WO2014131178A1 - 一种呼吸跟踪装置及放射治疗*** - Google Patents

一种呼吸跟踪装置及放射治疗*** Download PDF

Info

Publication number
WO2014131178A1
WO2014131178A1 PCT/CN2013/071997 CN2013071997W WO2014131178A1 WO 2014131178 A1 WO2014131178 A1 WO 2014131178A1 CN 2013071997 W CN2013071997 W CN 2013071997W WO 2014131178 A1 WO2014131178 A1 WO 2014131178A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiratory
patient
module
frequency
control module
Prior art date
Application number
PCT/CN2013/071997
Other languages
English (en)
French (fr)
Inventor
吴中华
Original Assignee
深圳市奥沃医学新技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市奥沃医学新技术发展有限公司 filed Critical 深圳市奥沃医学新技术发展有限公司
Priority to CN201380004410.7A priority Critical patent/CN104220132B/zh
Priority to PCT/CN2013/071997 priority patent/WO2014131178A1/zh
Publication of WO2014131178A1 publication Critical patent/WO2014131178A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support
    • A61N5/107Target adjustment, e.g. moving the patient support in real time, i.e. during treatment

Definitions

  • the invention belongs to the field of precise radiation therapy in the medical field, and in particular relates to a respiratory tracking device and a radiation therapy system. Background technique
  • Accurate radiotherapy is a three-dimensional treatment technology based on high-resolution image detection devices for precise positioning, positioning, and illumination.
  • Accurate radiotherapy can reduce the probability of normal tissue surrounding the target area, increase the dose of tumor area, and increase the rate of tumor control.
  • human tumors, especially chest and abdomen tumors move with the breathing movement of the human body, and the irradiation field is relatively static, which causes the exposure dose of important normal tissues in the target area and its surroundings to be significantly different from that of the plan.
  • the accuracy of the treatment is affected. Therefore, in the precise radiotherapy of tumors, especially chest and abdomen tumors, it is necessary to use respiratory tracking devices to reduce the adverse effects of respiratory movements.
  • the existing respiratory tracking device generally adopts a human body external fixed marker body, and the movement law of the marker body is collected by a high speed camera to judge the respiratory state of the lungs; or it is judged by installing a bundled expansion and contraction on the human chest to collect the chest ups and downs of the human body. Breathing of the lungs.
  • the patient In the case of respiratory collection, the patient is required to collect respiratory conditions at the end of inspiration or at the end of expiration to make a treatment plan.
  • the treatment device starts treatment only when the patient is relatively stable at the end of expiration or inhalation.
  • the device stops treatment when the patient starts inhaling or exhaling again, thereby achieving respiratory tracking.
  • a respiratory tracking device is intermittent, does not have the characteristics of real-time tracking, and cannot accurately track a tumor that is moved due to the position of the breath.
  • a breathing tracking device includes a breathing control module, an analysis comparison module, and a treatment control module, wherein: the breathing control module is coupled to the analysis comparison module for controlling the output of the breathing Flow rate and respiratory rate, and transmitting a time trajectory coordinate value of the tumor position movement and a patient respiratory waveform and frequency to the analysis comparison module; the analysis comparison module is coupled to the respiratory control module and the treatment control module Receiving a time trajectory coordinate value of the tumor position movement and the patient respiratory waveform and frequency sent by the respiratory control module, and comparing the patient respiratory waveform and frequency with a respiratory waveform and frequency collected during planned design, When the difference between the respiratory waveform and the frequency of the patient and the respiratory waveform and frequency collected during the planned design is less than or equal to a preset value, the treatment control module is instructed to control the treatment according to the time trajectory coordinate value of the movement of the tumor position The device is treated; and the treatment control module is coupled to the Analysis of comparison module, for treatment according to the analysis and comparison of the indication of the module, the position of
  • the analysis comparison module instructs the treatment control module to stop the treatment.
  • the breathing control module further comprises a breathing supply recording module, an image scanning module and a tumor position calculating module, wherein: the breathing supply and recording module is connected to the tumor position calculating module, according to a preset respiratory flow Supplying oxygen to the patient at a respiratory rate, recording a respiratory waveform and frequency of the patient, and transmitting the patient respiratory waveform and frequency to the tumor location calculation module; and the image scanning module being coupled to the tumor location calculation The module performs image scanning on the patient while the patient is breathing smoothly, and sends the scanned patient dynamic image to the tumor location calculation module.
  • the tumor position calculation module is connected to the respiratory supply recording module and the image scanning module, and receives the patient respiratory waveform and frequency sent by the respiratory supply and recording module and the image scanning module sends The patient dynamic image, based on the patient dynamic image and Calculating a time trajectory coordinate value of the movement of the tumor position in the respiratory waveform and frequency of the patient, and calculating a time trajectory coordinate value of the movement of the tumor position and a respiratory waveform of the patient and The frequency is sent to the analysis comparison module.
  • the image scan of the patient is scanned for at least one complete respiratory frequency period.
  • the image scanning module is a dynamic CT.
  • Another object of the present invention is to provide a radiation therapy system comprising the respiratory tracking device described above.
  • the treatment device treats the patient based on the indication of the treatment control module in the respiratory tracking device.
  • the respiratory tracking device and the radiation therapy system provided by the present invention can accurately track and treat tumors that move due to the position of the breathing.
  • BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the prior art description will be briefly described below, and obviously, in the following description The drawings are only some of the embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
  • FIG. 1 is a block diagram showing the structure of a respiratory tracking apparatus according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of a radiation therapy system according to an embodiment of the present invention. detailed description
  • FIG. 1 is a structural block diagram of a respiratory tracking apparatus according to an embodiment of the present invention.
  • the respiratory tracking device 100 includes a respiratory control module 110, an analytical comparison module 120, and a treatment control module 130.
  • the breathing control module 110 is coupled to the analysis comparison module 120 for controlling the respiratory flow and respiratory frequency of the output thereof, and transmitting the time trajectory coordinate value of the patient tumor position movement and the patient respiratory waveform and frequency to the analysis comparison module 120.
  • the breathing control module 110 further includes: a breathing supply recording module 111, an image scanning module 113, and a tumor position calculating module 115.
  • the breathing supply and recording module 111 is connected to the tumor position calculating module 115, supplies oxygen to the patient according to the preset respiratory flow rate and respiratory frequency, records the respiratory waveform and frequency of the patient, and transmits the recorded respiratory waveform and frequency of the patient to the tumor.
  • Location calculation module 115 is connected to the tumor position calculating module 115, supplies oxygen to the patient according to the preset respiratory flow rate and respiratory frequency, records the respiratory waveform and frequency of the patient, and transmits the recorded respiratory waveform and frequency of the patient to the tumor.
  • the image scanning module 113 is connected to the tumor position calculating module 115, and performs image scanning on the patient while the patient is breathing smoothly, and sends the scanned patient dynamic image to the tumor position calculating module 115, wherein the image scanning range is at least A complete respiratory frequency cycle, a complete respiratory frequency cycle refers to a complete exhalation plus inhalation process, and the image scanning module 113 can be a dynamic CT.
  • the tumor position calculation module 115 is connected to the respiratory supply recording module 111 and the image scanning module 113, and receives the patient respiratory waveform and frequency sent by the respiratory supply and recording module 111 and the patient dynamic image transmitted by the image scanning module 113, according to the patient dynamic image and the patient.
  • the respiratory waveform and frequency are used to calculate the time trajectory coordinate value of the tumor position movement of the patient in the respiratory waveform and frequency, and the time trajectory coordinate value and the patient respiratory waveform and frequency are sent to the analysis comparison module 120.
  • the analysis comparison module 120 is connected to the tumor position calculation module 115 and the treatment control module 130, and receives the time trajectory coordinate value of the tumor position movement and the patient respiratory waveform and frequency sent by the tumor position calculation module 115, and the patient respiratory waveform and frequency and the plan The respiratory waveform and the frequency collected during the design are compared. When the difference between the respiratory waveform and the frequency of the patient and the respiratory waveform and frequency collected during the planned design is less than or equal to the preset value, the analysis comparison module 120 instructs the treatment control module 130 to follow the The time trajectory coordinate value of the tumor position movement controls the treatment device for treatment.
  • the analysis comparison module 120 instructs the treatment control module 130 to stop the treatment, and after the patient's breathing condition is adjusted to stabilize the breathing, Continue treatment.
  • the treatment control module 130 is coupled to the analysis comparison module 120 and controls the treatment device to perform treatment according to the time trajectory coordinate value of the tumor position movement according to the indication of the analysis comparison module 120.
  • the analysis comparison module 120 continuously compares the collected patient respiratory waveform and frequency with the respiratory waveform and frequency collected during the planned design, if the preset value is exceeded (ie, The error allowed value will terminate the treatment.
  • the radiation therapy system includes a respiratory tracking device 100 and a treatment device 200 that treats the patient based on instructions from the therapy control module 130 in the respiratory tracking device 100.
  • the respiratory tracking device and the radiation therapy system provided by the present invention are capable of accurately tracking and treating tumors that move due to the position of the breathing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种呼吸跟踪装置(100)及放射治疗***,属于放射治疗领域。呼吸跟踪装置(100)包括:呼吸控制模块(110),连接于分析比对模块(120),用于控制输出的呼吸流量和呼吸频率,并将肿瘤位置移动的时间轨迹坐标值及病人呼吸波形及频率发送到分析比对模块(120);分析比对模块(120),连接于治疗控制模块(130),将病人呼吸波形及频率与计划设计时采集的呼吸波形及频率做比对,当其差值小于或等于预设值时,指示治疗控制模块(130)依照肿瘤位置移动的时间轨迹坐标值控制治疗装置(200)进行治疗;治疗控制模块(130),根据分析比对模块(120)的指示控制治疗装置(200)进行治疗。该呼吸跟踪装置(100)及放射治疗***,能够精确地跟踪治疗由于呼吸带来位置移动的肿瘤。

Description

一种呼吸跟踪装置及放射治疗***
技术领域
本发明属于医疗领域中的精确放射治疗领域, 尤其涉及一种呼吸跟踪装置 及放射治疗***。 背景技术
精确放射治疗是基于高清晰度图像检测装置来进行精确定位、 摆位、 照射 等一体化的三维治疗技术。 精确放射治疗可以减少靶区周围正常组织并发症概 率, 提高肿瘤区照射剂量, 增加肿瘤控制率。 但是人体肿瘤, 特别是胸腹部肿 瘤会随人体的呼吸运动而移动, 而照射野是相对静止的, 这就造成靶区及其周 围重要正常组织的受照射剂量与计划制定时有明显区别, 放疗治疗的精确度受 到影响。 所以, 在做肿瘤, 特别是胸腹部肿瘤的精确放射治疗中, 采用呼吸跟 踪装置来降低呼吸运动的不良影响是非常有必要的。
现有呼吸跟踪装置, 一般是采用人体外固定标志体, 通过高速摄像机采集 标志体的运动规律来判断肺部的呼吸情况; 或者通过在人体胸部安装捆绑式伸 缩带来采集人体胸部起伏情况来判断肺部的呼吸情况。 在做呼吸情况采集时要 求病人在吸气末或呼气末采集呼吸情况, 来做治疗计划。 在治疗时根据高速摄 像机采集的信号或捆绑式伸缩带采集的信号来分析病人是否到达呼气末或吸气 末, 只有病人在呼气末或吸气末的相对平稳时, 治疗设备才开始治疗, 当病人 再次开始吸气或呼气时设备停止治疗, 从而来实现呼吸跟踪。 但是这样的呼吸 跟踪装置是间断性的, 不具备实时跟踪的特性, 不能精确的跟踪治疗由于呼吸 带来位置移动的肿瘤。 发明内容 本发明的目的在于提供一种呼吸跟踪装置及放射治疗***, 旨在解决现有 技术不能精确的跟踪治疗由于呼吸带来位置移动的肿瘤的问题。
本发明是这样实现的, 一种呼吸跟踪装置, 包括呼吸控制模块、 分析比对 模块以及治疗控制模块, 其中: 所述呼吸控制模块, 连接于所述分析比对模块, 用于控制输出的呼吸流量和呼吸频率, 并将肿瘤位置移动的时间轨迹坐标值及 病人呼吸波形及频率发送到所述分析比对模块; 所述分析比对模块, 连接于所 述呼吸控制模块以及所述治疗控制模块, 接收所述呼吸控制模块发送的所述肿 瘤位置移动的时间轨迹坐标值及所述病人呼吸波形及频率, 将所述病人呼吸波 形及频率与计划设计时采集的呼吸波形及频率做比对, 当所述病人呼吸波形及 频率与所述计划设计时采集的呼吸波形及频率的差值小于或等于预设值时, 指 示所述治疗控制模块依照所述肿瘤位置移动的时间轨迹坐标值控制治疗装置进 行治疗; 以及所述治疗控制模块, 连接于所述分析比对模块, 根据所述分析比 对模块的指示, 依照所述肿瘤位置移动的时间轨迹坐标值控制治疗装置进行治 疗。
较优的, 当所述病人呼吸波形及频率与所述计划设计时采集的呼吸波形及 频率的差值大于预设值时,所述分析比对模块指示所述治疗控制模块停止治疗。
较优的, 所述呼吸控制模块进一步包括呼吸供给记录模块、 影像扫描模块 以及肿瘤位置计算模块, 其中: 所述呼吸供给及记录模块, 连接于所述肿瘤位 置计算模块, 根据预设的呼吸流量和呼吸频率给病人供给氧气, 记录所述病人 的呼吸波形及频率, 并将所述病人呼吸波形及频率发送到所述肿瘤位置计算模 块; 以及所述影像扫描模块, 连接于所述肿瘤位置计算模块, 在病人平稳呼吸 的情况下, 对病人进行影像扫描, 并将扫描到的病人动态影像发送到所述肿瘤 位置计算模块。
较优的, 所述肿瘤位置计算模块, 连接于所述呼吸供给记录模块以及所述 影像扫描模块, 接收所述呼吸供给及记录模块发送的所述病人呼吸波形及频率 以及所述影像扫描模块发送的所述病人动态影像, 根据所述病人动态影像以及 所述病人呼吸波形及频率, 计算出病人在此呼吸波形及频率情况下的所述肿瘤 位置移动的时间轨迹坐标值, 并将所述肿瘤位置移动的时间轨迹坐标值及所述 病人呼吸波形及频率发送到所述分析比对模块。
较优的, 对病人进行影像扫描的影像扫描范围为至少一个完整的呼吸频率 周期。
较优的, 所述影像扫描模块为动态 CT。
本发明的另一目的在于提供一种放射治疗***, 包括以上所述的呼吸跟踪 装置。
较优的, 所述治疗装置根据所述呼吸跟踪装置中的所述治疗控制模块的指 示对病人进行治疗。
本发明提供的呼吸跟踪装置及放射治疗***, 能够精确的跟踪治疗由于呼 吸带来位置移动的肿瘤。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一实施例提供的呼吸跟踪装置的结构框图;
图 2是本发明一实施例提供的放射治疗***的结构框图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
请参见图 1 , 图 1是本发明一实施例提供的呼吸跟踪装置的结构框图。 如 图 1所示, 呼吸跟踪装置 100包括: 呼吸控制模块 110、 分析比对模块 120、 以 及治疗控制模块 130。
呼吸控制模块 110,连接于分析比对模块 120,用于控制其输出的呼吸流量 和呼吸频率, 并将病人肿瘤位置移动的时间轨迹坐标值及病人呼吸波形及频率 发送到分析比对模块 120。 呼吸控制模块 110进一步包括: 呼吸供给记录模块 111、 影像扫描模块 113、 及肿瘤位置计算模块 115。
呼吸供给及记录模块 111 ,连接于肿瘤位置计算模块 115 ,根据预设的呼吸 流量和呼吸频率给病人供给氧气, 记录病人的呼吸波形及频率, 并将所记录的 病人呼吸波形及频率发送到肿瘤位置计算模块 115。
影像扫描模块 113 ,连接于肿瘤位置计算模块 115 ,在病人平稳呼吸的情况 下, 对病人进行影像扫描, 并将扫描到的病人动态影像发送到肿瘤位置计算模 块 115 , 其中, 影像扫描范围为至少一个完整的呼吸频率周期, 完整的呼吸频 率周期是指一个完整的呼气加吸气过程, 影像扫描模块 113可以是动态 CT。
肿瘤位置计算模块 115 , 连接于呼吸供给记录模块 111 以及影像扫描模块 113 ,接收呼吸供给及记录模块 111发送的病人呼吸波形及频率以及影像扫描模 块 113发送的病人动态影像, 根据病人动态影像以及病人呼吸波形及频率, 计 算出病人在此呼吸波形及频率情况下肿瘤位置移动的时间轨迹坐标值, 并将此 时间轨迹坐标值及病人呼吸波形及频率发送到分析比对模块 120。
分析比对模块 120, 连接于肿瘤位置计算模块 115以及治疗控制模块 130, 接收肿瘤位置计算模块 115发送的肿瘤位置移动的时间轨迹坐标值及病人呼吸 波形及频率, 将病人呼吸波形及频率与计划设计时采集的呼吸波形及频率做比 对, 当病人呼吸波形及频率与计划设计时采集的呼吸波形及频率的差值小于或 等于预设值时, 分析比对模块 120指示治疗控制模块 130依照肿瘤位置移动的 时间轨迹坐标值控制治疗装置进行治疗。 当病人呼吸波形及频率与计划设计时 采集的呼吸波形及频率的差值大于预设值时, 分析比对模块 120指示治疗控制 模块 130停止治疗, 待调整病人呼吸情况, 使其呼吸稳定后, 再继续治疗。 治疗控制模块 130,连接于分析比对模块 120,根据分析比对模块 120的指 示, 依照肿瘤位置移动的时间轨迹坐标值控制治疗装置进行治疗。
也就是说, 在整个治疗的过程中, 分析比对模块 120不间断地将采集到的 病人呼吸波形及频率与计划设计时采集的呼吸波形及频率做比对, 如果超出预 设值(即, 误差允许值)将终止治疗。
图 2是本发明一实施例提供的放射治疗***的结构框图。 如图 2所示, 放 射治疗***包括呼吸跟踪装置 100以及治疗装置 200, 治疗装置 200根据呼吸 跟踪装置 100中治疗控制模块 130的指示对病人进行治疗。
本发明所提供的呼吸跟踪装置及放射治疗***, 能够精确的跟踪治疗由于 呼吸带来位置移动的肿瘤。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种呼吸跟踪装置, 其特征在于, 包括呼吸控制模块、 分析比对模块以 及治疗控制模块, 其中:
所述呼吸控制模块, 连接于所述分析比对模块, 用于控制输出的呼吸流量 和呼吸频率, 并将肿瘤位置移动的时间轨迹坐标值及病人呼吸波形及频率发送 到所述分析比对模块;
所述分析比对模块, 连接于所述呼吸控制模块以及所述治疗控制模块, 接 收所述呼吸控制模块发送的所述肿瘤位置移动的时间轨迹坐标值及所述病人呼 吸波形及频率, 将所述病人呼吸波形及频率与计划设计时采集的呼吸波形及频 率做比对, 当所述病人呼吸波形及频率与所述计划设计时采集的呼吸波形及频 率的差值小于或等于预设值时, 指示所述治疗控制模块依照所述肿瘤位置移动 的时间轨迹坐标值控制治疗装置进行治疗; 以及
所述治疗控制模块, 连接于所述分析比对模块, 根据所述分析比对模块的 指示, 依照所述肿瘤位置移动的时间轨迹坐标值控制治疗装置进行治疗。
2、 如权利要求 1所述的呼吸跟踪装置, 其特征在于:
当所述病人呼吸波形及频率与所述计划设计时采集的呼吸波形及频率的差 值大于预设值时, 所述分析比对模块指示所述治疗控制模块停止治疗。
3、 如权利要求 1所述的呼吸跟踪装置, 其特征在于, 所述呼吸控制模块进 一步包括呼吸供给记录模块、 影像扫描模块以及肿瘤位置计算模块, 其中: 所述呼吸供给及记录模块, 连接于所述肿瘤位置计算模块, 根据预设的呼 吸流量和呼吸频率给病人供给氧气, 记录所述病人的呼吸波形及频率, 并将所 述病人呼吸波形及频率发送到所述肿瘤位置计算模块; 以及
所述影像扫描模块, 连接于所述肿瘤位置计算模块, 在病人平稳呼吸的情 况下, 对病人进行影像扫描, 并将扫描到的病人动态影像发送到所述肿瘤位置 计算模块。
4、 如权利要求 3所述的呼吸跟踪装置, 其特征在于: 所述肿瘤位置计算模块, 连接于所述呼吸供给记录模块以及所述影像扫描 模块, 接收所述呼吸供给及记录模块发送的所述病人呼吸波形及频率以及所述 影像扫描模块发送的所述病人动态影像, 根据所述病人动态影像以及所述病人 呼吸波形及频率, 计算出病人在此呼吸波形及频率情况下的所述肿瘤位置移动 的时间轨迹坐标值, 并将所述肿瘤位置移动的时间轨迹坐标值及所述病人呼吸 波形及频率发送到所述分析比对模块。
5、 如权利要求 3所述的呼吸跟踪装置, 其特征在于, 对病人进行影像扫描 的影像扫描范围为至少一个完整的呼吸频率周期。
6、 如权利要求 3所述的呼吸跟踪装置, 其特征在于, 所述影像扫描模块为 动态 CT。
7、 一种放射治疗***, 其特征在于, 包括如权利要求 1-6中任一项所述的 呼吸跟踪装置。
8、 如权利要求 7所述的放射治疗***, 其特征在于: 所述治疗装置根据所 述呼吸跟踪装置中的所述治疗控制模块的指示对病人进行治疗。
PCT/CN2013/071997 2013-02-28 2013-02-28 一种呼吸跟踪装置及放射治疗*** WO2014131178A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380004410.7A CN104220132B (zh) 2013-02-28 2013-02-28 一种呼吸跟踪装置及放射治疗***
PCT/CN2013/071997 WO2014131178A1 (zh) 2013-02-28 2013-02-28 一种呼吸跟踪装置及放射治疗***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071997 WO2014131178A1 (zh) 2013-02-28 2013-02-28 一种呼吸跟踪装置及放射治疗***

Publications (1)

Publication Number Publication Date
WO2014131178A1 true WO2014131178A1 (zh) 2014-09-04

Family

ID=51427479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071997 WO2014131178A1 (zh) 2013-02-28 2013-02-28 一种呼吸跟踪装置及放射治疗***

Country Status (2)

Country Link
CN (1) CN104220132B (zh)
WO (1) WO2014131178A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110613427A (zh) * 2014-12-02 2019-12-27 博医来股份公司 从热图像确定呼吸信号

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107126192B (zh) * 2017-04-18 2020-03-06 四川省肿瘤医院 一种肿瘤位置实时监测***及其监测方法
CN110678224B (zh) * 2017-06-19 2022-05-13 深圳市奥沃医学新技术发展有限公司 利用放疗设备对靶点跟踪照射的装置及放疗设备
CN110366389B (zh) * 2017-06-19 2023-03-03 深圳市奥沃医学新技术发展有限公司 利用放疗设备确定目标靶点位置的***、装置和放疗设备
CN109363702B (zh) * 2018-09-29 2023-01-20 上海联影医疗科技股份有限公司 医学成像方法、***及辐射剂量的获取方法、***
WO2020124583A1 (zh) * 2018-12-21 2020-06-25 四川省肿瘤医院 一种肿瘤位置实时监测***及其监测方法
CN109965884A (zh) * 2019-04-19 2019-07-05 哈尔滨理工大学 一种基于加速度传感器的体表呼吸运动测量***
CN110237446B (zh) * 2019-07-09 2024-05-03 冯丽娟 一种用于肿瘤放射治疗的呼吸门控设备
CN114052767B (zh) * 2022-01-14 2022-03-22 常州复睿特生物科技有限公司 一种肺癌分子标记物检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076282A (zh) * 2004-09-30 2007-11-21 安科锐公司 移动目标的动态追踪
CN101081177A (zh) * 2006-05-30 2007-12-05 深圳市一体医疗科技有限公司 一种放射治疗时实时跟踪肿瘤位置的方法
US20080144772A1 (en) * 2006-12-14 2008-06-19 Byong Yong Yi Treatment-Speed Regulated Tumor-Tracking
CN101623198A (zh) * 2008-07-08 2010-01-13 深圳市海博科技有限公司 动态肿瘤实时跟踪方法
CN101843955A (zh) * 2010-03-30 2010-09-29 江苏瑞尔医疗科技有限公司 呼吸同步跟踪***的位置信号的混合预测方法及预测器
WO2012127724A1 (ja) * 2011-03-18 2012-09-27 三菱重工業株式会社 放射線治療装置制御装置、その処理方法、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070000494A1 (en) * 1999-06-30 2007-01-04 Banner Michael J Ventilator monitor system and method of using same
EP2018202A4 (en) * 2006-05-12 2018-01-10 YRT Limited Method and device for generating a signal that reflects respiratory efforts in patients on ventilatory support
WO2010108552A1 (en) * 2009-03-27 2010-09-30 Maquet Critical Care Ab Peep regulation for a breathing apparatus
CN102068271B (zh) * 2011-02-22 2012-04-18 南方医科大学 一种基于呼吸相位的胸部或腹部ct图像的回顾性分类方法
US20130035588A1 (en) * 2011-08-03 2013-02-07 Siemens Corporation Magnetic resonance imaging for therapy planning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076282A (zh) * 2004-09-30 2007-11-21 安科锐公司 移动目标的动态追踪
CN101081177A (zh) * 2006-05-30 2007-12-05 深圳市一体医疗科技有限公司 一种放射治疗时实时跟踪肿瘤位置的方法
US20080144772A1 (en) * 2006-12-14 2008-06-19 Byong Yong Yi Treatment-Speed Regulated Tumor-Tracking
CN101623198A (zh) * 2008-07-08 2010-01-13 深圳市海博科技有限公司 动态肿瘤实时跟踪方法
CN101843955A (zh) * 2010-03-30 2010-09-29 江苏瑞尔医疗科技有限公司 呼吸同步跟踪***的位置信号的混合预测方法及预测器
WO2012127724A1 (ja) * 2011-03-18 2012-09-27 三菱重工業株式会社 放射線治療装置制御装置、その処理方法、及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110613427A (zh) * 2014-12-02 2019-12-27 博医来股份公司 从热图像确定呼吸信号
CN110613427B (zh) * 2014-12-02 2022-06-21 博医来股份公司 从热图像确定呼吸信号

Also Published As

Publication number Publication date
CN104220132A (zh) 2014-12-17
CN104220132B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2014131178A1 (zh) 一种呼吸跟踪装置及放射治疗***
KR100750279B1 (ko) 치료시 호흡 및 환자 움직임을 보상하기 위한 장치 및 방법
WO2013140957A1 (ja) 放射線治療制御装置および放射線治療制御プログラム
US8781558B2 (en) System and method of radiation dose targeting through ventilatory controlled anatomical positioning
McNair et al. Feasibility of the use of the Active Breathing Co ordinator™(ABC) in patients receiving radical radiotherapy for non-small cell lung cancer (NSCLC)
JP5610441B2 (ja) 放射線治療システム
JP6440312B2 (ja) 放射線治療システムおよび放射線治療プログラム
JP2009502254A (ja) 医療デバイスの動作を監視するためのシステム及び方法。
WO2016064204A1 (ko) 호흡 유도 시스템 및 방법
JP2021058627A (ja) 電流生成装置、電流生成装置の制御方法、動体追跡照射システム、x線照射装置、及びx線照射装置の制御方法
WO2018168766A1 (ja) 放射線治療装置
CN104470583A (zh) X射线定位装置、x射线定位方法及关注图像拍摄方法
CN102697560A (zh) 一种无创肿瘤定位***及定位方法
CN116583325A (zh) 基于屏气水平确定的放射疗法中的射束关闭移动阈值
CN117282047B (zh) 肿瘤靶区放疗的智能辅助***
CN110678224B (zh) 利用放疗设备对靶点跟踪照射的装置及放疗设备
CN109276820A (zh) 一种放疗呼吸运动实时动态补偿***及方法
WO2017188786A1 (ko) 호흡 연동 시스템
WO2015160036A1 (ko) 방사선 치료시 자연호흡법을 이용한 환자 호흡동조 시스템 및 이에 의한 방사선 조사방법
JP7066353B2 (ja) 治療用寝台及び放射線治療システム
US10293185B2 (en) Irradiation of moving target using particle therapy system
WO2018014343A1 (zh) 一种多叶准直器的运动控制方法及治疗设备
Paxton SGRT for proton therapy
KR102619330B1 (ko) 방사선 치료시 환자의 움직임을 감지하기 위한 숨참기 모니터링 시스템 및 그 방법
Mageras et al. “4D” IMRT delivery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876319

Country of ref document: EP

Kind code of ref document: A1