WO2014122892A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2014122892A1
WO2014122892A1 PCT/JP2014/000306 JP2014000306W WO2014122892A1 WO 2014122892 A1 WO2014122892 A1 WO 2014122892A1 JP 2014000306 W JP2014000306 W JP 2014000306W WO 2014122892 A1 WO2014122892 A1 WO 2014122892A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
adhesive layer
semiconductor element
based adhesive
mold resin
Prior art date
Application number
PCT/JP2014/000306
Other languages
English (en)
French (fr)
Inventor
藤田 淳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014560668A priority Critical patent/JP6024766B2/ja
Publication of WO2014122892A1 publication Critical patent/WO2014122892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3178Coating or filling in grooves made in the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26145Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3185Partial encapsulation or coating the coating covering also the sidewalls of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]

Definitions

  • This invention relates to an improvement in the adhesive force between an element and a sealing resin in a semiconductor module that is transfer-molded with an epoxy resin or the like.
  • a sealing resin such as an epoxy resin used in transfer molding is in direct contact with the semiconductor element (for example, Patent Document 1).
  • the SiC film has excellent adhesion to diamond-like carbon (DLC)
  • a tungsten carbon (WC) base material when used, an adhesive layer such as an SiC film is formed on the WC base material in order to improve the adhesive strength.
  • a method of forming a DLC film has been widely adopted (see, for example, Patent Document 2).
  • the present invention has been made to solve the above-described problems, and it is possible to obtain a highly reliable semiconductor module by suppressing long-term use of the semiconductor module and exfoliation of epoxy resin caused by environmental load. Is.
  • a semiconductor module includes a semiconductor element mounted on a substrate, a carbon-based adhesive layer provided on an outer peripheral portion of a surface opposite to the surface of the semiconductor element facing the substrate, and the carbon-based adhesive layer And a sealing resin for sealing the substrate and the semiconductor element.
  • the carbon-based adhesive layer is provided on the outer periphery of the semiconductor element, so that the epoxy resin is prevented from being peeled off at the outer periphery of the semiconductor element. In addition, reliability can be improved.
  • FIG. 1 is a schematic cross-sectional structure diagram showing a semiconductor module according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic top view and a schematic cross-sectional view of the semiconductor element and the carbon-based adhesive layer of the semiconductor module according to Embodiment 1 of the present invention.
  • a semiconductor module 100 includes a semiconductor element 1, a carbon-based adhesive layer 2, a mold resin 3 as a sealing resin, and a cooling substrate 6 as a substrate.
  • the carbon-based adhesive layer 2 is for strengthening the adhesive force between the semiconductor element 1 and the mold resin 3 at the outer peripheral portion on the surface side of the semiconductor element 1, and hydrogenated amorphous carbon (H: ⁇ -C) is considered. .
  • the back surface side of the semiconductor element 1 is joined to a cooling substrate 6 with solder 4. Further, the central portion on the front surface side of the semiconductor element 1 is joined to the terminal plate 5 with solder 4. A carbon-based adhesive layer 2 is formed on the outer peripheral portion on the surface side of the semiconductor element 1.
  • the cooling substrate 6 is composed of, for example, three layers of copper / aluminum nitride / copper.
  • a silicon-based insulating sheet 7 is bonded to the back side of the cooling substrate 6 that is not bonded to the semiconductor element 1.
  • a heat radiating plate 8 made of copper for exhausting heat from the semiconductor module 100 to the outside through the silicon insulating sheet 7 is disposed.
  • the semiconductor module 100 is configured by transfer molding the semiconductor module having such a configuration with a mold resin 3 such as an epoxy resin.
  • FIG. 2A shows a schematic top view of the semiconductor element
  • FIG. 2B shows a schematic cross-sectional structure of the semiconductor element.
  • the carbon-based adhesive layer is formed so as to cover the outer peripheral portion on the surface side of the semiconductor element 1 where the mold resin 3 formed on the surface side of the semiconductor element 1 is easy to peel off. 2 is formed.
  • the width of the carbon-based adhesive layer 2 may be about 300 to 1000 ⁇ m. When the width of the carbon-based adhesive layer 2 is 300 ⁇ m or less, sufficient adhesive force cannot be obtained even when the carbon-based adhesive layer 2 is formed, and the mold resin 3 is peeled off.
  • the width of the carbon-based adhesive layer 2 is 1000 ⁇ m or more, the adhesion with the mold resin 3 is improved, but the chip surface area of the region of the semiconductor element 1 where the carbon-based adhesive layer 2 is not formed is reduced, and the terminal plate 5 The connection area for the connection is reduced, resulting in increased resistance and connection failure.
  • the film thickness of the carbon-based adhesive layer 2 may be about 10 to 20 nm.
  • the film thickness of the carbon-based adhesive layer 2 is 10 nm or less, a region where the carbon-based adhesive layer 2 is not formed occurs in the outer peripheral portion on the surface side of the semiconductor element 1 due to the influence of film thickness variation. And in this part, since the semiconductor element 1 and the mold resin 3 contact directly, peeling of the mold resin 3 cannot be suppressed.
  • the film thickness of the carbon-based adhesive layer 2 is 20 nm or more, peeling from the outer peripheral portion on the surface side of the semiconductor element 1 is suppressed by the formation of the carbon-based adhesive layer 2.
  • the formation of the carbon-based adhesive layer 2 having a film thickness larger than necessary may cause the carbon-based adhesive layer 2 to wrap around under the mask when selectively produced using a metal mask, Since the wraparound portion is added to the width of the system adhesive layer 2, the chip surface area in the region where the carbon system adhesive layer 2 is not formed is reduced. And the connection area for the connection with the terminal board 5 decreases, resulting in increased resistance and connection failure.
  • the outer peripheral portion on the surface side of the semiconductor element 1 With the carbon-based adhesive layer 2, it becomes possible to improve the adhesiveness with the mold resin 3, and the outer peripheral portion on the surface side of the semiconductor element 1 is the base point.
  • the mold resin 3 can be prevented from peeling off.
  • FIG. 3 is a flowchart showing the carbon-based adhesive layer surface treatment process according to the first embodiment of the present invention.
  • a substrate surface cleaning step for cleaning the surface of the substrate is performed after the wafer process step is completed. By this process, surface contamination and contamination due to the wafer process are removed, and a clean surface is exposed and formed.
  • a mask setting step for setting a mask for selectively producing the carbon-based adhesive layer 2 is performed. By this treatment, a region for selectively producing the carbon-based adhesive layer 2 is secured.
  • an adhesive layer film forming step for forming the carbon-based adhesive layer 2 is performed. By this treatment, the carbon-based adhesive layer 2 is selectively formed on the surface of the semiconductor element 1 using a mask.
  • the module mounting process is performed after the surface of the chip surface is subjected to the surface treatment for enhancing the adhesiveness of the mold resin 3.
  • the carbon-based adhesive layer 2 is formed in the adhesive layer film-forming process of the next process, a stainless stencil mask having an opening at a portion where the carbon-based adhesive layer 2 is to be formed is used, and the opening of the mask is a semiconductor.
  • the carbon-based adhesive layer 2 can be selectively formed only on the outer peripheral portion on the surface side of the semiconductor element 1.
  • the carbon-based adhesive layer 2 can be formed by, for example, ion-assisted sputtering or vapor deposition, bias application type plasma CVD, or the like.
  • the film thickness of the carbon-based adhesive layer 2 is 10 to 20 nm.
  • the ratio of SP2 is about 50%.
  • FIG. 4 is a schematic cross-sectional structure diagram showing a bonded state of the front and back surfaces of the carbon-based adhesive layer according to Embodiment 1 of the present invention.
  • a hydroxyl group is naturally formed on the surface of the carbon-based adhesive layer 2 bonded to the surface of the carbon-based adhesive layer 2 by being left in the atmosphere.
  • the carbon-based adhesive layer 2 and the mold resin 3 are bonded to each other by hydrogen bonding by the hydroxyl group. Further, since the difference in lattice spacing between the semiconductor element 1 and the carbon-based adhesive layer 2 is small, the back surface of the carbon-based adhesive layer 2 can be deposited with good adhesion.
  • the adhesion to the mold resin 3 is improved by providing the carbon-based adhesive layer 2 on the outer peripheral portion on the surface side of the semiconductor element 1.
  • peeling of the mold resin 3 formed on the semiconductor element 1 from the outer peripheral portion on the surface side of the semiconductor element 1 as a base point is suppressed, and there is no deterioration in the heat cycle and power cycle tests, and the reliability is improved.
  • the carbon-based adhesive layer 2 used in the first embodiment is made of hydrogenated amorphous carbon (H: ⁇ -C) in which the proportion of the SP3 structure is larger than the graphite structure of the SP2 structure. The point is different.
  • hydrogenated amorphous carbon (H: ⁇ -C) in which the proportion of the SP3 structure is larger than the graphite structure of the SP2 structure, the semiconductor element 1 using the SiC substrate having the same SP3 structure is used.
  • the carbon-based adhesive layer 2 can be formed more firmly, and peeling of the mold resin 3 can be suppressed.
  • the carbon-based adhesive layer 2 can be formed by, for example, ion-assisted sputtering or vapor deposition, bias application type plasma CVD, or the like. Further, in the formation using the bias applied type plasma CVD, the carbon-based adhesive layer 2 having a high SP3 structure ratio can be formed by increasing the ratio of the hydrogen gas during the film formation.
  • the carbon-based adhesive layer 2 to be formed itself becomes strong and formed on the surface of a semiconductor element with a residue or unevenness when a semiconductor element is manufactured. It is not good because the film will not adhere.
  • the SiC Adhesiveness is further improved with the semiconductor element 1 configured as follows.
  • peeling of the mold resin 3 formed on the semiconductor element 1 from the outer peripheral portion on the surface side of the semiconductor element 1 as a base point is suppressed, and there is no deterioration in the heat cycle and power cycle tests, and the reliability is improved.
  • the SiC substrate surface side of the carbon-based adhesive layer 2 is rich in SP3 structure, and the epoxy resin that is the mold resin 3 is changed to the epoxy resin.
  • the surface side in contact with the SP2 structure may be rich.
  • Embodiment 3 FIG.
  • the third embodiment is different in that the carbon-based adhesive layer 2 used in the first embodiment is formed after the semiconductor element 1 is cut.
  • the carbon-based adhesive layer 2 is formed not only on the outer peripheral portion on the surface side of the semiconductor element 1 but also on the side surface of the semiconductor element 1 by forming the carbon-based adhesive layer 2 after the semiconductor element 1 is cut.
  • the mold resin 3 adheres to the carbon-based adhesive layer 2 not only on the surface of the semiconductor element 1 but also on the side surfaces, the carbon-based adhesive layer 2 can be formed more firmly, and the mold resin 3 can be prevented from peeling off. it can.
  • FIG. 5 is a schematic top view and a schematic cross-sectional view of the semiconductor element and the carbon-based adhesive layer of the semiconductor module according to Embodiment 3 of the present invention.
  • FIG. 5A shows a schematic top view of the semiconductor element
  • FIG. 5B shows a schematic cross-sectional structure of the semiconductor element.
  • a stainless steel stencil mask is used in which a portion where the carbon-based adhesive layer 2 is to be formed is cut in the dicing region of the wafer in the substrate thickness direction, and the mask opening is formed in the semiconductor element 1.
  • FIG. 5 (b) by aligning with the outer peripheral portion on the surface side of the semiconductor device, the carbon resin is formed on the outer peripheral portion and part of the side surface of the semiconductor element where the mold resin is easily peeled off.
  • the adhesive layer 2 is selectively formed.
  • FIG. 6 is a schematic top view and a schematic cross-sectional view of another semiconductor element and a carbon-based adhesive layer of the semiconductor module according to Embodiment 3 of the present invention.
  • FIG. 6A shows a top view of the semiconductor element
  • FIG. 6B shows a cross-sectional view of the semiconductor element.
  • the carbon-based adhesive layer 2 is formed on a part of the side surface. However, if the carbon-based adhesive layer 2 is formed by covering the stencil mask after cutting the chip, as shown in FIGS. 6 (a) and 6 (b). In addition, the carbon-based adhesive layer 2 can be formed on the entire side surface of the semiconductor element 1.
  • the carbon-based adhesive layer 2 and the mold resin 3 are provided by providing the carbon-based adhesive layer 2 on the outer peripheral portion on the surface side of the semiconductor element 1 and the side surface of the semiconductor element 1.
  • the adhesion with the mold resin 3 is further improved.
  • peeling of the mold resin 3 formed on the semiconductor element 1 from the outer peripheral portion on the surface side of the semiconductor element 1 as a base point is suppressed, and there is no deterioration in the heat cycle and power cycle tests, and the reliability is improved.
  • Embodiment 4 FIG.
  • the fourth embodiment is different in that the surface of the carbon-based adhesive layer 2 used in the first embodiment is roughened by plasma etching.
  • the substantial adhesion area of the surface of the carbon-based adhesive layer 2 is increased, and the adhesive force with the mold resin 3 is increased. It can be formed more firmly.
  • FIG. 7 is a schematic cross-sectional structure diagram showing the surface state of the carbon-based adhesive layer according to Embodiment 4 of the present invention. As shown in FIG. 7, the surface of the carbon-based adhesive layer 2 is roughened by plasma etching, so that the substantial adhesion area increases.
  • FIG. 8 is a flowchart showing another carbon-based adhesive layer surface treatment process according to the fourth embodiment of the present invention.
  • the surface of the carbon-based adhesive layer 2 is subjected to plasma using a parallel plate type reactive ion etching, ion milling apparatus, or atmospheric pressure plasma apparatus. It can be roughened by exposure.
  • the mask for forming the carbon-based adhesive layer 2 is continuously used, damage to the semiconductor element terminal portion can be prevented.
  • the substantial adhesive area of the surface of the carbon-based adhesive layer 2 is increased, and the adhesiveness to the mold resin 3 is increased. Is further improved.
  • peeling of the mold resin 3 formed on the semiconductor element 1 from the outer peripheral portion on the surface side of the semiconductor element 1 as a base point is suppressed, and there is no deterioration in the heat cycle and power cycle tests, and the reliability is improved.
  • Embodiment 5 is different in that a hydroxyl group is positively added to the surface of the carbon-based adhesive layer 2 used in the first embodiment.
  • a hydroxyl group is positively added to the surface of the carbon-based adhesive layer 2 used in the first embodiment.
  • the substantial adhesive force on the surface of the carbon-based adhesive layer 2 is increased and the adhesive force with the mold resin 3 is increased. Can be formed.
  • Hydroxyl group is positively imparted by using an atmospheric pressure plasma apparatus to bond a hydroxyl group that binds to the surface of the carbon-based adhesive layer 2 that is naturally formed when left in the atmosphere shown in FIG.
  • the adhesive force with the mold resin 3 is increased, and a module with higher reliability can be obtained.
  • a hydroxyl group is imparted to the surface of the carbon-based adhesive layer 2.
  • a torch type atmospheric pressure plasma apparatus it is not necessary to continuously use the mask used when the carbon-based adhesive layer 2 is formed.
  • nitrogen gas is used this time, an inert gas such as argon gas, air, or a mixed gas thereof may be used.
  • the carbon-based adhesive layer 2 manufactured through the manufacturing process shown in FIG. 8 is formed on the surface of the semiconductor element 1 using the SiC substrate, the carbon-based adhesive layer 2 and the semiconductor element 1 using the SiC substrate are bonded. Since there is no great difference in the lattice spacing from the layer 2, it can be deposited with good adhesion. Further, due to the presence of adsorbed water on the surface of the carbon-based adhesive layer 2 on the opposite side in contact with the semiconductor element 1 using a SiC substrate, the semiconductor element 1 is firmly bonded to the mold resin 3 for transfer molding by hydrogen bonding. To do.
  • the adsorbed water is formed in the surface of the carbon-based adhesive layer 2 by subjecting the surface of the carbon-based adhesive layer 2 to atmospheric pressure plasma treatment using nitrogen gas as an operating gas in the hydroxyl group application step shown in FIG. , Adsorbed water can be deposited on it.
  • the adhesion to the mold resin 3 is further improved by adding a hydroxyl group to the surface of the carbon-based adhesive layer 2.
  • a hydroxyl group may be imparted to the roughened carbon-based adhesive layer 2.
  • the adhesion with the mold resin 3 is further improved, the peeling of the mold resin 3 from the outer peripheral portion on the surface side of the semiconductor element 1 is suppressed, and there is no deterioration in the heat cycle and power cycle tests. Improves.
  • FIG. 9 is a comparison diagram of the adhesive strength of the carbon-based adhesive layer of the present invention and other components.
  • a mold resin was formed in a pudding cup shape on the semiconductor element substrate, and shear peel strength measurement was performed.
  • the shear peel strength is 5.6 MPa, which is as small as 1/3 or less of 17.9 MPa of the strength when the mold resin is bonded to the silicon substrate.
  • the adhesive strength when the hydrogenated amorphous carbon film is formed is 10 MPa, which is about twice as large as when the hydrogenated amorphous carbon film is not formed (Embodiment 1). Furthermore, the adhesive strength when the surface of the hydrogenated amorphous carbon film is roughened is 12.8 MPa (Embodiment 4), and when a hydroxyl group is added, it becomes 16.8 MPa (Embodiment 5), which is almost equal to that of the silicon substrate. Equivalent value.
  • the carbon-based adhesive layer 2 formed on the outer peripheral portion of the semiconductor element 1 used in the first to fifth embodiments is considered in the mounting process of the semiconductor element 1, and the outer peripheral corner portion of the semiconductor element 1 is used.
  • the points formed in the vicinity are different.
  • by forming the carbon-based adhesive layer 2 in the vicinity of the outer peripheral corner of the semiconductor element 1, even in a mounting process using a jig in which a part of the four sides of the surface of the semiconductor element 1 is in contact with the jig Damage to the carbon-based adhesive layer 2 due to contact can be suppressed, and a decrease in adhesive strength with the mold resin 3 can be prevented.
  • the semiconductor element 1 is handled in the mounting process and joined to the heat spreader, and there is an operation process of taking out the chip from the chip case with a vacuum suction jig and placing it on the heat spreader.
  • a vacuum suction jig the surface of the semiconductor element 1 may be contaminated, so that the chip surface needs to be cleaned in a later step.
  • the carbon-based adhesive layer 2 is formed over the entire outer periphery of the semiconductor element 1, a part of the four sides of the surface of the semiconductor element 1 comes into contact with the vacuum suction jig, and the carbon-based adhesive layer 2 is damaged. There is a possibility. If the carbon-based adhesive layer 2 is damaged, the mold resin 3 is peeled off from the semiconductor element 1 in the reliability test using the damaged portion as a starting point.
  • FIG. 10 is a schematic diagram of a chip conveying process in the mounting process when the Bernoulli type vacuum suction jig according to the sixth embodiment of the present invention is used.
  • FIG. 10A shows a schematic sectional view of a Bernoulli-type vacuum suction jig
  • FIG. 10B shows a schematic bottom view of the Bernoulli-type vacuum suction jig.
  • the Bernoulli-type vacuum suction jig includes a collet 11, a skid prevention protrusion 12, and a blower port 13.
  • the skid prevention protrusion 12 and the four sides of the semiconductor element 1 are in contact with each other. By setting it as such a structure, the semiconductor element 1 can be adsorb
  • a carbon-based adhesive layer 2 is provided in the vicinity of the four sides of the semiconductor element 1 where a large peeling stress is generated, and the side of the semiconductor element 1 in contact with the vacuum suction jig The carbon-based adhesive layer 2 is not provided on the part.
  • FIG. 11 is a schematic top view and a schematic cross-sectional view of a semiconductor element and a carbon-based adhesive layer of a semiconductor module according to Embodiment 6 of the present invention.
  • FIG. 11A shows a schematic top view of a semiconductor element
  • FIG. 11B shows a schematic cross-sectional structure of the semiconductor element.
  • the carbon-based adhesive layer 2 used in the first embodiment is formed on the outer peripheral corner portion on the surface side in the vicinity of the outer peripheral corner portion of the semiconductor element 1. However, the carbon-based adhesive layer 2 is not continuously formed.
  • the formation length in the side direction of the carbon-based adhesive layer 2 may be 10 ⁇ m or more. Further, the length of the region where the carbon-based adhesive layer 2 is not formed on one side may be wider than the width of the skid prevention protrusion 12 of the Bernoulli-type vacuum suction jig, for example, for chip conveyance. It depends on the shape. For example, when the width of the skid prevention protrusion 12 of the vacuum suction jig is 1 mm and the position accuracy of the chip in the jig is ⁇ 1 mm, the length of the discontinuous portion of the carbon-based adhesive layer 2 should be about 3 mm. It ’s fine. If the length of one side of the chip is about 5 mm or more, such a dimension is sufficient.
  • the thickness of the carbon-based adhesive layer 2 and the formation width of the surface of the semiconductor element 1 may be about 10 to 20 nm and about 300 to 1000 ⁇ m, respectively.
  • the adhesion to the mold resin 3 is improved by providing the carbon-based adhesive layer 2 at the outer peripheral corner of the outer peripheral portion on the surface side of the semiconductor element 1.
  • peeling of the mold resin 3 formed on the semiconductor element 1 from the outer peripheral portion on the surface side of the semiconductor element 1 as a base point is suppressed, and there is no deterioration in the heat cycle and power cycle tests, and the reliability is improved.
  • the carbon-based adhesive layer 2 is not formed on the side portion of the semiconductor element 1 that contacts the vacuum suction jig, the carbon-based adhesive layer 2 is not damaged during vacuum suction, and is generated in the manufacturing process of the semiconductor module. It is possible to suppress deterioration of reliability due to damage.
  • the deformation of the semiconductor element 1 on which the carbon-based adhesive layer 2 is formed can be suppressed, the inclination of the semiconductor element 1 can be suppressed when the semiconductor element 1 is mounted, so that productivity can be improved.
  • Embodiment 7 FIG.
  • the seventh embodiment is different in that the carbon-based adhesive layer 2 formed on the semiconductor element 1 after the cutting process used in the third embodiment is formed in the vicinity of the outer peripheral corner of the semiconductor element 1.
  • the carbon-based adhesive layer 2 also on the side surface corresponding to the vicinity of the outer peripheral corner of the semiconductor element 1, peeling of the mold resin 3 can be further suppressed.
  • FIG. 12 is a schematic top view and a schematic cross-sectional view of a semiconductor element and a carbon-based adhesive layer of a semiconductor module according to Embodiment 7 of the present invention.
  • FIG. 12A shows a schematic top view of a semiconductor element
  • FIG. 12B shows a schematic cross-sectional structure of the semiconductor element.
  • a stainless stencil mask having a portion where the carbon-based adhesive layer 2 is to be formed is opened after being cut about half in the substrate thickness direction in the dicing region of the wafer.
  • FIGS. 12A and 12B by aligning with the outer peripheral portion of the front surface side of the semiconductor device 1, the outer peripheral corner portion and part of the side surface of the semiconductor element 1 where the mold resin 3 is easy to peel off The carbon-based adhesive layer 2 is selectively formed.
  • the formation length in the side direction of the carbon-based adhesive layer 2 may be 10 ⁇ m or more. Further, the length of the region where the carbon-based adhesive layer 2 is not formed on one side may be wider than the width of the skid prevention protrusion 12 of the Bernoulli-type vacuum suction jig, for example, for chip conveyance. It depends on the shape. For example, when the width of the skid prevention protrusion 12 of the vacuum suction jig is 1 mm and the position accuracy of the chip in the jig is ⁇ 1 mm, the length of the discontinuous portion of the carbon-based adhesive layer 2 should be about 3 mm. It ’s fine. If the length of one side of the chip is about 5 mm or more, such a dimension is sufficient.
  • the thickness of the carbon-based adhesive layer 2 and the formation width of the surface of the semiconductor element 1 may be about 10 to 20 nm and about 300 to 1000 ⁇ m, respectively.
  • the depth to be cut by about half is sufficient if the remaining thickness of the semiconductor substrate is 10 ⁇ m or more. For example, when the thickness of the semiconductor substrate is 300 ⁇ m, it may be cut by about 290 ⁇ m.
  • the upper side surface of the semiconductor element 1 can be covered with the carbon-based adhesive layer 2 if the depth is about 10 ⁇ m or more. At this time, if the carbon-based adhesive layer 2 can cover the side surface of the semiconductor element 1 from the surface to the back surface by about 5 ⁇ m or more, it is possible to suppress the peeling of the mold resin 3.
  • FIG. 13 is a schematic top view and a schematic cross-sectional view of a semiconductor element and a carbon-based adhesive layer of another semiconductor module according to Embodiment 7 of the present invention.
  • FIG. 13A shows a schematic top view of a semiconductor element
  • FIG. 13B shows a schematic cross-sectional structure of the semiconductor element.
  • the carbon-based adhesive layer 2 is formed on a part of the side surface. However, if the carbon-based adhesive layer 2 is formed by covering the stencil mask after cutting the chip, as shown in FIGS. 13 (a) and 13 (b). In addition, the carbon-based adhesive layer 2 can be formed on the entire side surface of the semiconductor element 1.
  • the formation length in the side direction of the carbon-based adhesive layer 2 may be 10 ⁇ m or more. Further, the length of the region where the carbon-based adhesive layer 2 is not formed on one side may be wider than the width of the skid prevention protrusion 12 of the Bernoulli-type vacuum suction jig, for example, for chip conveyance. It depends on the shape.
  • the length of the discontinuous portion of the carbon-based adhesive layer 2 should be about 3 mm. It ’s fine. If the length of one side of the chip is about 5 mm or more, such a dimension is sufficient.
  • the thickness of the carbon-based adhesive layer 2 and the formation width of the surface of the semiconductor element 1 may be about 10 to 20 nm and about 300 to 1000 ⁇ m, respectively.
  • the adhesion to the mold resin 3 is improved by providing the carbon-based adhesive layer 2 at the outer peripheral corner of the outer peripheral portion on the surface side of the semiconductor element 1.
  • peeling of the mold resin 3 formed on the semiconductor element 1 from the outer peripheral portion on the surface side of the semiconductor element 1 as a base point is suppressed, and there is no deterioration in the heat cycle and power cycle tests, and the reliability is improved.
  • the carbon-based adhesive layer 2 is not formed on the side portion of the semiconductor element 1 that contacts the vacuum suction jig, the carbon-based adhesive layer 2 is not damaged during vacuum suction, and is generated in the manufacturing process of the semiconductor module. It is possible to suppress deterioration of reliability due to damage.
  • the deformation of the semiconductor element 1 on which the carbon-based adhesive layer 2 is formed can be suppressed, the inclination of the semiconductor element 1 can be suppressed when the semiconductor element 1 is mounted, so that productivity can be improved.
  • the contact area between the carbon-based adhesive layer 2 and the mold resin 3 is increased. 3 is further improved. As a result, peeling of the mold resin 3 formed on the semiconductor element 1 from the outer peripheral portion on the surface side of the semiconductor element 1 as a base point is suppressed, and there is no deterioration in the heat cycle and power cycle tests, and the reliability is improved.
  • Embodiment 6 and Embodiment 7 as well, it has been described that there is an effect of improving the adhesive strength to transfer mold resin, but the surface of the SiC substrate and silicon resin, rubber material, polyimide, which is a combination of case-type packages Resin has the same effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

長期間の使用や、環境負荷により発生する半導体素子の表面側の外周部からのエポキシ樹脂の剥離を抑制し、信頼性の高い半導体モジュールを得る。基板6上に搭載されたワイドバンドギャップ半導体素子1と、ワイドバンドギャップ半導体素子1の基板6に対向する面の反対側の面の外周部に設けられた炭素系接着層2と、炭素系接着層2と接し、基板6とワイドバンドギャップ半導体素子1とを封止するモールド樹脂3とを備えた半導体モジュール。

Description

半導体モジュール
 この発明は、エポキシ樹脂等でトランスファーモールド成形する半導体モジュールにおける、素子と封止樹脂の接着力向上に関するものである。
 従来の半導体モジュールにおいては、半導体材料の一つであるSiC(Silicon Carbide)で半導体素子を形成した場合、トランスファーモールドで使用するエポキシ樹脂等の封止樹脂が直接半導体素子に接していた(例えば、特許文献1参照)。
 一方、SiC膜はダイヤモンドライクカーボン(DLC)との接着性が優れるので、タングステンカーボン(WC)系基材を用いる場合、接着力改善のために、そのWC基材上にSiC膜等の接着層を形成してから、DLC膜を成膜する方法が広く採用されていた(例えば、特許文献2参照)。
特公平6-80748号公報(第2頁、第1図) 特開2004-35359号公報(第2頁)
 従来の半導体モジュールでは、半導体素子を作り込む材料がSiCやGaN(Gallium nitride)のようなワイドバンドギャップ半導体材料の場合、これらSiCやGaNとエポキシ樹脂との接着力が、Siとエポキシ樹脂との接着力と比較して、相対的に弱いために、実使用時の温度履歴を模擬したヒートサイクル試験(-40℃~150℃、2600サイクル)や、素子の高温動作状態を模擬したパワーサイクル試験(Tj=85~175℃、250kサイクル)において、半導体素子と封止材料であるエポキシ樹脂とが素子端部から剥離するという問題点があった。
 この発明は、上述のような問題点を解決するためになされたもので、半導体モジュールの長期間の使用や、環境負荷により発生するエポキシ樹脂の剥離を抑制し、信頼性の高い半導体モジュールを得るものである。
 この発明に係る半導体モジュールは、基板に搭載された半導体素子と、前記半導体素子の前記基板に対向する面の反対側の面の外周部に設けられた炭素系接着層と、前記炭素系接着層と接し、前記基板と前記半導体素子とを封止する封止樹脂とを備えたものである。
 この発明は、半導体素子の外周部に炭素系接着層を設けたことで、半導体素子の外周部におけるエポキシ樹脂の剥離を抑制したので、半導体モジュールの長期間の使用や、環境負荷による劣化を抑制し、信頼性を向上することができる。
この発明の実施の形態1の半導体モジュールを示す断面構造模式図である。 この発明の実施の形態1の半導体モジュールの半導体素子と炭素系接着層の上面構造模式図と断面構造模式図である。 この発明の実施の形態1の炭素系接着層表面処理のプロセスを示すフロー図である。 この発明の実施の形態1の炭素系接着層表裏面結合状態を示す断面構造模式図である。 この発明の実施の形態3の半導体モジュールの半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。 この発明の実施の形態3の半導体モジュールの別の半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。 この発明の実施の形態4の炭素系接着層表面状態を示す断面構造模式図である。 この発明の実施の形態4の他の炭素系接着層表面処理のプロセスを示すフロー図である。 この発明の炭素系接着層とその他構成の接着強度の比較図である。 この発明の実施の形態6のベルヌーイ式真空吸着治具を用いた場合の実装工程でのチップ搬送工程の概略図である。 この発明の実施の形態6の半導体モジュールの半導体素子と炭素系接着層の上面構造模式図と断面構造模式図である。 この発明の実施の形態7の半導体モジュールの半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。 この発明の実施の形態7の別の半導体モジュールの半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。
実施の形態1.
 図1は、この発明の実施の形態1の半導体モジュールを示す断面構造模式図である。図2はこの発明の実施の形態1の半導体モジュールの半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。図1において、半導体モジュール100は、半導体素子1、炭素系接着層2、封止樹脂であるモールド樹脂3、基板である冷却基板6を備えている。炭素系接着層2は、半導体素子1の表面側の外周部で半導体素子1とモールド樹脂3との接着力を強化するためのもので、水素化アモルファスカーボン(H:α-C)が考えられる。
 図1に示すように、半導体素子1の裏面側は、はんだ4で冷却基板6と接合されている。また、半導体素子1の表面側の中央部は、はんだ4で端子板5と接合されている。そして、半導体素子1の表面側の外周部には、炭素系接着層2が形成されている。
 冷却基板6は、例えば、銅/窒化アルミ/銅の三層で構成されている。そして、冷却基板6の半導体素子1と接合されていない裏面側には、シリコン系絶縁シート7が接合されている。シリコン系絶縁シート7を介して半導体モジュール100から外部へ排熱するための銅で形成された放熱板8が配置されている。このような形態の半導体モジュールを例えば、エポキシ樹脂のようなモールド樹脂3によりトランスファーモールドすることで半導体モジュール100が構成されている。
 図2(a)には半導体素子の上面構造模式図を、図2(b)には半導体素子の断面構造模式図を示す。図2(a)、図2(b)に示すように、半導体素子1の表面側に形成されるモールド樹脂3が剥離しやすい半導体素子1の表面側の外周部を覆うように炭素系接着層2を形成している。炭素系接着層2の幅は、300~1000μm程度あれば良い。炭素系接着層2の幅が300μm以下では、炭素系接着層2が形成されても十分な接着力が得られず、モールド樹脂3の剥離が発生する。炭素系接着層2の幅が1000μm以上では、モールド樹脂3との接着性は向上するが、半導体素子1の炭素系接着層2が形成されていない領域のチップ表面積が減少し端子板5との接続のための接続面積が減少して抵抗増化や接続不良の原因となる。
 炭素系接着層2の膜厚は、10~20nm程度あれば良い。炭素系接着層2の膜厚が10nm以下では、膜厚ばらつきの影響により半導体素子1の表面側の外周部に炭素系接着層2が形成されない領域が発生する。そして、この部分では半導体素子1とモールド樹脂3とが直接接触するため、モールド樹脂3の剥離を抑制できない。
 また、炭素系接着層2の膜厚が20nm以上では、炭素系接着層2の形成により半導体素子1の表面側の外周部からの剥離は抑制される。しかし、必要以上の膜厚の炭素系接着層2を形成することは、金属製のマスクを使用して選択的に作製する場合、炭素系接着層2のマスク下への回り込みが発生し、炭素系接着層2の幅にこの回り込み分が追加された形になるため、炭素系接着層2が形成されていない領域のチップ表面積を減少させる。そして、端子板5との接続のための接続面積が減少して抵抗増化や接続不良の原因となる。
 このように、半導体素子1の表面側の外周部を炭素系接着層2で覆うことで、モールド樹脂3との接着性を向上することが可能となり、半導体素子1の表面側の外周部を基点としたモールド樹脂3の剥離が抑制できる。
 図3は、この発明の実施の形態1の炭素系接着層表面処理のプロセスを示すフロー図である。図3に示すプロセスフローにおいて、ウエハプロセス工程終了後、基板の表面を洗浄する基板表面洗浄工程を行う。この処理により、ウエハプロセス工程による表面汚染、コンタミネーションを除去し、清浄な表面を露出形成する。次に、炭素系接着層2を選択的に作製するためのマスクをセットするマスクセット工程を行う。この処理により、炭素系接着層2を選択的に作製するための領域を確保する。次に、炭素系接着層2の成膜を行うための接着層成膜工程を行う。この処理により、マスクを用いて半導体素子1の表面に炭素系接着層2を選択的に形成する。このように、チップ表面にモールド樹脂3の接着性強化のための表面処理を施した後、モジュール実装工程が実施される。
 マスクセット工程において、次工程の接着層成膜工程で炭素系接着層2を形成するときに、炭素系接着層2を形成したい部分を開口したステンレス製ステンシルマスクを用い、マスクの開口部を半導体素子1の表面側の外周部に位置合わせすることで、半導体素子1の表面側の外周部のみ選択的に炭素系接着層2を形成することができる。この炭素系接着層2は、例えば、イオンアシストする形式のスパッタ法や蒸着法、バイアス印加タイプのプラズマCVD等で形成することができる。また、炭素系接着層2の成膜する膜厚としては、10~20nmとする。また、このようにして作製した炭素系接着層2の構造としては、SP2構造とSP3構造とで形成され、SP2の割合が5割程度である。
 図4は、この発明の実施の形態1の炭素系接着層表裏面結合状態を示す断面構造模式図である。図4に示すように、炭素系接着層2の表面は、大気中放置により炭素系接着層2表面と結合した自然に水酸基が形成される。そして、この水酸基により炭素系接着層2とモールド樹脂3とは水素結合により接着する。また、炭素系接着層2の裏面は、半導体素子1と炭素系接着層2との格子間隔の差が小さいので接着性良く堆積させることができる。
 以上のように構成された半導体モジュールにおいては、半導体素子1の表面側の外周部に炭素系接着層2を設けることにより、モールド樹脂3との接着性が向上する。これにより、半導体素子1上に形成したモールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。
実施の形態2.
 本実施の形態2においては、実施の形態1で用いた炭素系接着層2をSP2構造のグラファイト構造よりもSP3構造の割合が多くなるような水素化アモルファスカーボン(H:α-C)とした点が異なる。このように、SP2構造のグラファイト構造よりもSP3構造の割合が多くなるような水素化アモルファスカーボン(H:α-C)としたことで、同じSP3構造を持つSiC基板を用いた半導体素子1に、より強固に炭素系接着層2を形成することができ、モールド樹脂3の剥離を抑制できる。
 この炭素系接着層2は、例えば、イオンアシストする形式のスパッタ法や蒸着法、バイアス印加タイプのプラズマCVD等で形成することができる。また、バイアス印加タイプのプラズマCVDを用いた形成では、成膜中の水素ガスの割合を増やすことで、SP3構造の割合の多い炭素系接着層2を形成することができる。
 一方、炭素系接着層2の8割以上をSP3構造としてしまうと、形成する炭素系接着層2自体が強固になってしまい、半導体素子作製時の残渣や、凹凸のある半導体素子表面に形成した膜が接着しなくなるので良くない。
 以上のように構成された半導体モジュールにおいては、半導体素子1の表面側の外周部にSP3構造を多く含む炭素系接着層2を設けることにより、モールド樹脂3との接着性を保持したまま、SiCで構成される半導体素子1とも接着性がさらに向上する。これにより、半導体素子1上に形成したモールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。
 さらに、成膜中の水素ガスの割合を変化させながら炭素系接着層2を成膜することで、炭素系接着層2のSiC基板表面側をSP3構造リッチに、モールド樹脂3であるエポキシ樹脂に接する表面側をSP2構造リッチとすることもできる。炭素系接着層2をこのような構成とすることで、炭素系接着層2が接する材料に適した組成とすることができ、さらに接着性が向上する。
実施の形態3.
 本実施の形態3においては、実施の形態1で用いた炭素系接着層2を、半導体素子1を切断処理後に形成した点が異なる。このように、半導体素子1を切断処理後に炭素系接着層2を形成することで半導体素子1の表面側の外周部だけでなく、半導体素子1の側面に対しても炭素系接着層2を形成したことで、モールド樹脂3は半導体素子1の表面だけでなく側面でも炭素系接着層2と接着するため、より強固に炭素系接着層2を形成することができ、モールド樹脂3の剥離を抑制できる。
 図5は、この発明の実施の形態3の半導体モジュールの半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。図5(a)には半導体素子の上面構造模式図を、図5(b)には半導体素子の断面構造模式図を示す。図5に示すように、ウェハのダイシング領域で基板厚方向に半分程度切断してから、炭素系接着層2を形成したい部分を開口したステンレス製ステンシルマスクを用い、マスクの開口部を半導体素子1の表面側の外周部に位置合わせすることにより、図5(a)、図5(b)に示すようにモールド樹脂が剥離しやすい半導体素子の表面側の外周部と側面の一部に炭素系接着層2を選択的に形成する。
 図6は、この発明の実施の形態3の半導体モジュールの別の半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。図6(a)には半導体素子の上面図を、図6(b)には半導体素子の断面図を示す。
 図5では、側面の一部に炭素系接着層2を形成したが、チップ切断後にステンシルマスクを被せて炭素系接着層2を形成すれば、図6(a)、図6(b)のように半導体素子1の側面全面に炭素系接着層2を形成することができる。
 以上のように構成された半導体モジュールにおいては、半導体素子1の表面側の外周部と半導体素子1の側面にも炭素系接着層2を設けることにより、炭素系接着層2とモールド樹脂3との接触面積が増加することにより、モールド樹脂3との接着性がさらに向上する。これにより、半導体素子1上に形成したモールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。
実施の形態4.
 本実施の形態4においては、実施の形態1で用いた炭素系接着層2の表面をプラズマエッチングにより粗化した点が異なる。このように、炭素系接着層2の表面をプラズマエッチングにより粗化することで、炭素系接着層2の表面の実質的な接着面積が増加し、モールド樹脂3との接着力を増加させるため、より強固に形成することができる。
 図7は、この発明の実施の形態4の炭素系接着層表面状態を示す断面構造模式図である。図7に示すように、炭素系接着層2の表面は、プラズマエッチングにより粗化することで、実質的な接着面積が増加する。
 図8は、この発明の実施の形態4の他の炭素系接着層表面処理のプロセスを示すフロー図である。ここで、図8に示すプロセスフローにおいて、炭素系接着層2を形成後、平行平板型のリアクティブ・イオンエッチングやイオンミリング装置、大気圧プラズマ装置を用いて炭素系接着層2の表面をプラズマに曝すことで粗化することができる。このとき、炭素系接着層2を形成する時のマスクを継続して使用すると、半導体素子端子部のダメージを防止することができる。
 以上のように構成された半導体モジュールにおいては、炭素系接着層2の表面を粗化することにより、炭素系接着層2の表面の実質的な接着面積が増加し、モールド樹脂3との接着性がさらに向上する。これにより、半導体素子1上に形成したモールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。
実施の形態5.
 本実施の形態5においては、実施の形態1で用いた炭素系接着層2の表面に積極的に水酸基を付与した点が異なる。このように、炭素系接着層2の表面に水酸基を付与することで、炭素系接着層2の表面の実質的な接着力が増加し、モールド樹脂3との接着力を増加させるため、より強固に形成することができる。
 炭素系接着層2の表面を、図4に示した大気中放置で自然に形成される炭素系接着層2表面と結合する水酸基を、大気圧プラズマ装置を用いて、積極的に水酸基付与することで、モールド樹脂3との接着力を増加させ、より信頼性の高いモジュールとすることができる。
 ここで、図8に示すプロセスフローにおいて、炭素系接着層2を形成後、例えば、窒素ガスを用いた大気圧プラズマ装置を用いてプラズマ照射すると、炭素系接着層2の表面に水酸基を付与することができる。なお、トーチ型の大気圧プラズマ装置を用いれば、炭素系接着層2を形成する時に使用したマスクを継続使用する必要はない。今回は窒素ガスを用いたが、アルゴンガス等の不活性ガスでも、空気、あるいは、これらの混合ガスを用いてもよい。
 図8に示したような作製工程を経て作製された炭素系接着層2は、例えば、SiC基板を用いた半導体素子1表面上に形成した場合、SiC基板を用いた半導体素子1と炭素系接着層2との格子間隔に大きな差異がないので接着性良く堆積させることができる。また、SiC基板を用いた半導体素子1と接している反対面側である炭素系接着層2表面の吸着水の存在により、この半導体素子1をトランスファーモールドするモールド樹脂3とも水素結合により強固に接着する。この吸着水は、図8に示した水酸基付与工程において、炭素系接着層2の表面は窒素ガスを動作ガスとして大気圧プラズマ処理をすることで、炭素系接着層2の表面に水酸基を形成させ、その上に吸着水を付着させることができる。
 以上のように構成された半導体モジュールにおいては、炭素系接着層2の表面に水酸基を付与することにより、モールド樹脂3との接着性がさらに向上する。これにより、半導体素子1上に形成したモールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。さらに、実施の形態4に示した、炭素系接着層2の表面を粗化した後、その粗化した炭素系接着層2に水酸基付与しても良い。これにより、さらに、モールド樹脂3との接着性が向上し、モールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。
 図9に、この発明の炭素系接着層とその他構成の接着強度の比較図である。接着強度の評価は、半導体素子基板にモールド樹脂をプリンカップ形状に形成し、剪断剥離強度測定を実施した。SiC基板に直接モールド樹脂を接着した場合は、剪断剥離強度が5.6MPaであり、シリコン基板上にモールド樹脂を接着した場合の強度の17.9MPaの1/3以下と小さな値である。
 一方、水素化アモルファスカーボン膜を形成した場合の接着強度は10MPaと水素化アモルファスカーボン膜を形成しない場合の約2倍に大きくなる(実施の形態1)。さらに、水素化アモルファスカーボン膜を表面粗化した場合の接着強度は、12.8MPa(実施の形態4)となり、水酸基を付与した場合は16.8MPa(実施の形態5)となり、シリコン基板とほぼ同等の値になる。
実施の形態6.
 本実施の形態6においては、実施の形態1~5で用いた半導体素子1の外周部に形成された炭素系接着層2を半導体素子1の実装工程を考慮し、半導体素子1の外周角部近傍に形成した点が異なる。このように、炭素系接着層2を半導体素子1の外周角部近傍に形成することで、半導体素子1表面の四辺の一部が接触する治具を用いた実装工程においても、治具との接触による炭素系接着層2の損傷を抑制することができ、モールド樹脂3との接着力の低下を防止できる。
 半導体素子1形成後、実装工程で半導体素子1を取り扱い、ヒートスプレッダに接合する工程で、真空吸着治具でチップケースからチップを取り出してヒートスプレッダに載せる作業工程がある。このとき、真空吸着治具で半導体素子1中央を吸着させると半導体素子1の表面が汚れる可能性があるため、後工程でチップ表面の洗浄が必要となる。しかしながら、後工程において半導体素子1表面の洗浄が不可の場合、半導体素子1表面を汚さないように、例えば、ベルヌーイ式真空吸着治具を用いて作業を行う必要がある。このときに、半導体素子1外周部全域に炭素系接着層2を形成しておくと、半導体素子1表面の四辺の一部が真空吸着治具に接触し、炭素系接着層2を損傷してしまう可能性がある。そして、炭素系接着層2に損傷を与えてしまうと、この損傷部位を起点として、信頼性試験においてモールド樹脂3が半導体素子1から剥離してしまうことになる。
 図10には、この発明の実施の形態6のベルヌーイ式真空吸着治具を用いた場合の実装工程でのチップ搬送工程の概略図である。図10(a)にベルヌーイ式真空吸着治具の断面構造模式図を、図10(b)にはベルヌーイ式真空吸着治具の下面構造模式図を示す。図10において、ベルヌーイ式真空吸着治具は、コレット11、横滑り防止突起12、送風口13を備える。そして、横滑り防止突起12と半導体素子1の四辺とが接触する構造となっている。このような構造とすることで、半導体素子1を吸着し搬送できる。
 図10に示すようなベルヌーイ式真空吸着治具を用いる場合は、大きな剥離応力が発生する半導体素子1の四辺近傍に炭素系接着層2を設け、真空吸着治具に接触する半導体素子1の辺部には炭素系接着層2は設けない。
 図11は、この発明の実施の形態6の半導体モジュールの半導体素子と炭素系接着層の上面構造模式図と断面構造模式図である。図11(a)には半導体素子の上面構造模式図を、図11(b)には半導体素子の断面構造模式図を示す。図11において、本実施の形態1で用いた炭素系接着層2を、半導体素子1の外周角部近傍である表面側の外周角部に形成したもので、半導体素子1の表面側外周全周に渡り炭素系接着層2が連続して形成されていないところが異なる。
 炭素系接着層2の辺方向の形成長さは、10μm以上あれば良い。また、一辺における炭素系接着層2が形成されていない領域の長さはチップ搬送用の、例えば、ベルヌーイ式真空吸着治具の横滑り防止突起12の幅よりも広ければよく、真空吸着治具の形状により異なる。例えば、真空吸着治具の横滑り防止突起12の幅が1mm、治具内にチップの位置精度が±1mmである場合には、炭素系接着層2の不連続部分の長さを3mm程度とすれば良い。チップの一辺の長さが5mm程度以上であれば、このような寸法で良い。なお、炭素系接着層2の厚み、半導体素子1の表面の形成幅は、それぞれ、10~20nm程度、300~1000μm程度あれば良い。
 以上のように構成された半導体モジュールにおいては、半導体素子1の表面側の外周部の外周角部に炭素系接着層2を設けることにより、モールド樹脂3との接着性が向上する。これにより、半導体素子1上に形成したモールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。
 また、真空吸着治具に接触する半導体素子1の辺部に炭素系接着層2が形成されていないので、真空吸着時に炭素系接着層2を損傷することがなく、半導体モジュールの製造工程で発生する損傷による信頼性の劣化を抑制することができる。
 さらに、炭素系接着層2の半導体素子1上における形成面積を小さくすることができるので、炭素系接着層2自身の膜応力による炭素系接着層2の剥離を抑制することができる。
 また、炭素系接着層2を形成した半導体素子1の変形を抑制できるので、半導体素子1の実装時に半導体素子1の傾きを抑制できるので、生産性を向上することができる。
実施の形態7.
 本実施の形態7においては、実施の形態3で用いた切断処理後の半導体素子1に形成した炭素系接着層2を半導体素子1の外周角部近傍に形成した点が異なる。このように、半導体素子1の外周角部近傍に対応する側面部にも炭素系接着層2を形成することで、モールド樹脂3の剥離をより抑制することができる。
 図12は、この発明の実施の形態7の半導体モジュールの半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。図12(a)には半導体素子の上面構造模式図を、図12(b)には半導体素子の断面構造模式図を示す。図12に示すように、ウェハのダイシング領域で基板厚方向に半分程度切断してから、炭素系接着層2を形成したい部分を開口したステンレス製ステンシルマスクを用い、マスクの開口部を半導体素子1の表面側の外周部に位置合わせすることにより、図12(a)、図12(b)に示すようにモールド樹脂3が剥離しやすい半導体素子1の表面側の外周角部と側面の一部に炭素系接着層2を選択的に形成する。
 炭素系接着層2の辺方向の形成長さは、10μm以上あれば良い。また、一辺における炭素系接着層2が形成されていない領域の長さはチップ搬送用の、例えば、ベルヌーイ式真空吸着治具の横滑り防止突起12の幅よりも広ければよく、真空吸着治具の形状により異なる。例えば、真空吸着治具の横滑り防止突起12の幅が1mm、治具内にチップの位置精度が±1mmである場合には、炭素系接着層2の不連続部分の長さを3mm程度とすれば良い。チップの一辺の長さが5mm程度以上であれば、このような寸法で良い。なお、炭素系接着層2の厚み、半導体素子1表面の形成幅は、それぞれ、10~20nm程度、300~1000μm程度あれば良い。
 半分程度切断する深さは半導体基板厚の残し厚みが10μm以上あればよく、例えば、半導体基板厚が300μmの場合、290μm程度切り込んでも良い。一方、切断深さを浅く切る場合には、深さは10μm程度以上あれば、半導体素子1の側面上部を炭素系接着層2で被覆できる。このとき、炭素系接着層2は半導体素子1表面から裏面方向へ、5μm程度以上側面が被覆できていれば、モールド樹脂3の剥離を抑制できる。
 図13は、この発明の実施の形態7の別の半導体モジュールの半導体素子と炭素系接着層との上面構造模式図と断面構造模式図である。図13(a)には半導体素子の上面構造模式図を、図13(b)には半導体素子の断面構造模式図を示す。
 図12では、側面の一部に炭素系接着層2を形成したが、チップ切断後にステンシルマスクを被せて炭素系接着層2を形成すれば、図13(a)、図13(b)のように半導体素子1の側面全面に炭素系接着層2を形成することができる。炭素系接着層2の辺方向の形成長さは、10μm以上あれば良い。また、一辺における炭素系接着層2が形成されていない領域の長さはチップ搬送用の、例えば、ベルヌーイ式真空吸着治具の横滑り防止突起12の幅よりも広ければよく、真空吸着治具の形状により異なる。例えば、真空吸着治具の横滑り防止突起12の幅が1mm、治具内にチップの位置精度が±1mmである場合には、炭素系接着層2の不連続部分の長さを3mm程度とすれば良い。チップの一辺の長さが5mm程度以上であれば、このような寸法で良い。なお、炭素系接着層2の厚み、半導体素子1表面の形成幅は、それぞれ、10~20nm程度、300~1000μm程度あれば良い。
 以上のように構成された半導体モジュールにおいては、半導体素子1の表面側の外周部の外周角部に炭素系接着層2を設けることにより、モールド樹脂3との接着性が向上する。これにより、半導体素子1上に形成したモールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。
 また、真空吸着治具に接触する半導体素子1の辺部に炭素系接着層2が形成されていないので、真空吸着時に炭素系接着層2を損傷することがなく、半導体モジュールの製造工程で発生する損傷による信頼性の劣化を抑制することができる。
 さらに、半導体素子1上における炭素系接着層2の形成面積を小さくすることができるので、炭素系接着層2自身の膜応力による炭素系接着層2の剥離を抑制することができる。
 また、炭素系接着層2を形成した半導体素子1の変形を抑制できるので、半導体素子1の実装時に半導体素子1の傾きを抑制できるので、生産性を向上することができる。
 さらに、半導体素子1の表面側の外周部と半導体素子1の側面にも炭素系接着層2を設けることにより、炭素系接着層2とモールド樹脂3との接触面積が増加することにより、モールド樹脂3との接着性がさらに向上する。これにより、半導体素子1上に形成したモールド樹脂3の半導体素子1の表面側の外周部を基点とした剥離が抑制され、ヒートサイクル、パワーサイクル試験での劣化が無く信頼性が向上する。
 なお、実施の形態1から実施の形態5においてはトランスファーモールド樹脂に対する接着力改善効果があることを記載したが、ケース型のパッケージの組合せとなる、SiC基板表面とシリコン樹脂やゴム材料、ポリイミド樹脂でも同様の効果がある。
 なお、実施の形態6および実施の形態7においても、トランスファーモールド樹脂に対する接着力改善効果があることを記載したが、ケース型のパッケージの組合せとなる、SiC基板表面とシリコン樹脂やゴム材料、ポリイミド樹脂でも同様の効果がある。
 1 半導体素子、2 炭素系接着層、3 モールド樹脂、4 はんだ、5 端子板、
6 冷却基板、7 絶縁シート、8 放熱板、11 コレット、12 横滑り防止突起、13 送風口、14 空気流れ。

Claims (6)

  1. 基板に搭載された半導体素子と、
    前記半導体素子の前記基板に対向する面の反対側の面の外周部に設けられた炭素系接着層と、
    前記炭素系接着層と接し、前記基板と前記半導体素子とを封止する封止樹脂と、
    を備えたことを特徴とする半導体モジュール。
  2. 前記炭素系接着層は、前記半導体素子の側面に設けられたことを特徴とする請求項1に記載の半導体モジュール。
  3. 前記炭素系接着層は、前記半導体素子の外周角部に設けられたことを特徴とする請求項1または請求項2に記載の半導体モジュール。
  4. 前記炭素系接着層は、前記封止樹脂と接する面が粗化されたことを特徴とする請求項1から請求項3のいずれか1項に記載の半導体モジュール。
  5. 前記炭素系接着層は、水酸基が付与されたことを特徴とする請求項1から請求項4のいずれか1項に記載の半導体モジュール。
  6. 前記炭素系接着層は、水素化アモルファスカーボンで形成されたことを特徴とする請求項1から請求項5のいずれか1項に記載の半導体モジュール。
PCT/JP2014/000306 2013-02-06 2014-01-22 半導体モジュール WO2014122892A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560668A JP6024766B2 (ja) 2013-02-06 2014-01-22 半導体モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013021529 2013-02-06
JP2013-021529 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014122892A1 true WO2014122892A1 (ja) 2014-08-14

Family

ID=51299493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000306 WO2014122892A1 (ja) 2013-02-06 2014-01-22 半導体モジュール

Country Status (2)

Country Link
JP (1) JP6024766B2 (ja)
WO (1) WO2014122892A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022132464A1 (de) 2022-01-27 2023-07-27 Mitsubishi Electric Corporation Halbleitervorrichtung, Verfahren zur Herstellung der Halbleitervorrichtung, und Leistungswandlervorrichtung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207158A (ja) * 1987-02-23 1988-08-26 Mitsubishi Electric Corp 樹脂封止型半導体装置
JPH01171232A (ja) * 1987-12-25 1989-07-06 Nitto Denko Corp 半導体装置
JPH02106940A (ja) * 1988-10-17 1990-04-19 Semiconductor Energy Lab Co Ltd 電子装置及びその作製方法
JPH0383365A (ja) * 1989-08-28 1991-04-09 Semiconductor Energy Lab Co Ltd 電子装置
JPH0669381A (ja) * 1992-08-20 1994-03-11 Nec Corp 半導体集積回路装置
JPH06177285A (ja) * 1992-12-09 1994-06-24 Toshiba Corp 樹脂封止型半導体装置
JPH06333916A (ja) * 1993-05-21 1994-12-02 Fuji Electric Co Ltd 非晶質カーボン膜の硬化方法
JPH07122685A (ja) * 1993-10-27 1995-05-12 Hitachi Ltd 半導体装置
JP2005011978A (ja) * 2003-06-19 2005-01-13 Matsushita Electric Ind Co Ltd 半導体装置
JP2013008919A (ja) * 2011-06-27 2013-01-10 Denso Corp パッケージの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525636B2 (ja) * 2006-06-09 2010-08-18 株式会社日立製作所 パワーモジュール

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207158A (ja) * 1987-02-23 1988-08-26 Mitsubishi Electric Corp 樹脂封止型半導体装置
JPH01171232A (ja) * 1987-12-25 1989-07-06 Nitto Denko Corp 半導体装置
JPH02106940A (ja) * 1988-10-17 1990-04-19 Semiconductor Energy Lab Co Ltd 電子装置及びその作製方法
JPH0383365A (ja) * 1989-08-28 1991-04-09 Semiconductor Energy Lab Co Ltd 電子装置
JPH0669381A (ja) * 1992-08-20 1994-03-11 Nec Corp 半導体集積回路装置
JPH06177285A (ja) * 1992-12-09 1994-06-24 Toshiba Corp 樹脂封止型半導体装置
JPH06333916A (ja) * 1993-05-21 1994-12-02 Fuji Electric Co Ltd 非晶質カーボン膜の硬化方法
JPH07122685A (ja) * 1993-10-27 1995-05-12 Hitachi Ltd 半導体装置
JP2005011978A (ja) * 2003-06-19 2005-01-13 Matsushita Electric Ind Co Ltd 半導体装置
JP2013008919A (ja) * 2011-06-27 2013-01-10 Denso Corp パッケージの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022132464A1 (de) 2022-01-27 2023-07-27 Mitsubishi Electric Corporation Halbleitervorrichtung, Verfahren zur Herstellung der Halbleitervorrichtung, und Leistungswandlervorrichtung

Also Published As

Publication number Publication date
JPWO2014122892A1 (ja) 2017-01-26
JP6024766B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2010095540A1 (ja) ウェハ搬送用トレイ及びこのトレイ上にウェハを固定する方法
JP5621334B2 (ja) 半導体装置および半導体装置の製造方法
US9093437B2 (en) Packaged vertical power device comprising compressive stress and method of making a packaged vertical power device
US10229870B2 (en) Packaged semiconductor device with tensile stress and method of making a packaged semiconductor device with tensile stress
JPWO2014020906A1 (ja) 複合基板の製造方法および半導体結晶層形成基板の製造方法
EP2775516A2 (en) Balanced stress assembly for semiconductor devices with one or more devices bonded on both sides to lead frames, the other sides of the lead frames being bonded to AlN, Al2O3 or Si3N4 substrates
TWI692869B (zh) 基底及其製造方法
US20130210239A1 (en) Pre-cut wafer applied underfill film
WO2019013212A1 (ja) 高熱伝導性のデバイス基板およびその製造方法
TW202125651A (zh) 半導體裝置的製造方法及夾頭
CN108414120A (zh) Si基GaN压力传感器的制备方法
JP6024766B2 (ja) 半導体モジュール
JP6550741B2 (ja) 半導体装置の製造方法
CN108598253A (zh) Si基GaN压力传感器的制备方法
JP3978011B2 (ja) ウエハ載置ステージ
US9349704B2 (en) Jointed structure and method of manufacturing same
US20230019230A1 (en) High reliability semiconductor devices and methods of fabricating the same
JP6299578B2 (ja) 半導体装置
US20120056336A1 (en) Semiconductor package for controlling warpage
CN106783719B (zh) 一种不易变形的碳化硅基芯片背面工艺
JP6318441B2 (ja) 接合方法
US20190088613A1 (en) Bond materials with enhanced plasma resistant characteristics and associated methods
KR20160031637A (ko) 기판 본딩 및 디본딩 장치 및 이를 이용한 반도체 소자 기판의 제조 방법
TW201515142A (zh) 晶圓承載結構
JP6004343B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14748911

Country of ref document: EP

Kind code of ref document: A1