WO2014132716A1 - 給電装置、受電装置、電気自動車、充電システム及び充電方法 - Google Patents

給電装置、受電装置、電気自動車、充電システム及び充電方法 Download PDF

Info

Publication number
WO2014132716A1
WO2014132716A1 PCT/JP2014/051605 JP2014051605W WO2014132716A1 WO 2014132716 A1 WO2014132716 A1 WO 2014132716A1 JP 2014051605 W JP2014051605 W JP 2014051605W WO 2014132716 A1 WO2014132716 A1 WO 2014132716A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
transition time
power supply
power receiving
Prior art date
Application number
PCT/JP2014/051605
Other languages
English (en)
French (fr)
Inventor
勲 方田
秋山 仁
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP14757303.4A priority Critical patent/EP2985864A4/en
Priority to US14/440,889 priority patent/US9653937B2/en
Publication of WO2014132716A1 publication Critical patent/WO2014132716A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0029Circuits or arrangements for limiting the slope of switching signals, e.g. slew rate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a power feeding device, a power receiving device, an electric vehicle, a charging system, and a charging method.
  • Patent Document 1 As background art in this technical field, there is JP-A-6-343205 (Patent Document 1). This gazette states that “in order to prevent erroneous transmission of information when charging information is communicated between the battery and the charger, the in-vehicle battery is determined based on the charging information exchanged between the charger and the in-vehicle battery.
  • a battery controller In a charging device for an electric vehicle to be charged, a battery controller that determines whether communication of charging information is necessary, and charging is stopped when it is determined that communication of charging information is necessary, and charging is performed when communication is determined to be unnecessary
  • a charger controller that performs the following operations "(see summary).
  • Patent Document 1 describes a mechanism of a charging device for an electric vehicle that prevents erroneous transmission of information when charging information is communicated between a battery and a charger.
  • the charging device of the electric vehicle of Patent Document 1 needs to stop charging when it is determined that communication of charging information is necessary, and charging efficiency is improved by stopping charging in order to suppress communication failure.
  • the convenience for the user is lowered, for example, the time until the end of charging is reduced.
  • the present invention provides a power feeding device, a power receiving device, an electric vehicle, a charging system, and a charging method that suppresses a decrease in charging efficiency and improves the reliability by improving the resistance of communication for charging control due to harmonic noise of a switching element.
  • the purpose is to provide.
  • the present application includes a plurality of means for solving the above-described problems.
  • a power supply device that supplies power to an external device, and includes a switching element for power conversion that can change a switching waveform.
  • a power conversion unit having a power supply unit that supplies the power generated by the power conversion unit to an external device, a control unit, and a communication unit that communicates with the external device. Control is performed to adjust the switching waveform of the switching element in the power conversion unit during a period in which the communication unit communicates with an external device.
  • a power feeding device, a power receiving device, an electric vehicle, a charging system, and a charging method that suppress a decrease in charging efficiency and improve the reliability of charging control communication due to harmonic noise of a switching element to improve reliability.
  • FIG. 1 is an example of a configuration diagram of a non-contact charging system equipped with a power conversion device according to an embodiment of the present invention.
  • the non-contact charging system 1 includes a power feeding device 10 that supplies power to the outside and an electric vehicle 2 that includes a power receiving device 20 that receives power from the outside.
  • a power supply device 10 for an electric vehicle is installed in a charging station or a parking lot of a public facility, and the power reception device 20 receives power supplied from the power supply device 10 to charge the electric vehicle 2 is taken as an example.
  • a charging system having a power feeding device and a power receiving device will be described.
  • the power feeding device 10 includes a power feeding side power conversion unit 11 including a power conversion device, a non-contact power feeding unit 12, a power feeding control unit 13, a power feeding side communication unit 14, an antenna 15, and a storage unit 16.
  • the power supply control unit 13 includes a communication period determination unit 131 and an error rate determination unit 132.
  • the electric vehicle 2 includes a power receiving device 20, a drive system power conversion unit 30, a motor 40, a drive unit 50, and a storage battery 60.
  • the power receiving device 20 includes a non-contact power receiving unit 21, a power receiving side power converting unit 22 including a power conversion device, a power receiving side communication unit 23, an antenna 24, a power receiving control unit 25, and a storage unit 26.
  • the power reception control unit 25 includes a communication period determination unit 251 and an error rate determination unit 252.
  • the non-contact power feeding unit 12 in the power feeding device 10 and the non-contact power receiving unit 21 in the power receiving device 20 of the electric vehicle 2 are each formed of coils, and transmit power by mutual induction when the coils are opposed to each other in the axial direction. To do. The operation in the case of using electromagnetic induction type non-contact power transmission will be described below.
  • the power supply side power conversion unit 11 generates a high-frequency signal by converting the frequency of an AC power source of system power supplied from the outside, such as a three-phase AC 200 V, by power conversion using a switching element.
  • the high-frequency signal is supplied to the non-contact power feeding unit 12.
  • the non-contact power supply unit 12 generates a magnetic flux in the axial direction of the coil by the high frequency signal supplied from the power supply side power conversion unit 11.
  • the non-contact power receiving unit 21 in the power receiving device 20 of the electric vehicle 2 a high-frequency signal is generated in the power receiving coil by the induced electromotive force based on mutual induction with the magnetic flux generated by the power feeding coil of the non-contact power feeding unit 12. The signal is supplied to the power receiving side power converter 22.
  • the power receiving side power converter 22 generates DC power from the supplied high-frequency signal by power conversion using a switching element, and supplies it to the storage battery 60.
  • the storage battery 60 holds the DC power supplied from the power receiving side power converter 22 in the storage battery.
  • the drive power conversion unit 30 when the electric vehicle 2 travels, the drive power conversion unit 30 generates a motor drive signal using the DC power held by the storage battery 60 to drive the motor 40.
  • the motor 40 travels by rotating a driving unit 50 such as a wheel.
  • the current command value of the high frequency signal output from the power supply side power conversion unit 11 in the power supply apparatus 10 and the transition time setting related to the internal operation are generated by the power supply control unit 13 and supplied to the power supply side power conversion unit 11.
  • the voltage command value of the DC power output from the power receiving side power conversion unit 22 in the power receiving device 20 of the electric vehicle 2 and the transition time setting related to the internal operation are generated by the power receiving control unit 25 and are received by the power receiving side power conversion unit 22.
  • the transition time is the time taken for the rise or fall of the time waveform of the control signal.
  • FIG. 1 a communication interface between the power feeding device 10 and the power receiving device 20 of the electric vehicle 2 for controlling the operation from the start of charging to the end of charging will be described.
  • a charge operation start request or stop request between the power supply control unit 13 of the power supply device 10 and the power reception control unit 25 of the power reception device 20, a charge operation start request or stop request, storage battery information of the electric vehicle 2 (battery capacity, maximum charge time, battery state) And the like, and information on charger information (such as maximum current) of the power supply apparatus 10 are transmitted and received by wireless communication via the power supply side communication unit 14 and the power reception side communication unit 23.
  • the power feeding control unit 13 of the power feeding device 10 When information is transmitted from the power feeding device 10 to the power receiving device 20 of the electric vehicle 2, the power feeding control unit 13 of the power feeding device 10 generates data to be transmitted to the power receiving device 20 of the electric vehicle 2 and supplies the data to the power feeding side communication unit 14. To do.
  • the power supply side communication unit 14 encodes and modulates the supplied data and transmits a high frequency signal (RF signal) from the antenna 15.
  • the power receiving side communication unit 23 of the power receiving device 20 amplifies or attenuates the RF signal received by the antenna 24 of the power receiving device 20 so as to have a desired signal level, performs frequency conversion, demodulation and decoding processing, and receives the signal. Data is supplied to the power reception control unit 25.
  • the power-receiving-side communication unit 23 of the power receiving device 20 performs AGC (Auto Gain Control) control so that the signal level of the RF signal received by the antenna 24 becomes a desired signal level, and the voltage value of the AGC control signal It can be determined whether or not an RF signal is transmitted from the antenna 15 of the power feeding device 10 due to the change and is received by the antenna 24 of the power receiving device 20.
  • the power reception control unit 25 supplies the AGC control signal to the communication period determination unit 251, and determines whether or not communication is being performed by the communication period determination unit 251.
  • the power receiving side communication unit 23 detects the number of error bits of the demodulated and decoded received data in one data packet, and supplies the number of error bits to the error rate determination unit 252 of the power reception control unit 25. .
  • the error rate determination unit 252 calculates a reception data error rate from the supplied number of error bits and the number of data receptions managed by the power reception control unit 25.
  • the power reception control unit 25 of the power reception device 20 generates data to be transmitted to the power supply device 10 and supplies the data to the power reception side communication unit 23.
  • the power receiving side communication unit 23 performs encoding and modulation processing on the supplied data and transmits an RF signal from the antenna 24.
  • the power supply side communication unit 14 of the power supply apparatus 10 amplifies or attenuates the RF signal received by the antenna 15 of the power supply apparatus 10 to a desired signal level, performs frequency conversion, demodulation and decoding processing, and receives Data is supplied to the power supply control unit 13.
  • the power supply side communication unit 14 of the power supply apparatus 10 performs AGC (Auto Gain Control) control so that the signal level of the RF signal received by the antenna 15 becomes a desired signal level, and the voltage value of the AGC control signal It can be determined whether or not an RF signal is transmitted from the antenna 24 of the power receiving device 20 and received by the antenna 15 of the power feeding device 10 due to the change.
  • the power supply control unit 13 supplies the AGC control signal to the communication period determination unit 131 of the power supply control unit 13, and determines whether or not communication is performed by the communication period determination unit 251.
  • the power supply side communication unit 14 detects the number of error bits of the received data demodulated and decoded in one data packet, and supplies the number of error bits to the error rate determination unit 132 of the power supply control unit 13.
  • the error rate determination unit 132 calculates a reception data error rate from the supplied number of error bits and the number of data receptions managed by the power supply control unit 13.
  • the power supply control unit 13 of the power supply apparatus 10 in FIG. 1 sets the current command value and transition time set in the power supply side power conversion unit 11, the number of error bits and the reception error rate acquired by the error rate determination unit 132, and the transition time during communication.
  • Information such as a confirmation flag can be stored in the storage unit 16 and recalled.
  • the storage unit 16 is a non-volatile storage unit and holds information even when power is not supplied.
  • the power reception control unit 25 of the power reception device 20 in FIG. 1 sets the current command value and transition time setting to the power receiving side power conversion unit 22, the number of error bits and reception error rate acquired by the error rate determination unit 252, and the transition time during communication Information such as a confirmation flag can be stored in the storage unit 26 and recalled.
  • the storage unit 26 is a non-volatile storage unit and holds information even when power is not supplied.
  • FIG. 2 is an example of a configuration diagram of a power conversion unit in the power supply apparatus according to the embodiment of the present invention.
  • the power supply side power converter 11 includes a rectifier 111, a DC-AC inverter 112, a current detector 113, a gate driver 114, and a PWM control signal generator 115.
  • the rectifying unit 111 of the power supply side power conversion unit 11 converts the DC power into DC power by rectification and smoothing with a diode from an AC power source, for example, a three-phase AC 200V power source supplied from the outside.
  • the DC-AC inverter 112 is a switching element for power conversion.
  • the supplied DC power is converted into an AC signal having a frequency suitable for non-contact power transmission, for example, 10 kHz to 100 kHz by an inverter circuit, and the current detection unit 113 is changed.
  • the current detection unit 113 detects a current value of a signal used for non-contact power transmission, and supplies the detected current value to the PWM control signal generation unit 115.
  • the AC power supply of the power system supplied from the outside is not limited to the three-phase AC 200V, and various AC power supply forms such as a single-phase AC 200V and a single-phase AC 100V are assumed.
  • a rectifier circuit used in the rectifier 111 is configured according to the type of the AC power supply. Further, although the example of the frequency of the AC signal generated by the DC-AC inverter 112 is 10 kHz to 100 kHz, it is not limited to this.
  • the PWM control signal generation unit 115 compares the current command value supplied from the power supply control unit 13 with the current value supplied from the current detection unit 113, and the current value supplied from the current detection unit 113 supplies power.
  • a PWM control signal is generated so as to coincide with the current command value supplied from the control unit 13 and supplied to the gate drive unit 114.
  • the gate drive unit 114 switches between the rising waveform and the falling waveform of the time waveform of the switching signal in the DC-AC inverter 112 by switching the gate resistance of the switching element based on the transition time setting supplied from the power supply control unit 13. Control the time.
  • FIG. 3 is a diagram showing the relationship between the PWM control signal and the transition time of the switching waveform in the DC-AC inverter.
  • the PWM control signal shows an example of the waveform of the PWM control signal generated in the PWM control signal generation unit 115 in FIG. 2, and the AC signal to be output by the power supply side power conversion unit 11 is shown.
  • the pulse width is controlled according to the waveform.
  • ON / OFF of the switching element of the DC-AC converter 112 is controlled, and the switching waveforms shown in (b) to (d) are generated.
  • the transition time setting has Nmax + 1 types of command values ( ⁇ [0], ⁇ [1]... ⁇ [Nmax]), and ⁇ [0] is the transition time of the rising waveform and the falling waveform. Is the shortest, ⁇ [1], ⁇ [2] and the transition time are sequentially longer, and in the case of ⁇ [Nmax], the transition time is the longest.
  • (b) is a time waveform when the transition time setting is ⁇ [0]
  • (c) is a time waveform when the transition time setting is ⁇ [1]
  • (d) is a time waveform when the transition time setting is ⁇ [0].
  • Nmax] is a time waveform.
  • ⁇ [0] having the shortest transition time among the settable transition times is set as the standard transition time setting.
  • the shortest transition time among the transition time settings in which communication failure due to harmonic noise does not occur is set as the optimal transition time setting ⁇ [k] during communication. That is, as shown in the figure, when the communication for charging control is performed, the transition time is set longer than when the communication for charging control is not performed.
  • the transition time of the switching waveform becomes long in the switching element, the power conversion loss increases and the heat radiation increases. Therefore, for example, the shortest transition time among the settable transition times is set as described above, and this can suppress the harmonic component of the switching element.
  • FIG. 4 is an example of a configuration diagram of a power conversion unit in the power receiving device according to the embodiment of the present invention.
  • the power receiving side power converter 22 includes a rectifier 221, a DC-DC converter 222, a voltage detector 223, a gate driver 224, and a PWM control signal generator 225.
  • the rectifying unit 221 of the power receiving side power converting unit 22 converts the high frequency signal supplied from the non-contact power receiving unit 21 to DC by rectification and smoothing by a diode, and supplies DC power to the DC-DC converter 222.
  • the DC-DC converter 222 is a switching element for power conversion.
  • the supplied DC power is converted into a voltage suitable for charging the storage battery 60 by the inverter circuit, for example, 240 V DC power, and the voltage detection unit 223 is used. Supplied to the storage battery 60.
  • the voltage detection unit 223 detects the voltage value of DC power used for charging the storage battery 60 and supplies the detected voltage value to the PWM control signal generation unit 225.
  • the frequency of the high-frequency signal supplied from the non-contact power receiving unit 21 is assumed to be about 10 kHz to 100 kHz, but is not limited thereto.
  • the voltage of the DC power generated by the DC-DC converter 222 is 240V as an example, but various voltage values are assumed depending on the type of the storage battery 60 to be connected.
  • the PWM control signal generation unit 225 compares the current command value supplied from the power reception control unit 25 with the voltage value supplied from the voltage detection unit 223, and the voltage value supplied from the voltage detection unit 223 receives the power.
  • a PWM control signal is generated so as to coincide with the voltage command value supplied from the control unit 25, and is supplied to the gate drive unit 224.
  • the gate driving unit 224 switches between the rising waveform and the falling waveform of the time waveform of the switching signal in the DC-DC converter 222 by switching the gate resistance of the switching element. Control the time.
  • the PWM control signal generated by the PWM control signal generation unit 225 is equivalent to the relationship between the signal and the transition time of the time waveform of the switching signal in the DC-AC inverter, and the description is omitted.
  • FIG. 5 is an overall operation sequence diagram of the contactless charging system.
  • a system that supplies power between a power feeding device installed on a road and a power receiving device provided in an electric vehicle is assumed.
  • the installation location of the power feeding device, the power receiving device, and the like is not limited to the form described in FIG.
  • step S601 a user of an electric vehicle stops the electric vehicle at a predetermined location (step S601), and operates the power supply apparatus 10 installed on the road to start charging (step S501).
  • the power supply control unit 13 of the power supply device 10 and the power reception control unit 25 of the power reception device 20 include information on the charging device side (maximum voltage, maximum current, etc.) and battery information on the electric vehicle side (maximum). Voltage, battery capacity, maximum charging time, charged battery capacity, etc.) are exchanged via the communication interface, initialization processing such as confirmation of mutual compatibility is performed, and the process proceeds to step S503 and step S603, respectively.
  • step S502 and step S602 a current command value related to charging is transmitted from the power reception control unit 25 of the power reception device 20 to the power supply control unit 13 of the power supply device 10, and power supply control of the power supply device 10 is performed in step S503.
  • the unit 13 starts power supply based on the current command value, and proceeds to step S504.
  • step S603 the power reception control unit 25 of the power receiving device 20 receives power in the non-contact power reception unit 21, starts charging the storage battery 60, and proceeds to step S604.
  • step S ⁇ b> 503 the power supply control unit 13 of the power supply apparatus 10 specifies ⁇ [0], which is a standard transition time setting, for the power supply side power conversion unit 11.
  • step S ⁇ b> 603 the power reception control unit 25 of the power reception device 20 designates ⁇ [0], which is a standard transition time setting, for the power reception side power conversion unit 22.
  • step S605 the power reception control unit 25 of the power receiving device 20 calculates a current command value suitable for charging based on the state of charge of the storage battery 60, and proceeds to step S605.
  • step S605 the power reception control unit 25 of the power reception device 20 transmits the current command value to the power supply control unit 13 of the power supply device 10, and the process proceeds to step S606.
  • step S606 the power reception control unit 25 of the power receiving device 20 determines whether or not the battery capacity charged in the storage battery 60 has reached a specified value. If the battery capacity has reached the specified value, that is, charging is completed. If YES in step S607, the flow advances to step S607. If the specified value has not been reached, that is, if charging has not been completed, the flow returns to step S604.
  • the loop from step S604 to step S606 is continued until charging of the storage battery 60 is completed, and is executed at intervals of 100 ms.
  • the loop execution time interval from step S604 to step S606 can be freely set.
  • step S607 the power reception control unit 25 of the power reception device 20 transmits a charge stop request to the power supply control unit 13 of the power supply device 10 because the charging of the storage battery 60 is completed, and the process proceeds to step S608.
  • step S608 the power reception control unit 25 of the power receiving device 20 determines whether or not the power supply to the storage battery 60 is stopped. If it cannot be confirmed that the power supply is stopped, the process returns to step S607 to request charging stop. If it can be confirmed that the charging process is stopped, the process proceeds to step S609 to complete the charging process.
  • step S ⁇ b> 504 the power supply control unit 13 of the power supply device 10 has received the communication of the current command value or the charge stop request from the power reception device 20 via the communication interface, and the voltage of the AGC control signal in the communication period determination unit 131. It detects by change and progresses to step SS505.
  • step S505 the power supply control unit 13 of the power supply apparatus 10 determines the in-communication transition time determination flag held in the storage unit 16. If “ON”, the process proceeds to step S510, and if “OFF”, the process proceeds to step S520. move on.
  • the in-communication transition time confirmation flag is a flag set in a transition time search sequence in step S520, which will be described later, and the transition time setting of the switching signal for suppressing the occurrence of a failure in the charging control communication is confirmed. It is shown whether or not it is confirmed when “ON”.
  • step S510 the switching signal waveform transition time during communication between the power supply apparatus 10 and the power receiving apparatus 20 is longer than the switching signal waveform transition time when communication is not performed.
  • step S520 a sequence for searching for the transition time setting to be set in step S510 described above is executed, and the process proceeds to step S530.
  • step S530 the power supply control unit 13 of the power supply apparatus 10 determines the type of the received data, and if it is a current command value, the process proceeds to step S531, and if it is a charge stop request, the process proceeds to step S532.
  • step S531 the power supply control unit 13 of the power supply apparatus 10 supplies the received current command value to the power supply side power conversion unit 11, controls the current output to be supplied, and returns to step S504.
  • step S530 the power feeding control unit 13 of the power feeding apparatus 10 stops the conversion process in the power feeding side power conversion unit 11, stops the current output to be fed, proceeds to step S532, and ends the charging process.
  • FIG. 6 is an operation sequence diagram for searching for a switching signal transition time setting for suppressing the occurrence of a failure in the charging control communication.
  • the electric power feeding control part 13 of the electric power feeder 10 sets a transition time setting to nth (tau) [n], supplies it to the electric power feeding side power converter 11, and progresses to step S522.
  • n is an integer
  • n 0 at the start of charging.
  • step S522 the power supply control unit 13 of the power supply apparatus 10 determines that the communication of the current command value or the charge stop request transmitted from the power receiving apparatus 20 via the communication interface has been completed. This is detected by the voltage change of the control signal, and the process proceeds to step SS523.
  • step S523 the power feeding control unit 13 of the power feeding apparatus 10 sets the transition time setting to the standard ⁇ [0], supplies the transition time setting to the power feeding side power converting unit 11, and proceeds to step S524.
  • step S524 the power supply control unit 13 of the power supply apparatus 10 acquires the reception data error rate from the error rate determination unit 132, and proceeds to step S525.
  • step S525 the power supply control unit 13 of the power supply apparatus 10 stores the transition time setting set in step S521 and the received data error rate acquired in step S524 in the storage unit 16, and proceeds to step S526.
  • step S526 an integer n designating the transition time setting to be set in step S521 is incremented, and the process proceeds to step S527.
  • step S527 the power supply control unit 13 of the power supply apparatus 10 determines whether or not the integer n is greater than Nmax. If larger, the process proceeds to step S528. If smaller, the process proceeds to step S530. In this step S527, it is equivalent to determining whether or not the received data error rate for (Nmax + 1) types of transition time settings ( ⁇ [0], ⁇ [1]... ⁇ [Nmax]) has been acquired. To do.
  • step S528 the power supply control unit 13 of the power supply apparatus 10 sets (Nmax + 1) types of transition time settings ( ⁇ [0], ⁇ [1]... ⁇ [Nmax]) stored in the storage unit 16. From the received data error rate information, a transition time setting in which the received data error rate is lower than a preset error rate is selected with the shortest transition time, and this is selected as the optimum transition time setting value ⁇ during communication. [K] is stored in the storage unit 16, and the process proceeds to step S529.
  • step S529 the power supply control unit 13 of the power supply apparatus 10 changes the communication transition time confirmation flag stored in the storage unit 16 to “ON” and stores it. After this search sequence, the process proceeds to step S530.
  • a switching signal transition time setting value for suppressing the occurrence of a failure in the charging control communication during the charging control communication in this non-contact charging system is set. Can be sought.
  • FIG. 7 is an operation sequence diagram for changing the switching transition time setting for suppressing the occurrence of a failure in the charging control communication.
  • step S511 of FIG. 7 the power supply control unit 13 of the power supply apparatus 10 sets the communication transition time setting ⁇ [k] searched in step S520 to the power supply side power conversion unit 11, and proceeds to step S512.
  • step S512 the power supply control unit 13 of the power supply device 10 indicates that the communication of the current command value or the charge stop request transmitted from the power receiving device 20 via the communication interface has been completed. Detection is performed based on the voltage change, and the process proceeds to step SS513.
  • step S513 the power supply control unit 13 of the power supply apparatus 10 sets the transition time setting as the standard ⁇ [0] in the power supply side power conversion unit 11, and proceeds to step S514.
  • step S514 the power supply control unit 13 of the power supply apparatus 10 determines whether or not the reception data error rate acquired by the error rate determination unit 132 is equal to or greater than a specified value. It is determined that the failure has not been suppressed in the charging control communication at the set transition time setting ⁇ [k], and the process proceeds to step S515. If the transition time setting ⁇ [k] is equal to or less than the specified value, the change sequence S510 is skipped and the process proceeds to step S530.
  • the specified value here is, for example, 1%, but may be any value other than zero.
  • step S515 the power supply control unit 13 of the power supply apparatus 10 stores the in-communication transition time determination flag as “OFF” in the storage unit 16, and proceeds to step S516.
  • step S516 the power supply control unit 13 of the power supply apparatus 10 resets the integer n that specifies the transition time setting to be set in step S521, goes through the change sequence S510, and proceeds to step S530.
  • the power conversion device of the present embodiment only the transmission / reception period of the charging control wireless communication is evaluated by evaluating the reception error rate of the charging control wireless communication for each transition time setting of the switching waveform immediately after the start of charging.
  • the charging efficiency is prevented from decreasing, and the charge control communication tolerance due to harmonic noise of the switching element is improved to improve reliability. It is possible to provide a power feeding device, a power receiving device, an electric vehicle, a charging system, and a charging method.
  • the period for increasing the transition time of the switching waveform is only the transmission / reception period of the wireless communication for charging control, the thermal radiation accompanying the increase in switching loss is suppressed compared to the case where the transition time is always increased. Therefore, the cost related to the heat radiation design can be reduced.
  • the method for controlling the transition time by switching the gate resistance has been described as means for changing the transition time in the switching waveform of the switching element.
  • a variable capacitor is connected in parallel to the output terminal of the switching element. Even if the method of controlling the transition time by controlling the resonance characteristics by connecting the auxiliary circuit composed of the reactor, the capacitor and the power semiconductor and changing their constants is used. Similar effects can be obtained.
  • the change in the AGC voltage is used as a method for detecting the transmission / reception period of the charging control communication.
  • a method for synchronizing with periodic transmission of a current command value from an electric vehicle, or synchronization detection of a communication unit can be obtained even if a method using a signal is used.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 充電効率の低下を抑制し、スイッチング素子の高調波ノイズによる充電制御用通信の耐性を改善して信頼性を向上する給電装置、受電装置、電気自動車、充電システム及び充電方法を提供することを目的とする。 外部装置に給電する給電装置であって、スイッチング波形を変化させることが可能な電力変換用のスイッチング素子を有する電力変換部と、前記電力変換部で生成した電力を外部装置に供給する給電部と、制御部と、外部装置との間で通信を行う通信部と、を有し、前記制御部で、前記通信部が外部装置と通信している期間において、前記電力変換部におけるスイッチング素子のスイッチング波形を調整するよう制御することを特徴とする。

Description

給電装置、受電装置、電気自動車、充電システム及び充電方法
 本発明は、給電装置、受電装置、電気自動車、充電システム及び充電方法に関する。
 本技術分野の背景技術として、特開平6-343205号公報(特許文献1)がある。この公報には、「バッテリと充電器との間で充電情報を通信するときの情報の誤送信を防止するため、充電器と車載バッテリとの間で授受された充電情報に基づいて車載バッテリを充電する電気自動車の充電装置において、充電情報の通信の要否を判定するバッテリコントローラと、充電情報の通信が必要と判定されるときに充電を停止し、通信が不要と判定されるときに充電を行なう充電器コントローラとを具備する。」と記載されている(要約参照)。
特開平6-343205号公報
 前記特許文献1には、バッテリと充電器との間で充電情報を通信するときの情報の誤送信を防止する電気自動車の充電装置の仕組みが記載されている。しかし、特許文献1の電気自動車の充電装置は、充電情報の通信が必要と判断されるときには充電を停止することが必要であり、通信障害を抑制するために充電を停止することにより充電効率が低下し、充電終了までの時間が長くなるなど、ユーザの利便性が低下するという課題があった。
 そこで、本発明は、充電効率の低下を抑制し、スイッチング素子の高調波ノイズによる充電制御用通信の耐性を改善して信頼性を向上する給電装置、受電装置、電気自動車、充電システム及び充電方法を提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「外部装置に給電する給電装置であって、スイッチング波形を変化させることが可能な電力変換用のスイッチング素子を有する電力変換部と、前記電力変換部で生成した電力を外部装置に供給する給電部と、制御部と、外部装置との間で通信を行う通信部と、を有し、前記制御部で、前記通信部が外部装置と通信している期間において、前記電力変換部におけるスイッチング素子のスイッチング波形を調整するよう制御すること」を特徴とする。
 本発明によれば、充電効率の低下を抑制し、スイッチング素子の高調波ノイズによる充電制御用通信の耐性を改善して信頼性を向上する給電装置、受電装置、電気自動車、充電システム及び充電方法を提供することが可能である。
本発明の実施の形態による給電装置及び受電装置が搭載された非接触充電システムの構成図の例である。 本発明の実施の形態による給電装置における電力変換部の構成図の例である。 PWM制御信号とDC-ACインバータにおけるスイッチング信号の時間波形の遷移時間との関係を示す図である。 本発明の実施の形態による受電装置における電力変換部の構成図の例である。 非接触充電システムの動作シーケンス図である。 充電制御用通信への障害発生を抑制するためのスイッチング信号遷移時間設定を探索する動作シーケンス図である。 充電制御用通信への障害発生を抑制するためのスイッチング遷移時間設定を変更する動作シーケンス図である。
 以下、実施例について図面を用いて説明する。なお、図面において、同一符号は、同一または相当部分を示す。また、本発明は、図示例に限定されるものではない。
 本実施例では、充電装置から電気自動車に対してコネクタを接続しないで給電可能な非接触給電により、電気自動車に搭載された蓄電池へ充電を行う非接触充電システムの例を説明する。
 図1は、本発明の実施の形態による電力変換装置が搭載された非接触充電システムの構成図の例である。図1において非接触充電システム1は、外部へ電力を供給する給電装置10と外部からの電力を受電する受電装置20を有する電気自動車2とから構成される。本実施形態では、電気自動車用の給電装置10が充電ステーションや公共施設の駐車場などに設置され、受電装置20が給電装置10からの電力供給を受けて電気自動車2に充電する動作を例にして、給電装置及び受電装置を有する充電システムについて説明する。
 給電装置10は、電力変換装置を含む給電側電力変換部11と、非接触給電部12と、給電制御部13と、給電側通信部14と、アンテナ15と、記憶部16と、を備える。また、給電制御部13は、通信期間判定部131と、誤り率判定部132と、を備える。
 他方、電気自動車2は、受電装置20と、駆動系電力変換部30と、モータ40と、駆動部50と、蓄電池60と、を備える。
 また、受電装置20は、非接触受電部21と、電力変換装置を含む受電側電力変換部22と、受電側通信部23と、アンテナ24と、受電制御部25と、記憶部26と、を備える。また、受電制御部25は、通信期間判定部251と、誤り率判定部252と、を備える。
 給電装置10における非接触給電部12と電気自動車2の受電装置20における非接触受電部21はそれぞれコイルで形成されており、それぞれのコイルを軸方向に対向させた場合の相互誘導により電力を伝送する。以下に電磁誘導方式の非接触電力伝送を用いた場合の動作について説明する。
 まず、給電装置10において給電側電力変換部11は、外部から供給される系統電力の交流電源、例えば三相交流200Vを、スイッチング素子を用いた電力変換により周波数を変換して高周波信号を生成し、その高周波信号を非接触給電部12に供給する。
 次に、給電装置10において非接触給電部12は、給電側電力変換部11から供給された高周波信号によりコイルの軸方向に磁束を生じさせる。他方、電気自動車2の受電装置20における非接触受電部21では、非接触給電部12の給電コイルにより生じた磁束との相互誘導に基づく誘導起電力によって受電コイルに高周波信号が生成され、その高周波信号が受電側電力変換部22に供給される。
 受電側電力変換部22は、供給された高周波信号からスイッチング素子を用いた電力変換により直流電力を生成し、蓄電池60に供給する。蓄電池60は受電側電力変換部22から供給された直流電力を蓄電池内に保持する。他方、電気自動車2の走行時には、蓄電池60で保持した直流電力を用いて駆動系電力変換部30によりモータ駆動信号を生成し、モータ40を駆動させる。そして、モータ40は車輪などの駆動部50を回転させて走行する。
 なお、給電装置10における給電側電力変換部11から出力される高周波信号の電流指令値及び内部動作に係る遷移時間設定は、給電制御部13が生成して給電側電力変換部11に供給することにより制御する。また、電気自動車2の受電装置20における受電側電力変換部22から出力される直流電力の電圧指令値及び内部動作に係る遷移時間設定は、受電制御部25が生成して受電側電力変換部22に供給することにより制御する。ここで遷移時間とは、制御信号の時間波形の立ち上がり、あるいは立ち下がりにかかる時間である。
 次に、充電開始から充電終了までの動作を制御するための給電装置10と電気自動車2の受電装置20との通信インターフェースについて説明する。図1において給電装置10の給電制御部13と受電装置20の受電制御部25との間では、充電動作の開始要求や停止要求、電気自動車2の蓄電池情報(電池容量、最大充電時間、電池状態に基づく充電時の電流指令値など)、給電装置10の充電器情報(最大電流など)の情報を給電側通信部14と受電側通信部23とを介して無線通信により送受信する。
 給電装置10から電気自動車2の受電装置20へ情報を伝送する場合、給電装置10の給電制御部13は電気自動車2の受電装置20へ伝送すべきデータを生成し、給電側通信部14へ供給する。給電側通信部14は供給されたデータに対して符号化および変調処理を行いアンテナ15から高周波信号(RF信号)を送信する。
 一方、受電装置20の受電側通信部23は、受電装置20のアンテナ24で受信したRF信号を所望の信号レベルとなるように増幅または減衰させ、周波数変換と復調および復号化処理を行い、受信データを受電制御部25に供給する。この時、受電装置20の受電側通信部23では、アンテナ24で受信したRF信号の信号レベルを所望の信号レベルとなるようにAGC(Auto Gain Control)制御しており、AGC制御信号の電圧値変化により給電装置10のアンテナ15からRF信号が送信されて、受電装置20のアンテナ24で受信しているか否かを判別できる。受電制御部25はこのAGC制御信号を通信期間判定部251に供給し、通信期間判定部251で通信が行われているか否かを判定する。
 また、受電側通信部23は、ひとつのデータパケットの内の、復調および復号化した受信データの誤りビット数を検出し、その誤りビット数を受電制御部25の誤り率判定部252に供給する。誤り率判定部252は、供給された誤りビット数と受電制御部25が管理するデータ受信回数から受信データ誤り率を算出する。
 次に、受電装置20の受電制御部25から給電装置10へ情報を伝送する場合を説明する。このときは、受電装置20の受電制御部25は給電装置10へ伝送すべきデータを生成し、受電側通信部23へ供給する。受電側通信部23は供給されたデータに対して符号化および変調処理を行いアンテナ24からRF信号を送信する。
 一方、給電装置10の給電側通信部14は、給電装置10のアンテナ15で受信したRF信号を所望の信号レベルとなるように増幅または減衰させ、周波数変換と復調および復号化処理を行い、受信データを給電制御部13に供給する。この時、給電装置10の給電側通信部14では、アンテナ15で受信したRF信号の信号レベルを所望の信号レベルとなるようにAGC(Auto Gain Control)制御しており、AGC制御信号の電圧値変化により受電装置20のアンテナ24からRF信号が送信されて、給電装置10のアンテナ15で受信しているか否かを判別できる。給電制御部13はこのAGC制御信号を給電制御部13の通信期間判定部131に供給し、通信期間判定部251で通信が行われているか否かを判定する。
 また、給電側通信部14は、ひとつのデータパケットの内、復調および復号化した受信データの誤りビット数を検出し、その誤りビット数を給電制御部13の誤り率判定部132に供給する。誤り率判定部132は、供給された誤りビット数と給電制御部13が管理するデータ受信回数から受信データ誤り率を算出する。
 図1の給電装置10の給電制御部13は、給電側電力変換部11に設定する電流指令値及び遷移時間設定、誤り率判定部132で取得した誤りビット数や受信誤り率、通信中遷移時間確定フラグなどの情報を記憶部16に記憶させ、呼び出すことができる。なお、記憶部16は不揮発性記憶部であり、電力が供給されていない場合にも情報を保持するものとする。
 図1の受電装置20の受電制御部25は、受電側電力変換部22に設定する電流指令値及び遷移時間設定、誤り率判定部252で取得した誤りビット数や受信誤り率、通信中遷移時間確定フラグなどの情報を記憶部26に記憶させ、呼び出すことができる。なお、記憶部26は不揮発性記憶部であり、電力が供給されていない場合にも情報を保持するものとする。
 次に、給電装置10における給電側電力変換部11の構成について、図2を用いて説明する。図2は本発明の実施の形態による給電装置における電力変換部の構成図の例である。図2において給電側電力変換部11は、整流部111と、DC-ACインバータ112と、電流検出部113と、ゲート駆動部114と、PWM制御信号生成部115と、から構成される。
 図2において給電側電力変換部11の整流部111は、外部から供給される系統電力からの交流電源、例えば三相交流200V電源に対して、ダイオードによる整流と平滑化により直流化し、直流電力をDC-ACインバータ112に供給する。DC-ACインバータ112は電力変換用のスイッチング素子であり、供給された直流電力をインバータ回路により非接触電力伝送に適した周波数、例えば、10kHz~100kHzの交流信号に変換し、電流検出部113を介して非接触給電部12に供給する。電流検出部113では、非接触電力伝送に用いられる信号の電流値を検出し、検出した電流値をPWM制御信号生成部115に供給する。
 なお、外部から供給される電力系統の交流電源は三相交流200Vに限定されるものではなく、単相交流200Vや単相交流100Vなど各種の交流電源の形態が想定される。これらの交流電源の種類に応じて、整流部111で用いられる整流回路を構成する。また、DC-ACインバータ112で生成される交流信号の周波数については、10kHz~100kHzを例に挙げたが、これに限定されるものではない。
 図2においてPWM制御信号生成部115は、給電制御部13から供給される電流指令値と電流検出部113から供給される電流値とを比較し、電流検出部113から供給される電流値が給電制御部13から供給される電流指令値と一致するようにPWM制御信号を生成し、ゲート駆動部114に供給する。
 ゲート駆動部114は、給電制御部13から供給される遷移時間設定に基づき、スイッチング素子のゲート抵抗を切り替えることによりDC-ACインバータ112でのスイッチング信号の時間波形の立ち上がり波形と立ち下がり波形の遷移時間を制御する。
 PWM制御信号生成部115で生成されるPWM制御信号と、遷移時間設定とにより切り替えられるDC-ACインバータ112から出力されるスイッチング信号の時間波形との関係について、図3を用いて説明する。
 図3は、PWM制御信号とDC-ACインバータにおけるスイッチング波形の遷移時間との関係を示す図である。図3において、(a)PWM制御信号は、図2におけるPWM制御信号生成部115において生成されるPWM制御信号の波形の例を示しており、給電側電力変換部11が出力すべき交流信号の波形に応じてパルス幅が制御される。このPWM制御信号を基にDC-ACコンバータ112のスイッチング素子のON-OFFを制御し、(b)~(d)に示すスイッチング波形が生成される。
 ここで、遷移時間設定は、Nmax+1種類の指令値(τ[0]、τ[1]・・・τ[Nmax])を持つものとし、τ[0]が立ち上がり波形と立ち下がり波形の遷移時間が最
も短く、τ[1]、τ[2]と遷移時間が順次長くなり、τ[Nmax]の場合に遷移時間が最も長くなる。図3において、(b)は遷移時間設定がτ[0]の場合の時間波形、(c)は遷移時間設定がτ[1]の場合の時間波形、(d)は遷移時間設定がτ[Nmax]の場合の時間波形を示している。
 充電制御用の通信が行われていない期間においては、例えば設定可能な遷移時間のうちで、遷移時間が最短のτ[0]を標準遷移時間設定とする。また、充電制御用通信が行われている期間においては、高調波ノイズによる通信障害が発生しない遷移時間設定の中で最短の遷移時間を最適な通信中遷移時間設定τ[k]とする。すなわち図示するように、充電制御用の通信が行われているときは、充電制御用の通信が行われていないときに比べて、遷移時間を長く設定するようにしている。スイッチング素子においてスイッチング波形の遷移時間が長くなると、電力の変換損失が増加し、熱放射が増加する。そのため、例えば上記のように設定可能な遷移時間の中で最も短い遷移時間を設定するようにしており、このことにより、スイッチング素子の高調波成分を抑制することができる。
 次に、受電装置20における受電側電力変換部22の構成について、図4を用いて説明する。図4は本発明の実施の形態による受電装置における電力変換部の構成図の例である。図4において受電側電力変換部22は、整流部221と、DC-DCコンバータ222と、電圧検出部223と、ゲート駆動部224と、PWM制御信号生成部225と、から構成される。
 図4において受電側電力変換部22の整流部221は、非接触受電部21から供給される高周波信号に対して、ダイオードによる整流と平滑化により直流化し、直流電力をDC-DCコンバータ222に供給する。DC-DCコンバータ222は電力変換用のスイッチング素子であり、供給された直流電力をインバータ回路により蓄電池60への充電に適した電圧、例えば、240Vの直流電力に変換し、電圧検出部223を介して蓄電池60に供給する。電圧検出部223では、蓄電池60への充電に用いられる直流電力の電圧値を検出し、検出した電圧値をPWM制御信号生成部225に供給する。
 なお、非接触受電部21から供給される高周波信号の周波数は10kHz~100kHz程度を想定しているが、その限りではない。また、DC-DCコンバータ222で生成される直流電力の電圧は、240Vを例として挙げたが、接続される蓄電池60の種類に応じて各種の電圧値が想定される。
 図4においてPWM制御信号生成部225は、受電制御部25から供給される電流指令値と電圧検出部223から供給される電圧値とを比較し、電圧検出部223から供給される電圧値が受電制御部25から供給される電圧指令値と一致するようにPWM制御信号を生成し、ゲート駆動部224に供給する。ゲート駆動部224は、受電制御部25から供給される遷移時間設定に基づき、スイッチング素子のゲート抵抗を切り替えることによりDC-DCコンバータ222でのスイッチング信号の時間波形の立ち上がり波形と立ち下がり波形の遷移時間を制御する。
 PWM制御信号生成部225で生成されるPWM制御信号と、遷移時間設定により切り替えられるDC-DCコンバータ222から出力されるスイッチング信号の時間波形との関係については、図3を用いて説明したPWM制御信号とDC-ACインバータにおけるスイッチング信号の時間波形の遷移時間との関係と同等であり、説明を省略する。
 以上のように構成された非接触充電システム1において、路上に設置された給電装置10から電気自動車2に対して充電する動作について、図5乃至図7を用いて説明する。
 図5は非接触充電システムの全体動作シーケンス図である。図5では非接触充電システムの例として、路上に設置された給電装置と、電気自動車に備えられた受電装置との間で電力供給を行うシステムを想定している。ただし給電装置、受電装置等の設置場所等は図5で説明する形態に限られるものではない。
 図5において、左側が給電装置10における全体動作シーケンスを示し、右側は電気自動車2の受電装置20における動作シーケンスを示している。まず始めに電気自動車の利用者は、所定の場所に電気自動車を停車させ(ステップS601)、路上に設置された給電装置10を操作して充電開始(ステップS501)させる。
 次に、給電装置10の給電制御部13と受電装置20の受電制御部25はステップ502及びステップS602において、充電装置側の情報(最大電圧、最大電流など)と電気自動車側の電池情報(最大電圧、電池容量、最大充電時間、充電済電池容量など)を通信インターフェース経由でやり取りし、相互の適合性の確認などの初期化処理を行い、それぞれステップS503とステップS603に進む。
 この初期化処理の間は、給電装置10の給電側電力変換部11と受電装置20の受電側電力変換部22共に電力変換処理を行っておらず、スイッチング素子の高調波ノイズ成分による充電制御用通信への障害は発生しない。また、ステップS502及びステップS602において、受電装置20の受電制御部25から充電に係る電流指令値を給電装置10の給電制御部13に対して送信するものとし、ステップS503において給電装置10の給電制御部13は、この電流指令値に基づいて給電を開始し、ステップS504に進む。また、受電装置20の受電制御部25はステップS603において、非接触受電部21において電力を受電し、蓄電池60への充電を開始させ、ステップS604に進む。
 なお、ステップS503において給電装置10の給電制御部13は、給電側電力変換部11に対して遷移時間設定を標準設定であるτ[0]を指定する。また、ステップS603において受電装置20の受電制御部25は、受電側電力変換部22に対して遷移時間設定を標準設定であるτ[0]を指定する。
 次に、ステップS605において受電装置20の受電制御部25は、充電に適した電流指令値を蓄電池60の充電状態に基づいて算出し、ステップS605に進む。
 次に、ステップS605において受電装置20の受電制御部25は、電流指令値を給電装置10の給電制御部13に対して送信し、ステップS606に進む。
 次に、ステップS606において受電装置20の受電制御部25は、蓄電池60に充電された電池容量が規定値に達したか否かを判定し、規定値に達している場合、即ち充電が完了している場合はステップS607に進み、規定値に達していない場合、即ち充電が完了していない場合は、ステップS604に戻る。ここで、ステップS604からステップS606におけるループは、蓄電池60への充電が完了するまで継続され、100ms間隔で実行されるものとする。なお、上記ステップS604からステップS606におけるループの実行時間間隔は自由に設定可能である。
 次に、ステップS607において受電装置20の受電制御部25は、蓄電池60の充電が完了していることから、充電停止要求を給電装置10の給電制御部13に送信し、ステップS608に進む。次に、ステップS608において受電装置20の受電制御部25は、蓄電池60への給電が停止しているか否かを判定し、停止していることが確認できなければステップS607に戻って充電停止要求を再送し、充電処理停止していることを確認できればステップS609に進んで充電処理を完了させる。
 以上のように、受電装置20の受電制御部25から給電装置10の給電制御部13へ通信を行うタイミングは、充電中に限定すると、ステップS605における電流指令値の送信と、ステップS607における充電停止要求の送信となる。
 以下、給電装置10において、電力の給電中に受電装置20から電流指令値や充電停止要求の通信を受信した場合の動作について説明する。
 まず、ステップS504において給電装置10の給電制御部13は、受電装置20から通信インターフェースを介して電流指令値または充電停止要求の通信を受信したことを、通信期間判定部131におけるAGC制御信号の電圧変化により検知し、ステップSS505に進む。
 ステップS505において給電装置10の給電制御部13は、記憶部16に保持された通信中遷移時間確定フラグを判定し、“ON”であればステップS510に進み、“OFF”であればステップS520に進む。この通信中遷移時間確定フラグとは、後述するステップS520の遷移時間探索シーケンスにおいて設定されるフラグであり、充電制御用通信への障害発生を抑制するためのスイッチング信号の遷移時間設定が確定しているか否かを示し、“ON”の場合に確定していることを表す。
 通信中遷移時間設定が確定している場合、ステップS510において給電装置10と受電装置20間の通信中のスイッチング信号波形の遷移時間を、通信していないときのスイッチング信号波形の遷移時間よりも長くすることによって充電制御用通信への障害を抑制するシーケンスを実行し、ステップS530に進む。一方、ステップS520においては、前述のステップS510で設定すべき遷移時間設定を探索するシーケンスを実行し、ステップS530に進む。
 次に、ステップS530において給電装置10の給電制御部13は、受信したデータの種別を判定し、電流指令値であればステップS531へ進み、充電停止要求であればステップS532へ進む。
 次に、ステップS531において給電装置10の給電制御部13は、受信した電流指令値を給電側電力変換部11に供給し、給電する電流出力を制御し、ステップS504に戻る。一方、ステップS530において給電装置10の給電制御部13は、給電側電力変換部11での変換処理を停止させ、給電する電流出力を停止させ、ステップS532に進んで充電処理を終了させる。
 ここで、図5のステップS520において、充電制御用通信への障害発生を抑制することを目的とした、スイッチング信号の遷移時間設定の探索動作について、図6を用いて説明する。図6は、充電制御用通信への障害発生を抑制するためのスイッチング信号遷移時間設定を探索する動作シーケンス図である。
 図6のステップS521において給電装置10の給電制御部13は、遷移時間設定をn番目のτ[n]とし、給電側電力変換部11に供給して、ステップS522に進む。ここで、nは整数とし、充電開始時はn=0である。また、後述のステップS526においてインクリメントされるものとする。
 次に、ステップS522において給電装置10の給電制御部13は、受電装置20から通信インターフェースを介して送信される電流指令値または充電停止要求の通信が終了したことを、通信期間判定部131におけるAGC制御信号の電圧変化により検知し、ステップSS523に進む。ステップS523において給電装置10の給電制御部13は、遷移時間設定を標準のτ[0]とし、給電側電力変換部11に供給して、ステップS524に進む。
 次に、ステップS524において給電装置10の給電制御部13は、誤り率判定部132から受信データ誤り率を取得し、ステップS525に進む。
 ステップS525において給電装置10の給電制御部13は、ステップS521において設定した遷移時間設定とステップS524において取得した受信データ誤り率とを記憶部16に格納し、ステップS526に進む。
 ステップS526においてはステップS521で設定すべき遷移時間設定を指定する整数nをインクリメントし、ステップS527に進む。
 ステップS527において給電装置10の給電制御部13は、整数nがNmaxより大きいか否かを判定し、大きい場合はステップS528に進み、小さい場合はこの探索シーケンスを抜けてステップS530に進む。なお、このステップS527では、(Nmax+1)種類の遷移時間設定(τ[0]、τ[1]・・・τ[Nmax])に対する受信データ誤り率を取得したか否かを判定するのに相当する。
 次に、ステップS528において給電装置10の給電制御部13は、記憶部16に格納されている(Nmax+1)種類の遷移時間設定(τ[0]、τ[1]・・・τ[Nmax])に対する受信データ誤り率情報から、受信データ誤り率が予め設定された誤り率よりも低くなる遷移時間設定の内で最も遷移時間の短いものを選択し、これを最適な通信中遷移時間設定値τ[k]として記憶部16に格納し、ステップS529に進む。
 ステップS529において給電装置10の給電制御部13は、記憶部16に格納されている通信中遷移時間確定フラグを“ON”に変更して格納し、この探索シーケンスを抜けてステップS530に進む。
 以上のステップS520における遷移時間探索シーケンスを(Nmax+1)回通ることにより、この非接触充電システムにおける充電制御用通信中に充電制御用通信への障害発生を抑制するためのスイッチング信号遷移時間設定値を求めることができる。
 ここで、図5のステップS510において充電制御用通信中に遷移時間を変更する動作について、図7を用いて説明する。図7は、充電制御用通信への障害発生を抑制するためのスイッチング遷移時間設定を変更する動作シーケンス図である。
 図7のステップS511において給電装置10の給電制御部13は、ステップS520で探索した通信中遷移時間設定τ[k]を給電側電力変換部11に設定し、ステップS512に進む。ステップS512において給電装置10の給電制御部13は、受電装置20から通信インターフェースを介して送信される電流指令値または充電停止要求の通信が終了したことを、通信期間判定部131におけるAGC制御信号の電圧変化により検知し、ステップSS513に進む。ステップS513において給電装置10の給電制御部13は、遷移時間設定を標準のτ[0]として給電側電力変換部11に設定し、ステップS514に進む。
 次に、ステップS514において給電装置10の給電制御部13は、誤り率判定部132で取得した受信データ誤り率が規定値以上であるか否かを判定し、規定値以上であればステップS511で設定した遷移時間設定τ[k]では充電制御用通信へ障害を抑制できていないと判断し、ステップS515に進み、規定値以下であれば、この変更シーケンスS510を抜けてステップS530に進む。ここでの規定値は例えば1%とするが、ゼロ以外の値であればよい。
 次に、ステップS515において給電装置10の給電制御部13は、通信中遷移時間確定フラグを“OFF”として記憶部16に格納し、ステップS516に進む。ステップS516において給電装置10の給電制御部13は、ステップS521で設定すべき遷移時間設定を指定する整数nをリセットして、この変更シーケンスS510を抜けてステップS530に進む。
 以上のように、本実施例の電力変換装置では、充電開始直後にスイッチング波形の遷移時間設定毎に充電制御用無線通信の受信誤り率を評価することにより、充電制御用無線通信の送受信期間のみ、高調波ノイズを抑制した遷移時間且つスイッチング損失のより少ない遷移時間を設定することで、充電効率の低下を抑制し、スイッチング素子の高調波ノイズによる充電制御用通信の耐性を改善して信頼性を向上する給電装置、受電装置、電気自動車、充電システム及び充電方法を提供することが可能である。
 また、スイッチング波形の遷移時間を長くする期間は、充電制御用無線通信の送受信期間のみであるため、常に遷移時間を長くする場合と比較して、スイッチング損失の増大に伴う熱放射を抑制することができるため、放熱設計に係るコストを低減することができる。
 また、充電開始直後だけでなく、通常の充電動作中に充電制御用の無線通信に障害が発生した場合にも再び遷移時間の探索を実行するため、送受信環境の変化に対応することが可能となる。
 なお、本実施例ではスイッチング素子のスイッチング波形における遷移時間を変更する手段として、ゲート抵抗を切り替えることにより遷移時間を制御する方法について説明したが、スイッチング素子の出力端子に可変容量を並列に接続することによって遷移時間を制御する方法や、リアクトルとコンデンサ及びパワー半導体から構成される補助回路を接続し、それらの定数を可変させることで共振特性を制御し遷移時間を制御する方法などを用いても同様の効果を得ることができる。
 さらに、本実施例では、充電制御用通信の送受信期間の検知方法としてAGC電圧の変化を用いたが、電気自動車からの電流指令値の周期的な伝送と同期させる方法や、通信部の同期検出信号を利用する方法を用いても同様の効果を得ることができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1   非接触充電システム
2   電気自動車
10  給電装置
11  給電側電力変換部
111 整流部
112 DC-ACインバータ
113 電流検出部
114、224 ゲート駆動部
115、225 PWM制御信号生成部
12  非接触給電部
13  給電制御部
131、251 通信期間判定部
132、252 誤り率判定部
14  給電側通信部
15、24 アンテナ
16、26 記憶部
21  非接触受電部
22  受電側電力変換部
222 DC-DCコンバータ
223 電圧検出部
23  受電側通信部
24  受電制御部
30  駆動系電力変換部
40  モータ
50  駆動部
60  蓄電池

Claims (17)

  1.  外部装置に給電する給電装置であって、
     スイッチング波形を変化させることが可能な電力変換用のスイッチング素子を有する電力変換部と、
     前記電力変換部で生成した電力を外部装置に供給する給電部と、
     制御部と、
     外部装置との間で通信を行う通信部と、を有し、
     前記制御部で、前記通信部が外部装置と通信している期間において、前記電力変換部におけるスイッチング素子のスイッチング波形を調整するよう制御することを特徴とする給電装置。
  2.  請求項1に記載の給電装置であって、
     前記電力変換部は、
     前記制御部からの指令電流値に応じたスイッチング波形を生成するPWM制御信号生成部と、
     前記PWM制御信号生成部で生成されるスイッチング波形のスイッチング遷移時間を変更可能なゲート駆動部と、を備え、
     前記制御部で、前記ゲート駆動部を制御し、前記PWM制御信号生成部で生成されるスイッチング波形の立ち上がりと立ち下がりの遷移時間を調整することを特徴とする給電装置。
  3.  請求項2に記載の給電装置であって、
     前記制御部は、前記遷移時間を前記通信部が外部と通信していない期間に設定されている遷移時間よりも長い時間に設定するように制御することを特徴とする給電装置。
  4.  請求項3に記載の給電装置であって、
     前記制御部は、前記スイッチング素子のスイッチング波形の立ち上がりと立ち下がりの遷移時間について少なくともひとつ以上の設定値を有し、
     前記通信部における受信データの誤り率を取得する誤り率取得部を有し、
     前記制御部は、前記制御部が有する遷移時間の各設定値に対する誤り率を、前記誤り率取得部で取得するよう制御することを特徴とする給電装置。
  5.  請求項4に記載の給電装置であって、
     前記誤り率取得部で取得した誤り率に基づき、基準として設定された誤り率よりも低くなる遷移時間の設定値の内で、遷移時間が最も短い遷移時間をスイッチング波形の遷移時間に設定するよう、前記制御部で前記ゲート駆動部を制御することを特徴とする給電装置。
  6.  請求項5に記載の給電装置であって、
     前記通信部が外部と通信を行う期間を判定する通信期間判定部を有し、
     前記通信期間判定部は、前記通信部におけるAGC制御信号を基に通信期間を判定することを特徴とする給電装置。
  7.  外部装置から電力を受ける受電装置であって、
     スイッチング波形を変化させることが可能な電力変換用のスイッチング素子を有する電力変換部と、
     外部からの電力を前記電力変換部に伝送する受電部と、
     制御部と、
     外部装置との間で通信を行う通信部と、を有し、
     前記制御部で、前記通信部が外部装置と通信している期間において、前記電力変換部におけるスイッチング素子のスイッチング波形を調整するよう制御することを特徴とする受電装置。
  8.  請求項7に記載の受電装置であって、
     前記電力変換部は、前記制御部からの指令電流値に応じたスイッチング波形を生成するPWM制御信号生成部と、
     前記PWM制御信号生成部で生成されるスイッチング波形のスイッチング遷移時間を変更可能なゲート駆動部と、を備え、
     前記制御部で、前記ゲート駆動部を制御し、前記PWM制御信号生成部で生成されるスイッチング波形の立ち上がりと立ち下がりの遷移時間を調整することを特徴とする受電装置。
  9.  請求項8に記載の受電装置であって、
     前記制御部は、前記遷移時間を前記通信部が外部と通信していない期間に設定されている遷移時間よりも長い時間に設定するように制御することを特徴とする受電装置。
  10.  請求項9に記載の受電装置であって、
     前記制御部は、前記スイッチング素子のスイッチング波形の立ち上がりと立ち下がりの遷移時間について少なくともひとつ以上の設定値を有し、
     前記通信部における受信データの誤り率を取得する誤り率取得部を有し、
     前記制御部は、前記制御部が有する遷移時間の各設定値に対する誤り率を、前記誤り率取得部で取得するよう制御することを特徴とする受電装置。
  11.  請求項10に記載の受電装置であって、
     前記誤り率取得部で取得した誤り率に基づき、基準として設定された誤り率よりも低くなる遷移時間の設定値の内で、遷移時間が最も短い遷移時間をスイッチング波形の遷移時間に設定するよう、前記制御部で前記ゲート駆動部を制御することを特徴とする受電装置。
  12.  請求項11に記載の受電装置であって、
     前記通信部が外部と通信を行う期間を判定する通信期間判定部を有し、
     前記通信期間判定部は、前記通信部におけるAGC制御信号を基に通信期間を判定することを特徴とする受電装置。
  13.  請求項7乃至12のいずれか1項に記載の受電装置と、
     前記受電装置から供給される電力を蓄電する蓄電池と、を有する電気自動車。
  14.  請求項1乃至6のいずれか1項に記載の給電装置と、
     請求項7乃至12のいずれか1項に記載の受電装置と、
     前記受電装置を介して供給される電力を蓄電する蓄電手段を有する充電システム。
  15. 給電装置からの電力を受電装置で受け、蓄電手段に蓄電する充電方法であって、
     前記給電装置と前記受電装置とが通信している期間において、前記給電装置及び前記受電装置がそれぞれ有するスイッチング素子の波形を前記給電装置及び前記受電装置のそれぞれで調整することを特徴とする充電方法。
  16.  請求項15に記載の充電方法であって、
     前記給電装置及び前記受電装置がそれぞれ有するスイッチング素子のスイッチング波形の立ち上がりと立ち下がりの遷移時間を調整制御することを特徴とする充電方法。
  17.  請求項16に記載の充電方法であって、
     前記給電装置及び前記受電装置は、前記給電装置及び前記受電装置がそれぞれ有するスイッチング素子のスイッチング波形の遷移時間に設定可能な各遷移時間における誤り率を取得し、基準として設定された誤り率よりも低くなる遷移時間の内で、遷移時間が最も短い遷移時間をスイッチング波形の遷移時間に調整しスイッチング素子の波形を制御することを特徴とする充電方法。
PCT/JP2014/051605 2013-02-27 2014-01-27 給電装置、受電装置、電気自動車、充電システム及び充電方法 WO2014132716A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14757303.4A EP2985864A4 (en) 2013-02-27 2014-01-27 POWER SUPPLY APPARATUS, ELECTRICITY RECEIVING APPARATUS, ELECTRIC VEHICLE, CHARGING SYSTEM, AND CHARGING METHOD
US14/440,889 US9653937B2 (en) 2013-02-27 2014-01-27 Power supplying apparatus, power receiving apparatus, electrical vehicle, charging system, and charging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-036582 2013-02-27
JP2013036582A JP2014166084A (ja) 2013-02-27 2013-02-27 給電装置、受電装置、電気自動車、充電システム及び充電方法

Publications (1)

Publication Number Publication Date
WO2014132716A1 true WO2014132716A1 (ja) 2014-09-04

Family

ID=51427990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051605 WO2014132716A1 (ja) 2013-02-27 2014-01-27 給電装置、受電装置、電気自動車、充電システム及び充電方法

Country Status (4)

Country Link
US (1) US9653937B2 (ja)
EP (1) EP2985864A4 (ja)
JP (1) JP2014166084A (ja)
WO (1) WO2014132716A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835290B2 (ja) * 2013-08-26 2015-12-24 トヨタ自動車株式会社 充電システム及びペアリング方法
JP2016001976A (ja) * 2014-06-12 2016-01-07 キヤノン株式会社 給電装置、制御方法、及びプログラム
KR20160072982A (ko) 2014-12-16 2016-06-24 현대자동차주식회사 전기차의 충전 모드 선택 방법 및 이를 수행하기 위한 충전 시스템
KR101745099B1 (ko) 2015-06-15 2017-06-20 현대자동차주식회사 연료전지차량의 이동식 발전용 안전장치 및 그의 동작 방법
WO2017033371A1 (ja) * 2015-08-26 2017-03-02 パナソニックIpマネジメント株式会社 リニアモータ装置、及び、引き戸装置
US9871386B2 (en) * 2015-10-30 2018-01-16 Avago Technologies General Ip (Singapore) Pte. Ltd Wireless communication device and power receiving unit with switching prediction and methods for use therewith

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343205A (ja) 1993-06-01 1994-12-13 Nissan Motor Co Ltd 電気自動車の充電装置
JP2001197736A (ja) * 2000-01-07 2001-07-19 Shinko Electric Co Ltd 非接触給電装置
JP2008206297A (ja) * 2007-02-20 2008-09-04 Sony Ericsson Mobilecommunications Japan Inc 携帯端末
JP2009089520A (ja) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd 電力供給システム
JP2010148190A (ja) * 2008-12-17 2010-07-01 Seiko Epson Corp 送電制御装置、送電装置、受電制御装置、受電装置及び電子機器
JP2012029527A (ja) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd 非接触給電装置及び電気錠システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882120A (en) * 1988-12-16 1989-11-21 Sundstrand Corporation DC content control for an inverter
EP0409226A3 (en) * 1989-07-21 1993-01-13 Hitachi, Ltd. Power supply control system
US5657326A (en) * 1994-12-20 1997-08-12 3Com Corporation Radio based collision detection for wireless communication system
US6160443A (en) * 1999-09-08 2000-12-12 Atmel Corporation Dual automatic gain control in a QAM demodulator
EP1634355B1 (en) * 2003-05-23 2018-10-10 Auckland Uniservices Limited Methods and apparatus for control of inductively coupled power transfer systems
US9379780B2 (en) 2010-12-16 2016-06-28 Qualcomm Incorporated Wireless energy transfer and continuous radio station signal coexistence
JP6042091B2 (ja) * 2011-05-13 2016-12-14 ローム株式会社 スイッチングレギュレータの制御回路、スイッチングレギュレータおよび電子機器、スイッチング電源装置、テレビ
JP5793963B2 (ja) * 2011-05-27 2015-10-14 日産自動車株式会社 非接触給電装置
US9099885B2 (en) * 2011-06-17 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
JP5840886B2 (ja) * 2011-07-25 2016-01-06 ソニー株式会社 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
KR101685371B1 (ko) * 2012-03-06 2016-12-12 가부시키가이샤 무라타 세이사쿠쇼 전력 전송 시스템
JP6165009B2 (ja) * 2013-09-27 2017-07-19 エスアイアイ・セミコンダクタ株式会社 給電システム、給電装置、及び給電方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343205A (ja) 1993-06-01 1994-12-13 Nissan Motor Co Ltd 電気自動車の充電装置
JP2001197736A (ja) * 2000-01-07 2001-07-19 Shinko Electric Co Ltd 非接触給電装置
JP2008206297A (ja) * 2007-02-20 2008-09-04 Sony Ericsson Mobilecommunications Japan Inc 携帯端末
JP2009089520A (ja) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd 電力供給システム
JP2010148190A (ja) * 2008-12-17 2010-07-01 Seiko Epson Corp 送電制御装置、送電装置、受電制御装置、受電装置及び電子機器
JP2012029527A (ja) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd 非接触給電装置及び電気錠システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985864A4

Also Published As

Publication number Publication date
US9653937B2 (en) 2017-05-16
JP2014166084A (ja) 2014-09-08
EP2985864A4 (en) 2016-09-28
US20150303730A1 (en) 2015-10-22
EP2985864A1 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2014132716A1 (ja) 給電装置、受電装置、電気自動車、充電システム及び充電方法
JP5135204B2 (ja) 非接触電力伝送システム、および該非接触電力伝送システムにおける負荷装置
CN107222039B (zh) 无线电力传输***
US9552921B2 (en) Wireless power transmitter and wireless power receiver
JP5941094B2 (ja) 非接触送受電システム
US10277082B2 (en) Power-transmitting device and wireless power-supplying system
US10256675B2 (en) Power-supplying device and wireless power supply system
KR102674446B1 (ko) 무선 급전장치
JP5853889B2 (ja) 受電機器及び電力伝送システム
WO2016002839A1 (ja) 受電装置、非接触給電システム及び送電装置
EP2899847A1 (en) Power receiving device and contactless power transmission device
US9773609B2 (en) Power supply apparatus and power control method thereof
CN112585857B (zh) 电力变换装置
WO2017141522A1 (ja) 送電装置
JP6176547B2 (ja) 非接触給電装置及び非接触給電装置の始動方法
JPWO2013136431A1 (ja) 電力受電装置及び電力受電方法
WO2016006066A1 (ja) 非接触給電装置
JP6675094B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
JP6675093B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
KR101714148B1 (ko) 친환경 차량의 무선충전장치 및 방법
JP2015061493A (ja) 充電器
US11945317B2 (en) Inductive power transfer system for derating a battery charging profile of electric vehicle batteries and control method thereof
KR20180064219A (ko) 소형 전기자동차용 최대 전력전달과 제어 안정화를 위한 무선충전 급집전 시스템 및 그 제어방법
JP6685016B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
KR101771807B1 (ko) 무선 전력 송신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757303

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014757303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014757303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14440889

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE