WO2014121427A1 - 由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法 - Google Patents

由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法 Download PDF

Info

Publication number
WO2014121427A1
WO2014121427A1 PCT/CN2013/001408 CN2013001408W WO2014121427A1 WO 2014121427 A1 WO2014121427 A1 WO 2014121427A1 CN 2013001408 W CN2013001408 W CN 2013001408W WO 2014121427 A1 WO2014121427 A1 WO 2014121427A1
Authority
WO
WIPO (PCT)
Prior art keywords
long
dibasic acid
organic amine
amine nitrogen
chain dibasic
Prior art date
Application number
PCT/CN2013/001408
Other languages
English (en)
French (fr)
Inventor
徐杰
王强
Original Assignee
Xu Jie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xu Jie filed Critical Xu Jie
Publication of WO2014121427A1 publication Critical patent/WO2014121427A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a method for removing organic amine nitrogen impurities from a long-chain dibasic acid produced by microbial fermentation oxidation of normal paraffins, that is, a technical category of separation and purification of chemical products.
  • a long-chain dibasic acid is an organic compound containing two carboxyl groups at both ends of a normal alkane group. It is used as a raw material for basic organic chemicals and has a wide range of uses. At present, its application is expanding to a wider scope.
  • long-chain dibasic acids we are used to refer to molecular features that contain 8 - 18 carbons.
  • the raw material produced therefrom is derived from a corresponding carbon number of normal paraffins obtained from liquid paraffin.
  • the corresponding process technology has a correspondingly high cost, and the by-product pair
  • the environment has an impact.
  • the normal paraffin is biooxidized by a specific yeast to obtain a long-chain dibasic acid, and the method has mild reaction conditions and good product selectivity. It is currently the main process technology choice for large-scale production.
  • the indicators are not up to the requirements, and some people have done work on the refining techniques of these first products, but the minimum organic amine nitrogen content is not less than 25 ⁇ ⁇ . Moreover, the application of these methods has high investment, high process operation cost and high energy consumption.
  • the present invention provides a method for removing organic amine nitrogen impurities from a long-chain dibasic acid produced by microbial fermentation of normal paraffins.
  • the object of the present invention is to provide a method for removing organic amine nitrogen impurities from a long-chain dibasic acid produced by a microbial method, which mainly uses acetone or methyl ethyl ketone as a solvent to remove oxidative oxidation by microorganisms.
  • An organic amine nitrogen compound in a long chain dibasic acid produced by an alkane to a level below 12 ppm to charge The method meets the requirements of the low organic amine nitrogen content which can be applied, and the method has low energy consumption and simple process, and has good compatibility with microbial fermentation oxidation of normal paraffin to produce long-chain dibasic acid process, and the method involves
  • the main heat source can be provided by a solar collector.
  • a method for removing organic amine nitrogen impurities from a long-chain dibasic acid produced by a microbial method according to the present invention which is obtained by microbial fermentation of a long-chain dibasic acid produced by oxidizing n-decane.
  • Organic amine nitrogen impurities, the specific operation is as follows:
  • [0007] a. A long-chain dibasic acid obtained by fermenting a normalized terpene hydrocarbon by a mutagenized strain of Candida tropicalis, dissolved in acetone or methyl ethyl ketone liquid after distillation, and dissolved at normal temperature and pressure.
  • the initial product of the dibasic acid [0008] b, the solution formed by dissolving the initial product in step a, filtering with a filter medium having a filtration precision of 0.1-50 ⁇ ⁇ , retaining the filtrate, and the filter residue is a remover;
  • 0009] c the filtered filtrate, in a heating evaporator, concentrated by distillation, the distilled acetone or methyl ethyl ketone vapor condensation and recycling;
  • the concentrated mother liquor will be precipitated with dibasic acid crystals, filtered to receive solid phase material, and after being cleaned by clean air, a long-chain dibasic acid product is obtained.
  • step d The filtered mother liquor in step d is returned to the heating evaporator for recycling.
  • the heat source and heat energy required to heat the evaporator in step d are supplied from the solar collector.
  • the invention relates to a method for removing organic amine nitrogen impurities in a long-chain dibasic acid produced by microbial fermentation oxidation of normal paraffins, which introduces acetone or methyl ethyl ketone liquid which is condensed after distillation into two
  • the first acid of the dibasic acid is placed in the container, and the introduced acetone or methyl ethyl ketone liquid is here to be combined with the preliminary product to be purified, and the preliminary product is dissolved.
  • the distillation is carried out under normal pressure, that is, acetone or methyl ethyl ketone is effectively evaporated, and the vaporized acetone or methyl ethyl ketone vapor is collected and condensed after the condensed liquid is collected and reused.
  • the mother liquor which is evaporated out of acetone or methyl ethyl ketone, a certain amount of dibasic acid crystals precipitates after reaching a supersaturated concentration due to an increase in the concentration of the dibasic acid contained therein.
  • the mother liquor containing a certain amount (5-20% w/w) of precipitated crystals is taken out, and the extracted mother liquor is effectively filtered, and the solid matter filtered out is purified by a clean air to obtain a refined long-chain dibasic acid. product.
  • the filtered mother liquor is returned to the heating evaporator and concentrated to evaporate acetone or butyl.
  • the ketone is recycled.
  • the heat source energy of the solar collector collected in the heating evaporator can be used for evaporation, the atmospheric boiling point of the evaporated acetone or methyl ethyl ketone and the heat source collected by the solar collector. The energy is well matched and the process can be carried out continuously.
  • the strain used in the present invention is a mutagenized strain of Candida tropicalis, which is entrusted to the Chinese Industrial Microbial Culture Collection and Management Center to purchase the Candida tropicalis strain No. 20962. The mutagenized strain after the change.
  • Candida tropicalis The Latin name of Candida tropicalis is: Candida tropicalis, the physiological properties of Candida tropicalis are as follows:
  • assimilation carbon source glucose +, galactose +, L-sorbose -, sucrose +, maltose +, cellobiose +, trehalose +, lactose -, melibiose -, raffinose -, pine Trisaccharide+, inulin-, soluble starch+, D-xylose+, L-arabinose+, D-arabinose-, D-ribose-, L-rhamnose-, ethanol+, glycerol+, red peony Alcohol-, ribitol+, sweet alcohol-, D-mannitol+, D-sorbitol+, inositol-, succinic acid+.
  • Morphological characteristics cream white, wrinkled, plum-like; when liquid culture, most of them are single ovoid cells.
  • the steps of the long-chain dibasic acid initial product are:
  • Wort medium 12 Brix wort, 2% agar
  • Seed medium each component is potassium dihydrogen phosphate 5.0-6.0g, sodium chloride 1.0-1.5g, magnesium sulfate heptahydrate 0.5-l. Og, sucrose 15.0-25.0g, corn syrup 1.0-2.0g , yeast extract 1.0-2.0g, urea 2.5-3.0g, vitamin B10.1-0.3g, normal paraffin C8-C1840-50ml, pure water 1000ml;
  • each component is sodium dihydrogen phosphate 2.0-3.0 g, dipotassium hydrogen phosphate 5.0-6.0 g, Ammonium sulfate 2.0-3.
  • Og sodium chloride 1.0-1.5g, yeast extract 0.5-1.0g, magnesium sulfate heptahydrate 0.5-1.
  • Og agar 15.0-20.0g, n-hydroxyl nC8- nC1820- 50ml, Pure water 1000ml, pH7.0;
  • each component is sodium dihydrogen phosphate 2.0-3.0 g, dipotassium hydrogen phosphate 5.0-6.0 g, sodium chloride 1.0-1.5 g, yeast extract 0.5-1.0 g, ammonium sulfate 2.0- 3. Og, magnesium sulfate heptahydrate 0.5-1.0g, agar 15.0-20.0g, sucrose 15, 0-20.0g, pure water 1000ml, pH7.0;
  • each component is sucrose 15.0-20.0g, sodium dihydrogen phosphate 2.0-3.0g, dipotassium hydrogen phosphate 5.0-6.0g, sodium chloride 1.0-1.5g, magnesium sulfate heptahydrate 0.5- 1.0g, yeast extract 0.5-1.0g, urea 1.5-2.0g, agar 15.0-20.0g, n-alkane nC8-nCl 820-50ml, pure water 1000ml, pH 7.5, phenol red indicator 1%;
  • Fermentation medium each component is potassium dihydrogen phosphate 5.0-6.0g, sodium chloride 1.0-1.5g, magnesium sulfate heptahydrate 0.5-1.0g, sucrose 15.0-25.0g, corn syrup 1.0-2.0g, Yeast extract 1.0-2.0g, anhydrous sodium acetate 3.0-4.0g, urea 2.0-3.0g, vitamin B10.1-0.3g, ammonium sulfate 2.0-3.0g, acrylic acid 0.001-0.002g, n-alkane nC8- nC18300 - 400ml, 1000ml of pure water;
  • the Candida tropicalis strain is inserted into the slope of the wort medium, cultured in an incubator at a temperature of 28-34'C for 24-48 hours, and 15 ml of sterile water is added to the inclined surface, and the sterile inoculating loop is used.
  • the cells were scraped into a sterile glass beaded 250 ml flask, shaken for 30 minutes to fully disintegrate the cells, and 10 ml of the bacterial suspension was taken in a 50 ml sterile flask and irradiated with cobalt 60 ⁇ -ray.
  • the irradiation dose is 0.5-0.7KGy
  • the irradiated bacterial suspension is serially diluted
  • the wort plate is coated, and cultured in the incubator at a temperature of 28-34 ° C for 36-72 hours with the control plate to select the transradian.
  • the selected single colonies are inoculated on a plate containing the screening medium III, and cultured in an incubator at a temperature of 28-34 ° C for 36-72 hours to select a tropical R. cerevisiae with a large R value. a strain, wherein R is the area of acid production by colony/colon area; [0034] Verification of Candida tropicalis mutagenized strains
  • the obtained mutagenized strain of Candida tropicalis is inoculated into a seed culture medium by a conventional method for seed culture, and then the cultured seed is inoculated into a fermentation medium for acid-producing culture, and finally in a reactor of 20 m 3
  • the medium is normalized with undecane alkane as a substrate, and cultured at a temperature of 29 ° C, aeration of 0.6-1.6 VVM (m3 air / m3 fermentation broth ⁇ ! ⁇ ) for 144 hours, fermentation test, post-fermentation and post-treatment Get the first product of undecane dibasic acid.
  • Wort medium 12 Brix wort, 2% agar
  • each component is potassium dihydrogen phosphate 5.0-6.
  • Og sodium chloride 1.0-1.5g, magnesium sulfate heptahydrate 0.5-1.
  • Og sucrose 15.0-25.
  • Og corn syrup 1.0- 2.
  • Og yeast extract 1.0-2.0g, urea 2.5-3.0g, vitamin B10.1-0.3g, normal terpene hydrocarbon C8-C1840- 50ml, pure water 1000ml;
  • each component is sodium dihydrogen phosphate 2.0-3.0 g, dipotassium hydrogen phosphate 5.0-6.0 g, ammonium sulfate 2.0-3.0 g, sodium chloride 1.0-1.5 g, yeast extract 0.5- 1.0 g, magnesium sulfate heptahydrate 0.5-1.0 g, agar 15.0-20.0 g, n-alkane nC8-nC1820-50 ml, pure water 1000 ml, pH 7.0;
  • each component is sodium dihydrogen phosphate 2.0-3.0 g, dipotassium hydrogen phosphate 5.0-6.0 g, sodium chloride 1.0-1.5 g, yeast extract 0.5-1.0 g, ammonium sulfate 2.0- 3.0g, magnesium sulfate heptahydrate 0.5-1.0g, agar 15.0-20.0g, sucrose 15.0-20.0g, pure water 1000ml, pH7.0;
  • each component is sucrose 15.0-20.0g, sodium dihydrogen phosphate 2.0-3.0g, dipotassium hydrogen phosphate 5.0-6.0g, sodium chloride 1.0-1.5g, magnesium sulfate heptahydrate 0.5- 1.0g, yeast extract 0.5-1.0g, urea 1.5-2.0g, agar 15.0-20.0g, n-alkane nC8-nC1820-50ml, pure water 1000ml, pH 7.5, phenol red indicator 1%;
  • Fermentation medium each component is 5.0-6.0 g potassium dihydrogen phosphate, 1.0-1.5 g sodium chloride, 0.5-1.0 g magnesium sulfate heptahydrate, 15.0-25.0 g sucrose, 1.0-2.0 g corn syrup, Yeast extract 1.0-2.0g, anhydrous sodium acetate 3.0-4.0g, urea 2.0-3.0g, vitamin B10.1-0.3g, ammonium sulfate 2.0-3.0g, acrylic acid 0.001-0.002g, n-alkane nC8- nC18300 ⁇ 400ml, pure water 1000ml; [0045] Mutagenesis of Candida tropicalis:
  • the Candida tropicalis strain is inserted into the slope of the wort medium, cultured in a temperature incubator for 24-48 hours, 15 ml of sterile water is added to the inclined surface, and the bacteria are scraped into the sterile inoculation loop.
  • 15 ml of sterile water is added to the inclined surface, and the bacteria are scraped into the sterile inoculation loop.
  • the cells were shaken for 30 minutes, and 10 ml of the bacterial suspension was pipetted into a 50 ml sterile flask and irradiated with cobalt 60 ⁇ -ray. The irradiation dose was 0. 5-0.
  • the irradiated bacterial suspension was serially diluted, and coated with a wort plate, and incubated with the control plate for 36-72 hours in an incubator at a temperature of 28-34 'C, and selected after irradiation.
  • a single colony with a survival rate of 10-40»/» in the selected plate is inoculated in a one-to-one correspondence to the plate containing the screening medium I and the plate containing the screening medium II at a temperature of 28-34. Incubate in an incubator for 36-72 hours, select a single colony of Candida tropicalis that does not grow on the screening medium I plate and grow vigorously on the screening medium II plate;
  • the selected single colonies are inoculated on a plate containing the screening medium III, and cultured in an incubator at a temperature of 28-34 ° C for 36-72 hours to select a tropical R. cerevisiae with a large R value.
  • a strain wherein R is the area of acid production by colony/colon area;
  • the obtained mutagenized strain of Candida tropicalis is inoculated into a seed culture medium for seed culture according to a conventional method, and the cultured seed is inoculated into a fermentation medium for acid-producing culture, and finally in a reactor of 20 m 3
  • the medium is normalized with undecane alkane as a substrate, and the fermentation is carried out for 144 hours at a temperature of 29 ° C and aeration of 0. 6-1. 6VVM (m3 air/m3 fermentation broth. min). Processing the first product of undecane dibasic acid;
  • a using a mutagenized strain of Candida tropicalis to ferment oxidized n-alkane to obtain a long-chain dibasic acid initial product, using acetone or methyl ethyl ketone liquid condensed after distillation, dissolved at normal temperature and pressure The initial product of the dibasic acid;
  • b the solution formed by dissolving the initial product in step a, filtering with a filter medium having a filtration precision of 0.1 ⁇ m, retaining the filtrate, and the filter residue is a remover;
  • the concentrated mother liquor will be precipitated with dibasic acid crystals, filtered to receive the solid phase After the substance is purged with clean air, the long-chain dibasic acid product is obtained, and the filtered mother liquor is returned to the heating evaporator for recycling.
  • the mutant strain of Candida tropicalis is fermented by oxidizing normal paraffin to obtain a long-chain dibasic acid preliminary product, which is carried out according to Example 1;
  • a a long-chain dibasic acid obtained by fermenting a normalized terpene hydrocarbon by a mutagenized strain of Candida tropicalis, using acetone or methyl ethyl ketone liquid which has been condensed after distillation, at normal temperature and pressure Dissolving the initial product of the dibasic acid;
  • b dissolving the solution formed after the initial product in step a, filtering with a filter medium of filtration precision ⁇ ⁇ ⁇ ⁇ , retaining the filtrate, and removing the residue as a remover;
  • the concentrated mother liquor will be precipitated with dibasic acid crystals, filtered to receive solid phase material, and after being purged with clean air, a long-chain dibasic acid product is obtained, filtered.
  • the mother liquor is returned to the heating evaporator for recycling.
  • a long-chain dibasic acid obtained by fermenting a normal paraffin by a mutagenized strain of Candida tropicalis is carried out according to Example 1;
  • a long-chain dibasic acid obtained by fermenting a normal paraffin by a mutagenized strain of Candida tropicalis, dissolved in acetone or methyl ethyl ketone liquid after distillation, and dissolved at normal temperature and pressure
  • the initial product of the dibasic acid [0064] b, the solution formed by dissolving the initial product in step a, filtering with a filter medium having a filtration precision of 30 ⁇ , retaining the filtrate, and the filter residue is a remover;
  • the concentrated mother liquor will be precipitated with dibasic acid crystals, filtered to receive solid phase material, and after purging with clean air, the long-chain dibasic acid product is obtained, filtered The mother liquor is returned to the heating evaporator for recycling.
  • a mutant strain of Candida tropicalis fermented a long-chain dibasic acid obtained by oxidizing normal paraffins Example 1 is carried out;
  • a a long-chain dibasic acid obtained by fermenting a normal paraffin by a mutagenized strain of Candida tropicalis, dissolved in acetone or methyl ethyl ketone liquid after distillation, and dissolved at normal temperature and pressure a preliminary product of a dibasic acid;
  • b a solution formed by dissolving the initial product in step a, filtering with a filter medium having a filtration precision of 50 ⁇ m, retaining the filtrate, and the filter residue is a remover;
  • the concentrated mother liquor will be precipitated with dibasic acid crystals, filtered to receive solid phase material, and after purging with clean air, the long-chain dibasic acid product is obtained, filtered The mother liquor is returned to the heating evaporator for recycling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法,该方法主要是应用丙酮或丁酮做溶剂来脱除由微生物发酵氧化正构烷烃生产的长链二元酸中的有机胺氮化合物,使其含量达到低于12ppm的要求,以充分满足应用可提出的低有机胺氮含量的指标要求,同时该技术具有能耗低,工艺简单,与微生物发酵氧化正构烷烃生产长链二元酸工艺有好的衔接性,并且该技术涉及的主要热源可由太阳能集热器提供即可。

Description

由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法 技术领域
[ 0001 ] 本发明涉及一种由微生物发酵氧化正构烷烃生产的长链二元酸中脱除有机 胺氮杂质的方法, 亦即属于化学产物的分离与纯化精制的技术范畴。
背景技术
[ 0002 ] 长链二元酸是一种在正构烷烃基的两端含有两个羧基的有机化合物。 它做 为基本有机化工的原料, 有着广泛的用途。 目前, 对其应用正在向更广的范围扩张。 提到长链二元酸, 我们***, 有两个方 法可以做到。 其一是通过化学氧化法而来, 由该法得到的产物长链二元酸的选择性 差, 要得到纯品须经过相对复杂的过程, 因此, 该对应工艺技术相应成本高, 并且 副产物对环境有影响。 方法二, 则是正构烷烃经过特定的酵母菌来对其进行生物氧 化而得到长链二元酸, 该方法反应条件温和, 并且产物选择性好。 是目前应用于大 规模生产的主要工艺技术之选。
[ 0003] 但针对微生物氧化正构烷烃生产长链二元酸工艺, 由于生产长链二元酸的 过程有一定量的微生物参与合成代谢过程, 因此产成物中含有一定量的有机胺氮化 合物, 在产品中含量极少。 但近年来针对某些领域的应用要求, 在有机胺氮含量指 标上有一些严格的要求, 但对于生物法直接经简单精制得到的长链二元酸 (后称初 品) 中有机胺氮含量指标是达不到要求的, 并且也有一些人对这些初品的精制技术 做过工作, 但其最低有机胺氮含量指标不小于 25 ρ ι。 并且, 应用这些方法设备投 资高, 工艺运行费用较高, 能耗大。
[0004] 针对这些问题, 本发明提供一种由微生物发酵氧化正构烷烃生产的长链二 元酸中脱除有机胺氮杂质的方法。
发明内容
[ 0005] 本发明目的在于, 提供一种由微生物法生产的长链二元酸中脱除有机胺氮 杂质的方法, 该方法主要是应用丙酮或丁酮做溶剂来脱除由微生物发酵氧化正构烷 烃生产的长链二元酸中的有机胺氮化合物, 使其含量达到低于 12 ppm的要求, 以充 分满足应用可提出的低有机胺氮含量的指标要求, 同时该方法具有能耗低, 工艺简 单, 与微生物发酵氧化正构烷烃生产长链二元酸工艺有良好的衔接性, 并且该方法 涉及的主要热源可由太阳能集热器提供即可。
[ 0006] 本发明所述的一种由微生物法生产的长链二元酸中脱除有机胺氮杂质的方 法, 该方法是由微生物发酵氧化正抅烷烃生产的长链二元酸中脱除有机胺氮杂质, 具体操作按下列步骤进行:
[ 0007] a、利用热带假丝酵母菌的诱变菌株发酵氧化正构垸烃获得的长链二元酸初 品, 用经过蒸馏后冷凝下来的丙酮或丁酮液体, 在常温常压下溶解二元酸初品; [ 0008] b、 将歩骤 a 溶解初品后形成的溶液, 用过滤精度 0. 1- 50 μ ηι 的滤材进行 过滤, 保留滤液, 滤渣即为脱除物; [ 0009] c、 将过滤后的滤液, 在加热蒸发器中, 用蒸馏的方法进行浓缩, 被蒸馏出的丙酮或丁酮蒸汽冷凝后循环使用;
[ 0010] d、 在加热蒸发器中, 被浓缩后的母液将有二元酸晶体析出, 过滤收取固相 物质, 并经干净空气吹扫后, 即得到长链二元酸精制品。
[ 0011 ] 步骤 d 中滤过的母液, 再次返回加热蒸发器中循环使用。
[ 0012] 步骤 d 中加热蒸发器所需热源和热能, 由太阳能集热器中供给。
[ 001 3] 本发明所述一种由微生物发酵氧化正构烷烃生产的长链二元酸中脱除有机 胺氮杂质的方法, 该方法将蒸馏之后冷凝下来的丙酮或丁酮液体导入放置二元酸初 品的置放容器中, 该容器中放置的是常温状态下的二元酸初品, 导入的丙酮或丁酮 液体在这里与待精制的初品汇合, 并将该初品溶解, 形成含有二元酸的丙酮或丁酮 溶液, 之后该溶液经过一个由无纺布式滤布制成的过滤介质过滤, 该过滤介质的过 滤精度为 0. 1- 50 μ π!, 经过上述过滤介质过滤后的滤液汇集后导入加热蒸发器中, 经过滤介质截留后的滤渣即为脱除的有机胺氮混合物, 可弃去。 过滤介质经洗涤后 可重复使用多次。 在加热蒸发器中, 蒸馏是在常压状态下进行, 亦即丙酮或丁酮被 有效的蒸发, 蒸发出溶液的丙酮或丁酮蒸汽经冷凝后的凝液收集之后可重复使用。 而被蒸发出丙酮或丁酮的母液中由于其所含二元酸浓度的提高, 而达到过饱和浓度 后,有一定量的二元酸晶体析出。将含有一定量(5-20%w/w) 析出晶体的母液引出来, 引出的母液经过有效的过滤, 滤出的固体物质, 经过干净空气的吹扫后即得到精制 的长链二元酸产物。 滤过后的母液再返回到加热蒸发器中继续浓缩蒸发出丙酮或丁 酮而进行循环搡作。 这里从丙酮或丁酮的沸点来看, 在加热蒸发器中引入太阳能集 热采集的热源能量即可进行蒸发搡作, 被蒸发的丙酮或丁酮的常压沸点与太阳能集 热器采集的热源能量很匹配, 并可使该过程连续进行。
[0014] 本发明所用的菌种为热带假丝酵母菌的诱变菌株, 是委托中国工业微生物 菌种保藏管理中心购买的美国典型微生物菌种保藏中心编号为 20962的热带假丝酵 母菌经诱变后的诱变菌株。
[0015] 热带假丝酵母菌拉丁名称为: Candida tropicalis, 热带假丝酵母菌的生 理特性如下:
[0016] 一、 发酵: 葡萄糖 +, 半乳糖 +, 蔗糖 +, 麦芽糖 +, 海藻糖 +, 乳糖-, 蜜二 糖-, 棉籽糖-, 松三糖 +, 菊糖-。
[0017] 二、 同化碳源: 葡萄糖 +, 半乳糖 +, L- 山梨糖-, 蔗糖 +, 麦芽糖 +, 纤维 二糖 +, 海藻糖 +, 乳糖-, 蜜二糖-, 棉籽糖-, 松三糖 +, 菊糖-, 可溶性淀粉 +, D -木 糖 +, L-***糖 +, D-***糖-, D-核糖-, L- 鼠李糖-, 乙醇 +, 甘油 + , 赤藓 醇-, 核糖醇 + , 甜醇-, D- 甘露醇 + , D- 山梨醇 +, 肌醇-, 琥珀酸+。
[0018] 三、 同化硝酸盐: 阴性。
[0019] 四、 在无维生素的培养基中生长: 弱。
[0020] 形态特征: 奶油白色, 有褶皱, 呈梅花状; 液体培养时, 大部分是单个卵 圆形细胞。
[0021] 本发明所述的一种由微生物法生产的长链二元酸中脱除有机胺氮杂质的方 法, 该方法中利用热带假丝酵母菌的诱变菌株发酵氧化正抅垸烃获得的长链二元酸 初品的步骤为:
[0022] 制备培养基:
[0023] 麦芽汁培养基: 12Brix 麦芽汁, 2% 琼脂;
[0024] 种子培养基: 各组份为磷酸二氢钾 5.0-6.0g, 氯化钠 1.0-1.5g, 七水合硫 酸镁 0.5-l. Og, 蔗糖 15.0- 25.0g, 玉米浆 1.0-2.0g, 酵母浸膏 1.0- 2.0g, 尿素 2.5-3.0g, 维生素 B10.1-0.3g, 正构烷烃 C8- C1840-50ml , 纯水 1000ml ;
[0025] 筛选培养基:
[0026] 筛选培养基 I : 各组份为磷酸二氢钠 2.0-3.0g, 磷酸氢二钾 5.0-6.0g, 硫酸铵 2.0-3. Og, 氯化钠 1.0-1.5g, 酵母浸膏 0.5-1.0g, 七水合硫酸镁 0.5-1. Og, 琼脂 15.0-20.0g, 正构垸烃 nC8- nC1820- 50ml, 纯水 1000ml, pH7.0 ;
[0027] 筛选培养基 II : 各组份为磷酸二氢钠 2.0-3.0g, 磷酸氢二钾 5.0-6.0g, 氯化钠 1.0-1.5g, 酵母浸膏 0.5-1.0g, 硫酸铵 2.0-3. Og, 七水合硫酸镁 0.5-1.0g, 琼脂 15.0-20.0g, 蔗糖 15, 0-20.0g, 纯水 1000ml, pH7.0 ;
[0028] 筛选培养基 III : 各组份为蔗糖 15.0-20.0g, 磷酸二氢钠 2.0-3.0g, 磷酸 氢二钾 5.0-6.0g, 氯化钠 1.0-1.5g, 七水合硫酸镁 0.5-1.0g, 酵母浸膏 0.5-1.0g, 尿素 1.5-2.0g,琼脂 15.0-20.0g,正构烷烃 nC8-nCl 820-50ml ,纯水 1000ml, pH7.5, 酚红指示剂 1% ;
[0029] 发酵培养基: 各组份为磷酸二氢钾 5.0-6.0g, 氯化纳 1.0-1.5g, 七水合硫 酸镁 0.5-1.0g, 蔗糖 15.0- 25.0g, 玉米浆 1.0-2.0g, 酵母浸膏 1.0-2.0g, 无水醋 酸钠 3.0-4.0g, 尿素 2.0- 3.0g, 维生素 B10.1- 0.3g, 硫酸铵 2.0- 3.0g, 丙烯酸 0.001-0.002g, 正构烷烃 nC8- nC18300 - 400ml, 纯水 1000ml ;
[0030] 热带假丝酵母菌的诱变:
[0031] 将热带假丝酵母菌菌株接入麦芽汁培养基斜面, 在温度 28- 34'C的培养箱 中培养 24-48 小时, 向斜面内加入 15ml 无菌水, 用无菌接种环将菌体刮入无菌的 合有玻璃珠的 250ml 三角瓶中, 振荡 30 分钟充分打散菌体, 分别吸取 10ml 菌悬 液于 50ml 无菌三角瓶中, 用钴 60γ-射线进行辐照, 辐照剂量为 0.5- 0.7KGy, 将 辐照后的菌悬液进行梯度稀释, 并涂麦芽汁平板, 在温度 28-34°C的培养箱中与对 照平板一起培养 36-72 小时, 选择经辐照后平板中成活率在 10- 40% 的热带假丝酵 母菌的单菌落;
[0032] 将筛选出的平板中成活率在 10-40% 的单菌落分别一一对应接种到含筛选 培养基 I的平板和含筛选培养基 Π的平板上,在温度 28- 34°C的培养箱中培养 36-72 小时, 选择在筛选培养基 I平板上不生长而在筛选培养基 Π平板上生长旺盛的热带 假丝酵母菌的单菌落;
[0033] 再将筛选出的单菌落接种于含筛选培养基 III的平板上, 在温度 28-34°C的 培养箱中培养 36-72 小时, 选择 R 值大的热带假丝酵母菌的诱变菌株, 其中 R 为 菌落产酸面积 / 菌落面积; [0034] 热带假丝酵母菌诱变菌株的验证
[0035] 将得到的热带假丝酵母菌的诱变菌株按常规方法接种到种子培养基进行种 子培养, 再将培养好的种子接种到发酵培养基中进行产酸培养, 最后在 20m3 的反 应器内以正构十一碳烷烃为底物, 在温度 29°C, 通气量 0.6-1.6VVM(m3空气 /m3发 酵液 ·η!ίη)下培养 144小时, 进行发酵试验, 发酵结束经后处理得十一烷二元酸初 品。
具体实施方式
[0036] 实施例 1
[0037] 制备培养基:
[0038] 麦芽汁培养基: 12Brix 麦芽汁, 2% 琼脂;
[0039] 种子培养基: 各组份为磷酸二氢钾 5.0-6. Og, 氯化钠 1.0-1.5g, 七水合硫 酸镁 0.5-1. Og, 蔗糖 15.0-25. Og, 玉米浆 1.0-2. Og, 酵母浸膏 1.0-2.0g, 尿素 2.5-3.0g, 维生素 B10.1-0.3g, 正构垸烃 C8-C1840- 50ml, 纯水 1000ml ;
[0040] 筛选培养基:
[0041] 筛选培养基 I : 各组份为磷酸二氢钠 2.0-3.0g, 磷酸氢二钾 5.0-6.0g, 硫酸铵 2.0-3.0g, 氯化钠 1.0-1.5g, 酵母浸膏 0.5-1.0g, 七水合硫酸镁 0.5-1.0g, 琼脂 15.0-20.0g, 正构烷烃 nC8-nC1820-50ml, 纯水 1000ml, pH7.0 ;
[0042] 筛选培养基 II : 各组份为磷酸二氢钠 2.0-3.0g, 磷酸氢二钾 5.0-6.0g, 氯化钠 1.0-1.5g, 酵母浸膏 0.5-1.0g, 硫酸铵 2.0-3.0g, 七水合硫酸镁 0.5-1.0g, 琼脂 15.0-20.0g, 蔗糖 15.0-20.0g, 纯水 1000ml, pH7.0 ;
[0043] 筛选培养基 III : 各组份为蔗糖 15.0-20.0g, 磷酸二氢钠 2.0-3.0g, 磷酸 氢二钾 5.0-6.0g, 氯化钠 1.0-1.5g, 七水合硫酸镁 0.5-1.0g, 酵母浸膏 0.5-1.0g, 尿素 1.5-2.0g,琼脂 15.0-20.0g,正构烷烃 nC8-nC1820-50ml,纯水 1000ml, pH7.5, 酚红指示剂 1% ;
[0044] 发酵培养基: 各组份为磷酸二氢钾 5.0-6.0g, 氯化钠 1.0-1.5g, 七水合硫 酸镁 0.5-1.0g, 蔗糖 15.0-25.0g, 玉米浆 1.0-2.0g, 酵母浸膏 1.0-2.0g, 无水醋 酸钠 3.0-4.0g, 尿素 2.0-3.0g, 维生素 B10.1-0.3g, 硫酸铵 2.0-3.0g, 丙烯酸 0.001-0.002g, 正构烷烃 nC8- nC18300 ~ 400ml, 纯水 1000ml ; [0045] 热带假丝酵母菌的诱变:
[0046] 将热带假丝酵母菌菌株接入麦芽汁培养基斜面, 在温度 的培养箱 中培养 24-48 小时, 向斜面内加入 15ml 无菌水, 用无菌接种环将菌体刮入无菌的 含有玻璃珠的 250ml 三角瓶中, 振荡 30 分钟充分打散菌体, 分别吸取 10ml 菌悬 液于 50ml 无菌三角瓶中, 用钴 60 γ -射线进行辐照, 辐照剂量为 0. 5-0. 7KGy, 将 辐照后的菌悬液进行梯度稀释, 并涂麦芽汁平板, 在温度 28-34 'C的培养箱中与对 照平板一起培养 36-72 小时, 选择经辐照后平板中成活率在 10-40% 的热带假丝酵 母菌的单菌落;
[0047] 将筛选出的平板中成活率在 10-40»/» 的单菌落分别一一对应接种到含筛选 培养基 I的平板和含筛选培养基 II的平板上,在温度 28-34 的培养箱中培养 36-72 小时, 选择在筛选培养基 I平板上不生长而在筛选培养基 II平板上生长旺盛的热带 假丝酵母菌的单菌落;
[0048] 再将筛选出的单菌落接种于含筛选培养基 III的平板上, 在温度 28-34 °C的 培养箱中培养 36-72 小时, 选择 R 值大的热带假丝酵母菌的诱变菌株, 其中 R 为 菌落产酸面积 / 菌落面积;
[0049] 热带假丝酵母菌诱变菌株的验证
[0050] 将得到的热带假丝酵母菌的诱变菌株按常规方法接种到种子培养基进行种 子培养, 再将培养好的种子接种到发酵培养基中进行产酸培养, 最后在 20m3 的反 应器内以正构十一碳烷烃为底物, 在温度 29 °C , 通气量 0. 6-1. 6VVM ( m3空气 /m3发 酵液 . min ) 下培养 144小时, 进行发酵试验, 发酵结束经后处理得十一烷二元酸 初品;
[0051 ] a、利用热带假丝酵母菌的诱变菌株发酵氧化正构烷炫获得的长链二元酸初 品, 用经过蒸馏后冷凝下来的丙酮或丁酮液体, 在常温常压下溶解二元酸初品; [0052] b、将步骤 a溶解初品后形成的溶液, 用过滤精度 0. 1 μ ιη的滤材进行过滤, 保留滤液, 滤渣即为脱除物;
[0053] c、 将过滤后的滤液, 在由太阳能集热器供给热源和热能的加热蒸发器中, 用蒸馏的方法进行浓缩, 被蒸馏出的丙酮或丁酮蒸汽冷凝后循环使用;
[0054] d、 在加热蒸发器中, 被浓缩后的母液将有二元酸晶体析出, 过滤收取固相 物质, 并经干净空气吹扫后, 即得到长链二元酸精制品, 滤过的母液, 再次返回加 热蒸发器中循环使用。
[ 0055] 实施例 2
[0056] 热带假丝酵母菌的诱变菌株发酵氧化正构烷烃茯得的长链二元酸初品按实 施例 1进行;
[ 0057] a、将利用热带假丝酵母菌的诱变菌株发酵氧化正构垸烃获得的长链二元酸 初品, 用经过蒸馏后冷凝下来的丙酮或丁酮液体, 在常温常压下溶解二元酸初品; [ 0058] b、 将步骤 a溶解初品后形成的溶液, 用过滤精度 Ι Ο μ ηι的滤材进行过滤, 保留滤液, 滤渣即为脱除物;
[ 0059] c、将过滤后的滤液,在由太阳能集热器供给的热源和热能的加热蒸发器中, 用蒸馏的方法进行浓缩, 被蒸馏出的丙酮或丁酮蒸汽冷凝后循环使用;
[ 0060] d、 在加热蒸发器中, 被浓缩后的母液将有二元酸晶体析出, 过滤收取固相 物质, 并经干净空气吹扫后, 即得到长链二元酸精制品, 滤过的母液, 再次返回加 热蒸发器中循环使用。
[ 0061 ] 实施例 3
[ 0062] 热带假丝酵母菌的诱变菌株发酵氧化正构烷烃获得的长链二元酸初品按实 施例 1进行;
[0063] a、将利用热带假丝酵母菌的诱变菌株发酵氧化正构烷烃获得的长链二元酸 初品, 用经过蒸馏后冷凝下来的丙酮或丁酮液体, 在常温常压下溶解二元酸初品; [ 0064] b、 将步骤 a溶解初品后形成的溶液, 用过滤精度 30 μ ηι的滤材进行过滤, 保留滤液, 滤渣即为脱除物;
[0065 ] c、 将过滤后的滤液, 在由太阳能集热器供给热源和热能的加热蒸发器中, 用蒸馏的方法进行浓缩, 被蒸馏出的丙酮或丁酮蒸汽冷凝后循环使用;
[0066] d、 在加热蒸发器中, 被浓缩后的母液将有二元酸晶体析出, 过滤收取固相 物质, 并经干净空气吹扫后, 即得到长链二元酸精制品, 滤过的母液, 再次返回加 热蒸发器中循环使用。
[ 0067] 实施例 4
[ 0068] 热带假丝酵母菌的诱变菌株发酵氧化正构烷烃获得的长链二元酸初品按实 施例 1进行;
[0069] a、将利用热带假丝酵母菌的诱变菌株发酵氧化正构烷烃获得的长链二元酸 初品, 用经过蒸馏后冷凝下来的丙酮或丁酮液体, 在常温常压下溶解二元酸初品; [0070] b、 将步骤 a溶解初品后形成的溶液, 用过滤精度 50μηι的滤材进行过滤, 保留滤液, 滤渣即为脱除物;
[0071] c、 将过滤后的滤液, 在由太阳能集热器供给热源和热能的加热蒸发器中, 用蒸馏的方法进行浓缩, 被蒸馏出的丙酮或丁酮蒸汽冷凝后循环使用;
[0072] d、 在加热蒸发器中, 被浓缩后的母液将有二元酸晶体析出, 过滤收取固相 物质, 并经干净空气吹扫后, 即得到长链二元酸精制品, 滤过的母液, 再次返回加 热蒸发器中循环使用。

Claims

权 利 要 求 书
1、 一种由微生物法生产的长链二元酸中脱除有机胺 i杂质的方法, 其特征在于 该方法是由微生物发酵氧化正构烷烃生产的长链二元酸中脱除有机胺氮杂质, 具体 操作按下列歩骤进行:
a、 利用热带假丝酵母菌的诱变菌株发酵氧化正构烷烃获得的长链二元酸初品, 用经 过蒸馏后冷凝下来的丙酮或丁酮液体, 在常温常压下溶解二元酸初品;
b、 将步骤 a 溶解初品后形成的溶液, 用过滤精度 0. 1- 50 μ ιη 的滤材进行过滤, 保 留滤液, 滤渣即为脱除物;
c、 将过滤后的滤液, 在加热蒸发器中, 用蒸馏的方法进行浓缩, 被蒸馏出的丙酮或 丁酮蒸汽冷凝后循环使用;
d、 在加热蒸发器中, 被浓缩后的母液将有二元酸晶体析出, 过滤收取固相物质, 并 经干净空气吹扫后, 即得到长链二元酸精制品。
2、 根据权利要求 1 所述的方法, 其特征在于步骤 d 中滤过的母液, 再次返回 加热蒸发器中循环使用。
3、 根据权利要求 1 所述的方法, 其特征在于步骤 d 中加热蒸发器所需热源和 热能, 由太阳能集热器中供给。
PCT/CN2013/001408 2013-02-05 2013-11-18 由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法 WO2014121427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310045908.X 2013-02-05
CN201310045908.XA CN103113209B (zh) 2013-02-05 2013-02-05 由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法

Publications (1)

Publication Number Publication Date
WO2014121427A1 true WO2014121427A1 (zh) 2014-08-14

Family

ID=48411625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001408 WO2014121427A1 (zh) 2013-02-05 2013-11-18 由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法

Country Status (2)

Country Link
CN (1) CN103113209B (zh)
WO (1) WO2014121427A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712871A (zh) * 2014-12-01 2016-06-29 中国石油化工股份有限公司 一种纯化长链二元酸的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113209B (zh) * 2013-02-05 2015-05-06 徐杰 由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法
CN104844442A (zh) * 2014-02-18 2015-08-19 上海凯赛生物技术研发中心有限公司 一种从溶剂母液中制备混合酸的方法
CN110317133B (zh) * 2019-06-11 2021-09-28 淮安清江石油化工有限责任公司 生物发酵液中长链二元酸的水相精制方法
CN114685269B (zh) * 2020-12-29 2024-05-03 上海凯赛生物技术股份有限公司 长链二元酸的提纯方法及长链二元酸产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070394A (zh) * 1991-09-11 1993-03-31 中国石油化工总公司抚顺石油化工研究院 一种精制长链二元酸的方法
CN1270030A (zh) * 2000-03-23 2000-10-18 张文芳 用浓缩磷脂直接制备高纯度磷脂颗粒剂的方法
CN1410408A (zh) * 2001-12-21 2003-04-16 淄博广通化工有限责任公司 碳11-18长链二元酸精制方法
CN1570124A (zh) * 2004-05-12 2005-01-26 上海凯赛生物技术研发中心有限公司 一种正长链二元酸的生产方法
CN103113209A (zh) * 2013-02-05 2013-05-22 徐杰 由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070394A (zh) * 1991-09-11 1993-03-31 中国石油化工总公司抚顺石油化工研究院 一种精制长链二元酸的方法
CN1270030A (zh) * 2000-03-23 2000-10-18 张文芳 用浓缩磷脂直接制备高纯度磷脂颗粒剂的方法
CN1410408A (zh) * 2001-12-21 2003-04-16 淄博广通化工有限责任公司 碳11-18长链二元酸精制方法
CN1570124A (zh) * 2004-05-12 2005-01-26 上海凯赛生物技术研发中心有限公司 一种正长链二元酸的生产方法
CN103113209A (zh) * 2013-02-05 2013-05-22 徐杰 由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHWN, TONGYUAN: "The mutagenesis and screening of strains for producing long-chain dicarboxylic acid", MICROBIOLOGY, vol. 28, no. 02, 2001, pages 104 *
HAN, YAN ET AL.: "Fermentation production of long-chain dicarboxylic acid and development and utilization of downstream products thereof", SHANDONG CHEMICAL INDUSTRY, vol. 30, no. 02, 2001, pages 26 AND 27 *
LIU, SHUCHEN ET AL.: "Industrialization development trend and strategy of long-chain dicarboxylic acid fermentation technology", PETROCHEMICAL TECHNOLOGY, vol. 32, 2003, pages 382 - 385 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712871A (zh) * 2014-12-01 2016-06-29 中国石油化工股份有限公司 一种纯化长链二元酸的方法

Also Published As

Publication number Publication date
CN103113209B (zh) 2015-05-06
CN103113209A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
CN1292072C (zh) 一种正长链二元酸的生产方法
US7507561B2 (en) Process for the production of polylactic acid (PLA) from renewable feedstocks
WO2014121427A1 (zh) 由微生物法生产的长链二元酸中脱除有机胺氮杂质的方法
WO2017090055A1 (en) A method of producing high amount of ethanol at high temperature by modified yeast strain saccharomyces cerevisiae
US8642299B2 (en) Continuous single vessel butanol synthesis by fermentation
CN106133143B (zh) 用于生产3-羟基丙酸的酯的方法
CN103373901A (zh) 从赤藓糖醇母液中提取赤藓糖醇的方法及其专用酵母菌种
CN111748480B (zh) 一种维斯假丝酵母及其应用
CN109609388B (zh) 一种黑曲霉及其应用
JP5217736B2 (ja) D−乳酸の製造方法
CN115305226B (zh) 一株降解烟碱并产氢的抗辐射不动杆菌zj-22及其应用
AU2009340524B2 (en) Continuous single vessel butanol synthesis by fermentation
CN115322924B (zh) 一种双菌混合培养合成聚羟基脂肪酸酯的方法
JP5909598B2 (ja) 選択的発酵方法による粗糖及びエタノールの製造方法
TWI710638B (zh) 1,5-二氨基戊烷的精製方法
CN110408672B (zh) 一种从d-乳酸废液中提取d-乳酸的方法
CN101081810A (zh) 生物催化生产的丙烯酸的提纯方法
JP2015204769A (ja) ハロモナス菌を用いたピルビン酸の製造方法
CN114350544B (zh) 高效降解磷酸三辛酯的施氏假单胞菌wx3-1及应用
CN114292771B (zh) 高效降解蒽酮的施氏假单胞菌wzy-3-1及应用
US20210363553A1 (en) Device for fermentation integrated with separation and purification of alcohols
JP2002253295A (ja) 微生物培養法によるr体1,2−プロパンジオールの製法
CN117866777A (zh) 一株产木糖的禾谷镰刀菌及其培养方法和应用
CN115960973A (zh) 十一碳二元酸发酵液、十一碳二元酸发酵处理液、十一碳二元酸及其制备方法
CN105209599A (zh) 新的蔗糖非同化性凝集性酵母

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874754

Country of ref document: EP

Kind code of ref document: A1