WO2014133043A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2014133043A1
WO2014133043A1 PCT/JP2014/054767 JP2014054767W WO2014133043A1 WO 2014133043 A1 WO2014133043 A1 WO 2014133043A1 JP 2014054767 W JP2014054767 W JP 2014054767W WO 2014133043 A1 WO2014133043 A1 WO 2014133043A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
aligning agent
crystal aligning
crystal alignment
Prior art date
Application number
PCT/JP2014/054767
Other languages
French (fr)
Japanese (ja)
Inventor
奈穂 菊池
大輔 佐久間
幸司 巴
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020207024537A priority Critical patent/KR102470287B1/en
Priority to KR1020157026293A priority patent/KR20150122209A/en
Priority to JP2015502997A priority patent/JP6264577B2/en
Priority to CN201480024169.9A priority patent/CN105190415B/en
Publication of WO2014133043A1 publication Critical patent/WO2014133043A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.
  • a so-called polyimide liquid crystal alignment film obtained by applying and baking a liquid crystal alignment treatment agent mainly composed of a polyimide precursor such as polyamic acid or a soluble polyimide solution is mainly used. ing.
  • the liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal.
  • the liquid crystal alignment film used in the liquid crystal alignment film has a high voltage holding ratio and a direct current voltage from the viewpoint of suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon.
  • the characteristic that the accumulated charge when applied is small or the charge accumulated by the DC voltage is quickly relaxed has become increasingly important.
  • a liquid crystal alignment treatment agent containing a tertiary amine with a specific structure in addition to polyamic acid or imide group-containing polyamic acid is used as a short time until the afterimage generated by direct current voltage disappears.
  • a liquid crystal alignment treatment agent containing a soluble polyimide using a specific diamine having a pyridine skeleton as a raw material for example, refer to Patent Document 2.
  • a compound containing one carboxylic acid group in the molecule In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amino group in the molecule (for example, Patent Document 3) is known.
  • liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels.
  • a backlight with a large calorific value may be used.
  • the liquid crystal alignment film is required to have high reliability from another point of view, that is, high stability to light from the backlight.
  • a burn-in defect also called line burn-in
  • the liquid crystal alignment film in addition to good initial characteristics, for example, it is required that the voltage holding ratio is hardly lowered even after being exposed to light irradiation for a long time.
  • the present invention has a liquid crystal alignment treatment agent, a liquid crystal alignment film, and the liquid crystal alignment film for obtaining a liquid crystal alignment film excellent in light resistance that can suppress a decrease in voltage holding ratio even after long-time light irradiation.
  • An object is to provide a liquid crystal display element.
  • the present inventor has obtained a polyimide precursor obtained by reacting a tetracarboxylic acid component containing two types of tetracarboxylic dianhydrides having a specific structure with a diamine component, and the polyimide precursor.
  • the present inventors have found that a liquid crystal aligning agent containing at least one polymer selected from polyimides obtained by imidizing is extremely effective for achieving the above object, and has completed the present invention.
  • the present invention has the following gist. (1) It is obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula [1] and a tetracarboxylic dianhydride represented by the following formula [2] with a diamine component.
  • a liquid crystal aligning agent comprising a polyimide precursor and at least one polymer selected from polyimides obtained by imidizing the polyimide precursor.
  • Z 1 is at least one tetravalent group selected from the following formulas [2a] to [2j].
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 are A hydrogen atom or a methyl group, which may be the same or different.
  • liquid crystal aligning agent as described in (1) above, which contains N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone as a solvent in the liquid crystal aligning agent .
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (4) or (5).
  • the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
  • the liquid crystal aligning agent of the present invention comprises a tetracarboxylic dianhydride represented by the following formula [1] (also referred to as a specific tetracarboxylic dianhydride) and an aliphatic tetracarboxylic acid represented by the following formula [2].
  • a polyimide precursor obtained by reacting a diamine component with a tetracarboxylic acid component containing a dianhydride (also referred to as a specific aliphatic tetracarboxylic dianhydride) and a polyimide obtained by imidizing the polyimide precursor Containing at least one polymer (also referred to as a specific polymer).
  • the diamine component is a diamine compound having two primary or secondary amino groups in the molecule.
  • the polyimide precursor refers to polyamic acid or polyamic acid alkyl ester.
  • the tetracarboxylic acid component which is a raw material of the specific polymer contained in the liquid crystal aligning agent of the present invention includes two types of tetracarboxylic dianhydrides.
  • One type of tetracarboxylic dianhydride is a specific tetracarboxylic dianhydride represented by the following formula [1].
  • the specific tetracarboxylic dianhydride represented by the formula [1] is a tetracarboxylic acid, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound (all Can also be referred to as a specific tetracarboxylic acid component).
  • the specific tetracarboxylic dianhydride represented by the formula [1] is preferably 20 mol% to 80 mol% in the total tetracarboxylic acid component.
  • the content is preferably 20 mol% to 60 mol%.
  • Particularly preferred is 20 to 50 mol%.
  • the tetracarboxylic acid component which is a raw material of the specific polymer contained in the liquid crystal aligning agent of the present invention includes two types of tetracarboxylic dianhydrides.
  • the other type of tetracarboxylic dianhydride is a specific aliphatic tetracarboxylic dianhydride represented by the following formula [2].
  • Z 1 is at least one tetravalent group selected from the following formulas [2a] to [2j].
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
  • Z 1 is represented by the formula [2a], the formula [2c], the formula [2d], from the viewpoint of ease of synthesis and polymerization reactivity when producing a polymer.
  • a structure represented by the formula [2e], the formula [2f] or the formula [2g] is preferable.
  • a structure represented by formula [2a], formula [2e], formula [2f] or formula [2g] is more preferable, and formula [2e], formula [2f] or formula [2g] is particularly preferable. It is.
  • the specific aliphatic tetracarboxylic dianhydride represented by the formula [2] is a tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester dihalide compound which is a tetracarboxylic acid derivative thereof. (All are collectively referred to as a specific aliphatic tetracarboxylic acid component) can also be used.
  • the specific aliphatic tetracarboxylic dianhydride represented by the formula [2] is preferably 20 mol% to 80 mol% in the total tetracarboxylic acid component. Particularly preferred is 20 to 60 mol%.
  • the specific aliphatic tetracarboxylic dianhydride is the solubility of the specific polymer contained in the liquid crystal aligning agent of the present invention in the solvent, the coating property of the liquid crystal aligning agent, and the liquid crystal alignment film when used as a liquid crystal alignment film.
  • One type or a mixture of two or more types can be used depending on the properties such as orientation, voltage holding ratio, and accumulated charge.
  • tetracarboxylic acid compounds ⁇ Other tetracarboxylic acid compounds>
  • the tetracarboxylic acid component in the specific polymer contained in the liquid crystal aligning agent of the present invention does not impair the effects of the present invention
  • Carboxylic acid compounds also be used.
  • tetracarboxylic dianhydrides tetracarboxylic acid compounds or dicarboxylic acid dihalide compounds.
  • tetracarboxylic acid compounds are the solubility of the specific polymer contained in the liquid crystal aligning agent of the present invention in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal alignment when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
  • ⁇ Diamine component> As the diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention, a known diamine compound can be used.
  • Y represents the following formula [3-1], formula [3-2], formula [3-3], formula [3-4], formula [3-5] or formula [3-6] At least one monovalent group selected from the above: m represents an integer of 1 to 4, and — (Y) m represents m substituents Y.
  • a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
  • b represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO -Is preferred.
  • More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15).
  • a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms. And an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Furthermore, Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Among these, an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms. And an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
  • n represents an integer of 0 to 4.
  • an integer of 0 to 3 is preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is an integer of 0-2.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Indicates. Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Y 7 represents —O—, —CH 2 O—, —COO—, —OCO—, —CONH— or —NHCO—.
  • —O—, —CH 2 O—, —COO— or —CONH— is preferable. More preferred is —O—, —COO— or —CONH—.
  • Y 8 represents an alkyl group having 8 to 22 carbon atoms.
  • Y 9 and Y 10 each independently represent a hydrocarbon group having 1 to 12 carbon atoms.
  • Y 11 represents an alkyl group having 1 to 5 carbon atoms.
  • the method for producing the diamine compound represented by the formula [3] is not particularly limited, but preferred methods include those shown below.
  • the diamine compound represented by the formula [3] can be obtained by synthesizing a dinitro compound represented by the following formula [3-A] and further reducing the nitro group to convert it to an amino group.
  • Y represents Formula [3-1], Formula [3-2], Formula [3-3], Formula [3-4], Formula [3-5], or Formula [3]. And at least one substituent selected from -6], m represents an integer of 1 to 4.
  • the method for reducing the dinitro group of the dinitro compound represented by the formula [3-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent, There is a method in which platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
  • a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent
  • platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
  • examples of the diamine compound represented by the formula [3] include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2, In addition to 4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, and 4,6-diaminoresorcinol, the following formulas [3-7] to [3- 47] can be mentioned.
  • a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or CH 2 OCO—
  • R 2 represents carbon Represents an alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group of formula 1 to 22.
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 —
  • R 4 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or —O—
  • R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
  • R 7 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable.
  • R 8 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable.
  • B 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group
  • B 2 represents an oxygen atom or —COO— * (where a bond marked with “*” binds to B 3 )
  • B 1 represents an oxygen atom or —COO— * (where “*” bond marked with represents a (CH 2) bind to a 2).
  • a 1 represents an integer of 0 or 1
  • a 2 represents an integer of 2 ⁇ 10
  • a 3 is 0 or 1 Indicates an integer.
  • the liquid crystal aligning agent obtained from the specific polymer using the diamine compound having the structure in which the substituent Y in the formula [3] is represented by the formula [3-3] When the liquid crystal alignment film is used, the pretilt angle of the liquid crystal can be increased. At that time, for the purpose of enhancing these effects, among the above diamine compounds, diamines represented by the formulas [3-25] to [3-40] or the formulas [3-43] to [3-47] are used. It is preferable to use a compound. More preferred are diamine compounds represented by the formulas [3-29] to [3-40] or the formulas [3-43] to [3-47].
  • these diamine compounds are 5 mol% or more and 80 mol% or less of the whole diamine component. More preferably, these diamine compounds are 5 mol% or more and 60 mol% or less of the whole diamine component from the viewpoint of the coating properties of the composition and the liquid crystal alignment treatment agent and the electric characteristics as the liquid crystal alignment film.
  • the diamine compound represented by the formula [3] is the solubility and coating property of the specific polymer contained in the liquid crystal aligning agent of the present invention in the solvent, the alignment property of the liquid crystal when the liquid crystal alignment film is used, and the voltage holding ratio. Depending on characteristics such as accumulated charge, one kind or a mixture of two or more kinds can be used.
  • a diamine compound other than the diamine compound represented by the formula [3] (also referred to as other diamine compound) can be used.
  • Specific examples of other diamine compounds are shown below, but are not limited to these examples.
  • diamine compounds examples include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. .
  • diamine compounds represented by the following formulas [DA1] to [DA7] can be exemplified.
  • a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
  • a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • diamine compounds represented by the following formulas [DA8] to [DA13] can also be used as other diamine compounds.
  • n represents an integer of 1 to 5.
  • diamine compounds represented by the following formulas [DA14] to [DA17] can also be used as other diamine compounds.
  • a 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O —, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—, each of m 1 and m 2 represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in the formula [DA15], m 3 and m 4 each represent an integer of 1 to 5, and in formula [DA16], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 represents an integer of 1 to 5, [DA17] in, A 3 is
  • diamine compounds represented by the following formula [DA18] and formula [DA19] can also be used as other diamine compounds.
  • the other diamine compounds exemplified above include the solubility of the specific polymer contained in the liquid crystal alignment treatment agent of the present invention in the solvent, the coating property of the composition, the alignment property of the liquid crystal when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
  • the specific polymer contained in the liquid crystal aligning agent of the present invention includes a specific tetracarboxylic acid component containing a specific tetracarboxylic dianhydride represented by the formula [1] and a specific aliphatic represented by the formula [2]. At least one heavy selected from a polyimide precursor obtained by reacting a specific aliphatic tetracarboxylic acid component containing tetracarboxylic dianhydride and the diamine component and a polyimide obtained by imidizing the polyimide precursor. It is a coalescence.
  • the polyimide precursor obtained by reacting the specific aliphatic tetracarboxylic acid component and the diamine component has a structure represented by the following formula [A], for example.
  • R 1 is a tetravalent organic group derived from a specific aliphatic tetracarboxylic acid component
  • R 2 is a divalent organic group derived from a diamine component
  • a 1 and A 2 are A hydrogen atom or an alkyl group having 1 to 8 carbon atoms, which may be the same or different
  • a 3 and A 4 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group, and the same Or n may be different, and n represents a positive integer.
  • the specific polymer contained in the liquid crystal aligning agent of the present invention includes a specific tetracarboxylic dianhydride represented by the formula [1] and a specific aliphatic tetracarboxylic dianhydride represented by the following formula [B]. And a diamine compound represented by the following formula [C] as a raw material, the polyamic acid comprising the structural formula of the repeating unit represented by the following formula [D] Polyimide obtained by imidizing polyamic acid is preferable.
  • the specific tetracarboxylic dianhydride represented by the formula [B] is the same as the specific aliphatic tetracarboxylic dianhydride represented by the formula [2]. In this case, R 1 in the formula [B] is the same tetravalent group as Z 1 in the formula [2].
  • R 1 and R 2 have the same meaning as defined in Formula [A].
  • the polymer of the formula [D] obtained above is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A] by a usual synthesis method. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
  • the specific polymer includes a tetracarboxylic acid component including the specific tetracarboxylic dianhydride represented by the formula [1] and the specific aliphatic tetracarboxylic dianhydride represented by the formula [2]; Obtained by reacting with a diamine component.
  • a specific tetracarboxylic dianhydride, a specific aliphatic tetracarboxylic dianhydride, and a diamine component are polycondensed to obtain a polyamic acid, and the tetracarboxylic acid component and the diamine component are dehydrated.
  • a method of obtaining polyamic acid by polycondensation or polycondensation is used.
  • Polyamide acid alkyl ester can be obtained by polycondensation of carboxylic acid group with dialkyl esterified tetracarboxylic acid and diamine component, tetracarboxylic acid dihalide with carboxylic acid group dialkylesterified and diamine component.
  • a method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • polyimide In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out with the diamine component and the tetracarboxylic acid component in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and solvents represented by the following formulas [D-1] to [D-3].
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a diamine component and a tetracarboxylic acid component, etc. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide constituting the specific polymer contained in the liquid crystal aligning agent of the present invention is a polyimide obtained by ring-closing the polyimide precursor.
  • the ring closure rate also referred to as imidization rate
  • the amic acid group Does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the molecular weight of the specific polymer contained in the liquid crystal aligning agent of the present invention is determined by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, the workability during film formation, and the coating properties.
  • the measured weight average molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of the present invention is a coating solution for forming a liquid crystal alignment film, which contains a polymer component and a solvent and is a coating solution for forming a polymer film.
  • the liquid-crystal aligning agent of this invention is the above-mentioned specific polymer, ie, the specific tetracarboxylic dianhydride shown by said Formula [1], and said formula [1] as a polymer component. 2], a polyimide precursor obtained by reacting a tetracarboxylic acid component (specific tetracarboxylic acid component and specific aliphatic tetracarboxylic acid component) containing the specific aliphatic tetracarboxylic dianhydride and the diamine component, and It contains at least one polymer selected from polyimides obtained by imidizing the polyimide precursor.
  • a liquid crystal aligning agent containing such a specific polymer a liquid crystal alignment film having excellent light resistance and excellent voltage holding characteristics (voltage holding ratio) can be obtained. The reason for this will be described below.
  • the specific tetracarboxylic dianhydride has a structure in which two dicarboxylic dianhydrides are bonded by a methylene group. Since a methylene group is flexible, a polyimide precursor obtained by reacting a specific tetracarboxylic dianhydride having such a methylene group, a specific aliphatic tetracarboxylic dianhydride, and a diamine component. Alternatively, polyimide is considered to be pseudo-crosslinked between molecules and within molecules due to the flexibility of the methylene group. As a result, the specific polymer is polymerized and the density is increased.
  • the liquid crystal alignment film having a specific polymer having a high density becomes a dense film, and as shown in the examples described later, the decrease in voltage holding ratio is suppressed even after irradiation with strong ultraviolet rays, and the film has excellent light resistance. Become.
  • an aromatic acid anhydride is weak in light resistance, but a specific tetracarboxylic dianhydride has a flexible methylene group as described above, and thus a liquid crystal alignment film having a specific polymer.
  • the light resistance is not lowered, and the voltage holding ratio can be kept high.
  • Such excellent voltage holding characteristics can be further improved by using a specific aliphatic tetracarboxylic dianhydride that is not aromatic together with a specific tetracarboxylic dianhydride having a methylene group as a raw material of the specific polymer. Can be increased.
  • All the polymer components in the liquid crystal aligning agent of the present invention may be all specific polymers, or other polymers may be mixed. In that case, the content of the other polymer is 0.5 mass% to 15 mass%, preferably 1 mass% to 10 mass% of the specific polymer.
  • polyimide precursors not using the specific tetracarboxylic dianhydride represented by the formula [1] and the specific aliphatic tetracarboxylic dianhydride represented by the formula [2] are used. Or a polyimide is mentioned.
  • an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, polysiloxane, etc. are mentioned.
  • the solid content concentration in the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 0.5 to 10% by mass, and preferably 1 to 8% by mass. More preferably. If the solid content concentration is less than 0.5% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may be deteriorated.
  • the term “solid content” as used herein refers to a component obtained by removing the solvent from the liquid crystal aligning agent, and means the above-described specific polymer, other polymers, and various additives described later.
  • the solvent in the liquid crystal aligning agent of the present invention is preferably 70 to 99.9% by mass of the solvent in the liquid crystal aligning agent from the viewpoint of forming a uniform liquid crystal aligning film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • the solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is a solvent (also referred to as a good solvent) that dissolves the specific polymer.
  • a solvent also referred to as a good solvent
  • a good solvent is given to the following, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, the solvents represented by the above formulas [D-1] to [D-3], and the like can be given. These may be used alone or in combination.
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone
  • ⁇ -butyrolactone are preferably used.
  • the solubility of the specific polymer in the solvent it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 10 to 100% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied unless the effects of the present invention are impaired. be able to.
  • a solvent also referred to as a poor solvent
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • These poor solvents are preferably 1 to 70% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. More preferred is 5 to 60% by mass.
  • the liquid crystal aligning agent of the present invention comprises a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group, unless the effects of the present invention are impaired.
  • a crosslinkable compound having at least one substituent selected from the group or a crosslinkable compound having a polymerizable unsaturated bond may be contained. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
  • crosslinkable compounds represented by the formulas [4a] to [4k] described in the 58th to 59th items of the international publication WO2011 / 132751 can be mentioned.
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
  • crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of International Publication No. WO2011 / 132751 may be mentioned.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine resin, a urea resin, a guanamine resin, and a glycoluril such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
  • crosslinkable compounds represented by the formulas [6-1] to [6-48], which are listed on pages 62 to 66 of International Publication No. WO2011 / 132751.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • crosslinkable compound used for the liquid-crystal aligning agent of this invention may be 1 type, and may be combined 2 or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
  • a compound that promotes charge transfer in a liquid crystal alignment film and promotes charge release of a liquid crystal cell using the liquid crystal alignment film when a liquid crystal alignment film using the liquid crystal alignment treatment agent using the composition of the present invention is formed. It is preferable to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are described on pages 69 to 73 of International Patent Publication WO2011 / 132751. This amine compound may be added directly to the composition, but it may be added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. preferable.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polyimide polymer described above.
  • liquid crystal alignment treatment agent of the present invention a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effects of the present invention are not impaired. Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be used.
  • Examples of compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (or above) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
  • Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of all polymer components contained in the liquid crystal aligning agent. 20 parts by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the storage stability of the liquid crystal aligning agent may be deteriorated.
  • the liquid crystal alignment treatment agent of the present invention includes, in addition to the above poor solvent, a crosslinkable compound, a compound that promotes charge removal from the liquid crystal cell, and a compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film, As long as the effects of the present invention are not impaired, a dielectric or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used.
  • Examples of other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the liquid crystal aligning agent After applying the liquid crystal aligning agent on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal aligning agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
  • the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method.
  • a liquid crystal display device comprising a liquid crystal cell having the liquid crystal alignment film.
  • VA vertical alignment
  • IPS In-Plane Switching
  • TN twisted nematic
  • OCB OCB alignment
  • There are various types such as Optically Compensated Bend, and a system such as PSA (Polymer Sustained Alignment) may be used.
  • PSA Polymer Sustained Alignment
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of bonding the substrate after dropping the liquid crystal on the surface of the liquid crystal alignment film on which the spacers are dispersed, and the like.
  • the liquid crystal display element manufactured using the liquid crystal alignment treatment agent of the present invention has a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed even when exposed to light irradiation for a long time. Therefore, it has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
  • A2 1,2,3,4-cyclobutanetetracarboxylic dianhydride (tetracarboxylic dianhydride represented by the following formula [A2])
  • A3 Bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride (tetracarboxylic dianhydride represented by the following formula [A3])
  • A4 Tetracarboxylic dianhydride represented by the following formula [A4]
  • A5 Tetracarboxylic dianhydride represented by the following formula [A5]
  • A6 pyromellitic dianhydride (tetracarboxylic dianhydride represented by the following formula [A6])
  • B1 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene (diamine compound represented by the following formula [B1])
  • B2 1,3-diamino-5- [4- (trans-4-n-heptylcyclohexyl) phenoxymethyl] benzene (diamine compound represented by the following formula [B2])
  • B3 1,3-diamino-4- ⁇ 4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene (diamine compound represented by the following formula [B3])
  • B4 1,3-diamino-5- ⁇ 4- [4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxymethyl ⁇ benzene (diamine compound represented by the following formula [B4])
  • the molecular weights of the polyimide precursor and the polyimide in the synthesis example are determined using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as follows.
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Table 1 shows the polyamic acids and polyimides obtained in Synthesis Examples 1-15.
  • Example 1 The polyamic acid solution (A) (9.03 g), NMP (8.90 g) and BCS (12.0 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 1 were mixed at 25 ° C. for 8 hours. As a result, a liquid crystal aligning agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (1), “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • Example 2 The polyimide powder (B) obtained in Synthesis Example 2 (1.80 g), NMP (9.02 g), NEP (7.51 g) and BCS (13.5 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (2) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (2), “preparation of liquid crystal cell and evaluation of electric characteristics” were performed under the above-described conditions.
  • Example 3 The polyimide powder (B) obtained in Synthesis Example 2 (1.50 g), NMP (12.4 g), NEP (10.3 g) and BCS (18.6 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (3) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (3), “evaluation of ink jet coatability of liquid crystal aligning agent” was performed under the above-described conditions.
  • Example 4 The polyimide powder (C) obtained in Synthesis Example 3 (1.80 g), NMP (9.01 g), G-BL (9.02 g) and BCS (12.0 g) were mixed at 25 ° C. for 8 hours. Thus, a liquid crystal aligning agent (4) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (4), “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • Example 5 Polyimide powder (D) obtained in Synthesis Example 4 (1.80 g), NMP (7.53 g), NEP (12.1 g), G-BL (1.53 g) and PB (9.11 g)
  • the liquid crystal aligning agent (5) was obtained by mixing at 0 ° C. for 8 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (5), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • Example 6 The polyimide powder (E) (1.79 g), NMP (9.00 g), NEP (14.5 g), BCS (3.02 g) and PB (3.00 g) obtained in Synthesis Example 5 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (6).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • Example 7 The polyimide powder (E) obtained in Synthesis Example 5 (1.50 g), NMP (8.27 g), NEP (16.5 g) and PB (16.5 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (7) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (7), “evaluation of ink jet coatability of liquid crystal aligning agent” was performed under the above-described conditions.
  • Example 8 Polyamic acid solution (F) (9.00 g), NMP (3.00 g), G-BL (9.06 g) and BCS (9.01 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 6 Were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (8).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • Example 9 Polyamic acid solution (G) (9.01 g), NEP (9.02 g), G-BL (9.02 g), BCS (6.01 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 7 And PB (6.00 g) were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (9).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • Example 10 The polyimide powder (H) (1.80 g), NMP (6.00 g), NEP (6.05 g), BCS (6.04 g) and PB (3.01 g) obtained in Synthesis Example 8 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (10), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • Example 11 The polyimide powder (I) obtained in Synthesis Example 9 (1.80 g), NMP (12.0 g), NEP (9.00 g) and BCS (9.05 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (11) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (11), “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • Example 12 The polyamic acid solution (J) (9.04 g), NMP (16.5 g), NEP (9.02 g) and PB (4.50 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 10 were The liquid crystal aligning agent (12) was obtained by mixing at 25 ° C. for 8 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (12), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
  • liquid crystal aligning agent obtained in each of the examples and comparative examples of the present invention, “preparation of liquid crystal cell”, “evaluation of electrical characteristics (voltage holding ratio)” and “ink-jet coating property of liquid crystal aligning agent” Evaluation "was performed.
  • the conditions are as follows.
  • Tables 1 and 2 show the raw materials (tetracarboxylic dianhydride and diamine component) of the specific polymer contained in the liquid crystal aligning agents obtained in Examples 1 to 12 and Comparative Examples 1 to 5.
  • liquid crystal alignment treatment agents obtained in Examples 1, 2, 4 to 6, 8 to 12 and Comparative Examples 1 to 5 were filtered under pressure through a membrane filter having a pore diameter of 1 ⁇ m to produce a liquid crystal cell.
  • This solution was spin-coated on the ITO surface of a 30 ⁇ 40 mm ITO electrode substrate (40 mm long ⁇ 30 mm wide, 0.7 mm thick) washed with pure water and IPA, and heated at 80 ° C. for 5 minutes on a hot plate. Then, heat treatment was performed at 230 ° C. for 30 minutes in a heat circulation type clean oven to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm.
  • the surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
  • liquid crystal aligning agent (1) obtained in Example 1 the liquid crystal aligning agent (2) obtained in Example 2, the liquid crystal aligning agent (4) obtained in Example 4, and Example 6 Liquid crystal aligning agent (6) obtained in Example 9, Liquid crystal aligning agent (9) to liquid crystal aligning agent (11) obtained in Examples 9 to 11, Liquid crystal aligning agent obtained in Comparative Example 1 (13)
  • nematic liquid crystal MLC-6608 is used as the liquid crystal. (Merck Japan Co., Ltd.) was used.
  • liquid crystal aligning agent (5) obtained in Example 5 the liquid crystal aligning agent (8) obtained in Example 8, the liquid crystal aligning agent (12) obtained in Example 12, and Comparative Example 3
  • liquid crystal aligning agent (15) obtained in 1 and the liquid crystal aligning agent (17) obtained in Comparative Example 5 the liquid crystal is nematic liquid crystal (MLC-2041) (manufactured by Merck Japan). Was used.
  • the liquid crystal alignment was evaluated using the liquid crystal cell obtained above.
  • the liquid crystal alignment was confirmed by observing the liquid crystal cell with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) to check for the presence of alignment defects. As a result, no alignment defects were observed in the liquid crystal cells obtained in any of the examples and comparative examples, and uniform alignment was exhibited.
  • ECLIPSE E600WPOL polarizing microscope
  • VHR-1 voltage holding ratio measuring device manufactured by Toyo Technica
  • the voltage holding ratio was measured under the same conditions as described above.
  • the ultraviolet irradiation was performed using a desktop UV curing device (HCT3B28HEX-1) (manufactured by SEN LIGHT CORPORATION).
  • Table 3 shows the measurement results of the voltage holding ratio. Since the voltage holding ratio depends on the type of the diamine component, it is necessary to compare those using the same diamine component.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of each example does not decrease the voltage holding ratio even when exposed to ultraviolet irradiation, compared to the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of each comparative example. It has become smaller.
  • Example 1 two types of tetracarboxylic dianhydrides, a specific tetracarboxylic dianhydride and a specific aliphatic tetracarboxylic dianhydride, are used.
  • Comparative Example 1 one of the specific tetracarboxylic dianhydrides is used. Only tetracarboxylic dianhydride is used.
  • the diamine components (B1 and B7) are the same. As a result, the voltage holding ratio of Comparative Example 1 was greatly reduced by the irradiation of ultraviolet rays.
  • Example 4 two types of tetracarboxylic dianhydrides are used, but in Comparative Example 2, only the other specific aliphatic tetracarboxylic dianhydride is used.
  • the diamine components (B6 and B10) are the same. As a result, the voltage holding ratio of Comparative Example 2 was further greatly reduced by irradiation with ultraviolet rays.
  • Example 6 and Comparative Example 4 Example 8 and Comparative Example 5
  • one of two types of tetracarboxylic dianhydrides and other tetracarboxylic dianhydrides were compared with Comparative Examples 4, 5
  • the voltage holding ratios of Comparative Examples 4 and 5 were greatly reduced by irradiation with ultraviolet rays.
  • tetracarboxylic dianhydrides two types, a specific tetracarboxylic dianhydride and a specific aliphatic tetracarboxylic dianhydride, are used as raw materials for the specific polymer contained in the liquid crystal aligning agent of the present invention.
  • a decrease in voltage holding ratio was suppressed and a liquid crystal alignment film having excellent light resistance could be produced.
  • a liquid crystal display element having such a liquid crystal alignment film has light resistance and excellent reliability even when exposed to light irradiation for a long time without decreasing the voltage holding ratio.
  • Example 3 of the present invention The liquid crystal alignment treatment agent (3) obtained in Example 3 of the present invention and the liquid crystal alignment treatment agent (7) obtained in Example 7 were pressure filtered through a membrane filter having a pore diameter of 1 ⁇ m, and evaluation of ink jet coatability was performed. Went.
  • As the ink jet coater HIS-200 (manufactured by Hitachi Plant Technology) was used. Application is on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA (isopropyl alcohol), the application area is 70 ⁇ 70 mm, the nozzle pitch is 0.423 mm, and the scan pitch is 0.5 mm. The speed was 40 mm / second, the time from application to temporary drying was 60 seconds, and temporary drying was performed on a hot plate at 70 ° C. for 5 minutes.
  • the liquid crystal aligning agent (3) obtained in Example 3 and the liquid crystal aligning agent (7) obtained in Example 7 were a specific tetracarboxylic dianhydride and a specific aliphatic tetracarboxylic dianhydride. It contains a specific polymer obtained by reacting two types of tetracarboxylic dianhydrides with a diamine component.
  • the liquid crystal aligning agent (3) of Example 3 has the same configuration as the liquid crystal aligning agent (2) of Example 2, and the liquid crystal aligning agent (7) of Example 7 is The structure is the same as that of the liquid crystal aligning agent (6) of Example 6.
  • the liquid crystal aligning film obtained by the inkjet method using the liquid crystal aligning agent (3) of Example 3 and the liquid crystal aligning agent (7) of Example 7 is the measurement result of the above-mentioned voltage holding ratio ( In view of Examples 2 and 6), it is presumed that the decrease in the voltage holding ratio is suppressed and that the light resistance is excellent. Therefore, a liquid crystal display element having a liquid crystal alignment film obtained by an inkjet method is similarly excellent in reliability without being lowered in voltage holding ratio even when exposed to light irradiation for a long time. .

Abstract

Provided is a liquid crystal alignment agent that contains at least one polymer chosen from among a polyimide precursor and a polyimide obtained by imidization of the polyimide precursor, the polyimide precursor being obtained by reacting a diamine component with a tetracarboxylic acid component that includes a tetracarboxylic acid dianhydride represented by formula [1] and an aliphatic tetracarboxylic acid dianhydride represented by formula [2]. (In formula [2], Z1 is at least one tetravalent group chosen from formulas [2a] through [2j].) (In formula [2a], Z2 through Z5 indicate a chlorine atom, a methyl group, a nitrogen atom, or a benzene ring, each of which can be the same or different; and in formula [2g], Z6 and Z7 indicate a hydrogen atom or a methyl group, each of which can be the same or different.)

Description

液晶配向処理剤、液晶配向膜および液晶表示素子Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶表示素子の製造において用いられる液晶配向処理剤、この液晶配向処理剤から得られる液晶配向膜およびこの液晶配向膜を使用した液晶表示素子に関するものである。  The present invention relates to a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.
 現在、液晶表示素子の液晶配向膜としては、ポリアミド酸などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向処理剤を塗布し焼成した、いわゆるポリイミド系の液晶配向膜が主として用いられている。  Currently, as a liquid crystal alignment film of a liquid crystal display element, a so-called polyimide liquid crystal alignment film obtained by applying and baking a liquid crystal alignment treatment agent mainly composed of a polyimide precursor such as polyamic acid or a soluble polyimide solution is mainly used. ing.
 液晶配向膜は、液晶の配向状態を制御する目的で使用されるものである。しかしながら、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった観点から、そこに使用される液晶配向膜においても電圧保持率が高いことや、直流電圧を印加した際の蓄積電荷が少ないまたは直流電圧により蓄積した電荷の緩和が早いといった特性が次第に重要となっていた。  The liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal. However, as liquid crystal display elements have become higher in definition, the liquid crystal alignment film used in the liquid crystal alignment film has a high voltage holding ratio and a direct current voltage from the viewpoint of suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon. The characteristic that the accumulated charge when applied is small or the charge accumulated by the DC voltage is quickly relaxed has become increasingly important.
 ポリイミド系の液晶配向膜において、直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やイミド基含有ポリアミド酸に加えて特定構造の3級アミンを含有する液晶配向処理剤を使用したもの(例えば特許文献1参照)や、ピリジン骨格などを有する特定ジアミンを原料に使用した可溶性ポリイミドを含有する液晶配向処理剤を使用したもの(例えば特許文献2参照)などが知られている。また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やそのイミド化重合体などに加えて分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物および分子内に1個の3級アミノ基を含有する化合物から選ばれる化合物を極少量含有する液晶配向処理剤を使用したもの(例えば特許文献3参照)が知られている。  In a polyimide-based liquid crystal alignment film, a liquid crystal alignment treatment agent containing a tertiary amine with a specific structure in addition to polyamic acid or imide group-containing polyamic acid is used as a short time until the afterimage generated by direct current voltage disappears. (For example, refer to Patent Document 1), and those using a liquid crystal alignment treatment agent containing a soluble polyimide using a specific diamine having a pyridine skeleton as a raw material (for example, refer to Patent Document 2). In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amino group in the molecule (for example, Patent Document 3) is known.
特開平9-316200号公報JP-A-9-316200 特開平10-104633号公報JP-A-10-104633 特開平8-076128号公報JP-A-8-076128
 近年の液晶表示素子の高性能化に伴い、大画面で高精細の液晶テレビや、車載用途、例えば、カーナビゲーションシステムやメーターパネルなどの用途に液晶表示素子が用いられている。こうした用途では、高輝度を得るために、発熱量の大きいバックライトを使用する場合がある。このため、液晶配向膜には、さらに別の観点からの高い信頼性、すなわち、バックライトからの光に対する高い安定性が要求されるようになっている。特に、液晶表示素子の電気特性の1つである電圧保持率が、バックライトからの光照射によって低下してしまうと、液晶表示素子の表示不良の1つである焼き付き不良(線焼き付きともいわれる)が発生するという問題がある。  With the recent improvement in performance of liquid crystal display elements, liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels. In such applications, in order to obtain high luminance, a backlight with a large calorific value may be used. For this reason, the liquid crystal alignment film is required to have high reliability from another point of view, that is, high stability to light from the backlight. In particular, when the voltage holding ratio, which is one of the electrical characteristics of the liquid crystal display element, is reduced by light irradiation from the backlight, a burn-in defect (also called line burn-in), which is one of the display defects of the liquid crystal display element. There is a problem that occurs.
 したがって、液晶配向膜においては、初期特性が良好なことに加え、例えば、長時間、光の照射に曝された後であっても、電圧保持率が低下しにくいことが求められている。  Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, for example, it is required that the voltage holding ratio is hardly lowered even after being exposed to light irradiation for a long time.
 そこで、本発明は、長時間の光照射後においても電圧保持率の低下を抑制でき、耐光性に優れた液晶配向膜を得るための液晶配向処理剤、液晶配向膜および該液晶配向膜を有する液晶表示素子を提供することを目的とする。  Therefore, the present invention has a liquid crystal alignment treatment agent, a liquid crystal alignment film, and the liquid crystal alignment film for obtaining a liquid crystal alignment film excellent in light resistance that can suppress a decrease in voltage holding ratio even after long-time light irradiation. An object is to provide a liquid crystal display element.
 本発明者は、鋭意研究を行った結果、特定構造を有する2種類のテトラカルボン酸二無水物を含有するテトラカルボン酸成分とジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向処理剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。  As a result of intensive studies, the present inventor has obtained a polyimide precursor obtained by reacting a tetracarboxylic acid component containing two types of tetracarboxylic dianhydrides having a specific structure with a diamine component, and the polyimide precursor. The present inventors have found that a liquid crystal aligning agent containing at least one polymer selected from polyimides obtained by imidizing is extremely effective for achieving the above object, and has completed the present invention.
 すなわち、本発明は以下の要旨を有するものである。
(1)下記の式[1]で示されるテトラカルボン酸二無水物および下記の式[2]で示されるテトラカルボン酸二無水物を含むテトラカルボン酸成分とジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有することを特徴とする液晶配向処理剤。 
That is, the present invention has the following gist.
(1) It is obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula [1] and a tetracarboxylic dianhydride represented by the following formula [2] with a diamine component. A liquid crystal aligning agent comprising a polyimide precursor and at least one polymer selected from polyimides obtained by imidizing the polyimide precursor.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(式[2]中、Zは下記の式[2a]~式[2j]から選ばれる少なくとも1種の4価の基である。) 
Figure JPOXMLDOC01-appb-C000006
(In the formula [2], Z 1 is at least one tetravalent group selected from the following formulas [2a] to [2j].)
Figure JPOXMLDOC01-appb-C000007
(式[2a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよく、式[2g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい。) 
Figure JPOXMLDOC01-appb-C000007
(In the formula [2a], Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In the formula [2g], Z 6 and Z 7 are A hydrogen atom or a methyl group, which may be the same or different.
(2)液晶配向処理剤中の溶媒として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトンを含有することを特徴とする上記(1)に記載の液晶配向処理剤。  (2) The liquid crystal aligning agent as described in (1) above, which contains N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone as a solvent in the liquid crystal aligning agent .
(3)液晶配向処理剤中の溶媒として、下記の式[D-1]~式[D-3]から選ばれる溶媒を含有することを特徴とする上記(1)または上記(2)に記載の液晶配向処理剤。  (3) The solvent described in (1) or (2) above, which contains a solvent selected from the following formulas [D-1] to [D-3] as a solvent in the liquid crystal aligning agent Liquid crystal alignment treatment agent.
Figure JPOXMLDOC01-appb-C000008
(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。) 
Figure JPOXMLDOC01-appb-C000008
(In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3 D 3 represents an alkyl group having 1 to 4 carbon atoms.
(4)上記(1)~上記(3)に記載の液晶配向処理剤を用いて得られることを特徴とする液晶配向膜。  (4) A liquid crystal alignment film obtained by using the liquid crystal aligning agent described in (1) to (3) above.
(5)上記(1)~上記(3)に記載の液晶配向処理剤を用いて、インクジェット法にて得られることを特徴とする液晶配向膜。  (5) A liquid crystal alignment film obtained by an ink jet method using the liquid crystal aligning agent described in (1) to (3) above.
(6)上記(4)または上記(5)に記載の液晶配向膜を有することを特徴とする液晶表示素子。  (6) A liquid crystal display element comprising the liquid crystal alignment film according to (4) or (5).
 本発明の液晶配向処理剤によれば、長時間、光の照射に曝されても、電圧保持率の低下を抑制することができ、耐光性に優れた液晶配向膜を得ることができる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。  According to the liquid crystal aligning agent of the present invention, even when exposed to light irradiation for a long time, a decrease in voltage holding ratio can be suppressed, and a liquid crystal alignment film having excellent light resistance can be obtained. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
 本発明の液晶配向処理剤は、下記の式[1]で示されるテトラカルボン酸二無水物(特定テトラカルボン酸二無水物ともいう)および下記の式[2]で示される脂肪族テトラカルボン酸二無水物(特定脂肪族テトラカルボン酸二無水物ともいう)を含むテトラカルボン酸成分と、ジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体(特定重合体ともいう)を含有するものである。  The liquid crystal aligning agent of the present invention comprises a tetracarboxylic dianhydride represented by the following formula [1] (also referred to as a specific tetracarboxylic dianhydride) and an aliphatic tetracarboxylic acid represented by the following formula [2]. Selected from a polyimide precursor obtained by reacting a diamine component with a tetracarboxylic acid component containing a dianhydride (also referred to as a specific aliphatic tetracarboxylic dianhydride) and a polyimide obtained by imidizing the polyimide precursor Containing at least one polymer (also referred to as a specific polymer).
 ここで、ジアミン成分とは、分子内に1級または2級のアミノ基を2個有するジアミン化合物である。ポリイミド前駆体とは、ポリアミド酸またはポリアミド酸アルキルエステルをいう。  Here, the diamine component is a diamine compound having two primary or secondary amino groups in the molecule. The polyimide precursor refers to polyamic acid or polyamic acid alkyl ester.
 <特定テトラカルボン酸二無水物>
 本発明の液晶配向処理剤が含有する特定重合体の原料であるテトラカルボン酸成分は2種類のテトラカルボン酸二無水物を含む。一方の種類のテトラカルボン酸二無水物は、下記の式[1]で示される特定テトラカルボン酸二無水物である。
Figure JPOXMLDOC01-appb-C000009
<Specific tetracarboxylic dianhydride>
The tetracarboxylic acid component which is a raw material of the specific polymer contained in the liquid crystal aligning agent of the present invention includes two types of tetracarboxylic dianhydrides. One type of tetracarboxylic dianhydride is a specific tetracarboxylic dianhydride represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000009
 式[1]で示される特定テトラカルボン酸二無水物は、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物(すべてを総称して特定テトラカルボン酸成分ともいう)を用いることもできる。  The specific tetracarboxylic dianhydride represented by the formula [1] is a tetracarboxylic acid, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound (all Can also be referred to as a specific tetracarboxylic acid component).
 式[1]で示される特定テトラカルボン酸二無水物は、全テトラカルボン酸成分中の20モル%~80モル%であることが好ましい。なかでも、20モル%~60モル%であることが好ましい。特に好ましいのは、20モル%~50モル%である。  The specific tetracarboxylic dianhydride represented by the formula [1] is preferably 20 mol% to 80 mol% in the total tetracarboxylic acid component. In particular, the content is preferably 20 mol% to 60 mol%. Particularly preferred is 20 to 50 mol%.
 <特定脂肪族テトラカルボン酸二無水物>
 本発明の液晶配向処理剤が含有する特定重合体の原料であるテトラカルボン酸成分は2種類のテトラカルボン酸二無水物を含む。他方の種類のテトラカルボン酸二無水物は、下記の式[2]で示される特定脂肪族テトラカルボン酸二無水物である。 
<Specific aliphatic tetracarboxylic dianhydride>
The tetracarboxylic acid component which is a raw material of the specific polymer contained in the liquid crystal aligning agent of the present invention includes two types of tetracarboxylic dianhydrides. The other type of tetracarboxylic dianhydride is a specific aliphatic tetracarboxylic dianhydride represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式[2]中、Zは下記の式[2a]~式[2j]から選ばれる少なくとも1種の4価の基である。  In the formula [2], Z 1 is at least one tetravalent group selected from the following formulas [2a] to [2j].
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式[2a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよい。  In the formula [2a], Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
 式[2g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい。  In the formula [2g], Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
 式[2]に示される構造中、Zは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[2a]、式[2c]、式[2d]、式[2e]、式[2f]または式[2g]で示される構造が好ましい。より好ましいのは、式[2a]、式[2e]、式[2f]または式[2g]で示される構造であり、特に好ましいのは、式[2e]、式[2f]または式[2g]である。  In the structure represented by the formula [2], Z 1 is represented by the formula [2a], the formula [2c], the formula [2d], from the viewpoint of ease of synthesis and polymerization reactivity when producing a polymer. A structure represented by the formula [2e], the formula [2f] or the formula [2g] is preferable. A structure represented by formula [2a], formula [2e], formula [2f] or formula [2g] is more preferable, and formula [2e], formula [2f] or formula [2g] is particularly preferable. It is.
 式[2]で示される特定脂肪族テトラカルボン酸二無水物は、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物(すべてを総称して特定脂肪族テトラカルボン酸成分ともいう)を用いることもできる。  The specific aliphatic tetracarboxylic dianhydride represented by the formula [2] is a tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester dihalide compound which is a tetracarboxylic acid derivative thereof. (All are collectively referred to as a specific aliphatic tetracarboxylic acid component) can also be used.
 式[2]で示される特定脂肪族テトラカルボン酸二無水物は、全テトラカルボン酸成分中の20モル%~80モル%であることが好ましい。特に好ましいのは、20モル%~60モル%である。  The specific aliphatic tetracarboxylic dianhydride represented by the formula [2] is preferably 20 mol% to 80 mol% in the total tetracarboxylic acid component. Particularly preferred is 20 to 60 mol%.
 また、特定脂肪族テトラカルボン酸二無水物は、本発明の液晶配向処理剤が含有する特定重合体の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。  In addition, the specific aliphatic tetracarboxylic dianhydride is the solubility of the specific polymer contained in the liquid crystal aligning agent of the present invention in the solvent, the coating property of the liquid crystal aligning agent, and the liquid crystal alignment film when used as a liquid crystal alignment film. One type or a mixture of two or more types can be used depending on the properties such as orientation, voltage holding ratio, and accumulated charge.
<その他テトラカルボン酸化合物>
 本発明の液晶配向処理剤が含有する特定重合体におけるテトラカルボン酸成分は、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物および特定脂肪族テトラカルボン酸二無水物以外のテトラカルボン酸化合物(その他テトラカルボン酸化合物ともいう)を用いることもできる。 
<Other tetracarboxylic acid compounds>
As long as the tetracarboxylic acid component in the specific polymer contained in the liquid crystal aligning agent of the present invention does not impair the effects of the present invention, the tetracarboxylic acid component other than the specific tetracarboxylic dianhydride and the specific aliphatic tetracarboxylic dianhydride Carboxylic acid compounds (also referred to as other tetracarboxylic acid compounds) can also be used.
 その具体例としては、以下に示すテトラカルボン酸二無水物、テトラカルボン酸化合物またはジカルボン酸ジハライド化合物が挙げられる。  Specific examples thereof include the following tetracarboxylic dianhydrides, tetracarboxylic acid compounds or dicarboxylic acid dihalide compounds.
 すなわち、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸または1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。  That is, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6 , 7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) Methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) Nyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3 , 4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3 4-cyclobutanetetracarboxylic acid.
 その他テトラカルボン酸化合物は、本発明の液晶配向処理剤が含有する特定重合体の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。  Other tetracarboxylic acid compounds are the solubility of the specific polymer contained in the liquid crystal aligning agent of the present invention in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal alignment when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
<ジアミン成分>
 本発明の液晶配向処理剤が含有する特定重合体を作製するためのジアミン成分としては、公知のジアミン化合物を用いることができる。 
<Diamine component>
As the diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention, a known diamine compound can be used.
 なかでも、下記の式[3]で示される構造を有するジアミン化合物を用いることが好ましい。  Among them, it is preferable to use a diamine compound having a structure represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式[3]中、Yは下記の式[3-1]、式[3-2]、式[3-3]、式[3-4]、式[3-5]または式[3-6]から選ばれる少なくとも1つの1価の基を示し、mは1~4の整数を示し、-(Y)は置換基Yがm個あることを示す。  In the formula [3], Y represents the following formula [3-1], formula [3-2], formula [3-3], formula [3-4], formula [3-5] or formula [3-6] At least one monovalent group selected from the above: m represents an integer of 1 to 4, and — (Y) m represents m substituents Y.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式[3-1]中、aは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0または1の整数が好ましい。  In the formula [3-1], a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis | combination.
 式[3-2]中、bは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0または1の整数が好ましい。  In the formula [3-2], b represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis | combination.
 式[3-3]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-または-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-または-COO-である。  In the formula [3-3], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Indicates. Among these, from the viewpoint of availability of raw materials and ease of synthesis, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO -Is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[3-3]中、Yは単結合または-(CH-(bは1~15の整数である)を示す。なかでも、単結合または-(CH-(bは1~10の整数である)が好ましい。  In the formula [3-3], Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
 式[3-3]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示す。なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-または-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-または-COO-である。  In the formula [3-3], Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Indicates. Of these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[3-3]中、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数12~25の有機基から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環またはステロイド骨格を有する炭素数17~51の有機基が好ましい。  In the formula [3-3], Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms. And an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Furthermore, Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Among these, an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
 式[3-3]中、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。なかでも、ベンゼン環またはシクロへキサン環が好ましい。  In the formula [3-3], Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms. And an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
 式[3-3]中、nは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0~3の整数が好ましい。より好ましいのは、0~2の整数である。  In the formula [3-3], n represents an integer of 0 to 4. Among these, an integer of 0 to 3 is preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is an integer of 0-2.
 式[3-3]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示す。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基または炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基または炭素数1~9のアルコキシル基である。  In the formula [3-3], Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Indicates. Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[3]中の置換基Yを構成するための式[3-3]におけるY、Y、Y、Y、Y、Yおよびnの好ましい組み合わせとしては、国際公開公報WO2011/132751の13項~34項の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yと読み替えるものとする。また、ステロイド骨格を有する炭素数12~25の有機基は、ステロイド骨格を有する炭素数17~51の有機基と読み替えるものとする。  As a preferred combination of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [3-3] for constituting the substituent Y in the formula [3], International Publication WO2011 The same combinations as (2-1) to (2-629) listed in Tables 6 to 47 of the 13th to 34th items of / 132751 can be mentioned. In each table of the International Publication, Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 . Further, an organic group having 12 to 25 carbon atoms having a steroid skeleton is read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
 式[3-4]中、Yは-O-、-CHO-、-COO-、-OCO-、-CONH-または-NHCO-を示す。なかでも、-O-、-CHO-、-COO-または-CONH-が好ましい。より好ましくは、-O-、-COO-または-CONH-である。  In the formula [3-4], Y 7 represents —O—, —CH 2 O—, —COO—, —OCO—, —CONH— or —NHCO—. Of these, —O—, —CH 2 O—, —COO— or —CONH— is preferable. More preferred is —O—, —COO— or —CONH—.
 式[3-4]中、Yは炭素数8~22のアルキル基を示す。  In the formula [3-4], Y 8 represents an alkyl group having 8 to 22 carbon atoms.
 式[3-5]中、YおよびY10はそれぞれ独立して炭素数1~12の炭化水素基を示す。  In the formula [3-5], Y 9 and Y 10 each independently represent a hydrocarbon group having 1 to 12 carbon atoms.
 式[3-6]中、Y11は炭素数1~5のアルキル基を示す。  In the formula [3-6], Y 11 represents an alkyl group having 1 to 5 carbon atoms.
 前記式[3]で示されるジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、下記に示すものが挙げられる。一例として、式[3]で示されるジアミン化合物は、下記の式[3-A]で示されるジニトロ体化合物を合成し、さらにそのニトロ基を還元してアミノ基に変換することで得られる。  The method for producing the diamine compound represented by the formula [3] is not particularly limited, but preferred methods include those shown below. As an example, the diamine compound represented by the formula [3] can be obtained by synthesizing a dinitro compound represented by the following formula [3-A] and further reducing the nitro group to convert it to an amino group.
Figure JPOXMLDOC01-appb-C000014
(式[3-A]中、Yは前記式[3-1]、式[3-2]、式[3-3]、式[3-4]、式[3-5]または式[3-6]から選ばれる少なくとも1つの置換基を示し、mは1~4の整数を示す。) 
Figure JPOXMLDOC01-appb-C000014
(In Formula [3-A], Y represents Formula [3-1], Formula [3-2], Formula [3-3], Formula [3-4], Formula [3-5], or Formula [3]. And at least one substituent selected from -6], m represents an integer of 1 to 4.
 式[3-A]で示されるジニトロ体化合物のジニトロ基を還元する方法には、特に制限はなく、通常、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサンまたはアルコール系溶剤などの溶媒中、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナまたは硫化白金炭素などを触媒として用いて、水素ガス、ヒドラジンまたは塩化水素下で反応させる方法がある。  The method for reducing the dinitro group of the dinitro compound represented by the formula [3-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent, There is a method in which platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
 下記に、前記式[3]で示されるジアミン化合物の具体的な構造を挙げるが、これらの例に限定されるものではない。  Hereinafter, specific structures of the diamine compound represented by the formula [3] are listed, but the structure is not limited to these examples.
 すなわち、式[3]で示されるジアミン化合物としては、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、2,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノールの他に、下記の式[3-7]~[3-47]で示される構造のジアミン化合物を挙げることができる。  That is, examples of the diamine compound represented by the formula [3] include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2, In addition to 4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, and 4,6-diaminoresorcinol, the following formulas [3-7] to [3- 47] can be mentioned.
Figure JPOXMLDOC01-appb-C000015
(式[3-7]~式[3-10]中、Aは、炭素数1~22のアルキル基またはフッ素含有アルキル基を示す。) 
Figure JPOXMLDOC01-appb-C000015
(In the formulas [3-7] to [3-10], A 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(式[3-35]~式[3-37]中、Rは-O-、-OCH-、-CHO-、-COOCH-またはCHOCO-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基を示す。) 
Figure JPOXMLDOC01-appb-C000027
(In the formulas [3-35] to [3-37], R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or CH 2 OCO—, and R 2 represents carbon Represents an alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group of formula 1 to 22.)
Figure JPOXMLDOC01-appb-C000028
(式[3-38]~式[3-40]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-または-CH-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基を示す。) 
Figure JPOXMLDOC01-appb-C000028
(In the formulas [3-38] to [3-40], R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 — and R 4 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000029
(式[3-41]および式[3-42]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-または-O-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基である。) 
Figure JPOXMLDOC01-appb-C000029
(In the formulas [3-41] and [3-42], R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or —O—, and R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
Figure JPOXMLDOC01-appb-C000030
(式[3-43]および式[3-44]中、Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい。) 
Figure JPOXMLDOC01-appb-C000030
(In the formulas [3-43] and [3-44], R 7 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable.)
Figure JPOXMLDOC01-appb-C000031
(式[3-45]および式[3-46]中、Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい。) 
Figure JPOXMLDOC01-appb-C000031
(In the formulas [3-45] and [3-46], R 8 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable.)
Figure JPOXMLDOC01-appb-C000032
(式[3-47]中、Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基を示し、Bは1,4-シクロへキシレン基また1,4-フェニレン基を示し、Bは酸素原子または-COO-*(但し、「*」を付した結合手がBと結合する)を示し、Bは酸素原子または-COO-*(但し、「*」を付した結合手が(CH)aと結合する)を示す。また、aは0または1の整数を示し、aは2~10の整数を示し、aは0または1の整数を示す。) 
Figure JPOXMLDOC01-appb-C000032
(In the formula [3-47], B 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group. B 2 represents an oxygen atom or —COO— * (where a bond marked with “*” binds to B 3 ), and B 1 represents an oxygen atom or —COO— * (where “*” bond marked with represents a (CH 2) bind to a 2). Further, a 1 represents an integer of 0 or 1, a 2 represents an integer of 2 ~ 10, a 3 is 0 or 1 Indicates an integer.)
 前記式[3]で示されるジアミン化合物のなかで、式[3]中の置換基Yが式[3-3]で示される構造のジアミン化合物を用いた特定重合体から得られる液晶配向処理剤は、液晶配向膜にした場合に、液晶のプレチルト角を高くすることができる。その際、これらの効果を高めることを目的に、上記ジアミン化合物の中でも、式[3-25]~式[3-40]または式[3-43]~式[3-47]で示されるジアミン化合物を用いることが好ましい。より好ましいのは、式[3-29]~式[3-40]または式[3-43]~式[3-47]で示されるジアミン化合物である。また、よりこれらの効果を高めるため、これらジアミン化合物は、ジアミン成分全体の5モル%以上80モル%以下であることが好ましい。より好ましくは、組成物および液晶配向処理剤の塗布性や液晶配向膜としての電気特性の点から、これらジアミン化合物は、ジアミン成分全体の5モル%以上60モル%以下である。  Among the diamine compounds represented by the formula [3], the liquid crystal aligning agent obtained from the specific polymer using the diamine compound having the structure in which the substituent Y in the formula [3] is represented by the formula [3-3] When the liquid crystal alignment film is used, the pretilt angle of the liquid crystal can be increased. At that time, for the purpose of enhancing these effects, among the above diamine compounds, diamines represented by the formulas [3-25] to [3-40] or the formulas [3-43] to [3-47] are used. It is preferable to use a compound. More preferred are diamine compounds represented by the formulas [3-29] to [3-40] or the formulas [3-43] to [3-47]. Moreover, in order to improve these effects, it is preferable that these diamine compounds are 5 mol% or more and 80 mol% or less of the whole diamine component. More preferably, these diamine compounds are 5 mol% or more and 60 mol% or less of the whole diamine component from the viewpoint of the coating properties of the composition and the liquid crystal alignment treatment agent and the electric characteristics as the liquid crystal alignment film.
 前記式[3]で示されるジアミン化合物は、本発明の液晶配向処理剤が含有する特定重合体の溶媒への溶解性や塗布性、液晶配向膜にした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することができる。  The diamine compound represented by the formula [3] is the solubility and coating property of the specific polymer contained in the liquid crystal aligning agent of the present invention in the solvent, the alignment property of the liquid crystal when the liquid crystal alignment film is used, and the voltage holding ratio. Depending on characteristics such as accumulated charge, one kind or a mixture of two or more kinds can be used.
 本発明の液晶配向処理剤が含有する特定重合体を作製するためのジアミン成分としては、前記式[3]で示されるジアミン化合物以外のジアミン化合物(その他ジアミン化合物ともいう)を用いることができる。下記に、その他ジアミン化合物の具体例を挙げるが、これらの例に限定されるものではない。  As the diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention, a diamine compound other than the diamine compound represented by the formula [3] (also referred to as other diamine compound) can be used. Specific examples of other diamine compounds are shown below, but are not limited to these examples.
 例えば、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカンまたは1,12-ジアミノドデカンなどが挙げられる。  For example, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dicarboxy-4,4′-diaminobiphenyl, 3,3′-difluoro-4,4′-diaminobiphenyl, 3,3 ′ -Trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'- Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenyl Tan, 2,3′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 2,2′-diaminodiphenyl ether, 2,3′-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2 ' -Diaminodiphenylamine, 2,3'-diamy Diphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2, 2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 1,4- Diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5 -Diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2, 8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis ( 3-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[ , 3-phenylenebis (methylene)] dianiline, 3,4 '-[1,4-phenylenebis (methylene)] dianiline, 3,4'-[1,3-phenylenebis (methylene)] dianiline, 3,3 '-[1,4-phenylenebis (methylene)] dianiline, 3,3'-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1 , 4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4 -Phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate) 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) iso Phthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1, 4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N '-Bis (3-aminophenyl) terephthalamide, N, N'-bis (4-aminophenyl) isophthalamide, N, N'-bis (3-aminophenyl) Enyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] Propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) ) Hexafluoropropane, 2,2'-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2'-bis (4-aminophenyl) propane, 2,2'-bis (3-aminophenyl) ) Propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-amino) Phenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4- Aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, bis ( 4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, , 7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane or 1,12-diaminododecane.
 また、その他ジアミン化合物として、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環または複素環を有するもの、さらに、これらからなる大環状置換体を有するものなどを挙げることもできる。具体的には、下記の式[DA1]~[DA7]で示されるジアミン化合物を例示することができる。  Examples of other diamine compounds include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. . Specifically, diamine compounds represented by the following formulas [DA1] to [DA7] can be exemplified.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(式[DA1]~式[DA6]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-または-NH-を示し、Aは炭素数1~22の直鎖状もしくは分岐状のアルキル基または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す。)  (In the formulas [DA1] to [DA6], A 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—, A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
Figure JPOXMLDOC01-appb-C000036
(式[DA7]中、pは1~10の整数を示す。) 
Figure JPOXMLDOC01-appb-C000036
(In the formula [DA7], p represents an integer of 1 to 10)
 また、本発明の効果を損なわない限りにおいて、その他ジアミン化合物として、下記の式[DA8]~式[DA13]で示されるジアミン化合物を用いることもできる。  In addition, as long as the effects of the present invention are not impaired, diamine compounds represented by the following formulas [DA8] to [DA13] can also be used as other diamine compounds.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式[DA10]中、mは0~3の整数を示し、式[DA13]中、nは1~5の整数を示す。)  (In the formula [DA10], m represents an integer of 0 to 3, and in the formula [DA13], n represents an integer of 1 to 5.)
 さらに、本発明の効果を損なわない限りにおいて、その他ジアミン化合物として、下記の式[DA14]~式[DA17]で示されるジアミン化合物を用いることもできる。  Furthermore, as long as the effects of the present invention are not impaired, diamine compounds represented by the following formulas [DA14] to [DA17] can also be used as other diamine compounds.
Figure JPOXMLDOC01-appb-C000039
(式[DA14]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-を示し、mおよびmはそれぞれ0~4の整数を示し、かつm+mは1~4の整数を示し、式[DA15]中、mおよびmはそれぞれ1~5の整数を示し、式[DA16]中、Aは炭素数1~5の直鎖または分岐アルキル基を示し、mは1~5の整数を示し、式[DA17]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-を示し、mは1~4の整数を示す。) 
Figure JPOXMLDOC01-appb-C000039
(In the formula [DA14], A 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O —, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—, each of m 1 and m 2 represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in the formula [DA15], m 3 and m 4 each represent an integer of 1 to 5, and in formula [DA16], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 represents an integer of 1 to 5, [DA17] in, A 3 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3 2 -, - O -, - CO -, - NH -, - N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - OCH 2 -, - COO -, - OCO-, Represents —CON (CH 3 ) — or —N (CH 3 ) CO—, and m 6 represents an integer of 1 to 4.
 加えて、その他ジアミン化合物として、下記の式[DA18]および式[DA19]で示されるジアミン化合物を用いることもできる。  In addition, diamine compounds represented by the following formula [DA18] and formula [DA19] can also be used as other diamine compounds.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 上記で例示したその他ジアミン化合物は、本発明の液晶配向処理剤が含有する特定重合体の溶媒への溶解性や組成物の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。  The other diamine compounds exemplified above include the solubility of the specific polymer contained in the liquid crystal alignment treatment agent of the present invention in the solvent, the coating property of the composition, the alignment property of the liquid crystal when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
<特定重合体>
 本発明の液晶配向処理剤が含有する特定重合体は、前記式[1]で示される特定テトラカルボン酸二無水物を含む特定テトラカルボン酸成分と、前記式[2]で示される特定脂肪族テトラカルボン酸二無水物を含む特定脂肪族テトラカルボン酸成分と、上記ジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体である。 
<Specific polymer>
The specific polymer contained in the liquid crystal aligning agent of the present invention includes a specific tetracarboxylic acid component containing a specific tetracarboxylic dianhydride represented by the formula [1] and a specific aliphatic represented by the formula [2]. At least one heavy selected from a polyimide precursor obtained by reacting a specific aliphatic tetracarboxylic acid component containing tetracarboxylic dianhydride and the diamine component and a polyimide obtained by imidizing the polyimide precursor. It is a coalescence.
 また、前記特定脂肪族テトラカルボン酸成分と、前記ジアミン成分とを反応させて得られるポリイミド前駆体は、例えば、下記の式[A]で示される構造である。  Moreover, the polyimide precursor obtained by reacting the specific aliphatic tetracarboxylic acid component and the diamine component has a structure represented by the following formula [A], for example.
Figure JPOXMLDOC01-appb-C000041
(式[A]中、Rは特定脂肪族テトラカルボン酸成分に由来する4価の有機基であり、Rはジアミン成分に由来する2価の有機基であり、AおよびAは水素原子または炭素数1~8のアルキル基を示し、それぞれ同じであっても異なってもよく、AおよびAは水素原子、炭素数1~5のアルキル基またはアセチル基を示し、それぞれ同じであっても異なってもよく、nは正の整数を示す。) 
Figure JPOXMLDOC01-appb-C000041
(In the formula [A], R 1 is a tetravalent organic group derived from a specific aliphatic tetracarboxylic acid component, R 2 is a divalent organic group derived from a diamine component, and A 1 and A 2 are A hydrogen atom or an alkyl group having 1 to 8 carbon atoms, which may be the same or different, and A 3 and A 4 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group, and the same Or n may be different, and n represents a positive integer.)
 本発明の液晶配向処理剤が含有する特定重合体は、前記式[1]で示される特定テトラカルボン酸二無水物と、下記の式[B]で示される特定脂肪族テトラカルボン酸二無水物と、下記の式[C]で示されるジアミン化合物とを原料とすることで比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸または該ポリアミド酸をイミド化させたポリイミドが好ましい。なお、式[B]で示される特定テトラカルボン酸二無水物は、前記式[2]で示される特定脂肪族テトラカルボン酸二無水物と同様である。この場合、式[B]中のRは、式[2]中のZと同一の4価の基とする。  The specific polymer contained in the liquid crystal aligning agent of the present invention includes a specific tetracarboxylic dianhydride represented by the formula [1] and a specific aliphatic tetracarboxylic dianhydride represented by the following formula [B]. And a diamine compound represented by the following formula [C] as a raw material, the polyamic acid comprising the structural formula of the repeating unit represented by the following formula [D] Polyimide obtained by imidizing polyamic acid is preferable. The specific tetracarboxylic dianhydride represented by the formula [B] is the same as the specific aliphatic tetracarboxylic dianhydride represented by the formula [2]. In this case, R 1 in the formula [B] is the same tetravalent group as Z 1 in the formula [2].
Figure JPOXMLDOC01-appb-C000042
(式[B]および式[C]中、RおよびRは式[A]で定義したものと同意義である。) 
Figure JPOXMLDOC01-appb-C000042
(In Formula [B] and Formula [C], R 1 and R 2 have the same meaning as defined in Formula [A].)
Figure JPOXMLDOC01-appb-C000043
(式[D]中、RおよびRは式[A]で定義したものと同意義である。) 
Figure JPOXMLDOC01-appb-C000043
(In formula [D], R 1 and R 2 have the same meaning as defined in formula [A].)
 また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]で示されるAおよびAの炭素数1~8のアルキル基、および式[A]で示されるAおよびAの炭素数1~5のアルキル基またはアセチル基を導入することもできる。  In addition, the polymer of the formula [D] obtained above is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A] by a usual synthesis method. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
<特定重合体の製造方法>
 本発明において、特定重合体は、前記式[1]で示される特定テトラカルボン酸二無水物および前記式[2]で示される特定脂肪族テトラカルボン酸二無水物を含むテトラカルボン酸成分と、ジアミン成分とを反応させて得られる。具体的には、特定テトラカルボン酸二無水物と、特定脂肪族テトラカルボン酸二無水物と、ジアミン成分とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸成分と、ジアミン成分とを脱水重縮合または重縮合させてポリアミド酸を得る方法が用いられる。 
<Method for producing specific polymer>
In the present invention, the specific polymer includes a tetracarboxylic acid component including the specific tetracarboxylic dianhydride represented by the formula [1] and the specific aliphatic tetracarboxylic dianhydride represented by the formula [2]; Obtained by reacting with a diamine component. Specifically, a specific tetracarboxylic dianhydride, a specific aliphatic tetracarboxylic dianhydride, and a diamine component are polycondensed to obtain a polyamic acid, and the tetracarboxylic acid component and the diamine component are dehydrated. A method of obtaining polyamic acid by polycondensation or polycondensation is used.
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸とジアミン成分とを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドとジアミン成分とを重縮合させる方法またはポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。  Polyamide acid alkyl ester can be obtained by polycondensation of carboxylic acid group with dialkyl esterified tetracarboxylic acid and diamine component, tetracarboxylic acid dihalide with carboxylic acid group dialkylesterified and diamine component. A method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
 ポリイミドを得るには、前記のポリアミド酸またはポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。  In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。  The reaction between the diamine component and the tetracarboxylic acid component is usually carried out with the diamine component and the tetracarboxylic acid component in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples.
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンまたは下記の式[D-1]~式[D-3]で示される溶媒などが挙げられる。  For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and solvents represented by the following formulas [D-1] to [D-3].
Figure JPOXMLDOC01-appb-C000044
(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。) 
Figure JPOXMLDOC01-appb-C000044
(In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3 D 3 represents an alkyl group having 1 to 4 carbon atoms.
 これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。  These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。  When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. And a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent, a method of alternately adding a diamine component and a tetracarboxylic acid component, etc. Any of these methods may be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a polymer. In this case, the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。  In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
 本発明の液晶配向処理剤が含有する特定重合体を構成するポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。  The polyimide constituting the specific polymer contained in the liquid crystal aligning agent of the present invention is a polyimide obtained by ring-closing the polyimide precursor. In this polyimide, the ring closure rate (also referred to as imidization rate) of the amic acid group. ) Does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。  Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。  When the polyimide precursor is thermally imidized in a solution, the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミンまたはトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、なかでも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。  The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体またはポリイミドの反応溶液から、生成したポリイミド前駆体またはポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼンまたは水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類または炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。  When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
 本発明の液晶配向処理剤が含有する特定重合体の分子量は、そこから得られる液晶配向膜の強度、膜形成時の作業性および塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。  The molecular weight of the specific polymer contained in the liquid crystal aligning agent of the present invention is determined by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, the workability during film formation, and the coating properties. The measured weight average molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布溶液であり重合体成分および溶媒を含有し、重合体被膜を形成するための塗布溶液である。 
<Liquid crystal alignment agent>
The liquid crystal aligning agent of the present invention is a coating solution for forming a liquid crystal alignment film, which contains a polymer component and a solvent and is a coating solution for forming a polymer film.
 そして、上述したように、本発明の液晶配向処理剤は、重合体成分として、上記特定重合体、すなわち、上述の式[1]で示される特定テトラカルボン酸二無水物と、上述の式[2]で示される特定脂肪族テトラカルボン酸二無水物を含むテトラカルボン酸成分(特定テトラカルボン酸成分および特定脂肪族テトラカルボン酸成分)と、ジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有するものである。このような特定重合体を含む液晶配向処理剤を用いることにより、光耐性に優れ、電圧保持特性(電圧保持率)に優れた液晶配向膜を得ることができる。この理由について以下に説明する。  And as above-mentioned, the liquid-crystal aligning agent of this invention is the above-mentioned specific polymer, ie, the specific tetracarboxylic dianhydride shown by said Formula [1], and said formula [1] as a polymer component. 2], a polyimide precursor obtained by reacting a tetracarboxylic acid component (specific tetracarboxylic acid component and specific aliphatic tetracarboxylic acid component) containing the specific aliphatic tetracarboxylic dianhydride and the diamine component, and It contains at least one polymer selected from polyimides obtained by imidizing the polyimide precursor. By using a liquid crystal aligning agent containing such a specific polymer, a liquid crystal alignment film having excellent light resistance and excellent voltage holding characteristics (voltage holding ratio) can be obtained. The reason for this will be described below.
 特定テトラカルボン酸二無水物は、2つのジカルボン酸二無水物がメチレン基で結合した構造を有する。メチレン基はフレキシブル(柔軟)であるため、このようなメチレン基を有する特定テトラカルボン酸二無水物と、特定脂肪族テトラカルボン酸二無水物とジアミン成分とを反応させることにより得られるポリイミド前駆体またはポリイミドは、メチレン基の柔軟性により分子間内および分子内が擬似的に架橋されるものと考えられる。この結果、特定重合体は高分子化し、密度が高くなる。密度の高い特定重合体を有する液晶配向膜は、緻密な膜となり、後述する実施例に示すように、強い紫外線の照射後においても電圧保持率の低下が抑制され、光耐性に優れたものとなる。  The specific tetracarboxylic dianhydride has a structure in which two dicarboxylic dianhydrides are bonded by a methylene group. Since a methylene group is flexible, a polyimide precursor obtained by reacting a specific tetracarboxylic dianhydride having such a methylene group, a specific aliphatic tetracarboxylic dianhydride, and a diamine component. Alternatively, polyimide is considered to be pseudo-crosslinked between molecules and within molecules due to the flexibility of the methylene group. As a result, the specific polymer is polymerized and the density is increased. The liquid crystal alignment film having a specific polymer having a high density becomes a dense film, and as shown in the examples described later, the decrease in voltage holding ratio is suppressed even after irradiation with strong ultraviolet rays, and the film has excellent light resistance. Become.
 一般的に、芳香族酸無水物は、光耐性に弱いものであるが、特定テトラカルボン酸二無水物は、上述したようなフレキシブルなメチレン基を有するため、特定重合体を有する液晶配向膜の光耐性は低下せず、電圧保持率を高いまま維持することができる。  In general, an aromatic acid anhydride is weak in light resistance, but a specific tetracarboxylic dianhydride has a flexible methylene group as described above, and thus a liquid crystal alignment film having a specific polymer. The light resistance is not lowered, and the voltage holding ratio can be kept high.
 このような優れた電圧保持特性は、特定重合体の原料として、メチレン基を有する特定テトラカルボン酸二無水物と共に、芳香族でない特定脂肪族テトラカルボン酸二無水物を用いることで、効果をさらに増大させることができる。  Such excellent voltage holding characteristics can be further improved by using a specific aliphatic tetracarboxylic dianhydride that is not aromatic together with a specific tetracarboxylic dianhydride having a methylene group as a raw material of the specific polymer. Can be increased.
 以上の結果、本発明の液晶配向処理剤が含有する特定重合体の原料として、特定テトラカルボン酸二無水物および特定脂肪族テトラカルボン酸二無水物の2種類のテトラカルボン酸二無水物を用いることにより、光耐性に優れ、電圧保持特性に優れた液晶配向膜を得ることができる。  As a result, two types of tetracarboxylic dianhydrides, the specific tetracarboxylic dianhydride and the specific aliphatic tetracarboxylic dianhydride, are used as the raw material for the specific polymer contained in the liquid crystal alignment treatment agent of the present invention. Thus, a liquid crystal alignment film having excellent light resistance and excellent voltage holding characteristics can be obtained.
 本発明の液晶配向処理剤における、すべての重合体成分は、すべてが特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。その際、それ以外の他の重合体の含有量は、特定重合体の0.5質量%~15質量%、好ましくは1質量%~10質量%である。それ以外の他の重合体としては、前記式[1]で示される特定テトラカルボン酸二無水物および前記式[2]で示される特定脂肪族テトラカルボン酸二無水物を用いていないポリイミド前駆体またはポリイミドが挙げられる。さらには、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミドまたはポリシロキサンなどが挙げられる。  All the polymer components in the liquid crystal aligning agent of the present invention may be all specific polymers, or other polymers may be mixed. In that case, the content of the other polymer is 0.5 mass% to 15 mass%, preferably 1 mass% to 10 mass% of the specific polymer. As other polymers, polyimide precursors not using the specific tetracarboxylic dianhydride represented by the formula [1] and the specific aliphatic tetracarboxylic dianhydride represented by the formula [2] are used. Or a polyimide is mentioned. Furthermore, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, polysiloxane, etc. are mentioned.
 本発明の液晶配向処理剤中の固形分濃度は、形成する液晶配向膜の厚みの設定によって適宜変更することができるが、0.5~10質量%とすることが好ましく、1~8質量%とすることがより好ましい。固形分濃度が0.5質量%未満では均一で欠陥のない塗膜を形成させることが困難となり、10質量%よりも多いと溶液の保存安定性が悪くなる場合がある。ここで言う固形分とは、液晶配向処理剤から溶媒を除いた成分を言い、上記した特定重合体や、それ以外の他の重合体、後述する各種の添加剤を意味する。  The solid content concentration in the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 0.5 to 10% by mass, and preferably 1 to 8% by mass. More preferably. If the solid content concentration is less than 0.5% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may be deteriorated. The term “solid content” as used herein refers to a component obtained by removing the solvent from the liquid crystal aligning agent, and means the above-described specific polymer, other polymers, and various additives described later.
 本発明の液晶配向処理剤中の溶媒は、塗布により均一な液晶配向膜を形成するという観点から、液晶配向処理剤中の溶媒の含有量が70~99.9質量%であることが好ましい。この含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。  The solvent in the liquid crystal aligning agent of the present invention is preferably 70 to 99.9% by mass of the solvent in the liquid crystal aligning agent from the viewpoint of forming a uniform liquid crystal aligning film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
 本発明の液晶配向処理剤に用いる溶媒は、特定重合体を溶解させる溶媒(良溶媒ともいう)であれば特に限定されない。下記に、良溶媒の具体例を挙げるが、これらの例に限定されるものではない。  The solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is a solvent (also referred to as a good solvent) that dissolves the specific polymer. Although the specific example of a good solvent is given to the following, it is not limited to these examples.
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどである。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンまたは上述した前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。これらは単独で使用しても、混合して使用してもよい。  For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone Cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone. Among these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, the solvents represented by the above formulas [D-1] to [D-3], and the like can be given. These may be used alone or in combination.
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンを用いることが好ましい。さらには、特定重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。  Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone are preferably used. Furthermore, when the solubility of the specific polymer in the solvent is high, it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
 本発明の液晶配向処理剤における良溶媒は、液晶配向処理剤に含まれる溶媒全体の10~100質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。  The good solvent in the liquid crystal aligning agent of the present invention is preferably 10 to 100% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。  The liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied unless the effects of the present invention are impaired. be able to. Although the specific example of a poor solvent is given to the following, it is not limited to these examples.
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルまたは前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。  For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1 , 2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, -Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene Carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1 -(Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol , Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol Diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, Methyl lactate, ethyl lactate, methyl acetate, acetic acid Chill, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester or the above formula [D-1 ] To a solvent represented by the formula [D-3].
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテルまたはエチレングリコールモノブチルエーテル、または上述した前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。  Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether or ethylene glycol monobutyl ether, or the above-mentioned formulas [D-1] to [D-3] It is preferable to use a solvent represented by
 これら貧溶媒は、液晶配向処理剤に含まれる溶媒全体の1~70質量%であることが好ましい。なかでも、1~60質量%が好ましい。より好ましいのは5~60質量%である。  These poor solvents are preferably 1 to 70% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. More preferred is 5 to 60% by mass.
 本発明の液晶配向処理剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基またはシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基および低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、または重合性不飽和結合を有する架橋性化合物を含有させることもできる。これらの置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。  The liquid crystal aligning agent of the present invention comprises a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group, unless the effects of the present invention are impaired. A crosslinkable compound having at least one substituent selected from the group or a crosslinkable compound having a polymerizable unsaturated bond may be contained. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基またはイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパンまたは1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。  Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3- Epoxypropoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2, And 3-epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol.
 オキセタン基を有する架橋性化合物は、下記の式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。  The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 具体的には、国際公開公報WO2011/132751の58項~59項に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。  Specifically, crosslinkable compounds represented by the formulas [4a] to [4k] described in the 58th to 59th items of the international publication WO2011 / 132751 can be mentioned.
 シクロカーボネート基を有する架橋性化合物としては、下記の式[5]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。  The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 具体的には、国際公開公報WO2011/132751の76項~82項に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。  Specifically, the crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of International Publication No. WO2011 / 132751 may be mentioned.
 ヒドロキシル基およびアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基またはアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂またはエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基またはアルコキシメチル基またはその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、またはグリコールウリルを用いることができる。このメラミン誘導体またはベンゾグアナミン誘導体は、2量体または3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基またはアルコキシメチル基を平均3個以上6個以下有するものが好ましい。  Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinilamide-formaldehyde resin or ethylene urea-formaldehyde resin. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体またはベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。  Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, and 254, butoxymethylated melamine such as Cymel 506 and 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated eth Cymethylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
 ヒドロキシル基またはアルコキシル基を有するベンゼンまたはフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼンまたは2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。  Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
 より具体的には、国際公開公報WO2011/132751の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。  More specifically, there are crosslinkable compounds represented by the formulas [6-1] to [6-48], which are listed on pages 62 to 66 of International Publication No. WO2011 / 132751.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパンまたはグリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレートまたはヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステルまたはN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物が挙げられる。  Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate or hydroxypivalic acid neo Crosslinkable compounds having two polymerizable unsaturated groups in the molecule, such as pentyl glycol di (meth) acrylate, in addition to 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro -One polymerizable unsaturated group such as 2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester or N-methylol (meth) acrylamide in the molecule A crosslinkable compound is mentioned.
 加えて、下記の式[7]で示される化合物を用いることもできる。  In addition, a compound represented by the following formula [7] can also be used.
Figure JPOXMLDOC01-appb-C000047
(式[7]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環またはフェナントレン環からからなる群から選ばれる基を示し、Eは下記の式[7a]または式[7b]から選ばれる基を示し、nは1~4の整数を示す。) 
Figure JPOXMLDOC01-appb-C000047
(In the formula [7], E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向処理剤に用いる架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。  The above compound is an example of a crosslinkable compound and is not limited thereto. Moreover, the crosslinkable compound used for the liquid-crystal aligning agent of this invention may be 1 type, and may be combined 2 or more types.
 本発明の液晶配向処理剤における、架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~100質量部がより好ましく、特に、1~50質量部が最も好ましい。  In the liquid crystal aligning agent of the present invention, the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components. In order for the crosslinking reaction to proceed and to achieve the desired effect, the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
 本発明の組成物を用いた液晶配向処理剤を用いて液晶配向膜とした際、液晶配向膜中の電荷移動を促進し、該液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、国際公開公報WO2011/132751の69頁~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することが好ましい。このアミン化合物は、組成物に直接添加しても構わないが、適当な溶媒で濃度0.1質量%~10質量%、好ましくは1質量%~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定ポリイミド系重合体を溶解させる有機溶媒であれば特に限定されない。  As a compound that promotes charge transfer in a liquid crystal alignment film and promotes charge release of a liquid crystal cell using the liquid crystal alignment film when a liquid crystal alignment film using the liquid crystal alignment treatment agent using the composition of the present invention is formed. It is preferable to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are described on pages 69 to 73 of International Patent Publication WO2011 / 132751. This amine compound may be added directly to the composition, but it may be added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. preferable. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polyimide polymer described above.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。さらに、液晶配向膜と基板との密着性を向上させる化合物などを用いることもできる。  For the liquid crystal alignment treatment agent of the present invention, a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effects of the present invention are not impaired. Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be used.
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤などが挙げられる。  Examples of compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。  More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (or above) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。  Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどが挙げられる。  For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10- Riethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyl Trimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3- Aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6- Tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N ′, N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 これら基板との密着させる化合物を使用する場合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶配向処理剤の保存安定性が悪くなる場合がある。  When using a compound to be adhered to these substrates, the amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of all polymer components contained in the liquid crystal aligning agent. 20 parts by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the storage stability of the liquid crystal aligning agent may be deteriorated.
 本発明の液晶配向処理剤には、上記の貧溶媒、架橋性化合物、液晶セルの電荷抜けを促進させる化合物および液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。  The liquid crystal alignment treatment agent of the present invention includes, in addition to the above poor solvent, a crosslinkable compound, a compound that promotes charge removal from the liquid crystal cell, and a compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film, As long as the effects of the present invention are not impaired, a dielectric or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。 
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法などがあり、目的に応じてこれらを用いてもよい。  The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used. Examples of other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビングまたは偏光紫外線照射などで処理する。  After applying the liquid crystal aligning agent on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal aligning agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. The liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally aligned or tilted, the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向処理剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子である。このような本発明の液晶表示素子としては、垂直配向(VA:Vertical Alignment)方式や、水平配向(IPS:In-Plane Switching)方式、ツイストネマティック(TN:Twisted Nematic)方式、OCB配向(OCB:Optically Compensated Bend)等、種々のものが挙げられ、また、PSA(Polymer Sustained Alignment)方式等の方式でもよい。なお、液晶配向膜は、2枚の基板のうち、少なくとも一方に設けられていればよい。  The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method. For example, two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment treatment agent of the present invention provided between the substrate and the liquid crystal layer. A liquid crystal display device comprising a liquid crystal cell having the liquid crystal alignment film. As such a liquid crystal display element of the present invention, a vertical alignment (VA) method, a horizontal alignment (IPS: In-Plane Switching) method, a twisted nematic (TN) method, an OCB alignment (OCB). There are various types such as Optically Compensated Bend, and a system such as PSA (Polymer Sustained Alignment) may be used. Note that the liquid crystal alignment film only needs to be provided on at least one of the two substrates.
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。  As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of bonding the substrate after dropping the liquid crystal on the surface of the liquid crystal alignment film on which the spacers are dispersed, and the like.
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、長時間、光の照射に曝されても、電圧保持率の低下が抑制された液晶配向膜を有するため、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。  As described above, the liquid crystal display element manufactured using the liquid crystal alignment treatment agent of the present invention has a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed even when exposed to light irradiation for a long time. Therefore, it has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
 以下、本発明の実施形態をより詳細に説明する。  Hereinafter, embodiments of the present invention will be described in more detail.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 合成例および実施例で用いる略語は、以下の通りである。  The abbreviations used in the synthesis examples and examples are as follows.
<テトラカルボン酸二無水物>
(特定テトラカルボン酸二無水物)
 A1:下記の式[A1]で示されるテトラカルボン酸二無水物 
<Tetracarboxylic dianhydride>
(Specific tetracarboxylic dianhydride)
A1: Tetracarboxylic dianhydride represented by the following formula [A1]
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(特定脂肪族テトラカルボン酸二無水物)
 A2:1,2,3,4-シクロブタンテトラカルボン酸二無水物(下記の式[A2]で示されるテトラカルボン酸二無水物)
 A3:ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物(下記の式[A3]で示されるテトラカルボン酸二無水物)
 A4:下記の式[A4]で示されるテトラカルボン酸二無水物
 A5:下記の式[A5]で示されるテトラカルボン酸二無水物 
(Specific aliphatic tetracarboxylic dianhydride)
A2: 1,2,3,4-cyclobutanetetracarboxylic dianhydride (tetracarboxylic dianhydride represented by the following formula [A2])
A3: Bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride (tetracarboxylic dianhydride represented by the following formula [A3])
A4: Tetracarboxylic dianhydride represented by the following formula [A4] A5: Tetracarboxylic dianhydride represented by the following formula [A5]
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(その他テトラカルボン酸二無水物)
 A6:ピロメリット酸二無水物(下記の式[A6]で示されるテトラカルボン酸二無水物) 
(Other tetracarboxylic dianhydrides)
A6: pyromellitic dianhydride (tetracarboxylic dianhydride represented by the following formula [A6])
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
<ジアミン成分>
 B1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン(下記の式[B1]で示されるジアミン化合物)
 B2:1,3-ジアミノ-5-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン(下記の式[B2]で示されるジアミン化合物)
 B3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン(下記の式[B3]で示されるジアミン化合物)
 B4:1,3-ジアミノ-5-{4-〔4-(トランス-4-n-ペンチルシクロヘキシル)シクロヘキシル〕フェノキシメチル}ベンゼン(下記の式[B4]で示されるジアミン化合物)
 B5:下記の式[B5]で示される特定側鎖型ジアミン化合物
 B6:1,3-ジアミノ-4-オクタデシルオキシベンゼン(下記の式[B6]で示されるジアミン化合物)
 B7:m-フェニレンジアミン(下記の式[B7]で示されるジアミン化合物)
 B8:p-フェニレンジアミン(下記の式[B8]で示されるジアミン化合物)
 B9:3,5-ジアミノ安息香酸(下記の式[B9]で示されるジアミン化合物)
 B10:下記の式[B10]で示されるジアミン化合物 
<Diamine component>
B1: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene (diamine compound represented by the following formula [B1])
B2: 1,3-diamino-5- [4- (trans-4-n-heptylcyclohexyl) phenoxymethyl] benzene (diamine compound represented by the following formula [B2])
B3: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene (diamine compound represented by the following formula [B3])
B4: 1,3-diamino-5- {4- [4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxymethyl} benzene (diamine compound represented by the following formula [B4])
B5: Specific side chain diamine compound represented by the following formula [B5] B6: 1,3-diamino-4-octadecyloxybenzene (diamine compound represented by the following formula [B6])
B7: m-phenylenediamine (diamine compound represented by the following formula [B7])
B8: p-phenylenediamine (diamine compound represented by the following formula [B8])
B9: 3,5-diaminobenzoic acid (diamine compound represented by the following formula [B9])
B10: Diamine compound represented by the following formula [B10]
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
<有機溶媒>
(極性溶媒)
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 G-BL:γ-ブチロラクトン 
<Organic solvent>
(Polar solvent)
NMP: N-methyl-2-pyrrolidone NEP: N-ethyl-2-pyrrolidone G-BL: γ-butyrolactone
(その他の有機溶媒)
 BCS:2-ブトキシエタノール
 PB:プロピレングリコールモノブチルエーテル 
(Other organic solvents)
BCS: 2-butoxyethanol PB: Propylene glycol monobutyl ether
<ポリイミド前駆体およびポリイミドの分子量測定>
 合成例におけるポリイミド前駆体およびポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000、および30,000)(東ソー社製)およびポリエチレングリコール(分子量;約12,000、4,000、および1,000)(ポリマーラボラトリー社製) 
<Measurement of molecular weight of polyimide precursor and polyimide>
The molecular weights of the polyimide precursor and the polyimide in the synthesis example are determined using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; (About 12,000, 4,000, and 1,000) (manufactured by Polymer Laboratory)
<ポリイミドのイミド化率の測定>
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。 
<Measurement of imidation ratio of polyimide>
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
<合成例1>
 A1(3.82g,18.0mmol)、B1(4.11g,10.8mmol)、B7(2.75g,25.2mmol)をNMP(22.8g)中で混合し、40℃で5時間反応させた後、A2(3.53g,18.0mmol)とNMP(18.7g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液(A)を得た。このポリアミド酸の数平均分子量は11,500、重量平均分子量は38,600であった。 
<Synthesis Example 1>
A1 (3.82 g, 18.0 mmol), B1 (4.11 g, 10.8 mmol), B7 (2.75 g, 25.2 mmol) were mixed in NMP (22.8 g) and reacted at 40 ° C. for 5 hours. After that, A2 (3.53 g, 18.0 mmol) and NMP (18.7 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (A) having a solid content concentration of 20.0% by mass. Obtained. The number average molecular weight of this polyamic acid was 11,500, and the weight average molecular weight was 38,600.
<合成例2>
 A1(3.81g,18.0mmol)、B2(4.25g,10.8mmol)、B8(2.72g,25.1mmol)をNMP(23.1g)中で混合し、40℃で5時間反応させた後、A2(3.52g,18.0mmol)とNMP(18.9g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 2>
A1 (3.81 g, 18.0 mmol), B2 (4.25 g, 10.8 mmol), B8 (2.72 g, 25.1 mmol) were mixed in NMP (23.1 g) and reacted at 40 ° C. for 5 hours. After that, A2 (3.52 g, 18.0 mmol) and NMP (18.9 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.01g)、ピリジン(1.02g)を加え、40℃で4時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は12,500、重量平均分子量は38,200であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.01 g) and pyridine (1.02 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (B). The imidation ratio of this polyimide was 50%, the number average molecular weight was 12,500, and the weight average molecular weight was 38,200.
<合成例3>
 A1(2.83g,13.3mmol)、B6(3.76g,10.0mmol)、B10(2.72g,23.3mmol)をNMP(16.9g)中で混合し、40℃で5時間反応させた後、A2(3.92g,20.0mmol)とNMP(13.8g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 3>
A1 (2.83 g, 13.3 mmol), B6 (3.76 g, 10.0 mmol) and B10 (2.72 g, 23.3 mmol) were mixed in NMP (16.9 g) and reacted at 40 ° C. for 5 hours. After that, A2 (3.92 g, 20.0 mmol) and NMP (13.8 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.1g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.28g)、ピリジン(1.18g)を加え、40℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(C)を得た。このポリイミドのイミド化率は70%であり、数平均分子量は11,500、重量平均分子量は31,400であった。  After adding NMP to the obtained polyamic acid solution (15.1 g) and diluting to 6% by mass, acetic anhydride (2.28 g) and pyridine (1.18 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (C). The imidation ratio of this polyimide was 70%, the number average molecular weight was 11,500, and the weight average molecular weight was 31,400.
<合成例4>
 A1(4.50g,21.2mmol)、B7(4.59g,42.4mmol)をNMP(21.8g)中で混合し、40℃で5時間反応させた後、A3(5.31g,21.2mmol)とNMP(17.8g)を加え、50℃で6時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 4>
A1 (4.50 g, 21.2 mmol) and B7 (4.59 g, 42.4 mmol) were mixed in NMP (21.8 g), reacted at 40 ° C. for 5 hours, and then A3 (5.31 g, 21). 0.2 mmol) and NMP (17.8 g) were added and reacted at 50 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.73g)、ピリジン(1.60g)を加え、40℃で3.5時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(D)を得た。このポリイミドのイミド化率は53%であり、数平均分子量は13,100、重量平均分子量は35,000であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.73 g) and pyridine (1.60 g) were added as imidization catalysts, The reaction was allowed for 5 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (D). The imidation ratio of this polyimide was 53%, the number average molecular weight was 13,100, and the weight average molecular weight was 35,000.
<合成例5>
 A1(1.10g,5.19mmol)、B1(3.95g,10.4mmol)、B9(2.37g,15.6mmol)をNMP(22.9g)中で混合し、40℃で5時間反応させた後、A2(4.07g,20.8mmol)とNMP(18.7g)を加え、40℃で6時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 5>
A1 (1.10 g, 5.19 mmol), B1 (3.95 g, 10.4 mmol), B9 (2.37 g, 15.6 mmol) were mixed in NMP (22.9 g) and reacted at 40 ° C. for 5 hours. After that, A2 (4.07 g, 20.8 mmol) and NMP (18.7 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.12g)、ピリジン(1.15g)を加え、40℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(E)を得た。このポリイミドのイミド化率は52%であり、数平均分子量は12,600、重量平均分子量は36,200であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.12 g) and pyridine (1.15 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (E). The imidation ratio of this polyimide was 52%, the number average molecular weight was 12,600, and the weight average molecular weight was 36,200.
<合成例6>
 A1(7.80g,36.7mmol)、B8(6.11g,56.5mmol)をNMP(22.0g)中で混合し、40℃で5時間反応させた後、A2(3.88g,19.8mmol)とNMP(18.0g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液(F)を得た。このポリアミド酸の数平均分子量は11,200、重量平均分子量は38,500であった。 
<Synthesis Example 6>
A1 (7.80 g, 36.7 mmol) and B8 (6.11 g, 56.5 mmol) were mixed in NMP (22.0 g), reacted at 40 ° C. for 5 hours, and then A2 (3.88 g, 19). .8 mmol) and NMP (18.0 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (F) having a solid content concentration of 20.0 mass%. The number average molecular weight of this polyamic acid was 11,200, and the weight average molecular weight was 38,500.
<合成例7>
 A1(1.41g,6.65mmol)、B5(2.62g,5.32mmol)、B9(3.24g,21.3mmol)をNMP(23.9g)中で混合し、40℃で5時間反応させた後、A3(4.99g,19.9mmol)とNMP(19.5g)を加え、50℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液(G)を得た。このポリアミド酸の数平均分子量は13,500、重量平均分子量は35,600であった。 
<Synthesis Example 7>
A1 (1.41 g, 6.65 mmol), B5 (2.62 g, 5.32 mmol) and B9 (3.24 g, 21.3 mmol) were mixed in NMP (23.9 g) and reacted at 40 ° C. for 5 hours. After that, A3 (4.99 g, 19.9 mmol) and NMP (19.5 g) were added and reacted at 50 ° C. for 6 hours to obtain a polyamic acid solution (G) having a solid content concentration of 20.0 mass%. Obtained. The number average molecular weight of this polyamic acid was 13,500, and the weight average molecular weight was 35,600.
<合成例8>
 A1(3.06g,14.4mmol)、B3(3.74g,8.65mmol)、B10(2.47g,20.2mmol)をNMP(1.53g)中で混合し、40℃で5時間反応させた後、A4(3.23g,14.4mmol)とNMP(12.6g)を加え、50℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 8>
A1 (3.06 g, 14.4 mmol), B3 (3.74 g, 8.65 mmol) and B10 (2.47 g, 20.2 mmol) were mixed in NMP (1.53 g) and reacted at 40 ° C. for 5 hours. After that, A4 (3.23 g, 14.4 mmol) and NMP (12.6 g) were added and reacted at 50 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(1.89g)、ピリジン(0.90g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(H)を得た。このポリイミドのイミド化率は70%であり、数平均分子量は11,800、重量平均分子量は30,400であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (1.89 g) and pyridine (0.90 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (H). The imidation ratio of this polyimide was 70%, the number average molecular weight was 11,800, and the weight average molecular weight was 30,400.
<合成例9>
 A1(2.25g,10.6mmol)、B4(2.71g,6.06mmol)、B7(1.64g,15.2mmol)、B9(1.38g,9.09mmol)をNMP(2.23g)中で混合し、40℃で5時間反応させた後、A4(4.42g,19.7mmol)とNMP(18.3g)を加え、50℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 9>
A1 (2.25 g, 10.6 mmol), B4 (2.71 g, 6.06 mmol), B7 (1.64 g, 15.2 mmol), B9 (1.38 g, 9.09 mmol) and NMP (2.23 g) After mixing at 40 ° C. for 5 hours, A4 (4.42 g, 19.7 mmol) and NMP (18.3 g) were added, and the mixture was reacted at 50 ° C. for 6 hours. A 0% by weight polyamic acid solution was obtained.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.20g)、ピリジン(1.12g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(I)を得た。このポリイミドのイミド化率は51%であり、数平均分子量は11,000、重量平均分子量は30,100であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.20 g) and pyridine (1.12 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (I). The imidation ratio of this polyimide was 51%, the number average molecular weight was 11,000, and the weight average molecular weight was 30,100.
<合成例10>
 A1(2.02g,9.52mmol)、B8(3.43g,31.7mmol)をNMP(22.2g)中で混合し、40℃で5時間反応させた後、A5(6.67g,22.2mmol)とNMP(18.2g)を加え、25℃で12時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液(J)を得た。このポリアミド酸の数平均分子量は11,800、重量平均分子量は36,300であった。 
<Synthesis Example 10>
A1 (2.02 g, 9.52 mmol) and B8 (3.43 g, 31.7 mmol) were mixed in NMP (22.2 g), reacted at 40 ° C. for 5 hours, and then A5 (6.67 g, 22). 0.2 mmol) and NMP (18.2 g) were added and reacted at 25 ° C. for 12 hours to obtain a polyamic acid solution (J) having a solid content concentration of 20.0 mass%. The number average molecular weight of this polyamic acid was 11,800, and the weight average molecular weight was 36,300.
<合成例11>
 A1(11.2g,52.9mmol)、B1(6.04g,15.9mmol)、B7(4.01g,37.1mmol)をNMP(40.2g)中で混合し、40℃で24時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液(K)を得た。このポリアミド酸の数平均分子量は7,100、重量平均分子量は29,800であった。 
<Synthesis Example 11>
A1 (11.2 g, 52.9 mmol), B1 (6.04 g, 15.9 mmol) and B7 (4.01 g, 37.1 mmol) were mixed in NMP (40.2 g) and reacted at 40 ° C. for 24 hours. Thus, a polyamic acid solution (K) having a solid content concentration of 20.0% by mass was obtained. The number average molecular weight of this polyamic acid was 7,100, and the weight average molecular weight was 29,800.
<合成例12>
 A2(5.10g,26.0mmol)、B6(2.94g,7.80mmol)、B10(2.22g,18.2mmol)をNMP(32.2g)中で混合し、40℃で8時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 12>
A2 (5.10 g, 26.0 mmol), B6 (2.94 g, 7.80 mmol), B10 (2.22 g, 18.2 mmol) were mixed in NMP (32.2 g) and reacted at 40 ° C. for 8 hours. Thus, a polyamic acid solution having a solid content concentration of 20.0% by mass was obtained.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.00g)、ピリジン(1.01g)を加え、40℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(L)を得た。このポリイミドのイミド化率は70%であり、数平均分子量は13,800、重量平均分子量は35,600であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.00 g) and pyridine (1.01 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (L). The imidation ratio of this polyimide was 70%, the number average molecular weight was 13,800, and the weight average molecular weight was 35,600.
<合成例13>
 A3(3.80g,15.2mmol)、B7(3.29g,30.4mmol)をNMP(22.2g)中で混合し、50℃で3時間反応させた後、A2(2.98g,15.2mmol)とNMP(18.1g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 13>
A3 (3.80 g, 15.2 mmol) and B7 (3.29 g, 30.4 mmol) were mixed in NMP (22.2 g), reacted at 50 ° C. for 3 hours, and then A2 (2.98 g, 15). 0.2 mmol) and NMP (18.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(3.10g)、ピリジン(1.52g)を加え、50℃で3.5時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(M)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は14,700、重量平均分子量は37,100であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (3.10 g) and pyridine (1.52 g) were added as an imidization catalyst, The reaction was allowed for 5 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (M). The imidation ratio of this polyimide was 50%, the number average molecular weight was 14,700, and the weight average molecular weight was 37,100.
<合成例14>
 A1(1.03g,4.85mmol)、B1(3.70g,9.71mmol)、B9(2.22g,14.6mmol)をNMP(22.3g)中で混合し、40℃で5時間反応させた後、A6(4.24g,19.4mmol)とNMP(18.3g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 14>
A1 (1.03 g, 4.85 mmol), B1 (3.70 g, 9.71 mmol) and B9 (2.22 g, 14.6 mmol) were mixed in NMP (22.3 g) and reacted at 40 ° C. for 5 hours. After that, A6 (4.24 g, 19.4 mmol) and NMP (18.3 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(1.86g)、ピリジン(0.98g)を加え、40℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(N)を得た。このポリイミドのイミド化率は52%であり、数平均分子量は13,800、重量平均分子量は34,700であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (1.86 g) and pyridine (0.98 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (N). The imidation ratio of this polyimide was 52%, the number average molecular weight was 13,800, and the weight average molecular weight was 34,700.
<合成例15>
 A6(4.52g,20.7mmol)、B8(3.45g,31.9mmol)をNMP(22.4g)中で混合し、40℃で5時間反応させた後、A2(2.19g,11.2mmol)とNMP(18.3g)を加え、40℃で6時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液(O)を得た。このポリアミド酸の数平均分子量は16,100、重量平均分子量は42,000であった。 
<Synthesis Example 15>
A6 (4.52 g, 20.7 mmol) and B8 (3.45 g, 31.9 mmol) were mixed in NMP (22.4 g), reacted at 40 ° C. for 5 hours, and then A2 (2.19 g, 11 0.2 mmol) and NMP (18.3 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (O) having a solid content concentration of 20.0 mass%. The number average molecular weight of this polyamic acid was 16,100, and the weight average molecular weight was 42,000.
 表1に、合成例1~15で得られたポリアミド酸およびポリイミドを示す。  Table 1 shows the polyamic acids and polyimides obtained in Synthesis Examples 1-15.
<実施例1>
 合成例1で得られた固形分濃度20.0質量%のポリアミド酸溶液(A)(9.03g)、NMP(8.90g)およびBCS(12.0g)を、25℃にて8時間混合して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(1)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 1>
The polyamic acid solution (A) (9.03 g), NMP (8.90 g) and BCS (12.0 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 1 were mixed at 25 ° C. for 8 hours. As a result, a liquid crystal aligning agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (1), “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<実施例2>
 合成例2で得られたポリイミド粉末(B)(1.80g)、NMP(9.02g)、NEP(7.51g)およびBCS(13.5g)を、25℃にて8時間混合して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(2)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 2>
The polyimide powder (B) obtained in Synthesis Example 2 (1.80 g), NMP (9.02 g), NEP (7.51 g) and BCS (13.5 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (2) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (2), “preparation of liquid crystal cell and evaluation of electric characteristics” were performed under the above-described conditions.
<実施例3>
 合成例2で得られたポリイミド粉末(B)(1.50g)、NMP(12.4g)、NEP(10.3g)およびBCS(18.6g)を、25℃にて8時間混合して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(3)を用いて、上述した条件にて、「液晶配向処理剤のインクジェット塗布性の評価」を行った。 
<Example 3>
The polyimide powder (B) obtained in Synthesis Example 2 (1.50 g), NMP (12.4 g), NEP (10.3 g) and BCS (18.6 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (3) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (3), “evaluation of ink jet coatability of liquid crystal aligning agent” was performed under the above-described conditions.
<実施例4>
 合成例3で得られたポリイミド粉末(C)(1.80g)、NMP(9.01g)、G-BL(9.02g)およびBCS(12.0g)を、25℃にて8時間混合して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(4)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 4>
The polyimide powder (C) obtained in Synthesis Example 3 (1.80 g), NMP (9.01 g), G-BL (9.02 g) and BCS (12.0 g) were mixed at 25 ° C. for 8 hours. Thus, a liquid crystal aligning agent (4) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (4), “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<実施例5>
 合成例4で得られたポリイミド粉末(D)(1.80g)、NMP(7.53g)、NEP(12.1g)、G-BL(1.53g)およびPB(9.11g)を、25℃にて8時間混合して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(5)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 5>
Polyimide powder (D) obtained in Synthesis Example 4 (1.80 g), NMP (7.53 g), NEP (12.1 g), G-BL (1.53 g) and PB (9.11 g) The liquid crystal aligning agent (5) was obtained by mixing at 0 ° C. for 8 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (5), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<実施例6>
 合成例5で得られたポリイミド粉末(E)(1.79g)、NMP(9.00g)、NEP(14.5g)、BCS(3.02g)およびPB(3.00g)を、25℃にて8時間混合して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(6)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 6>
The polyimide powder (E) (1.79 g), NMP (9.00 g), NEP (14.5 g), BCS (3.02 g) and PB (3.00 g) obtained in Synthesis Example 5 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (6). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (6), “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<実施例7>
 合成例5で得られたポリイミド粉末(E)(1.50g)、NMP(8.27g)、NEP(16.5g)およびPB(16.5g)を、25℃にて8時間混合して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(7)を用いて、上述した条件にて、「液晶配向処理剤のインクジェット塗布性の評価」を行った。 
<Example 7>
The polyimide powder (E) obtained in Synthesis Example 5 (1.50 g), NMP (8.27 g), NEP (16.5 g) and PB (16.5 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (7) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (7), “evaluation of ink jet coatability of liquid crystal aligning agent” was performed under the above-described conditions.
<実施例8>
 合成例6で得られた固形分濃度20.0質量%のポリアミド酸溶液(F)(9.00g)、NMP(3.00g)、G-BL(9.06g)およびBCS(9.01g)を、25℃にて8時間混合して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(8)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 8>
Polyamic acid solution (F) (9.00 g), NMP (3.00 g), G-BL (9.06 g) and BCS (9.01 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 6 Were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (8). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (8), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<実施例9>
 合成例7で得られた固形分濃度20.0質量%のポリアミド酸溶液(G)(9.01g)、NEP(9.02g)、G-BL(9.02g)、BCS(6.01g)およびPB(6.00g)を、25℃にて8時間混合して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(9)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 9>
Polyamic acid solution (G) (9.01 g), NEP (9.02 g), G-BL (9.02 g), BCS (6.01 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 7 And PB (6.00 g) were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (9). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (9), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<実施例10>
 合成例8で得られたポリイミド粉末(H)(1.80g)、NMP(6.00g)、NEP(6.05g)、BCS(6.04g)およびPB(3.01g)を、25℃にて8時間混合して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(10)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 10>
The polyimide powder (H) (1.80 g), NMP (6.00 g), NEP (6.05 g), BCS (6.04 g) and PB (3.01 g) obtained in Synthesis Example 8 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (10), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<実施例11>
 合成例9で得られたポリイミド粉末(I)(1.80g)、NMP(12.0g)、NEP(9.00g)およびBCS(9.05g)を、25℃にて8時間混合して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(11)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 11>
The polyimide powder (I) obtained in Synthesis Example 9 (1.80 g), NMP (12.0 g), NEP (9.00 g) and BCS (9.05 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (11) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (11), “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<実施例12>
 合成例10で得られた固形分濃度20.0質量%のポリアミド酸溶液(J)(9.04g)、NMP(16.5g)、NEP(9.02g)およびPB(4.50g)を、25℃にて8時間混合して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(12)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Example 12>
The polyamic acid solution (J) (9.04 g), NMP (16.5 g), NEP (9.02 g) and PB (4.50 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 10 were The liquid crystal aligning agent (12) was obtained by mixing at 25 ° C. for 8 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (12), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<比較例1>
 合成例11で得られた固形分濃度20.0質量%のポリアミド酸溶液(K)(9.03g)、NMP(9.31g)およびBCS(12.2g)を、25℃にて8時間混合して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(13)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Comparative Example 1>
The polyamic acid solution (K) (9.03 g), NMP (9.31 g) and BCS (12.2 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 11 were mixed at 25 ° C. for 8 hours. As a result, a liquid crystal aligning agent (13) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (13), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<比較例2>
 合成例12で得られたポリイミド粉末(L)(1.80g)、NMP(9.00g)、G-BL(9.02g)およびBCS(12.0g)を、25℃にて8時間混合して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(14)を用いて上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Comparative example 2>
The polyimide powder (L) obtained in Synthesis Example 12 (1.80 g), NMP (9.00 g), G-BL (9.02 g) and BCS (12.0 g) were mixed at 25 ° C. for 8 hours. Thus, a liquid crystal aligning agent (14) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
"Production of liquid crystal cell and evaluation of electrical characteristics" were performed using the obtained liquid crystal aligning agent (14) under the conditions described above.
<比較例3>
 合成例13で得られたポリイミド粉末(M)(1.80g)、NMP(7.50g)、NEP(12.0g)、G-BL(1.50g)およびPB(9.00g)を、25℃にて8時間混合して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(15)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Comparative Example 3>
Polyimide powder (M) obtained in Synthesis Example 13 (1.80 g), NMP (7.50 g), NEP (12.0 g), G-BL (1.50 g) and PB (9.00 g) A liquid crystal aligning agent (15) was obtained by mixing at 0 ° C. for 8 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (15), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
<比較例4>
 合成例14で得られたポリイミド粉末(N)(1.80g)、NMP(9.00g)、NEP(15.0g)、BCS(3.06g)およびPB(3.03g)を、25℃にて8時間混合して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(16)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Comparative example 4>
The polyimide powder (N) (1.80 g), NMP (9.00 g), NEP (15.0 g), BCS (3.06 g) and PB (3.03 g) obtained in Synthesis Example 14 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (16), “Preparation of liquid crystal cell and evaluation of electrical characteristics” were performed under the conditions described above.
<比較例5>
 合成例15で得られた固形分濃度20.0質量%のポリアミド酸溶液(O)(9.05g)、NMP(3.00g)、G-BL(9.02g)およびBCS(9.00g)を、25℃にて8時間混合して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(17)を用いて、上述した条件にて、「液晶セルの作製および電気特性の評価」を行った。 
<Comparative Example 5>
Polyamic acid solution (O) (9.05 g), NMP (3.00 g), G-BL (9.02 g) and BCS (9.00 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 15 Were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (17), “Production of liquid crystal cell and evaluation of electrical characteristics” were performed under the above-described conditions.
 本発明の各実施例および各比較例で得られた液晶配向処理剤を用い、「液晶セルの作製」、「電気特性(電圧保持率)の評価」および「液晶配向処理剤のインクジェット塗布性の評価」を行った。その条件は、下記のとおりである。  Using the liquid crystal aligning agent obtained in each of the examples and comparative examples of the present invention, “preparation of liquid crystal cell”, “evaluation of electrical characteristics (voltage holding ratio)” and “ink-jet coating property of liquid crystal aligning agent” Evaluation "was performed. The conditions are as follows.
 表1および表2に、実施例1~12および比較例1~5で得られた液晶配向処理剤が含有する特定重合体の原料(テトラカルボン酸二無水物およびジアミン成分)を示す。  Tables 1 and 2 show the raw materials (tetracarboxylic dianhydride and diamine component) of the specific polymer contained in the liquid crystal aligning agents obtained in Examples 1 to 12 and Comparative Examples 1 to 5.
<液晶セルの作製および電気特性の評価>
 実施例1、2、4~6、8~12および比較例1~5で得られた液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、液晶セルの作製を行った。この溶液を純水およびIPAにて洗浄を行った30×40mmITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて230℃で30分間加熱処理をして、膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。このITO基板の塗膜面をロール径が120mmのラビング装置でレーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押し込み量が0.1mmの条件でラビング処理した。 
<Production of liquid crystal cell and evaluation of electrical characteristics>
The liquid crystal alignment treatment agents obtained in Examples 1, 2, 4 to 6, 8 to 12 and Comparative Examples 1 to 5 were filtered under pressure through a membrane filter having a pore diameter of 1 μm to produce a liquid crystal cell. This solution was spin-coated on the ITO surface of a 30 × 40 mm ITO electrode substrate (40 mm long × 30 mm wide, 0.7 mm thick) washed with pure water and IPA, and heated at 80 ° C. for 5 minutes on a hot plate. Then, heat treatment was performed at 230 ° C. for 30 minutes in a heat circulation type clean oven to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm. The surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサを挟んで組み合わせ、シール剤(XN-1500T)(三井化学社製)を印刷した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、シール剤を熱循環型クリーンオーブン中にて150℃で90分間加熱処理をすることにより硬化して空セルを作製した。この空セルに減圧注入法によって、液晶を注入し、注入口を封止して液晶セルを得た。  Two obtained ITO substrates with a liquid crystal alignment film were prepared, combined with a 6 μm spacer sandwiched with the liquid crystal alignment film surface inside, and a sealant (XN-1500T) (Mitsui Chemicals) was printed. Next, after bonding the other substrate and the liquid crystal alignment film face each other, the sealing agent was cured by heat treatment at 150 ° C. for 90 minutes in a heat-circulating clean oven to produce an empty cell. . Liquid crystal was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell.
 なお、実施例1で得られた液晶配向処理剤(1)、実施例2で得られた液晶配向処理剤(2)、実施例4で得られた液晶配向処理剤(4)、実施例6で得られた液晶配向処理剤(6)、実施例9~実施例11で得られた液晶配向処理剤(9)~液晶配向処理剤(11)、比較例1で得られた液晶配向処理剤(13)、比較例2で得られた液晶配向処理剤(14)および比較例4で得られた液晶配向処理剤(16)を用いた液晶セルには、液晶にネマティック液晶(MLC-6608)(メルク・ジャパン社製)を用いた。  In addition, the liquid crystal aligning agent (1) obtained in Example 1, the liquid crystal aligning agent (2) obtained in Example 2, the liquid crystal aligning agent (4) obtained in Example 4, and Example 6 Liquid crystal aligning agent (6) obtained in Example 9, Liquid crystal aligning agent (9) to liquid crystal aligning agent (11) obtained in Examples 9 to 11, Liquid crystal aligning agent obtained in Comparative Example 1 (13) In a liquid crystal cell using the liquid crystal aligning agent (14) obtained in Comparative Example 2 and the liquid crystal aligning agent (16) obtained in Comparative Example 4, nematic liquid crystal (MLC-6608) is used as the liquid crystal. (Merck Japan Co., Ltd.) was used.
 また、実施例5で得られた液晶配向処理剤(5)、実施例8で得られた液晶配向処理剤(8)、実施例12で得られた液晶配向処理剤(12)、比較例3で得られた液晶配向処理剤(15)および比較例5で得られた液晶配向処理剤(17)を用いた液晶セルには、液晶にネマティック液晶(MLC-2041)(メルク・ジャパン社製)を用いた。  In addition, the liquid crystal aligning agent (5) obtained in Example 5, the liquid crystal aligning agent (8) obtained in Example 8, the liquid crystal aligning agent (12) obtained in Example 12, and Comparative Example 3 In the liquid crystal cell using the liquid crystal aligning agent (15) obtained in 1 and the liquid crystal aligning agent (17) obtained in Comparative Example 5, the liquid crystal is nematic liquid crystal (MLC-2041) (manufactured by Merck Japan). Was used.
 上記で得られた液晶セルを用いて、液晶配向性の評価を行った。液晶配向性は、液晶セルを偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、配向欠陥の有無を確認した。その結果、いずれの各実施例および各比較例で得られた液晶セルに配向欠陥は見られず、均一な配向性を示した。  The liquid crystal alignment was evaluated using the liquid crystal cell obtained above. The liquid crystal alignment was confirmed by observing the liquid crystal cell with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) to check for the presence of alignment defects. As a result, no alignment defects were observed in the liquid crystal cells obtained in any of the examples and comparative examples, and uniform alignment was exhibited.
 さらに、上記で作製した液晶セルに、80℃の温度下で1Vの電圧を60μm印加し、16.67ms後および50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHR)として計算した。なお、測定は、VHR-1電圧保持率測定装置(東陽テクニカ製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:16.67msまたは50msの設定で行った。さらに、電圧保持率の測定が終了した液晶セルに、365nm換算で50J/cm2の紫外線を照射した後、上記と同様の条件にて、電圧保持率の測定を行った。なお、紫外線照射は、卓上型UV硬化装置(HCT3B28HEX-1)(センライト製(SEN LIGHT CORPORATION))を用いて行った。  Furthermore, a voltage of 1 V was applied to the liquid crystal cell produced above at 60 ° C. at a temperature of 80 ° C., the voltage after 16.67 ms and 50 ms was measured, and the voltage holding ratio (VHR) ). The measurement was performed using a VHR-1 voltage holding ratio measuring device (manufactured by Toyo Technica) with settings of Voltage: ± 1 V, Pulse Width: 60 μs, Frame Period: 16.67 ms or 50 ms. Furthermore, after irradiating the liquid crystal cell in which the measurement of the voltage holding ratio was completed with ultraviolet rays of 50 J / cm 2 in terms of 365 nm, the voltage holding ratio was measured under the same conditions as described above. The ultraviolet irradiation was performed using a desktop UV curing device (HCT3B28HEX-1) (manufactured by SEN LIGHT CORPORATION).
 表3に、電圧保持率の測定結果を示す。なお、電圧保持率は、ジアミン成分の種類に依存するので、同じジアミン成分を用いたもの同士を比較する必要がある。  Table 3 shows the measurement results of the voltage holding ratio. Since the voltage holding ratio depends on the type of the diamine component, it is necessary to compare those using the same diamine component.
 各実施例の液晶配向処理剤から得られた液晶配向膜は、各比較例の液晶配向処理剤から得られる液晶配向膜に比べて、紫外線の照射に曝されても、電圧保持率の低下が小さくなった。  The liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of each example does not decrease the voltage holding ratio even when exposed to ultraviolet irradiation, compared to the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of each comparative example. It has become smaller.
 具体的に、実施例1では、特定テトラカルボン酸二無水物および特定脂肪族テトラカルボン酸二無水物の2種類のテトラカルボン酸二無水物を用いているが、比較例1では、一方の特定テトラカルボン酸二無水物のみを用いている。なお、ジアミン成分(B1とB7)は同一である。この結果、紫外線の照射により、比較例1の電圧保持率は、大きく低下した。  Specifically, in Example 1, two types of tetracarboxylic dianhydrides, a specific tetracarboxylic dianhydride and a specific aliphatic tetracarboxylic dianhydride, are used. In Comparative Example 1, one of the specific tetracarboxylic dianhydrides is used. Only tetracarboxylic dianhydride is used. The diamine components (B1 and B7) are the same. As a result, the voltage holding ratio of Comparative Example 1 was greatly reduced by the irradiation of ultraviolet rays.
 同様に、実施例4では、2種類のテトラカルボン酸二無水物を用いているが、比較例2では、他方の特定脂肪族テトラカルボン酸二無水物のみを用いている。なお、ジアミン成分(B6とB10)は同一である。この結果、紫外線の照射により、比較例2の電圧保持率は、さらに大きく低下した。  Similarly, in Example 4, two types of tetracarboxylic dianhydrides are used, but in Comparative Example 2, only the other specific aliphatic tetracarboxylic dianhydride is used. The diamine components (B6 and B10) are the same. As a result, the voltage holding ratio of Comparative Example 2 was further greatly reduced by irradiation with ultraviolet rays.
 実施例5と比較例3との比較でも同様の結果となった。  In the comparison between Example 5 and Comparative Example 3, similar results were obtained.
 さらに、実施例6と比較例4、実施例8と比較例5との比較では、2種類のテトラカルボン酸二無水物のどちらか一方と、その他テトラカルボン酸二無水物を比較例4、5に用いたが、比較例4、5の電圧保持率は、紫外線の照射により大きく低下した。  Further, in comparison between Example 6 and Comparative Example 4, and Example 8 and Comparative Example 5, one of two types of tetracarboxylic dianhydrides and other tetracarboxylic dianhydrides were compared with Comparative Examples 4, 5 However, the voltage holding ratios of Comparative Examples 4 and 5 were greatly reduced by irradiation with ultraviolet rays.
 この結果、本発明の液晶配向処理剤が含有する特定重合体の原料として、特定テトラカルボン酸二無水物および特定脂肪族テトラカルボン酸二無水物の2種類のテトラカルボン酸二無水物を用いることにより、電圧保持率の低下が抑制され、優れた光耐性を有する液晶配向膜を作製できることがわかった。このような液晶配向膜を有する液晶表示素子は、長時間、光の照射に曝されても、電圧保持率が低下することなく、光耐性を有し、信頼性に優れたものとなる。  As a result, two types of tetracarboxylic dianhydrides, a specific tetracarboxylic dianhydride and a specific aliphatic tetracarboxylic dianhydride, are used as raw materials for the specific polymer contained in the liquid crystal aligning agent of the present invention. Thus, it was found that a decrease in voltage holding ratio was suppressed and a liquid crystal alignment film having excellent light resistance could be produced. A liquid crystal display element having such a liquid crystal alignment film has light resistance and excellent reliability even when exposed to light irradiation for a long time without decreasing the voltage holding ratio.
<液晶配向処理剤のインクジェット塗布性の評価>
 本発明の実施例3で得られた液晶配向処理剤(3)および実施例7で得られた液晶配向処理剤(7)を細孔径1μmのメンブランフィルタで加圧濾過し、インクジェット塗布性の評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、純水およびIPA(イソプロピルアルコール)にて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、仮乾燥がホットプレート上にて70℃で5分間の条件で行った。 
<Evaluation of inkjet coating property of liquid crystal aligning agent>
The liquid crystal alignment treatment agent (3) obtained in Example 3 of the present invention and the liquid crystal alignment treatment agent (7) obtained in Example 7 were pressure filtered through a membrane filter having a pore diameter of 1 μm, and evaluation of ink jet coatability was performed. Went. As the ink jet coater, HIS-200 (manufactured by Hitachi Plant Technology) was used. Application is on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA (isopropyl alcohol), the application area is 70 × 70 mm, the nozzle pitch is 0.423 mm, and the scan pitch is 0.5 mm. The speed was 40 mm / second, the time from application to temporary drying was 60 seconds, and temporary drying was performed on a hot plate at 70 ° C. for 5 minutes.
 いずれの実施例とも、得られた液晶配向膜上に、はじきやピンホールは見られず、均一に塗布された液晶配向膜が得られた。  In any of the Examples, no repelling or pinholes were observed on the obtained liquid crystal alignment film, and a uniformly coated liquid crystal alignment film was obtained.
 ここで、実施例3で得られた液晶配向処理剤(3)および実施例7で得られた液晶配向処理剤(7)は、特定テトラカルボン酸二無水物および特定脂肪族テトラカルボン酸二無水物の2種類のテトラカルボン酸二無水物と、ジアミン成分とを反応させることにより得られた特定重合体を含有するものである。具体的には、実施例3の液晶配向処理剤(3)は、実施例2の液晶配向処理剤(2)と同様の構成であり、実施例7の液晶配向処理剤(7)は、実施例6の液晶配向処理剤(6)と同様の構成である。  Here, the liquid crystal aligning agent (3) obtained in Example 3 and the liquid crystal aligning agent (7) obtained in Example 7 were a specific tetracarboxylic dianhydride and a specific aliphatic tetracarboxylic dianhydride. It contains a specific polymer obtained by reacting two types of tetracarboxylic dianhydrides with a diamine component. Specifically, the liquid crystal aligning agent (3) of Example 3 has the same configuration as the liquid crystal aligning agent (2) of Example 2, and the liquid crystal aligning agent (7) of Example 7 is The structure is the same as that of the liquid crystal aligning agent (6) of Example 6.
 このため、実施例3の液晶配向処理剤(3)および実施例7の液晶配向処理剤(7)を用いて、インクジェット法で得られた液晶配向膜は、上述の電圧保持率の測定結果(実施例2、6)に鑑みれば、電圧保持率の低下が抑制され、優れた光耐性を有するものであると推測される。したがって、インクジェット法で得られた液晶配向膜を有する液晶表示素子についても同様に、長時間、光の照射に曝されても、電圧保持率が低下することなく、信頼性に優れたものとなる。  For this reason, the liquid crystal aligning film obtained by the inkjet method using the liquid crystal aligning agent (3) of Example 3 and the liquid crystal aligning agent (7) of Example 7 is the measurement result of the above-mentioned voltage holding ratio ( In view of Examples 2 and 6), it is presumed that the decrease in the voltage holding ratio is suppressed and that the light resistance is excellent. Therefore, a liquid crystal display element having a liquid crystal alignment film obtained by an inkjet method is similarly excellent in reliability without being lowered in voltage holding ratio even when exposed to light irradiation for a long time. .
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058

Claims (6)

  1.  下記の式[1]で示されるテトラカルボン酸二無水物および下記の式[2]で示される脂肪族テトラカルボン酸二無水物を含むテトラカルボン酸成分とジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有することを特徴とする液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式[2]中、Zは下記の式[2a]~式[2j]から選ばれる少なくとも1種の4価の基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式[2a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよく、式[2g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい。) 
    Polyimide obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula [1] and an aliphatic tetracarboxylic dianhydride represented by the following formula [2] with a diamine component A liquid crystal aligning agent comprising a precursor and at least one polymer selected from polyimides obtained by imidizing the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formula [2], Z 1 is at least one tetravalent group selected from the following formulas [2a] to [2j].)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula [2a], Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In the formula [2g], Z 6 and Z 7 are A hydrogen atom or a methyl group, which may be the same or different.
  2.  液晶配向処理剤中の溶媒として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトンを含有することを特徴とする請求項1に記載の液晶配向処理剤。  2. The liquid crystal aligning agent according to claim 1, which contains N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone as a solvent in the liquid crystal aligning agent.
  3.  液晶配向処理剤中の溶媒として、下記の式[D-1]~式[D-3]で示される溶媒から選ばれる溶媒を含有することを特徴とする請求項1または請求項2に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004
    (式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。) 
    3. The solvent according to claim 1, comprising a solvent selected from the solvents represented by the following formulas [D-1] to [D-3] as a solvent in the liquid crystal aligning agent. Liquid crystal aligning agent.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3 D 3 represents an alkyl group having 1 to 4 carbon atoms.
  4.  請求項1~請求項3に記載の液晶配向処理剤を用いて得られることを特徴とする液晶配向膜。  A liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent according to claim 1.
  5.  請求項1~請求項3に記載の液晶配向処理剤を用いて、インクジェット法にて得られることを特徴とする液晶配向膜。  A liquid crystal alignment film obtained by an ink jet method using the liquid crystal alignment treatment agent according to claim 1.
  6.  請求項4または請求項5に記載の液晶配向膜を有することを特徴とする液晶表示素子。  A liquid crystal display element comprising the liquid crystal alignment film according to claim 4.
PCT/JP2014/054767 2013-02-28 2014-02-26 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2014133043A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207024537A KR102470287B1 (en) 2013-02-28 2014-02-26 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR1020157026293A KR20150122209A (en) 2013-02-28 2014-02-26 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2015502997A JP6264577B2 (en) 2013-02-28 2014-02-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN201480024169.9A CN105190415B (en) 2013-02-28 2014-02-26 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013039877 2013-02-28
JP2013-039877 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133043A1 true WO2014133043A1 (en) 2014-09-04

Family

ID=51428303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054767 WO2014133043A1 (en) 2013-02-28 2014-02-26 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6264577B2 (en)
KR (2) KR20150122209A (en)
CN (1) CN105190415B (en)
TW (1) TWI617622B (en)
WO (1) WO2014133043A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073935B (en) * 2016-01-07 2021-06-25 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013151A (en) * 2000-06-30 2002-01-18 Miyama Ind Corp Manhole wall body fastening device
WO2009093711A1 (en) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material and liquid-crystal display element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201172B2 (en) 1994-09-08 2001-08-20 ジェイエスアール株式会社 Liquid crystal alignment agent
JP3613421B2 (en) 1996-05-31 2005-01-26 Jsr株式会社 Liquid crystal alignment agent
JP3650982B2 (en) 1996-10-02 2005-05-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP2002131751A (en) * 2000-10-25 2002-05-09 Hitachi Chemical Dupont Microsystems Ltd Composition for liquid crystal aligning film, liquid crystal aligning film, liquid crystal holding substrate, liquid crystal display and horizontal electric field liquid crystal display
CN101231429B (en) * 2002-08-29 2014-05-14 日产化学工业株式会社 Material for liquid crystal aligning and liquid crystal displays made by using same
JP5884258B2 (en) * 2009-09-18 2016-03-15 Jnc株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal display element
WO2011055643A1 (en) * 2009-11-09 2011-05-12 Jnc株式会社 Liquid crystal display element, liquid crystal composition, aligning agent, method for producing liquid crystal display element, and use of liquid crystal composition
KR101826380B1 (en) * 2010-07-26 2018-02-06 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI633128B (en) * 2011-05-27 2018-08-21 日產化學工業股份有限公司 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2013008852A1 (en) * 2011-07-12 2013-01-17 日産化学工業株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013151A (en) * 2000-06-30 2002-01-18 Miyama Ind Corp Manhole wall body fastening device
WO2009093711A1 (en) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material and liquid-crystal display element

Also Published As

Publication number Publication date
CN105190415B (en) 2017-11-10
JPWO2014133043A1 (en) 2017-02-02
KR102470287B1 (en) 2022-11-23
KR20150122209A (en) 2015-10-30
CN105190415A (en) 2015-12-23
TW201500463A (en) 2015-01-01
TWI617622B (en) 2018-03-11
JP6264577B2 (en) 2018-01-24
KR20200103879A (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP6414145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5713009B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6504377B2 (en) Polymer
WO2013125595A1 (en) Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
JP6497520B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5930239B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP5998931B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012008464A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6102752B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5930238B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2012121259A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6003882B2 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014126102A1 (en) Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
JP6264577B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6683955B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024169.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157026293

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14756261

Country of ref document: EP

Kind code of ref document: A1