WO2014128096A2 - Ladeeinrichtung für ein elektrofahrzeug - Google Patents

Ladeeinrichtung für ein elektrofahrzeug Download PDF

Info

Publication number
WO2014128096A2
WO2014128096A2 PCT/EP2014/053064 EP2014053064W WO2014128096A2 WO 2014128096 A2 WO2014128096 A2 WO 2014128096A2 EP 2014053064 W EP2014053064 W EP 2014053064W WO 2014128096 A2 WO2014128096 A2 WO 2014128096A2
Authority
WO
WIPO (PCT)
Prior art keywords
charging
connection
contact
vehicle
electrical energy
Prior art date
Application number
PCT/EP2014/053064
Other languages
English (en)
French (fr)
Other versions
WO2014128096A3 (de
Inventor
Torsten Herzog
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201480004733.0A priority Critical patent/CN104918820B/zh
Publication of WO2014128096A2 publication Critical patent/WO2014128096A2/de
Publication of WO2014128096A3 publication Critical patent/WO2014128096A3/de
Priority to US14/829,189 priority patent/US10173537B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/44Means for preventing access to live contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/70Structural association with built-in electrical component with built-in switch
    • H01R13/703Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part
    • H01R13/7036Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part the switch being in series with coupling part, e.g. dead coupling, explosion proof coupling
    • H01R13/7038Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part the switch being in series with coupling part, e.g. dead coupling, explosion proof coupling making use of a remote controlled switch, e.g. relais, solid state switch activated by the engagement of the coupling parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the invention relates to a charging device for an electric vehicle.
  • connection between vehicle and charging station for AC or DC charging can be realized via various types of connector systems.
  • corresponding contact elements are provided on the vehicle-side charging connection, which are electrically connected to the electrical energy store to be charged in the vehicle. It must be ensured that, when the charging connection is uncovered, touching the contact elements by means of the fingers of a person does not lead to a flow of current through the person. Conventionally, this is done by opening switching devices, e.g.
  • the object of the invention is to provide a charging device for an electric vehicle, which ensures a simple way of protection against contact of DC contact elements.
  • the charging device according to the invention is provided for an electric vehicle, ie it handles a vehicle-side charging device.
  • the concept of the electric vehicle is to be understood broadly and can include any type of motor vehicle which can be electrically driven and whose energy store can be electrically charged. It This may be a purely electrically driven vehicle and possibly also a hybrid vehicle, which also includes an internal combustion engine in addition to an electric drive.
  • the charging device is used for charging an intended for the drive of the electric vehicle electrical energy storage.
  • the term of the electrical energy store is to be understood broadly and may in particular include a plurality of electrical storage units or Spetchermaschinen.
  • the electrical energy store is a high-voltage battery.
  • the charging device comprises a vehicle-side first charging port, i. the charging port is intended for installation in the electric vehicle.
  • the first charging port is for mechanically connecting to a second charging port of an external, non-vehicle charging station.
  • the second charging connection or the charging station are not part of the charging device according to the invention.
  • the first charging port of the charging device comprises two contact elements for DC charging of the electrical energy storage in the electric vehicle, which can establish an electrical connection with the charging station via the contacting of two contacts of the second charging port with mechanical connection between the first and the second charging port.
  • the charging device furthermore comprises a galvanic connection from the contact elements to the electrical energy store, wherein direct current supplied to the contact elements of the first charging connection via the contacts of the second charging connection during DC charging via the galvanic connection into the electrical energy store to the charge flows.
  • the charging device further comprises a control device for monitoring the charging of the electrical energy storage device, wherein the control device can communicate with the charging station.
  • the charging device is characterized in that at least one of the two contact elements of the first charging connection between a first and a second position is movable.
  • the at least one contact element in the first postion is retracted in the first charging connection and in particular retracted.
  • the term "withdrawn” is to be understood to the effect that when exposed first charging port, the corresponding contact element from outside the vehicle for a user is not accessible by touch.
  • the at least one contact element in the second position is arranged such that it contacts the corresponding contact of the second charging connection in the case of a mechanical connection between the first and the second charging connection.
  • the control device controls the movement of the at least one contact element in such a way that this contact element is moved outwardly into the second position with a mechanical connection between the first and the second loading attachment and is otherwise in the first position.
  • an efficient contact protection is achieved by a mechanically movable contact element.
  • the insertion forces are reduced when merging the vehicle-side first charging connection and the second charging connection of the charging station, since the frictional contacting between the corresponding contact elements and contacts takes place only after mechanical connection of the charging connections.
  • the galvanic connection is not interruptible towards the electrical energy storage, i. there are no switches and in particular no contactors intended to interrupt this connection.
  • the cost of the charging device can be reduced, as can be dispensed with appropriate switch or contactors, Nevertheless, a Berstoffschutz is still ensured by the fact that the contact elements are always in the retracted position with an exposed Ladeanschiuss.
  • the two contact elements for direct current charging are contact pins or contact pins, which preferably make contact contacts corresponding to contacts in the second charging contact.
  • the charging device can also carry out an alternating current charging if required.
  • the charging device further includes other contact elements for AC charging, which are connected to an AC / DC Wandier, which is provided for converting AC supplied to DC to charge the electrical energy storage.
  • the first charging terminal of the charging device according to the invention may be designed differently, in a particularly preferred embodiment, the first charging terminal is based on the standard IEC 62196-3, in which connectors for simultaneous DC and AC charging are described.
  • the charging connection is preferably of the type CO B01 or COMB02 or DC-Type 2 of the standard! EC 62196-3. Nevertheless, the first charging connection can also be designed differently.
  • contact elements which are used for both DC and AC charging can be designed as movable contact elements according to the invention.
  • both provided for DC charging contact elements are provided as contact elements with shock protection, which are movable from the first to the second position.
  • the charging device comprises a locking unit to lock the second Ladeanschiuss in the first Ladeanschiuss with mechanical connection between the first and the second Ladeanschiuss.
  • locking units are known per se from the prior art.
  • the locking is preferably effected by the control device of the charging device when a mechanical connection between the first and second loading Anschiuss is determined.
  • a communication connection between the control device and the external charging station and in particular a corresponding control device of the external charging station is made with a mechanical connection between the first and the second charging Anschususs.
  • the communication connection is effected in particular via an electrical contacting.
  • the known well-attachment is used for communication.
  • a charging communication for setting parameters in the charging device is executed via the communication connection described above by means of the control device, wherein upon release of the direct current Charging by the control device in the context of charging communication that at least one Gireiement is moved from the first to the second position. That is, only at the actual start of the DC charging, the electrical contact for DC charging is performed.
  • the movement of the at least one contact element via an electrically driven actuator.
  • the at least one contact element is held in the first position by means of a rear part and moved by the actuator against the restoring force from the first to the second position. In this way, even if the actuator fails, it is ensured that the contact element is in the retracted position.
  • the invention further relates to an electric vehicle having an electric energy storage device for driving, the electric vehicle comprising the charging device described above or one or more preferred variants of the charging device described above.
  • Fig. 1 is a schematic representation of a charging architecture for DC charging of a vehicle according to the prior art
  • FIG. 2 shows a schematic representation of a charging architecture for DC charging of a vehicle by means of an embodiment of the charging device according to the invention
  • FIGS. 4 to 6 are sectional views illustrating the extension of a contact pin for DC charging according to an embodiment of the invention.
  • Fig. 1 shows a schematic representation of a charging architecture for DC charging of a vehicle according to the prior art.
  • the vehicle may be a pure electric vehicle and possibly also a hybrid vehicle, which can be driven via an electric motor by means of an electrical energy store or a battery 1 in the form of electrochemical storage cells.
  • the charge of the electrical energy storage device 1 takes place in the scenario of Fig. 1 via a charging station CS, which is shown in the left part of this figure.
  • a first charging connection 2 on the side of the vehicle EV is connected to a corresponding second charging connection 3 on the side of the charging station CS.
  • the structure of the charging ports is not apparent from Fig. 1, but known per se from the prior art.
  • Fig. 3 described below an example of a first charging port in the form of a charging can is shown on the side of the vehicle.
  • a DC charging takes place via the lines L'.
  • the lines L ' are connected to respective DC terminals DC1 and DC2, which comprise in the prior art immovable pins or contact pins on the side of the vehicle.
  • the charging device on the side of the vehicle EV may also be used for single-phase AC charging by connection to another charging station, for which purpose a phase connection L1 and a neutral connection N are provided, which are not contacted in FIG.
  • the AC current is applied to the respective terminals N and L1 and then converted by an AC / DC converter 5 into corresponding DC, which charges the energy storage device 1.
  • a 2-phase or 3-phase AC connection is possible, which is not shown for reasons of clarity.
  • a galvanic connection is also provided from the charging station CS to the mass of the vehicle EV, which, however, consists of is not shown for reasons of clarity.
  • the corresponding ground terminal of the charging connection 2 is shown in FIG. 3 (see reference symbol PE).
  • a control device 4 determines information about the charging process via the known pilot connection PI or proximity connection PR.
  • the Proximity connection PR represents a resistance coding in the charging connection during AC charging, which determines the current carrying capacity of the connected plug-and-cable combination and thereby the charging current (see SAE J1772).
  • the values from IEC 61851 apply.
  • a PWM signal is exchanged with a corresponding control unit 7 of the charging station CS.
  • a powerline communication (PLC) signal in accordance with DIN 70121 or ISO 15118 is transmitted on the pilot signal in order to specify the corresponding parameters of the charging process.
  • the energy storage 1 is a high-voltage battery (eg 380 V), which feeds an electric motor for driving the vehicle and other high-voltage consumers in the high-voltage intermediate circuit 6 (eg electric air conditioning, 12V DC / DC converter and the like).
  • DC power is generated by means of an AC / DC converter 8, to which alternating current from a power grid is connected via a transformer 9, which is supplied via the lines U to the terminals DC1 and DC2 and from there via the lines L to the battery 1 becomes.
  • both on the side of the vehicle EV DC contactors S1 and S2 and on the side of the charging station CS DC contactors S3 and S4 are provided.
  • all contactors S1 to S4 are closed.
  • the contactors S1 and S2 are controlled by the control device 4 such that in the event that there is no connection of the charging port 2 of the electric vehicle with a charging port 3 of the charging station, the contactors S1 and S2 are opened so that the corresponding contact pins to the DC Connections DC1 and DC2 are de-energized. This ensures that there is no voltage when the contact pins are accidentally touched.
  • the corresponding control of the contactors S1 and S2 by means of the control device 4 is indicated via a communication line C.
  • FIG. 2 shows an embodiment of a charging architecture based on the invention.
  • the same reference numerals have been used to designate the same and corresponding components.
  • the charging architecture of FIG. 2 corresponds in large part to the charging architecture of FIG. 1.
  • DC charging via corresponding connections DC1 and DC2 and, if appropriate, single-phase AC charging via the connections L1 and N can be achieved.
  • the charging process as well as the charging communication via the Ptlot connection PI or proximity connection PR also runs analogously to FIG.
  • the essential difference between FIG. 1 and FIG. 2 is that the contact pins of the DC charging terminals DC1 and DC2 can now be automatically arranged in two positions by means of the control device 4.
  • the corresponding pins within the charging port 2 are designated by reference numerals 201 and 202.
  • a charging communication between the control device 4 of the vehicle and the control device 7 of the charging station initially proceeds in a conventional manner.
  • the controller 4 After successful identification of the charging station on the vehicle and after finding a proper charging station or a flawless DC charging cable and the voltage equalization between charging station and vehicle, the controller 4 finally releases the DC charging, whereupon the pins 201 and 202 of a first, withdrawn Move position in a second position in which they contact corresponding contact sleeves 301 and 302 of the charging port 3 on the side of the charging station CS, as shown in FIG. 2 can be seen. In the retracted or retracted position, the pins in the terminal 2 are sunk so that they can not be touched from the outside.
  • a voltage can be applied to the pins 201 and 202 even when the charging connection 2 is exposed.
  • FIG. 2-in contrast to FIG. 1- the integration of corresponding contactors S1 and S2 in the galvanic lines L toward the electrical energy store 1 or high-voltage intermediate circuit 6 is dispensed with.
  • costs for the vehicle-side charging device can be saved since the charging architecture is simplified.
  • the comfort is increased in the connection of the charging port of the vehicle with the charging port of the charging station, since the insertion forces are reduced, because the corresponding pins and Contact sleeves are brought together only after connecting the two charging ports.
  • control device 4 of FIG. 2 no longer controls contactors, but rather a corresponding actuator (not shown) for extending or retracting the contact pins, as indicated again by a communication line C.
  • a locking mechanism is further provided, with which the vehicle-side charging device locks the mechanical connection between the charging terminals 2 and 3.
  • Such a locking mechanism is known per se from the prior art and is therefore not described in detail. The locking takes place for example! upon detection of a valid pilot signal at the pilot port PI.
  • FIG. 3 shows a perspective illustration of a vehicle-side charging connection 2 in the form of a charging socket (also referred to as "vehicle inlet") of the known type COMB02, which is defined in the standard IEC 62196-3 Since the construction of charging socket and charging plug are known per se, only the charging socket is shown in Fig. 3.
  • the charging socket comprises the pilot terminal PI and the proximity terminal PR, the In addition to a grounding PE, three-phase AC connections L1, L2, L3 and N are provided which act as contact pins 203, 204, 205 and 206 in corresponding cylindrical bushings
  • the terminals L1 and N for single-phase n AC charging is used.
  • the charging socket of Fig. 3 comprises the above-described DC terminals DC1 and DC2, wherein the terminal DC1 is the positive terminal and the terminal DC2 is the negative terminal.
  • the connections are realized by the pins 201 and 202 described above, which in turn are arranged in corresponding cylindrical bushes. manufacturing Conventionally, the pins 201 and 202 are fixed, so that they must be de-energized when exposed Ladeansch uss 2 by means of the contactors S1 and S2 (see Fig. 1).
  • the contact pins 201 and 202 can now be retracted, ie sunk backwards in the corresponding sockets, so that they are not accessible from outside the vehicle. As already mentioned above, it is then no longer necessary to switch the contact pins 201 and 202 de-energized so that the contactors S1 and S2 can be dispensed with.
  • FIG. 4 to FIG. 6 show in sectional view the contacting of the DC connection DC1 of the charging socket 2 of FIG. 3 with a corresponding connection 3 on the side of the charging station.
  • the corresponding contact pin 201 is recessed in a cylindrical recess 12, which adjoins the cylindrical sleeve 10.
  • the contact pin is connected via a crimp connection with a corresponding contact line 10, which leads to one of the lines L of FIG.
  • the corresponding contact is designed as a contact sleeve 301, which is arranged inside a cylindrical bushing 11 whose outside diameter corresponds to the inside diameter of the bushing 10. The contact sleeve is again over
  • the contact pin 201 is touch-protected due to its lowered position and therefore does not have to be de-energized.
  • Fig. 5 shows the scenario in which the terminal 3 of the charging station is inserted into the terminal 2 of the vehicle.
  • the two cylinders 10 and 12 abut each other, and the Kunststoffhüise 301 is adjacent to the cylindrical recess 12.
  • the contact pin 201 is still in the retracted position, in this stiffening is now the charging communication between the charging device of the vehicle and Charging station started and thereby initialized the charging process. If the initialization is successful, finally, triggered by the control device 4, the contact pin 201 is inserted into the contact sleeve 301, so that in this way the electrical contact for DC charging takes place between the vehicle-side charging device and charging station.
  • the contact pin is then in the position shown in Fig. 6.
  • the actuator is on Electric motor with which the contact pin between the position shown in Fig. 4 and the position shown in Fig. 6 can be moved.
  • the contact pin is preferably held in the position shown in FIG. 4 by means of a spring force. In this way it is ensured that in the event of failure of the actuator protection against contact is still guaranteed.
  • the invention can also be implemented with other types of connectors, such as e.g. with the connector COMB01, which is also described in the above standard IEC 62196-3.
  • the invention may optionally also be used for charging ports, in which are provided for the AC charging contacts for DC charging used.
  • the charging connections designated L2 and L3 in FIG. 3 may optionally also be used for DC charging.
  • the invention described above has a number of advantages.
  • contact protection for DC connections in a vehicle-side charging device via movable contact pins is made possible in a simple manner.
  • further contactors in the galvanic connection between the DC contacts and the energy store to be charged or the high-voltage intermediate circuit are dispensed with, whereby the charging architecture is simplified and costs are saved.
  • the invention has the advantage that a mechanical connection of the vehicle-side terminal to the charging port on the side of the charging station with low frictional force is made possible because the frictional contacting between contact pins and corresponding Kunststoffhüisen only after mechanical connection of the charging ports.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft eine Ladeeinrichtung für ein Eiektrofahrzeug (EV), das über einen elektrischen Energiespeicher (1) angetrieben werden kann, umfassend einen fahrzeugseitigen ersten Ladeanschiuss (2) zur mechanischen Verbindung mit einem zweiten Ladeanschluss (3) einer externen Ladestation (CS), wobei der erste Ladeanschiuss (2) zwei Kontaktelemente (201, 202) zum Gleichstrom-Laden des elektrischen Energiespeichers (1) im Eiektrofahrzeug (EV) umfasst, weiche bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss (2, 3) eine elektrische Verbindung mit der Ladestation (CS) über die Kontaktierung von zwei Kontakten (301, 302) des zweiten Ladeanschlusses (3) herstellen können. Ferner umfasst die erfindungsgemäße Ladeeinrichtung eine galvanische Verbindung (L) von den Kontakteiementen (201, 202) hin zu dem elektrischen Energiespeicher (1), wobei beim Gleichstrom-Laden über die galvanische Verbindung (L) Gleichstrom, der den Kontaktelementen (201, 202) des ersten Ladeanschlusses (2) über die Kontakte (301, 302) des zweiten Ladeanschlusses (3) zugeführt wird, in den elektrischen Energiespeicher (1) zu dessen Ladung fließt. Darüber hinaus ist eine Steuereinrichtung (4) zum Überwachen des Ladevorgangs des elektrischen Energiespeichers (1) vorgesehen, welche mit der Ladestation (CS) kommunizieren kann. Die erfindungsgemäße Ladeeinrichtung zeichnet sich dadurch aus, dass zumindest ein Kontaktelement (201, 202) des ersten Ladeanschlusses (2) zwischen einer ersten und einer zweiten Position bewegbar ist, wobei das zumindest eine Kontaktelement (201, 202) in der ersten Position in dem ersten Ladeanschiuss (3) zurückgezogen ist und in der zweiten Position derart angeordnet ist, dass es bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss (2, 3) den korrespondierenden Kontakt (201, 202) des zweiten Ladeanschlusses (3) kontaktiert. Die Steuereinrichtung (4) steuert die Bewegung des zumindest einen Kontaktelements (201, 202) derart, dass es ausschließlich bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss (201, 202) in die zweite Position bewegt wird und sich ansonsten in der ersten Position befindet.

Description

Ladeeinrichtung für ein Elektrofahrzeug
Die Erfindung betrifft eine Ladeeinrichtung für ein Elektrofahrzeug.
Zum Laden des elektrischen Energiespeichers eines elektrisch angetriebenen Kraftfahrzeugs sind verschiedene kabelgebundene Ladetechnologien bekannt. Zum einen gibt es die Technologie des AC- bzw. Wechselstrom-Ladens, bei der sich ein entsprechendes Ladegerät umfassend einen AC/DC-Wandler im Fahrzeug befindet. Darüber hinaus ist das DC- bzw. Gleichstrom-Laden bekannt, bei dem sich das Ladegerät in einer externen Ladestation außerhalb des Fahrzeugs befindet und Gleichstrom von der Ladestation über ein Elektrokabel zum Energiespeicher im Fahrzeug geführt wird. In den meisten Fällen ist die Ladeleistung beim DC-Laden höher als beim AC-Laden.
Die Verbindung zwischen Fahrzeug und Ladestation zum AC- bzw. DC-Laden kann über verschiedene Arten von Stecksystemen realisiert werden. Für ein DC-Laden sind dabei am fahrzeugseitigen Ladeanschluss entsprechende Kontaktelemente vorgesehen, welche galvanisch mit dem zu ladenden elektrischen Energiespeicher im Fahrzeug verbunden sind. Dabei ist sicherzustellen, dass bei freigelegtem Ladeanschluss eine Berührung der Kontaktelemente mittels der Finger einer Person zu keinem Stromfluss durch die Person führt. Herkömmlicherweise wird dies durch Öffnen von Schalteinrichtungen, wie z.B.
Schützen, in den elektrischen Verbindungsleitungen zwischen den Kontaktelementen und dem elektrischen Energiespeicher erreicht.
Aufgabe der Erfindung ist es, eine Ladeeinrichtung für ein Elektrofahrzeug zu schaffen, welche auf einfache Weise ein Schutz gegen Berührungen von Gleichstrom-Kontaktelementen gewährleistet.
Diese Aufgabe wird durch die Ladeeinrichtung gemäß Patentanspruch 1 gelöst. Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.
Die erfindungsgemäße Ladeeinrichtung ist für ein Elektrofahrzeug vorgesehen, d.h. es handeft sich um eine fahrzeugseitige Ladeeinrichtung. Der Begriff des Elektrofahrzeugs ist weit zu verstehen und kann jede Art von Kraftfahrzeug umfassen, welches elektrisch angetrieben werden kann und dessen Energiespeicher elektrisch geladen werden kann. Es kann sich dabei um ein rein elektrisch angetriebenes Fahrzeug und gegebenenfalls auch um ein Hybrid-Fahrzeug handeln, welches neben einem Elektroantrieb auch einen Verbrennungsmotor umfasst.
Die erfindungsgemäße Ladeeinrichtung dient zum Laden eines für den Antrieb des Elektrofahrzeugs vorgesehenen elektrischen Energiespeichers. Der Begriff des elektrischen Energiespeichers ist dabei weit zu verstehen und kann insbesondere auch eine Mehrzahl von elektrischen Speichereinheiten bzw. Spetcherelementen umfassen. In einer bevorzugten Variante ist der elektrische Energiespeicher eine Hochvolt-Batterie.
Die Ladeeinrichtung umfasst einen fahrzeugseitigen ersten Ladeanschluss, d.h. der Ladeanschluss ist zum Einbau in dem Elektrofahrzeug vorgesehen. Der erste Ladeanschluss dient zum mechanischen Verbinden mit einem zweiten Ladeanschluss einer externen, nicht zum Fahrzeug gehörigen Ladestation. Der zweite Ladeanschluss bzw. die Ladestation sind dabei nicht Bestandteil der erfindungsgemäßen Ladeeinrichtung. Der erste Ladeanschluss der Ladeeinrichtung umfasst zwei Kontaktelemente zum Gleichstrom-Laden des elektrischen Energiespeichers im Elektrofahrzeug, welche bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschluss eine elektrische Verbindung mit der Ladestation über die Kontaktierung von zwei Kontakten des zweiten Ladeanschlusses herstellen können. Die erfindungsgemäße Ladeeinrichtung umfasst femer eine galvanische Verbindung von den Kontaktelementen hin zu dem elektrischen Energiespeicher, wobei beim Gleichstrom-Laden über die galvanische Verbindung Gleichstrom, der den Kontaktelementen des ersten Ladeanschlusses über die Kontakte des zweiten Ladeanschlusses zugeführt wird, in den elektrischen Energiespeicher zu dessen Ladung fließt. Die erfindungsgemäße Ladeeinrichtung umfasst darüber hinaus eine Steuereinrichtung zum Überwachen des Ladevorgangs des elektrischen Energiespeichers, wobei die Steuereinrichtung mit der Ladestation kommunizieren kann.
Die erfindungsgemäße Ladeeinrichtung zeichnet sich dadurch aus, dass zumindest eines der zwei Kontaktelemente des ersten Ladeanschlusses zwischen einer ersten und einer zweiten Position bewegbar ist. Dabei ist das zumindest eine Kontaktelement in der ersten Posttion in dem ersten Ladeanschluss zurückgezogen und insbesondere eingefahren. Der Begriff„zurückgezogen" ist dabei dahingehend zu verstehen, dass bei freigelegtem erstem Ladeanschluss das entsprechende Kontaktelement von außerhalb des Fahrzeugs für einen Benutzer nicht mittels Berührung zugänglich ist. Demgegenüber ist das zumindest eine Kontaktelement in der zweiten Position derart angeordnet, dass es bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss den korrespondierenden Kontakt des zweiten Ladeanschlusses kontaktiert. Die Steuereinrichtung steuert dabei die Bewegung des zumindest einen Kontaktelements derart, dass dieses Kontaktelement ausschtießlich bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss in die zweite Position bewegt wird und sich ansonsten in der ersten Position befindet.
Mit der erfindungsgemäßen Ladeeinrichtung wird ein effizienter Berührschutz durch ein mechanisch bewegbares Kontaktelement erreicht. Dabei sind die Steckkräfte beim Zusammenführen des fahrzeugseitigen ersten Ladeanschlusses und des zweiten Ladeanschlusses der Ladestation reduziert, da die reibbehaftete Kontaktierung zwischen den entsprechenden Kontaktelementen und Kontakten erst nach mechanischer Verbindung der Ladeanschlüsse erfolgt.
In einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Ladeeinrichtung ist die galvanische Verbindung hin zu dem elektrischen Energiespeicher nicht unterbrechbar, d.h. es sind keine Schalter und insbesondere keine Schütze zum Unterbrechen dieser Verbindung vorgesehen. Auf diese Weise können die Kosten der Ladeeinrichtung reduziert werden, da auf entsprechende Schalter bzw. Schütze verzichtet werden kann, Nichtsdestotrotz ist weiterhin ein Berührschutz dadurch gewährleistet, dass die Kontaktelemente bei freigelegtem Ladeanschiuss immer in der zurückgezogenen Position sind. tn einer weiteren, bevorzugten Ausgestaltung der erfindungsgemäßen Ladeeinrichtung sind die zwei Kontaktelemente zur Gleichstrom-Ladung Kontaktstifte bzw. Kontaktpins, weiche vorzugsweise als Kontakte im zweiten Ladeanschiuss korrespondierende Kontakthülsen kontaktieren.
In einer weiteren, besonders bevorzugten Ausführungsform kann die Ladeeinrichtung bei Bedarf auch ein Wechselstrom-Laden durchführen. In diesem Fall umfasst die Ladeeinrichtung ferner weitere Kontaktelemente zum Wechselstrom-Laden, welche an einen AC/DC-Wandier angeschlossen sind, der zur Wandlung von zugeführtem Wechselstrom in Gleichstrom zur Ladung des elektrischen Energiespeichers vorgesehen ist. Je nach Ausführungsform kann der erste Ladeanschiuss der erfindungsgemäßen Ladeeinrichtung unterschiedlich ausgestaltet sein, fn einer besonders bevorzugten Ausführungsform basiert der erste Ladeanschiuss auf dem Standard IEC 62196-3, in dem Steckverbinder zum gleichzeitigen Gleichstrom- und Wechselstrom-Laden beschrieben sind. Vorzugsweise ist der Ladeanschiuss von dem Typ CO B01 oder COMB02 oder DC- Type2 des Standards !EC 62196-3. Nichtsdestotrotz kann der erste Ladeanschiuss auch anders ausgestaltet sein. Ferner können auch Kontaktelemente, welche sowohl zum Gleichstrom- als auch zum Wechselstrom-Laden genutzt werden, als bewegbare Kontaktelemente gemäß der Erfindung ausgestaltet sein.
In einer besonders bevorzugten Ausführungsform sind beide, zum Gleichstrom-Laden vorgesehene Kontaktelemente als Kontaktelemente mit Berührschutz vorgesehen, die von der ersten in die zweite Position bewegbar sind. Auf diese Weise wird der
Berührschutz weiter verbessert.
In einer wetteren Ausgestaltung umfasst die Ladeeinrichtung eine Verriegelungseinheit, um den zweiten Ladeanschiuss in dem ersten Ladeanschiuss bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss zu verriegeln. Solche Verriegelungseinheiten sind an sich aus dem Stand der Technik bekannt. Dabei wird die Verriegelung vorzugsweise durch die Steuereinrichtung der Ladeeinrichtung bewirkt, wenn eine mechanische Verbindung zwischen erstem und zweitem Ladeanschiuss festgestellt wird. in einer weiteren Ausgestaltung der erfindungsgemäßen Ladeeinrichtung wird bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss eine Kommunikationsverbindung zwischen der Steuereinrichtung und der externen Ladestation und insbesondere einer entsprechenden Steuereinrichtung der externen Ladestation hergestellt. Die Kommunikationsverbindung wird insbesondere über eine elektrische Kontaktie- rung bewirkt. In einer bevorzugten Ausführungsform wird dabei der an sich bekannte Pi- lot-Anschfuss zur Kommunikation genutzt.
In einer besonders bevorzugten Variante läuft über die oben beschriebene Kommunikationsverbindung eine Ladekommunikation zur Einstellung von Parametern in der Ladeeinrichtung mittels der Steuereinrichtung ab, wobei bei einer Freigabe des Gleichstrom- Ladens durch die Steuereinrichtung im Rahmen der Ladekommunikation das zumindest eine Kontakteiement von der ersten in die zweite Position bewegt wird. Das heißt, erst beim tatsächlichen Beginn des Gleichstrom-Ladens wird die elektrische Kontaktierung zum Gleichstrom-Laden durchgeführt. Hierdurch wird die Sicherheit erhöht. in einer weiteren Ausführungsform erfolgt die Bewegung des zumindest einen Kontaktelements über einen elektrisch angetriebenen Aktuator. Vorzugsweise wird dabei das zumindest eine Kontaktelement über eine Rücksteil kraft in der ersten Position gehalten und über den Aktuator entgegen der Rücksteilkraft von der ersten in die zweite Position bewegt. Auf diese Weise wird auch bei Ausfall des Aktuators gewährleistet, dass das Kontaktelement in der zurückgezogenen Position ist.
Neben der oben beschriebenen Ladeeinrichtung betrifft die Erfindung ferner ein Elektro- fahrzeug, das zum Antrieb einen elektrischen Energiespeicher aufweist, wobei das Elekt- rofahrzeug die oben beschriebene Ladeeinrichtung bzw. eine oder mehrere bevorzugte Varianten der oben beschriebenen Ladeeinrichtung umfasst.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der beigefügten Figuren detailliert beschrieben.
Es zeigen:
Fig. 1 eine schemattsche Darstellung einer Lade-Architektur zum Gleichstrom-Laden eines Fahrzeugs gemäß dem Stand der Technik;
Fig. 2 eine schematische Darstellung einer Lade-Architektur zum Gleichstrom-Laden eines Fahrzeugs mittels einer Ausführungsform der erfindungsgemäßen Ladeeinrichtung;
Fig. 3 ein Beispiel einer fahrzeugseitigen Ladedose, die in einer Ausführungsform der erfindungsgemäßen Ladeeinrichtung verwendet werden kann; Fig. 4 bis Fig. 6 Schnittansichten, weiche das Ausfahren eines Kontaktpins zum Gleichstrom-Laden gemäß einer Ausführungsform der Erfindung verdeutlichen.
Fig. 1 zeigt in schematischer Darstellung eine Lade-Architektur zum Gleichstrom-Laden eines Fahrzeugs gemäß dem Stand der Technik. Im rechten Teil von Fig. 1 sind dabei Komponenten des Fahrzeugs EV gezeigt. Das Fahrzeug kann dabei ein reines Elektro- fahrzeug und gegebenenfalls auch ein Hybrid-Fahrzeug sein, welches mittels eines elektrischen Energiespeichers bzw. einer Batterie 1 in der Form von elektrochemischen Speicherzellen über einen Elektromotor angetrieben werden kann. Die Ladung des elektrischen Energiespeichers 1 erfolgt in dem Szenario der Fig. 1 über eine Ladestation CS, die im linken Teil dieser Figur wiedergegeben ist. Dabei ist ein erster Ladeanschluss 2 auf Seiten des Fahrzeugs EV mit einem korrespondierenden zweiten Ladeanschluss 3 auf Seiten der Ladestation CS verbunden. Der Aufbau der Ladeanschlüsse ist aus Fig. 1 nicht näher ersichtlich, jedoch an sich aus dem Stand der Technik bekannt. In der weiter unten beschriebenen Fig. 3 ist ein Beispiel eines ersten Ladeanschlusses in der Form einer Ladedose auf Seiten des Fahrzeugs gezeigt.
An den Ladeanschluss 3 der Ladestation CS schließt sich ein entsprechendes Kabel mit stromführenden Leitungen L' sowie einer Kommunikationsleitung C an, wobei in dem Szenario der Fig. 1 ein Gleichstrom-Laden über die Leitungen L' erfolgt. Hierfür sind die Leitungen L' an entsprechenden Gleichstrom-Anschlüssen DC1 und DC2 angeschlossen, die im Stand der Technik unbewegliche Kontaktstifte bzw. Kontaktpins auf Seiten des Fahrzeugs umfassen. Die Ladeeinrichtung auf Seiten des Fahrzeugs EV kann durch Verbindung mit einer anderen Ladestation gegebenenfalls auch zum einphasigen Wechselstrom-Laden verwendet werden, wobei hierfür ein Phasen-Anschluss L1 und ein Neutral- Anschluss N vorgesehen sind, die in Fig. 1 nicht kontaktiert werden. Bei einer Wechselstrom-Ladung wird der Wechselstrom an die entsprechenden Anschlüsse N und L1 angelegt und anschließend durch einen AC/DC-Wandler 5 in entsprechenden Gleichstrom gewandelt, der den Energiespeicher 1 lädt. In der Architektur der Fig. 1 sowie auch in der Architektur der Fig. 2 ist auch ein 2-phasiger oder 3-phasiger AC-Anschluss möglich, welcher jedoch aus Übersichtlichkeitsgründen nicht dargestellt ist. in der Architektur der Fig. 1 sowie auch in der Architektur der Fig. 2 ist ferner eine galvanische Verbindung von der Ladestation CS hin zur Masse des Fahrzeugs EV vorgesehen, welche jedoch aus Über- sichtlichkeitsgründen nicht dargestellt ist. Der entsprechende Masseanschluss des Ladeanschlusses 2 ist dabei aus Fig. 3 ersichtlich (siehe Bezugszeichen PE).
In der Ladeeinrichtung des Fahrzeugs EV ist eine Steuereinrichtung 4 vorgesehen, welche über den an sich bekannten Pilot-Anschluss PI bzw. Proximity-Anschluss PR Informationen zum Ladevorgang ermittelt. Der Proximity -Anschluss PR stellt beim AC-Laden eine Widerstandscodierung im Ladeanschluss dar, über den die Stromtragfähigkeit der angeschlossenen Stecker-Kabel-Kombination und hierdurch der Ladestrom ermittelt werden (siehe SAE J1772). Beim DC-Laden gelten die Werte aus IEC 61851. Über den Pilot- Anschluss PI wird ein PWM-Signal mit einer korrespondierenden Steuereinheit 7 der Ladestation CS ausgetauscht. Beim DC-Laden wird auf dem Pilot-Signal ein Powerline- Communication (PLC) Signal nach DIN 70121 bzw. ISO 15118 übertragen, um hierüber entsprechende Parameter des Ladevorgangs festzulegen. Die Kontaktierung bzw. die Kommunikation über den Proximity- und Pilot-Anschluss sind an sich aus dem Stand der Technik bekannt und werden deshalb nicht weiter tm Detail erläutert. Der Energiespeicher 1 ist eine Hochvoitbatterie (z.B. 380 V), welche einen Elektromotor zum Antrieb des Fahrzeugs sowie weitere Hochvott-Verbraucher im Hochvolt-Zwischenkreis 6 (z.B. elektrische Klimaanlage, 12V-DC/DC-Wandler und dergleichen) speist. Beim Gleichstrom-Laden wird mittefs eines AC/DC-Wandlers 8, dem Wechselstrom aus einem Energienetz über einen Transformator 9 bereitgestellt wird, Gleichstrom generiert, der über die Leitungen U den Anschlüssen DC1 und DC2 und von dort über die Leitungen L der Batterie 1 zugeführt wird. Dabei sind sowohl auf Seiten des Fahrzeugs EV DC-Schütze S1 und S2 als auch auf Seiten der Ladestation CS DC-Schütze S3 und S4 vorgesehen. Beim Gleichstrom- Laden sind alle Schütze S1 bis S4 geschlossen. Die Schütze S1 und S2 werden über die Steuereinrichtung 4 derart gesteuert, dass sie im Falle, dass keine Verbindung des Ladeanschlusses 2 des Elektrofahrzeugs mit einem Ladeanschluss 3 der Ladestatton besteht, die Schütze S1 und S2 geöffnet werden, so dass die entsprechenden Kontaktpins an den Gleichstrom-Anschlüssen DC1 und DC2 stromlos geschaltet sind. Hierdurch wird sichergestellt, dass bei einem versehentlichen Berühren der Kontaktpins keine Spannung anliegt. Die entsprechende Steuerung der Schütze S1 und S2 mittels der Steuereinrichtung 4 ist über eine Kommunikationsleitung C angedeutet. Bei der Lade-Architektur gemäß Fig. 1 erweist es sich als nachteilhaft, dass die Integration entsprechender DC-Schütze in einer Ladeeinrichtung aufwändig ist. Insbesondere wird hierfür eine separate Komponente eingesetzt, was die Ladeeinrichtung verteuert. Fig. 2 zeigt eine Ausführungsform einer Lade-Architektur basierend auf der Erfindung. Dabei wurden zur Bezeichnung der gleichen und entsprechenden Bauteile die gleichen Bezugszeichen verwendet. Die Lade-Architektur der Fig. 2 entspricht zu großen Teilen der Lade-Architektur der Fig. 1. insbesondere kann ein Gleichstrom-Laden über entsprechende Anschlüsse DC1 und DC2 und gegebenenfalls auch ein einphasiges Wechselstrom-Laden über die Anschlüsse L1 und N erreicht werden. Der Ladevorgang sowie die Ladekommunikation über den Ptlot-Anschluss PI bzw. Proximity-Anschluss PR läuft auch analog zu Fig. 1 ab. Der erfindungswesentliche Unterschied zwischen Fig. 1 und Fig. 2 besteht darin, dass die Kontaktpins der Gleichstrom-Ladeanschiüsse DC1 und DC2 nunmehr mittels der Steuereinrichtung 4 automatisch in zwei Positionen angeordnet werden können. Die entsprechenden Pins innerhalb des Ladeanschlusses 2 sind dabei mit Bezugszeichen 201 und 202 bezeichnet.
Bei Verbindung des Ladeanschlusses 3 mit dem Ladeanschluss 2 läuft zunächst in her- kömmücherweise eine Ladekommunikation zwischen der Steuereinrichtung 4 des Fahrzeugs und der Steuereinrichtung 7 der Ladestation ab. Nach erfolgreicher Identifikation der Ladestation am Fahrzeug und nach Feststellen einer einwandfreien Ladestation bzw. eines einwandfreien DC-Ladekabels und dem Spannungsangleich zwischen Ladestation und Fahrzeug gibt die Steuereinrichtung 4 schließlich den DC-Ladevorgang frei, woraufhin die Pins 201 bzw. 202 von einer ersten, zurückgezogenen Position in eine zweite Position fahren, in der sie entsprechende Kontakthülsen 301 bzw. 302 des Ladeanschlusses 3 auf Seiten der Ladestation CS kontaktieren, wie aus Fig. 2 ersichtlich ist. In der zurückgezogenen bzw. eingefahrenen Position sind die Pins in dem Anschluss 2 derart versenkt, dass sie von außen nicht berührt werden können. Somit kann in der Ausführungsform der Fig. 2 an den Pins 201 und 202 auch bei freigelegtem Ladeanschluss 2 eine Spannung anliegen. Demzufolge wird in der Ausführungsform der Fig. 2 - im Unterschied zu Fig. 1 - auf die Integration entsprechender Schütze S1 und S2 in den galvanischen Leitungen L hin zum elektrischen Energiespeicher 1 bzw. Hochvolt-Zwischenkreis 6 verzichtet. Auf diese Weise können Kosten für die fahrzeugseitige Ladeeinrichtung eingespart werden, da die Lade-Architektur vereinfacht wird. Darüber hinaus wird der Komfort bei der Verbindung des Ladeanschlusses des Fahrzeugs mit dem Ladeanschluss der Ladestation erhöht, da die Steckkräfte vermindert werden, denn die entsprechenden Kontaktstifte und Kontakthülsen werden erst nach Verbindung der beiden Ladeanschlüsse zusammengeführt.
Im Unterschied zu Fig. 1 steuert die Steuereinrichtung 4 der Fig. 2 nunmehr keine Schütze mehr, sondern einen entsprechenden Aktuator (nicht gezeigt) zum Ausfahren bzw. Einfahren der Kontaktpins, wie wiederum durch eine Kommunikationsieitung C angedeutet ist. In den Lade-Architekturen der Fig. 1 und Fig. 2 ist ferner ein Verriegelungsmechanismus vorgesehen, mit dem die fahrzeugseitige Ladeeinrichtung die mechanische Verbindung zwischen den Ladeanschlüssen 2 und 3 verriegelt. Ein solcher Verriegelungsmechanismus ist an sich aus dem Stand der Technik bekannt und wird deshalb nicht näher beschrieben. Die Verriegelung erfolgt dabei zum Beispie! bei Feststellung eines gültigen Pilot-Signals am Pilot-Anschluss PI.
Fig. 3 zeigt in perspektivischer Darstellung einen fahrzeugseitigen Ladeanschluss 2 in der Form einer Ladedose (auch als„Vehicle Inlet" bezeichnet) vom an sich bekannten Typ COMB02, der im Standard IEC 62196-3 definiert ist. Die Ladedose kann mit einem entsprechenden Ladestecker 3 auf Seiten der Ladestation verbunden werden. Da der Aufbau von Ladedose und Ladestecker an sich bekannt sind, ist in Fig. 3 zur Verdeutlichung nur die Ladedose wiedergegeben. Im oberen Bereich umfasst die Ladedose den Pilot- Anschluss PI sowie den Proximity-Anschluss PR, die durch entsprechende Kontaktstifte (nicht aus Fig. 3 ersichtlich) in zylindrischen Buchsen realisiert sind. Ferner sind neben einer Erdung PE dreiphasige Wechselstrom-Anschlüsse L1 , L2, L3 und N vorgesehen, die als Kontaktpins 203, 204, 205 und 206 in entsprechenden zylindrischen Buchsen ausgestaltet sind. Bei der Verwendung der Ladedose gemäß Fig. 3 in der Ladeeinrichtung aus Fig. 2 werden nur die Anschlüsse L1 und N zum einphasigen Wechselstrom-Laden verwendet. Nichtsdestotrotz können in anderen Architekturen auch Ladeeinrichtungen vorgesehen sein, mit denen neben oder alternativ zu einem einphasigen Wechselstrom-Laden auch ein mehrphasiges Laden über die zusätzlichen Anschlüsse L2 und L3 durchgeführt wird. im unteren Teil umfasst die Ladedose der Fig. 3 die oben beschriebenen Gleichstrom- Anschlüsse DC1 und DC2, wobei der Anschluss DC1 der Pluspol und der Anschluss DC2 der Minuspol ist. Die Anschlüsse werden durch die oben beschriebenen Pins 201 und 202 realisiert, die wiederum in entsprechenden zylindrischen Buchsen angeordnet sind. Her- kömmlicherwetse sind die Pins 201 und 202 feststehend, so dass sie bei freigelegtem Ladeansch!uss 2 mittels der Schütze S1 und S2 (siehe Fig. 1) stromlos geschaltet werden müssen. Erfindungsgemäß können die Kontaktpins 201 und 202 nunmehr eingefahren werden, d.h. in Richtung nach hinten in den entsprechenden Buchsen versenkt werden, so dass sie nicht von außerhalb des Fahrzeugs zugänglich sind. Wie bereits oben erwähnt, ist es dann nicht mehr erforderlich, die Kontaktpins 201 und 202 stromlos zu schalten, so dass auf die Schütze S1 und S2 verzichtet werden kann.
Fig. 4 bis Fig. 6 zeigen in Schnittansicht die Kontaktierung des Gleichstrom-Anschlusses DC1 der Ladedose 2 der Fig. 3 mit einem korrespondierenden Anschluss 3 auf Seiten der Ladestation. In Fig. 4 besteht noch keine Verbindung zwischen der Ladeeinrichtung des Fahrzeugs und der Ladestation. In diesem Fall ist der entsprechende Kontaktpin 201 in einer zylindrischen Ausnehmung 12 versenkt, welche sich an die zylindrische Buchse 10 anschließt. Der Kontaktpin ist über eine Crimp-Verbindung mit einer entsprechenden Kontaktleitung 10 verbunden, die zu einer der Leitungen L aus Fig. 2 führt. Auf Seiten der Ladestation ist der entsprechende Kontakt als eine Kontakthülse 301 ausgebildet, die innerhalb einer zylindrischen Buchse 11 angeordnet ist, deren Außendurchmesser dem Innendurchmesser der Buchse 10 entspricht. Die Kontakthülse ist wiederum über
Crimpen mit einer entsprechenden Kontaktleitung 14 verbunden. In dem Szenario der Fig. 4 ist der Kontaktpin 201 aufgrund seiner versenkten Position berührgeschützt und muss deshalb nicht stromlos geschaltet werden.
Fig. 5 zeigt das Szenario, bei dem der Anschluss 3 der Ladestation in den Anschluss 2 des Fahrzeugs eingeführt wird. Wie man erkennt, liegen nunmehr die beiden Zylinder 10 und 12 aneinander an, und die Kontakthüise 301 liegt benachbart zu der zylindrischen Ausnehmung 12. Der Kontaktpin 201 ist dabei weiterhin in der zurückgezogenen Position, in dieser Steifung wird nunmehr die Ladekommunikation zwischen Ladeeinrichtung des Fahrzeugs und Ladestation gestartet und hierdurch der Ladevorgang initialisiert. Ist die Initialisierung erfolgreich, wird schließlich, ausgelöst durch die Steuereinrichtung 4, der Kontaktstift 201 in die Kontakthülse 301 eingeführt, so dass hierdurch die elektrische Kontaktierung zum Gleichstrom-Laden zwischen fahrzeugseitiger Ladeeinrichtung und Ladestation erfolgt. Der Kontaktpin befindet sich dann in der in Fig. 6 gezeigten Position. Die Bewegung des Kontaktpins erfolgt über einen geeigneten Aktuator, der je nach Ausführungsform unterschiedlich ausgestaltet sein kann. In einer Variante ist der Aktuator ein Elektromotor, mit dem der Kontaktpin zwischen der in Fig. 4 gezeigten Position und der in Fig. 6 gezeigten Position bewegt werden kann. Vorzugsweise wird der Kontaktpin dabei im Falle, dass der Aktuator stromlos geschaltet ist, mittels einer Federkraft in der in Fig. 4 gezeigten Position gehalten. Auf diese Weise wird sichergestellt, dass im Falle des Ausfalls des Aktuators weiterhin ein Berührschutz gewährleistet ist.
Die im Vorangegangenen beschriebenen Ausführungsformen wurden unter Bezugnahme auf die Steckverbindung vom Typ CO B02 beschrieben. Nichtsdestotrotz kann die Erfindung auch mit anderen Typen von Steckverbindungen realisiert werden, wie z.B. mit der Steckverbindung COMB01 , die ebenfalls in dem oben genannten Standard IEC 62196-3 beschrieben ist. Darüber hinaus kann die Erfindung gegebenenfalls auch für Ladeanschlüsse verwendet werden, bei denen an sich für das Wechselstrom-Laden vorgesehene Kontakte zum Gleichstrom-Laden genutzt werden. Beispielsweise können die in Fig. 3 mit L2 und L3 bezeichneten Ladeanschlüsse gegebenenfalls auch zum Gleichstrom-Laden eingesetzt werden.
Die im Vorangegangenen beschriebene Erfindung weist eine Reihe von Vorteilen auf. Insbesondere wird auf einfache Weise ein Berührschutz für Gleichstrom-Anschlüsse in einer fahrzeugseitigen Ladeeinrichtung über bewegliche Kontaktpins ermöglicht. In einer bevorzugten Variante wird dabei auf weitere Schütze in der galvanischen Verbindung zwischen den DC-Kontakten und dem zu ladenden Energiespeicher bzw. dem Hochvolt- Zwischenkreis verzichtet, wodurch die Lade-Architektur vereinfacht wird und Kosten eingespart werden. Darüber hinaus weist die Erfindung den Vorteil auf, dass ein mechanisches Verbinden des fahrzeugseitigen Anschlusses mit dem Ladeanschluss auf Seiten der Ladestation mit geringer Reibkraft ermöglicht wird, da die reibbehaftete Kontaktierung zwischen Kontaktpins und entsprechenden Kontakthüisen erst nach mechanischer Verbindung der Ladeanschlüsse erfolgt. Bezugszeichen
EV Elektrofahrzeug
CS Ladestation
L, L elektrische Leitungen
C, C Kommunikationsleitungen
L1 , L2, L3, N Wechselstrom-Anschlüsse
DC , DC2 Gleichstrom-Anschlüsse
Pf Pifot-Anschiuss
PR Proximity-Anschluss
PE Masse-Anschluss
1 elektrischer Energiespeicher
2 fahrzeugseitiger Ladeanschluss
3 Ladeanschluss auf Seiten der Ladestation
4 Steuereinrichtung
5 AC/DC-Wandler
6 Hochvolt-Zwischenkreis
7 Steuereinrichtung
8 AC/DC-Wandler
S , S2, S3, S4 Schütze
201 , 202, ... , 206 Kontaktpins
301 , 302 Kontakthülsen
9 Transformator
10, 11 Buchsen
12 zylindrische Ausnehmung
13, 14 elektrische Leitungen

Claims

Patentansprüche
1. Ladeeinrichtung für ein Etektrofahrzeug (EV), das über einen elektrischen Energiespeicher (1) angetrieben werden kann, umfassend:
einen fahrzeugseitigen ersten Ladeanschluss (2) zur mechanischen Verbindung mit einem zweiten Ladeanschluss (3) einer externen Ladestation (CS), wobei der erste Ladeanschluss (2) zwei Kontaktelemente (201 , 202) zum Gleichstrom-Laden des elektrischen Energiespeichers (1) im Elektrofahrzeug (EV) umfasst, welche bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschluss (2, 3) eine elektrische Verbindung mit der Ladestation (CS) über die Kontaktierung von zwei Kontakten (301 , 302) des zweiten Ladeanschiusses (3) herstellen können;
eine galvanische Verbindung (L) von den Kontaktelementen (201 , 202) hin zu dem elektrischen Energiespeicher (1), wobei beim Gleichstrom-Laden über die galvanische Verbindung (L) Gleichstrom, der den Kontaktelementen (201, 202) des ersten Ladeanschlusses (2) über die Kontakte (301 , 302) des zweiten Ladeanschlusses (3) zugeführt wird, in den elektrischen Energiespeicher (1) zu dessen Ladung fließt;
eine Steuereinrichtung (4) zum Überwachen des Ladevorgangs des elektrische Energiespeichers (1), welche mit der Ladestation (CS) kommunizieren kann;
dadurch gekennzeichnet, dass
zumindest ein Kontaktelement (201, 202) des ersten Ladeanschlusses (2) zwischen einer ersten und einer zweiten Position bewegbar ist, wobei das zumindest eine Kontaktelement (201 , 202) in der ersten Position in dem ersten Ladeanschluss (3) zurückgezogen ist und in der zweiten Position derart angeordnet ist, dass es bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschluss (2, 3) den korrespondierenden Kontakt (201 , 202) des zweiten Ladeanschlusses (3) kontaktiert, wobei die Steuereinrichtung (4) die Bewegung des zumindest einen Kontaktelements (201, 202) derart steuert, dass es ausschließlich bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschluss (201 , 202) in die zweite Position bewegt wird und sich ansonsten in der ersten Position befindet.
2. Ladeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die galvanische Verbindung (L) hin zu dem elektrischen Energiespeicher (1) nicht unterbrechbar ist.
3. Ladeeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zwei Kontakte!emente zur Gleichstrom-Ladung Kontaktstifte (201, 202) sind, welche vorzugsweise als Kontakte im zweiten Ladeanschiuss (3) korrespondierende Kontakthülsen (301 , 302) kontaktieren.
4. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ladeeinrichtung ferner weitere Kontaktelemente (203, 204, 205, 206) zum Wechselstrom-Laden umfasst, welche an einen AC/DC-Wandler (5) angeschlossen sind, der zur Wandlung von zugeführtem Wechselstrom in Gleichstrom zur Ladung des elektrischen Energiespeichers (1) vorgesehen ist.
5. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Ladeanschiuss (2) auf dem Standard IEC 62196-3 basiert und insbesondere vom Typ Combol oder Combo2 oder DC~Type2 ist.
6. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zwei Kontaktelemente (201 , 202) zum Gleichstrom-Laden bewegbar sind.
7. Ladeeinrichtung nach einem der vorhergehende Ansprüche, dadurch gekennzeichnet, dass die Ladeeinrichtung eine Verriegeiungseinheit umfasst, um den zweiten Ladeanschiuss (3) in dem ersten Ladeanschiuss (2) bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss (2, 3) zu verriegeln.
8. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei mechanischer Verbindung zwischen dem ersten und dem zweiten Ladeanschiuss (2, 3) eine Kommunikationsverbindung zwischen der Steuer- einrichtung (4) und der externen Ladestation (CS), insbesondere über eine elektrische Kontaktierung, hergestellt wird.
9. Ladeeinrichtung nach Anspruch 8, dadurch gekennzeichnet, dass über die Kom- munikationsverbindung eine Ladekommunikation zur Einstellung von Parametern der Ladeeinrichtung mittels der Steuereinrichtung (4) abläuft, wobei bei einer Freigabe des Gleichstrom-Ladens durch die Steuereinrichtung (4) im Rahmen der Ladekommunikation das zumindest eine Kontaktelement (20 , 202) von der ersten in die zweite Position bewegt wird.
10. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bewegung des zumindest einen Kontaktelements (201, 202) über einen elektrisch angetriebenen Aktuator erfolgt.
11. Ladeeinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das zumindest eine Kontaktelement (201 , 202) über eine Rückstellkraft in der ersten Position gehalten wird und über den Aktuator entgegen der Rücksteilkraft von der ersten in die zweite Position bewegt wird.
12. Elektrofahrzeug, das zum Antrieb einen elektrischen Energiespeicher (1) aufweist, umfassend eine Ladeeinrichtung nach einem der vorhergehenden Ansprüche.
PCT/EP2014/053064 2013-02-19 2014-02-18 Ladeeinrichtung für ein elektrofahrzeug WO2014128096A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480004733.0A CN104918820B (zh) 2013-02-19 2014-02-18 用于电动车辆的充电设备
US14/829,189 US10173537B2 (en) 2013-02-19 2015-08-18 Charging device for an electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013202591.2 2013-02-19
DE102013202591.2A DE102013202591A1 (de) 2013-02-19 2013-02-19 Ladeeinrichtung für ein Elektrofahrzeug

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/829,189 Continuation US10173537B2 (en) 2013-02-19 2015-08-18 Charging device for an electric vehicle

Publications (2)

Publication Number Publication Date
WO2014128096A2 true WO2014128096A2 (de) 2014-08-28
WO2014128096A3 WO2014128096A3 (de) 2014-12-11

Family

ID=50114370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/053064 WO2014128096A2 (de) 2013-02-19 2014-02-18 Ladeeinrichtung für ein elektrofahrzeug

Country Status (4)

Country Link
US (1) US10173537B2 (de)
CN (1) CN104918820B (de)
DE (1) DE102013202591A1 (de)
WO (1) WO2014128096A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057407A1 (fr) * 2016-10-06 2018-04-13 Ier Interface electrique modulaire pour borne de charge de vehicules electriques

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100185A (ja) * 2013-11-19 2015-05-28 本田技研工業株式会社 電動車両
DE102015206047A1 (de) * 2015-04-02 2016-10-06 Volkswagen Aktiengesellschaft Adapter für ein Ladestecksystem
DE102016203830A1 (de) * 2016-02-01 2017-08-03 Continental Automotive Gmbh Fahrzeug-Hochvoltbordnetz sowie stationäre Anschlussvorrichtung
DE102016214050B4 (de) * 2016-07-29 2024-05-08 Audi Ag Anordnung aus einem Kraftfahrzeug und einem Verbindungsmittel, Kraftfahrzeug und Verbindungsmittel
LU93238B1 (de) * 2016-09-28 2018-04-05 Phoenix Contact E Mobility Gmbh Steckverbinderteil für ein Ladesystem
DE102016225143B4 (de) * 2016-12-15 2020-03-12 Audi Ag Kraftfahrzeug und Ladeeinrichtung mit diesem Kraftfahrzeug
CN111344186A (zh) * 2017-09-12 2020-06-26 易链接有限责任公司 车辆接触单元、地板接触单元、车辆耦合***以及用于检查接触部位的接触和关联性的方法
DE102017123208A1 (de) * 2017-10-06 2019-04-11 Kiekert Ag Elektrische Anschlussvorrichtung für Elektro- oder Hybridkraftfahrzeuge
DE102017220287B4 (de) * 2017-11-14 2022-02-17 Audi Ag Kraftfahrzeug mit einem Energiespeicher sowie Verfahren zum Betreiben eines Kraftfahrzeugs
KR102510321B1 (ko) * 2017-11-14 2023-03-14 르노코리아자동차 주식회사 콤보 1 및 콤보 2 방식의 동시 충전이 가능한 전기자동차 충전기 및 그 제어 방법
DE102018102714A1 (de) * 2018-02-07 2019-08-08 Man Truck & Bus Ag Vorrichtung zum Laden eines elektrischen Energiespeichers eines Elektro-Kraftfahrzeugs, insbesondere Elektro-Nutzfahrzeugs
EP3530515A1 (de) * 2018-02-21 2019-08-28 Ningbo Geely Automobile Research & Development Co. Ltd. Lademodul
SE542911C2 (en) * 2018-12-19 2020-09-15 Scania Cv Ab Method and arrangement for protection of access to live parts when charging hybrid or electrified vehicles
JP2020108217A (ja) * 2018-12-26 2020-07-09 トヨタ自動車株式会社 電気自動車
DE102018133646A1 (de) 2018-12-28 2020-07-02 Beckhoff Automation Gmbh Basismodul und Funktionsmodul für ein Schaltschranksystem
DE102018133657A1 (de) 2018-12-28 2020-07-02 Beckhoff Automation Gmbh Basismodul und funktionsmodul für ein schaltschranksystem und schaltschranksystem
DE102018133647A1 (de) 2018-12-28 2020-07-02 Beckhoff Automation Gmbh Schaltschranksystem aus Basismodul und Funktionsmodulen sowie Funktionsmodul
JP7077977B2 (ja) * 2019-01-23 2022-05-31 トヨタ自動車株式会社 充電器、充電システム及び充電端子の離脱方法
EP3925035A1 (de) * 2019-02-12 2021-12-22 REMA Lipprandt GmbH & Co. KG Elektrischer steckverbinder
DE102019106082B4 (de) 2019-03-11 2021-06-24 Beckhoff Automation Gmbh Schaltschranksystem mit dichtungseinsatz
CN113871926B (zh) * 2020-06-30 2023-03-24 比亚迪股份有限公司 车载充电插座和车辆
DE102020123476A1 (de) * 2020-09-09 2022-03-10 Phoenix Contact E-Mobility Gmbh Ladedose mit Schnittstelle
US20220414832A1 (en) * 2021-06-24 2022-12-29 Canon Medical Systems Corporation X-ray imaging restoration using deep learning algorithms
CN114006223B (zh) * 2021-10-28 2024-05-14 深圳市泰格莱精密电子有限公司 一种充电连接器及电动汽车
US11535110B1 (en) 2021-12-28 2022-12-27 Beta Air, Llc Systems and methods for a locking electric aircraft connector

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752032B2 (ja) 1993-09-20 1998-05-18 矢崎総業株式会社 給電コネクタ
JP2879810B2 (ja) * 1993-12-28 1999-04-05 矢崎総業株式会社 コネクタ
JP3292278B2 (ja) * 1995-12-06 2002-06-17 矢崎総業株式会社 電気自動車の充電用コネクタ
FR2912263B1 (fr) * 2007-02-06 2009-05-15 Batscap Sa "module de batterie, pack de modules, chargeur pour le module"
FR2937593B1 (fr) * 2008-10-24 2012-01-06 Valeo Equip Electr Moteur Procede et dispositif de commande d'un systeme micro-hybride a freinage recuperatif apte a equiper un vehicule automobile
JP5312214B2 (ja) 2009-06-11 2013-10-09 矢崎総業株式会社 誤操作防止機構付きレバー式電気コネクタ
DE102009030092A1 (de) * 2009-06-22 2010-12-30 Rwe Ag Ladekabelstecker für Elektrofahrzeuge
WO2011081124A1 (ja) 2009-12-28 2011-07-07 株式会社フジクラ 給電コネクタ
US8558504B2 (en) * 2010-01-11 2013-10-15 Leviton Manufacturing Co., Inc. Electric vehicle supply equipment with timer
US9156362B2 (en) 2010-04-09 2015-10-13 Aerovironment, Inc. Portable charging cable with in-line controller
JP5486397B2 (ja) * 2010-05-12 2014-05-07 株式会社東海理化電機製作所 給電プラグロック装置
US8075329B1 (en) 2010-06-08 2011-12-13 Ford Global Technologies, Llc Method and system for preventing disengagement between an electrical plug and a charge port on an electric vehicle
DE102010045131A1 (de) 2010-09-11 2012-03-15 Magna E-Car Systems Gmbh & Co Og Steckverbinder für ein Elektrofahrzeug
DE202010013055U1 (de) 2010-12-03 2012-03-05 Rema Lipprandt Gmbh & Co. Kg Ladekabelseitiges Steckerteil einer elektrischen Steckvorrichtung eines Fahrzeugs
DE102010061185B4 (de) 2010-12-13 2022-03-24 Küster Holding GmbH Verriegelungsaktuator für einen elektrischen Steckverbinder
US20120229085A1 (en) * 2011-03-07 2012-09-13 Lau David M K System for charging electric vehicle batteries from street lights and parking meters
CN202106836U (zh) * 2011-04-27 2012-01-11 上海汽车集团股份有限公司 混合动力充电车
US8936482B2 (en) * 2011-11-30 2015-01-20 GM Global Technology Operations LLC High voltage safety lock sensing—single sensor linear actuator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057407A1 (fr) * 2016-10-06 2018-04-13 Ier Interface electrique modulaire pour borne de charge de vehicules electriques

Also Published As

Publication number Publication date
CN104918820B (zh) 2017-04-05
DE102013202591A1 (de) 2014-08-21
US20160039298A1 (en) 2016-02-11
WO2014128096A3 (de) 2014-12-11
CN104918820A (zh) 2015-09-16
US10173537B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2014128096A2 (de) Ladeeinrichtung für ein elektrofahrzeug
EP3481675B1 (de) Batterieanordnung für ein kraftfahrzeug
EP2699446B1 (de) Fahrzeugladevorrichtung
WO2014140004A2 (de) Ladevorrichtung für ein elektrofahrzeug
WO2012104188A1 (de) Verfahren zum schutz eines ladekabels und ladeeinrichtung
DE112013006901T5 (de) Inter-Protokoll-Ladeadapter
WO2013037814A2 (de) Ladevorrichtung für ein fahrzeug
DE102011004355A1 (de) Modul zur Leistungsverteilung in einem elektrisch betriebenen Fahrzeug
EP3847725B1 (de) Elektrische steckverbindung, fahrzeug und verfahren zum verriegeln einer elektrischen steckverbindung
WO2019141491A1 (de) Elektrisches antriebssystem für ein fahrzeug und verfahren zu dessen betrieb
DE102017106058A1 (de) Batteriesystem und Verfahren zu dessen Betrieb
DE102011082897A1 (de) Ladevorrichtung für ein Fahrzeug
EP3612408A1 (de) Ladeeinrichtung für elektrofahrzeuge
DE102016101081A1 (de) Bordnetz für ein Fahrzeug
DE102010030732A1 (de) Vorrichtung zur Steuerung des elektrischen Ladevorgangs eines Energiespeichers eines Fahrzeugs
DE102015016651A1 (de) Ladeeinrichtung für ein Kraftfahrzeug und Verfahren zum Aufladen einer Batterie
DE102016002459A1 (de) Elektrische Anlage für ein elektrisch antreibbares Kraftfahrzeug
EP3710304B1 (de) Kraftfahrzeug mit einem energiespeicher sowie verfahren zum betreiben eines kraftfahrzeugs
DE112009001573B4 (de) Hochvolt-Steckverbindung sowie Verwendung einer solchen
DE102014009088A1 (de) Ladevorrichtung für einen elektrischen Energiespeicher
WO2013182385A1 (de) Kraftfahrzeugbordnetz mit einer elektrischen maschine und wenigstens zwei energiespeichern mit unterschiedlichen ladespannungen sowie verfahren zum betreiben desselben
WO2019141492A1 (de) Elektrisches antriebssystem für ein fahrzeug und verfahren zu dessen betrieb
DE102021108004A1 (de) Ladevorrichtung für ein Elektrofahrzeug
DE102013002080A1 (de) Elektrische Konvertierungseinrichtung für ein Elektro- oder Hybridfahrzeug
DE102021110913A1 (de) Ladesteckereinrichtung, Ladekabel und Verfahren zum Bereitstellen einer Ladesteckereinrichtung

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 14704812

Country of ref document: EP

Kind code of ref document: A2