的に大きくなっている。又、寿命末期における所定の寿命消費率の幅に対する歪量の変動幅は、寿命中期における所定の寿命消費率の幅に対する歪量の変動幅よりも大きくなっている。つまり、寿命末期における、所定の経過時間(例えば、1年間)における配管400の歪量の変動幅は、寿命中期における、所定の経過時間(例えば、1年間)における配管400の歪量の変動幅よりも大きくなることになる。尚、寿命初期における、所定の経過時間(例えば、1年間)における配管400の歪量の変動幅は、寿命中期における、所定の経過時間(例えば、1年間)における配管400の歪量の変動幅よりも小さくなることになる。 When the lifetime consumption rate of the pipe 400 is between Ta2 and 100 (%) (hereinafter also referred to as “end of life”), the strain amount of the pipe 400 varies from approximately Za2 to Za3. At the end of life, the strain amount of the pipe 400 increases nonlinearly as the life consumption rate of the pipe 400 increases. Further, the variation range of the distortion amount with respect to the predetermined lifetime consumption rate range at the end of the lifetime is larger than the variation range of the strain amount with respect to the predetermined lifetime consumption rate range in the middle of the lifetime. That is, the fluctuation range of the strain amount of the pipe 400 at a predetermined elapsed time (for example, one year) at the end of the life is the fluctuation range of the strain amount of the pipe 400 at a predetermined elapsed time (for example, one year) at the middle of the life. Will be bigger. Note that the fluctuation range of the strain amount of the pipe 400 at a predetermined elapsed time (for example, one year) at the beginning of the life is the fluctuation width of the strain amount of the pipe 400 at a predetermined elapsed time (for example, one year) at the middle of the lifetime. Will be smaller.
=配管の余寿命=
 配管400の余寿命とは、現時点から配管400の寿命消費率が100(%)になるまでの間の期間である。尚、例えば、配管400の余寿命とは、現時点から配管400の寿命消費率が100(%)になるまでの、残りの寿命消費率であることとしてもよい。
= Remaining life of piping =
The remaining life of the pipe 400 is a period from the present time until the life consumption rate of the pipe 400 reaches 100 (%). For example, the remaining life of the pipe 400 may be the remaining life consumption rate from the current time until the life consumption rate of the pipe 400 reaches 100 (%).
===第1測定装置、第2測定装置===
 以下、図3及び図4を参照して、本実施形態における第1測定装置及び第2測定装置について説明する。図3は、本実施形態における余寿命診断装置の一部を示す断面図である。尚、図3は、図1における第1測定装置100の略中央を通るXZ平面から+Y方向へ向かって見た状態の、第1測定装置100及び第2測定装置200を示している。図4は、本実施形態における第1電極及び第2電極を示す斜視図である。尚、第1電極14の内部は、見えない状態となっているが、説明の便宜上、点線で示されている。
=== First Measuring Device, Second Measuring Device ===
Hereinafter, with reference to FIG.3 and FIG.4, the 1st measuring apparatus and 2nd measuring apparatus in this embodiment are demonstrated. FIG. 3 is a cross-sectional view showing a part of the remaining life diagnosis apparatus in the present embodiment. FIG. 3 shows the first measuring device 100 and the second measuring device 200 in a state viewed from the XZ plane passing through the approximate center of the first measuring device 100 in FIG. 1 toward the + Y direction. FIG. 4 is a perspective view showing the first electrode and the second electrode in the present embodiment. In addition, although the inside of the 1st electrode 14 is a state which cannot be seen, it is shown with the dotted line for convenience of explanation.
=第1測定装置=
 第1測定装置100は、第1配管401に対して例えば溶接されて固定される。第1測定装置100は、筐体11(第1ケース)、脚12(第1脚)、固定部材13(第1支持部材)、第1電極14(筒状電極)を有する。
= First measuring device =
The first measuring apparatus 100 is fixed to the first pipe 401 by welding, for example. The first measuring apparatus 100 includes a housing 11 (first case), legs 12 (first legs), a fixing member 13 (first support member), and a first electrode 14 (tubular electrode).
 筐体11は、第1電極14を収容した状態で当該第1電極14を保持するための例えば金属製の筐体である。筐体11の外形は、例えば、略矩形柱形状を呈する。筐体11は、内部に第1電極14を収容できるように、中空構造を呈する。筐体11の内径は、筐体11の内部に第1電極14を収容できるように、第1電極14の外径よりも大きくされている。筐体11は、金属製の脚12を介して第1配管401に溶接される。尚、脚12は、第1配管401と筐体11との間において筐体11から第1配管401に向かって突出し、第1配管401に固定されている。 The housing 11 is, for example, a metal housing for holding the first electrode 14 in a state where the first electrode 14 is accommodated. The outer shape of the housing 11 has, for example, a substantially rectangular column shape. The casing 11 has a hollow structure so that the first electrode 14 can be accommodated therein. The inner diameter of the housing 11 is made larger than the outer diameter of the first electrode 14 so that the first electrode 14 can be accommodated inside the housing 11. The casing 11 is welded to the first pipe 401 via the metal legs 12. The leg 12 protrudes from the housing 11 toward the first piping 401 between the first piping 401 and the housing 11 and is fixed to the first piping 401.
 固定部材13は、筐体11の内部に第1電極14を固定するための例えばセラミックス等の絶縁性の部材である。固定部材13は、筐体11の内部において第1電極14が筐体11と接触しないように、第1電極14を支持している。 The fixing member 13 is an insulating member such as ceramics for fixing the first electrode 14 inside the housing 11. The fixing member 13 supports the first electrode 14 so that the first electrode 14 does not contact the housing 11 inside the housing 11.
 第1電極14は、第2電極24(棒状電極)と共にコンデンサCa(図8)を形成するための金属製の部材である。つまり、第1電極14は、コンデンサCaにおける2個の電極のうちの一方の電極として機能する。第1電極14は、配管400の長手方向(X軸)に沿って棒状に延びている。第1電極14の外形は、例えば長尺状の円柱形状を呈する。第1電極14は、内部に第2電極24を進退自在に挿入できるように挿入孔14aが設けられており、中空構造を呈する。つまり、第1電極14は、筒形状を呈している。第1電極14の内部は、配管400の長手方向における第1測定装置100と第2測定装置200との間の距離G1に対するコンデンサCaの静電容量の値が当該距離G1の値に応じて非線形的に変化するように、円錐台形状とされている。つまり、第1電極14の内部は、第1電極14の内径が第1測定装置100側(-X)から第2測定装置200側(+X)に向かうにつれて大きくなるような円錐台形状を呈している。 The first electrode 14 is a metal member for forming the capacitor Ca (FIG. 8) together with the second electrode 24 (rod-like electrode). That is, the first electrode 14 functions as one of the two electrodes in the capacitor Ca. The first electrode 14 extends in a rod shape along the longitudinal direction (X axis) of the pipe 400. The external shape of the 1st electrode 14 exhibits elongate cylindrical shape, for example. The 1st electrode 14 is provided with the insertion hole 14a so that the 2nd electrode 24 can be inserted in the inside so that advancement / retraction is possible, and exhibits a hollow structure. That is, the first electrode 14 has a cylindrical shape. Inside the first electrode 14, the capacitance value of the capacitor Ca with respect to the distance G <b> 1 between the first measuring device 100 and the second measuring device 200 in the longitudinal direction of the pipe 400 is nonlinear depending on the value of the distance G <b> 1. The shape of the frustoconical shape is changed so as to change. That is, the inside of the first electrode 14 has a truncated cone shape in which the inner diameter of the first electrode 14 increases from the first measuring device 100 side (−X) toward the second measuring device 200 side (+ X). Yes.
=第2測定装置=
 第2測定装置200は、第2配管402に対して例えば溶接されて固定される。第2測定装置200は、筐体21(第2ケース)、脚22(第2脚)、固定部材23(第2支持部材)、第2電極24を有する。
= Second measuring device =
The second measuring device 200 is fixed to the second pipe 402 by, for example, welding. The second measuring apparatus 200 includes a casing 21 (second case), legs 22 (second legs), a fixing member 23 (second support member), and a second electrode 24.
 筐体21は、第2電極24を収容した状態で当該第2電極24を保持するための例えば金属製の筐体である。筐体21の外形は、例えば、略矩形柱形状を呈する。筐体21は、内部に第2電極24を収容できるように、中空構造を呈する。筐体21の内径は、筐体21の内部に第2電極24を収容できるように、第2電極24の外径よりも大きくされている。筐体21には、金属製の脚22を介して第2配管402に溶接される。尚、脚22は、第2配管402と筐体21との間において筐体21から第2配管402に向かって突出し、第2配管402に固定されている。 The housing 21 is, for example, a metal housing for holding the second electrode 24 in a state where the second electrode 24 is accommodated. The outer shape of the housing 21 has, for example, a substantially rectangular column shape. The casing 21 has a hollow structure so that the second electrode 24 can be accommodated therein. The inner diameter of the housing 21 is larger than the outer diameter of the second electrode 24 so that the second electrode 24 can be accommodated inside the housing 21. The casing 21 is welded to the second pipe 402 through metal legs 22. The leg 22 protrudes from the housing 21 toward the second piping 402 between the second piping 402 and the housing 21 and is fixed to the second piping 402.
 固定部材23は、筐体21の内部に第2電極24を固定するための例えばセラミックス等の絶縁性の部材である。固定部材23は、筐体21の内部において第2電極24が筐体21と接触しないように、第2電極24を支持する。 The fixing member 23 is an insulating member such as ceramics for fixing the second electrode 24 inside the housing 21. The fixing member 23 supports the second electrode 24 so that the second electrode 24 does not contact the casing 21 inside the casing 21.
 第2電極24は、第1電極14と共にコンデンサCa(図8)を形成するための金属製の部材である。つまり、第2電極24は、コンデンサCaにおける2個の電極のうちの他方の電極として機能する。第2電極14は、配管400の長手方向(X軸)に沿って棒状に延びている。第2電極14の外形は、例えば長尺状の円錐台形状を呈する。つまり、第2電極24は、第2電極24の外径が第1測定装置100側(-X)から第2測定装置200側(+X)に向かうにつれて大きくなるような円錐台形状を呈している。又、第1電極14の内部及び第2電極24は、第1電極14の第2電極24との対向面と第2電極24の第1電極14との対向面が互いに略平行となるような円錐台形状を呈している。 The second electrode 24 is a metal member for forming the capacitor Ca (FIG. 8) together with the first electrode 14. That is, the second electrode 24 functions as the other electrode of the two electrodes in the capacitor Ca. The second electrode 14 extends in a rod shape along the longitudinal direction (X axis) of the pipe 400. The external shape of the 2nd electrode 14 exhibits elongate truncated cone shape, for example. That is, the second electrode 24 has a truncated cone shape such that the outer diameter of the second electrode 24 increases from the first measuring device 100 side (−X) toward the second measuring device 200 side (+ X). . Further, the inside of the first electrode 14 and the second electrode 24 are arranged such that the surface of the first electrode 14 facing the second electrode 24 and the surface of the second electrode 24 facing the first electrode 14 are substantially parallel to each other. It has a truncated cone shape.
 第2電極24の端部24aは、第1電極14の挿入孔14aに挿入される。尚、第2電極24は、第1電極14と接触しないように挿入孔14aに挿入されることとする。このとき、第2電極24における第1電極14の内部に挿入されている端部24a(以下、「第2電極24の挿入部分」とも称する)の外面は、挿入孔14a内で第1電極14の内面と対向することとなる。そして、第2電極24の挿入部分がコンデンサCaの他方の電極として機能し、第2電極24の挿入部分と対向している第1電極14の一部(以下、「第1電極14の対向部分」とも称する)がコンデンサCaの一方の電極として機能することになる。そして、コンデンサCaの静電容量の値は、第2電極24の挿入部分の面積及び第1電極14の対向部分の面積、第2電極24及び第1電極14が互いに対向する方向における第2電極24から第1電極14までの距離(例えば図5の距離D1、D2)に応じて定まることになる。よって、コンデンサCaの静電容量の値は、配管400の長手方向における第1測定装置100と第2測定装置200との間の距離G1に応じて定まることになる。 The end 24 a of the second electrode 24 is inserted into the insertion hole 14 a of the first electrode 14. The second electrode 24 is inserted into the insertion hole 14 a so as not to contact the first electrode 14. At this time, the outer surface of the end 24 a (hereinafter also referred to as “insertion portion of the second electrode 24”) inserted into the first electrode 14 in the second electrode 24 is the first electrode 14 in the insertion hole 14 a. It will face the inner surface of the. The insertion portion of the second electrode 24 functions as the other electrode of the capacitor Ca, and a part of the first electrode 14 facing the insertion portion of the second electrode 24 (hereinafter referred to as “opposing portion of the first electrode 14”). Will also function as one electrode of the capacitor Ca. The capacitance value of the capacitor Ca includes the area of the insertion portion of the second electrode 24, the area of the facing portion of the first electrode 14, and the second electrode in the direction in which the second electrode 24 and the first electrode 14 face each other. It is determined according to the distance from 24 to the first electrode 14 (for example, distances D1 and D2 in FIG. 5). Therefore, the value of the capacitance of the capacitor Ca is determined according to the distance G1 between the first measuring device 100 and the second measuring device 200 in the longitudinal direction of the pipe 400.
===コンデンサの静電容量===
 以下、図5を参照して、本実施形態におけるコンデンサの静電容量について説明する。図5は、本実施形態における第1電極及び第2電極を示す断面図である。尚、図5は、図2における第1電極14及び第2電極24を示している。第2電極24の一部は、説明の便宜上、省略されている。図5においては、第1位置に設けられている第2電極24は、説明の便宜上、実線で示されており、第2位置に設けられている第2電極24は、説明の便宜上、点線で示されている。尚、第1位置及び第2位置は、配管400の歪量に基づいて定められる、第1電極14に対する第2電極24の相対位置である。
=== Capacitance of capacitor ===
Hereinafter, the capacitance of the capacitor in the present embodiment will be described with reference to FIG. FIG. 5 is a cross-sectional view showing the first electrode and the second electrode in the present embodiment. 5 shows the first electrode 14 and the second electrode 24 in FIG. A part of the second electrode 24 is omitted for convenience of explanation. In FIG. 5, the second electrode 24 provided at the first position is indicated by a solid line for convenience of explanation, and the second electrode 24 provided at the second position is indicated by a dotted line for convenience of explanation. It is shown. The first position and the second position are relative positions of the second electrode 24 with respect to the first electrode 14, which are determined based on the strain amount of the pipe 400.
 配管400の余寿命(配管400の寿命消費率)は、前述したように、配管400の歪量と対応付けられている。一方、コンデンサCaの静電容量の値は、配管400の長手方向における第1測定装置100と第2測定装置200との間の距離G1に応じて定まることになる。尚、距離G1は、配管400の歪量に応じて定まることになる。従って、コンデンサCaの静電容量の値に基づいて、配管400の余寿命を推定することが可能となる。 The remaining life of the pipe 400 (lifetime consumption rate of the pipe 400) is associated with the strain amount of the pipe 400 as described above. On the other hand, the value of the capacitance of the capacitor Ca is determined according to the distance G1 between the first measuring device 100 and the second measuring device 200 in the longitudinal direction of the pipe 400. The distance G1 is determined according to the strain amount of the pipe 400. Therefore, the remaining life of the pipe 400 can be estimated based on the value of the capacitance of the capacitor Ca.
 コンデンサCaの静電容量の値は、第1電極14に対する第2電極24の相対位置に応じて定まる。 The value of the capacitance of the capacitor Ca is determined according to the relative position of the second electrode 24 with respect to the first electrode 14.
 例えば、第2電極24が第1位置(図5の実線)に設けられたときのコンデンサCaの静電容量の値Ca1と、第2電極24が第2位置(図5の点線)に設けられたときのコンデンサCaの静電容量の値Ca2とについて説明する。 For example, the capacitance value Ca1 of the capacitor Ca when the second electrode 24 is provided at the first position (solid line in FIG. 5) and the second electrode 24 are provided at the second position (dotted line in FIG. 5). The capacitance value Ca2 of the capacitor Ca will be described.
 第1位置は、例えば、X軸及びY軸において第1電極14の内部の略中央の位置であることとする。第2位置は、例えば、X軸及びY軸において第1電極14の略中央の位置であり、且つ、配管400の長手方向(X軸)において第1位置よりも+X側にΔxだけ移動した位置であることとする。 Suppose that the first position is, for example, a substantially central position inside the first electrode 14 in the X axis and the Y axis. The second position is, for example, a position substantially at the center of the first electrode 14 in the X axis and the Y axis, and a position moved by Δx to the + X side from the first position in the longitudinal direction of the pipe 400 (X axis). Suppose that
 ここで、第1電極14の内部及び第2電極は、第1電極14の内面141と第2電極の外面241とが相互に平行となるようなテーパ形状を呈していることとする。つまり、配管400の長手方向に対する第1電極14の内面141の傾斜角度θ1と、配管400の長手方向に対する第2電極24の外面241の傾斜角度θ2とは、相互に同様な角度になる。 Here, the inside of the first electrode 14 and the second electrode have a tapered shape such that the inner surface 141 of the first electrode 14 and the outer surface 241 of the second electrode are parallel to each other. That is, the inclination angle θ1 of the inner surface 141 of the first electrode 14 with respect to the longitudinal direction of the pipe 400 and the inclination angle θ2 of the outer surface 241 of the second electrode 24 with respect to the longitudinal direction of the pipe 400 are similar to each other.
 又、第1電極14の対向部分における内面141の面積と、第2電極24の挿入部分における外面241の面積は、説明の便宜上、同様な面積であることとする。 In addition, the area of the inner surface 141 in the facing portion of the first electrode 14 and the area of the outer surface 241 in the insertion portion of the second electrode 24 are the same for convenience of explanation.
 第2電極24が第1位置(図5の実線)に設けられたときのコンデンサCaの静電容量の値Ca1は、以下の、式1に示される通りとなる。 The capacitance value Ca1 of the capacitor Ca when the second electrode 24 is provided at the first position (solid line in FIG. 5) is as shown in the following Equation 1.
Figure JPOXMLDOC01-appb-I000001

 尚、式1において、Sは、第1電極14の対向部分における内面141の面積、第2電極24の挿入部分における外面241の面積を示している。εは、誘電率を示している。D1は、外面241及び対面141に対して直交する方向における外面241と内面141との間の距離を示している。
Figure JPOXMLDOC01-appb-I000001

In Equation 1, S indicates the area of the inner surface 141 in the facing portion of the first electrode 14 and the area of the outer surface 241 in the insertion portion of the second electrode 24. ε represents the dielectric constant. D1 indicates a distance between the outer surface 241 and the inner surface 141 in a direction orthogonal to the outer surface 241 and the facing surface 141.
 例えば、配管400の歪に基づいて第1測定装置100と第2測定装置200との間の距離G1が長くなった場合、第2電極24は、第2位置(図5の点線)に設けられることになる。このときの、コンデンサCaの静電容量の値Ca2は、以下の、式2に示される通りとなる。 For example, when the distance G1 between the first measuring device 100 and the second measuring device 200 becomes longer based on the strain of the pipe 400, the second electrode 24 is provided at the second position (dotted line in FIG. 5). It will be. The capacitance value Ca2 of the capacitor Ca at this time is as shown in the following equation 2.
Figure JPOXMLDOC01-appb-I000002

 尚、式2においては、第1電極14の対向部分における内面141の面積、第2電極24の挿入部分における外面241の面積は、S(1-Δx/L1)になるものと近似的に示されている。又、式2においては、外面241と内面141との間の距離は、D1+Δx*sin(θ2)になることが示されている。つまり、第1電極14に挿入される第2電極24の長さが短くなるにつれて、第1電極14と第2電極24との対向面積が小さくなるとともに第1電極14と第2電極24との間の距離が長くなっている。
Figure JPOXMLDOC01-appb-I000002

In Equation 2, the area of the inner surface 141 at the portion facing the first electrode 14 and the area of the outer surface 241 at the insertion portion of the second electrode 24 are approximately shown as S (1−Δx / L1). Has been. Moreover, in Formula 2, it is shown that the distance between the outer surface 241 and the inner surface 141 is D1 + Δx * sin (θ2). That is, as the length of the second electrode 24 inserted into the first electrode 14 becomes shorter, the facing area between the first electrode 14 and the second electrode 24 becomes smaller and the first electrode 14 and the second electrode 24 The distance between is longer.
 式1、式2においては、第2電極24の移動距離に対するコンデンサCaの静電容量の値が、非線形的に変化していることが示されている。つまり、第2電極が第1位置から第2位置に移動した際、第1電極14の対向部分における内面141の面積、第2電極24の挿入部分における外面241の面積は減少し、外面241と内面141との間の距離は増加することが示されている。更に、コンデンサCaの静電容量の値が傾斜角度θ2(θ1)に応じて定められることが示されている。 Expressions 1 and 2 indicate that the capacitance value of the capacitor Ca with respect to the moving distance of the second electrode 24 changes nonlinearly. That is, when the second electrode moves from the first position to the second position, the area of the inner surface 141 in the portion facing the first electrode 14 and the area of the outer surface 241 in the insertion portion of the second electrode 24 are reduced. It is shown that the distance to the inner surface 141 increases. Further, it is shown that the capacitance value of the capacitor Ca is determined according to the inclination angle θ2 (θ1).
===傾斜角度とコンデンサの静電容量===
 以下、図6を参照して、本実施形態における傾斜角度とコンデンサの静電容量について説明する。図6は、本実施形態におけるコンデンサの静電容量と配管の歪量との関係を示す図である。尚、図6の縦軸は、コンデンサCaの静電容量の値を示している。図6の横軸は、配管400の歪量を示している。配管400の歪量Z1は、図2の寿命中期における配管400の歪量である。つまり、歪量Z1は、0(図2)より大きくなり且つ歪量Za2以下となる。配管400の歪量Z2、Z3は、図2の寿命末期における配管400の歪量である。つまり、歪量Z2、Z3は、歪量Za2(図2)より大きくなり且つ歪量Za3以下となる。又、0から歪量Z1までの歪量の変動幅Z11と、歪量Z2から歪量Z3までの歪量の変動幅Z21とは、相互に同様な幅であることとする。図6は、例えば、実験又はシミュレーション等に基づいて求められる。
=== Inclination angle and capacitance of capacitor ===
Hereinafter, with reference to FIG. 6, the inclination angle and the capacitance of the capacitor in this embodiment will be described. FIG. 6 is a diagram illustrating the relationship between the capacitance of the capacitor and the strain amount of the piping in the present embodiment. In addition, the vertical axis | shaft of FIG. 6 has shown the value of the electrostatic capacitance of the capacitor | condenser Ca. The horizontal axis in FIG. 6 indicates the amount of distortion of the pipe 400. The strain amount Z1 of the pipe 400 is the strain amount of the pipe 400 in the middle of the life shown in FIG. That is, the strain amount Z1 is greater than 0 (FIG. 2) and less than or equal to the strain amount Za2. The strain amounts Z2 and Z3 of the pipe 400 are strain amounts of the pipe 400 at the end of the life shown in FIG. That is, the strain amounts Z2 and Z3 are larger than the strain amount Za2 (FIG. 2) and less than or equal to the strain amount Za3. Further, it is assumed that the variation range Z11 of the strain amount from 0 to the strain amount Z1 and the variation range Z21 of the strain amount from the strain amount Z2 to the strain amount Z3 are similar to each other. FIG. 6 is obtained based on, for example, experiments or simulations.
 直線71は、例えば、傾斜角度θ2(θ1)が0度のときの、配管400の歪量に対するコンデンサCaの静電容量の値を示している。つまり、直線71は、第1電極14の内部及び第2電極24がテーパ形状でなく、例えば、円柱形状を呈しているときの、コンデンサCaの静電容量の値を示している。尚、傾斜角度θ1と傾斜角度θ2とは、互いに同様な角度であるので、傾斜角度θ2についてのみ説明し、傾斜角度θ1の角度については、その説明を省略する。 The straight line 71 indicates, for example, the value of the capacitance of the capacitor Ca with respect to the strain amount of the pipe 400 when the inclination angle θ2 (θ1) is 0 degree. That is, the straight line 71 indicates the value of the capacitance of the capacitor Ca when the inside of the first electrode 14 and the second electrode 24 are not tapered but have, for example, a cylindrical shape. Since the tilt angle θ1 and the tilt angle θ2 are similar to each other, only the tilt angle θ2 will be described, and the description of the angle of the tilt angle θ1 will be omitted.
 曲線72は、例えば、傾斜角度θ2が所定角度(例えば、0度より大きく90度より小さい角度)のときの、配管400の歪量に対するコンデンサCaの静電容量の値を示している。 A curve 72 indicates, for example, the value of the capacitance of the capacitor Ca with respect to the strain amount of the pipe 400 when the inclination angle θ2 is a predetermined angle (for example, an angle larger than 0 degree and smaller than 90 degrees).
 コンデンサCaの静電容量の値は、配管400の歪量及び傾斜角度θ2に応じて定まる。 The value of the capacitance of the capacitor Ca is determined according to the amount of strain of the pipe 400 and the inclination angle θ2.
=傾斜角度θ2が0度の場合(直線71)=
 傾斜角度θ2が0度の場合(直線71)、配管400の歪量0、Z1、Z2、Z3夫々に対するコンデンサCaの静電容量は、静電容量C1、C2、C4、C5となる。そして、歪量の変動幅Z11に対する静電容量の変動幅C21と、歪量の幅Z21に対する静電容量の変動幅C22とは、互いに同様な変動幅となる。つまり、寿命中期における歪量の所定の変動幅に対する静電容量の変動幅(例えばC21)と、寿命末期における歪量の所定の変動幅に対する静電容量の変動幅(例えばC22)とは、相互に同様な変動幅となる。
= Inclination angle θ2 is 0 degree (straight line 71) =
When the inclination angle θ2 is 0 degree (straight line 71), the capacitances of the capacitors Ca with respect to the strain amounts 0, Z1, Z2, and Z3 of the pipe 400 are the capacitances C1, C2, C4, and C5. The capacitance variation width C21 with respect to the strain amount variation width Z11 and the capacitance variation width C22 with respect to the strain amount width Z21 are similar to each other. That is, the capacitance fluctuation range (for example, C21) with respect to the predetermined fluctuation range of the strain amount at the middle of the life and the capacitance fluctuation range (for example, C22) with respect to the predetermined fluctuation range of the strain amount at the end of the life are mutually The fluctuation range is the same.
=傾斜角度θ2が所定角度の場合(曲線72)=
 傾斜角度θ2が所定角度(例えば、40度)の場合(曲線72)、配管400の歪量0、Z1、Z2、Z3夫々に対するコンデンサCaの静電容量は、静電容量C1、C3、C6、C7となる。そして、歪量の変動幅Z11に対する静電容量の変動幅C11は、歪量の幅Z21に対する静電容量の変動幅C12よりも大きくなる。つまり、寿命中期における歪量の所定の変動幅に対する静電容量の変動幅(例えばC11)は、寿命末期における歪量の所定の変動幅に対する静電容量の変動幅(例えばC12)よりも大きくなる。
= When the inclination angle θ2 is a predetermined angle (curve 72) =
When the inclination angle θ2 is a predetermined angle (for example, 40 degrees) (curve 72), the capacitances of the capacitors Ca with respect to the strain amounts 0, Z1, Z2, and Z3 of the pipe 400 are the capacitances C1, C3, C6, C7. The capacitance variation width C11 with respect to the strain amount variation width Z11 is larger than the capacitance variation width C12 with respect to the strain amount width Z21. That is, the capacitance fluctuation range (for example, C11) with respect to the predetermined fluctuation range of the strain amount at the middle of the life is larger than the capacitance fluctuation range (for example, C12) with respect to the predetermined fluctuation range of the strain amount at the end of the life. .
=直線71と曲線72=
 歪量の変動幅Z11に対する静電容量の変動幅C11(曲線72)は、歪量の変動幅Z11に対する静電容量の変動幅C21(直線71)よりも大きくなる。又、歪量の変動幅Z21に対する静電容量の変動幅C12(曲線72)は、歪量の変動幅Z21に対する静電容量の変動幅C22(直線71)よりも小さくなる。
= Line 71 and curve 72 =
The capacitance variation width C11 (curve 72) with respect to the strain amount variation width Z11 is larger than the capacitance variation width C21 (straight line 71) with respect to the strain amount variation width Z11. Further, the capacitance variation width C12 (curve 72) with respect to the strain amount variation width Z21 is smaller than the capacitance variation width C22 (straight line 71) with respect to the strain amount variation width Z21.
===配管の余寿命(寿命消費率)とコンデンサの静電容量===
 以下、図7を参照して、本実施形態における配管の余寿命(寿命消費率)とコンデンサの静電容量について説明する。図7は、本実施形態における配管の寿命消費率とコンデンサの静電容量との関係を示す図である。尚、図7の縦軸は、コンデンサCaの静電容量の値を示している。図7の横軸は、配管400の寿命消費率を示している。
=== Piping remaining life (lifetime consumption rate) and capacitor capacitance ===
Hereinafter, the remaining life (lifetime consumption rate) of the pipe and the capacitance of the capacitor in the present embodiment will be described with reference to FIG. FIG. 7 is a diagram illustrating the relationship between the lifetime consumption rate of the pipe and the capacitance of the capacitor in the present embodiment. In addition, the vertical axis | shaft of FIG. 7 has shown the value of the electrostatic capacitance of the capacitor | condenser Ca. The horizontal axis in FIG. 7 indicates the lifetime consumption rate of the pipe 400.
 曲線711は、例えば、傾斜角度θ2が0度のときの、配管400の寿命消費率に対するコンデンサCaの静電容量の値を示している。曲線711において、配管400の寿命消費率0(%)、Ta3(%)夫々に対するコンデンサCaの静電容量は、静電容量C1、C8となる。尚、寿命消費率Ta3は、寿命中期における寿命消費率を示している。つまり、寿命消費率Ta3は、寿命消費率Ta1と寿命消費率Ta2との間の値である。又、静電容量C8は、静電容量C1よりも小さい値である。 A curve 711 indicates the value of the capacitance of the capacitor Ca with respect to the lifetime consumption rate of the pipe 400 when the inclination angle θ2 is 0 degree, for example. In the curve 711, the capacitances of the capacitors Ca with respect to the lifetime consumption rates 0 (%) and Ta3 (%) of the pipe 400 are the capacitances C1 and C8. The lifetime consumption rate Ta3 indicates the lifetime consumption rate in the middle of the lifetime. That is, the lifetime consumption rate Ta3 is a value between the lifetime consumption rate Ta1 and the lifetime consumption rate Ta2. Further, the capacitance C8 is a value smaller than the capacitance C1.
 曲線721は、例えば、傾斜角度θ2が所定角度(例えば、40度)のときの、配管400の寿命消費率に対するコンデンサCaの静電容量の値を示している。曲線721において、配管400の寿命消費率0(%)、Ta3(%)夫々に対するコンデンサCaの静電容量は、静電容量C1、C9となる。尚、静電容量C9は、静電容量C8よりも小さく且つ0よりも大きい値である。 The curve 721 indicates the value of the capacitance of the capacitor Ca with respect to the life consumption rate of the pipe 400 when the inclination angle θ2 is a predetermined angle (for example, 40 degrees), for example. In the curve 721, the capacitances of the capacitors Ca with respect to the lifetime consumption rates 0 (%) and Ta3 (%) of the pipe 400 are the capacitances C1 and C9. The capacitance C9 is a value smaller than the capacitance C8 and larger than 0.
 以上より、寿命消費率が0(%)からTa3(%)となるまでの静電容量の変動幅C32(曲線721)は、寿命消費率が0(%)からTa3(%)となるまでの静電容量の変動幅C31(曲線711)よりも大きくなる。つまり、傾斜角度θ2が所定角度(例えば、40度)とされたとき、寿命中期における寿命消費率の変動幅に対する静電容量の値の変動幅が比較的大きくなる。つまり、寿命中期における、コンデンサCaの静電容量の値に基づく配管400の余寿命(寿命消費率)の推定精度を向上させることができる。 From the above, the capacitance fluctuation range C32 (curve 721) until the lifetime consumption rate becomes 0 (%) to Ta3 (%) is the time until the lifetime consumption rate becomes 0 (%) to Ta3 (%). It becomes larger than the fluctuation range C31 (curve 711) of the capacitance. That is, when the inclination angle θ2 is set to a predetermined angle (for example, 40 degrees), the fluctuation range of the capacitance value with respect to the fluctuation range of the lifetime consumption rate in the middle of the lifetime becomes relatively large. That is, it is possible to improve the estimation accuracy of the remaining life (lifetime consumption rate) of the pipe 400 based on the capacitance value of the capacitor Ca in the middle of the life.
===余寿命診断装置の接続===
 以下、図8を参照して、本実施形態における余寿命診断装置の接続について説明する。図8は、本実施形態における余寿命診断装置の等価回路を示す回路図である。尚、コンデンサCaは、例えば、第1電極14と第2電極24によって形成されるコンデンサを示している。
=== Connection of remaining life diagnosis device ===
Hereinafter, the connection of the remaining life diagnosis apparatus in the present embodiment will be described with reference to FIG. FIG. 8 is a circuit diagram showing an equivalent circuit of the remaining life diagnosis apparatus in the present embodiment. The capacitor Ca is a capacitor formed by the first electrode 14 and the second electrode 24, for example.
 診断装置9は、第1端子901、第2端子902を有する。 The diagnostic device 9 has a first terminal 901 and a second terminal 902.
 第1端子901は、例えば、交流の電圧を印加するための端子である。第1端子901は、例えば、コンデンサCaの静電容量に基づいて導電線41Aを流れる電流を印加(出力)するための端子としても機能する。 The first terminal 901 is, for example, a terminal for applying an alternating voltage. The first terminal 901 also functions as a terminal for applying (outputting) a current flowing through the conductive wire 41A based on the capacitance of the capacitor Ca, for example.
 第2端子902は、例えば、印加された電圧により、コンデンサCaを通過した電流を検出するための端子である。尚、第2端子902が、例えば、交流の電圧を印加するための端子であることとして、第1端子901が、例えば、印加された電圧により、コンデンサCaを通過した電流を検出するための端子であることとしてもよい。 The second terminal 902 is, for example, a terminal for detecting a current that has passed through the capacitor Ca by an applied voltage. Note that the second terminal 902 is, for example, a terminal for applying an AC voltage, and the first terminal 901 is a terminal for detecting a current that has passed through the capacitor Ca by, for example, the applied voltage. It is good also as being.
 診断装置9は、コンデンサCaの静電容量を測定するために、測定ケーブル4A、4B(図3)を介して第1電極14、第2電極24に接続される。具体的には、診断装置9の第1端子901が、測定ケーブル4Aの導電線41Aを介して第1電極14に接続される。診断装置9の第2端子902が、測定ケーブル4Bの導電線41Bを介して第2電極24に接続される。 The diagnostic device 9 is connected to the first electrode 14 and the second electrode 24 via the measurement cables 4A and 4B (FIG. 3) in order to measure the capacitance of the capacitor Ca. Specifically, the first terminal 901 of the diagnostic device 9 is connected to the first electrode 14 via the conductive wire 41A of the measurement cable 4A. The second terminal 902 of the diagnostic device 9 is connected to the second electrode 24 via the conductive wire 41B of the measurement cable 4B.
 尚、測定ケーブル4A、4Bは、例えば同軸ケーブルである。導電線41A、41Bは夫々、測定ケーブル4A、4Bの内部導体を示し、導電線42A、42Bは夫々、測定ケーブル4A、4Bの外部導体を示していることとする。尚、導電線42A、42B夫々の一端は、例えば、筐体11、21に対して比較的強固に接続されているが、図3においては、説明の便宜上、1点で接続されているように示されている。 Note that the measurement cables 4A and 4B are, for example, coaxial cables. The conductive wires 41A and 41B indicate the inner conductors of the measurement cables 4A and 4B, respectively, and the conductive wires 42A and 42B indicate the outer conductors of the measurement cables 4A and 4B, respectively. Note that one end of each of the conductive wires 42A and 42B is connected to the casings 11 and 21 relatively firmly, for example, but in FIG. 3, it is connected at one point for convenience of explanation. It is shown.
===診断装置の機能===
 以下、図3、図7及び図9を参照して、本実施形態における診断装置の機能について説明する。図9は、本実施形態における診断装置の機能を示すブロック図である。
=== Function of the diagnostic apparatus ===
Hereinafter, the function of the diagnostic apparatus according to the present embodiment will be described with reference to FIGS. 3, 7, and 9. FIG. 9 is a block diagram illustrating functions of the diagnostic device according to the present embodiment.
 診断装置9は、コンデンサCaの静電容量の値に基づいて、配管400の余寿命を推定する装置である。診断装置9は、静電容量測定部91、歪検出部92、余寿命診断部93(推定装置)、記憶部94(記憶装置)、表示部95を有する。 The diagnostic device 9 is a device that estimates the remaining life of the pipe 400 based on the capacitance value of the capacitor Ca. The diagnostic device 9 includes a capacitance measurement unit 91, a strain detection unit 92, a remaining life diagnosis unit 93 (estimation device), a storage unit 94 (storage device), and a display unit 95.
 静電容量測定部91は、第1電極14と第2電極24によって形成されるコンデンサCaの静電容量を測定する。静電容量測定部91は、例えば、第1端子901及び第2端子902のどちらかから交流電圧を印加(出力)して、当該電圧が出力されたときに導電線41A、42Aを介してコンデンサCaを通過する交流電流(以下、「検出電流」とも称する)を第1端子901及び第2端子902のどちらかで検出する。静電容量測定部91は、例えば、当該印加(出力)された交流電圧の値と検出電流の値とに基づいて、コンデンサCaの静電容量を算出する。 The capacitance measuring unit 91 measures the capacitance of the capacitor Ca formed by the first electrode 14 and the second electrode 24. For example, the capacitance measuring unit 91 applies (outputs) an AC voltage from one of the first terminal 901 and the second terminal 902, and when the voltage is output, the capacitor is connected via the conductive lines 41A and 42A. An alternating current passing through Ca (hereinafter also referred to as “detection current”) is detected by either the first terminal 901 or the second terminal 902. For example, the capacitance measuring unit 91 calculates the capacitance of the capacitor Ca based on the value of the applied (output) AC voltage and the value of the detected current.
 歪検出部92は、静電容量測定部91の測定結果に基づいて、測定対象部分403の歪量を算出する。歪検出部92は、例えば、第1時刻におけるコンデンサCaの静電容量の値と、当該第1時刻よりも後の第2時刻におけるコンデンサCaの静電容量の値とに基づいて、第1時刻から第2時刻までの間の所定時間(所定期間)における測定対象部分403の歪量を算出する。 The strain detection unit 92 calculates the strain amount of the measurement target portion 403 based on the measurement result of the capacitance measurement unit 91. For example, the strain detection unit 92 performs the first time based on the value of the capacitance of the capacitor Ca at the first time and the value of the capacitance of the capacitor Ca at the second time after the first time. The distortion amount of the measurement target portion 403 in a predetermined time (predetermined period) from the first time to the second time is calculated.
 ここで、コンデンサCaの静電容量の値は、第1測定装置100と第2測定装置200との間の距離G1(図3)に応じて定まることになる。つまり、コンデンサCaの静電容量の値は、第1電極14に挿入される第2電極24の長さに応じて定まることになる。そして、この距離G1は、測定対象部分403の歪量に応じた長さとなる。よって、例えば、所定時間におけるコンデンサCaの静電容量の値の変動幅は、所定時間における距離G1の変動幅に応じて定まることになる。つまり、所定時間における距離G1の変動幅に対応する測定対象部分403の歪量については、コンデンサCaの静電容量の値の変動幅に基づいて求めることが可能となる。 Here, the value of the capacitance of the capacitor Ca is determined according to the distance G1 (FIG. 3) between the first measuring device 100 and the second measuring device 200. That is, the value of the capacitance of the capacitor Ca is determined according to the length of the second electrode 24 inserted into the first electrode 14. The distance G1 is a length corresponding to the amount of distortion of the measurement target portion 403. Therefore, for example, the fluctuation range of the capacitance value of the capacitor Ca in a predetermined time is determined according to the fluctuation range of the distance G1 in the predetermined time. That is, the strain amount of the measurement target portion 403 corresponding to the fluctuation range of the distance G1 in a predetermined time can be obtained based on the fluctuation range of the capacitance value of the capacitor Ca.
 歪検出部92は、例えば、第1時刻におけるコンデンサCaの静電容量の値と、第2時刻におけるコンデンサCaの静電容量の値との差分に基づいて、測定対象部分403の歪量を算出する。 For example, the strain detection unit 92 calculates the strain amount of the measurement target portion 403 based on the difference between the capacitance value of the capacitor Ca at the first time and the capacitance value of the capacitor Ca at the second time. To do.
 尚、例えば、コンデンサCaの静電容量の値の変動幅と、測定対象部分403の歪量とが対応付けられた情報が予め記憶部94に記憶されていることとしてもよい。このとき、歪検出部92は、例えば、静電容量測定部91の測定結果と記憶部94に記憶されている情報に基づいて、測定対象部分403の歪量を算出することとする。 Note that, for example, information in which the fluctuation range of the capacitance value of the capacitor Ca and the distortion amount of the measurement target portion 403 are associated with each other may be stored in the storage unit 94 in advance. At this time, the strain detection unit 92 calculates the strain amount of the measurement target portion 403 based on the measurement result of the capacitance measurement unit 91 and the information stored in the storage unit 94, for example.
 余寿命診断部93は、静電容量測定部91の測定結果等に基づいて、配管400の余寿命を推定する。余寿命診断部93は、例えば、第1時刻から当該第1時刻よりも後の第2時刻までのコンデンサCaの静電容量の変動幅に基づいて、配管400の余寿命を算出する。つまり、余寿命診断部93は、コンデンサCaの静電容量の値が、配管400の歪みに起因して変化することにより余寿命を推定している。ここで、コンデンサCaの静電容量の値に対する配管400の余寿命を示す情報(例えば、図7の曲線712に示されるデータ)が、記憶部94に予め記憶されていることとする。余寿命診断部93は、静電容量測定部91の測定結果及び記憶部94に記憶されている情報に基づいて、配管400の余寿命を推定する。 The remaining life diagnosis unit 93 estimates the remaining life of the pipe 400 based on the measurement result of the capacitance measuring unit 91 and the like. For example, the remaining life diagnosis unit 93 calculates the remaining life of the pipe 400 based on the fluctuation range of the capacitance of the capacitor Ca from the first time to the second time after the first time. That is, the remaining life diagnosis unit 93 estimates the remaining life by changing the capacitance value of the capacitor Ca due to the distortion of the pipe 400. Here, it is assumed that information (for example, data indicated by a curve 712 in FIG. 7) indicating the remaining life of the pipe 400 with respect to the capacitance value of the capacitor Ca is stored in the storage unit 94 in advance. The remaining life diagnosis unit 93 estimates the remaining life of the pipe 400 based on the measurement result of the capacitance measuring unit 91 and the information stored in the storage unit 94.
===余寿命の推定===
 以下、図7を参照して、本実施形態における余寿命の推定について説明する。
=== Estimation of remaining life ===
Hereinafter, the estimation of the remaining life in the present embodiment will be described with reference to FIG.
 余寿命診断装置900は、例えば、配管400が火力発電所内に設けられたとき(第1時間)におけるコンデンサCaの静電容量を測定する。この後、余寿命診断装置900は、第1時間から所定時間経過したとき(第2時間)におけるコンデンサCaの静電容量を測定する。余寿命診断装置900は、例えば、第1時間から当該第1時間よりも後の第2時間までのコンデンサCaの静電容量の変動幅に基づいて、第2時間における配管400の余寿命を推定する。尚、例えば、上述の第2時間が寿命中期における時間である場合、上述のコンデンサCaの静電容量の変動幅が比較的大きくなっている。従って、余寿命診断装置900においては、寿命中期の第2時間における配管400の余寿命を比較的高精度に推定することが可能となる。 The remaining life diagnosis apparatus 900 measures, for example, the capacitance of the capacitor Ca when the pipe 400 is provided in the thermal power plant (first time). Thereafter, the remaining life diagnosis apparatus 900 measures the capacitance of the capacitor Ca when a predetermined time has elapsed from the first time (second time). The remaining life diagnosis apparatus 900 estimates the remaining life of the pipe 400 in the second time based on, for example, the fluctuation range of the capacitance of the capacitor Ca from the first time to the second time after the first time. To do. For example, when the above-mentioned second time is a time in the middle of the life, the fluctuation range of the capacitance of the above-described capacitor Ca is relatively large. Therefore, in the remaining life diagnosis apparatus 900, it is possible to estimate the remaining life of the pipe 400 at the second time in the middle of the life with relatively high accuracy.
 前述したように、余寿命診断装置900は、第1測定装置100、第2測定装置200、診断装置9を有する。第1測定装置100は、筒形状を呈している第1電極14を有し、配管400に取り付けられる。第2測定装置200は、棒形状を呈している第2電極24を有し、配管400に取り付けられる。尚、第2電極24は、第1電極14の内部に挿入される。診断装置9は、コンデンサCaの静電容量の値が、配管400の歪みに起因して変化することにより配管400の余寿命を推定している。尚、コンデンサCaの静電容量の値は、第1電極14に挿入される第2電極24の長さに応じて定まる。第1電極14の内部と第2電極24の少なくとも一方は、第1電極14に挿入される第2電極24の長さが短くなるにつれて、第1電極14と第2電極24との対向面積が小さくなるとともに第1電極14と第2電極24との間の距離が長くなるように、円錐台形状を呈している。これらの構成により、時間の経過に対する配管400の歪量の変動幅が比較的小さい例えば寿命中期(図2)において、時間の経過に対するコンデンサCaの静電容量の値の変動幅を増大させることができる。従って、余寿命診断装置900においては、例えば寿命中期における配管400の余寿命の推定精度を向上させることができる。 As described above, the remaining life diagnosis apparatus 900 includes the first measurement apparatus 100, the second measurement apparatus 200, and the diagnosis apparatus 9. The first measuring device 100 has a first electrode 14 having a cylindrical shape and is attached to a pipe 400. The second measuring device 200 has a second electrode 24 having a rod shape and is attached to the pipe 400. The second electrode 24 is inserted into the first electrode 14. The diagnostic device 9 estimates the remaining life of the pipe 400 by changing the capacitance value of the capacitor Ca due to the distortion of the pipe 400. Note that the value of the capacitance of the capacitor Ca is determined according to the length of the second electrode 24 inserted into the first electrode 14. At least one of the inside of the first electrode 14 and the second electrode 24 has an opposing area between the first electrode 14 and the second electrode 24 as the length of the second electrode 24 inserted into the first electrode 14 becomes shorter. A truncated cone shape is formed so that the distance between the first electrode 14 and the second electrode 24 becomes longer as the distance becomes smaller. With these configurations, the fluctuation range of the strain amount of the pipe 400 with respect to the passage of time is relatively small. For example, in the middle of the life (FIG. 2), the fluctuation range of the capacitance value of the capacitor Ca with respect to the passage of time can be increased. it can. Therefore, in the remaining life diagnosis apparatus 900, for example, it is possible to improve the estimation accuracy of the remaining life of the pipe 400 in the middle of the life.
 又、第1電極14の内部は、第1電極14の内径が第1測定装置100側(-X)から第2測定装置200側(+X)に向かうにつれて大きくなるような円錐台形状を呈している。この構成により、第1電極14に挿入される第2電極24の長さが短くなるにつれて、第1電極14と第2電極24との対向面積を確実に小さくし且つ第1電極14と第2電極24との間の距離を確実に長くすることができる。従って、余寿命診断装置900においては、例えば寿命中期における配管400の余寿命の推定精度を確実に向上させることができる。又、第1電極14の内部における第2測定装置200側が大径となっているので、第1電極14に対する第2電極24の挿入が容易となる。つまり、容易に組み立てることができる使い勝手の良い余寿命診断装置900を提供することができる。 Further, the inside of the first electrode 14 has a truncated cone shape in which the inner diameter of the first electrode 14 increases from the first measuring device 100 side (−X) toward the second measuring device 200 side (+ X). Yes. With this configuration, as the length of the second electrode 24 inserted into the first electrode 14 becomes shorter, the facing area between the first electrode 14 and the second electrode 24 is reliably reduced and the first electrode 14 and the second electrode 24 The distance between the electrodes 24 can be reliably increased. Therefore, in the remaining life diagnosis apparatus 900, for example, it is possible to reliably improve the estimation accuracy of the remaining life of the pipe 400 in the middle of the life. Further, since the second measuring device 200 side inside the first electrode 14 has a large diameter, the second electrode 24 can be easily inserted into the first electrode 14. That is, it is possible to provide an easy-to-use remaining life diagnostic apparatus 900 that can be easily assembled.
 又、第2電極24は、第2電極24の外径が第1測定装置100側(-X)から第2測定装置200側(+X)に向かうにつれて大きくなるような円錐台形状を呈している。この構成により、第1電極14に挿入される第2電極24の長さが短くなるにつれて、第1電極14と第2電極24との対向面積を確実に小さくし且つ第1電極14と第2電極24との間の距離を確実に長くすることができる。従って、余寿命診断装置900においては、例えば寿命中期における配管400の余寿命の推定精度を確実に向上させることができる。又、第2電極24における第1測定装置100側が小径となっているので、第1電極14に対する第2電極24の挿入が容易となる。つまり、容易に組み立てることができる使い勝手の良い余寿命診断装置900を提供することができる。 The second electrode 24 has a truncated cone shape in which the outer diameter of the second electrode 24 increases from the first measuring device 100 side (−X) toward the second measuring device 200 side (+ X). . With this configuration, as the length of the second electrode 24 inserted into the first electrode 14 becomes shorter, the facing area between the first electrode 14 and the second electrode 24 is reliably reduced and the first electrode 14 and the second electrode 24 The distance between the electrodes 24 can be reliably increased. Therefore, in the remaining life diagnosis apparatus 900, for example, it is possible to reliably improve the estimation accuracy of the remaining life of the pipe 400 in the middle of the life. Further, since the first measuring device 100 side of the second electrode 24 has a small diameter, the second electrode 24 can be easily inserted into the first electrode 14. That is, it is possible to provide an easy-to-use remaining life diagnostic apparatus 900 that can be easily assembled.
 又、第1電極14の内部及び第2電極24は、第1電極14の第2電極24との対向面と第2電極24の第1電極14との対向面が互いに略平行となるような円錐台形状を呈している。この構成により、時間の経過に対する配管400の歪量の変動幅が比較的小さい例えば寿命中期(図2)において、時間の経過に対するコンデンサCaの静電容量の値の変動幅を確実に増大させることができる。従って、寿命中期における配管400の余寿命の推定精度を確実に向上させることができる。又、第2電極24を、第1電極14の長さ分だけ第1電極14の内部に挿入することができる。つまり、余寿命診断装置900においては、余寿命診断装置900で検出できる配管400の歪量を増大させることができる。つまり、余寿命診断装置900では、時間の経過に対する配管400の歪量の変動幅が比較的大きい例えば寿命末期(図2)においても、時間の経過に応じてコンデンサCaの静電容量の値が変化することになる。従って、寿命中期及び寿命末期の双方における配管400の余寿命の推定精度を向上させることができる。 Further, the inside of the first electrode 14 and the second electrode 24 are arranged such that the surface of the first electrode 14 facing the second electrode 24 and the surface of the second electrode 24 facing the first electrode 14 are substantially parallel to each other. It has a truncated cone shape. With this configuration, the fluctuation range of the strain amount of the pipe 400 with respect to the passage of time is relatively small. For example, in the middle of the life (FIG. 2), the fluctuation range of the capacitance value of the capacitor Ca with respect to the passage of time can be reliably increased. Can do. Therefore, it is possible to reliably improve the estimation accuracy of the remaining life of the pipe 400 in the middle of the life. Further, the second electrode 24 can be inserted into the first electrode 14 by the length of the first electrode 14. That is, in the remaining life diagnosis apparatus 900, the amount of distortion of the pipe 400 that can be detected by the remaining life diagnosis apparatus 900 can be increased. That is, in the remaining life diagnosis apparatus 900, the value of the capacitance of the capacitor Ca increases with the passage of time even when the fluctuation range of the strain amount of the pipe 400 with respect to the passage of time is relatively large, for example, at the end of the life (FIG. 2). Will change. Therefore, it is possible to improve the estimation accuracy of the remaining life of the pipe 400 in both the middle life and the last life.
 又、第1測定装置100は、筐体11、固定部材13を有している。筐体11は、第2電極24が第1電極14に挿入されるように第1電極14を収容した状態で配管400に取り付けられる金属製の筐体である。筐体11の内径は、筐体11の内部に第1電極14を収容できるように、第1電極14の外径よりも大きくされている。固定部材13は、筐体11の内部において第1電極14が筐体11と接触しないように、第1電極14を支持する絶縁性の部材である。これらの構成により、第1電極14と配管400との間の絶縁抵抗の値を増大させることができる。よって、例えば、コンデンサCaの静電容量を測定する際の、第1電極14から配管400への漏れ電流を低減させることができる。従って、コンデンサCaの静電容量の測定精度を向上させて、配管400の余寿命の推定精度を更に向上させることができる。 Further, the first measuring device 100 includes a housing 11 and a fixing member 13. The casing 11 is a metal casing that is attached to the pipe 400 in a state in which the first electrode 14 is accommodated so that the second electrode 24 is inserted into the first electrode 14. The inner diameter of the housing 11 is made larger than the outer diameter of the first electrode 14 so that the first electrode 14 can be accommodated inside the housing 11. The fixing member 13 is an insulating member that supports the first electrode 14 so that the first electrode 14 does not contact the housing 11 inside the housing 11. With these configurations, the value of the insulation resistance between the first electrode 14 and the pipe 400 can be increased. Therefore, for example, the leakage current from the first electrode 14 to the pipe 400 when measuring the capacitance of the capacitor Ca can be reduced. Therefore, the measurement accuracy of the capacitance of the capacitor Ca can be improved, and the estimation accuracy of the remaining life of the pipe 400 can be further improved.
 又、第2測定装置200は、筐体21、固定部材23を有している。筐体21は、第2電極24が第1電極14に挿入されるように第2電極24を収容した状態で配管400に取り付けられる金属製の筐体である。筐体21の内径は、筐体21の内部に第2電極24を収容できるように、第2電極24の外径よりも大きくされている。固定部材23は、筐体21の内部において第2電極24が筐体21と接触しないように、第2電極24を支持する絶縁性の部材である。これらの構成により、第2電極24と配管400との間の絶縁抵抗の値を増大させることができる。よって、例えば、コンデンサCaの静電容量を測定する際の、第2電極24から配管400への漏れ電流を低減させることができ、コンデンサCaの静電容量を安定的に測定することができる。 Further, the second measuring apparatus 200 includes a housing 21 and a fixing member 23. The casing 21 is a metal casing that is attached to the pipe 400 in a state in which the second electrode 24 is accommodated so that the second electrode 24 is inserted into the first electrode 14. The inner diameter of the housing 21 is larger than the outer diameter of the second electrode 24 so that the second electrode 24 can be accommodated inside the housing 21. The fixing member 23 is an insulating member that supports the second electrode 24 so that the second electrode 24 does not contact the casing 21 inside the casing 21. With these configurations, the value of the insulation resistance between the second electrode 24 and the pipe 400 can be increased. Therefore, for example, the leakage current from the second electrode 24 to the pipe 400 when measuring the capacitance of the capacitor Ca can be reduced, and the capacitance of the capacitor Ca can be stably measured.
 又、第1測定装置100は、配管400と筐体11との間において筐体11から配管400に向かって突出し、配管400に固定され金属製の脚12を更に有する。又、第2測定装置200は、配管400と筐体21との間において筐体21から配管400に向かって突出し、配管400に固定され金属製の脚22を更に有する。これらの構成により、第1測定装置100及び第2測定装置200は、確実に配管400に固定されることになる。よって、コンデンサCaの静電容量の値に対して、配管400の歪量が確実に反映されることになる。従って、配管400の余寿命の推定精度を向上させることができる。 Further, the first measuring apparatus 100 further has metal legs 12 that protrude from the casing 11 toward the pipe 400 between the pipe 400 and the casing 11 and are fixed to the pipe 400. The second measuring apparatus 200 further has a metal leg 22 that is fixed to the pipe 400 and protrudes from the casing 21 toward the pipe 400 between the pipe 400 and the casing 21. With these configurations, the first measuring device 100 and the second measuring device 200 are securely fixed to the pipe 400. Therefore, the distortion amount of the pipe 400 is reliably reflected on the capacitance value of the capacitor Ca. Therefore, the estimation accuracy of the remaining life of the pipe 400 can be improved.
 又、配管400は、第1配管401と第1配管401に接続される第2配管402を含んでいる。脚12、22は夫々、第1配管401、第2配管402に固定される。これらの構成により、コンデンサCaの静電容量の値に対して、配管400の例えば溶接部分等の測定対象部分403の歪量を反映させることができる。従って、余寿命診断装置900においては、例えば、比較的高温(例えば600℃以上)下において時間の経過に伴って亀裂が入り易い測定対象部分403の歪量に基づいて、配管400の余寿命が推定されることになる。よって、余寿命診断装置900は、配管400の余寿命の推定精度を向上させることができる。 The pipe 400 includes a first pipe 401 and a second pipe 402 connected to the first pipe 401. The legs 12 and 22 are fixed to the first pipe 401 and the second pipe 402, respectively. With these configurations, the distortion amount of the measurement target portion 403 such as the welded portion of the pipe 400 can be reflected on the capacitance value of the capacitor Ca. Accordingly, in the remaining life diagnosis apparatus 900, for example, the remaining life of the pipe 400 is determined based on the strain amount of the measurement target portion 403 that easily cracks with time at a relatively high temperature (for example, 600 ° C. or higher). Will be estimated. Therefore, the remaining life diagnosis apparatus 900 can improve the estimation accuracy of the remaining life of the pipe 400.
 又、余寿命診断装置900の診断装置9は、記憶部94を有する。記憶部94には、コンデンサCaの静電容量の値に対する配管400の余寿命を示す情報(例えば、図7の曲線712に示されるデータ)が予め記憶されている。余寿命診断部93は、記憶部94に記憶されている情報に基づいて、配管400の余寿命を推定する。これらの構成により、例えば、配管400が設けられている環境等に基づいて、コンデンサCaの静電容量の値に対する配管400の余寿命を示す情報を、記憶部94に予め記憶させることができる。例えば、配管400内に供給されているガスの温度等に基づいて、コンデンサCaの静電容量の値に対する配管400の余寿命を定めることができる。従って、配管400が設けられている環境を示す情報を、配管400の余寿命の推定に反映させることができる。従って、余寿命診断装置900は、配管400の余寿命の推定精度を向上させることができる。又、配管400の余寿命を推定するための煩雑な計算が不要となるために、配管400の余寿命を迅速に推定することが可能となる。 Further, the diagnostic device 9 of the remaining life diagnostic device 900 includes a storage unit 94. The storage unit 94 stores in advance information indicating the remaining life of the pipe 400 with respect to the capacitance value of the capacitor Ca (for example, data indicated by a curve 712 in FIG. 7). The remaining life diagnosis unit 93 estimates the remaining life of the pipe 400 based on the information stored in the storage unit 94. With these configurations, for example, based on the environment in which the pipe 400 is provided, information indicating the remaining life of the pipe 400 with respect to the capacitance value of the capacitor Ca can be stored in the storage unit 94 in advance. For example, the remaining life of the pipe 400 with respect to the capacitance value of the capacitor Ca can be determined based on the temperature of the gas supplied into the pipe 400 or the like. Therefore, information indicating the environment in which the pipe 400 is provided can be reflected in the estimation of the remaining life of the pipe 400. Therefore, the remaining life diagnosis apparatus 900 can improve the estimation accuracy of the remaining life of the pipe 400. In addition, since a complicated calculation for estimating the remaining life of the pipe 400 is not required, it is possible to quickly estimate the remaining life of the pipe 400.
 又、余寿命診断装置900の余寿命診断部93は、第1時間から第1時間よりも後の第2時間までのコンデンサCaの静電容量の値の変動幅に基づいて、第2時間における配管400の余寿命を推定する。ここで、例えば、寿命中期においては、時間の経過に対するコンデンサCaの静電容量の変動幅が比較的大きくなる。従って、配管400の余寿命の推定精度を向上させることができる。 In addition, the remaining life diagnosis unit 93 of the remaining life diagnosis apparatus 900 performs the second time based on the fluctuation range of the capacitance value of the capacitor Ca from the first time to the second time after the first time. The remaining life of the pipe 400 is estimated. Here, for example, in the middle of the life, the fluctuation range of the capacitance of the capacitor Ca with respect to the passage of time becomes relatively large. Therefore, the estimation accuracy of the remaining life of the pipe 400 can be improved.
 尚、上記本実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。 Note that the above embodiment is intended to facilitate understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
 本実施形態においては、第1電極14の内部及び第2電極24の双方が円錐台形状を呈していることについて説明したが、これに限られるものではない。例えば、第1電極14の内部が円柱形状を呈しており、第2電極24が円錐台形状を呈していることとしてもよい。又、例えば、第1電極14の内部が円錐台形状を呈しており、第2電極24が円柱形状を呈していることとしてもよい。又、例えば、第1電極14の内部及び第2電極24の双方が、多角錐台形状を呈していることとしてもよく、円錐形状を呈していることとしてもよく、多角錐形状を呈していることとしてもよい。 In the present embodiment, it has been described that both the inside of the first electrode 14 and the second electrode 24 have a truncated cone shape, but the present invention is not limited to this. For example, the inside of the first electrode 14 may have a cylindrical shape, and the second electrode 24 may have a truncated cone shape. Further, for example, the inside of the first electrode 14 may have a truncated cone shape, and the second electrode 24 may have a cylindrical shape. Further, for example, both the inside of the first electrode 14 and the second electrode 24 may have a polygonal frustum shape, may have a conical shape, and have a polygonal pyramid shape. It is good as well.
 又、本実施形態においては、余寿命診断部93が、静電容量測定部91の測定結果等に基づいて、配管400の余寿命を推定することについて説明したが、これに限定されるものではない。例えば、余寿命診断部93は、歪検出部92の算出結果等に基づいて、配管400の余寿命を推定することとしてもよい。この場合、余寿命診断部93は、例えば、第1時刻から当該第1時刻よりも後の第2時刻までの配管400の歪量の変動幅に基づいて、配管400の余寿命を算出する。ここで、配管400の歪量の変動幅と、配管400の余寿命とが対応付けられた情報が、記憶部94に予め記憶されていることとする。余寿命診断部93は、歪検出部92の算出結果及び記憶部94に記憶されている情報に基づいて、配管400の余寿命を推定する。 Moreover, in this embodiment, although the remaining life diagnosis part 93 demonstrated estimating the remaining life of the piping 400 based on the measurement result of the electrostatic capacitance measurement part 91, etc., it is not limited to this. Absent. For example, the remaining life diagnosis unit 93 may estimate the remaining life of the pipe 400 based on the calculation result of the strain detection unit 92 or the like. In this case, the remaining life diagnosis unit 93 calculates the remaining life of the pipe 400 based on, for example, the fluctuation range of the strain amount of the pipe 400 from the first time to the second time after the first time. Here, it is assumed that information in which the fluctuation range of the strain amount of the pipe 400 is associated with the remaining life of the pipe 400 is stored in the storage unit 94 in advance. The remaining life diagnosis unit 93 estimates the remaining life of the pipe 400 based on the calculation result of the strain detection unit 92 and the information stored in the storage unit 94.
9        診断装置
11、21    筐体
12、22    脚
13、23    固定部材
14       第1電極
24       第2電極
93       余寿命診断部
94       記憶部
100      第1測定装置
200      第2測定装置
400      配管
401      第1配管
402      第2配管
900      余寿命診断装置
9 Diagnosis device 11, 21 Case 12, 22 Leg 13, 23 Fixing member 14 First electrode 24 Second electrode 93 Remaining life diagnosis unit 94 Storage unit 100 First measurement device 200 Second measurement device 400 Pipe 401 First pipe 402 Second piping 900 remaining life diagnosis device

Claims (10)

  1.  筒状電極を有し、被測定物に取り付けられる第1電極体と、
     前記筒状電極の内部に挿入される棒状電極を有し、前記被測定物に取り付けられる第2電極体と、
     前記筒状電極に挿入される前記棒状電極の長さに応じて定まる静電容量の値が、前記被測定物の歪みに起因して変化することにより余寿命を推定する推定装置と、を備え、
     前記筒状電極の内部と前記棒状電極の少なくとも一方は、前記筒状電極に挿入される前記棒状電極の長さが短くなるにつれて、前記筒状電極と前記棒状電極との対向面積が小さくなるとともに前記筒状電極と前記棒状電極との間の距離が長くなるように、円錐台形状を呈している
     ことを特徴とする余寿命推定装置。
    A first electrode body having a cylindrical electrode and attached to an object to be measured;
    A second electrode body having a rod-shaped electrode inserted into the cylindrical electrode and attached to the object to be measured;
    An estimation device that estimates the remaining lifetime by changing the capacitance value determined according to the length of the rod-shaped electrode inserted into the cylindrical electrode due to distortion of the object to be measured. ,
    At least one of the inside of the cylindrical electrode and the rod-shaped electrode has a smaller opposing area between the cylindrical electrode and the rod-shaped electrode as the length of the rod-shaped electrode inserted into the cylindrical electrode decreases. A remaining life estimation apparatus characterized by having a truncated cone shape so that a distance between the cylindrical electrode and the rod-shaped electrode is increased.
  2.  前記筒状電極の内部は、前記筒状電極の内径が前記第1電極体側から前記第2電極体側に向かうにつれて大きくなるような円錐台形状を呈している
     ことを特徴とする請求項1に記載の余寿命推定装置。
    The inside of the said cylindrical electrode is exhibiting the truncated cone shape that the internal diameter of the said cylindrical electrode becomes large as it goes to the said 2nd electrode body side from the said 1st electrode body side. Remaining life estimation device.
  3.  前記棒状電極は、前記棒状電極の外径が前記第1電極体側から前記第2電極体側に向かうにつれて大きくなるような円錐台形状を呈している、
     ことを特徴とする請求項1又は2に記載の余寿命推定装置。
    The rod-shaped electrode has a truncated cone shape such that the outer diameter of the rod-shaped electrode increases from the first electrode body side toward the second electrode body side,
    The remaining life estimation apparatus according to claim 1 or 2, characterized in that:
  4.  前記筒状電極の内部及び前記棒状電極は、前記筒状電極の前記棒状電極との対向面と前記棒状電極の前記筒状電極との対向面が互いに略平行となるような円錐台形状を呈している
     ことを特徴とする請求項1乃至3の何れかに記載の余寿命推定装置。
    The inside of the cylindrical electrode and the rod-shaped electrode have a truncated cone shape such that the surface of the cylindrical electrode facing the rod-shaped electrode and the surface of the rod-shaped electrode facing the cylindrical electrode are substantially parallel to each other. The remaining life estimation apparatus according to any one of claims 1 to 3, wherein the remaining life estimation apparatus is provided.
  5.  前記第1電極体は、前記筒状電極の外径よりも大きい内径を有すると共に前記棒状電極が前記筒状電極に挿入されるように前記筒状電極を収容した状態で前記被測定物に取り付けられる金属製の第1ケースと、前記第1ケースに対して前記筒状電極が接触しないように前記第1ケースの内部において前記筒状電極を支持する絶縁性の第1支持部材と、を更に有する
     ことを特徴とする請求項1乃至4の何れかに記載の余寿命推定装置。
    The first electrode body has an inner diameter larger than an outer diameter of the cylindrical electrode and is attached to the object to be measured in a state in which the cylindrical electrode is accommodated so that the rod electrode is inserted into the cylindrical electrode. A metal first case, and an insulating first support member that supports the cylindrical electrode inside the first case so that the cylindrical electrode does not contact the first case. The remaining life estimation apparatus according to claim 1, wherein the remaining life estimation apparatus is provided.
  6.  前記第2電極体は、前記棒状電極の外径よりも大きい内径を有すると共に前記棒状電極が前記筒状電極に挿入されるように前記棒状電極を収容した状態で前記被測定物に取り付けられる金属製の第2ケースと、前記第2ケースに対して前記棒状電極が接触しないように前記第2ケースの内部において前記棒状電極を支持する絶縁性の第2支持部材と、を更に有する
     ことを特徴とする請求項1乃至5の何れかに記載の余寿命推定装置。
    The second electrode body has a larger inner diameter than the outer diameter of the rod-shaped electrode and is a metal attached to the object to be measured in a state in which the rod-shaped electrode is accommodated so that the rod-shaped electrode is inserted into the cylindrical electrode. A second case made of metal, and an insulating second support member that supports the rod-shaped electrode inside the second case so that the rod-shaped electrode does not contact the second case. The remaining life estimation apparatus according to any one of claims 1 to 5.
  7.  前記第1電極体は、前記被測定物と前記第1ケースとの間において前記第1ケースから前記被測定物に向かって突出し、前記被測定物に固定される金属製の第1脚、を更に有し、
     前記第2電極体は、前記被測定物と前記第2ケースとの間において前記第2ケースから前記被測定物に向かって突出し、前記被測定物に固定される金属製の第2脚、を更に有する
     ことを特徴とする請求項1乃至6の何れかに記載の余寿命推定装置。
    The first electrode body protrudes from the first case toward the device to be measured between the device to be measured and the first case, and has a metal first leg fixed to the device to be measured. In addition,
    The second electrode body protrudes from the second case toward the device to be measured between the device to be measured and the second case, and has a metal second leg fixed to the device to be measured. The remaining life estimation apparatus according to claim 1, further comprising:
  8.  前記被測定物は、第1配管と前記第1配管に接続される第2配管と、を含み、
     前記第1脚は、前記第1配管に固定され、
     前記第2脚は、前記第2配管に固定される
     ことを特徴とする請求項7に記載の余寿命推定装置。
    The object to be measured includes a first pipe and a second pipe connected to the first pipe,
    The first leg is fixed to the first pipe;
    The remaining life estimation apparatus according to claim 7, wherein the second leg is fixed to the second pipe.
  9.  前記静電容量の値に対する前記被測定物の余寿命を示す情報が予め記憶されている記憶装置、を更に備え、
     前記推定装置は、前記記憶装置に記憶されている情報に基づいて、前記被測定物の余寿命を推定する
     ことを特徴とする請求項1乃至8の何れかに記載の余寿命推定装置。
    A storage device in which information indicating the remaining life of the object to be measured with respect to the capacitance value is stored in advance;
    The remaining life estimation device according to claim 1, wherein the estimation device estimates a remaining life of the device under test based on information stored in the storage device.
  10.  前記推定装置は、第1時間から前記第1時間よりも後の第2時間まで前記静電容量の値の変動幅に基づいて、前記第2時間における前記被測定物の余寿命を推定する
     ことを特徴とする請求項9に記載の余寿命推定装置。
    The estimation device estimates a remaining life of the object to be measured in the second time based on a fluctuation range of the capacitance value from a first time to a second time after the first time. The remaining life estimation apparatus according to claim 9.
PCT/JP2013/056518 2013-03-08 2013-03-08 Remaining life estimation device WO2014136269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/056518 WO2014136269A1 (en) 2013-03-08 2013-03-08 Remaining life estimation device
JP2013530471A JP5426055B1 (en) 2013-03-08 2013-03-08 Remaining life estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056518 WO2014136269A1 (en) 2013-03-08 2013-03-08 Remaining life estimation device

Publications (1)

Publication Number Publication Date
WO2014136269A1 true WO2014136269A1 (en) 2014-09-12

Family

ID=50287330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056518 WO2014136269A1 (en) 2013-03-08 2013-03-08 Remaining life estimation device

Country Status (2)

Country Link
JP (1) JP5426055B1 (en)
WO (1) WO2014136269A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193408A (en) * 1998-10-20 2000-07-14 Fuji Oozx Inc Positioning device for engine valve
JP2003042745A (en) * 2001-08-02 2003-02-13 Mitsubishi Heavy Ind Ltd Rotor blade life evaluating device and method and axial blower
JP2009020074A (en) * 2007-07-13 2009-01-29 Chugoku Electric Power Co Inc:The System and method for estimating remaining life, and computer program and recording medium
JP2011089936A (en) * 2009-10-23 2011-05-06 Chugoku Electric Power Co Inc:The Mounting structure of strain gauge, and mounting method of strain gauge
JP2012202953A (en) * 2011-03-28 2012-10-22 Chugoku Electric Power Co Inc:The Strain measurement device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193408A (en) * 1998-10-20 2000-07-14 Fuji Oozx Inc Positioning device for engine valve
JP2003042745A (en) * 2001-08-02 2003-02-13 Mitsubishi Heavy Ind Ltd Rotor blade life evaluating device and method and axial blower
JP2009020074A (en) * 2007-07-13 2009-01-29 Chugoku Electric Power Co Inc:The System and method for estimating remaining life, and computer program and recording medium
JP2011089936A (en) * 2009-10-23 2011-05-06 Chugoku Electric Power Co Inc:The Mounting structure of strain gauge, and mounting method of strain gauge
JP2012202953A (en) * 2011-03-28 2012-10-22 Chugoku Electric Power Co Inc:The Strain measurement device

Also Published As

Publication number Publication date
JP5426055B1 (en) 2014-02-26
JPWO2014136269A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
CN105353223B (en) A kind of measuring method using capacity coupling non-contact conductance measuring device
US10473510B2 (en) Continuous-type long-ranged molten metal level measuring device and thermal system using multi-point temperature sensor
EP2420807B1 (en) Temperature sensor
US10551220B2 (en) Capacitive measurement device
JP6500769B2 (en) Sensor
CN105444871A (en) Capacitive tube/rod-shaped object vibration on-line measuring device and method
JP5426055B1 (en) Remaining life estimation device
US20140090978A1 (en) Potentiometric sensor
JP5358755B1 (en) Strain measuring device, capacitance measuring device, strain measuring method, capacitance measuring method
JP4638934B2 (en) Pressure sensor
CN101329155A (en) Electric vortex type displacement clip
JP5426054B1 (en) Strain measuring device, mounting device
EP2840366A1 (en) Liquid level sensing systems
CN104395717A (en) Overvoltage arrester for high voltages
EP2881700B1 (en) Device and method for detecting ovality of circumferential cross section of a heat-exchanger tube
JP2012225739A (en) Temperature measurement device and temperature sensor
US9360384B2 (en) System, method, and device for sensing pressure of a fluid
JP6448436B2 (en) Piezoelectric element and pressure sensor
JP5917583B2 (en) Impedance measuring method, impedance measuring device
JP4662307B2 (en) Polyimide-coated sheath thermocouple
CN106595890A (en) Multipoint high precision thermocouple
JP4795049B2 (en) Liquid level sensor
KR101574017B1 (en) Load cell structure based on a nonlinear strain model
TWI500903B (en) Measurement module for wall thickness of pipe and measurement method of wall thickness using the same
CN104748664A (en) Rock-soil mass interior displacement measuring system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013530471

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877334

Country of ref document: EP

Kind code of ref document: A1