WO2014133212A1 - Bio sensor and manufacturing method therefor - Google Patents

Bio sensor and manufacturing method therefor Download PDF

Info

Publication number
WO2014133212A1
WO2014133212A1 PCT/KR2013/001775 KR2013001775W WO2014133212A1 WO 2014133212 A1 WO2014133212 A1 WO 2014133212A1 KR 2013001775 W KR2013001775 W KR 2013001775W WO 2014133212 A1 WO2014133212 A1 WO 2014133212A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
source electrode
drain electrode
electrode
Prior art date
Application number
PCT/KR2013/001775
Other languages
French (fr)
Korean (ko)
Inventor
안세영
권현화
Original Assignee
주식회사 엔디디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔디디 filed Critical 주식회사 엔디디
Publication of WO2014133212A1 publication Critical patent/WO2014133212A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires

Definitions

  • the present invention relates to a biosensor, and in particular, when fabricating a FET-based nanobiosensor having carbon nanotubes, the structure and manufacturing method of preventing the carbon nanotubes from being damaged by the photoresist to be used during the manufacturing process. It is about.
  • a field effect transistor (hereinafter, also referred to as a "FET”) is composed of a source, a drain, and a gate electrode, and an insulating film is provided above, next to, or below a channel, which is a passage for the current formed between the source and the drain electrode. It forms, and forms a gate electrode in the upper part, and manufactures it.
  • FET field effect transistor
  • biosensors use chemical transformations such as electrochemical, optical, electrical and mechanical signals as biological sensors to detect biological molecules.
  • the biosensor using an electrical signal has an advantage of fast signal switching and miniaturization.
  • the FET biosensor is a representative sensor using an electrical signal, and is manufactured by using a semiconductor process, so it is easy to integrate an integrated circuit or MEMS, which is advantageous for miniaturization, and mass production and production costs can be reduced.
  • the FET biosensor absorbs biomolecules on the surface of the current sensing membrane and changes the magnitude of the current flowing inside the sensing membrane due to the effect of the charge generated when the specific molecules are selectively recognized.
  • a photoresist is used to pattern a structural film such as an electrode.
  • a pattern is formed on a substrate through ultraviolet (UV) photosensitive, and an acid, a polar compound, and the like are used by heating a temperature of 90 degrees Celsius or more several times.
  • UV ultraviolet
  • an acid, a polar compound, and the like are used by heating a temperature of 90 degrees Celsius or more several times.
  • a photoresist is applied directly onto the current sensing film, and the photoresist is removed after the process proceeds.
  • carbon nano current sensing film or “current sensing film”
  • current sensing film carbon nano current sensing film
  • An embodiment of the present invention proposes a new structure of the FET-based biosensor, and proposes a biosensor capable of preventing damage of the carbon nanocurrent sensing film caused by the use of the photoresist by the proposed structure and a manufacturing method thereof.
  • the biosensor according to the present embodiment includes a substrate, a source electrode formed on a portion of the upper surface of the substrate, a drain electrode formed at a predetermined distance from the source electrode, a substrate upper surface between the source electrode and the drain electrode, A current sensing film formed of carbon nanotubes or graphene formed on an upper surface of the source electrode and an upper surface of the drain electrode; and a carbon nano current sensing film disposed on the source electrode and the drain electrode, and formed of an insulating material. And a gate electrode formed on the buffer film.
  • the method of manufacturing the biosensor according to the embodiment may include forming a metal film for forming a source electrode and a drain electrode on a substrate, applying a photoresist for patterning the metal film, and patterning the photoresist; Forming a source electrode and a drain electrode on the substrate by etching the metal film using the patterned photoresist as an etching mask, removing the photoresist, and exposing the upper surface of the substrate; Coating a carbon nanocurrent sensing film to be used as a sensing film on upper surfaces of the source electrode and the drain electrode; and bonding a buffer film of an insulating material on which the gate electrode is formed on the carbon nanocurrent sensing film.
  • 1 is a view showing the structure of the biosensor of the present embodiment.
  • FIGS. 2 to 6 are views for explaining a method of manufacturing the biosensor of the embodiment.
  • the present invention uses a transistor channel including a gate, a source and a drain electrode, and a carbon nanocurrent sensing film as a nanostructure, to detect a target material such as a protein adsorbed to an antibody connected to a linker on the surface of the current sensing film.
  • a target material such as a protein adsorbed to an antibody connected to a linker on the surface of the current sensing film.
  • 1 is a view showing the structure of the biosensor of the present embodiment.
  • a carbon nano current sensing film 150 (hereinafter referred to as a "current sensing film") for forming a channel of the transistor, and a target material to be detected above the current sensing film 150, and a target material to be detected on the current sensing film.
  • the substrate 101 is made of a SiO 2 -based glass material to reduce manufacturing cost and reduce weight when manufacturing the biosensor of the embodiment.
  • it may be made of glass.
  • the substrate of the glass may be made of a thickness in the range of 200nm to 500 ⁇ m.
  • Source and drain electrodes 110 and 120 of the FET device are positioned on the substrate 101, and the source and drain electrodes are formed in a patterned shape through a photoresist process described later.
  • the space between the source electrode and the drain electrode is a region where the target material is adsorbed, and the target material is adsorbed through the linker on the current sensing layer 150 formed in the space between the source and drain electrodes.
  • a fixing material for fixing the antibody fragment on the surface of the current sensing membrane a cross-linker having an affinity with CNT can be used, and one end having the hydrophobic property of the cross-linker is adsorbed onto the CNT membrane by using the hydrophobic property of the CNT. The other side may be covalently bound to the antibody fragment.
  • both the source electrode 120 and the drain electrode 110 may have a multi-layered film structure, for example, form Ti (titanium) having excellent adsorption with the substrate 101, and form Ti on Ti.
  • Au gold
  • the second metal film can be further formed as the second metal film.
  • the low adhesion of Au is complemented by Ti, and the high electrical conductivity of Au can be utilized.
  • the current sensing film 150 is formed on the upper substrate and the source and drain electrode upper surface between the source electrode 120 and the drain electrode 110, and forms a channeling when voltage is applied to the gate electrode as a FET device It plays a role.
  • the current sensing film 150 in the present embodiment is formed on the upper surface of the patterned source electrode and the drain electrode and the substrate, the possibility of damage caused by photoresist or the like during the sensor manufacturing is significantly lowered. Regarding the manufacturing method, it will be described later together with the accompanying drawings.
  • a gate electrode is formed on the source and drain electrodes 110 and 120, and a buffer layer 130, which is a non-conductor, is disposed between the source / drain electrode and the gate electrode for electrical insulation.
  • the buffer layer 130 may be made of a SiO 2 -based glass material, and may be made of the same material as the substrate 101.
  • both the substrate and the buffer film may be made of glass.
  • one end of the buffer film 130 is formed in a tapered shape toward the current sensing film with an upper surface exposed thereto.
  • a second taper formed at a lower portion of one end of the buffer film 130 may be used. It may be formed to have a surface 132 and a first tapered surface 131 formed at an upper portion of one end of the buffer layer 130.
  • a metal, which is a gate electrode, is formed on the buffer layer 130, and end portions of the buffer layer 130 are first and / or second tapered so that the gate electrode can be located close to the current sensing layer 150. It may have a shape bent by the surface.
  • the gate electrode 140 formed on the buffer layer may be bent at a predetermined angle downward. Due to such a shape characteristic, a part of the gate electrode 140 may be located closer to the CNT film, and detailed operation control of the transistor is possible even if the strength of the voltage applied to the gate electrode is reduced due to the characteristics of the FET device.
  • the gate electrode is not positioned on the second tapered surface 132 that is bent at different angles in succession to the first tapered surface 131, which prevents a short circuit between the source electrode and the drain electrode under the buffer layer. To do so.
  • the gate electrode 140 may be made of one or more metals selected from the group consisting of platinum, gold, chromium, copper, aluminum, nickel, palladium, and titanium, and the thickness thereof may be, for example, about 0.1T. Can be.
  • the biosensor having the structure as described above is a structure in which a part of the carbon nanocurrent sensing film for channel formation is formed on the source electrode and the drain electrode, and a photoresist is formed to form a patterned shape of the source electrode and the drain electrode. Even when using, since it is applied and removed before the carbon nanocurrent sensing film is formed, it is possible to prevent the transfer of damage to the carbon nanocurrent sensing film in advance.
  • the weight of the sensor can be reduced and the manufacturing cost can be reduced. Since the gate electrode is disposed adjacent to the carbon nano current sensing film, it is possible to control the transistor at low power. .
  • FIGS. 2 to 6 are views for explaining a method of manufacturing the biosensor of the embodiment.
  • a metal film 102 for forming a source electrode and a drain electrode is formed on a substrate 101 made of a SiO 2 based glass material.
  • the metal film may be deposited by known methods, and may be formed on a substrate by, for example, chemical vapor deposition.
  • photoresist PR is applied onto metal film 102, and the photoresist is patterned. Patterning of the photoresist is performed to correspond to the shape of the source electrode and the drain electrode to be formed, and the metal film exposed by the patterning of the photoresist is an object of etching.
  • the metal film is etched using the patterned photoresist as an etching mask, and the etching is performed until the top surface of the substrate is exposed.
  • the patterned source electrode 120 and the drain electrode 110 are formed.
  • a process for forming a carbon nanocurrent sensing film is performed on the exposed upper surface of the substrate and on the source electrode and the drain electrode.
  • a dispersion solution in which CNTs are dispersed is coated on a glass substrate, and CNTs dispersed in unit strands in the solution due to the coating of the solution in which the CNTs are dispersed are formed on the substrate top surface and the source / drain electrodes. Is adsorbed on the wall and on it.
  • the CNTs dispersed in the unit strands in the solution are adsorbed one by one on the source / drain electrodes which are metal and the glass substrate.
  • the remaining CNTs except for the CNTs adsorbed on the substrate surface and the electrode surface may be removed. This is because the van der Waals force between the CNT strand and the metal or glass is larger than the van der Waals forces between the unit strands constituting the CNT, and in this manner, the substrate surface and the source / drain electrodes are used. It is possible to coat CNTs.
  • the CNT may be used by selecting any one of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
  • CNT dispersion solution may be prepared using one selected from among methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide, methylene chloride, and mixtures thereof.
  • ultrasonic dispersion or ball milling may be used for uniform dispersion of carbon nanotubes in a CNT dispersion solvent, and power 50 to 700 W in a frequency range of 20 kHz to 50 kHz depending on the capacity of CNT and the amount of solvent. It can be applied for 1 to 60 hours in a phosphorus ultrasonicator to achieve a uniform dispersion of carbon nanotubes in a solvent.
  • a dispersion stabilizer may be added when dispersing CNTs into a dispersion solvent of CNTs.
  • the dispersion stabilizer is Triton X-100, polyethylene oxide, polyethylene oxide-polypropylene oxide copolymer, polyvinylpyrrole, polyvinyl alcohol, Ganax, starch, monosaccharide, polysaccharide (polysaccharide), dodecyl benzene sulfate, sodium dodecyl benzene sulfonate (NaDDBS), sodium dodecylsulfonate (SDS), 4-vinyl benzoate cesyltrimethylammonium (cetyltrimethylammounium 4 -Vinylbenzoate, pyrene derivatives (pyrene derivatives), gum Arabic (Gum Arabic, GA), nafion (nafion) and a mixture thereof can be selected and used.
  • nitric acid, hydrochloric acid, sulfuric acid, and an acid solution which is one of these mixtures may be added to purify the carbon nanotubes, thereby realizing surface functionalization. Dispersibility can be improved.
  • a binder When preparing a CNT dispersion solution, a binder may be directly added to dissolve or a binder solution in which a binder is dissolved in a binder dissolving solvent may be mixed with the CNT dispersion solution to prepare a carbon nanotube binder mixed coating solution containing CNT and a binder.
  • the binder dissolving solvent may not be used depending on the type of the binder, and may be replaced by the use of a CNT dispersion solvent or a dilution solvent.
  • the binder may be selected from a polymer resin, preferably a thermosetting resin, a photocurable resin, a silane compound that hydrolyzes to cause a condensation reaction, a thermoplastic resin, and a conductive polymer.
  • the binder made of thermosetting resin can be selected from urethane resin, epoxy resin, melamine resin, polyimide and mixtures thereof.
  • the binder made of photocurable resin may be selected from epoxy resin, polyethylene oxide, urethane resin, and mixtures thereof.
  • the binder of the photocurable resin, the reactive oligomer is epoxy acrylate, polyester acrylate, urethane acrylate, polyether acrylate, thiolate (thiolate), organosilicon polymer, organosilicon copolymer and mixtures thereof You can choose one to use.
  • the binder which consists of photocurable resins has a reactive monomer as a monofunctional monomer, 2-ethylhexyl acrylate, an oltyl decyl acrylate, an isodecyl acrylate, a dredyl methacrylate, 2-phenoxy ethyl acrylate, and a nonyl phenol.
  • Ethoxylake Monoacrylate, Tetrahydroperfurylate, Ethoxyethylacrylate, Hydroxyethylacrylate, Hydroxyethylmethacrylate, Hydroxypropylacrylate, Hydroxypropylmethacrylate, Hydroxybutylacryl Elate, hydroxybutyl methacrylate, and a mixture thereof can be selected and used.
  • the binder which consists of photocurable resins has 1, 3- butanediol diacrylate, 1, 4- butanediol diacrylate, 1, 6- hexanediol diacrylate, and diethylene glycol diacryl whose reactive monomers are bifunctional monomers. Rate, driethylene glycol dimethacrylate, neopentyl glycol diacrylate, ethylene glycol dimethacrylate, tetraethylene glycol methacrylate, polyethylene glycol dimethacrylate, tripropylene glycol diacrylate, 1,6-hexane
  • diol diacrylates and mixtures thereof can be selected and used.
  • silane compound that causes the condensation reaction by hydrolysis may also play a role of a binder and a dispersion stabilizer in the carbon nanotube binder mixed coating solution.
  • the binder made of thermoplastic resin is polystyrene and its derivatives, polystyrene butadiene copolymer, polycarbonate, polyvinyl chloride, polysulfone, polyether sulfone, polyetherimide, polyacrylate, polyester, polyimide, polyamic acid, One of cellulose acetate, polyamide, polyolefin, polymethyl methacrylate, polyether ketone, polyoxyethylene and mixtures thereof can be selected and used.
  • the binder made of a conductive polymer is a polythiophene homopolymer, polythiophene copolymer, polyacetylene, polyaniline, polypyrrole, poly (3,4-ethylenedioxythiophene), pentacene-based compound and mixtures thereof. You can choose one to use.
  • the binder serves to improve the dispersibility of the CNTs, improve adhesion to the substrate, and improve chemical stability, durability, and scratch resistance.
  • the CNT binder mixture coating solution diluted to an appropriate concentration is coated on the substrate by any one of spraying, dip coating, spin coating, screen coating, inkjet printing, pad printing, knife coating, key coating and gravure coating.
  • the upper surface of the substrate may be coated with a thickness of several tens to several hundred nm depending on the use of the transparent conductive film.
  • the carbon nano current sensing film 150 formed of CNT or graphene formed on the exposed upper surface of the substrate 101 is a region where a target material is induced, and the gate electrode is formed on the carbon nano current sensing film formed on the source electrode and the drain electrode.
  • the formed buffer film is bonded.
  • one end of the buffer film 130 made of SiO 2 -based glass material is tapered to form a gate electrode metal on the tapered buffer film 130, thereby completing the buffer film on which the gate electrode is formed.
  • the tapering at one end of the buffer film may have various shapes as shown in 5 4 (a) and (b).
  • the buffer is formed such that the first tapered surface 131 inclined downward so that one end of the gate electrode is bent and the second tapered surface 132 inclined upward so that the source / drain electrode and the gate electrode are not short-circuited are formed. The ends of the membrane can be processed.
  • one end of the buffer layer 130 may have only a tapered surface inclined downward.
  • the horizontal length of the buffer film 130 needs to be longer than the length of the source / drain electrodes, so that a short circuit does not occur between the electrodes.
  • the buffer film 130 having such a tapered surface and the gate electrode are formed on the buffer film 130, the lower surface of the buffer film 130 is adhered to the source and drain electrodes 110 and 120, thereby providing Biosensors can be manufactured.
  • various kinds of chemical adhesives can be used.
  • the biosensor of the present invention shown in Fig. 1 is manufactured, and since the patterning of the source electrode and the drain electrode is performed before forming the CNTs, the problem is that the damage is applied to the CNT surface when removing the photoresist. Will not occur.

Abstract

The bio sensor of the present embodiment comprises: a substrate; a source electrode formed on one part of the upper surface of said substrate; a drain electrode formed at a predetermined distance from said source electrode; a substrate upper surface between said source electrode and drain electrode; a carbon nano current sensing film formed on the upper surfaces of said source electrode and said drain electrode; a gate electrode formed on a carbon nano current film positioned on the upper side of said source electrode and drain electrode and formed on a buffer film comprising insulation material.

Description

바이오 센서 및 그 제조 방법Biosensor and its manufacturing method
본 발명은 바이오 센서에 대한 것으로서, 특히, 탄소나노튜브를 갖는 FET 기반의 나노 바이오 센서를 제조하는 때에, 제조 공정 중 사용되게 되는 포토레지스트에 의하여 탄소나노튜브가 손상되지 않도록 하는 그 구조 및 제조 방법에 대한 것이다. The present invention relates to a biosensor, and in particular, when fabricating a FET-based nanobiosensor having carbon nanotubes, the structure and manufacturing method of preventing the carbon nanotubes from being damaged by the photoresist to be used during the manufacturing process. It is about.
일반적으로, 전계 효과 트랜지스터(이하, "FET"이라고도 함)는 소스, 드레인 및 게이트 전극으로 구성되어 있으며, 소스와 드레인 전극 사이에 형성되는 전류의 이동 통로인 채널의 위, 옆 또는 아래에 절연막을 형성하고, 그 상부에 게이트 전극을 형성하여 제작한다. 게이트 전극에 가해주는 전압 신호의 크기를 조절하여 소스와 드레인 전극 사이 채널에 존재하는 반송자 입자(양전기 전도 홀 및 음전기 전도 전자)의 밀도를 조절함으로써, 소스 또는 드레인 전극으로 출력되는 전류 신호의 크기를 변환할 수 있는 소자이다.In general, a field effect transistor (hereinafter, also referred to as a "FET") is composed of a source, a drain, and a gate electrode, and an insulating film is provided above, next to, or below a channel, which is a passage for the current formed between the source and the drain electrode. It forms, and forms a gate electrode in the upper part, and manufactures it. By adjusting the magnitude of the voltage signal applied to the gate electrode, the density of carrier particles (positive conduction holes and negative conduction electrons) present in the channel between the source and drain electrodes is adjusted, thereby the magnitude of the current signal output to the source or drain electrode. It is a device that can convert.
최근 화학 또는 생물 분자를 검출하는데 있어서, 신속성과 편리성이 강조되면서 정밀분석기기 보다 센서 제작에 많은 연구 개발이 진행되고 있다. 특히 바이오센서는 생물 분자를 검출하기 위하여 생물 감지기능을 이용한 화학 센서로서 전기화학, 광학, 전기 및 기계적 신호 등과 같은 신호변환을 이용하고 있다. 이들 중 전기적 신호를 이용하는 바이오센서는 신호전환이 빠르고 소형화가 용이하다는 장점이 있다. 특히, 전기적 신호를 이용하는 대표적 센서로 FET 바이오센서가 있으며 반도체 공정을 이용하여 제작되기 때문에 집적회로나 MEMS 접목이 용이하여 초소형화에 유리하며 양산 및 생산비용 절감이 가능할 수 있다는 장점이 있다.Recently, in the detection of chemical or biological molecules, with the emphasis on rapidity and convenience, a lot of research and development has been conducted on the manufacture of sensors rather than precision analyzers. In particular, biosensors use chemical transformations such as electrochemical, optical, electrical and mechanical signals as biological sensors to detect biological molecules. Among them, the biosensor using an electrical signal has an advantage of fast signal switching and miniaturization. In particular, the FET biosensor is a representative sensor using an electrical signal, and is manufactured by using a semiconductor process, so it is easy to integrate an integrated circuit or MEMS, which is advantageous for miniaturization, and mass production and production costs can be reduced.
FET 바이오센서는 생물 분자를 전류감지막 표면에 흡착시켜 특정 분자를 선택적으로 인식할 때 발생하는 전하의 영향으로 인해 감지막 내부에 흐르는 전류의 크기가 변화하게 되는데 이때의 출력 신호 크기 변화를 이용한다.The FET biosensor absorbs biomolecules on the surface of the current sensing membrane and changes the magnitude of the current flowing inside the sensing membrane due to the effect of the charge generated when the specific molecules are selectively recognized.
일반적으로, 나노 바이오 센서를 포함한 반도체 제조 공정에서는, 전극 등의 구조막을 패턴화하기 위하여 포토레지스트를 사용하고 있다. 이 포토레지스트 공정에서는, 기판에 자외선(UV) 감광을 통하여 패턴을 만들고, 섭씨 90도 이상의 온도를 수차례 가열하며 산과 극성화합물 등을 사용하게 된다. 그러나, 탄소나노튜브(CNT) 및 그래핀을 도포하여 전류감지막으로 사용하는 나노바이오 센서의 경우에, 이러한 포토레지스트를 전류감지막상에까지 직접 도포하고, 공정 진행 후 포토레지스트를 제거하는 등의 일련의 과정들이 수행되면, 전류감지막을 형성하는 탄소나노튜브 및 그래핀(이하 "탄소나노 전류감지막" 또는 "전류감지막"이라고 함)의 상호 연결구조에 손상이 가해지고, 이것은 결국 제조된 바이오 센서의 채널링이 원활히 이루어지지 않거나, 타겟 물질을 정확히 검출할 수 없을 정도로 정확한 동작이 이루어지지 않을 가능성이 높다. Generally, in the semiconductor manufacturing process including a nano biosensor, a photoresist is used to pattern a structural film such as an electrode. In this photoresist process, a pattern is formed on a substrate through ultraviolet (UV) photosensitive, and an acid, a polar compound, and the like are used by heating a temperature of 90 degrees Celsius or more several times. However, in the case of a nanobio sensor using carbon nanotubes (CNT) and graphene as a current sensing film, such a photoresist is applied directly onto the current sensing film, and the photoresist is removed after the process proceeds. Is performed, damage is made to the interconnect structure of carbon nanotubes and graphene (hereinafter referred to as "carbon nano current sensing film" or "current sensing film") that form a current sensing film, which eventually produces It is highly probable that the channeling of the sensor is not performed smoothly, or that the correct operation is not performed so that the target material cannot be accurately detected.
본 발명의 실시예는 새로운 구조의 FET 기반 바이오 센서를 제안하며, 제안되는 구조에 의해서 포토레지스트의 사용에 따른 탄소나노 전류감지막의 데미지를 방지할 수 있는 바이오 센서 및 그 제조 방법을 제안하고자 한다. An embodiment of the present invention proposes a new structure of the FET-based biosensor, and proposes a biosensor capable of preventing damage of the carbon nanocurrent sensing film caused by the use of the photoresist by the proposed structure and a manufacturing method thereof.
본 실시예의 바이오 센서는, 기판과, 상기 기판의 상부면 일부에 형성되는 소스 전극과, 상기 소스 전극과 소정 간격을 두고 형성되는 드레인 전극과, 상기 소스 전극과 드레인 전극 사이의 기판 상부면과, 상기 소스 전극의 상부면 및 드레인 전극의 상부면에 형성되는 탄소나노튜브 또는 그래핀으로 이루어진 전류감지막과, 상기 소스 전극과 드레인 전극 상측에 위치한 탄소나노 전류감지막 상에 형성되고, 절연물질로 이루어진 버퍼막과, 상기 버퍼막 상에 형성되는 게이트 전극을 포함한다. The biosensor according to the present embodiment includes a substrate, a source electrode formed on a portion of the upper surface of the substrate, a drain electrode formed at a predetermined distance from the source electrode, a substrate upper surface between the source electrode and the drain electrode, A current sensing film formed of carbon nanotubes or graphene formed on an upper surface of the source electrode and an upper surface of the drain electrode; and a carbon nano current sensing film disposed on the source electrode and the drain electrode, and formed of an insulating material. And a gate electrode formed on the buffer film.
또한, 실시예의 바이오 센서의 제조 방법은, 기판 상에 소스 전극과 드레인 전극 형성을 위한 금속막을 형성하는 단계와, 상기 금속막을 패터닝하기 위한 포토레지스트를 도포하고, 상기 포토레지스트를 패터닝하는 단계와, 상기의 패터닝된 포토레지스트를 식각 마스크로 이용하여, 상기 금속막을 식각함으로써, 상기 기판 상에 소스 전극과 드레인 전극을 형성하는 단계와, 상기 포토레지스트를 제거하고, 상기 기판의 노출된 상부면과, 상기 소스 전극과 드레인 전극의 상부면에 감지막으로 사용할 탄소나노 전류감지막을 코팅하는 단계 및, 게이트 전극이 형성된 절연물질의 버퍼막을 상기 탄소나노 전류감지막 상에 접착하는 단계를 포함한다. In addition, the method of manufacturing the biosensor according to the embodiment may include forming a metal film for forming a source electrode and a drain electrode on a substrate, applying a photoresist for patterning the metal film, and patterning the photoresist; Forming a source electrode and a drain electrode on the substrate by etching the metal film using the patterned photoresist as an etching mask, removing the photoresist, and exposing the upper surface of the substrate; Coating a carbon nanocurrent sensing film to be used as a sensing film on upper surfaces of the source electrode and the drain electrode; and bonding a buffer film of an insulating material on which the gate electrode is formed on the carbon nanocurrent sensing film.
제안되는 바와 같은 실시예의 바이오 센서 및 그 제조 방법에 의해서, 센서 제조 중에 탄소나노 전류감지막에 가해지는 데미지를 최소화할 수 있는 장점이 있다. According to the biosensor of the present embodiment and a method of manufacturing the same, there is an advantage of minimizing damage to the carbon nanocurrent sensing film during sensor manufacturing.
도 1은 본 실시예의 바이오 센서의 구조를 보여주는 도면이다. 1 is a view showing the structure of the biosensor of the present embodiment.
도 2 내지 도 6은 실시예의 바이오 센서를 제조하는 방법을 설명하기 위한 도면이다. 2 to 6 are views for explaining a method of manufacturing the biosensor of the embodiment.
이하에서는, 본 실시예에 대하여 첨부되는 도면을 참조하여 상세하게 살펴보도록 한다. 다만, 본 실시예가 개시하는 사항으로부터 본 실시예가 갖는 발명의 사상의 범위가 정해질 수 있을 것이며, 본 실시예가 갖는 발명의 사상은 제안되는 실시예에 대하여 구성요소의 추가, 삭제, 변경 등의 실시변형을 포함한다고 할 것이다. Hereinafter, with reference to the accompanying drawings for the present embodiment will be described in detail. However, the scope of the inventive idea of the present embodiment may be determined from the matters disclosed by the present embodiment, and the inventive idea of the present embodiment may be implemented by adding, deleting, or modifying components to the proposed embodiment. It will be said to include variations.
먼저, 본 발명은 게이트, 소스 및 드레인 전극과, 나노구조체로서 탄소나노 전류감지막을 포함하는 트랜지스터 채널을 이용하여, 상기 전류감지막 표면의 링커에 연결된 항체에 흡착되는 단백질 등의 타겟 물질을 검출하기 위한 센서로서, 제조 공정 중에 레이어를 패턴화하기 위한 포토레지스트의 사용 공정을 고려하여 탄소나노 전류감지막이 상기 포토레지스트에 의하여 손상이 가해지는 것을 미연에 방지할 수 있는 효과를 달성하고자 한다. First, the present invention uses a transistor channel including a gate, a source and a drain electrode, and a carbon nanocurrent sensing film as a nanostructure, to detect a target material such as a protein adsorbed to an antibody connected to a linker on the surface of the current sensing film. As a sensor for this purpose, in consideration of a process of using a photoresist for patterning a layer during a manufacturing process, an effect of preventing the carbon nanocurrent sensing film from being damaged by the photoresist may be prevented.
도 1은 본 실시예의 바이오 센서의 구조를 보여주는 도면이다. 1 is a view showing the structure of the biosensor of the present embodiment.
도 1을 참조하면, 기판(101)과, 기판(101) 상에 형성된 패턴화된 소스 전극(120) 및 드레인 전극(110)과, 상기 기판(101)과 소스 및 드레인 전극(110,120) 상에 위치하고 트랜지스터의 채널 형성을 위한 탄소나노 전류감지막(150)(이하, "전류감지막"이라 함)와, 상기 전류감지막(150) 상측에 위치하며 검출하고자 하는 타겟 물질이 전류감지막 상에 흡착되도록 개구부를 갖는 버퍼막(130)과, 상기 버퍼막(130) 상에 형성되는 게이트 전극(140)을 포함한다. Referring to FIG. 1, the substrate 101, the patterned source electrode 120 and the drain electrode 110 formed on the substrate 101, and the substrate 101, the source and drain electrodes 110 and 120. And a carbon nano current sensing film 150 (hereinafter referred to as a "current sensing film") for forming a channel of the transistor, and a target material to be detected above the current sensing film 150, and a target material to be detected on the current sensing film. A buffer film 130 having an opening to be adsorbed, and a gate electrode 140 formed on the buffer film 130.
상세히, 상기 기판(101)은, 실시예의 바이오 센서를 제조하는 때에 제조단가를 절감하고, 경량화를 위하여 SiO2계의 유리재료로 이루어진다. 예를 들면, 글래스로 구성될 수 있다. 그리고, 글래스의 기판은 200nm에서 500㎛ 범위의 두께로 이루어질 수 있다. In detail, the substrate 101 is made of a SiO 2 -based glass material to reduce manufacturing cost and reduce weight when manufacturing the biosensor of the embodiment. For example, it may be made of glass. And, the substrate of the glass may be made of a thickness in the range of 200nm to 500㎛.
상기 기판(101)상에는 FET 소자의 소스 및 드레인 전극(110,120)이 위치하며, 소스 전극과 드레인 전극은 후술되는 포토레지스트 공정을 통하여 패턴화된 형상으로 이루어진다. 소스 전극과 드레인 전극 사이의 공간은 타겟 물질이 흡착되는 영역으로서, 정확하게는 소스 및 드레인 전극 사이의 공간에 형성되는 전류감지막(150) 상에 타겟 물질이 링커를 통하여 흡착된다. 전류감지막 표면에서 항체 단편을 고정시키는 고정 물질은 CNT와 친화성이 있는 크로스-링커를 사용할 수 있으며, CNT의 소수성 성질을 이용하여 크로스-링커의 소수성 성질을 가진 한쪽 끝이 CNT 막에 흡착되고, 타측이 항체 단편과 공유결합될 수 있다. Source and drain electrodes 110 and 120 of the FET device are positioned on the substrate 101, and the source and drain electrodes are formed in a patterned shape through a photoresist process described later. The space between the source electrode and the drain electrode is a region where the target material is adsorbed, and the target material is adsorbed through the linker on the current sensing layer 150 formed in the space between the source and drain electrodes. As a fixing material for fixing the antibody fragment on the surface of the current sensing membrane, a cross-linker having an affinity with CNT can be used, and one end having the hydrophobic property of the cross-linker is adsorbed onto the CNT membrane by using the hydrophobic property of the CNT. The other side may be covalently bound to the antibody fragment.
도면에 도시되어 있지는 않지만, 소스 전극(120)과 드레인 전극(110) 모두 다층막 구조로 이루어질 수 있으며, 예를 들어, 기판(101)과의 흡착성이 우수한 Ti(티타늄)을 형성하고, Ti 상에 제 2 금속막으로서 Au(금)을 더 형성할 수 있다. 이 경우, Au의 낮은 접착성을 Ti가 보완하여 주며, Au의 높은 전기전도도를 활용할 수 있다. Although not shown in the drawings, both the source electrode 120 and the drain electrode 110 may have a multi-layered film structure, for example, form Ti (titanium) having excellent adsorption with the substrate 101, and form Ti on Ti. Au (gold) can be further formed as the second metal film. In this case, the low adhesion of Au is complemented by Ti, and the high electrical conductivity of Au can be utilized.
한편, 상기 전류감지막(150)은 소스 전극(120)과 드레인 전극(110) 사이의 기판 상부와, 소스 및 드레인 전극 상부면에 형성되며, FET 소자로서 게이트 전극으로 전압 인가시에 채널링을 형성하는 역할을 수행한다. 특히, 본 실시예에서의 전류감지막(150)은 이미 패턴화된 소스 전극과 드레인 전극 상부면과, 기판 상에 형성되기 때문에, 센서 제조 도중에 포토레지스트 등에 의한 손상이 가해질 가능성이 현저히 낮다. 제조 방법과 관련하여서는, 첨부되는 도면과 함께 후술하기로 한다. On the other hand, the current sensing film 150 is formed on the upper substrate and the source and drain electrode upper surface between the source electrode 120 and the drain electrode 110, and forms a channeling when voltage is applied to the gate electrode as a FET device It plays a role. In particular, since the current sensing film 150 in the present embodiment is formed on the upper surface of the patterned source electrode and the drain electrode and the substrate, the possibility of damage caused by photoresist or the like during the sensor manufacturing is significantly lowered. Regarding the manufacturing method, it will be described later together with the accompanying drawings.
상기 소스 및 드레인 전극(110,120) 상측에는 게이트 전극이 형성되는데, 전기절연을 위하여 상기 소스/드레인 전극과 게이트 전극 사이에는 부도체인 버퍼막(130)이 위치한다. 상기 버퍼막(130)은 SiO2계의 유리재료로 이루어질 수 있으며, 상기 기판(101)과 동일한 재료로 이루어질 수 있다. 예를 들면, 기판과 버퍼막 모두 글래스로 이루어질 수 있다. A gate electrode is formed on the source and drain electrodes 110 and 120, and a buffer layer 130, which is a non-conductor, is disposed between the source / drain electrode and the gate electrode for electrical insulation. The buffer layer 130 may be made of a SiO 2 -based glass material, and may be made of the same material as the substrate 101. For example, both the substrate and the buffer film may be made of glass.
특히, 상기 버퍼막(130)의 일단은 상부면이 노출된 전류감지막을 향하여 테이퍼진 형상으로 이루어지며, 도 6(a)를 참조하면, 버퍼막(130) 일단의 하측부에 형성된 제 2 테이퍼면(132)과, 버퍼막(130) 일단의 상측부에 형성된 제 1 테이퍼면(131)을 갖도록 형성될 수 있다. 상기 버퍼막(130) 상에는 게이트 전극인 메탈이 형성되는데, 상기 게이트 전극이 전류감지막(150)에 근접하여 위치할 수 있도록, 상기 버퍼막(130)의 단부는 제 1 및/또는 제 2 테이퍼면에 의해 절곡된 형상을 갖을 수 있다. Particularly, one end of the buffer film 130 is formed in a tapered shape toward the current sensing film with an upper surface exposed thereto. Referring to FIG. 6A, a second taper formed at a lower portion of one end of the buffer film 130 may be used. It may be formed to have a surface 132 and a first tapered surface 131 formed at an upper portion of one end of the buffer layer 130. A metal, which is a gate electrode, is formed on the buffer layer 130, and end portions of the buffer layer 130 are first and / or second tapered so that the gate electrode can be located close to the current sensing layer 150. It may have a shape bent by the surface.
상세히, 버퍼막의 일단부가 전류감지막(150)을 향하여 절곡되는 제 1 테이퍼면(131)으로 이루어짐으로써, 버퍼막 상에 형성되는 게이트 전극(140)이 하측방향으로 소정 각도 절곡될 수 있다. 이러한 형상적 특징으로 인하여, 게이트 전극(140)의 일부가 CNT막에 보다 근접하게 위치할 수 있으며, FET 소자 특성상 게이트 전극으로 인가하는 전압의 세기를 줄이더라도, 트랜지스터의 세밀한 동작 제어가 가능해진다. In detail, since one end of the buffer layer is formed of the first tapered surface 131 that is bent toward the current sensing layer 150, the gate electrode 140 formed on the buffer layer may be bent at a predetermined angle downward. Due to such a shape characteristic, a part of the gate electrode 140 may be located closer to the CNT film, and detailed operation control of the transistor is possible even if the strength of the voltage applied to the gate electrode is reduced due to the characteristics of the FET device.
그리고, 제 1 테이퍼면(131)에 연속하여 다른 각도로 절곡되는 제 2 테이퍼면(132) 상에는 게이트 전극이 위치하지 않도록 하며, 이것은 버퍼막 아래의 소스 또는 드레인 전극과 단락되는 경우를 미연에 방지하고자 함이다. In addition, the gate electrode is not positioned on the second tapered surface 132 that is bent at different angles in succession to the first tapered surface 131, which prevents a short circuit between the source electrode and the drain electrode under the buffer layer. To do so.
한편, 상기 게이트 전극(140)은 백금, 금, 크롬, 구리, 알루미늄, 니켈, 팔라늄 및 티타늄으로 이루어진 군에서 선택되는 하나 이상의 금속으로 이루어질 수 있으며, 그 두께는 예를 들어 약 0.1T가 될 수 있다. Meanwhile, the gate electrode 140 may be made of one or more metals selected from the group consisting of platinum, gold, chromium, copper, aluminum, nickel, palladium, and titanium, and the thickness thereof may be, for example, about 0.1T. Can be.
전술한 바와 같은 구조를 갖는 바이오 센서는, 채널 형성을 위한 탄소나노 전류감지막의 일부가 소스 전극과 드레인 전극 상부에 형성되는 구조이며, 소스 전극과 드레인 전극의 패턴화된 형상을 형성하기 위하여 포토레지스트를 사용하더라도, 탄소나노 전류감지막이 형성되기 이전에 도포 및 제거 되기 때문에, 탄소나노 전류감지막으로의 데미지 전달이 가해지는 것을 미연에 방지할 수 있다. The biosensor having the structure as described above is a structure in which a part of the carbon nanocurrent sensing film for channel formation is formed on the source electrode and the drain electrode, and a photoresist is formed to form a patterned shape of the source electrode and the drain electrode. Even when using, since it is applied and removed before the carbon nanocurrent sensing film is formed, it is possible to prevent the transfer of damage to the carbon nanocurrent sensing film in advance.
또한, 글래스 재질의 기판과, 버퍼막을 사용하기 때문에, 센서의 경량화 및 제조원가를 낮출 수 있으며, 게이트 전극이 탄소나노 전류감지막에 인접하게 배치되는 구조이기 때문에, 트랜지스터를 저전력으로 제어하는 것이 가능하다. In addition, since the glass substrate and the buffer film are used, the weight of the sensor can be reduced and the manufacturing cost can be reduced. Since the gate electrode is disposed adjacent to the carbon nano current sensing film, it is possible to control the transistor at low power. .
이하에서는, 본 실시예의 바이오 센서를 제조하는 방법에 대해서 구체적으로 설명하여 본다. Hereinafter, a method of manufacturing the biosensor of the present embodiment will be described in detail.
도 2 내지 도 6은 실시예의 바이오 센서를 제조하는 방법을 설명하기 위한 도면이다. 2 to 6 are views for explaining a method of manufacturing the biosensor of the embodiment.
도 2를 참조하면, SiO2계 유리재료로 이루어진 기판(101) 상에 소스 전극과 드레인 전극 형성을 위한 금속막(102)을 형성한다. 상기 금속막은, 주지의 방법들로 증착될 수 있으며, 예를 들어 화학기상증착으로 기판 상에 형성될 수 있다. Referring to FIG. 2, a metal film 102 for forming a source electrode and a drain electrode is formed on a substrate 101 made of a SiO 2 based glass material. The metal film may be deposited by known methods, and may be formed on a substrate by, for example, chemical vapor deposition.
그 다음, 도 3을 참조하면, 금속막(102)상에 포토레지스트(PR)를 도포하고, 이 포토레지스트를 패터닝한다. 포토레지스트의 패터닝은 형성하고자 하는 소스 전극과 드레인 전극의 형상에 대응되도록 수행되고, 포토레지스트의 패터닝에 의하여 노출되는 금속막이 식각의 대상이 된다. Next, referring to FIG. 3, photoresist PR is applied onto metal film 102, and the photoresist is patterned. Patterning of the photoresist is performed to correspond to the shape of the source electrode and the drain electrode to be formed, and the metal film exposed by the patterning of the photoresist is an object of etching.
그 다음, 도 4를 참조하면, 패터닝된 포토레지스트를 식각 마스크로 이용하여 금속막을 식각하며, 이러한 식각은 기판의 상부면이 노출되는 때까지 수행된다. Next, referring to FIG. 4, the metal film is etched using the patterned photoresist as an etching mask, and the etching is performed until the top surface of the substrate is exposed.
금속막의 부분 식각을 통하여, 패터닝된 소스 전극(120)과 드레인 전극(110)이 형성된다. Through partial etching of the metal layer, the patterned source electrode 120 and the drain electrode 110 are formed.
그 다음, 노출된 기판 상부면과, 소스 전극 및 드레인 전극 상부에 탄소나노 전류감지막 형성을 위한 공정이 수행된다. 특히, 예컨대, CNT를 분산시킨 분산 용액을 유리 재질의 기판 상에 코팅하며, CNT가 분산되어 있는 용액의 코팅으로 인하여, 용액 내에서 단위 가닥으로 분산되어 있는 CNT들이 기판 상부면과 소스/드레인 전극의 벽과 그 위에 흡착된다. 용액 내에서 단위 가닥으로 분산되어 있던 CNT들은 메탈인 소스/드레인 전극과, 유리 재질의 기판 상에 한겹씩 흡착된다. Next, a process for forming a carbon nanocurrent sensing film is performed on the exposed upper surface of the substrate and on the source electrode and the drain electrode. In particular, for example, a dispersion solution in which CNTs are dispersed is coated on a glass substrate, and CNTs dispersed in unit strands in the solution due to the coating of the solution in which the CNTs are dispersed are formed on the substrate top surface and the source / drain electrodes. Is adsorbed on the wall and on it. The CNTs dispersed in the unit strands in the solution are adsorbed one by one on the source / drain electrodes which are metal and the glass substrate.
그리고, CNT를 분산시킨 용액 내에 소스/드레인 전극이 형성된 기판을 침전시켜 흔들어 주게 되면, 기판 표면과 전극 표면(측벽 및 상부면)에 흡착된 CNT들을 제외한 나머지 CNT들이 제거될 수 있다. 이것은, CNT를 구성하는 단위 가닥들 사이의 반데르발스힘 보다도, CNT 가닥과 메탈 또는 유리와의 반데르발스 힘이 더 큰 것을 이용한 것으로서, 이와 같은 방법으로 기판 표면과, 소스/드레인 전극 상에 CNT를 코팅하는 것이 가능하다. When the substrate on which the source / drain electrodes are formed is shaken by shaking the CNT-dispersed solution, the remaining CNTs except for the CNTs adsorbed on the substrate surface and the electrode surface (side wall and top surface) may be removed. This is because the van der Waals force between the CNT strand and the metal or glass is larger than the van der Waals forces between the unit strands constituting the CNT, and in this manner, the substrate surface and the source / drain electrodes are used. It is possible to coat CNTs.
보다 상세히, CNT는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 중에 어느 하나를 선택하여 사용할 수 있다. In more detail, the CNT may be used by selecting any one of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
그리고, CNT의 분산성을 향상시키기 위해 용해용매로써 탄소나노튜브 분산용매를 사용하는 경우에는, 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 에틸렌 글리콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 하나를 선택하여 사용하여 CNT 분산용액을 제조할 수 있다. In addition, when using a carbon nanotube dispersion solvent as a solvent to improve the dispersibility of CNT, acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol Lycol, ethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine CNT dispersion solution may be prepared using one selected from among methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide, methylene chloride, and mixtures thereof.
또한, CNT 분산용매에의 탄소나노튜브의 균일한 분산을 위하여 초음파 분산법이나 볼밀링법을 이용할 수 있으며, CNT의 용량 및 용매의 양에 따라 진동수 20kHz 내지 50kHz 범위의 파워(power) 50 내지 700W인 초음파기에서 1시간 내지 60시간 동안 적용하여 용매에의 탄소나노튜브의 균일한 분산이 이루어지도록 할 수 있다. In addition, ultrasonic dispersion or ball milling may be used for uniform dispersion of carbon nanotubes in a CNT dispersion solvent, and power 50 to 700 W in a frequency range of 20 kHz to 50 kHz depending on the capacity of CNT and the amount of solvent. It can be applied for 1 to 60 hours in a phosphorus ultrasonicator to achieve a uniform dispersion of carbon nanotubes in a solvent.
또한, CNT의 분산용매에의 CNT 분산시 분산안정제를 첨가할 수 있다. In addition, a dispersion stabilizer may be added when dispersing CNTs into a dispersion solvent of CNTs.
여기서, 분산안정제는 트리톤 엑스백(Triton X-100), 폴리에틸렌옥사이드, 폴리에틸렌옥사이드-폴리프로 필렌옥사이드 공중합체, 폴리비닐피롤, 폴리비닐알코올, 가넥스(Ganax), 전분, 단당류(monosaccharide), 다당류(polysaccharide), 도데실벤젠술폰산 나트륨(dodecyl benzene sulfate), 도데실벤젠설폰산나트륨(sodiumdodecyl benzene sulfonate, NaDDBS), 도데실설폰산나트륨(sodium dodecylsulfonate, SDS), 4-비닐벤조산 세실트리메틸암모늄 (cetyltrimethylammounium 4-vinylbenzoate), 파이렌계 유도체(pyrene derivatives), 검 아라빅(Gum Arabic, GA), 나피온(nafion) 및 이들의 혼합물 중에서 하나를 선택하여 사용할 수 있다. Here, the dispersion stabilizer is Triton X-100, polyethylene oxide, polyethylene oxide-polypropylene oxide copolymer, polyvinylpyrrole, polyvinyl alcohol, Ganax, starch, monosaccharide, polysaccharide (polysaccharide), dodecyl benzene sulfate, sodium dodecyl benzene sulfonate (NaDDBS), sodium dodecylsulfonate (SDS), 4-vinyl benzoate cesyltrimethylammonium (cetyltrimethylammounium 4 -Vinylbenzoate, pyrene derivatives (pyrene derivatives), gum Arabic (Gum Arabic, GA), nafion (nafion) and a mixture thereof can be selected and used.
또한, CNT의 분산용액을 제조하기 전에 바인더에 따라 질산, 염산, 황산 및 이들의 혼합액 중에 하나인 산용액을 첨가하여 탄소나노튜브를 정제하여 표면기능화를 실현할 수도 있으며, 이 경우 용매 및 바인더에의 분산성을 높일 수 있다. In addition, prior to the preparation of the dispersion solution of CNTs, depending on the binder, nitric acid, hydrochloric acid, sulfuric acid, and an acid solution which is one of these mixtures may be added to purify the carbon nanotubes, thereby realizing surface functionalization. Dispersibility can be improved.
CNT의 분산용액 제조시에 바인더를 직접적으로 넣어 용해시키거나, 바인더 용해용매에 바인더를 용해시킨 바인더 용액을 CNT 분산용액에 혼합하여, CNT와 바인더가 혼합된 탄소나노튜브 바인더 혼합코팅액을 제조할 수 있다. When preparing a CNT dispersion solution, a binder may be directly added to dissolve or a binder solution in which a binder is dissolved in a binder dissolving solvent may be mixed with the CNT dispersion solution to prepare a carbon nanotube binder mixed coating solution containing CNT and a binder. have.
또한, 상기 바인더 용해용매는 바인더의 종류에 따라 사용하지 않을 수도 있으며, CNT 분산용매 또는 희석용 용매의 사용으로도 대체할 수도 있다.In addition, the binder dissolving solvent may not be used depending on the type of the binder, and may be replaced by the use of a CNT dispersion solvent or a dilution solvent.
여기서, 바인더는 고분자수지 바람직하게는 열경화형수지, 광경화형수지, 가수분해하여 축합반응을 일으키는 실란 컴파운드, 열가소성수지 및 전도성고분자 중에서 하나를 선택하여 사용할 수 있다.Here, the binder may be selected from a polymer resin, preferably a thermosetting resin, a photocurable resin, a silane compound that hydrolyzes to cause a condensation reaction, a thermoplastic resin, and a conductive polymer.
열경화형수지로 이루어진 바인더는, 우레탄수지, 에폭시수지, 멜라민수지, 폴리이미드 및 이들의 혼합물 중에서 하나를 선택하여 사용할 수 있다. The binder made of thermosetting resin can be selected from urethane resin, epoxy resin, melamine resin, polyimide and mixtures thereof.
그리고, 광경화형수지로 이루어진 바인더는, 에폭시수지, 폴리에틸렌옥사이드, 우레탄수지 및 이들의 혼합물 중에서 하나를 선택하여 사용할 수 있다. The binder made of photocurable resin may be selected from epoxy resin, polyethylene oxide, urethane resin, and mixtures thereof.
또한, 광경화형수지로 이루어진 바인더는, 반응성 올리고머가 에폭시 아크릴레이트, 폴리에스테르 아크릴레이트, 우레탄 아크릴레이트, 폴리에테르 아크릴레이트, 티올레이트(thiolate), 유기실리콘 고분자, 유기실리콘 공중합체 및 이들의 혼합물 중에서 하나를 선택하여 사용할 수 있다. In addition, the binder of the photocurable resin, the reactive oligomer is epoxy acrylate, polyester acrylate, urethane acrylate, polyether acrylate, thiolate (thiolate), organosilicon polymer, organosilicon copolymer and mixtures thereof You can choose one to use.
또한, 광경화형수지로 이루어진 바인더는, 반응성 모노머가 단관능 모노머로서 2-에틸헥실아크릴레이트, 올틸데실아크릴레이트, 이소데실아크릴레이트, 드리데실메타크릴레이트, 2-페녹시에틸아크릴레이트, 노닐페놀에톡시레이크모노아크릴레이트, 테트라하이드로퍼푸릴레이트, 에톡시에틸아크릴레이트, 하이드록시에틸아크릴레이트, 하이드록시에틸메타아크릴레이트, 하이드록시프로필아크릴레이트, 하이드록시프로필메타아크릴레이트, 하이드록시부틸아크릴레이트, 하이드록시부틸메타아크릴레이트 및 이들의 혼합물 중에서 하나를 선택하여 사용할 수 있다. Moreover, the binder which consists of photocurable resins has a reactive monomer as a monofunctional monomer, 2-ethylhexyl acrylate, an oltyl decyl acrylate, an isodecyl acrylate, a dredyl methacrylate, 2-phenoxy ethyl acrylate, and a nonyl phenol. Ethoxylake Monoacrylate, Tetrahydroperfurylate, Ethoxyethylacrylate, Hydroxyethylacrylate, Hydroxyethylmethacrylate, Hydroxypropylacrylate, Hydroxypropylmethacrylate, Hydroxybutylacryl Elate, hydroxybutyl methacrylate, and a mixture thereof can be selected and used.
또한, 광경화형수지로 이루어진 바인더는, 반응성모노머가 2관능모노머로서 1,3-부탄디올디아크릴레이트, 1,4-부탄디올디아크릴레이트, 1,6-헥산디올디아크릴레이트, 디에틸렌글리콜디아크릴레이트, 드리에틸렌글리콜디메타크릴레이트, 네오펜틸글리콜디아크릴레이트, 에틸렌글리콜디메타크릴레이트, 테트라에틸렌글리콜메타크릴레이트, 폴리에틸렌글리콜디메타크릴레이트, 트리프로필렌글리콜디아크릴레이트, 1,6-헥산디올디아크릴레이트 및 이들의 혼합물 중에서 하나를 선택하여 사용할 수 있다. Moreover, the binder which consists of photocurable resins has 1, 3- butanediol diacrylate, 1, 4- butanediol diacrylate, 1, 6- hexanediol diacrylate, and diethylene glycol diacryl whose reactive monomers are bifunctional monomers. Rate, driethylene glycol dimethacrylate, neopentyl glycol diacrylate, ethylene glycol dimethacrylate, tetraethylene glycol methacrylate, polyethylene glycol dimethacrylate, tripropylene glycol diacrylate, 1,6-hexane One of diol diacrylates and mixtures thereof can be selected and used.
또한, 가수분해하여 축합반응을 일으키는 실란 컴파운드는 탄소나노튜브 바인더 혼합코팅액에서 바인더 역할과 동시에 분산안정제의 역할을 수행할 수도 있다.In addition, the silane compound that causes the condensation reaction by hydrolysis may also play a role of a binder and a dispersion stabilizer in the carbon nanotube binder mixed coating solution.
그리고, 열가소성수지로 이루어진 바인더는, 폴리스티렌 및 그 유도체, 폴리스티렌 부타디엔 공중합체, 폴리카보네이트, 폴리염화비닐, 폴리술폰, 폴리에테르술폰, 폴리에테르이미드, 폴리아크릴레이트, 폴리에스테르, 폴리이미드, 폴리아믹산, 셀룰로오스 아세테이트, 폴리아미드, 폴리올레핀, 폴리메틸메타크릴레이트, 폴리에테르케톤, 폴리옥시에틸렌 및 이들의 혼합물 중에서 하나를 선택하여 사용할 수 있다. The binder made of thermoplastic resin is polystyrene and its derivatives, polystyrene butadiene copolymer, polycarbonate, polyvinyl chloride, polysulfone, polyether sulfone, polyetherimide, polyacrylate, polyester, polyimide, polyamic acid, One of cellulose acetate, polyamide, polyolefin, polymethyl methacrylate, polyether ketone, polyoxyethylene and mixtures thereof can be selected and used.
그리고, 전도성고분자로 이루어진 바인더는, 폴리티오펜계 단일중합체, 폴리티오펜계 공중합체, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리(3,4-에틸렌디옥시티오펜), 펜타센계 화합물 및 이들의 혼합물 중에서 하나를 선택하여 사용할 수 있다. The binder made of a conductive polymer is a polythiophene homopolymer, polythiophene copolymer, polyacetylene, polyaniline, polypyrrole, poly (3,4-ethylenedioxythiophene), pentacene-based compound and mixtures thereof. You can choose one to use.
바인더는 CNT의 분산성을 향상시키고 기질에의 접착성을 향상시키며, 화학적 안정성 및 내구성, 내스크래치성을 개선시키는 역할을 하게 된다.The binder serves to improve the dispersibility of the CNTs, improve adhesion to the substrate, and improve chemical stability, durability, and scratch resistance.
그리고, 적절한 농도로 희석된 CNT 바인더 혼합코팅액은 기질 상면에 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 코팅이 이루어질 수 있다.이러한 코팅방법에 의해 상기 기판 상면에 투명전도성 필름의 용도 등에 따라 수십 내지 수백 nm 두께로 코팅할 수 있다. The CNT binder mixture coating solution diluted to an appropriate concentration is coated on the substrate by any one of spraying, dip coating, spin coating, screen coating, inkjet printing, pad printing, knife coating, key coating and gravure coating. By such a coating method, the upper surface of the substrate may be coated with a thickness of several tens to several hundred nm depending on the use of the transparent conductive film.
기판(101)의 노출된 상부면에 형성된 CNT 혹은 그래핀으로 이루어진 탄소나노 전류감지막(150)은 타겟 물질이 유도되는 영역이고, 소스 전극과 드레인 전극 상에 형성된 탄소나노 전류감지막 위에는 게이트 전극이 형성된 버퍼막을 접착시킨다. The carbon nano current sensing film 150 formed of CNT or graphene formed on the exposed upper surface of the substrate 101 is a region where a target material is induced, and the gate electrode is formed on the carbon nano current sensing film formed on the source electrode and the drain electrode. The formed buffer film is bonded.
상세히, SiO2계 유리재료로 이루어진 버퍼막(130)의 일단을 테이퍼 가공하고, 테이퍼면이 형성된 버퍼막(130) 상에 게이트 전극용 메탈을 형성시킴으로써, 게이트 전극이 형성된 버퍼막을 완성한다. 여기서, 버퍼막 일측 단부의 테이퍼 가공은, 5 4(a)와 (b)에 도시된 바와 같은 다양한 형상이 될 수 있다. 앞서 설명한 바와 같이, 게이트 전극의 일단부가 절곡형성되도록 하향 경사진 제 1 테이퍼면(131)과, 소스/드레인 전극과 게이트 전극이 단락되지 않도록 상향 경사진 제 2 테이퍼면(132)이 형성되도록 버퍼막의 단부를 가공할 수 있다. In detail, one end of the buffer film 130 made of SiO 2 -based glass material is tapered to form a gate electrode metal on the tapered buffer film 130, thereby completing the buffer film on which the gate electrode is formed. Here, the tapering at one end of the buffer film may have various shapes as shown in 5 4 (a) and (b). As described above, the buffer is formed such that the first tapered surface 131 inclined downward so that one end of the gate electrode is bent and the second tapered surface 132 inclined upward so that the source / drain electrode and the gate electrode are not short-circuited are formed. The ends of the membrane can be processed.
또한, 다른 실시예로서, 도 5(b)에 도시된 바와 같이, 버퍼막(130)의 일단이 하향 경사진 테이퍼면만을 갖을 수 있다. 다만, 이러한 경우에는, 버퍼막(130)의 가로 길이를 소스/드레인 전극의 길이에 비해 더욱 길게하여, 전극 사이에 단락이 발생되지 않도록 할 필요가 있다. In another embodiment, as shown in FIG. 5B, one end of the buffer layer 130 may have only a tapered surface inclined downward. In this case, however, the horizontal length of the buffer film 130 needs to be longer than the length of the source / drain electrodes, so that a short circuit does not occur between the electrodes.
이러한 테이퍼면을 갖는 버퍼막(130)과, 버퍼막(130) 상에 게이트 전극을 형성한 다음에는, 버퍼막(130) 하부면을 상기 소스 및 드레인 전극(110,120) 상에 접착시킴으로써, 실시예의 바이오 센서가 제조될 수 있다. 유리로 이루어진 버퍼막을 CNT 상에 부착시키는 때에는, 다양한 종류의 화학 접착제가 사용될 수 있다. After the buffer film 130 having such a tapered surface and the gate electrode are formed on the buffer film 130, the lower surface of the buffer film 130 is adhered to the source and drain electrodes 110 and 120, thereby providing Biosensors can be manufactured. When attaching the buffer film made of glass onto the CNT, various kinds of chemical adhesives can be used.
이러한 방법에 의하여, 도 1에 도시된 본 발명의 바이오 센서가 제조되며, CNT를 형성하기 이전에 소스 전극과 드레인 전극의 패터닝이 수행되므로, 포토레지스트를 제거하는 때에 CNT 표면에 데미지가 가해지는 문제는 발생하지 않게 된다. By this method, the biosensor of the present invention shown in Fig. 1 is manufactured, and since the patterning of the source electrode and the drain electrode is performed before forming the CNTs, the problem is that the damage is applied to the CNT surface when removing the photoresist. Will not occur.
본 발명은 나노 바이오 센서에 적용가능하므로, 그 산업상 이용가능성이 있다. Since the present invention is applicable to nano biosensors, there is industrial applicability thereof.

Claims (6)

  1. 기판과, Substrate,
    상기 기판의 상부면 일부에 형성되는 소스 전극과, A source electrode formed on a portion of an upper surface of the substrate;
    상기 소스 전극과 소정 간격을 두고 형성되는 드레인 전극과, A drain electrode formed at a predetermined distance from the source electrode;
    상기 소스 전극과 드레인 전극 사이의 기판 상부면과, 상기 소스 전극의 상부면 및 드레인 전극의 상부면에 형성되는 탄소나노 전류감지막과, A carbon nano current sensing film formed on an upper surface of the substrate between the source electrode and the drain electrode, an upper surface of the source electrode and an upper surface of the drain electrode;
    상기 소스 전극과 드레인 전극 상측에 위치한 탄소나노 전류감지막 상에 형성되고, 절연물질로 이루어진 버퍼막과, A buffer film formed on a carbon nanocurrent sensing film located above the source electrode and the drain electrode and made of an insulating material;
    상기 버퍼막 상에 형성되는 게이트 전극을 포함하는 바이오 센서. And a gate electrode formed on the buffer layer.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 탄소나노 전류감지막은 상기 기판의 상부면과, 상기 소스 전극 및 드레인 전극의 측벽과 상부면에 코팅된 바이오 센서. The carbon nano current sensing film is coated on an upper surface of the substrate, sidewalls and upper surfaces of the source electrode and the drain electrode.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 버퍼막의 일단부는, 상기 탄소나노 전류감지막을 향하여 하향 절곡된 테이퍼면을 갖는 바이오 센서. One end of the buffer film has a tapered surface bent downward toward the carbon nanocurrent sensing film.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 기판과 버퍼막은, SiO2계 유리 재료로 이루어진 바이오 센서The substrate and the buffer film, the biosensor made of a SiO 2 glass material
  5. 기판 상에 소스 전극과 드레인 전극 형성을 위한 금속막을 형성하는 단계와, Forming a metal film for forming a source electrode and a drain electrode on the substrate;
    상기 금속막을 패터닝하기 위한 포토레지스트를 도포하고, 상기 포토레지스트를 패터닝하는 단계와, Applying a photoresist for patterning the metal film, and patterning the photoresist;
    상기의 패터닝된 포토레지스트를 식각 마스크로 이용하여, 상기 금속막을 식각함으로써, 상기 기판 상에 소스 전극과 드레인 전극을 형성하는 단계와, Forming a source electrode and a drain electrode on the substrate by etching the metal film using the patterned photoresist as an etching mask;
    상기 포토레지스트를 제거하고, 상기 기판의 노출된 상부면과, 상기 소스 전극과 드레인 전극의 상부면에 탄소나노튜브 또는 그래핀을 코팅하여 탄소나노 전류감지막을 형성하는 단계 및Removing the photoresist and coating a carbon nanotube or graphene on the exposed upper surface of the substrate and the upper surface of the source electrode and the drain electrode to form a carbon nanocurrent sensing film;
    게이트 전극이 형성된 절연물질의 버퍼막을 상기 탄소나노 전류감지막 상에 접착하는 단계를 포함하는 바이오 센서의 제조 방법. And attaching a buffer film of an insulating material having a gate electrode formed thereon on the carbon nanocurrent sensing film.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 탄소나노튜브 또는 그래핀을 코팅하는 단계는, Coating the carbon nanotubes or graphene,
    상기 탄소나노튜브가 분산된 분산 용액을 상기 기판, 소스 전극 및 드레인 전극 상에 코팅하고, 사용된 분산 용액을 이용하여 상기 탄소나노튜브 일부를 제거하는 바이오 센서의 제조 방법. And coating a dispersion solution in which the carbon nanotubes are dispersed on the substrate, the source electrode, and the drain electrode, and removing a portion of the carbon nanotubes using the dispersion solution used.
PCT/KR2013/001775 2013-02-28 2013-03-05 Bio sensor and manufacturing method therefor WO2014133212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0021962 2013-02-28
KR1020130021962A KR101297274B1 (en) 2013-02-28 2013-02-28 Biosensor and method for manufacturing thesame

Publications (1)

Publication Number Publication Date
WO2014133212A1 true WO2014133212A1 (en) 2014-09-04

Family

ID=49220676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001775 WO2014133212A1 (en) 2013-02-28 2013-03-05 Bio sensor and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101297274B1 (en)
WO (1) WO2014133212A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3861330A4 (en) * 2018-10-05 2022-06-15 Hememics Biotechnologies, Inc. Biosensors using carbon nanotubes and an electronic reader for use with the biosensors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389586A (en) * 2022-08-30 2022-11-25 松山湖材料实验室 Graphene biosensor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085392A (en) * 2002-08-27 2004-03-18 Fujitsu Ltd Fet chemical sensor using carbon element linear structure
KR100966007B1 (en) * 2007-09-14 2010-06-24 충북대학교 산학협력단 Room Temperature operating Single Electron Device using Carbon Nano Tube and Fabrication Method thereof
JP2010161288A (en) * 2009-01-09 2010-07-22 Mitsumi Electric Co Ltd Field effect transistor, and method of manufacturing the same
KR101025846B1 (en) * 2004-09-13 2011-03-30 삼성전자주식회사 Transistor of semiconductor device comprising carbon nano-tube channel
US20120220053A1 (en) * 2011-02-17 2012-08-30 Rutgers, The State University Of New Jersey Graphene-encapsulated nanoparticle-based biosensor for the selective detection of biomarkers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571803B1 (en) * 2002-05-03 2006-04-17 삼성전자주식회사 Semiconductor carbon nano tube functionalized by hydrogen, electronic device and method of fabrication thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085392A (en) * 2002-08-27 2004-03-18 Fujitsu Ltd Fet chemical sensor using carbon element linear structure
KR101025846B1 (en) * 2004-09-13 2011-03-30 삼성전자주식회사 Transistor of semiconductor device comprising carbon nano-tube channel
KR100966007B1 (en) * 2007-09-14 2010-06-24 충북대학교 산학협력단 Room Temperature operating Single Electron Device using Carbon Nano Tube and Fabrication Method thereof
JP2010161288A (en) * 2009-01-09 2010-07-22 Mitsumi Electric Co Ltd Field effect transistor, and method of manufacturing the same
US20120220053A1 (en) * 2011-02-17 2012-08-30 Rutgers, The State University Of New Jersey Graphene-encapsulated nanoparticle-based biosensor for the selective detection of biomarkers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3861330A4 (en) * 2018-10-05 2022-06-15 Hememics Biotechnologies, Inc. Biosensors using carbon nanotubes and an electronic reader for use with the biosensors

Also Published As

Publication number Publication date
KR101297274B1 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
Roberts et al. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors
EP3026014A1 (en) Carbon nanotube composite, semiconductor device, and sensor using same
Silva et al. Electrochemical detection of dengue virus NS1 protein with a poly (allylamine)/carbon nanotube layered immunoelectrode
CN108831828B (en) Flexible electronic device applicable to various surfaces and preparation method thereof
US10031097B1 (en) Electrical response using nanotubes on a fibrous substrate
Kong et al. Electrical conductivity of graphene films with a poly (allylamine hydrochloride) supporting layer
WO2014064432A1 (en) Functional inks based on layered materials and printed layered materials
CN107923867B (en) Semiconductor element, method for manufacturing the same, and sensor using the same
CN101801839A (en) Electrical-conductive nanometer film and use the MEMS sensor of this electrical-conductive nanometer film
Zhou et al. Anisotropic motion of electroactive papers coated with PEDOT/PSS
US20150181704A1 (en) Circuit board including aligned nanostructures
Roberts et al. Self-sorted nanotube networks on polymer dielectrics for low-voltage thin-film transistors
WO2014133212A1 (en) Bio sensor and manufacturing method therefor
KR20070112657A (en) Carbon nanotube sensor and method for manufacturing the same
US8389325B2 (en) Selective functionalization by joule effect thermal activation
TWI688545B (en) Carbon nanotube composite body, semiconductor element and manufacturing method thereof, and sensor using the same
KR101444068B1 (en) Method for forming CNT layer on a substrate, and method for manufacturing biosensor by using the forming method
KR100945208B1 (en) Fabrication method of transparent heater containing carbon nanotubes and binders, and the transparent heater
Abdulhameed et al. Fabrication of carbon nanotube/titanium dioxide nanomaterials-based hydrogen sensor using novel two-stage dielectrophoresis process
Paul et al. Fabrication and performance of solution-based micropatterned DNA functionalized carbon nanotube network as humidity sensors
Choi et al. Organic electrochemical transistors based on a dielectrophoretically aligned nanowire array
Marcus et al. Dielectrophoretic Manipulation and Real‐Time Electrical Detection of Single‐Nanowire Bridges in Aqueous Saline Solutions
JP2020165790A (en) Charge detection semiconductor sensor
Maeng Single-walled carbon nanotube network gas sensor
CA2819274C (en) Systems and process for forming carbon nanotube sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876131

Country of ref document: EP

Kind code of ref document: A1