WO2014135012A1 - 天线装置和用于设置天线装置的方法 - Google Patents

天线装置和用于设置天线装置的方法 Download PDF

Info

Publication number
WO2014135012A1
WO2014135012A1 PCT/CN2014/072397 CN2014072397W WO2014135012A1 WO 2014135012 A1 WO2014135012 A1 WO 2014135012A1 CN 2014072397 W CN2014072397 W CN 2014072397W WO 2014135012 A1 WO2014135012 A1 WO 2014135012A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna unit
unit
polarization direction
electronic device
Prior art date
Application number
PCT/CN2014/072397
Other languages
English (en)
French (fr)
Inventor
刘瑾
林金强
Original Assignee
联想(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联想(北京)有限公司 filed Critical 联想(北京)有限公司
Priority to US14/387,034 priority Critical patent/US9698483B2/en
Publication of WO2014135012A1 publication Critical patent/WO2014135012A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • Antenna device and method for setting antenna device are antenna device and method for setting antenna device
  • the present invention relates to the field of communications technologies, and more particularly to an antenna device and a method for setting an antenna device. Background technique
  • the working frequency band for communication is gradually increasing. Accordingly, two or more numbers of antennas need to be provided in the electronic device to enable the electronic device to operate in different operating bands.
  • a multi-input multi-output (MIMO) antenna system is adopted, and two or more antennas are also required to be set in the MIMO antenna. Communicate to increase the capacity and spectrum utilization of the communication system.
  • MIMO antennas are designed on the upper and lower ends of a mobile phone to improve isolation between different antenna elements of the MIMO antenna.
  • Arranging the antenna separately on the electronic device takes up a large space, which is disadvantageous for miniaturization of the electronic device. Also, when the number of antennas in the electronic device increases, it is difficult to select an appropriate position to set the respective antennas while ensuring the performance of the antenna. For example, when a 4 in 4 out MIMO antenna is used on a mobile phone, the isolation requirement between the four antennas cannot be met.
  • Embodiments of the present invention provide an antenna apparatus and a method for setting an antenna apparatus, which can increase isolation performance between different antennas to reduce interference of adjacent antennas, thereby enabling different antennas to be placed adjacently to save antenna apparatus.
  • an antenna device for use in an electronic device, wherein the antenna device includes: a first antenna unit located at a first location of the electronic device, having a first communication bandwidth, a first antenna signal radiating in a first polarization direction; a second antenna unit located at a second position of the electronic device adjacent to the first location, having a second communication bandwidth for radiating a second polarization direction a second antenna signal, the second polarization direction being orthogonal to the first polarization direction.
  • the first communication bandwidth may be a high frequency bandwidth greater than a preset frequency
  • the second communication bandwidth may be a low frequency bandwidth lower than the preset frequency
  • the second position may be an edge of an end of a main circuit board of the electronic device, a relative position of the first antenna unit and the second antenna unit, and a first polarization direction and a The orthogonal correspondence of the directions of polarization.
  • the antenna device may further include: a third antenna unit, located at a third position of the electronic device, a third antenna signal for radiating a third polarization direction; a ground unit located at the first antenna unit and Between the third antenna elements.
  • the third antenna unit may be configured to radiate a third antenna signal in a third polarization direction
  • the antenna device may further include: a fourth antenna unit located at the electronic device and the a fourth position adjacent to the three positions, a fourth antenna signal for radiating the fourth polarization direction, the fourth polarization direction being orthogonal to the third polarization direction.
  • the first antenna unit may have a first feeding end
  • the third antenna unit may have a third feeding end
  • the size of the ground unit may be the first feeding end Corresponding to the distance between the third feed end.
  • At least one of the first antenna unit and the second antenna unit may be a ceramic antenna.
  • a method for setting an antenna device which is applied to an electronic device, wherein the method may include: providing a first antenna unit at a first position of the electronic device, the first antenna unit having a first a communication bandwidth, a first antenna signal for radiating a first polarization direction; a second antenna unit disposed at a second position of the electronic device adjacent to the first location, the second antenna unit having a second communication a bandwidth, a second antenna signal for radiating a second polarization direction, the second polarization direction being orthogonal to the first polarization direction.
  • the first communication bandwidth may be a high frequency bandwidth greater than a preset frequency
  • the second communication bandwidth may be a low frequency bandwidth lower than the preset frequency
  • the step of disposing a second antenna unit at a second position of the electronic device adjacent to the first location may include: a main circuit of the electronic device Providing the second antenna unit on an edge of an end of the board, the second antenna unit and the The relative position of the first antenna unit corresponds orthogonally to the first polarization direction and the second polarization direction.
  • the method for setting an antenna device may further include: providing a third antenna unit at a third position of the electronic device, the third antenna unit for radiating a third antenna signal in a third polarization direction; A ground unit is disposed between the first antenna unit and the third antenna unit.
  • the third antenna unit may be configured to radiate a third antenna signal in a third polarization direction
  • the method may further include: at the electronic device and the third A fourth antenna unit is disposed at a fourth position adjacent to the position, and the fourth antenna unit is configured to radiate a fourth antenna signal in a fourth polarization direction, the fourth polarization direction being orthogonal to the third polarization direction.
  • the first antenna unit may have a first feed end
  • the third antenna unit may have a third feed end
  • the step of disposing the ground unit between the third antenna units may include: determining a size of the ground unit based on a distance between the first feed end and the third feed end; setting the according to the determined size Ground unit.
  • At least one of the first antenna unit and the second antenna unit may be a ceramic antenna.
  • isolation between adjacent antenna elements is improved by orthogonalizing polarization directions of antenna signals of adjacent antenna elements, thereby Different antenna units can be placed adjacent to each other to save space occupied by the antenna device.
  • FIG. 1 is a block diagram schematically illustrating a structure of an antenna apparatus according to an embodiment of the present invention
  • FIG. 2 is a block diagram schematically illustrating a structure of an antenna apparatus according to another embodiment of the present invention
  • the isolation between the antenna elements is improved by utilizing the spatial correlation irrelevance (there is no correlation between the antenna signals whose polarization directions are orthogonal) Performance, thereby achieving the isolation requirements required for normal operation between adjacent antenna elements, thereby enabling different antenna units to be placed adjacently to conserve space occupied by the antenna device.
  • FIG. 1 is a block diagram illustrating the structure of an antenna device 100 according to an embodiment of the present invention.
  • the antenna device 100 can be applied to various electronic devices such as a mobile communication terminal, a tablet computer, a notebook computer, a base station, etc., and the kind of the electronic device does not constitute a limitation of the present invention.
  • the antenna device 100 includes: a first antenna unit 110, located at a first position of the electronic device, having a first communication bandwidth, a first antenna signal for radiating a first polarization direction; and a second antenna unit 120 located at a second location of the electronic device adjacent to the first location, having a second communication bandwidth, a second antenna signal for radiating a second polarization direction, the second polarization direction and the first polarization
  • the directions are orthogonal.
  • any one of the first antenna unit 110 and the second antenna unit 120 may be an antenna unit implemented by any technology, such as an inverted F antenna (IFA, Inverted F Antenna), a microstrip antenna, a monopole antenna, a loop antenna, etc. .
  • IFA inverted F antenna
  • microstrip antenna a monopole antenna
  • loop antenna a loop antenna
  • the specific antenna type does not constitute a limitation of the present invention.
  • Antenna polarization is used to describe the spatial orientation of the radiated electromagnetic waves of the antenna, and because of the constant relationship between the electric field and the magnetic field, the spatial orientation of the electric field vector is usually used as the polarization direction of the electromagnetic wave radiated by the antenna.
  • the direction of the electric field vector parallel to the ground is called horizontal polarization
  • the vertical perpendicular to the ground is called vertical polarization.
  • the horizontal polarization direction and the vertical polarization direction are two polarization directions orthogonal to each other.
  • the first antenna unit 110 is located at a first position of the electronic device 100 and has a first communication bandwidth for radiating a first antenna signal in a first polarization direction.
  • the first communication bandwidth may be a high frequency bandwidth greater than a preset frequency (e.g., 800 MHz, 1500 MHz, etc.) (i.e., a high frequency band typically occupied by voice and data communications).
  • a preset frequency e.g. 800 MHz, 1500 MHz, etc.
  • the operating frequency band of the first antenna unit 110 can be, for example, 824-960 MHz or 1710-2170 MHz.
  • the first antenna unit 110 can be implemented using any fabrication process. As an example, it may be a ceramic antenna, or a Flexible Printed Circuit (FPC) antenna. In the case where the first antenna unit 110 is a ceramic antenna, the volume or space occupied by the first antenna unit 110 can be reduced, mass production is easy, and the polarization direction thereof can be accurately controlled.
  • FPC Flexible Printed Circuit
  • the polarization direction of the antenna signal of the first antenna unit 110 may be, for example, the horizontal polarization direction, or the vertical polarization direction, and may be any other desired direction.
  • first day The line unit 110 can be located anywhere in the electronic device, and can be flexibly designed as needed in practice.
  • the second antenna unit 120 may be the same or different antenna unit as the first antenna unit 110, and is configured to radiate a second antenna signal in a second polarization direction, where the second location is located adjacent to the first location, The second polarization direction is orthogonal to the first polarization direction.
  • the second antenna signal of the second antenna unit 120 is a vertical polarization direction; the first antenna signal at the first communication unit 110
  • the second antenna signal of the second antenna unit 120 is a horizontal polarization direction, as long as the second polarization direction is orthogonal to the first polarization direction. Since the second polarization direction is orthogonal to the first polarization direction, even if the first antenna signal and the second antenna signal meet, they can continue to propagate along the signal path without disturbing each other, thereby enhancing the first The isolation of the antenna unit 110 and the second antenna unit 120.
  • the first position of the first antenna unit 110 can be made adjacent to the second position of the second antenna unit 120, thereby conserving the space occupied by the antenna device 100.
  • the second communication bandwidth of the second antenna unit 120 may be the same as or different from the first communication bandwidth of the first communication unit 110. That is, the frequencies of the antenna signals of the first antenna unit 110 and the second antenna unit 120 may be the same or different. As described above, since the polarization direction of the first antenna signal of the first communication unit 110 is orthogonal to the polarization direction of the second antenna signal of the second antenna unit 120, even the first antenna unit 110 and the second antenna The antenna signals of unit 120 have the same frequency and good isolation between the two.
  • the polarization direction of the first antenna signal or the second antenna signal may be changed due to reflection, reception of interference, and the like.
  • the second communication bandwidth is different from the first communication bandwidth, the frequencies of the first antenna signal or the second antenna signal are different, thereby reducing interference between the two.
  • the first communication bandwidth is a high frequency bandwidth greater than a preset frequency
  • the second communication bandwidth may be a low frequency bandwidth lower than the preset frequency.
  • the first communication bandwidth may be a low frequency bandwidth lower than the preset frequency
  • the second communication bandwidth may be a high frequency bandwidth greater than the preset frequency.
  • the first position of the electronic device where the first antenna unit 110 is located, and the second antenna unit 120 may be appropriately selected in combination with the level of the frequency band. The second location of the electronic device.
  • the second communication bandwidth may be an example of a low frequency bandwidth lower than the preset frequency
  • the second location may be an edge of an end of a main circuit board of the electronic device (eg, a main circuit board)
  • the edge of the end of the main circuit board and the outer casing of the electronic device generally have a gap, thereby providing more clearance for the second antenna unit 120, Guaranteed its radiation and bandwidth performance.
  • the relative positional relationship between the first antenna unit 110 and the second antenna unit 120 can also be adjusted. to realise.
  • the first The antenna unit is perpendicular to the second antenna unit such that the polarization directions of the two are orthogonal. That is, the first antenna unit and the second antenna unit may be vertically positioned in the end.
  • the second antenna unit 120 can be implemented by any fabrication process, which can be a ceramic antenna or an FPC antenna, respectively. In the case where the second antenna unit 120 is a ceramic antenna, the volume or space occupied can be reduced, mass production is easy, and the polarization direction can be accurately controlled.
  • the isolation between the adjacent antenna elements is improved by orthogonalizing the polarization directions of the antenna signals of the adjacent first antenna unit 110 and the second antenna unit 120, Thereby enabling different antenna units to be placed adjacently to save space occupied by the antenna device.
  • other means for improving the isolation of the antenna unit can be combined to enable multiple antenna units to be disposed in the same electronic device.
  • other antenna elements may be placed at locations far enough away from the first antenna unit 110 and the second antenna unit 120 in the electronic device; ground units may also be employed to increase isolation between the various antenna elements. Increasing the isolation between the antenna elements by moving away from the position has been widely adopted and will not be described in detail herein. How to use the ground unit to improve the isolation between the individual antenna elements will be described below with reference to FIG.
  • FIG. 2 schematically illustrates a block diagram of a structure of an antenna device 200 according to another embodiment of the present invention.
  • the antenna device 200 may include four antenna units, that is, a first antenna unit 110, a second antenna unit 120, a third antenna unit 130, and a second antenna unit 140.
  • the first antenna unit 110 and the second antenna unit 120 in FIG. 2 are the same as in FIG. 1, and will not be described here.
  • the antenna device 200 further includes both the third antenna unit 130 and the second antenna unit 140, but the antenna device 200 may include only the third antenna unit One of the 130 and the second antenna unit 140 to meet different antenna requirements.
  • the antenna device 200 may further include a third antenna unit 130 located at a third position of the electronic device for radiating the third pole. a third antenna signal in the direction; a ground unit 150 located between the first antenna unit 110 and the third antenna unit 130.
  • the communication bandwidth, antenna signal polarization direction, type, and the like of the third antenna unit 130 do not constitute a limitation of the present invention.
  • the third antenna unit 130 may also be a ceramic antenna.
  • the ground unit 150 is located between the first antenna unit 110 and the third antenna unit 130, and forms physical isolation between the two antenna units, thereby isolating the feeding end of the first antenna unit 110 (the first shown in FIG. 2)
  • the signal leaked from a feed end 111) and the feed end of the third antenna unit 130 (the third feed end 131 shown in Fig. 2) improves the isolation.
  • the ground unit 150 can change the current direction in the first feeding end 111 and the third feeding end 131, for example, causing part of the current in the first feeding end 111 and the third feeding end 131 to flow to the ground.
  • the unit 150 when the interference of the image signal is generated in the first antenna unit 110 and the third antenna unit 130, the currents flowing to the ground unit 150 in the first feeding end 111 and the third feeding end 131 may be opposite to each other.
  • the phases can be partially or completely offset each other, thereby reducing mutual interference of the antenna signals in free space. That is, the ground unit 150 not only physically isolates the first antenna unit 110 and the third antenna unit 130, but also changes the current trend in the first antenna unit 110 and the third antenna unit 130, thereby changing the first antenna unit 110.
  • the coupling relationship with the third antenna unit 130 enables the mutual interference currents to be partially canceled, thereby improving the isolation effect between the first antenna unit 110 and the third antenna unit 130.
  • the size (e.g., length, width, etc.) of the ground unit 150 corresponds to the distance between the first feed end 111 and the third feed end 131.
  • the mutual interference is small, and the size of the ground unit 150 can be small; when the first feeding end 111 and the third feeding end 131 are When the distance between them is close, the size of the ground unit 150 can be increased to increase its area to increase the isolation effect.
  • the length of the ground unit 150 can be greater than or equal to the length of either of the two feed ends to provide better physical isolation.
  • the first feeding end 111 and the third feeding end 131 may be symmetrically located on both sides of the ground unit 150, thereby The mirror currents in the first antenna unit 110 and the third antenna unit 130 are more offset each other.
  • the positions of the first feeding end 111 and the third feeding end 131 relative to the ground unit 150 may also be adjusted to achieve the most Good offset effect.
  • the ground unit 150 can be part of the ground of the electronic device, such as a portion of a ground plane on a main processing single board of an electronic device.
  • the antenna device 200 may further include a fourth antenna unit 140 located at a fourth position adjacent to the third position of the electronic device, and configured to radiate a fourth antenna signal in a fourth polarization direction, where the The direction of the four polarizations is orthogonal to the direction of the third polarization. If the communication frequency of the fourth antenna unit 140 is low and has a large volume, it can be placed at the edge of the end portion of the main circuit board (i.e., the PCB board) as shown in Fig. 2 (i.e., the lower right corner).
  • the main circuit board i.e., the PCB board
  • the polarization directions of the antenna signals of the fourth antenna unit 140 and the third antenna unit 130 are also orthogonal, so that the isolation between the two can be improved.
  • the ground unit 150 can also be used for isolation.
  • the fourth antenna unit 140 and the second antenna unit 120 may be symmetrically located on both sides of the ground unit 150, thereby achieving good isolation performance.
  • any one of the fourth antenna unit 140 and the second antenna unit 120 may be 5 mm away from the ground unit 150, thereby ensuring a minimum requirement of -10 dB of isolation.
  • the fourth antenna unit 140 may also be a ceramic antenna.
  • different antenna isolation techniques are used in combination, that is, orthogonally setting polarization directions of antenna signals of adjacent antenna elements, and adding ground units between antenna elements, The isolation between different antenna elements is improved, thereby enabling multiple antenna units to be placed adjacently to save space occupied by the antenna device.
  • FIG. 3 is a flow diagram illustrating a method 300 for forming an antenna device in accordance with an embodiment of the present invention.
  • the antenna device provided by the method 300 can be applied to various electronic devices, and the type of the electronic device does not constitute a limitation of the present invention.
  • the method 300 for setting an antenna device includes: providing a first antenna unit at a first position of the electronic device, the first antenna unit having a first communication bandwidth for radiating a first polarization direction An antenna signal (S310); a second adjacent to the first location of the electronic device Positioning a second antenna unit having a second communication bandwidth for radiating a second antenna signal in a second polarization direction, the second polarization direction being orthogonal to the first polarization direction
  • the first antenna unit provided in S310 and the second antenna unit disposed in S320 may be antenna units implemented by any technique, such as a microstrip antenna, a monopole antenna, a loop antenna, and the like.
  • the specific antenna type does not constitute a limitation of the present invention.
  • the first antenna unit or the second antenna unit may be an FPC antenna, a ceramic antenna or an antenna of any other process. In the case of using a ceramic antenna, the volume or space occupied by the antenna unit can be reduced, mass production is easy, and the polarization direction can be precisely controlled.
  • the frequency bandwidth of any one of the first antenna unit and the second antenna unit does not constitute a limitation of the present invention, for example, the first communication bandwidth is the same as the second communication bandwidth; or the first communication
  • the bandwidth may be a high frequency bandwidth greater than a preset frequency (eg, 800 MHz, 1500 MHz, etc.), and the second communication bandwidth may be a low frequency bandwidth lower than the preset frequency, which will be described below as an example.
  • a first antenna unit is disposed at a first position of the electronic device, the first antenna unit having a first communication bandwidth for radiating a first antenna signal in a first polarization direction.
  • the polarization direction of the antenna signal of the first antenna unit may be a horizontal polarization direction, or a vertical polarization direction, and may be any other desired direction.
  • the first position can be flexibly designed in practice as needed.
  • a second antenna unit is disposed at a second position adjacent to the first location, the second antenna unit having a second communication bandwidth, and a second antenna signal for radiating a second polarization direction, the The direction of polarization is orthogonal to the direction of the first polarization.
  • the second polarization direction is orthogonal to the first polarization direction, even if the first antenna signal and the second antenna signal meet, they can continue to propagate along the signal path without disturbing each other, thereby enhancing the first The isolation of the antenna unit and the second antenna unit. Even if the antenna signals of the first antenna unit and the second antenna unit have the same frequency, they have good isolation. Of course, when the frequencies of the antenna signals of the first antenna unit and the second antenna unit are different, the co-channel interference between the first antenna unit and the second antenna unit can be avoided, thereby further enhancing the isolation between the different antenna units.
  • the second antenna unit may be disposed on an edge of an end of the main circuit board of the electronic device, the second antenna unit being perpendicular to the first antenna unit.
  • the edge of the end of the main circuit board and the outer casing of the electronic device usually have a gap, thereby being a volume
  • the large antenna unit provides more headroom and guarantees its radiation and bandwidth performance. Therefore, in a case where the first communication bandwidth is the high frequency bandwidth and the second communication bandwidth may be a low frequency bandwidth lower than the preset frequency, the second antenna unit having a large occupied space is disposed at the end of the main circuit board. At the edge of the department, this takes full advantage of the space of the electronic device and guarantees its radiation and bandwidth performance.
  • the implementation of the orthogonal polarization directions of the first antenna unit and the second antenna unit can be implemented by adjusting the relative positional relationship between the first antenna unit and the second antenna unit, in addition to being designed when the antenna unit is fabricated. Therefore, by vertically placing the second antenna unit and the first antenna unit, the polarization direction between the second antenna unit and the first antenna unit can be made orthogonal.
  • the structure of the antenna device formed by using S310 and S320 can be referred to the illustration of FIG. 1, wherein the isolation between the different antenna elements is improved by orthogonalizing the polarization directions of the antenna signals of different antenna elements, thereby Different antenna units can be placed adjacent to each other to save space occupied by the antenna device.
  • antenna units For example, a plurality of antenna elements may be provided in the same electronic device by increasing the distance between the antenna elements; a ground unit may also be employed to increase the isolation between the respective antenna elements. The combination of the units is described below to improve the degree of isolation between the individual antenna elements.
  • the method 300 for setting an antenna device shown in FIG. 3 may further include: providing a third antenna unit at a third position of the electronic device, the third antenna unit for radiating a third polarization direction a third antenna signal (S330); providing a ground unit between the first antenna unit and the third antenna unit (S340); and setting a fourth position adjacent to the third position of the electronic device a fourth antenna unit for radiating a fourth antenna signal in a fourth polarization direction, the fourth polarization direction being orthogonal to the third polarization direction (S350). It can be seen that the ground unit is provided to isolate the first antenna unit and the third antenna unit.
  • the third antenna unit provided in S330 is independent of the first antenna unit and the second antenna unit, and thus its communication bandwidth, polarization direction, type, manufacturing process, and the like do not constitute a limitation of the present invention.
  • the third antenna unit can be, for example, a ceramic antenna.
  • a ground unit disposed in S340 is located between the first antenna unit and the third antenna unit, which forms physical isolation between the two antenna elements, thereby isolating the feed end of the first antenna unit (hereinafter referred to as a first feed) Leakage in the power terminal) and the feed end of the third antenna unit (hereinafter referred to as the third feed terminal)
  • the signal improves the isolation.
  • the ground unit provided in S340 can change the current direction in the first feed end and the third feed end, for example, causing a part of the current in the first feed end and the third feed end to flow to the ground unit, They can cancel each other partially or completely, thereby reducing the mutual interference of the antenna signals in free space.
  • the ground unit not only physically isolates the first antenna unit and the third antenna unit, but also changes the coupling relationship between the first antenna unit and the third antenna unit, so that mutual interference currents can partially cancel, thereby improving the The isolation effect between an antenna unit and a third antenna unit.
  • the S340 may include: determining a size of the ground unit based on a distance between a first feeding end of the first antenna unit and a third feeding end of the third antenna unit; setting according to the determined size The ground unit.
  • the size of the ground unit can be small; when the distance between the first feeding end and the third feeding end is close
  • the size of the ground unit can be increased to increase its area to increase the isolation effect.
  • the length of the ground unit may be greater than or equal to the length of either of the two feed ends to provide better physical isolation.
  • the first feeding end and the third feeding end may be symmetrically located on both sides of the ground unit, thereby making the first antenna unit and the third The mirror currents in the antenna elements cancel each other more.
  • the positions of the first feed terminal and the third feed terminal with respect to the ground unit may also be adjusted to achieve an optimum canceling effect.
  • ground unit By setting the size and position of the ground unit, it is also possible to improve the isolation between the second antenna unit and the third antenna unit as in the case of between the first antenna unit and the third antenna unit. Further, a ground unit may be provided between the second antenna unit and the fourth antenna unit to improve the isolation therebetween.
  • the ground unit may be part of the ground of the electronic device, which is for example part of a ground plane on a main processing single board of the electronic device.
  • the polarization directions of the antenna signals of the fourth antenna unit disposed in S350 and the third antenna unit disposed in S330 are also orthogonal, thereby improving both The isolation between.
  • the ground unit may be used for isolation.
  • the fourth antenna unit and the second antenna unit may be symmetrically located on both sides of the ground unit to achieve good isolation performance.
  • the distance between any of the fourth antenna unit and the second antenna unit may be 5 mm from the ground unit, thereby ensuring a minimum requirement of isolation -10 dB.
  • the fourth antenna unit can also be a ceramic antenna. It is to be noted that the steps of FIG. 3 can be added and deleted as needed, or the order of the various steps therein can be adjusted. For example, when a MIMO antenna of 3 in 3 out is implemented, step S350 can be deleted in FIG.
  • different antenna isolation techniques are used in combination, that is, orthogonally setting polarization directions of antenna signals of adjacent antenna elements, and increasing between antenna elements Ground unit to improve the isolation between different antenna units, so that multiple antenna units can be placed adjacently to save space occupied by the antenna device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

提供了一种应用于电子设备的天线装置和相应的设置天线装置的方法。该天线装置包括:第一天线单元,位于所述电子设备的第一位置,具有第一通信带宽,用于辐射第一极化方向的第一天线信号;第二天线单元,位于所述电子设备的与所述第一位置邻近的第二位置,具有第二通信带宽,用于辐射第二极化方向的第二天线信号,该第二极化方向与所述第一极化方向正交。在本发明的各个实施例中,通过使相邻天线单元的天线信号的极化方向正交来提高所述相邻天线单元之间的隔离度,从而使能够邻近地放置不同的天线单元以节约天线装置所占用的空间。

Description

天线装置和用于设置天线装置的方法 技术领域
本发明涉及通信技术领域, 更具体地, 涉及一种天线装置和用于设置天 线装置的方法。 背景技术
随着通信技术的发展, 用于通信的工作频段在逐渐增加。 相应地, 需要 在电子设备中设置两个或更多数目的天线, 以使得电子设备能够工作在不同 的工作频段。 在第三代移动通信技术、 ***移动通信技术中, 采用多输入 多输出 (MIMO, multi-input multi-output )天线***, 在 MIMO天线中也需 要设置两个甚或更多数目的天线来进行通信, 以提高通信***的容量和频谱 利用率。
在同一电子设备中设置两个或更多天线的情况下, 不同的天线之间相互 干扰, 从而降低了天线性能。 因此, 需要提高不同天线之间的隔离度。 现有 解决方案是将两个天线分别布置在电子设备的不同位置并且尽量远离, 以提 高不同天线之间的隔离度。 例如, 将 MIMO天线设计在移动电话机的上下两 端, 以提高 MIMO天线的不同天线单元之间的隔离度。
分开地在电子设备上布置天线会占用大的空间, 这不利于电子设备的小 型化。 并且, 当电子设备中的天线数目增加时, 难以在保证天线性能的情况 下选择合适的位置来设置各个天线。 例如, 当在移动电话机上采用 4入 4出 的 MIMO天线, 不能满足对于四个天线之间的隔离度需求。
因此, 期望增加不同天线单元之间的隔离性能来降低相邻天线的干扰, 从而能够邻近地放置不同的天线以节约电子设备的空间。 发明内容
本发明实施例提供了一种天线装置和用于设置天线装置的方法, 其能够 增加不同天线之间的隔离性能来降低相邻天线的干扰, 从而使能够邻近地放 置不同的天线以节约天线装置所占用的空间。
一方面, 提供了一种天线装置, 应用于电子设备, 其中, 该天线装置包 括: 第一天线单元, 位于所述电子设备的第一位置, 具有第一通信带宽, 用 于辐射第一极化方向的第一天线信号; 第二天线单元, 位于所述电子设备的 与所述第一位置邻近的第二位置, 具有第二通信带宽, 用于辐射第二极化方 向的第二天线信号, 该第二极化方向与所述第一极化方向正交。
在所述天线装置中,所述第一通信带宽可以为大于预设频率的高频带宽, 所述第二通信带宽可以为低于所述预设频率的低频带宽。
在所述天线装置中, 所述第二位置可以是所述电子设备的主电路板的端 部的边缘, 所述第一天线单元与第二天线单元的相对位置与第一极化方向和 第二极化方向的正交对应。
此外, 所述天线装置还可包括: 第三天线单元, 位于所述电子设备的第 三位置, 用于辐射第三极化方向的第三天线信号; 地单元, 位于所述第一天 线单元和第三天线单元之间。
在所述天线装置中, 所述第三天线单元可用于辐射第三极化方向的第三 天线信号, 所述天线装置还可包括: 第四天线单元, 位于所述电子设备的与 所述第三位置邻近的第四位置, 用于辐射第四极化方向的第四天线信号, 该 第四极化方向与所述第三极化方向正交。
在所述天线装置中, 所述第一天线单元可具有第一馈电端, 所述第三天 线单元可具有第三馈电端, 所述地单元的尺寸可以与所述第一馈电端和第三 馈电端之间的距离对应。
在所述天线装置中, 所述第一天线单元和第二天线单元中的至少一个可 以为陶瓷天线。
另一方面, 提供了用于设置天线装置的方法, 应用于电子设备, 其中, 该方法可包括: 在所述电子设备的第一位置上设置第一天线单元, 该第一天 线单元具有第一通信带宽, 用于辐射第一极化方向的第一天线信号; 在所述 电子设备的与所述第一位置邻近的第二位置上设置第二天线单元, 该第二天 线单元具有第二通信带宽, 用于辐射第二极化方向的第二天线信号, 该第二 极化方向与所述第一极化方向正交。
在所述用于设置天线装置的方法中, 所述第一通信带宽可以为大于预设 频率的高频带宽, 所述第二通信带宽可以为低于所述预设频率的低频带宽。
在所述用于设置天线装置的方法中, 所述在所述电子设备的与所述第一 位置邻近的第二位置上设置第二天线单元的步骤可包括: 在所述电子设备的 主电路板的端部的边缘上设置所述第二天线单元, 所述第二天线单元与所述 第一天线单元的相对位置与第一极化方向和第二极化方向的正交对应。
所述用于设置天线装置的方法还可包括: 在所述电子设备的第三位置上 设置第三天线单元,该第三天线单元用于辐射第三极化方向的第三天线信号; 在所述第一天线单元和第三天线单元之间设置地单元。
在所述用于设置天线装置的方法中, 所述第三天线单元可用于辐射第三 极化方向的第三天线信号, 所述方法还可包括: 在所述电子设备的与所述第 三位置邻近的第四位置上设置第四天线单元, 该第四天线单元用于辐射第四 极化方向的第四天线信号, 该第四极化方向与所述第三极化方向正交。
在所述用于设置天线装置的方法中, 所述第一天线单元可具有第一馈电 端, 所述第三天线单元可具有第三馈电端, 所述在所述第一天线单元和第三 天线单元之间设置地单元的步骤可包括: 基于所述第一馈电端和第三馈电端 之间的距离来确定所述地单元的尺寸;按照所确定的尺寸来设置所述地单元。
在所述用于设置天线装置的方法中, 所述第一天线单元和第二天线单元 中的至少一个可以为陶瓷天线。
在本发明实施例的上述天线装置和用于设置天线装置的方法中, 通过使 相邻天线单元的天线信号的极化方向正交来提高所述相邻天线单元之间的隔 离度,从而使能够邻近地放置不同的天线单元以节约天线装置所占用的空间。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1是示意性图示了根据本发明实施例的天线装置的结构的框图; 图 2示意性图示了根据本发明另一实施例的天线装置的结构的框图; 图 3是图示了根据本发明实施例的用于形成天线装置的方法的流程图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 在本发明实施例的天线装置和用于设置天线装置的方法中, 利用空间布 局的不相关性(极化方向正交的天线信号之间不具有相关性) 来改善天线单 元之间的隔离度性能, 从而达到相邻的天线单元之间的正常工作需要的隔离 度要求, 进而使能够邻近地放置不同的天线单元以节约天线装置所占用的空 间。
图 1是图示了根据本发明实施例的天线装置 100的结构的框图。 该天线 装置 100可应用于各种电子设备, 诸如移动通信终端、 平板计算机、 笔记本 计算机、 基站等, 电子设备的种类不构成对本发明的限制。
所述天线装置 100包括: 第一天线单元 110, 位于所述电子设备的第一 位置, 具有第一通信带宽, 用于辐射第一极化方向的第一天线信号; 第二天 线单元 120, 位于所述电子设备的与所述第一位置邻近的第二位置, 具有第 二通信带宽, 用于辐射第二极化方向的第二天线信号, 该第二极化方向与所 述第一极化方向正交。
所述第一天线单元 110和第二天线单元 120中的任一个可以是利用任何 技术实现的天线单元, 例如倒 F天线(IFA, Inverted F Antenna ), 微带天线、 单极天线、 环形天线等。 具体的天线类型不构成对本发明的限制。
天线极化用于描述天线辐射电磁波的空间指向, 并且由于电场与磁场有 恒定的关系而通常以电场矢量的空间指向作为天线辐射电磁波的极化方向。 以地面为参数, 电场矢量方向与地面平行的叫水平极化, 与地面垂直的叫垂 直极化。 该水平极化方向与垂直极化方向即是相互正交的两个极化方向。
所述第一天线单元 110位于所述电子设备 100的第一位置, 具有第一通 信带宽, 用于辐射第一极化方向的第一天线信号。 该第一通信带宽可以为大 于预设频率 (例如为 800MHz、 1500MHz等) 的高频带宽 (即进行语音和数 据通信所通常占据的高频频段)。 作为示例, 第一天线单元 110的工作频段例 如可以为 824-960MHZ或者 1710-2170MHz。
该第一天线单元 110可以采用任何的制作工艺来实现。 作为示例, 其可 以为陶瓷天线、 或者柔性电路板(FPC, Flexible Printed Circuit )天线。 在该 第一天线单元 110为陶瓷天线的情况下, 可以减少该第一天线单元 110的体 积或所占用的空间, 易于量产, 并且可以精确地控制其极化方向。
此外, 第一天线单元 110的天线信号的极化方向例如可以是所述水平极 化方向、 或者为所述垂直极化方向, 还可以是任何其它的期望方向。 第一天 线单元 110可以位于电子设备的任何位置, 在实践中可以根据需要来灵活地 设计。
第二天线单元 120可以是与所述第一天线单元 110相同或不同的天线单 元, 用于辐射第二极化方向的第二天线信号, 其所位于的第二位置邻近所述 第一位置, 该第二极化方向与所述第一极化方向正交。
作为示例, 在第一通信单元 110的第一天线信号为水平极化方向时, 所 述第二天线单元 120的第二天线信号为垂直极化方向; 在第一通信单元 110 的第一天线信号为垂直极化方向时, 所述第二天线单元 120的第二天线信号 为水平极化方向, 只要该第二极化方向与所述第一极化方向正交即可。 由于 第二极化方向与第一极化方向正交, 即使所述第一天线信号和第二天线信号 相遇, 它们也可以互不干扰地沿着自己的信号路径继续传播, 从而增强了第 一天线单元 110和第二天线单元 120的隔离度。 这样, 可以使得所述第一天 线单元 110的第一位置与第二天线单元 120的第二位置邻近, 从而节约天线 装置 100所占用的空间。
第二天线单元 120的第二通信带宽可以与第一通信单元 110的第一通信 带宽相同或不同。 也就是说, 第一天线单元 110和第二天线单元 120的天线 信号的频率可以相同或不同。 如上所述, 由于第一通信单元 110的第一天线 信号的极化方向与所述第二天线单元 120的第二天线信号的极化方向正交, 所以即使第一天线单元 110和第二天线单元 120的天线信号的频率相同, 二 者之间也具有良好的隔离性。
在实际的通信环境中, 第一天线信号或第二天线信号的极化方向可能由 于发生反射、 收到干扰等而改变。 此时, 如果第二通信带宽与所述第一通信 带宽不同, 则第一天线信号或第二天线信号的频率不同, 从而会降低二者之 间的干扰。 作为示例, 在所述第一通信带宽为大于预设频率的高频带宽时, 所述第二通信带宽可以为低于所述预设频率的低频带宽。 替换地, 所述第一 通信带宽可以为低于所述预设频率的低频带宽时, 所述第二通信带宽可以为 大于所述预设频率的高频带宽。
天线信号的频率越低, 天线单元的布线越长, 其所占用的空间越多。 在 第二通信带宽与所述第一通信带宽不同的情况下, 可以结合频带的高低来适 当地选择第一天线单元 110所位于的所述电子设备的第一位置、 和第二天线 单元 120所位于的所述电子设备的第二位置。 以所述第一通信带宽为所述高 频带宽、 所述第二通信带宽可以为低于所述预设频率的低频带宽为例, 所述 第二位置可以是所述电子设备的主电路板的端部的边缘(例如为主电路板的 左下角、 右下角、 左上角、 右上角等), 所述主电路板的端部的边缘与电子设 备的外壳之间通常具有缝隙, 从而为第二天线单元 120提供较多的净空, 能 够保证其辐射和带宽性能。
对于第一天线单元 110和第二天线单元 120的正交极化方向的实现, 除 了可以在制作天线单元时设计之外, 还可以通过调整第一天线单元 110与第 二天线单元 120相对位置关系来实现。 作为示例, 如图 1所示, 如果第一天 线单元 110的极化方向是沿着其长度方向、 第二天线单元 120的极化方向也 是沿着其长度方向, 则可以通过使所述第一天线单元与第二天线单元垂直来 使二者的极化方向正交。 即, 所述第一天线单元与第二天线单元可垂直地位 于所述端部中。
该第二天线单元 120可以采用任何的制作工艺来实现, 相应地其可以为 陶瓷天线、 或者 FPC天线。 在该第二天线单元 120为陶瓷天线的情况下, 同 样可以减少其体积或所占用的空间, 易于量产, 并且可以精确地控制其极化 方向。
在本发明实施例的上述天线装置中, 通过使相邻的第一天线单元 110和 第二天线单元 120的天线信号的极化方向正交来提高所述相邻天线单元之间 的隔离度, 从而使能够邻近地放置不同的天线单元以节约天线装置所占用的 空间。 的基础上, 还可以结合其它的提高天线单元的隔离度的手段, 来使能够在同 一电子设备中设置多个天线单元。 例如, 可以在电子设备中的距所述第一天 线单元 110和第二天线单元 120足够远的位置上放置其它天线单元; 还可以 采用地单元来提高各个天线单元之间的隔离度。 通过位置的远离来提高天线 单元之间的隔离度已广为采用, 这里不再详述。 下面结合图 2描述如何采用 地单元来提高各个天线单元之间的隔离度。
图 2示意性图示了根据本发明另一实施例的天线装置 200的结构的框图。 所述天线装置 200可包括四个天线单元, 即第一天线单元 110、 第二天 线单元 120、 第三天线单元 130和第二天线单元 140。 图 2中的第一天线单元 110和第二天线单元 120与图 1中相同, 这里不再描述。 尽管在图 2中, 除 了所述第一天线单元 110和第二天线单元 120之外, 天线装置 200还包括第 三天线单元 130和第二天线单元 140二者, 但是该天线装置 200可以仅包括 所述第三天线单元 130和第二天线单元 140之一,从而满足不同的天线需求。
作为示例, 除了所述第一天线单元 110和第二天线单元 120之外, 所述 天线装置 200还可以包括第三天线单元 130, 位于所述电子设备的第三位置, 用于辐射第三极化方向的第三天线信号; 地单元 150, 位于所述第一天线单 元 110和第三天线单元 130之间。 该第三天线单元 130的通信带宽、 天线信 号极化方向、 类型等都不构成对本发明的限制。 此外, 第三天线单元 130也 可以为陶瓷天线。
所述地单元 150位于所述第一天线单元 110和第三天线单元 130之间, 其对两个天线单元形成物理隔离, 从而隔离第一天线单元 110的馈电端 (图 2所示的第一馈电端 111 )和第三天线单元 130的馈电端(图 2所示的第三馈 电端 131 ) 中泄露的信号, 提高了隔离度。 此外, 所述地单元 150可以改变 第一馈电端 111和第三馈电端 131 中的电流走向, 例如使得第一馈电端 111 和第三馈电端 131中的部分电流流向所述地单元 150, 当在第一天线单元 110 和第三天线单元 130中产生镜像信号的干扰时, 第一馈电端 111和第三馈电 端 131中流向所述地单元 150的电流会产生彼此相反的相位, 能够部分地甚 或全部地相互抵消, 从而减小了天线信号在自由空间中的相互干扰。 也就是 说, 该地单元 150不但物理地隔离第一天线单元 110和第三天线单元 130, 并且改变了第一天线单元 110和第三天线单元 130中的电流走向, 从而改变 第一天线单元 110和第三天线单元 130之间的耦合关系, 使得相互的干扰电 流能够部分地抵消, 从而改善了第一天线单元 110和第三天线单元 130之间 的隔离效果。
所述地单元 150的尺寸 (例如, 长度、 宽度等)与所述第一馈电端 111 和第三馈电端 131之间的距离对应。 当第一馈电端 111和第三馈电端 131之 间的距离远时, 相互干扰会小, 则地单元 150的尺寸可以较小; 当第一馈电 端 111和第三馈电端 131之间的距离近时, 可增加地单元 150的尺寸以增加 其面积来增加隔离效果。 该地单元 150的长度可高于或等于所述两个馈电端 中任一个的长度, 以形成较好的物理隔离。
在第一天线单元 110和第三天线单元 130的辐射性能相同的情况下, 第 一馈电端 111和第三馈电端 131可对称地位于所述地单元 150的两侧, 从而 使第一天线单元 110和第三天线单元 130中的镜像电流更多地相互抵消。 在 所述第一天线单元 110和第三天线单元 130的辐射性能不同的情况下, 也可 以调整第一馈电端 111和第三馈电端 131相对于所述地单元 150的位置以达 到最佳的抵消效果。
通过设置所述地单元 150的尺寸和位置, 也可以像在第一天线单元 110 和第三天线单元 130之间一样, 改善第二天线单元 120和第三天线单元 130 之间的隔离度。 在实践中, 所述地单元 150可以是所述电子设备的地的一部 分, 其例如是电子设备的主处理单路板上的接地层的一部分。
此外, 所述天线装置 200还可以包括第四天线单元 140, 位于所述电子 设备的与所述第三位置邻近的第四位置, 用于辐射第四极化方向的第四天线 信号, 该第四极化方向与所述第三极化方向正交。 如果该第四天线单元 140 的通信频率低而具有大的体积, 则可以如图 2所示放置在主电路板 (即 PCB 板) 的端部的边缘(即右下角)。
像第一天线单元 110和第二天线单元 120之间一样,该第四天线单元 140 和第三天线单元 130的天线信号的极化方向也正交, 从而可以提高二者之间 的隔离度。 在该第四天线单元 140与所述第一天线单元 110和第二天线单元 120之间, 也可以利用所述地单元 150来进行隔离。 第四天线单元 140与所 述第二天线单元 120可以对称地位于所述地单元 150两侧, 从而实现良好的 隔离性能。 在长期演进通信***中, 第四天线单元 140和所述第二天线单元 120的任一个距所述地单元 150的距离可以为 5毫米, 从而保证隔离度 -10dB 的最小需要。 此外, 该第四天线单元 140也可以为陶瓷天线。
在本发明实施例的上述天线装置 200中, 通过结合地使用不同的天线隔 离技术, 即正交地设置相邻天线单元的天线信号的极化方向、 和在天线单元 之间增加地单元, 来改善不同天线单元之间的隔离度, 从而使能够邻近地放 置多个天线单元以节约天线装置所占用的空间。
图 3是图示了根据本发明实施例的用于形成天线装置的方法 300的流程 图。 利用该方法 300设置的天线装置可应用于各种电子设备, 电子设备的种 类不构成对本发明的限制。
所述用于设置天线装置的方法 300包括: 在所述电子设备的第一位置上 设置第一天线单元, 该第一天线单元具有第一通信带宽, 用于辐射第一极化 方向的第一天线信号(S310 ); 在所述电子设备的与所述第一位置邻近的第二 位置上设置第二天线单元, 该第二天线单元具有第二通信带宽, 用于辐射第 二极化方向的第二天线信号, 该第二极化方向与所述第一极化方向正交
( S320 )。
在 S310中设置的第一天线单元和在 S320中设置的第二天线单元可以是 利用任何技术实现的天线单元, 例如微带天线、 单极天线、 环形天线倒 F天 线等。 具体的天线类型不构成对本发明的限制。 在制作工艺方面, 所述第一 天线单元或第二天线单元可以是 FPC天线、陶瓷天线或任何其它工艺的天线。 在采用陶瓷天线的情况下, 可以减少天线单元的体积或所占用的空间, 易于 量产, 并且可以精确地控制其极化方向。 在本发明的实施例中, 第一天线单 元和第二天线单元的任一个的频率带宽不构成对本发明的限制, 例如, 第一 通信带宽和与第二通信带宽相同; 或者所述第一通信带宽可以为大于预设频 率(例如为 800MHz、 1500MHz等) 的高频带宽, 所述第二通信带宽可以为 低于所述预设频率的低频带宽, 下文以后者为例进行描述。
在 S310中,在所述电子设备的第一位置上设置第一天线单元,该第一天 线单元具有第一通信带宽, 用于辐射第一极化方向的第一天线信号。 作为示 例, 第一天线单元的天线信号的极化方向可以是水平极化方向、 或者为垂直 极化方向, 还可以是任何其它的期望方向。 此外, 在实践中可以根据需要来 灵活地设计所述第一位置。
在 S320中,在与所述第一位置邻近的第二位置上设置第二天线单元,该 第二天线单元具有第二通信带宽, 用于辐射第二极化方向的第二天线信号, 该第二极化方向与所述第一极化方向正交。
由于第二极化方向与第一极化方向正交, 即使所述第一天线信号和第二 天线信号相遇, 它们也可以互不干扰地沿着自己的信号路径继续传播, 从而 增强了第一天线单元和第二天线单元的隔离度。 即使第一天线单元和第二天 线单元的天线信号的频率相同, 也具有良好的隔离性。 当然, 在第一天线单 元和第二天线单元的天线信号的频率不同时, 可以避免第一天线单元和第二 天线单元之间的同频干扰, 从而进一步增强不同天线单元之间的隔离度。
在 S320中可包括:在所述电子设备的主电路板的端部的边缘上设置所述 第二天线单元, 该第二天线单元垂直于所述第一天线单元。
天线信号的频率越低, 天线单元的布线越长, 其所占用的空间越多。 所 述主电路板的端部的边缘与电子设备的外壳之间通常具有缝隙, 从而为体积 大的天线单元提供较多的净空, 能够保证其辐射和带宽性能。 因此, 在第一 通信带宽为所述高频带宽、 第二通信带宽可以为低于所述预设频率的低频带 宽的情况下, 将占用空间大的第二天线单元设置在主电路板的端部的边缘, 这能够充分利用电子设备的空间, 并且保证其辐射和带宽性能。
对于第一天线单元和第二天线单元的正交极化方向的实现, 除了可以在 制作天线单元时设计之外, 还可以通过调整第一天线单元与第二天线单元相 对位置关系来实现。 因此, 通过垂直地放置第二天线单元和第一天线单元, 可以使其第二天线单元和第一天线单元之间的极化方向正交。
利用所述 S310和 S320形成的天线装置的结构可以参见图 1的图示, 其 中通过使不同天线单元的天线信号的极化方向正交来提高所述不同天线单元 之间的隔离度, 从而使能够邻近地放置不同的天线单元以节约天线装置所占 用的空间。
此外, 在 S310和 S320中利用正交的极化方向来提高天线单元之间的隔 离度的基础上, 还可以结合其它的提高天线单元的隔离度的手段, 来使能够 在同一电子设备中设置多个天线单元。 例如, 可以通过增加天线单元之间的 距离来在同一电子设备中设置多个天线单元; 还可以采用地单元来提高各个 天线单元之间的隔离度。 下面描述结合地单元来提高各个天线单元之间的隔 离度。
可选地, 图 3所示的用于设置天线装置的方法 300还可包括: 在所述电 子设备的第三位置上设置第三天线单元, 该第三天线单元用于辐射第三极化 方向的第三天线信号(S330 ); 在所述第一天线单元和第三天线单元之间设置 地单元(S340 ); 和在所述电子设备的与所述第三位置邻近的第四位置上设置 第四天线单元, 该第四天线单元用于辐射第四极化方向的第四天线信号, 该 第四极化方向与所述第三极化方向正交(S350 )。 可以看出, 设置地单元来隔 离所述第一天线单元和第三天线单元。
在 S330 中设置的第三天线单元独立于所述第一天线单元和第二天线单 元, 并因此其通信带宽、 极化方向、 类型、 制作工艺等都不构成对本发明的 限制。 第三天线单元例如可以为陶瓷天线。
在 S340中设置的地单元位于所述第一天线单元和第三天线单元之间,其 对两个天线单元形成物理隔离, 从而隔离第一天线单元的馈电端 (下文中称 为第一馈电端)和第三天线单元的馈电端 (下文中称为第三馈电端) 中泄露 的信号, 提高了隔离度。 此外, 在 S340中设置的地单元可以改变第一馈电端 和第三馈电端中的电流走向, 例如使得第一馈电端和第三馈电端中的部分电 流流向所述地单元, 能够部分地甚或全部地相互抵消, 从而减小了天线信号 在自由空间中的相互干扰。 因此, 地单元不但物理地隔离第一天线单元和第 三天线单元, 并且改变了第一天线单元和第三天线单元之间的耦合关系, 使 得相互的干扰电流能够部分地抵消, 从而改善了第一天线单元和第三天线单 元之间的隔离效果。
所述 S340可包括:基于所述第一天线单元的第一馈电端和第三天线单元 的第三馈电端之间的距离来确定所述地单元的尺寸; 按照所确定的尺寸来设 置所述地单元。 当第一馈电端和第三馈电端之间的距离远时, 相互干扰会小, 则地单元的尺寸可以较小; 当第一馈电端和第三馈电端之间的距离近时, 可 增加地单元的尺寸以增加其面积来增加隔离效果。 该地单元的长度可高于或 等于所述两个馈电端中任一个的长度, 以形成较好的物理隔离。
在第一天线单元和第三天线单元的辐射性能相同的情况下, 第一馈电端 和第三馈电端可对称地位于所述地单元的两侧, 从而使第一天线单元和第三 天线单元中的镜像电流更多地相互抵消。 在所述第一天线单元和第三天线单 元的辐射性能不同的情况下, 也可以调整第一馈电端和第三馈电端相对于所 述地单元的位置以达到最佳的抵消效果。
通过设置所述地单元的尺寸和位置, 也可以像在第一天线单元和第三天 线单元之间一样, 改善第二天线单元和第三天线单元之间的隔离度。 此外, 还可以在第二天线单元和第四天线单元之间设置地单元, 来提高其间的隔离 度。 所述地单元可以是所述电子设备的地的一部分, 其例如是电子设备的主 处理单路板上的接地层的一部分。
像第一天线单元和第二天线单元之间一样,在 S350中设置的该第四天线 单元和在 S330中设置的第三天线单元的天线信号的极化方向也正交,从而可 以提高二者之间的隔离度。 在该第四天线单元与所述第一天线单元和第二天 线单元之间, 也可以利用所述地单元来进行隔离。 第四天线单元与所述第二 天线单元可以对称地位于地单元两侧, 从而实现良好的隔离性能。 在长期演 进通信***中, 第四天线单元和第二天线单元的任一个距地单元的距离可以 为 5 毫米, 从而保证隔离度 -10dB的最小需要。 此外, 该第四天线单元也可 以为陶瓷天线。 要注意, 可以根据需要来对图 3的步骤进行增加和删除、 或者调整其中 的各个步骤的顺序。 例如, 在实现 3入 3出的 MIMO天线时, 可以从而图 3 中删除步骤 S350。
关于利用图 3中的 S310至 S350形成的天线装置的结构可以参见图 2的 图示以及结合图 2进行的描述。
在本发明实施例的上述用于形成天线装置的方法中, 通过结合地使用不 同的天线隔离技术, 即正交地设置相邻天线单元的天线信号的极化方向、 和 在天线单元之间增加地单元, 来改善不同天线单元之间的隔离度, 从而使能 够邻近地放置多个天线单元以节约天线装置所占用的空间。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的用于设置天线装置的方法中所涉及的装置和单元的具体实现, 可以参考 前述装置实施例中的图示和操作, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露装置和方法, 可 以通过其它的方式实现。 例如, 上述方法实施例中的部分步骤可以进行重新 组合, 或可以改变部分步骤之前的执行顺序。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1. 一种天线装置, 应用于电子设备, 其中, 该天线装置包括: 第一天线单元, 位于所述电子设备的第一位置, 具有第一通信带宽, 用 于辐射第一极化方向的第一天线信号;
第二天线单元, 位于所述电子设备的与所述第一位置邻近的第二位置, 具有第二通信带宽, 用于辐射第二极化方向的第二天线信号, 该第二极化方 向与所述第一极化方向正交。
2. 根据权利要求 1的天线装置, 其中, 所述第一通信带宽为大于预设频 率的高频带宽, 所述第二通信带宽为低于所述预设频率的低频带宽。
3. 根据权利要求 2的天线装置, 其中, 所述第二位置是所述电子设备的 主电路板的端部的边缘, 所述第一天线单元与第二天线单元的相对位置与第 一极化方向和第二极化方向的正交对应。
4. 根据权利要求 1的天线装置, 还包括:
第三天线单元, 位于所述电子设备的第三位置, 用于辐射第三极化方向 的第三天线信号;
地单元, 位于所述第一天线单元和第三天线单元之间。
5. 根据权利要求 4的天线装置, 其中, 所述第三天线单元用于辐射第三 极化方向的第三天线信号, 所述天线装置还包括:
第四天线单元, 位于所述电子设备的与所述第三位置邻近的第四位置, 用于辐射第四极化方向的第四天线信号, 该第四极化方向与所述第三极化方 向正交。
6. 根据权利要求 4的天线装置, 其中, 所述第一天线单元具有第一馈电 端, 所述第三天线单元具有第三馈电端, 所述地单元的尺寸与所述第一馈电 端和第三馈电端之间的距离对应。
7. 根据权利要求 1的天线装置, 其中, 所述第一天线单元和第二天线单 元中的至少一个为陶瓷天线。
8. 一种用于设置天线装置的方法,应用于电子设备,其中,该方法包括: 在所述电子设备的第一位置上设置第一天线单元, 该第一天线单元具有 第一通信带宽, 用于辐射第一极化方向的第一天线信号;
在所述电子设备的与所述第一位置邻近的第二位置上设置第二天线单 元, 该第二天线单元具有第二通信带宽, 用于辐射第二极化方向的第二天线 信号, 该第二极化方向与所述第一极化方向正交。
9. 根据权利要求 8的方法, 其中, 所述第一通信带宽为大于预设频率的 高频带宽, 所述第二通信带宽为低于所述预设频率的低频带宽。
10. 根据权利要求 9的方法, 其中, 所述在所述电子设备的与所述第一 位置邻近的第二位置上设置第二天线单元的步骤包括: 在所述电子设备的主 电路板的端部的边缘上设置所述第二天线单元, 所述第二天线单元与所述第 一天线单元的相对位置与第一极化方向和第二极化方向的正交对应。
11. 根据权利要求 8的方法, 还包括:
在所述电子设备的第三位置上设置第三天线单元, 该第三天线单元用于 辐射第三极化方向的第三天线信号;
在所述第一天线单元和第三天线单元之间设置地单元。
12. 根据权利要求 11的方法, 其中, 所述第三天线单元用于辐射第三极 化方向的第三天线信号, 所述方法还包括:
在所述电子设备的与所述第三位置邻近的第四位置上设置第四天线单 元, 该第四天线单元用于辐射第四极化方向的第四天线信号, 该第四极化方 向与所述第三极化方向正交。
13.根据权利要求 11的方法,其中,所述第一天线单元具有第一馈电端, 所述第三天线单元具有第三馈电端, 所述在所述第一天线单元和第三天线单 元之间设置地单元的步骤包括:
基于所述第一馈电端和第三馈电端之间的距离来确定所述地单元的尺 寸;
按照所确定的尺寸来设置所述地单元。
14. 根据权利要求 8的方法, 其中, 所述第一天线单元和第二天线单元 中的至少一个为陶瓷天线。
PCT/CN2014/072397 2013-03-04 2014-02-21 天线装置和用于设置天线装置的方法 WO2014135012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,034 US9698483B2 (en) 2013-03-04 2014-02-21 Aerial device and method for setting aerial device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310068153.5A CN104037500B (zh) 2013-03-04 2013-03-04 天线装置和用于设置天线装置的方法
CN201310068153.5 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014135012A1 true WO2014135012A1 (zh) 2014-09-12

Family

ID=51468178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072397 WO2014135012A1 (zh) 2013-03-04 2014-02-21 天线装置和用于设置天线装置的方法

Country Status (3)

Country Link
US (1) US9698483B2 (zh)
CN (1) CN104037500B (zh)
WO (1) WO2014135012A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963431A (zh) * 2018-08-28 2018-12-07 昆山睿翔讯通通信技术有限公司 一种移动通讯终端双极化sub-6GHz天线***

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014103657U1 (de) * 2014-08-06 2015-06-10 DLOG Gesellschaft für elektronische Datentechnik mbH Diversity-Antennenanordnung für WLAN und WLAN-Kommunikationseinheit mit einer derartigen Diversity-Antennenanordnung und Gerät mit einer derartigen WLAN-Kommunikationseinheit
CN105789818A (zh) * 2014-12-17 2016-07-20 联想(北京)有限公司 一种天线及电子设备
JP6271480B2 (ja) * 2015-08-26 2018-01-31 株式会社東芝 通信装置、スマートメータ
CN105872415A (zh) * 2015-12-14 2016-08-17 乐视致新电子科技(天津)有限公司 一种分体式电视及其主机单元
CN107925156B (zh) * 2016-05-28 2021-02-12 华为终端有限公司 通信终端
WO2018028101A1 (zh) * 2016-08-12 2018-02-15 上海安费诺永亿通讯电子有限公司 紧凑型激励地板正交辐射的高隔离度天线及其mimo通信***
TWI628857B (zh) * 2016-10-06 2018-07-01 和碩聯合科技股份有限公司 天線系統
CN108321489A (zh) * 2017-01-17 2018-07-24 中兴通讯股份有限公司 一种mimo天线及终端
CN106887678A (zh) * 2017-03-28 2017-06-23 维沃移动通信有限公司 一种移动终端天线及移动终端
US10476167B2 (en) 2017-07-20 2019-11-12 Apple Inc. Adjustable multiple-input and multiple-output antenna structures
US10886607B2 (en) 2017-07-21 2021-01-05 Apple Inc. Multiple-input and multiple-output antenna structures
TWI699540B (zh) * 2018-05-10 2020-07-21 立積電子股份有限公司 都卜勒移動感應裝置
US10651565B1 (en) * 2019-04-29 2020-05-12 Microsoft Technology Licensing, Llc Antenna polarization diversity
WO2021082540A1 (zh) * 2019-10-31 2021-05-06 深圳市伏荣科技开发有限公司 一种音频接收装置、无线监听***及信号收发终端
CN113451788B (zh) * 2020-03-24 2022-10-18 华为技术有限公司 天线、天线模组及无线网络设备
CN113745853B (zh) * 2020-05-30 2023-04-18 华为技术有限公司 一种天线阵列及无线通信设备
CN111857409A (zh) * 2020-06-12 2020-10-30 安徽精卓光显技术有限责任公司 触控传感器以及电子设备
US12003299B2 (en) * 2020-11-25 2024-06-04 Mediatek Inc. Channel state information measurement method and associated wireless communication chip and electronic device
CN112531343B (zh) * 2020-12-01 2023-12-05 维沃移动通信有限公司 天线***和电子设备
CN112768934B (zh) * 2020-12-30 2024-01-02 深圳市信丰伟业科技有限公司 一种基于电磁波模式变换消除同频干扰的天线及方法
CN113067121B (zh) * 2021-03-24 2023-12-22 Oppo广东移动通信有限公司 电子设备
CN113178697B (zh) * 2021-04-09 2023-11-10 维沃移动通信有限公司 电路板及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987458A (en) * 1975-07-25 1976-10-19 The United States Of America As Represented By The Secretary Of The Army Low-profile quadrature-plate UHF antenna
CN101884135A (zh) * 2007-12-04 2010-11-10 松下电器产业株式会社 天线装置和通信装置
CN102157799A (zh) * 2010-02-01 2011-08-17 日立电线株式会社 复合天线装置
CN202712437U (zh) * 2012-07-25 2013-01-30 ***通信集团公司 一种双频多输入多输出天线及接入点设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862433B2 (en) * 2001-02-06 2005-03-01 Motorola, Inc. Antenna system for a wireless information device
JP2004328717A (ja) * 2003-04-11 2004-11-18 Taiyo Yuden Co Ltd ダイバーシティアンテナ装置
JP2005341265A (ja) * 2004-05-27 2005-12-08 Toshiba Corp 情報機器およびダイバーシティアンテナ制御方法
WO2006120250A2 (en) * 2005-05-13 2006-11-16 Fractus, S.A. Antenna diversity system and slot antenna component
CN101971424A (zh) * 2007-12-21 2011-02-09 爱立信电话股份有限公司 具有改进天线布置的电子装置
TWI357178B (en) * 2008-06-20 2012-01-21 Wistron Corp Electronic device, antenna thereof, and method of
US8730110B2 (en) * 2010-03-05 2014-05-20 Blackberry Limited Low frequency diversity antenna system
CN102623793A (zh) * 2011-02-01 2012-08-01 华硕电脑股份有限公司 多输入输出天线***
WO2013000069A1 (en) * 2011-06-30 2013-01-03 Sierra Wireless, Inc. Compact antenna system having folded dipole and/or monopole
US9325064B2 (en) * 2011-08-18 2016-04-26 Sony Corporation Mobile terminal
JP5162012B1 (ja) * 2011-08-31 2013-03-13 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
TWI511378B (zh) * 2012-04-03 2015-12-01 Ind Tech Res Inst 多頻多天線系統及其通訊裝置
CN102842751B (zh) * 2012-09-10 2017-03-15 苏州云达通信科技有限公司 一种4g数据终端多输入多输出天线装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987458A (en) * 1975-07-25 1976-10-19 The United States Of America As Represented By The Secretary Of The Army Low-profile quadrature-plate UHF antenna
CN101884135A (zh) * 2007-12-04 2010-11-10 松下电器产业株式会社 天线装置和通信装置
CN102157799A (zh) * 2010-02-01 2011-08-17 日立电线株式会社 复合天线装置
CN202712437U (zh) * 2012-07-25 2013-01-30 ***通信集团公司 一种双频多输入多输出天线及接入点设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963431A (zh) * 2018-08-28 2018-12-07 昆山睿翔讯通通信技术有限公司 一种移动通讯终端双极化sub-6GHz天线***
CN108963431B (zh) * 2018-08-28 2023-12-01 昆山睿翔讯通通信技术有限公司 一种移动通讯终端双极化sub-6GHz天线***

Also Published As

Publication number Publication date
US20150084831A1 (en) 2015-03-26
CN104037500B (zh) 2019-06-25
US9698483B2 (en) 2017-07-04
CN104037500A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2014135012A1 (zh) 天线装置和用于设置天线装置的方法
JP6737486B2 (ja) アンテナモジュール、mimoアンテナ、および端末
TWI506861B (zh) 可切換分集天線設備、行動通信裝置及低頻範圍分集天線
JP6374971B2 (ja) アンテナユニット及び端末
KR101192054B1 (ko) 이중 급전 이중 대역 안테나 어셈블리 및 연관 방법
TWI544682B (zh) 寬頻天線及其操作方法
JP4384102B2 (ja) 携帯無線機およびアンテナ装置
JP3843429B2 (ja) 電子機器及びアンテナ実装プリント配線基板
WO2017114024A1 (zh) 双极化天线和通信设备
JP2016523491A (ja) 多重アンテナシステムおよびモバイル端末
WO2021082935A1 (zh) 电子设备
JP2011109547A (ja) マルチアンテナ装置および携帯機器
KR20100022374A (ko) 안테나장치
JP2007013958A (ja) アンテナシステム
TW201803201A (zh) 具有隔離饋體之補綴天線
EP2628208B1 (en) Antenna pair for mimo/diversity operation in the lte/gsm bands
CN113224503A (zh) 一种天线及终端设备
JP2007049249A (ja) アンテナ装置
JP6117833B2 (ja) ダイバーシティアンテナ装置
JP2018170589A (ja) アンテナ装置、及び、電子機器
US20180269595A1 (en) System and method for a mobile antenna with adjustable resonant frequencies and radiation pattern
JP2006254082A (ja) 移動体通信端末
JP2023546900A (ja) 電子デバイス
JP7158606B2 (ja) アンテナ装置および無線通信機能付きセンサ
JP2015037241A (ja) アンテナ装置及び携帯端末

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14387034

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14761244

Country of ref document: EP

Kind code of ref document: A1