WO2014119943A1 - 정렬된 금속 나노섬유를 이용한 대면적의 금속 나노섬유 전극 어레이의 제조방법 - Google Patents

정렬된 금속 나노섬유를 이용한 대면적의 금속 나노섬유 전극 어레이의 제조방법 Download PDF

Info

Publication number
WO2014119943A1
WO2014119943A1 PCT/KR2014/000883 KR2014000883W WO2014119943A1 WO 2014119943 A1 WO2014119943 A1 WO 2014119943A1 KR 2014000883 W KR2014000883 W KR 2014000883W WO 2014119943 A1 WO2014119943 A1 WO 2014119943A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
precursor
copper
nickel
hydrate
Prior art date
Application number
PCT/KR2014/000883
Other languages
English (en)
French (fr)
Inventor
이태우
이영준
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130142934A external-priority patent/KR101535725B1/ko
Priority claimed from KR1020130142939A external-priority patent/KR101520190B1/ko
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US15/110,720 priority Critical patent/US20170077403A1/en
Publication of WO2014119943A1 publication Critical patent/WO2014119943A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a nanofiber electrode array, and more particularly to a method of manufacturing a nanofiber electrode array including a metal nanofiber pattern.
  • Representative techniques for forming electrode wiring through a solution process other than vacuum deposition include offset printing, inkjet printing, and screen printing. These methods can be used to fabricate electrode wiring for transistors of several micrometers or more having high conductivity, but more than this. It is difficult to realize a small nanoscale electrode.
  • the imprint method may form a nano-sized metal pattern, but has a disadvantage of requiring a vacuum deposition process of metal.
  • the offset printing technique is a technique of printing a metal ink using a patterned blanket, and can realize a high resolution of several micrometers according to the degree of detail of the blanket pattern, and has high productivity.
  • it is difficult to manufacture a blanket of a precise pattern, the transfer of ink is limited, and because of the direct contact method, there is a disadvantage that blanket damage or contamination may occur.
  • fine ink droplets are ejected and patterned at a desired position. Since it is a non-contact method, there is no contamination of the pattern and less damage to the material. However, the resolution of the pattern should be determined according to the size of the droplets formed on the substrate, which is still limited to forming a high resolution pattern of 10 ⁇ m or less.
  • the screen printing method is a process in which an ink paste is placed on a cloth or metal screen pulled with strong tension, and then pressed with a squeegee to push and transfer ink through a screen mesh.
  • the screen printing method is a contact printing method, there is little influence of the substrate through the contact and the ink consumption is low.
  • resolution depends on the fineness of the mesh of the screen, which makes it difficult to form patterns of 10 ⁇ m or less.
  • the imprint method is a method of forming a pattern using a stamp and heat or UV to form a high resolution pattern of 100 nm or less.
  • it is difficult to produce a stamp having a precise high resolution pattern, low mass productivity, and there is a problem such as stamp damage or contamination because of the contact method.
  • the present invention has been conceived to solve the above problems, in order to improve the resolution of the existing limited metal pattern to form a metal nanofiber-shaped metal pattern and a method of manufacturing a nanofiber electrode array comprising the pattern
  • the purpose is to provide.
  • another object of the present invention is to provide a method of manufacturing a nanofiber electrode array including a metal nanofiber pattern in order to simplify a conventional manufacturing process of a metal line array having a fine line width.
  • the present invention to solve the above problems provides a method of manufacturing a nanofiber electrode array comprising a metal nanofiber pattern.
  • the manufacturing method includes preparing a metal precursor / organic polymer composite solution by mixing a metal precursor and an organic polymer in distilled water or an organic solvent, injecting the metal precursor / organic polymer composite solution into a nozzle of an electric field assisted robotic nozzle printer and When the metal precursor / organic polymer composite solution forms a Taylor cone at the end of the nozzle, solidified nanofibers in a continuous form are formed while discharging the composite solution vertically from the substrate.
  • Pyrolyze the metal precursor Reducing to nanograins it may comprise the step of forming an ordered metal nanofiber pattern consisting of the metal nanograins.
  • the providing of the metal precursor / organic polymer composite solution may include dissolving the metal precursor and the organic polymer in a weight ratio of 10:90 to 97: 3 so as to have a concentration of 1 to 50% by weight in distilled water or an organic solvent.
  • the discharging of the metal precursor / organic composite solution may include discharging the solution from a point 10 ⁇ m to 20 mm vertically from the substrate.
  • the forming of the metal precursor / organic polymer composite nanofiber pattern is performed by an electric field assisted robotic nozzle printer, the electric field assisted robotic nozzle printer,
  • a voltage application device for applying a high voltage to the nozzle
  • the voltage applied to the electric field auxiliary robotic nozzle printer is characterized in that 0.1kV to 30kV.
  • the substrate may include at least one selected from the group consisting of an insulating material, a metal material, a carbon material, and a composite material of a conductor and an insulating film.
  • the metal precursor may include at least one selected from the group consisting of a copper precursor, a titanium precursor, an aluminum precursor, a silver precursor, a platinum precursor, a nickel precursor, and a gold precursor.
  • the copper precursor is copper acetate, copper acetate hydrate, copper acetylacetonate, copper isobutyrate, copper carbonate, copper chloride (Copper chloride), Copper chloride hydrate, Copper ethylacetoacetate, Copper 2-ethylhexanoate, Copper fluoride, Copper formate hydrate, Copper gluconate, Copper hexafluoroacetylacetonate, Copper hexafluoroacetylacetonate hydrate, Copper methoxide, Copper neodecanoate (Copper neodecanoate), Copper nitrate hydrate (Copper nitrate hydrate), Copper nitrate (Copper nitrate), Copper perchlorate hydrate (Coppe) r perchlorate hydrate, copper sulfate, copper sulfate hydrate, copper tartrate hydrate, copper trifluoroacetylacetonate, copper trifluoromethanesulfonate ),
  • the titanium precursor is titanium carbide, titanium chloride, titanium ethoxide, titanium fluoride, titanium hydride, titanium nitride ), Titanium chloride, Titanium isopropoxide, Titanium propoxide, Titanium fluoride, Titanium methoxide, Titanium oxyacetylacetonate oxyacetylacetonate), titanium 2-ethylhexyloxide, and at least one selected from the group consisting of titanium butoxide.
  • the aluminum precursor is aluminum chloride, aluminum fluoride, aluminum hexafluoroacetylacetonate, aluminum chloride hydrate, aluminum nitride, aluminum triple Aluminum trifluoromethanesulfonate, Triethylaluminum, Aluminum acetylacetonate, Aluminum hydroxide, Aluminum lactate, Aluminum nitrate hydrate, Aluminum 2-ethylhexanoate, Aluminum perchlorate hydrate, Aluminum sulfate hydrate, Aluminum ethoxide, Aluminum carbide, Aluminum sulfate ( Aluminum sulfate, aluminum acetate uminum acetate, aluminum acetate hydrate, aluminum sulfide, aluminum hydroxide hydrate, aluminum phenoxide, aluminum fluoride hydrate, aluminum tributoxide At least one selected from the group consisting of aluminum tributoxide, aluminum diacetate, aluminum diacetate hydroxide, aluminum 2, and 4-pentanedionate. It may include.
  • the silver precursor is silver hexafluorophosphate, silver neodecanoate, silver nitrate, silver trifluoromethanesulfonate, silver acetate ), Silver carbonate, silver chloride, silver perchlorate, silver tetrafluoroborate, silver trifluoroacetate, silver 2-ethylhexanoate ( Silver 2-ethylhexanoate, Silver fluoride, Silver perchlorate hydrate, Silver lactate, Silver acetylacetonate, Silver methanesulfonate, Silver heptaflo Silver heptafluorobutyrate, Silver chlorate, Silver pentafluoropropionate, and Hydrogen fluoride compounds (S ilver hydrogenfluoride) may include at least one selected from the group consisting of.
  • the platinum precursor is Chloroplatinic acid hexahydrate, Dihydrogen hexahydroxyplatinate, Platinum acetylacetonate, Platinum chloride, Platinum chloride hydrate ), Platinum hexafluoroacetylacetonate, Tetraammineplatinum chloride hydrate, Tetraammineplatinum hydroxide hydrate, Tetraammineplatinum tetrachloroplatinum tetranitrate Tetraammineplatinum tetrachloroplatinate, Tetrachlorodiammine platinum, Dichlorodiammine platinum, Diaminemineplatinum dichloride Emitter may include at least one selected.
  • the nickel precursor is Hexaamminenickel chloride, Nickel acetate (Nickel acetate) hydrate (Nickel acetate hydrate), Nickel acetylacetonate (Nickel acetylacetonate), Nickel acetylacetonate hydrate (Nickel acetylacetonate hydrate), Nickel carbonyl, Nickel chloride, Nickel chloride hydrate, Nickel fluoride, Nickel fluoride hydrate, Nickel hexafluoroacetylacetonate hydrate hexafluoroacetylacetonate hydrate, Nickel hexafluoroacetylacetonate, Nickel hydroxide, Nickel hydroxyacetate, Nickel nitrate hydrate, Nickel perchlorate hydrate Nickel perchlorate, Nickel sulfate hydrate, Sulfuric acid Nickel sulfate, Nickel trifluoroborate hydrate, Nickel trifluoroborate, Nickel trifluoroacetylacetonate hydrate, Nickel trifluoro
  • the gold precursor is chlorocarbonylgold, (Hydrogen tetrachloroaurate) (Hydrogen tetrachloroaurate hydrate), chlorotriethylphosphinegold (Chlorotriethylphosphinegold), chlorotrimethylphosphine gold compound (Chlorotrimethylphosphinegold) With dimethylacetate gold, gold (I) chloride, gold cyanide, gold sulfide, and gold chloride hydrate. It may include at least one selected from the group consisting of.
  • the metal precursor / organic polymer composite solution may further include an auxiliary metal precursor.
  • Such auxiliary metal precursors may include at least one selected from the group consisting of copper precursors, titanium precursors, aluminum precursors, silver precursors, platinum precursors, nickel precursors, and gold precursors.
  • the organic polymer is polyvinyl alcohol (PVA), polyvinylacetate (PVAc), poly (p-phenylene vinylene) (PPV), polyhydroxyethyl methacrylate (pHEMA), polyethylene oxide (PEO), polystyrene (PS) ), Polycaprolactone (PCL), polyacrylonitrile (PAN), poly (methyl methacrylate) (PMMA), polyimide, poly (vinylidene fluoride) (PVDF), polyaniline (PANI), polyvinylchloride (PVC), nylon, polyacrylic acid, polychlorostyrene, polydimethylsiloxane, polyetherimide, polyether sulfone, polyalkyl acrylate, polyethyl acrylate, polyethyl vinyl acetate, polyethyl-co-vinylacetate, polyethylene tere Phthalate, polylactic acid-co-glycolic acid, polymethacrylate, polymethylstyrene, poly
  • the organic solvent is dichloroethylene, trichloroethylene, chloroform, chlorobenzene, dichlorobenzene, styrene, dimethylformamide, dimethyl sulfoxide, xylene, toluene, cyclohexene, isopropyl alcohol, ethanol, It may include at least one selected from the group consisting of methanol, tetrahydrofuran, isopropyl alcohol, terpineol, ethylene glycol, diethylene glycol, polyethylene glycol, acetonitrile, and acetone.
  • the step of heat-treating the aligned metal precursor / organic polymer composite nanofiber pattern to form an aligned metal nanofiber pattern is characterized in that the heat treatment for 5 minutes to 8 hours in the temperature range of 50 °C to 900 °C.
  • the step of heat-treating the aligned metal precursor / organic polymer composite nanofiber pattern to form an aligned metal nanofiber pattern is characterized in that the heat treatment 1 to 5 times.
  • the heat treatment of the aligned metal precursor / organic polymer composite nanofiber pattern to form an aligned metal nanofiber pattern may include air or a gas including at least one selected from the group consisting of oxygen, nitrogen, hydrogen, and argon. It is characterized in that the heat treatment in the atmosphere.
  • the metal nanofibers are characterized in that they have a diameter of 10nm to 3000nm.
  • the metal precursor / organic polymer composite nanofiber pattern is characterized in that the horizontal alignment.
  • the present invention provides an organic or inorganic field effect transistor comprising the above-described nanofiber electrode array.
  • the field effect transistor may include a gate electrode, a gate insulating layer, a source electrode, a drain electrode, and an organic or inorganic semiconductor layer. At least one of the gate electrode, the source electrode and the drain electrode at this time is characterized in that the metal nanofiber electrode manufactured by the method of manufacturing the metal nanofiber electrode array described above.
  • the present invention provides an organic light emitting diode comprising the above-mentioned nanofiber electrode array in order to solve the above problems.
  • the organic light emitting diode includes an anode, a light emitting layer, and a cathode, and optionally, an auxiliary electrode layer, a hole injection layer, a hole transporting layer, an electron transporting layer, and an exciton blocking layer. and a hole blocking layer or an electron injection layer, wherein at least one of the anode and the cathode is formed of a metal prepared by the method of manufacturing the metal nanofiber electrode array described above. It is characterized in that the grid array of nanofiber electrodes.
  • the present invention also provides an organic solar cell including the nanofiber electrode array described above.
  • the organic solar cell includes an anode, a photoactive layer and a cathode, and optionally further includes an auxiliary electrode layer, a hole extraction layer, an exciton blocking layer, or an electron extraction layer.
  • the electrode of at least one of the anode and the cathode is characterized in that the grid array of metal nanofiber electrodes manufactured by the method of manufacturing the metal nanofiber electrode array described above.
  • the position and direction of the metal nanofiber pattern can be precisely adjusted, and the metal nanofiber pattern can be aligned in a desired direction.
  • FIG. 1 is a process flow diagram showing a manufacturing method according to an embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of an electric field assisted robotic nozzle printer.
  • FIG. 6 is a graph showing data values of line width, specific resistance, and collector moving speed of copper nanofibers according to Preparation Example 1 of the present invention.
  • FIG. 7 is a graph showing a change in the specific resistance value according to the heat treatment conditions of the copper nanofibers according to Preparation Example 1 of the present invention.
  • FIG. 11 is a graph showing IV characteristic curves and specific resistance of silver-copper nanofibers according to Preparation Example 2 of the present invention.
  • FIG. 12 is a process schematic diagram of an organic field effect transistor according to another embodiment of the present invention.
  • FIG 13 is an image of an organic field effect transistor according to another embodiment of the present invention.
  • the present invention is not limited to the embodiments described herein but may be embodied in other forms.
  • the term 'aligned' nanofibers refers to nanofibers whose position and orientation of nanofibers are adjusted as desired.
  • the cross section of the metal pattern obtained by the conventional offset printing, inkjet printing, screen printing, and imprint method has a wide rectangular shape
  • the cross section of the nanofiber pattern of the present invention may have a circular, elliptical, semicircular shape. have.
  • polycrystalline nanofibers are manufactured in which nanograins are connected to each other by printing.
  • the length of the pattern can be produced as long as the desired length.
  • the length of a pattern can be produced 1 micrometer or more. Preferably 1 mm to 100 meters in length can be produced.
  • horizontal' alignment herein means horizontal with respect to the substrate.
  • FIG. 1 is a process flow diagram showing a manufacturing method according to an embodiment of the present invention.
  • a metal precursor / organic polymer composite solution is prepared by mixing a metal precursor and an organic polymer in distilled water or an organic solvent (S100).
  • the metal precursor and the organic polymer may be dissolved in a weight ratio of 10:90 to 97: 3 in a concentration of 1% to 50% by weight in distilled water or an organic solvent. More specifically, the weight ratio may be 70:30 to 90:10.
  • the finally obtained metal nanofibers may be formed with a uniform diameter without breaking.
  • the organic polymer is thermally decomposed by the heat treatment step to be described later, if the ratio of the organic polymer exceeds 90% by weight lack of the amount of metal nanofibers remaining after the heat treatment may cause a problem that the wire is not uniformly formed and broken. .
  • the viscosity of the metal precursor / organic polymer composite solution may be too low, so that the metal precursor / organic composite nanofiber pattern may not be properly formed by the electric field assist robotic nozzle printer which will be described later. have.
  • the concentration of the metal precursor / organic polymer composite solution may be 1 wt% to 30 wt%.
  • the viscosity of the solution is sufficient, through an electric field assist robotic nozzle printer which will be described later.
  • a metal precursor / organic polymer composite nanofiber pattern may be formed.
  • the concentration of the solute to the solvent is less than 1% by weight of the metal precursor / organic polymer composite solution, there is a problem that the viscosity is too low to be formed in the form of droplets of solutions other than nanofibers.
  • the concentration of the metal precursor and the organic polymer solution exceeds 30% by weight, there may be a problem that the solution is not properly discharged through the electric field auxiliary robotic nozzle printer to be described later because the viscosity is too high.
  • the metal precursor may include at least one selected from the group consisting of a copper precursor, a titanium precursor, an aluminum precursor, a silver precursor, a platinum precursor, a nickel precursor, and a gold precursor.
  • the copper precursor is copper acetate, copper acetate hydrate
  • Copper acetate hydrate Copper acetylacetonate, Copper isobutyrate, Copper carbonate, Copper chloride, Copper chloride hydrate, Copper ethyl Acetoacetate (Copper ethylacetoacetate), Copper 2-ethylhexanoate, Copper fluoride, Copper formatehydrate, Copper gluconate, Copper hexafluoroacetylaceto Copper hexafluoroacetylacetonate, Copper hexafluoroacetylacetonate hydrate, Coppermethoxide, Copper neodecanoate, Copper nitrate hydrate, Copper nitrate nitrate, Copper perchlorate hydrate, Copper sulfate, Copper sulfate hydrate, Copper stannate At least one selected from the group consisting of copper tartrate hydrate, copper trifluoroacetylacetonate, copper trifluoromethanesulfonate, and tetraamminecopper sulf
  • the titanium precursor is titanium carbide, titanium chloride, titanium ethoxide, titanium fluoride, titanium hydride, titanium nitride, Titanium chloride, Titanium isopropoxide, Titanium propoxide, Titanium fluoride, Titanium methoxide, Titaniumoxyacetylacetonate, It may include, but is not limited to, at least one selected from the group consisting of titanium 2-ethylhexyloxide, and titanium butoxide.
  • the aluminum precursor is aluminum chloride, aluminum fluoride, aluminum hexafluoroacetylacetonate, aluminum chloride hydrate, aluminum nitride, aluminum trifluoromethanesulfo Aluminum trifluoromethanesulfonate, Triethylaluminum, Aluminum acetylacetonate, Aluminum hydroxide, Aluminum lactate, Aluminum nitrate hydrate, Aluminum 2-ethylhexa Aluminum 2-ethylhexanoate, Aluminum perchlorate hydrate, Aluminum sulfate hydrate, Aluminum ethoxide, Aluminum carbide, Aluminum sulfate, Aluminum sulfate (Aluminum sulfate) Aluminum acetate, acetic acid Aluminum acetate hydrate, Aluminum sulfide, Aluminum hydroxide hydrate, Aluminum phenoxide, Aluminum fluoride hydrate, Aluminum tributoxide, Aluminum diacetate, aluminum diacetate hydroxide, and at least one selected from the group consisting of aluminum 2,4-p
  • the silver precursor is silver hexafluorophosphate, silver neodecanoate, silver nitrate, silver trifluoromethanesulfonate, silver acetate, silver acetate (Silvercarbonate), Silver chloride, Silver perchlorate, Silver tetrafluoroborate, Silver trifluoroacetate, Silver 2-ethylhexanoate, Silver fluoride, Silver perchlorate hydrate, Silver lactate, Silver acetylacetonate, Silver methanesulfonate, Silver heptafluorobutyrate, Silver chlorate, silver pentafluoropropionate, and silver hydrogenfluoride It may include at least one selected from the group eojin but does And there like.
  • the platinum precursor is a chloroplatinum chloride (Chloroplatinic acid hexahydrate), dihydrogen hexahydroxyplatinate (Dihydrogen hexahydroxyplatinate), platinum acetylacetonate (Platinumacetylacetonate), platinum chloride (Platinum chloride), platinum chloride hydrate (Platinum chloride hydrate) Platinum hexafluoroacetylacetonate, Tetraammineplatinum chloride hydrate, Tetraammineplatinumhydroxide hydrate, Tetraammineplatinum Platinate Platinate, Tetraammineplatinum Platinate Platinate ), Tetrachlorodiammineplatinum, Dichlorodiammine platinum, and Diaminemineplatinum dichloride. It is selected to include one or at least, but not limited to these.
  • the nickel precursor is nickel hexaamine nickel (Hexaamminenickel chloride), nickel acetate (Nickel acetate) nickel acetate hydrate (Nickel acetate hydrate), nickel acetylacetonate (Nickel acetylacetonate), nickel acetylacetonate hydrate (Nickel acetylacetonate hydrate) Nickel carbonyl, Nickel chloride, Nickel chloride hydrate, Nickel fluoride, Nickel fluoride hydrate, Nickel hexafluoroacetylacetonate hydrate ), Nickel hexafluoroacetylacetonate, Nickel hydroxide, Nickel hydroxyacetate, Nickel nitrate hydrate, Nickel perchlorate hydrate, Perchlorate Nickel perchlorate, Nickel sulfate hydrate, Nickel sulfate Nickel sulfate, Nickel trifluoroborate hydrate, Nickel trifluoroborate, Nickel trifluoroacetylacetonate hydrate, Nickel trifluor
  • the gold precursors are chlorocarbonylgold, tetrahydrogen tetrachloroaurate tetrahydrogenaurate hydrate, chlorotriethylphosphinegold, chlorotrimethylphosphine gold, chlorotrimethylphosphinegold Group consisting of methyl (acetylacetonate) gold, gold (I) chloride, gold cyanide, gold sulfide, and gold chloride hydrate It may include at least one selected from, but is not limited thereto.
  • the organic polymer is polyvinyl alcohol (PVA), polyvinylacetate (PVAc), poly (p-phenylene vinylene) (PPV), polyhydroxyethyl methacrylate (pHEMA), polyethylene oxide (PEO), polystyrene (PS), polycaprolactone (PCL), polyacrylonitrile (PAN), poly (methyl methacrylate) (PMMA), polyimide, poly (vinylidene fluoride) (PVDF), polyaniline (PANI), poly Vinyl chloride (PVC), nylon, polyacrylic acid, polychlorostyrene, polydimethylsiloxane, polyetherimide, polyethersulfone, polyalkylacrylate, polyethylacrylate, polyethylvinylacetate, polyethyl-co-vinylacetate, Polyethylene terephthalate, polylactic acid-co-glycolic acid, polymethacrylate, polymethylstyrene, polystyrenesulf
  • the organic solvent is dichloroethylene, trichloroethylene, chloroform, chlorobenzene, dichlorobenzene, styrene, dimethylformamide, dimethyl sulfoxide, xylene, toluene, cyclohexene, isopropyl alcohol, ethanol, It may include at least one selected from the group consisting of methanol, tetrahydrofuran, isopropyl alcohol, terpineol, ethylene glycol, diethylene glycol, polyethylene glycol, acetonitrile, and acetone.
  • the metal precursor / organic polymer composite solution may further include an auxiliary metal precursor.
  • auxiliary metal precursor As the auxiliary metal precursor is further included, nanofibers including one or more metals may be formed to form nanofibers exhibiting various metal properties.
  • the auxiliary metal precursor may include at least one selected from the group consisting of a copper precursor, a titanium precursor, an aluminum precursor, a silver precursor, a platinum precursor, a nickel precursor, and a gold precursor.
  • the copper precursor, the titanium precursor, the aluminum precursor, the silver precursor, the platinum precursor, the nickel precursor, and the gold precursor are the same as described above in the metal precursor, and thus, a detailed description thereof will be omitted.
  • the metal precursor / organic composite nanofiber pattern is formed on the substrate using the metal precursor / organic polymer composite solution (S200).
  • the metal precursor / organic polymer composite solution is injected into a nozzle of an electric field assisted robotic printer and an electric field is applied to the composite solution perpendicularly from the substrate when the solution forms a Taylor cone at the nozzle end.
  • the substrate may be moved to form an aligned metal precursor / organic polymer composite nanofiber pattern in a continuous form on the substrate.
  • the metal precursor / organic polymer composite nanofiber pattern horizontally aligned may be formed on the substrate.
  • the substrate material may include, but is not limited to, at least one selected from the group consisting of an insulating material, a metal material, a carbon material, a polymer material, and a conductor / insulation film composite material.
  • examples of the insulating material may be glass plate, plastic film, paper, fabric, wood, and the like, and the metal material may be metal, aluminum, titanium, gold, silver, stainless steel, or the like, but is not limited thereto. Do not.
  • carbon material graphene, carbon nanotubes, graphite amorphous (amorphous) carbon, etc.
  • polymer material a PET film, a PDMS film, a polyimide film, a polycarbonate film, or the like may be used.
  • the conductor / insulator composite material may be a semiconductor wafer substrate, a silicon (Si) / silicon dioxide (SiO 2 ) substrate, a silicon (Si) / silicon nitride (SiN) substrate, aluminum (Al) / aluminum oxide (Al 2). O 3 ) substrates and the like may be used, but is not limited thereto.
  • the metal precursor / organic composite nanofiber pattern is formed while discharging the solution from a point 10 ⁇ m to 20 mm vertically from the substrate.
  • the speed of the pattern aligned as the metal precursor / organic polymer composite solution is discharged increases in the horizontal direction to align the pattern in the desired direction or in parallel. Is difficult.
  • the present invention can align the pattern in a desired direction by discharging the composite solution of the metal precursor / organic polymer at a distance in the range of 10 ⁇ m to 20 mm from the substrate.
  • the step of forming the aligned metal precursor / organic composite nanofiber pattern is performed by an electric field assisted robotic nozzle printer.
  • the electric field assisted robotic nozzle printer includes: i) a solution storage device containing a metal precursor / organic polymer composite solution; ii) a nozzle device for discharging a solution supplied from the solution storage device; iii) a voltage applying device applying a high voltage to the nozzle. iv) a collector for fixing the substrate v) a robot stage for moving the collector in a horizontal direction vi) a micro distance adjuster for moving the collector in a vertical direction and vii) a stone platform for supporting the collector from below the collector It may include.
  • FIG. 2 shows a schematic diagram of an electric field assisted robotic nozzle printer.
  • the electric field assisted robotic nozzle printer includes a solution storage device 10, a discharge controller 20, a nozzle 30, a voltage applying device 40, a collector 50, and a robot stage 60. ), The crystal plate 61, the micro distance adjuster 70.
  • the solution storage device 10 stores a metal precursor / organic polymer composite solution and supplies the solution to the nozzle 30 so that the nozzle 30 can discharge the solution.
  • the solution storage device 10 may be in the form of a syringe.
  • the solution storage device 10 may be used, such as plastic, glass or stainless steel.
  • the storage capacity of such solution storage device 10 may be selected within the range of about 1 ⁇ l to about 5,000 mL. Preferably, it may be selected within the range of about 10 ⁇ l to about 50 mL.
  • the stainless steel solution storage device 10 there is a gas injection hole (not shown) for injecting gas into the solution storage device 10, and the solution may be discharged out of the solution storage device by using the pressure of the gas. Can be.
  • the solution storage device 10 for forming the metal precursor / organic composite nanofiber of the core shell structure may be formed in plural.
  • the discharge controller 20 is a portion that applies pressure to the solution in the solution storage device 10 to discharge the metal / organic polymer composite solution in the solution storage device 10 through the nozzle 30 at a constant speed.
  • a discharge regulator 20 As such a discharge regulator 20, a pump or a gas pressure regulator can be used.
  • the discharge controller 20 may adjust the discharge rate of the solution within the range of 1 nL / min to 50mL / min.
  • each solution storage device 10 can operate independently.
  • a gas pressure regulator (not shown) may be used as the discharge regulator 20.
  • the nozzle 30 receives the organic solution from the solution storage device 10 to discharge the metal precursor / organic polymer composite solution, and the discharged solution forms a drop at the end of the nozzle 30.
  • the diameter of the nozzle 30 may range from about 1 ⁇ m to about 1.5 mm.
  • the nozzle 30 may include a single nozzle, a dual-concentric nozzle, or a triple-concentric nozzle.
  • two or more types of organic solutions can be discharged using a double nozzle or a triple nozzle.
  • two or three solution reservoirs 10 may be connected to double or triple nozzles.
  • the voltage applying device 40 is for applying a high voltage to the nozzle 30 and may include a high voltage generating device.
  • the voltage applying device 40 may be electrically connected to the nozzle 30 via, for example, the solution storage device 10.
  • the voltage applying device 40 may apply a voltage of about 0.1 kV to about 30 kV.
  • An electric field exists between the nozzle 30 to which the high voltage is applied by the voltage applying device 40 and the collector 50 grounded, and droplets formed at the end of the nozzle 30 by the electric field are Taylor cone. At this end, nanofibers are formed continuously.
  • the collector 50 is a portion to which the nanofibers formed from the solution discharged from the nozzle 30 are aligned.
  • the collector 50 is flat and movable on a horizontal plane by the robot stage 60 below it.
  • the collector 50 is grounded to have a grounding characteristic relative to the high voltage applied to the nozzle 30.
  • Reference numeral 51 denotes that the collector 50 is grounded.
  • the collector 50 may be made of a conductive material, for example a metal, and may have a flatness within 0.5 ⁇ m to 10 ⁇ m (when the flatness has a value of zero when the flatness of a completely horizontal surface is zero). Maximum error value from the plane).
  • the robot stage 60 is a means for moving the collector 50.
  • the robot stage 60 is driven by a servo motor to move at a precise speed.
  • the robot stage 60 may be controlled to move in two directions, for example on the horizontal plane, on the x and y axes.
  • the robot stage 60 may move the distance at intervals in the range of 100 nm or more and 100 cm or less, for example, 10 ⁇ m or more and 20 cm or less.
  • the moving speed of the robot stage 60 may range from 1 mm / min to 60,000 mm / min.
  • the robot stage 60 is a stone tablet It may be installed on the base plate 61, and may have a plan view of within 0.5 ⁇ m to 5 ⁇ m. At this time, the distance between the nozzle 30 and the collector 50 may be constantly adjusted by the plan view of the stone plate 61.
  • the stone platform 61 can control the precision of the metal precursor / organic composite nanofiber pattern by suppressing vibration generated by the operation of the robot stage.
  • the micro distance adjuster 70 is a means for adjusting the distance between the nozzle 30 and the collector 50.
  • the micro distance controller 70 may adjust the distance between the nozzle 30 and the collector 50 by vertically moving the solution storage device 10 and the nozzle 30.
  • the micro distance controller 70 may include a jog 71 and a micrometer 72.
  • the jog 71 can be used to roughly adjust the distance in mm or cm, and the fine adjuster 72 can be used to adjust the fine distance of at least 10 ⁇ m.
  • the jog 71 allows the nozzle 30 to approach the collector 50, and then the fine adjuster 72 can accurately adjust the distance between the nozzle 30 and the collector 50.
  • the distance between the nozzle 30 and the collector 50 by the micro distance adjuster 70 may be adjusted in the range of 10 ⁇ m to 20 mm.
  • the three-dimensional path of nanofibers emitted from the nozzle in electrospinning can be represented by the following equation (DH Reneker, AL Yarin, H. Fong, S. Koombhongse, "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning” J Appl. Phys., 87, 9, 4531-4546 (2000)).
  • x and y are positions in the x- and y-axis directions on a plane parallel to the collector
  • L is a constant representing a length scale
  • is a perturbation wavelength
  • h is the distance between the nozzle and the collector.
  • the collector 50 parallel to the xy plane can be moved on the xy plane by the robot stage 60 and between the nozzle 30 and the collector 50 in the z-axis direction by the micro distance adjuster 70. You can adjust the distance.
  • the electric field assisted robotic nozzle printer 100 may sufficiently narrow the distance between the nozzle 30 and the collector 50 in units of tens to several tens of micrometers so that the collector (before the nanofibers are disturbed) 50) may fall in a straight line, whereby a pattern of fine nanofibers may be formed by the movement of the collector 50.
  • Forming the metal precursor / organic polymer composite nanofibers by the movement of the collector makes it possible to form a more precise metal precursor / organic polymer composite nanofiber pattern by reducing the disturbance parameter of the organic wire pattern compared to the movement of the nozzle. .
  • the electric field assisted robotic nozzle printer 100 may be placed in the housing.
  • the housing may be formed of a transparent material.
  • the housing may be sealed and gas may be injected into the housing through a gas inlet (not shown).
  • the gas to be injected may be nitrogen, dry air, or the like, and the metal precursor / organic polymer composite solution which is easily oxidized by moisture may be stably maintained by the injection of the gas.
  • a ventilator and a lamp may be installed in the housing.
  • the role of the ventilator is to adjust the vapor pressure in the housing to control the evaporation rate of the solvent when the nanofiber is formed.
  • Robotic nozzle printing which requires rapid evaporation of the solvent, can help the solvent evaporate by controlling the speed of the fan.
  • the evaporation rate of the solvent affects the morphological and electrical properties of the metal precursor / organic composite nanofibers. If the evaporation rate of the solvent is too fast, the solution dries out at the nozzle end before the nanofibers of the metal precursor / organic composite are formed, causing the nozzle to clog.
  • the nanofibers of the solid metal precursor / organic polymer composite do not form and are placed in the collector in liquid form. Since the metal precursor / organic polymer composite solution in liquid form does not have the outstanding excellent electrical properties of nanofibers, it cannot be used for device fabrication.
  • the ventilator plays an important role in forming the nanofibers.
  • the process of aligning the aligned metal precursor / organic polymer composite nanofibers using the electric field assisted robotic nozzle printer 100 i) supplying the metal precursor / organic polymer composite solution to the solution storage device And ii) discharging the metal precursor / organic polymer from the nozzle while applying a high voltage to the nozzle through the voltage application device of the electric field assisted robotic nozzle printer.
  • the composite solution includes moving the collector on which the substrate is placed in the horizontal direction.
  • a voltage in the range of 0.1 kV to 30 kV is applied to the nozzle 30 using the high voltage generator 40, the Taylor cone is formed at the tip of the nozzle by an electrostatic force between the charge formed in the droplet and the collector 50.
  • the cross-section is in the form of a round fiber in the direction of the electric field so that the solvent is volatilized and the nanofibers elongated in the solid state to stick to the substrate on the collector 50 do.
  • the metal precursor / organic polymer composite nanofibers having a length in one direction longer than the other directions may be formed from the droplets.
  • the diameter of the metal precursor / organic polymer composite nanofibers may be adjusted to tens of nanometers to micrometers according to the applied voltage and the nozzle size.
  • the metal precursor / organic polymer composite nanofibers formed from the charged discharge of the nozzle 30 may be aligned with the substrate on the collector 50. At this time, by adjusting the distance between the nozzle 30 and the collector 50 between 10 ⁇ m and 20 mm, the metal precursor / organic polymer composite nanofibers are not entangled but separated on the substrate on the collector 50. Can be formed. In this case, the distance between the nozzle 30 and the collector 50 may be adjusted using the micro distance controller 70.
  • the metal precursor / organic polymer composite nanofibers can be aligned in the desired position and the desired number on the substrate. It is possible.
  • the metal precursor / organic polymer composite nanofibers may be horizontally aligned. Accordingly, the metal precursor / organic composite nanofiber pattern may be horizontally aligned.
  • aligned metal precursor / organic polymer composite nanofiber pattern is heat-treated to form an aligned metal nanofiber pattern (S300).
  • thermally decomposing the organic polymer by heat-treating the aligned metal precursor / organic polymer composite nanofiber pattern, and reducing the metal precursor to metal nanograin to form an ordered metal nanofiber pattern composed of the metal nanograin.
  • thermally decomposing the organic polymer by heat-treating the aligned metal precursor / organic polymer composite nanofiber pattern, and reducing the metal precursor to metal nanograin to form an ordered metal nanofiber pattern composed of the metal nanograin.
  • Heat-treating the aligned metal precursor / organic composite nanofiber pattern to form the aligned metal nanofiber pattern may be heat-treated for 5 minutes to 8 hours in a temperature range of 50 ° C to 900 ° C.
  • the heat treatment can be heated uniformly throughout the air or in a particular gas atmosphere, such as furnaces, vacuum hot-plates, rapid thermal annealing, or CVD chambers (chemical vapor deposition). It is preferable to use equipment, but not always limited thereto.
  • the heat treatment at a temperature below 50 °C it may be difficult to form the metal nanofibers due to poor thermal decomposition of the organic polymer, it may be difficult to form a uniform nanofibers when heat treatment at a temperature above 900 °C. .
  • the heat treatment time is less than 5 minutes, it may be difficult to form the metal nanofibers due to insufficient time to thermally decompose the organic polymer, and if the heat treatment time exceeds 8 hours, the heating is long and deformation of the nanofibers may occur. It can be difficult to form uniform nanofibers.
  • the heat treatment of the aligned metal precursor / organic polymer composite nanofiber pattern to form the aligned metal nanofiber pattern may be performed once to five times.
  • the organic polymer when the number of heat treatment times is less than one time, the organic polymer is not thermally decomposed and metal nanofibers are not formed.
  • the number of heat treatment times exceeds 5 times, the nanofibers may be deformed to form uniform nanofibers. This can be difficult.
  • the heat treatment of the aligned metal precursor / organic polymer composite nanofiber pattern to form an aligned metal nanofiber pattern may include air or a gas including at least one selected from the group consisting of oxygen, nitrogen, hydrogen, and argon. Heat treatment can be performed in an atmosphere.
  • the metal precursor / organic polymer composite nanofibers may be effectively reduced to metal nanofibers when heat treated in the air or a gas atmosphere including at least one selected from the group consisting of oxygen, nitrogen, hydrogen, and argon.
  • the metal nanofibers may have a diameter of 10nm to 3000nm.
  • the diameter may be adjusted according to the ratio and concentration of the metal precursor and the organic polymer.
  • the diameter of the metal nanofibers is 10nm to 3000nm, it has a high conductivity.
  • metal nanowires may be manufactured through solution synthesis or growth.
  • the metal nanowires produced by this manufacturing method were only within several tens of micrometers in length.
  • the present invention is to produce nanofibers using a method of printing a metal precursor / organic polymer composite solution, so that the nanofibers can be manufactured without limitation in the length of the nanofibers, especially when the roll-to-roll method is applied.
  • One continuous long strand of nanofibers can be produced that can be applied to an area.
  • Such a field effect transistor may include a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and a semiconductor layer. At least one of the gate electrode, the source electrode and the drain electrode at this time is characterized in that the metal nanofiber electrode manufactured by the method of manufacturing the metal nanofiber electrode array described above.
  • the structure of the transistor element can be classified according to the position of the gate electrode. A bottom gate structure coming toward the substrate and a top gate structure in which the gate electrode is upward may be provided.
  • the structure of the transistor device may be classified according to the position of the source / drain electrodes. If the source / drain electrodes are below the semiconductor layer, the bottom contact may be classified into a bottom contact, and if the source / drain electrodes are positioned above the semiconductor layer, they may be classified into a top contact device.
  • a gate insulating layer positioned on the gate electrode, a source electrode and a drain electrode positioned on the gate insulating layer, and the source electrode and drain electrode on the gate insulating layer. It may include an organic semiconductor layer positioned to contact with.
  • the metal nanofibers may be substituted for at least one of the source electrode, the drain electrode, and the gate electrode by themselves. Therefore, when the transistor device is manufactured in a large area array, the resolution can be increased and the overlapping area between the gate electrode and the source / drain electrodes can be greatly reduced.
  • the semiconductor layer may be an organic semiconductor layer or an inorganic semiconductor layer.
  • the organic semiconductors include low molecular weight, oligomer and polymer semiconductors of commonly known conjugated structure. Examples include, but are not limited to, pentacene, tetracene, TIPS-pentacene, polythiophene and derivatives thereof, polyfluorene and derivatives thereof, polyacetylene and derivatives thereof, polyphenylene and derivatives thereof .
  • the inorganic semiconductor may be a group 4 crystal such as silicon (Si), silicon or germanium, a group 3-5 compound such as gallium arsenide (GaAs), a group 2-6 compound such as CdS, a carbon nanotube composed of carbon only, and All inorganic semiconductors which are not organic materials such as fins are included.
  • the metal nanofiber electrode array manufactured by the above-described method for manufacturing a metal nanofiber electrode array is a nanofiber continuously connected, one portion of one side is applied to be applied as a source electrode and a drain electrode of the organic field effect transistor of the present invention.
  • the device can be completed by cutting off.
  • the performance of the field effect hole mobility is improved compared to the transistor using the metal film electrode as the source electrode and the drain electrode.
  • An element can be provided.
  • metal nanofiber In the case of the transistor array, only one strand of metal nanofiber may serve as an electrode, but in the case of sheet devices such as an organic light emitting diode and an organic solar cell, the strand may not form an electrode and the metal nanofibers cross each other. Must have a grid type that is connected.
  • the present invention provides an organic light emitting diode comprising the above-described nanofiber electrode array as a grid-shaped electrode.
  • the organic light emitting diode may include an anode, a light emitting layer, and a cathode. At least one of the anode and the cathode at this time is characterized in that the grid array of the metal nanofiber electrode manufactured by the method of manufacturing the metal nanofiber electrode array described above.
  • a hole injection layer, a hole transporting layer, an electron transporting layer, an exciton blocking layer, a hole blocking layer and an electron injection layer Injection layer may further include at least one layer.
  • an auxiliary electrode such as a conductive polymer (eg, PEDOT: PSS) may be further included.
  • a conductive polymer eg, PEDOT: PSS
  • the present invention provides an organic solar cell comprising the above-described nanofiber electrode array as a grid-shaped electrode.
  • Such an organic solar cell may include an anode, a photoactive layer and a cathode. At least one of the anode and the cathode at this time is characterized in that the grid array of the metal nanofiber electrode manufactured by the method of manufacturing the metal nanofiber electrode array described above.
  • the method may further include at least one layer of a hole extraction layer, an exciton blocking layer, and an electron extraction layer.
  • an auxiliary electrode such as a conductive polymer (eg, PEDOT: PSS) may be further included.
  • a conductive polymer eg, PEDOT: PSS
  • Copper precursor (25 wt%) and polyvinyl pyrrolidone (PVP) (10 wt%) were dissolved in dimethylformamide and tetrahydrofuran to prepare a copper precursor / PVP solution.
  • concentration of precursor / PVP solution was 31 wt%.
  • the prepared copper precursor / PVP solution was placed in a syringe of an electric field assisted robotic nozzle printer, and the copper precursor / PVP solution was discharged from the nozzle while applying a voltage of about 0.5 kV to the nozzle.
  • a copper precursor / PVP composite nanofiber pattern was formed on the substrate of the collector moved by the robot stage.
  • the diameter of the nozzle used was 100 ⁇ m
  • the distance between the nozzle and the collector was 7 mm
  • the applied voltage was 0.5 kV.
  • the movement distance in the Y-axis direction of the robot stage was 200 ⁇ m, and the moving distance in the X-axis direction was 15 cm.
  • the size of the collector was 20 cm x 20 cm, and the size of the substrate on the collector was 7 cm x 7 cm.
  • the type of substrate was a silicon (Si) wafer coated with a 300 nm thick silicon oxide film (SiO 2 ).
  • the aligned copper precursor / PVP nanofiber pattern is heat-treated in the air for 1 hour or 2 hours in the air in the range of 350 ° C. to 500 ° C.
  • the PVP organic polymer is thermally decomposed and the copper precursor is oxidized to form an aligned copper oxide nanograin Copper oxide nanofibers are formed.
  • heat treatment is performed at 300 ° C. for 1 hour or 2 hours to reduce copper oxide nanograins to copper nanograins, thereby ordering copper nanofiber patterns made of copper nanograins. Formed.
  • a copper nanofiber electrode array having an area of 7 cm x 7 cm was produced using the method for producing a large area nanofiber electrode array.
  • the morphology analysis was performed using an electron scanning microscope and the component analysis was performed using EDS.
  • the resistivity of copper nanofiber electrodes fabricated on the substrate was measured.
  • Figure 3a is a SEM photograph showing the copper precursor / organic polymer composite nanofibers
  • Figure 3b is a photo showing the copper precursor / organic polymer composite nanofiber array according to the preparation of the present invention
  • Figure 3c is the copper precursor / organic polymer It is a photograph showing the cross-sectional area of the composite nanofiber.
  • 3D is a result of EDS analysis.
  • the copper precursor / organic polymer composite nanofibers according to Preparation Example 1 of the present invention is uniformly formed in a straight line.
  • the copper precursor / organic polymer composite nanofiber electrode array according to Preparation Example 1 of the present invention is uniformly aligned in the horizontal direction.
  • the cross section of the copper precursor / organic polymer composite nanofiber according to Preparation Example 1 of the present invention is uniform.
  • the nanofibers according to Preparation Example 1 of the present invention contains copper.
  • the copper precursor / organic polymer composite nanofibers according to the preparation example of the present invention are uniformly aligned in a straight line.
  • Figure 4a is a SEM picture showing the copper oxide nanofibers
  • Figure 4b is a SEM picture showing a copper oxide nanofiber electrode array according to the preparation of the present invention
  • Figure 4c is a SEM picture showing the cross-sectional area of the copper oxide nanofibers to be.
  • 4D is an EDS analysis result.
  • the copper oxide nanofibers according to Preparation Example 1 of the present invention are uniformly formed in a straight line.
  • the copper oxide nanofiber electrode array according to Preparation Example 1 of the present invention is uniformly aligned in the horizontal direction.
  • the cross section of the copper oxide nanofibers according to Preparation Example 1 of the present invention is uniform.
  • the copper oxide nanofibers are formed having a high peak in the nanofiber copper and oxygen according to Preparation Example 1 of the present invention.
  • Figure 5a is a SEM photograph showing the cross-sectional area of the copper nanofibers
  • Figure 5b is a SEM photograph showing a copper nanofiber electrode array according to Preparation Example 1 of the present invention
  • Figure 5c is a SEM photograph showing the copper nanofibers.
  • 5D is a result of EDS analysis.
  • the cross section of the copper nanofibers according to Preparation Example 1 of the present invention is uniform.
  • the copper nanofiber electrode array according to Preparation Example 1 of the present invention is uniformly aligned in the horizontal direction.
  • the copper nanofibers according to Preparation Example 1 of the present invention are uniformly formed in a straight line.
  • the nanofibers according to Preparation Example 1 of the present invention contains copper.
  • the peak of oxygen is significantly smaller compared to Figure 5d of FIG.
  • the copper oxide nanograins of the copper oxide nanofibers are reduced to copper nanograins by heat treatment to form copper nanofibers composed of such copper nanograins.
  • FIG. 6 is a graph showing data values of line width, specific resistance, and collector moving speed of copper nanofibers according to Preparation Example 1 of the present invention.
  • the copper precursor / organic composite nanofibers are heat-treated at 450 ° C. for 2 hours in air through a furnace and then heat-treated at 300 ° C. for 1 hour in a CVD chamber where hydrogen gas flows at a flow rate of 100 sccm.
  • the line width and resistivity of a copper nanofiber change as the collector travels.
  • the faster the moving speed of the collector the thinner the line width of the copper nanofibers.
  • the specific resistance increases as the line width becomes thinner.
  • FIG. 7 is a graph showing a change in the specific resistance value according to the heat treatment conditions of copper nanofibers according to Preparation Example 1 of the present invention.
  • the copper precursor / organic polymer composite nanofibers are heat-treated in an air through a furnace at 350 ° C. to 500 ° C. for 1 to 2 hours, respectively, in a CVD chamber in which hydrogen gas flows at a flow rate of 100 sccm.
  • the specific resistance of copper nanofibers with a line width of 2 ⁇ m formed by heat treatment at 300 ° C. for 1 hour is a result of change according to heat treatment conditions.
  • the copper precursor / organic polymer composite nanofiber has a specific resistance value decreases as the heat treatment temperature increases, and a change value of the current according to the voltage increases.
  • the copper precursor / organic composite nanofibers are heat-treated in the air for 1 hour at a temperature of 450 °C in the air and then heat-treated for 1 hour at 300 °C in the CVD chamber flowing hydrogen gas at a flow rate of 100 sccm It is a result of the specific resistance uniformity of the formed copper nanofiber.
  • the average specific resistance value is 185.3 ⁇ mcm, and uniformity is 15.9% to form uniform copper nanofibers.
  • Silver precursor C 2 AgF 3 O 2 , 21 wt%), copper precursor (C 4 CuF 6 O 4 , 6.25 wt%) and PVP (Polyvinyl pyrrolidone) (10 wt%) were added to dimethylformamide and tetrahydrofuran. was dissolved to prepare a precursor / PVP solution. The concentration of precursor / PVP solution was 31 wt%.
  • the prepared precursor / PVP solution was placed in a syringe of an electric field assisted robotic nozzle printer, and the precursor / PVP solution was discharged from the nozzle while applying a voltage of about 0.5 kV to the nozzle.
  • An ordered precursor / PVP composite nanofiber pattern was formed on the substrate of the collector moved by the robot stage.
  • the diameter of the nozzle used was 100 ⁇ m
  • the distance between the nozzle and the collector was 7 mm
  • the applied voltage was 0.5 kV.
  • the moving distance in the Y-axis direction of the robot stage was 150 ⁇ m
  • the moving distance in the X-axis direction was 15 cm.
  • the size of the collector was 20 cm x 20 cm, and the size of the substrate on the collector was 7 cm x 7 cm.
  • the type of substrate was a silicon (Si) wafer coated with a 300 nm thick silicon oxide film (SiO 2 ).
  • the aligned precursor / PVP nanofiber pattern is heat-treated in the air at a temperature of 350 to 500 ° C. for 1 hour to 2 hours in the air, the PVP organic polymer is thermally decomposed, and the silver and copper precursors are silver nanograins and copper. Reduction into nanograins results in the formation of silver-copper composite nanofibers consisting of such silver nanograins and copper nanograins.
  • a silver-copper composite nanofiber electrode array for transistors having an area of 7 cm ⁇ 7 cm was fabricated using the method for producing a large area nanofiber electrode array.
  • the electrical characterization of the silver nanofibers formed on the SiO 2 / Si substrate was performed by using a metal shadow mask on the silver-copper composite nanofibers prepared in Preparation Example 2 above. After thermal evaporation, IV characteristics were analyzed using a probe station. Morphological analysis was performed using an electron scanning microscope (SEM).
  • FIG. 9A is a SEM photograph showing a cross section of a silver precursor-copper precursor / organic polymer composite nanofiber
  • FIG. 9B is a SEM photograph showing an aligned silver precursor-copper precursor / organic polymer composite nanofiber array
  • FIG. 9C is a silver precursor. SEM photograph showing copper precursor / organic polymer composite nanofiber.
  • the diameter of the silver precursor-copper precursor / organic polymer composite nanofiber according to Preparation Example 1 of the present invention is 577nm in the range of 10nm to 3000nm diameter.
  • the silver precursor-copper precursor / organic polymer composite nanofiber arrays are arranged at regular intervals.
  • 9C it can be seen that the silver precursor-copper precursor / organic polymer composite nanofibers are uniformly formed in a straight line.
  • the metal precursor / organic polymer composite nanofiber of the present invention has a diameter of 10 nm to 3000 nm and is uniformly formed.
  • the horizontal alignment at regular intervals when forming the pattern.
  • FIG. 10A is a SEM photograph showing a cross section of silver-copper nanofibers according to Preparation Example 2 of the present invention
  • FIG. 10B is a SEM photograph showing a silver-copper nanofiber array according to Preparation Example 2 of the present invention
  • the silver-copper nanofibers according to Preparation Example 2 of the present invention falls within the diameter range of 10nm to 3000nm.
  • FIG. 10B it can be seen that the silver-copper nanofiber array is uniformly arranged at regular intervals even after the heat treatment.
  • Figure 10c it can be seen that the silver-copper nanofibers are formed in a clear straight line.
  • the organic polymer is pyrolyzed to form the remaining silver-copper nanofibers, and the silver-copper nanofibers are also uniformly formed in a straight line shape. It can be seen that the nanofibers are uniformly arranged in a uniform array.
  • FIG. 11 is a graph showing IV characteristic curves and specific resistance of silver-copper nanofibers according to Preparation Example 2 of the present invention.
  • the average specific resistance value was 21.1 ⁇ cm.
  • a precursor / PVP solution was prepared by dissolving platinum precursor (H 2 PtCl 6 6H 2 O, 16.5 wt%) and polyvinyl pyrrolidone (PVP) (9 wt%) in dimethylformamide and ethanol.
  • the concentration of precursor / PVP solution was 23 wt%.
  • the prepared precursor / PVP solution was placed in a syringe of an electric field assisted robotic nozzle printer, and the precursor / PVP solution was discharged from the nozzle while applying a voltage of about 0.5 kV to the nozzle.
  • An ordered precursor / PVP composite nanofiber pattern was formed on the substrate of the collector moved by the robot stage.
  • the diameter of the nozzle used was 100 ⁇ m
  • the distance between the nozzle and the collector was 6 mm
  • the applied voltage was 0.4 kV.
  • the movement distance in the Y-axis direction of the robot stage was 200 ⁇ m
  • the moving distance in the X-axis direction was 15 cm.
  • the size of the collector was 20 cm x 20 cm
  • the size of the substrate on the collector was 7 cm x 7 cm.
  • the type of substrate was a silicon (Si) wafer coated with a 300 nm thick silicon oxide film (SiO 2 ).
  • the aligned precursor / PVP nanofiber pattern is heat-treated in the air at a temperature of 350 ° C. to 450 ° C. for 1 to 2 hours in the air, the PVP organic polymer is decomposed and the platinum precursor is reduced to platinum to form platinum nanofibers.
  • a precursor / PVP solution was prepared by dissolving gold precursor (HAuCl 4 , 18 wt%) and PVP (Polyvinyl pyrrolidone) (10 wt%) in dimethylformamide and ethanol. The concentration of precursor / PVP solution was 25 wt%.
  • the prepared precursor / PVP solution was placed in a syringe of an electric field assisted robotic nozzle printer, and the precursor / PVP solution was discharged from the nozzle while applying a voltage of about 0.5 kV to the nozzle.
  • An ordered precursor / PVP composite nanofiber pattern was formed on the substrate of the collector moved by the robot stage.
  • the diameter of the nozzle used was 100 ⁇ m
  • the distance between the nozzle and the collector was 7.5 mm
  • the applied voltage was 0.5 kV.
  • the movement distance in the Y-axis direction of the robot stage was 200 ⁇ m
  • the moving distance in the X-axis direction was 15 cm.
  • the size of the collector was 20 cm x 20 cm
  • the size of the substrate on the collector was 7 cm x 7 cm.
  • the type of substrate was a silicon (Si) wafer coated with a 300 nm thick silicon oxide film (SiO 2 ).
  • the aligned precursor / PVP nanofiber pattern is heat-treated in the air at a temperature of 350 ° C to 450 ° C for 1 to 2 hours in the air, the PVP organic polymer is decomposed and the gold precursor is reduced to gold nanograins, thereby converting them into such gold nanograins. Gold nanofibers are formed. Thus, a gold nanofiber electrode array for transistors having an area of 7 cm x 7 cm was produced.
  • an organic field effect transistor including a copper nanofiber electrode array was manufactured.
  • FIG. 12 is a process schematic diagram of an organic field effect transistor according to another embodiment of the present invention.
  • two rows of copper precursor / organic polymer nanofibers were printed on a 300 nm thick silicon oxide substrate in the same manner as in Preparation Example 1 and heat-treated in two steps to form copper nanofibers.
  • the production of copper nanofibers of two lines was performed multiple times on one substrate to prepare a copper nanofiber array.
  • the Au tip pad for the contact was then deposited to a thickness of about 150 nm since the probe tip could not be contacted directly to the copper nanofibers.
  • a pentacene semiconductor layer was deposited to a thickness of 50 nm to contact two rows of copper nanofibers to prepare an organic field effect transistor.
  • the copper nanofibers continuously connected to each other may not be directly applied to the source / drain electrodes of the device, thereby cutting each part to complete the device.
  • FIG 13 is an image of an organic field effect transistor according to Preparation Example 5 of the present invention.
  • the electrical characteristics of the organic field effect transistor including the copper nanofiber electrode array was analyzed for device performance using the transistor prepared in Preparation Example 5.
  • FIG. 14 is a graph showing transfer curve characteristics of an organic field effect transistor according to Preparation Example 5 of the present invention. At this time, the figure inserted in the graph of FIG. 14 is a sectional view of a transistor according to Preparation Example 5.
  • FIG. 14 is a graph showing transfer curve characteristics of an organic field effect transistor according to Preparation Example 5 of the present invention. At this time, the figure inserted in the graph of FIG. 14 is a sectional view of a transistor according to Preparation Example 5.
  • the performance of the organic field effect transistor according to Preparation Example 5 is that the field effect hole mobility is about 0.13 cm 2 ⁇ V ⁇ 1 ⁇ s ⁇ 1 , and the on / off current ratio is 7.46 ⁇ 10 6 to be.
  • the field effect hole mobility of the organic field effect transistor according to Preparation Example 5 is about 0.13 cm 2 ⁇ V ⁇ 1 ⁇ s ⁇ 1 , and the transistor device of the copper film electrode manufactured by the conventional vacuum deposition process. It can be seen that the field effect hole mobility of is about 0.006 cm 2 ⁇ V -1 ⁇ s -1 .
  • the transistor device using the copper nanofiber electrode according to the present invention exhibits better performance than the transistor device of the copper film electrode manufactured by the conventional vacuum deposition process.
  • micro range adjuster 71 jog

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 정렬된 금속 나노섬유를 이용한 대면적의 금속 나노섬유 전극 어레이의 제조방법에 관한 것으로, 금속 전구체 및 유기 고분자를 증류수 또는 유기 용매에 혼합하여 금속 전구체/유기 고분자 복합체 용액을 준비하는 단계, 상기 금속 전구체/유기 고분자 용액을 전기장 보조 로보틱 노즐 프린터의 노즐에 주입하고 전기장을 가하여 용액이 노즐 끝부분에 테일러콘(talyor cone)을 형성할 때 기판으로부터 수직으로 상기 복합체 용액을 토출시키면서 연속적으로 이어진 형태의 고체화 된 나노섬유가 형성되어 나올 시에 상기 기판을 이동시킴으로써, 상기 기판 상에 연속적으로 이어진 형태의 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 형성하는 단계 및상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유패턴을 열처리하여 상기 유기 고분자를 열분해하고, 상기 금속 전구체를 금속 나노그레인으로환원시켜,상기 금속 나노그레인으로 이루어진 정렬된 금속나노섬유 패턴을 형성하는 단계를 포함할 수 있다. 따라서, 금속 나노섬유 패턴의 위치와 방향을 정확히 조절할 수 있고, 금속 나노섬유 패턴을 원하는 방향에 정렬시킬 수 있다. 또한, 금속 전극 패턴의 해상도가 향상된 나노섬유 전극 어레이를 제공할 수 있다. 또한, 제조공정이 빠르고 간소화된 나노섬유 전극 어레이의 제조방법을 제공할 수 있다. 이러한 나노 전극섬유를 전계 효과 트랜지스터, 유기 발광다이오드 및 유기 태양전지 등의 전극으로 활용할 수 있다.

Description

정렬된 금속 나노섬유를 이용한 대면적의 금속 나노섬유 전극 어레이의 제조방법
본 발명은 나노섬유 전극 어레이의 제조방법으로 더욱 상세하게는 금속 나노섬유 패턴을 포함하는 나노섬유 전극 어레이의 제조방법에 관한 것이다.
미래의 정보화 사회에는 최첨단의 기능을 갖춘 전자기기들이 생활에 밀접하게 관련되고, 휴대성과 편리성을 위해서 소형화, 경량화 되어갈 것이다. 뛰어난 기능을 가지며 휴대가 가능한 전자 소자들이 크게 부각되고 있고, 더 나아가서는 입는 컴퓨터와 같이 인간의 필수 생활 조건중 하나를 차지할 것이다. 이러한 기술에 대한 수요가 늘어감에 따라 반도체와 디스플레이 분야에서는 고집적화가 화두가 된지 오래되었다. 이에 따라, 전자 소자들이 나노 크기화 되는 것이 매우 중요해졌다. 세밀하고 고집적 공정의 전자 소자를 제조하기 위해선 소형 트랜지스터를 구현하는 것이 중요하다. 소형 트랜지스터의 구현을 위해선 높은 전도도와 작은 배선폭을 가지는 정렬된 전극 배선 기술이 필수적이다.
진공 증착이 아닌 용액 공정을 통한 전극 배선 형성 기술에는 대표적으로 오프셋 프린팅, 잉크젯 프린팅, 스크린 프린팅 등이 있으며, 이러한 방법들을 이용하면 고전도도를 갖는 수 마이크로미터 이상의 트랜지스터용 전극 배선을 제작할 수 있으나 이보다 더 작은 나노크기 선폭의 전극을 구현하는 것은 힘들다.
또한, 용액 공정 이외의 금속 패턴 형성 방법에는 임프린트 방법이 있다. 임프린트 방법에 의해서는 나노 크기의 금속 패턴을 형성할 수 있으나 금속의 진공 증착 공정을 필요로 하는 단점이 있다.
또한, 상기 공정들은 다음의 문제점을 갖는다.
먼저, 오프셋 프린팅 기술은 패턴이 형성된 블랑켓을 이용하여 금속잉크를 전하여 인쇄하는 기술로, 블랑켓 패턴이 세밀한 정도에 따라서 수 마이크로미터의 높은 해상도를 구현할 수 있으며 양산성이 높다. 하지만 이 공정에서는 정밀한 패턴의 블랑켓을 제작하기 어렵고 잉크의 전이가 제한적이며, 직접 접촉하는 방식이기 때문에 블랑켓 손상이나 오염이 생길 수 있는 단점이 있다.
잉크젯 프린팅 기술의 경우, 미세한 잉크방울을 토출시켜서 원하는 위치에 패터닝을 하는 공정기술이다. 비접촉식 방법이기 때문에 패턴의 오염이 없고 재료의 손상이 적다. 하지만 기판 위에 형성되는 액적의 크기에 따라서 패턴의 해상도가 결정되어야 하는데 아직 10㎛ 이하의 고해상도의 패턴을 형성하기에는 제한적이다.
스크린 프린팅 방법은 강한 장력으로 당겨진 천이나 금속의 스크린 위에 잉크 페이스트를 올린 후 스퀴지로 눌러서 스크린의 메쉬를 통해 잉크를 밀어내 전사하는 공정이다. 상기 스크린 프린팅 방법은 접촉형 인쇄방식이긴 하지만 접촉을 통한 기판의 영향이 거의 없고 잉크의 소모가 적다. 하지만 해상도가 스크린의 메쉬의 세밀함에 의존하는데, 10㎛ 이하의 패턴을 형성하는데는 어려움이 있다.
마지막으로 상기 임프린트 방법은 스탬프와 열 또는 UV를 이용해서 패턴을 형성하는 방법으로 100nm 이하의 고해상도 패턴을 형성할 수 있는 방법이다. 하지만 정밀한 고해상도의 패턴을 가진 스탬프를 제작하기가 어렵고 양산성이 낮으며 접촉식 방식이기 때문에 스탬프 손상이나 오염 등의 문제가 있다.
이에 본 발명은 상기의 문제점을 해결하기 위하여 착안된 것으로서, 기존의 제한적이었던 금속 패턴의 해상도를 향상시키기 위하여 금속 나노섬유 형태의 금속 패턴을 형성시키고 이러한 패턴을 포함하는 나노섬유 전극 어레이의 제조방법을 제공하는 데 그 목적이 있다.
또한, 기존의 복잡했던 미세 선폭의 금속 전극 어레이 제조 공정을 간소화하기 위하여 금속 나노섬유 패턴을 포함하는 나노섬유 전극 어레이의 제조방법을 제공하는 데 또 다른 목적이 있다.
상기 과제를 해결하기 위하여 본 발명은 금속 나노섬유 패턴을 포함하는 나노섬유 전극 어레이의 제조방법을 제공한다. 상기 제조방법은 금속 전구체와 유기 고분자를 증류수 또는 유기 용매에 혼합하여 금속 전구체/유기 고분자 복합체 용액을 준비하는 단계, 상기 금속 전구체/유기 고분자복합체 용액을 전기장 보조 로보틱 노즐 프린터의 노즐에 주입하고 전기장을 가하여 상기 금속 전구체/유기 고분자 복합체 용액이 노즐 끝부분에 테일러콘(talyor cone)을 형성할 때 기판으로부터 수직으로 상기 복합체 용액을토출시키면서 연속적으로 이어진 형태의 고체화된 나노섬유가 형성되어 나올 시에 상기 기판을 이동시킴으로써, 상기 기판 상에 연속적으로 이어진 형태의 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 형성하는 단계 및상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 상기 유기 고분자를 열분해하고, 상기 금속 전구체를 금속 나노그레인으로 환원시켜, 상기 금속 나노그레인으로 이루어진정렬된 금속 나노섬유 패턴을 형성하는 단계를 포함할 수 있다.
이 때, 상기 금속 전구체/유기 고분자 복합체 용액을 제공하는 단계는, 금속 전구체와 유기 고분자를 10:90 내지 97:3의 중량비로, 증류수 또는 유기 용매에 1 내지 50 중량%의 농도가 되도록 용해할 수 있고, 상기 금속 전구체/유기 복합체 용액을 토출시키는 단계는, 기판으로부터 수직으로 10 ㎛ 내지 20 ㎜ 떨어진 지점으로부터 상기 용액을 토출시킬 수 있다.
또한, 상기 금속 전구체/유기 고분자 복합 나노섬유 패턴을 형성하는 단계는 전기장 보조 로보틱 노즐 프린터에 의하여 실시되며, 상기 전기장 보조 로보틱 노즐 프린터는,
i) 금속 전구체/유기 고분자 복합체 용액을 수용하는 용액 저장 장치;
ii) 상기 용액 저장 장치로부터 공급받은 용액을 토출하는 노즐 장치;
iii) 상기 노즐에 고전압을 인가하는 전압 인가 장치;
iv) 상기 기판을 고정하는 콜렉터;
v) 상기 콜렉터를 수평 방향으로 이동시키는 로봇 스테이지;
vi) 상기 콜렉터를 수직방향으로 이동시키는 마이크로 거리 조절기; 및
vii) 상기 콜렉터를 지지(support)하는 석정반을 포함하는 것을 특징으로 한다.
또한, 상기 전기장 보조 로보틱 노즐 프린터에 인가하는 전압은 0.1kV 내지 30kV인 것을 특징으로 한다.
또한, 상기 기판은 절연 재료, 금속 재료, 탄소 재료, 및 전도체와 절연막의 복합 재료로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 금속 전구체는 구리 전구체, 타이타늄 전구체, 알루미늄 전구체, 은 전구체, 백금 전구체, 니켈 전구체, 및 금 전구체로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
이때, 상기 구리 전구체는 아세트산구리(Copper acetate), 아세트산구리수화물 (Copper acetate hydrate), 구리아세틸아세토네이트 (Copper acetylacetonate), 구리아이소부티레이트 (Copper i-butyrate), 탄산구리 (Copper carbonate), 염화구리 (Copper chloride), 염화구리수화물 (Copper chloride hydrate), 구리에틸아세토아세테이트 (Copper ethylacetoacetate), 구리2-에틸헥사노에이트 (Copper 2-ethylhexanoate), 불화구리 (Copper fluoride), 포름산구리수화물 (Copper formate hydrate), 구리글루코네이트 (Copper gluconate), 구리헥사플로로아세틸아세토네이트 (Copper hexafluoroacetylacetonate), 구리헥사플로로아세틸아세토네이트수화물 (Copper hexafluoroacetylacetonate hydrate), 구리메톡사이드 (Copper methoxide), 구리네오데카노에이트 (Copper neodecanoate), 질산구리수화물 (Copper nitrate hydrate), 질산구리 (Copper nitrate), 과염소산구리수화물 (Copper perchlorate hydrate), 황산구리 (Copper sulfate), 황산구리수화물 (Copper sulfate hydrate), 주석산구리수화물 (Copper tartrate hydrate), 구리트리플로로아세틸아세토네이트 (Copper trifluoroacetylacetonate), 구리트리플로로메탄설포네이트 (Copper trifluoromethanesulfonate), 및 테트라아민구리황산염수화물 (Tetraamminecopper sulfate hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 타이타늄 전구체는 타이타늄카바이드 (Titanium carbide), 염화타이타늄 (Titanium chloride), 타이타늄에톡사이드 (Titanium ethoxide), 타이타늄플로라이드 (Titanium fluoride), 타이타늄소수화합물 (Titanium hydride), 질화타이타늄 (Titanium nitride), 염화타이타늄 (Titanium chloride), 타이타늄아이소프로폭사이드 (Titanium isopropoxide), 타이타늄프로폭사이드 (Titanium propoxide), 불화타이타늄 (Titanium fluoride), 타이타늄메톡사이드 (Titanium methoxide), 타이타늄옥시아세틸아세토네이트(Titanium oxyacetylacetonate), 타이타늄2-에틸헥실옥사이드 (Titanium 2-ethylhexyloxide), 및 타이타늄부톡사이드 (Titanium butoxide)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 알루미늄 전구체는 염화알루미늄 (Aluminum chloride), 불화알루미늄 (Aluminum fluoride), 알루미늄헥사플로로아세틸아세토네이트 (Aluminum hexafluoroacetylacetonate), 염화알루미늄수화물 (Aluminum chloride hydrate), 질화알루미늄 (Aluminum nitride), 알루미늄트리플로로메탄설포네이트 (Aluminum trifluoromethanesulfonate), 트리에틸알루미늄 (Triethylaluminum), 알루미늄아세틸아세토네이트 (Aluminum acetylacetonate), 수산화알루미늄 (Aluminum hydroxide), 젖산알루미늄 (Aluminum lactate), 질화알루미늄수화물 (Aluminum nitrate hydrate), 알루미늄2-에틸헥사노에이트 (Aluminum 2-ethylhexanoate), 과염소산알루미늄수화물 (Aluminum perchlorate hydrate), 황산알루미늄수화물 (Aluminum sulfate hydrate), 알루미늄에톡사이드 (Aluminum ethoxide), 알루미늄카바이드 (Aluminum carbide), 황산알루미늄 (Aluminum sulfate), 아세트산알루미늄 (Aluminum acetate), 아세트산알루미늄수화물 (Aluminum acetate hydrate), 황화알루미늄 (Aluminum sulfide), 수산화알루미늄수화물 (Aluminum hydroxide hydrate), 알루미늄펜옥사이드 (Aluminum phenoxide), 불화알루미늄수화물 (Aluminum fluoride hydrate), 알루미늄트리부톡사이드 (Aluminum tributoxide), 알루미늄다이아세테이트 (Aluminum diacetate), 수산화알루미늄다이아세테이트 (Aluminum diacetate hydroxide), 알루미늄 2, 및 4-펜타네디오네이트(Aluminum 2,4-pentanedionate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 은 전구체는 은헥사플로로포스페이트 (Silver hexafluorophosphate), 은네오데카노에이트 (Silver neodecanoate), 질산은화합물 (Silver nitrate), 은트리플로로메탄설포네이트 (Silver trifluoromethanesulfonate), 아세트산은 (Silver acetate), 탄산은 (Silver carbonate), 염화은 (Silver chloride), 과염소산은 (Silver perchlorate), 은테트라플로로보라이트 (Silver tetrafluoroborate), 은트리플로로아세테이트 (Silver trifluoroacetate), 은2-에틸헥사노에이트 (Silver 2-ethylhexanoate), 불화은 (Silver fluoride), 과염소산은수화물 (Silver perchlorate hydrate), 젖산은화합물 (Silver lactate), 은아세틸아세토네이트 (Silver acetylacetonate), 은메탄설포네이트 (Silver methanesulfonate), 은헵타플로로부티레이트 (Silver heptafluorobutyrate), 염소산은 (Silver chlorate), 은펩타플로로프로피오네이트 (Silver pentafluoropropionate), 및 불화수소은화합물 (Silver hydrogenfluoride)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 백금 전구체는 염화백금산수화물 (Chloroplatinic acid hexahydrate), 이수소헥사하이드록시플래티네이트 (Dihydrogen hexahydroxyplatinate), 백금아세틸아세토네이트 (Platinum acetylacetonate), 염화백금 (Platinum chloride), 염화백금수화물 (Platinum chloride hydrate), 백금헥사플로로아세틸아세토네이트 (Platinum hexafluoroacetylacetonate), 염화테트라아민플래티늄수화물 (Tetraammineplatinum chloride hydrate), 수산화테트라아민플레티늄수화물 (Tetraammineplatinum hydroxide hydrate), 테트라이만플레티늄질화물 (Tetraammineplatinum nitrate), 테트라아민플레티늄테트라클로로플래티네이트 (Tetraammineplatinum tetrachloroplatinate), 테트라클로로디아민플래티늄 (Tetrachlorodiammine platinum), 다이클로로디아민플래티늄 (Dichlorodiammine platinum), 다이아민플래티늄다이클로라이드 (Diammineplatinum dichloride)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 니켈 전구체는 염화헥사아민니켈 (Hexaamminenickel chloride), 아세트산니켈 (Nickel acetate) 아세트산니켈수화물 (Nickel acetate hydrate), 니켈아세틸아세토네이트 (Nickel acetylacetonate), 니켈아세틸아세토네이트수화물 (Nickel acetylacetonate hydrate), 니켈카보닐 (Nickel carbonyl), 염화니켈 (Nickel chloride), 염화니켈수화물 (Nickel chloride hydrate), 불화니켈 (Nickel fluoride), 불화니켈수화물 (Nickel fluoride hydrate), 니켈헥사플로로아세틸아세토네이트수화물 (Nickel hexafluoroacetylacetonate hydrate), 니켈헥사플로로아세틸아세토네이트 (Nickel hexafluoroacetylacetonate), 니켈수산화물 (Nickel hydroxide), 니켈하이드록시아세테이트 (Nickel hydroxyacetate), 질화니켈수화물 (Nickel nitrate hydrate), 과염화니켈수화물 (Nickel perchlorate hydrate), 과염화니켈 (Nickel perchlorate), 황산화니켈수화물 (Nickel sulfate hydrate), 황산화니켈 (Nickel sulfate), 니켈트리플로로보레이트수화물 (Nickel tetrafluoroborate hydrate), 니켈트리플로로보레이트 (Nickel tetrafluoroborate), 니켈트리플로로아세틸아세토네이트수화물 (Nickel trifluoroacetylacetonate hydrate), 니켈트리플로로아세틸아세토네이트 (Nickel trifluoroacetylacetonate), 니켈트리플로로메탄설포네이트 (Nickel trifluoromethanesulfonate), 니켈과산화수화물 (Nickel peroxide hydrate), 니켈과산화물 (Nickel peroxide), 황산화니켈 (Nickel sulfate), 니켈옥타노에이트수화물 (Nickel octanoate hydrate), 탄산니켈 (Nickel carbonate), 술파민산니켈수화물 (Nickel sulfamate hydrate), 술파민산니켈 (Nickel sulfamate), 및 수산화탄산니켈수화물 (Nickel carbonate hydroxide hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 금 전구체는 클로로카보닐금 (Chlorocarbonylgold), 테트라클로로금산수소 (Hydrogen tetrachloroaurate) 테트라클로로금산수소수화물 (Hydrogen tetrachloroaurate hydrate), 클로로트리에틸포스핀금화합물 (Chlorotriethylphosphinegold), 클로로트리메틸포스핀금화합물 (Chlorotrimethylphosphinegold), 다이메틸(아세틸아세토네이트)금화합물 (Dimethyl(acetylacetonate)gold), 염화금 (Gold(I) chloride), 시안화 금 (Gold cyanide), 황화금(Gold sulfide), 및 염화금수화물 (Gold chloride hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 금속 전구체/유기 고분자 복합체 용액을 준비하는 단계에서 상기 금속 전구체/유기 고분자 복합체 용액은 보조 금속 전구체를 더 포함할 수 있다.
이러한 보조 금속 전구체는 구리 전구체, 타이타늄 전구체, 알루미늄 전구체, 은 전구체, 백금 전구체, 니켈 전구체, 및 금 전구체로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
상기 유기 고분자는 폴리비닐알코올(PVA), 폴리비닐아세테이트(PVAc), PPV(Poly(p-phenylene vinylene)), 폴리하이드록시에틸메타클릴레이트(pHEMA), 폴리에틸렌 옥사이드(PEO), 폴리스티렌(PS), 폴리카프로락톤(PCL), 폴리아크릴로니트릴(PAN), 폴리(메틸 메타크릴레이트)(PMMA), 폴리이미드, 폴리(비닐리덴 플루오라이드)(PVDF), 폴리아닐린(PANI), 폴리비닐클로라이드(PVC), 나일론, 폴리아크릴산, 폴리클로로스티렌, 폴리디메틸실록산, 폴리에테르이미드, 폴리에테르술폰, 폴리알킬아크릴레이트, 폴리에틸아크릴레이트, 폴리에틸비닐아세테이트, 폴리에틸-co-비닐아세테이트, 폴리에틸렌테레프탈레이트, 폴리락트산-co-글리콜산, 폴리메타크릴산염, 폴리메틸스티렌, 폴리스티렌술폰산염, 폴리스티렌술포닐플루오라이드, 폴리스티렌-co-아크릴로니트릴, 폴리스티렌-co-부타디엔, 폴리스티렌-co-디비닐벤젠, 폴리락타이드, 폴리아크릴아미드, 폴리벤즈이미다졸, 폴리카보네이트, 폴리디메틸실록산-co-폴리에틸렌옥사이드, 폴리에테르에테르케톤, 폴리에틸렌, 폴리에틸렌이민, 폴리이소프렌, 폴리락타이드, 폴리프로필렌, 폴리술폰, 폴리우레탄, 폴리비닐피롤리돈(PVP), 폴리페닐렌비닐렌(PPV), 및 폴리비닐카바졸(PVK)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
그리고, 상기 유기 용매는 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 다이메틸포름아마이드, 다이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센, 이소프로필알콜, 에탄올, 메탄올, 테트라하이드로퓨란, 이소프로필알코올, 테르피네올, 에틸렌글리콜, 다이에틸렌글리콜, 폴리에틸렌글리콜, 아세토나이트릴, 및 아세톤으로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 50℃ 내지 900℃의 온도 범위에서 5분 내지 8시간 동안 열처리하는 것을 특징으로 한다.
또한, 상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 1회 내지 5회 열처리하는 것을 특징으로 한다.
또한, 상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 공기 또는 산소, 질소, 수소, 및 아르곤으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 가스분위기에서 열처리되는 것을 특징으로 한다.
또한, 상기 금속 나노섬유는 10nm 내지 3000nm의 직경을 갖는 것을 특징으로 한다.
또한, 상기 금속 전구체/유기 고분자 복합 나노섬유 패턴은 수평 정렬된 것을 특징으로 한다.
또한, 상기 과제를 해결하기 위하여 본 발명은 상술한 나노섬유 전극 어레이를 포함하는 유기 또는 무기 전계효과 트랜지스터를 제공한다. 이러한 전계효과 트랜지스터는 게이트 전극, 게이트 절연층, 소스 전극, 드레인 전극, 및 유기 또는 무기 반도체층을 포함할 수 있다. 이때의 게이트 전극, 소스 전극 및 드레인 전극 중 적어도 어느 한 전극은 상술한 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극인 것을 특징으로 한다.
또한, 상기 과제를 해결하기 위하여 본 발명은 상술한 나노섬유 전극 어레이를 포함하는 유기 발광 다이오드를 제공한다. 이러한 유기 발광다이오드는양극, 발광층 및 음극을 포함하고, 선택적으로 보조 전극층, 정공주입층(hole injection layer), 정공수송층(hole transporting layer), 전자수송층(electron transporting layer), 엑시톤마개층(exciton blocking layer), 정공마개층(hole blocking layer) 또는 전자주입층(electron injection layer)을 더 포함하고,상기 양극 및 음극 중 적어도 하나의 전극은 상술한 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극의 그리드 어레이인 것을 특징으로 한다.
또한, 상기 과제를 해결하기 위하여 본 발명은 상술한 나노섬유 전극 어레이를 포함하는 유기 태양전지를 제공한다. 이러한 유기 태양전지는 양극, 광활성층 및 음극을 포함하고, 선택적으로 보조전극층, 정공추출층(hole extraction layer), 엑시톤마개층(exciton blocking layer) 또는 전자추출층(electron extraction layer)을 더 포함하고,상기 양극 및 음극 중 적어도 하나의 전극은 상술한 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극의 그리드 어레이인 것을 특징으로 한다.
본 발명의 금속 나노섬유 패턴을 포함하는 나노섬유 전극 어레이의 제조방법을 따르면 금속 나노섬유 패턴의 위치와 방향을 정확히 조절할 수 있고, 금속 나노섬유 패턴을 원하는 방향에 정렬시킬 수 있다.
따라서, 금속 전극 패턴의 해상도가 향상된 금속 나노섬유 전극 어레이를 제공할 수 있다.
또한, 제조공정이 빠르고 간소화된 금속 나노섬유 전극 어레이의 제조방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 제조방법을 나타낸 공정흐름도이다.
도 2는 전기장 보조 로보틱 노즐 프린터의 개략도를 나타낸 것이다.
도 3은 본 발명의 제조예 1에 따른 구리 전구체/유기 고분자 복합 나노섬유의 전자주사현미경(SEM) 사진과 EDS성분분석 결과이다.
도 4는 본 발명의 제조예 1에 따른 구리 산화물 나노섬유의 전자주사현미경(SEM)사진과 EDS성분분석 결과이다.
도 5는 본 발명의 제조예 1에 따른 구리 나노섬유의 전자주사현미경(SEM)사진과 EDS성분분석 결과이다.
도 6은 본 발명의 제조예 1에 따른 구리 나노섬유의 선폭, 비저항 및 콜렉터의 이동속도의 데이터 값을 나타낸 그래프이다.
도 7은 본 발명의 제조예 1에 따른 구리 나노섬유의 열처리 조건에 따른 비저항값의 변화를 나타낸 그래프이다.
도 8는 본 발명의 제조예 1에 따른 구리 나노섬유의 균일도를 나타낸 그래프이다.
도 9는 본 발명의 제조예 2에 따른 은 전구체-구리 전구체/유기고분자 복합 나노섬유의 SEM사진들이다.
도 10은본 발명의 제조예 2에 따른 은-구리 나노섬유의 SEM사진들이다.
도 11은 본 발명의 제조예 2에 따른 은-구리 나노섬유의 IV 특성 곡선과 비저항을 나타낸 그래프이다.
도 12는 본 발명의 다른 실시예에 따른 유기 전계효과 트랜지스터의 공정 모식도이다.
도 13은 본 발명의 다른 실시예에 따른 유기 전계효과 트랜지스터의 이미지이다.
도 14는 본 발명의 제조예 5에 따른 유기 전계효과 트랜지스터의 트랜스퍼 커브 특성을 나타낸 그래프이다.
도 15는 본 발명의 제조예 5에 따른 유기 전계효과 트랜지스터의 IV 특성 곡선을 나타낸 그래프이다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명하다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 본 명세서에서 '정렬된' 나노섬유라 함은, 목적하는 바에 따라 나노섬유의 위치와 방향이 조절된 나노섬유를 의미한다. 또한 기존의 오프셋 프린팅, 잉크젯 프린팅, 스크린 프린팅, 임프린트 방법에 의해서 얻어지는 금속 패턴의 단면은 넓은 직사각형의 형태를 가지지만, 본 발명의 나노섬유 패턴의 경우 단면이 원형, 타원형, 반원의 형태를 가질 수가 있다. 기존에 화학 합성 및 성장법에 의해서 제조되는 수십 마이크로미터 이하 길이의 단결정(single crystal)형태의 금속나노선과는 달리 프린팅에 의해서 나노그레인들이 서로 연결되어 있는 다결정질(polycrystalline)의 나노섬유가 제조되며 롤투롤 공정에 적용하였을 시에 패턴의 길이를 원하는 길이만큼 길게 제작할 수 있다. 예를 들어, 패턴의 길이를 1 마이크로미터 이상 제작할 수 있다. 바람직하게는 1 mm 내지 100 meter 길이를 제작할 수 있다.
또한, 본 명세서에서 '수평' 정렬이라 함은, 기판에 대하여 수평임을 의미한다.
도 1은 본 발명의 일 실시예에 따른 제조방법을 나타낸 공정흐름도이다.
먼저, 금속 전구체와 유기 고분자를 증류수 또는 유기 용매 중에 혼합하여 금속 전구체/유기 고분자 복합체 용액을 준비한다(S100).
상기 금속 전구체/유기 고분자 복합체 용액은 금속 전구체와 유기 고분자를 10:90 내지 97:3의 중량비로, 증류수 또는 유기 용매에 1 중량% 내지 50 중량%의 농도가 되도록 용해하는 것이 바람직하다. 보다 구체적으로는 70:30 내지 90:10의 중량비 일 수 있다.
금속 전구체와 유기 고분자의 혼합 비율이 상기 범위에 포함되는 경우, 최종적으로 얻어지는 금속 나노섬유가 끊어지지 않고 균일한 직경(diameter)을 가지고 형성될 수 있다.
이는 후술할 열처리 단계에 의해서 유기 고분자는 열분해되기 때문에, 유기 고분자의 비율이 90 중량%를 초과하면 열처리 후 남는 금속 나노섬유의 양이 부족하여 와이어가 균일하게 형성되지 않고 끊어지는 문제점이 발생할 수 있다.
또한, 유기 고분자 비율이 3 중량% 미만이면 금속 전구체/유기 고분자 복합체 용액의 점도가 너무 낮아서 후술될 전기장 보조 로보틱 노즐 프린터에 의해 금속 전구체/유기 복합 나노섬유 패턴이 제대로 형성되지 못하는 문제점이 발생할 수 있다.
상기 금속 전구체/유기 고분자 복합체 용액의 농도는 1 중량% 내지 30 중량%일 수 있다. 상기 금속 전구체와 유기 고분자의 혼합 비율이 상기한 범위에 포함되고, 상기 금속 전구체와 유기 고분자 복합체 용액의 농도가 상기 범위에 포함될 경우, 용액의 점도가 충분하여 후술될 전기장 보조 로보틱 노즐 프린터를 통해 금속 전구체/유기 고분자 복합나노섬유 패턴이 형성될 수 있다.
상기 금속 전구체/유기 고분자 복합체 용액이 용매 대비 용질의 농도가 1 중량% 미만일 경우, 점도가 너무 낮아 나노섬유가 아닌 용액의 방울 형태로 형성되는 문제점이 있을 수 있다.
또한, 금속 전구체와 유기 고분자 용액의 농도가 30 중량%를 초과하는 경우, 점도가 너무 높아 후술되는 전기장 보조 로보틱 노즐 프린터를 통해 용액이 제대로 토출되지 않는 문제점이 있을 수 있다.
이 때, 상기 금속 전구체는 구리 전구체, 타이타늄 전구체, 알루미늄 전구체, 은 전구체, 백금 전구체, 니켈 전구체, 및 금 전구체로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
상기 구리 전구체는 아세트산구리(Copper acetate), 아세트산구리수화물
(Copper acetate hydrate), 구리아세틸아세토네이트(Copper acetylacetonate), 구리아이소부티레이트(Copper i-butyrate), 탄산구리(Copper carbonate), 염화구리(Copper chloride), 염화구리수화물(Copper chloride hydrate), 구리에틸아세토아세테이트(Copper ethylacetoacetate), 구리2-에틸헥사노에이트(Copper 2-ethylhexanoate), 불화구리(Copper fluoride), 포름산구리수화물(Copper formatehydrate), 구리글루코네이트(Copper gluconate), 구리헥사플로로아세틸아세토네이트(Copper hexafluoroacetylacetonate), 구리헥사플로로아세틸아세토네이트수화물(Copper hexafluoroacetylacetonate hydrate), 구리메톡사이드 (Coppermethoxide), 구리네오데카노에이트(Copper neodecanoate), 질산구리수화물(Copper nitrate hydrate), 질산구리(Copper nitrate), 과염소산구리수화물(Copper perchlorate hydrate), 황산구리(Copper sulfate), 황산구리수화물(Copper sulfate hydrate), 주석산구리수화물(Copper tartrate hydrate), 구리트리플로로아세틸아세토네이트(Copper trifluoroacetylacetonate), 구리트리플로로메탄설포네이트 (Copper trifluoromethanesulfonate), 및 테트라아민구리황산염수화물(Tetraamminecopper sulfate hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나 이에 한정되지 않는다.
상기 타이타늄 전구체는 타이타늄카바이드(Titanium carbide), 염화타이타늄(Titanium chloride), 타이타늄에톡사이드(Titanium ethoxide), 타이타늄플로라이드(Titanium fluoride), 타이타늄소수화합물(Titanium hydride), 질화타이타늄(Titanium nitride), 염화타이타늄(Titanium chloride), 타이타늄아이소프로폭사이드(Titanium isopropoxide), 타이타늄프로폭사이드(Titanium propoxide), 불화타이타늄(Titanium fluoride), 타이타늄메톡사이드(Titanium methoxide), 타이타늄옥시아세틸아세토네이트(Titaniumoxyacetylacetonate), 타이타늄2-에틸헥실옥사이드(Titanium 2-ethylhexyloxide), 및 타이타늄부톡사이드(Titanium butoxide)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나, 이에 한정되지 않는다.
상기 알루미늄 전구체는 염화알루미늄(Aluminumchloride), 불화알루미늄(Aluminum fluoride), 알루미늄헥사플로로아세틸아세토네이트(Aluminum hexafluoroacetylacetonate), 염화알루미늄수화물(Aluminumchloride hydrate), 질화알루미늄(Aluminum nitride), 알루미늄트리플로로메탄설포네이트(Aluminum trifluoromethanesulfonate), 트리에틸알루미늄(Triethylaluminum), 알루미늄아세틸아세토네이트(Aluminum acetylacetonate), 수산화알루미늄(Aluminum hydroxide), 젖산알루미늄(Aluminum lactate), 질화알루미늄수화물(Aluminum nitrate hydrate), 알루미늄2-에틸헥사노에이트(Aluminum2-ethylhexanoate), 과염소산알루미늄수화물(Aluminum perchlorate hydrate), 황산알루미늄수화물(Aluminum sulfate hydrate), 알루미늄에톡사이드(Aluminumethoxide), 알루미늄카바이드(Aluminum carbide), 황산알루미늄(Aluminumsulfate), 아세트산알루미늄(Aluminum acetate), 아세트산알루미늄수화물(Aluminum acetate hydrate), 황화알루미늄(Aluminum sulfide), 수산화알루미늄수화물(Aluminum hydroxide hydrate), 알루미늄펜옥사이드(Aluminum phenoxide), 불화알루미늄수화물(Aluminum fluoride hydrate), 알루미늄트리부톡사이드(Aluminum tributoxide), 알루미늄다이아세테이트(Aluminum diacetate), 수산화알루미늄다이아세테이트(Aluminum diacetate hydroxide), 및 알루미늄 2,4-펜타네디오네이트(Aluminum 2,4-pentanedionate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나 이에 한정되지 않는다.
상기 은 전구체는 은헥사플로로포스페이트(Silverhexafluorophosphate), 은네오데카노에이트(Silver neodecanoate), 질산은화합물(Silver nitrate), 은트리플로로메탄설포네이트(Silvertrifluoromethanesulfonate), 아세트산은(Silver acetate), 탄산은(Silvercarbonate), 염화은(Silver chloride), 과염소산은(Silver perchlorate), 은테트라플로로보라이트(Silver tetrafluoroborate), 은트리플로로아세테이트(Silvertrifluoroacetate), 은2-에틸헥사노에이트(Silver 2-ethylhexanoate), 불화은(Silver fluoride), 과염소산은수화물(Silver perchlorate hydrate), 젖산은화합물(Silver lactate), 은아세틸아세토네이트(Silver acetylacetonate), 은메탄설포네이트(Silver methanesulfonate), 은헵타플로로부티레이트(Silverheptafluorobutyrate), 염소산은(Silver chlorate), 은펩타플로로프로피오네이트(Silver pentafluoropropionate), 및 불화수소은화합물(Silver hydrogenfluoride)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나, 이에 한정되니 않는다.
상기 백금 전구체는 백금 전구체는 염화백금산수화물(Chloroplatinic acid hexahydrate), 이수소헥사하이드록시플래티네이트(Dihydrogen hexahydroxyplatinate), 백금아세틸아세토네이트(Platinumacetylacetonate), 염화백금(Platinum chloride), 염화백금수화물(Platinumchloride hydrate), 백금헥사플로로아세틸아세토네이트(Platinumhexafluoroacetylacetonate), 염화테트라아민플래티늄수화물(Tetraammineplatinumchloride hydrate), 수산화테트라아민플레티늄수화물(Tetraammineplatinumhydroxide hydrate), 테트라이만플레티늄질화물(Tetraammineplatinum nitrate), 테트라아민플레티늄테트라클로로플래티네이트(Tetraammineplatinumtetrachloroplatinate), 테트라클로로디아민플래티늄(Tetrachlorodiammineplatinum), 다이클로로디아민플래티늄(Dichlorodiammine platinum), 및 다이아민플래티늄다이클로라이드(Diammineplatinum dichloride)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나 이에 한정되지 않는다.
상기 니켈 전구체는 니켈 전구체는 염화헥사아민니켈(Hexaamminenickel chloride), 아세트산니켈(Nickel acetate) 아세트산니켈수화물(Nickel acetate hydrate), 니켈아세틸아세토네이트(Nickel acetylacetonate), 니켈아세틸아세토네이트수화물(Nickel acetylacetonate hydrate), 니켈카보닐(Nickel carbonyl), 염화니켈(Nickel chloride), 염화니켈수화물(Nickelchloride hydrate), 불화니켈(Nickel fluoride), 불화니켈수화물(Nickelfluoride hydrate), 니켈헥사플로로아세틸아세토네이트수화물(Nickelhexafluoroacetylacetonate hydrate), 니켈헥사플로로아세틸아세토네이트(Nickelhexafluoroacetylacetonate), 니켈수산화물(Nickel hydroxide), 니켈하이드록시아세테이트(Nickel hydroxyacetate), 질화니켈수화물(Nickel nitrate hydrate), 과염화니켈수화물(Nickel perchlorate hydrate), 과염화니켈(Nickel perchlorate), 황산화니켈수화물(Nickel sulfate hydrate), 황산화니켈(Nickel sulfate), 니켈트리플로로보레이트수화물(Nickel tetrafluoroborate hydrate), 니켈트리플로로보레이트(Nickel tetrafluoroborate), 니켈트리플로로아세틸아세토네이트수화물(Nickel trifluoroacetylacetonate hydrate), 니켈트리플로로아세틸아세토네이트(Nickel trifluoroacetylacetonate), 니켈트리플로로메탄설포네이트(Nickeltrifluoromethanesulfonate), 니켈과산화수화물(Nickel peroxide hydrate), 니켈과산화물(Nickel peroxide), 황산화니켈(Nickel sulfate), 니켈옥타노에이트수화물(Nickel octanoate hydrate), 탄산니켈(Nickel carbonate), 술파민산니켈수화물(Nickel sulfamate hydrate), 및 술파민산니켈(Nickel sulfamate), 수산화탄산니켈수화물(Nickel carbonate hydroxide hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나, 이에 한정되지 않는다.
상기 금 전구체는 클로로카보닐금(Chlorocarbonylgold), 테트라클로로금산수소(Hydrogen tetrachloroaurate) 테트라클로로금산수소수화물(Hydrogen tetrachloroaurate hydrate), 클로로트리에틸포스핀금화합물(Chlorotriethylphosphinegold), 클로로트리메틸포스핀금화합물(Chlorotrimethylphosphinegold), 다이메틸(아세틸아세토네이트)금화합물(Dimethyl(acetylacetonate)gold), 염화금(Gold(I) chloride), 시안화 금(Gold cyanide), 황화금(Gold sulfide), 및 염화금수화물(Gold chloride hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나 이에 한정되지 않는다.
그리고, 상기 유기 고분자는 폴리비닐알코올(PVA), 폴리비닐아세테이트(PVAc), PPV(Poly(p-phenylene vinylene)), 폴리하이드록시에틸메타클릴레이트(pHEMA), 폴리에틸렌 옥사이드(PEO), 폴리스티렌(PS), 폴리카프로락톤(PCL), 폴리아크릴로니트릴(PAN), 폴리(메틸 메타크릴레이트)(PMMA), 폴리이미드, 폴리(비닐리덴 플루오라이드)(PVDF), 폴리아닐린(PANI), 폴리비닐클로라이드(PVC), 나일론, 폴리아크릴산, 폴리클로로스티렌, 폴리디메틸실록산, 폴리에테르이미드, 폴리에테르술폰, 폴리알킬아크릴레이트, 폴리에틸아크릴레이트, 폴리에틸비닐아세테이트, 폴리에틸-co-비닐아세테이트, 폴리에틸렌테레프탈레이트, 폴리락트산-co-글리콜산, 폴리메타크릴산염, 폴리메틸스티렌, 폴리스티렌술폰산염, 폴리스티렌술포닐플루오라이드, 폴리스티렌-co-아크릴로니트릴, 폴리스티렌-co-부타디엔, 폴리스티렌-co-디비닐벤젠, 폴리락타이드, 폴리아크릴아미드, 폴리벤즈이미다졸, 폴리카보네이트, 폴리디메틸실록산-co-폴리에틸렌옥사이드, 폴리에테르에테르케톤, 폴리에틸렌, 폴리에틸렌이민, 폴리이소프렌, 폴리락타이드, 폴리프로필렌, 폴리술폰, 폴리우레탄, 폴리비닐피롤리돈(PVP), 폴리페닐렌비닐렌(PPV), 및 폴리비닐카바졸(PVK)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 유기 용매는 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 다이메틸포름아마이드, 다이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센, 이소프로필알콜, 에탄올, 메탄올, 테트라하이드로퓨란, 이소프로필알코올, 테르피네올, 에틸렌글리콜, 다이에틸렌글리콜, 폴리에틸렌글리콜, 아세토나이트릴, 및 아세톤으로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
이 때, 상기 금속 전구체/유기 고분자 복합체 용액은 보조 금속 전구체를 더 포함할 수 있다. 상기 보조 금속 전구체를 더 포함함에 따라, 하나 이상의 금속을 포함하는 나노섬유를 형성할 수 있어 다양한 금속의 특성이 나타나는 나노섬유를 형성할 수 있다.
상기 보조 금속 전구체로는 구리 전구체, 타이타늄 전구체, 알루미늄 전구체, 은 전구체, 백금 전구체, 니켈 전구체, 및 금 전구체로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
이러한 구리 전구체, 타이타늄 전구체, 알루미늄 전구체, 은 전구체, 백금 전구체, 니켈 전구체, 및 금 전구체의 구체적인 예는 금속 전구체에서 상술한 바와 동일한 바, 구체적인 설명은 생략한다.
금속 전구체/유기 고분자 복합체 용액을 이용하여 기판 상에 정렬된 금속 전구체/유기 복합 나노섬유 패턴을 형성한다(S200).
예를 들어, 상기 금속 전구체/유기 고분자 복합체 용액을 전기장 보조 로보틱 프린터의 노즐에 주입하고 전기장을 가하여 용액이 노즐 끝부분에 테일러콘(talyor cone)을 형성할 때 기판으로부터 수직으로 상기 복합체 용액을 토출시키면서 연속적으로 이어진 형태의 고체화 된 나노섬유가 형성되어 나올 시에 상기 기판을 이동시킴으로써, 상기 기판 상에 연속적으로 이어진 형태의 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 형성할 수 있다.
보다 구체적으로, 상기 기판을 수평 이동시킴으로써, 상기 기판 상에 수평 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 형성할 수 있을 것이다.
이 때, 상기 기판 재료로는 절연 재료, 금속 재료, 탄소 재료, 고분자 재료, 및 전도체/절연막 복합 재료로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나 이에 한정되지 않는다.
구체적으로, 상기 절연 재료의 예로는 유리판, 플라스틱 필름, 종이, 직물, 나무 등이 사용될 수 있으며, 상기 금속 재료로는 금속, 알루미늄, 타이타늄, 금, 은, 스테인리스 스틸 등이 사용될 수 있으나 이에 한정되지 않는다.
또한, 상기 탄소 재료로는 그래핀, 탄소나노튜브, 그래파이트 비정질(amorphous) 탄소 등이 사용될 수 있으며, 상기 고분자 재료로는 PET 필름, PDMS필름, Polyimide 필름, Polycarbonate 필름 등이 사용될 수 있다.
또한, 상기 전도체/절연막 복합 재료로는 반도체 웨이퍼 기판, 실리콘(Si)/실리콘 다이옥사이드(SiO2)기판, 실리콘(Si)/실리콘 나이트라이드(SiN) 기판, 알루미늄(Al)/산화알루미늄(Al2O3) 기판 등이 사용될 수 있으나 이에 한정되지 않는다.
이 때, 상기 기판으로부터 수직으로 10 ㎛ 내지 20 mm 떨어진 지점으로부터 상기 용액을 토출시키면서 상기 금속 전구체/유기 복합 나노섬유 패턴을 형성한다.
금속 전구체/유기 고분자 복합체 용액이 토출되는 거리가 기판으로부터 멀수록, 금속 전구체/유기 고분자 복합체 용액이 토출되면서 정렬되는 패턴의 수평 방향으로의 속도가 증가하게 되어 패턴을 원하는 방향으로 또는 평행하게 정렬하기가 어렵다.
그러나, 본 발명은 상기 기판으로부터 10 ㎛ 내지 20 mm 범위의 거리에서 금속 전구체/유기 고분자의 복합체 용액을 토출함으로써, 원하는 방향으로 패턴을 정렬할 수 있다.
이 때, 상기 정렬된 금속 전구체/유기 복합 나노섬유 패턴을 형성하는 단계는 전기장 보조 로보틱 노즐 프린터에 의하여 실시된다.
상기 전기장 보조 로보틱 노즐 프린터는 i) 금속 전구체/유기 고분자 복합체 용액을 수용하는 용액 저장 장치 ii) 상기 용액 저장 장치로부터 공급받은 용액을 토출하는 노즐 장치 iii) 상기 노즐에 고전압을 인가하는 전압 인가 장치 iv) 상기 기판을 고정하는 콜렉터 v) 상기 콜렉터를 수평 방향으로 이동시키는 로봇 스테이지 vi) 상기 콜렉터를 수직방향으로 이동시키는 마이크로 거리 조절기 및 vii) 상기 콜렉터를 아래에서 콜렉터를 지지(support)하는 석정반을 포함할 수 있다.
도 2는 전기장 보조 로보틱 노즐 프린터의 개략도를 나타낸 것이다.
도 2를 참조하면, 구체적으로 상기 전기장 보조 로보틱 노즐 프린터는 용액 저장 장치(10), 토출 조절기(20), 노즐(30), 전압 인가 장치(40), 콜렉터(50), 로봇 스테이지(60),석정반(61), 마이크로 거리 조절기(70)를 포함한다.
상기 용액 저장 장치(10)는 금속 전구체/유기 고분자 복합체 용액을 저장하고, 노즐(30)이 상기 용액을 토출할 수 있도록 노즐(30)에 상기 용액을 공급하는 부분이다.
이러한 용액 저장 장치(10)는 시린지(syringe) 형태일 수 있다. 이러한 용액 저장 장치(10)는 플라스틱, 유리 또는 스테인리스 스틸 등이 사용할 수 있다.
이러한 용액 저장 장치(10)의 저장 용량은 약 1㎕ 내지 약 5,000㎖의 범위 내에서 선택될 수 있다. 바람직하게는, 약 10㎕ 내지 약 50㎖의 범위 내에서 선택될 수 있다.
스테인리스 스틸 재질의 용액 저장 장치(10)의 경우에는 용액 저장 장치(10)에 가스를 주입할 수 있는 가스 주입구(미도시)가 있어서, 가스의 압력을 이용하여 상기 용액을 용액 저장 장치 밖으로 토출시킬 수 있다.
한편, 코어 쉘 구조의 금속 전구체/유기 복합 나노섬유를 형성하기 위한 용액 저장 장치(10)는 복수 개로 이루어질 수 있다.
상기 토출 조절기(20)는 용액 저장 장치(10) 내의 금속/유기 고분자 복합체 용액을 노즐(30)을 통해 일정 속도로 토출시키기 위하여 용액 저장 장치(10) 내의 상기 용액에 압력을 가하는 부분이다.
이러한 토출 조절기(20)로서 펌프 또는 가스 압력 조절기가 사용될 수 있다.
토출 조절기(20)는 상기 용액의 토출 속도를 1 nℓ/min 내지 50㎖/min의 범위 내에서 조절할 수 있다.
복수 개의 용액 저장 장치(10)를 사용하는 경우, 각각의 용액 저장 장치(10)에 별개의 토출 조절기(20)가 구비되어 독립적으로 작동할 수 있다.
스테인리스 스틸 재질의 용액 저장 장치(10)의 경우 토출 조절기(20)로서 가스 압력 조절기(미도시)가 사용될 수 있다.
상기 노즐(30)은 상기 용액 저장 장치(10)로부터 유기 용액을 공급받아 금속 전구체/유기 고분자 복합체 용액이 토출되는 부분으로서, 토출되는 상기 용액은 노즐(30) 끝단에서 액적(drop)을 형성할 수 있다. 노즐(30)의 직경은 약 1㎛ 내지 약 1.5mm의 범위를 가질 수 있다.
상기 노즐(30)은 단일 노즐, 이중(dual-concentric) 노즐 또는 삼중(triple-concentric) 노즐을 포함할 수 있다.
코어 쉘 구조의 금속 전구체/유기 복합 나노섬유를 형성할 경우, 이중 노즐 또는 삼중 노즐을 사용하여 2 종류 이상의 유기 용액을 토출시킬 수 있다. 이 경우, 이중 또는 삼중 노즐에 2개 또는 3개의 용액 저장 장치(10)가 연결될 수 있다.
상기 전압 인가 장치(40)는 노즐(30)에 고전압을 인가하기 위한 것으로 고전압 발생 장치를 포함할 수 있다.
전압 인가 장치(40)는, 예를 들면 용액 저장 장치(10)를 통하여 노즐(30)에 전기적으로 연결될 수 있다.
전압 인가 장치(40)는 약 0.1kV 내지 약 30kV의 전압을 인가할 수 있다. 전압 인가 장치(40)에 의하여 고전압이 인가된 노즐(30)과 접지된 콜렉터(50) 사이에 전기장이 존재하게 되며, 상기 전기장에 의하여 노즐(30) 끝단에서 형성된 액적이 테일러콘(Taylor cone)을 형성하게 되고 이 끝단에서 연속적으로나노섬유가 형성된다.
상기 콜렉터(50)는 노즐(30)에서 토출된 상기 용액으로부터 형성된 나노섬유가 정렬되어 붙는 부분이다. 상기 콜렉터(50)는 편평한 형태이며, 그 아래의 로봇 스테이지(60)에 의하여 수평면 상에서 이동 가능하다. 콜렉터(50)는 노즐(30)에 가해진 고전압에 대하여 상대적으로 접지 특성을 갖도록 접지되어 있다.
참조번호 (51)은 콜렉터(50)가 접지된 것을 나타낸다. 콜렉터(50)는 전도성 재질, 예를 들면 금속으로 이루어질 수 있고, 0.5㎛ 내지 10㎛ 이내의 평탄도를 가질 수 있다(평탄도는 완전히 수평인 면의 평탄도가 0의 값을 가질 때, 상기 면으로부터의 최대 오차값을 나타낸다).
상기 로봇 스테이지(60)는 콜렉터(50)를 이동시키는 수단이다. 로봇 스테이지(60)는 서보 모터(servo motor)에 의하여 구동되어 정밀한 속도로 이동할 수 있다.
로봇 스테이지(60)는, 예를 들면 수평면 위에서 x축과 y축의 2개의 방향으로 이동하도록 제어될 수 있다.
로봇 스테이지(60)는 거리를 100 nm 이상 100 cm 이내의 범위의 간격으로 이동할 수 있으며, 예를 들면 10㎛ 이상 20cm이내의 범위일 수 있다.
로봇 스테이지(60)의 이동속도는 1mm/min 내지 60,000mm/min 의 범위일 수 있다.
로봇 스테이지(60)는 석정반(石定
Figure 76e4
)(base plate)(61) 위에 설치될 수 있고, 0.5㎛ 내지 5㎛ 이내의 평면도를 가질 수 있다. 이때의 석정반(61)의 평면도에 의해 노즐(30)과 콜렉터(50) 사이의 거리가 일정하게 조절될 수 있다.
석정반(61)은 로봇 스테이지의 작동에 의해 발생하는 진동을 억제함으로써, 금속 전구체/유기 복합 나노섬유 패턴의 정밀도를 조절할 수 있다.
상기 마이크로 거리 조절기(70)는 노즐(30)과 콜렉터(50) 사이의 거리를 조절하기 위한 수단이다. 마이크로 거리 조절기(70)가 용액 저장 장치(10)와 노즐(30)을 수직으로 이동시킴으로써 노즐(30)과 콜렉터(50) 사이의 거리를 조절할 수 있다.
상기 마이크로 거리 조절기(70)는 조그(jog)(71)와 미세 조절기(micrometer)(72)로 이루어질 수 있다. 조그(71)는 mm 단위 또는 cm 단위의 거리를 대략적으로 조절하는데 쓰일 수 있고, 미세 조절기(72)는 최소 10㎛ 의 미세한 거리를 조정하는데 쓰일 수 있다.
조그(71)로 노즐(30)을 콜렉터(50)에 접근시킨 다음, 미세 조절기(72)로 노즐(30)과 콜렉터(50) 사이의 거리를 정확히 조절할 수 있다.
마이크로 거리 조절기(70)에 의하여 노즐(30)과 콜렉터(50) 사이의 거리는 10㎛ 내지 20mm의 범위에서 조절될 수 있다.
전기방사에서 노즐로부터 방사되는 나노 섬유의 3차원 경로는 하기 식으로 나타낼 수 있다(D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning" J. Appl. Phys., 87, 9, 4531-4546(2000) 참고).
하기 식 (1a) 및 (1b)로부터 알 수 있는 바와 같이, 콜렉터와 노즐 사이의 거리가 클 수록 금속 전구체/유기 복합 나노섬유의 교란(perturbation)이 커진다.
Figure PCTKR2014000883-appb-I000001
······식 (1a)
Figure PCTKR2014000883-appb-I000002
······식 (1b)
상기 식에서, x, y는 콜렉터와 수평인 면에서 x축과 y축 방향의 위치이고, L은 길이 스케일을 나타내는 상수이고, λ는 교란 파장(perturbation wavelength)이고, z는 나노섬유의 콜렉터(z=0)에 대한 수직 위치이고, h는 노즐과 콜렉터 사이의 거리이다.
위의 식 (1a) 및 식 (1b)로부터, 동일한 z 값에 대하여 콜렉터와 노즐 사이의 거리 h가 클수록 나노섬유의 교란을 나타내는 x, y 값이 커짐을 알 수 있다.
예를 들어, x-y 평면에 평행한 콜렉터(50)를 로봇 스테이지(60)에 의하여 x-y 평면 상에서 이동할 수 있고, 마이크로 거리 조절기(70)에 의하여 z축 방향으로 노즐(30)과 콜렉터(50) 사이의 거리를 조절할 수 있다.
본 발명의 일 실시예에 따른 전기장 보조 로보틱 노즐 프린터(100)는 노즐(30)과 콜렉터(50) 사이의 거리를 십 내지 수십 마이크로미터 단위로 충분히 좁힐 수 있어서 나노섬유가 교란되기 전에 콜렉터(50) 위에 직선으로 떨어질 수 있으며, 그로 인해 콜렉터(50)의 이동에 의하여 정교한 나노섬유의 패턴이 형성될 수 있다.
상기 콜렉터의 이동에 의하여 금속 전구체/유기 고분자 복합 나노섬유를 형성하는 것은 노즐이 이동하는 것에 비하여 유기 와이어 패턴의 교란 변수를 줄임으로써 더욱 정밀한 금속 전구체/유기 고분자 복합 나노섬유 패턴을 형성할 수 있게 한다.
한편, 전기장 보조 로보틱 노즐 프린터(100)는 하우징 안에 놓일 수 있다.
상기 하우징은 투명한 재질로 형성될 수 있다. 하우징은 밀폐 가능하며, 가스 주입구(미도시)를 통해 하우징 내로 가스를 주입할 수 있다. 주입되는 가스는 질소, 건조 공기 등일 수 있으며, 상기 가스의 주입에 의하여 수분에 의해 산화되기 쉬운 금속 전구체/유기 고분자 복합체 용액이 안정적으로 유지될 수 있게 한다.
또한, 하우징에는 환풍기(ventilator)와 전등이 설치될 수 있다. 환풍기의 역할은 하우징 내의 증기압을 조절하여서 나노섬유가 형성되어 나올 시 용매의 증발 속도를 조절할 수 있게 된다. 용매의 빠른 증발을 요하는 로보틱 노즐 프린팅에서는 환풍기의 속도를 조절하여 용매의 증발을 도울 수 있다. 용매의 증발 속도는 금속 전구체/유기 복합 나노섬유의 형태적, 전기적 특성에 영향을 준다. 용매의 증발 속도가 너무 빠를 경우, 금속 전구체/유기 복합체의 나노섬유가 형성되기 전에 노즐 끝에서 용액이 말라버려 노즐을 막히게 한다. 용매의 증발 속도가 너무 느릴 경우, 고체 금속 전구체/유기 고분자 복합체의 나노섬유가 형성되지 않고 액체 형태로 콜렉터에 놓이게 된다. 액체 형태의 금속 전구체/유기 고분자 복합체 용액은 나노섬유의 특징적인 뛰어난 전기적 특성을 갖지 않기 때문에, 이를 소자 제작에 사용할 수 없다.
이처럼 용매의 증발 속도가 나노섬유의 형성에 영향을 주므로, 환풍기는 나노섬유 형성에 중요한 역할을 하게 된다.
구체적으로, 상기 전기장 보조 로보틱 노즐 프린터(100)를 이용하여 상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유를 정렬하는 과정은, i) 상기 용액 저장 장치에 상기 금속 전구체/유기 고분자 복합체 용액을 공급하는 단계 ii) 상기 전기장 보조 로보틱 노즐 프린터의 상기 전압 인가 장치를 통하여 상기 노즐에 고전압을 인가하면서 상기 노즐로부터 상기 금속 전구체/유기 고분자를 토출시키는 단계를 포함하며, 상기 노즐로부터 금속 전구체/유기 고분자 복합체 용액이 토출될 때, 기판이 놓여진 콜렉터를 수평방향으로 이동시키는 것을 포함한다.
본 발명의 일 실시예로, 금속 전구체 및 유기 고분자를 포함하는 용액을 시린지(10)에 담은 후 시린지 펌프(20)에 의하여 노즐(30)로부터 토출시키면 노즐(30) 끝부분에 액적이 형성된다. 이 노즐(30)에 고전압 발생 장치(40)를 이용하여 0.1kV 내지 30kV 범위의 전압을 인가하면, 액적에 형성된 전하와 콜렉터(50) 사이의 정전기력(electrostatic force)에 의해 노즐 끝부분에 테일러콘(taylor cone)이 형성되며 액적이 방울로 떨어지지 않고 흩어지지도 않으며 전기장의방향으로 단면이 둥근 섬유형태로 늘어나면서 용매가 휘발되고 고체상태로 길게 이어진 나노섬유가 콜렉터(50)위의 기판에 달라붙게 된다.
이때, 액적이 늘어남에 따라 액적으로부터 한 방향의 길이가 다른 방향보다 긴 금속 전구체/유기 고분자 복합 나노섬유가 형성될 수 있다. 상기 금속 전구체/유기 고분자 복합 나노섬유의 직경은 인가 전압 및 노즐 크기를 조절함에 따라 수십나노급 내지 마이크로미터 급으로 조절될 수 있다.
상기 노즐(30)의 하전된 토출물로부터 형성된 금속 전구체/유기 고분자 복합 나노섬유를 콜렉터(50) 위의 기판에 정렬할 수 있다. 이때 노즐(30)과 콜렉터(50) 사이의 거리를 10㎛ 내지 20 mm의 사이로 조절함으로써, 금속 전구체/유기고분자 복합 나노섬유가 엉켜있는 형태가 아니라 분리된 형태로 콜렉터(50) 위의 기판 위에 형성할 수 있다. 이때 노즐(30)과 콜렉터(50) 사이의 거리는 마이크로 거리 조절기(70)를 이용하여 조절할 수 있다.
이와 같이, 마이크로 거리 조절기(70)및 미세 조절기(72)로서 콜렉터(50)를 매우 미세하게 이동시킴으로써 금속 전구체/유기 고분자 복합 나노섬유를 상기 기판 위의 원하는 위치에 원하는 방향, 원하는 개수만큼 정렬시키는 것이 가능하다.
이 때, 상기 금속 전구체/유기 고분자 복합 나노섬유는 수평 정렬될 수 있다. 이에 따라, 상기 금속 전구체/유기 복합 나노섬유 패턴은 수평 정렬될 수 있다.
마지막으로, 상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성한다(S300).
즉, 상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 상기 유기 고분자를 열분해하고, 상기 금속 전구체를 금속 나노그레인으로환원시켜,상기 금속 나노그레인으로 이루어진정렬된 금속나노섬유 패턴을 형성할 수 있다.
상기 정렬된 금속 전구체/유기 복합나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 50℃ 내지 900℃의 온도 범위에서 5분 내지 8시간 동안 열처리할 수 있다.
이때의 열처리는 공기중이나 특정 가스 분위기에서 퍼니스(furnace)나 진공 핫플레이트(vaccum hot-plate), 급속열처리장치(rapid thermal annealing), 또는 CVD 챔버(chemical vapor deposition) 등과 같이 전체적으로 균일하게 가열할수 있는 장비를 이용하는 것이 바람직하나 이에 한정되지 않는다.
또한, 상기 온도 및 시간 범위에서 열처리했을 시 가장 균일한 크기의 결정이 형성되어 전하이동도가 향상된다.
만약 50℃ 미만의 온도에서 열처리할 경우, 유기 고분자의열분해가 제대로 이루어지지 않아 금속 나노섬유의 형성이 어려울 수 있고, 900℃ 초과의 온도로 열처리할 경우, 균일한 나노섬유의 형성이 어려울 수 있다.
또한, 상기 열처리 시간이 5분 미만일 경우, 유기 고분자가 열분해되는 시간이 충분하지 않아 금속 나노섬유의 형성이 어려울 수 있고, 상기 열처리시간이 8시간 초과될 경우 가열이 오래되어 나노섬유의 변형이 올 수 있어 균일한 나노섬유의 형성이 어려울 수 있다.
상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 1회 내지 5회 열처리할 수 있다.
이 때, 상기 열처리 횟수가 1회 미만인 경우, 유기 고분자가 열분해되지 않아 금속 나노섬유가 형성되지 않으며 상기 열처리 횟수가 5회를 초과할 경우, 나노섬유의 변형이 올 수 있어 균일한 나노섬유의 형성이 어려울수 있다.
또한, 상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 공기 또는 산소, 질소, 수소, 및 아르곤으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 가스분위기에서 열처리할 수 있다.
상기 공기 또는 산소, 질소, 수소, 및 아르곤으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 가스분위기에서 열처리할 시 상기 금속 전구체/유기 고분자 복합 나노섬유를 금속 나노섬유로 효과적으로 환원시킬 수 있다.
이 때, 상기 금속 나노섬유는 10nm 내지 3000nm의 직경을 가질 수 있다. 이 때, 상기 직경은 금속 전구체와 유기 고분자의 비율과 농도에 따라 조절될 수 있다.
또한, 상기 금속 나노섬유의 직경이 10nm 내지 3000nm일 때, 높은 전도도를 갖는다.
한편, 종래에는 용액합성 또는 성장법(growth) 등을 통하여 금속나노선이 제작될 수 있었다. 이러한 제조방법에 의해 제작된 금속나노선은 그 길이가 수십 ㎛ 이내에 불과하였다. 이에 반하여, 본 발명은 금속 전구체/유기 고분자 복합체 용액을 프린팅하는 방식을 이용하여 나노섬유를 제조하는 것이므로, 이러한 나노섬유의 길이에 제한이 없이 길게 제작할 수 있고, 특히 롤투롤 방식을 적용할 경우 대면적에도 적용 가능한 연속적인 한 가닥의 긴 나노섬유를 제작할 수 있다.

본 발명의 일 실시예에 따른 금속 나노섬유 전극 어레이를 포함하는 유기 또는 무기 반도체 기반 전계효과 트랜지스터를 설명한다.
이러한 전계효과 트랜지스터는 게이트 전극, 게이트 절연층, 소스 전극 및 드레인 전극, 및 반도체 층을 포함할 수 있다. 이때의 게이트 전극, 소스 전극 및 드레인 전극 중 적어도 하나의 전극이 상술한 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극 인 것을 특징으로 한다.
트랜지스터 소자의 구조는 게이트 전극의 위치에 따라서 구분될 수 있다. 기판쪽으로 오는 바텀 게이트(bottom gate) 구조, 게이트 전극이 위쪽으로 오는 탑 게이트(Top gate) 구조가 될 수 있다. 또한 트랜지스터 소자의 구조가 소스/드레인 전극의 위치에 따라서 구분될 수 있다. 소스/드레인 전극이 반도체층 아래에 있으면 바텀 컨택(bottom contact), 소스/드레인 전극이 반도체층 위에 위치에 있으면 탑 컨택(Top contact) 소자로 구분될 수 있다.
일예로, 바텀 게이트-바텀컨택 소자의 경우에는 상기 게이트 전극 상에 위치하는 게이트 절연층, 상기 게이트 절연층 상에 위치하는 소스 전극 및 드레인 전극, 및 상기 게이트 절연층 상에 상기 소스 전극 및 드레인 전극과 접하도록 위치하는 유기 반도체층을 포함할 수 있다.
금속 나노 섬유는 그 자체 한가닥으로도 소스 전극, 드레인 전극 및 게이트 전극 중에 적어도 하나의 전극을 대신할 수 있는 것이 특징이 있다. 따라서 트랜지스터 소자를 대면적 어레이로 제작시 해상도를 올릴 수 있고 게이트 전극과 소스/드레인 전극과의 중첩영역(overlapping area)을 크게 줄일 수 있다.
이때의 반도체층은 유기 반도체층 또는 무기 반도체층일 수 있다.
상기 유기 반도체는 통상적으로 알려진 공액구조의 저분자, 올리고머, 고분자 반도체를 포함한다. 예를 들어 펜타센, 테트라센, TIPS-pentacene, 폴리티오펜 및 이의 유도체, 폴리플루오렌 및 이의 유도체, 폴리 아세틸렌 및 이의 유도체, 폴리 페닐렌 및 이들의 유도체를 포함할 수 있으나 이제 제한 되는 것은 아니다.
상기 무기 반도체는 실리콘 (Si), 규소나 게르마늄 등 4족의 결정, 갈륨아세나이드(GaAs), 등의 3-5족 화합물, CdS 등의 2-6족 화합물, 탄소만으로 이루어진 탄소나노튜브, 그래핀 등의 유기물이 아닌 통상적인 모든 무기 반도체를 포함한다.
한편 상술한 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극 어레이는 연속적으로 이어져 있는 나노섬유이기 때문에, 본 발명 유기 전계효과 트랜지스터의 소스 전극과 드레인 전극으로 적용하기 위하여 한쪽의 일부분을 끊어 주어 소자를 완성할 수 있다.
따라서, 본 발명에 따른 금속 나노섬유 전극 어레이를 유기 전계효과 트랜지스터의 소스 전극과 드레인 전극으로 이용함으로써, 금속 필름 전극을 소스 전극과 드레인 전극으로 이용한 트랜지스터에 비하여 전계효과 정공이동도가 높은 성능이 향상된 소자를 제공할 수 있다.
상기 트랜지스터 어레이인 경우 한가닥의 금속 나노 섬유만으로도 전극 역할을 할 수 있지만, 유기 발광 다이오드 및 유기 태양 전지와 같은 면소자 (sheet devices)의 경우에는 한가닥으로는 전극을 형성하지 못하고 금속 나노 섬유가 서로 교차하여 연결되어 있는 그리드 형태(grid type)를 지녀야 한다.

또한, 상기 과제를 해결하기 위하여 본 발명은 상술한 나노섬유 전극 어레이를 그리드형태의 전극으로 포함하는 유기 발광 다이오드를 제공한다.
이러한 유기 발광다이오드는 양극, 발광층 및 음극을 포함할 수 있다. 이때의 양극 및 음극 중 적어도 하나의 전극이 상술한 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극의 그리드 어레이인 것을 특징으로 한다.
또한, 정공주입층(hole injection layer), 정공수송층(hole transporting layer), 전자수송층(electron transporting layer), 엑시톤마개층(exciton blocking layer), 정공마개층(hole blocking layer) 및 전자주입층(electron injection layer) 중 적어도 어느 한 층을 더 포함할 수 있다.
또한, 금속 나노섬유 전극 그리드의 표면 요철을 감소시키기 위해서 전도성 고분자(예: PEDOT:PSS)와 같은 보조 전극을 더 포함할 수 있다.

또한, 상기 과제를 해결하기 위하여 본 발명은 상술한 나노섬유 전극 어레이를 그리드 형태의 전극으로 포함하는 유기 태양전지를 제공한다.
이러한 유기 태양전지는 양극, 광활성층 및 음극을 포함할 수 있다. 이때의 양극 및 음극 중 적어도 하나의 전극이 상술한 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극의 그리드 어레이인 것을 특징으로 한다.
또한, 정공추출층(hole extraction layer), 엑시톤마개층(exciton blocking layer) 및 전자추출층(electron extraction layer) 중 적어도 어느 한 층을 더 포함할 수 있다.
또한, 금속 나노섬유 전극 그리드의 표면 요철을 감소시키기 위해서 전도성 고분자(예: PEDOT:PSS)와 같은 보조 전극을 더 포함할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)을 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.

구리 나노섬유 전극 어레이의 제조
<제조예 1>
구리 전구체(25 wt%)와 PVP(Polyvinyl pyrrolidone)(10 wt%)를 다이메틸포름아마이드와 테트라하이드로퓨란에 용해시켜서 구리 전구체/PVP 용액을 제조하였다. 전구체/PVP 용액의 농도는 31 wt%이었다.
제조된 구리 전구체/PVP 용액을 전기장 보조 로보틱 노즐 프린터의 시린지에 담고, 노즐에 약 0.5 kV 의 전압을 인가하면서, 구리 전구체/PVP 용액을 노즐로부터 토출하였다.
로봇 스테이지에 의하여 이동되는 콜렉터의 기판 위에 정렬된 구리 전구체/PVP 복합 나노섬유 패턴이 형성되었다.
이때, 사용한 노즐의 직경은 100㎛이고, 노즐과 콜렉터 사이의 거리는 7mm이고, 인가전압은 0.5kV 이었다.
로봇 스테이지의 Y축 방향의 이동 간격은 200㎛ 이고, X축 방향의 이동 거리는 15cm 이었다.
콜렉터의 크기는 20cm × 20cm이고, 콜렉터 위의 기판의 크기는 7cm × 7cm이었다.
기판의 종류는 실리콘 산화막(SiO2)이 300nm 두께로 코팅된 실리콘(Si) 웨이퍼이었다.
정렬된 구리 전구체/PVP 나노섬유 패턴을 퍼니스를 통해 공기중에서 350℃ 내지 500℃ 범위로 1시간 또는 2시간 동안 열처리하면 PVP 유기 고분자가 열분해되는 동시에 구리 전구체가 산화되어 구리 산화물 나노그레인으로 이루어진 정렬된 구리 산화물 나노섬유가 형성된다.
이 후, 100sccm의 유속으로 수소가스가 흐르고 있는 CVD 챔버내에서 300℃로 1시간 또는 2시간 동안 열처리하여 구리 산화물 나노그레인을구리 나노그레인으로 환원시켜, 구리 나노그레인으로 이루어진정렬된 구리 나노섬유 패턴을 형성하였다.
이에 따라, 대면적 나노섬유 전극 어레이의 제조 방법을 사용하여 7cm × 7cm 의 면적을 갖는 구리 나노섬유 전극 어레이가 제조되었다.

구리 나노섬유 전극 어레이의 특성분석
SiO2/Si 기판(실리콘 산화막이 300nm 두께로 코팅된 실리콘 웨이퍼)위에 형성한 구리 나노섬유의 전기적 특성 분석은 구리 나노섬유 위에 금속섀도마스크를 이용해서 금을 열증착 한 후, 프로브스테이션을 이용해서 IV 특성을 분석하였다.
형태 분석은 전자주사현미경을 이용하였고 성분분석은 EDS를 이용하였다.또한, 기판 위에 제작된 구리 나노섬유 전극의 비저항을 측정하였다.
도 3은 본 발명의 제조예 1에 따른 구리 전구체/유기 고분자 복합 나노섬유의 전자주사현미경(SEM) 사진과 EDS성분분석 결과이다.
도 3a는 상기 구리 전구체/유기 고분자 복합 나노섬유를 나타낸 SEM 사진이고, 도 3b는 본 발명의 제조예에 따른 구리 전구체/유기 고분자 복합나노섬유 어레이을 나타낸 사진이고, 도 3c는 상기 구리 전구체/유기 고분자 복합 나노섬유의 단면적을 나타낸 사진이다. 또한, 도 3d는 EDS분석 결과이다.
도 3a를 참조하면, 본 발명의 제조예 1에 따른 구리 전구체/유기 고분자 복합나노섬유가 직선형태로 균일하게 형성되었음을 알 수 있다. 도 3b를 참조하면, 본 발명의 제조예 1에 따른 구리 전구체/유기 고분자 복합 나노섬유 전극 어레이가 수평방향으로 균일하게 정렬된 것을 확인할 수 있다. 도 3c를 참조하면, 본 발명의 제조예 1에 따른 구리 전구체/유기 고분자 복합 나노섬유의 단면이 균일한 것을 알 수 있다. 도 3d를 참조하면, 본 발명의 제조예 1에 따른 나노섬유가 구리를 포함하고 있음을 알 수 있다.
결과적으로, 본 발명의 제조예에 따른 구리 전구체/유기 고분자 복합나노섬유는 직선의 형태로 균일하게 정렬되어 형성됨을 알 수 있다.
도 4는 본 발명의 제조예 1에 따른 구리 산화물 나노섬유의 전자주사현미경(SEM)사진과 EDS성분분석 결과이다.
도 4의 경우, 상기 구리 전구체/유기 고분자 복합 나노섬유를 퍼니스를 통해 공기중에서 450℃ 에서 2시간 동안 열처리하여 형성한 구리 산화물 나노섬유의 전자주사현미경 사진과 EDS성분분석 결과이다.
도 4a는 상기 구리 산화물 나노섬유를 나타낸 SEM 사진이고, 도 4b는 본 발명의 제조예에 따른 구리 산화물 나노섬유 전극 어레이를 나타낸 SEM사진이고, 도 4c는 상기 구리 산화물 나노섬유의 단면적을 나타낸 SEM사진이다. 또한, 도 4d는 EDS분석 결과이다.
도 4a를 참조하면, 본 발명의 제조예 1에 따른 구리 산화물 나노섬유가 직선형태로 균일하게 형성되었음을 알 수 있다. 도 4b를 참조하면, 본 발명의 제조예 1에 따른 구리 산화물 나노섬유 전극 어레이가 수평방향으로 균일하게 정렬된 것을 확인할 수 있다. 도 4c를 참조하면, 본 발명의 제조예 1에 따른 구리 산화물 나노섬유의 단면이 균일한 것을 알 수 있다. 도 4d를 참조하면, 본 발명의 제조예 1에 따른 나노섬유가구리와 산소에 높은 피크를 가지며 구리 산화물 나노섬유가 형성되었음을 알 수 있다.
결과적으로, 본 발명의 제조예 1에 따른 구리 산화물 나노섬유는 직선의 형태로 균일하게 정렬되어 형성됨을 알 수 있다.
도 5는 본 발명의 제조예 1에 따른 구리 나노섬유의 전자주사현미경(SEM)사진과 EDS성분분석 결과이다.
도 5의 경우, 상기 구리 산화물 나노섬유를 100sccm의 유속으로 수소가스가 흐르고 있는 CVD 챔버내에서 300℃ 로 1시간 또는 2시간 동안 열처리하여 형성한 구리 나노섬유의 전자주사현미경 사진과 EDS성분분석 결과이다.
도 5a는 상기 구리 나노섬유의 단면적을 나타낸 SEM 사진이고, 도 5b는 본 발명의 제조예 1에 따른 구리 나노섬유 전극 어레이를 나타낸 SEM사진이고, 도 5c는 상기 구리 나노섬유를 나타낸 SEM사진이다. 또한, 도 5d는 EDS분석 결과이다.
도 5a를 참조하면, 본 발명의 제조예 1에 따른 구리나노섬유의 단면이 균일한 것을 알 수 있다. 도 5b를 참조하면, 본 발명의 제조예 1에 따른 구리 나노섬유 전극 어레이가 수평방향으로 균일하게 정렬된 것을 확인할 수 있다. 도 5c를 참조하면, 본 발명의 제조예 1에 따른 구리 나노섬유가 직선형태로 균일하게 형성되었음을 알 수 있다. 도 5d를 참조하면, 본 발명의 제조예 1에 따른 나노섬유가 구리를 포함하고 있음을 알 수 있다.또한, 산소의 피크가 도 4의 도 5d와 비교하여 현저히 작아졌음을 알 수 있다.
이에, 상기 구리 산화물 나노섬유의 구리산화물 나노그레인이 열처리에 의해 구리 나노그레인으로 환원되어 이러한 구리 나노그레인으로 이루어진 구리 나노섬유를 형성함을 알 수 있다.
결과적으로, 본 발명의 제조예 1에 따른 구리 나노섬유는 직선의 형태로 균일하게 정렬되어 형성됨을 알 수 있다.
도 6은 본 발명의 제조예 1에 따른 구리 나노섬유의 선폭, 비저항 및 콜렉터의 이동속도의 데이터 값을 나타낸 그래프이다.
도 6의 경우, 상기 구리 전구체/유기 복합 나노섬유를 퍼니스를 통해 공기중에서 450℃ 에서 2시간 동안 열처리한 후 100sccm의 유속으로 수소가스가 흐르고 있는 CVD 챔버내에서 300℃ 로 1시간 동안 열처리하여 형성한 구리 나노섬유의 선폭과 비저항이 콜렉터의 이동속도에 따라 변화하는 결과이다.
도 6을 참조하면, 콜렉터의 이동속도가 빠를수록 상기 구리 나노섬유의 선폭이 얇아지는 것을 알 수 있다. 또한, 상기 선폭이 얇아짐에 따라 비저항이 높아지는 것을 알 수 있다.
결론적으로, 상기 콜렉터의 이동속도가 빠를수록 상기 비저항 값이 높아짐에 따라, 전압에 따른 전류의 변화값이 작아짐을 알 수 있다.
도 7은 본 발명의 제조예 1에 따른 구리나노섬유의 열처리 조건에 따른 비저항값의 변화를 나타낸 그래프이다.
도 7의 경우, 상기 구리 전구체/유기 고분자 복합 나노섬유를 퍼니스를 통해 공기중에서 각각 350℃ 내지 500℃ 범위에서 1시간 내지 2시간 동안 열처리한 후 100sccm의 유속으로 수소가스가 흐르고 있는 CVD 챔버내에서 300℃ 로 1시간 동안 열처리하여 형성한 선폭 2㎛의 구리나노섬유의 비저항이 열처리 조건에 따라 변화하는 결과이다.
도 7을 참조하면, 열처리 온도가 높아짐에 따라 비저항 값이 감소하는 것을 알 수 있다.
결론적으로, 상기 구리 전구체/유기 고분자 복합나노섬유는 열처리 온도가 높아짐에 따라 비저항 값이 작아지고, 전압에 따른 전류의 변화값이 커짐을 알 수 있다.
도 8는 본 발명의 제조예 1에 따른 구리 나노섬유의 균일도를 나타낸 그래프이다.
도 8의 경우, 구리 전구체/유기 복합 나노섬유를 퍼니스를 통해 공기중에서 450℃의 온도에서 1시간 동안 열처리한 후 100sccm의 유속으로 수소가스가 흐르고 있는 CVD 챔버내에서 300℃로 1시간 동안 열처리하여 형성한 구리 나노섬유의 비저항 균일도의 결과이다.
도 8을 참조하면, 측정결과, 평균 비저항 값이 185.3μΩcm으로 나타났고, 균일도는 15.9%로 균일한 구리 나노섬유를 형성함을 알 수 있다.

- 구리 복합 나노섬유 전극 어레이의 제조
<제조예 2>
은 전구체(C2AgF3O2, 21 wt%)와 구리 전구체(C4CuF6O4, 6.25wt%), PVP(Polyvinyl pyrrolidone)(10 wt%)를 다이메틸포름아마이드와 테트라하이드로퓨란에 용해시켜서 전구체/PVP 용액을 제조하였다. 전구체/PVP 용액의 농도는 31 wt%이었다.
제조된 전구체/PVP 용액을 전기장 보조 로보틱 노즐 프린터의 시린지에 담고, 노즐에 약 0.5 kV의 전압을 인가하면서, 전구체/PVP 용액을 노즐로부터 토출하였다. 로봇 스테이지에 의하여 이동되는 콜렉터의 기판 위에 정렬된 전구체/PVP 복합 나노섬유 패턴이 형성되었다.
이때, 사용한 노즐의 직경은 100㎛이고, 노즐과 콜렉터 사이의 거리는 7mm이고, 인가전압은 0.5kV 이었다. 로봇 스테이지의 Y축 방향의 이동 간격은 150㎛ 이고, X축 방향의 이동 거리는 15cm 이었다.
이때의 콜렉터의 크기는 20cm × 20cm이고, 콜렉터 위의 기판의 크기는 7cm × 7cm이었다. 기판의 종류는 실리콘 산화막(SiO2)이 300nm 두께로 코팅된 실리콘(Si) 웨이퍼이었다.
이 후, 정렬된 전구체/PVP 나노섬유 패턴을 퍼니스를 통해 공기중에서 350℃ 내지 500℃ 범위로 1시간 내지 2시간 동안열처리하면 PVP 유기 고분자가 열분해되는 동시에 은 전구체와 구리 전구체가 은 나노그레인과 구리 나노그레인으로환원되어 이러한 은 나노그레인과 구리 나노그레인으로 이루어진은-구리 복합 나노섬유가 형성된다.
이에 따라, 대면적 나노섬유 전극 어레이의 제조 방법을 사용하여 7 cm × 7 cm 의 면적을 갖는 트랜지스터용 은-구리 복합 나노섬유 전극 어레이를 제작하였다.

- 구리 복합 나노섬유 전극 어레이의 특성분석
SiO2/Si 기판(실리콘 산화막이 300nm 두께로 코팅된 실리콘 웨이퍼)위에 형성한 은 나노섬유의 전기적 특성 분석은 상기 제조예 2에서 제조된 은-구리 복합 나노섬유 위에 금속섀도마스크를 이용해서 금을 열증착 한 후, 프로브스테이션을 이용해서 IV 특성을 분석하였다. 형태 분석은 전자주사현미경(SEM)을 이용하였다.
도 9는 본 발명의 제조예 2에 따른 은 전구체-구리 전구체/유기 고분자 복합 나노섬유의 SEM사진들이다.
도9a는 은 전구체-구리 전구체/ 유기 고분자 복합 나노섬유의 단면을 나타낸 SEM사진이고, 도 9b는 정렬된 은 전구체-구리 전구체/ 유기 고분자 복합 나노섬유 어레이를 나타낸 SEM사진 이며, 도 9c는 은 전구체-구리 전구체/ 유기 고분자 복합 나노섬유를 나타낸 SEM사진이다.
도9a를 참조하면, 본 발명의 제조예 1에 따른 은 전구체-구리 전구체/ 유기 고분자 복합 나노섬유의 직경이 577nm로 10nm 내지 3000nm의 직경의 범위 안에 속함을 알 수 있다. 도 9b를 참조하면, 상기 은 전구체-구리 전구체/ 유기 고분자 복합 나노섬유 어레이가 일정한 간격을 가지고 정렬된 것을 알 수 있다. 도 9c를 참조하면, 상기 은 전구체-구리 전구체/ 유기 고분자 복합 나노섬유가 직선의 형태로 균일하게 형성된 것을 알 수 있다.
결론적으로, 본 발명의 금속 전구체/ 유기 고분자 복합나노섬유는 10nm 내지 3000nm의 직경을 가지며 균일하게 형성됨을 알 수 있다. 또한, 패턴 형성시 일정한 간격으로 수평 정렬됨을 알 수 있다.
도10은 본 발명의 제조예 2에 따른 은-구리 나노섬유의 SEM사진들이다.
도10a는 본 발명의 제조예 2에 따른 은-구리 나노섬유의 단면을 나타낸 SEM사진이고, 도 10b는 본 발명의 제조예 2에 따른 은-구리 나노섬유 어레이를 나타낸 SEM사진이며, 도 10c는 본 발명의 제조예 2에 따른 은-구리 나노섬유를 나타낸 SEM사진이다.
도10a를 참조하면, 본 발명의 제조예 2에 따른 은-구리 나노섬유는 10nm 내지 3000nm의 직경의 범위 안에 속함을 확인하였다. 도 10b를 참조하면, 상기 은-구리 나노섬유어레이가열처리 후에도 일정한 간격을 갖고 균일하게 정렬되었음을 알 수 있다. 도 10c를 참조하면, 상기 은-구리 나노섬유가 뚜렷히 직선형태로 형성된 것을 알 수 있다.
결론적으로, 상기 은 전구체-구리 전구체/유기 고분자 복합 나노섬유를 열처리했을시, 유기 고분자가 열분해되어 남은 은-구리 나노섬유가 형성되고, 상기 은-구리 나노섬유또한 균일하게 일직선의 형태로 형성되며, 상기 나노섬유가 일정한 간격을 가지며 균일하게 어레이로 정렬됨을 알 수 있다.
도11은 본 발명의 제조예 2에 따른 은-구리 나노섬유의 IV 특성 곡선과 비저항을 나타낸 그래프이다.
도11을 참조하면, 은-구리 복합 나노섬유 전극의 비저항을 측정한 결과, 평균 비저항 값이 21.1μΩcm으로 나타났다.

백금 나노섬유 전극 어레이의 제조
<제조예 3>
백금 전구체(H2PtCl66H2O, 16.5 wt%)와 PVP(Polyvinyl pyrrolidone)(9 wt%) 를 다이메틸포름아마이드와 에탄올에 용해시켜서 전구체/PVP 용액을 제조하였다. 전구체/PVP 용액의 농도는 23 wt%이었다. 제조된 전구체/PVP 용액을 전기장 보조 로보틱 노즐 프린터의 시린지에 담고, 노즐에 약 0.5kV의 전압을 인가하면서, 전구체/PVP 용액을 노즐로부터 토출하였다. 로봇 스테이지에 의하여 이동되는 콜렉터의 기판 위에 정렬된 전구체/PVP 복합 나노섬유 패턴이 형성되었다.
이때, 사용한 노즐의 직경은 100㎛이고, 노즐과 콜렉터 사이의 거리는 6mm이고, 인가전압은 0.4kV 이었다. 로봇 스테이지의 Y축 방향의 이동 간격은 200㎛ 이고, X축 방향의 이동 거리는 15cm 이었다. 콜렉터의 크기는 20cm × 20cm이고, 콜렉터 위의 기판의 크기는 7cm × 7cm이었다. 기판의 종류는 실리콘 산화막(SiO2)이 300nm 두께로 코팅된 실리콘(Si) 웨이퍼이었다.
정렬된 전구체/PVP 나노섬유 패턴을 퍼니스를 통해 공기중에서 350℃ 내지 450℃ 범위로 1시간 내지 2시간 동안 열처리하면 PVP 유기 고분자가 분해되는 동시에 백금 전구체가 백금으로 환원되어 백금 나노섬유가형성된다.
이에 따라, 7cm × 7cm 의 면적을 갖는 트랜지스터용 백금 나노섬유 전극 어레이를 제작하였다.

나노섬유 전극 어레이의 제조
<제조예 4>
금 전구체(HAuCl4, 18 wt%)와 PVP(Polyvinyl pyrrolidone)(10 wt%)를 다이메틸포름아마이드와 에탄올에 용해시켜서 전구체/PVP 용액을 제조하였다. 전구체/PVP 용액의 농도는 25 wt%이었다. 제조된 전구체/PVP 용액을 전기장 보조 로보틱 노즐 프린터의 시린지에 담고, 노즐에 약 0.5kV의 전압을 인가하면서, 전구체/PVP 용액을 노즐로부터 토출하였다. 로봇 스테이지에 의하여 이동되는 콜렉터의 기판 위에 정렬된 전구체/PVP 복합 나노섬유 패턴이 형성되었다.
이때, 사용한 노즐의 직경은 100㎛이고, 노즐과 콜렉터 사이의 거리는 7.5mm이고, 인가전압은 0.5kV이었다. 로봇 스테이지의 Y축 방향의 이동 간격은 200㎛ 이고, X축 방향의 이동 거리는 15cm이었다. 콜렉터의 크기는 20cm × 20cm이고, 콜렉터 위의 기판의 크기는 7cm × 7cm이었다. 기판의 종류는 실리콘 산화막(SiO2)이 300nm 두께로 코팅된 실리콘(Si) 웨이퍼이었다.
정렬된 전구체/PVP 나노섬유 패턴을 퍼니스를 통해 공기중에서 350℃ 내지 450℃ 범위로 1시간 내지 2시간 동안 열처리하면 PVP 유기 고분자가 분해되는 동시에 금 전구체가 금 나노그레인으로 환원되어 이러한 금 나노그레인으로 이루어진금 나노섬유가 형성된다. 이에 따라, 7 cm × 7 cm 의 면적을 갖는 트랜지스터용 금 나노섬유 전극 어레이를 제작하였다.

구리 나노섬유 전극 어레이를 포함하는 유기 전계효과 트랜지스터 제조
<제조예 5>
도 12의 공정 모식도에 따라 구리 나노섬유 전극 어레이를 포함하는 유기 전계효과 트랜지스터를 제조하였다.
도 12는 본 발명의 다른 실시예에 따른 유기 전계효과 트랜지스터의 공정 모식도이다.
도 12를 참조하면, 300nm 두께의 실리콘 옥사이드 기판에 상기 제조예 1과 같은 방식으로 구리 전구체/유기 고분자 나노섬유를 150 마이크로미터 간격으로 2줄 프린팅하고 2단계로 열처리하여 구리 나노섬유를 형성하였다. 이러한 2줄의 구리 나노섬유의 제조를 하나의 기판에 복수회 수행하여 구리 나노섬유 어레이를 제조하였다.
그 다음에, 구리 나노섬유에 직접적으로 프로브 팁을 컨택할 수 없으므로 컨택을 위한 Au컨택 패드를 약 150nm 두께로 증착하였다.
그리고, 2 줄의 구리 나노섬유에 접하도록 펜타센 반도체층을 50nm 두께로 증착하여 유기 전계효과트랜지스터를 제조하였다.
이때, 연속적으로 이어져있는 구리나노섬유로는 소자의 소스/드레인전극으로 그대로 적용할 수 없기 때문에 한쪽 부분씩을 절단(cutting)하여 소자를 완성하였다.
도 13은 본 발명의 제조예 5에 따른 유기 전계효과 트랜지스터의 이미지이다.
도 13을 참조하면, 상술한 제조예 5에 따라 2 x 2 cm의 실리콘 웨이퍼 위에 9개의 유기 전계효과 트랜지스터 소자 어레이를 제조하였다. 이때의 채널의 길이(length)와 폭(width)은각각 150 μm 와3 mm이다.

구리 나노섬유 전극 어레이를 포함하는 유기 전계효과 트랜지스터 특성분석
구리 나노섬유 전극 어레이를 포함하는 유기 전계효과 트랜지스터의 전기적 특성 분석은 상기 제조예 5에서 제조된 트랜지스터를 이용하여 소자 성능을 분석하였다.
도 14는 본 발명의 제조예 5에 따른 유기 전계효과 트랜지스터의 트랜스퍼 커브 특성을 나타낸 그래프이다. 이때 도 14의 그래프 내에 삽입된 그림은 제조예 5에 따른 트랜지스터의 단면도이다.
도 14를 참조하면, 제조예 5에 따른 유기 전계효과 트랜지스터의 성능은 성능은 전계효과정공이동도가 약 0.13 cm2·V-1·s-1이고, 온/오프 커런트 비율은 7.46 × 106이다.

이때, 구리 나노섬유 전극을 사용한 제조예 5의 트랜지스터와 이러한 구리 나노섬유 전극 대신에 기존의 진공 증착 공정으로 제작한 구리 필름 전극을 사용한 트랜지스터의 성능을 비교하였다.
도 15는 본 발명의 제조예 5에 따른 유기 전계효과 트랜지스터의 IV 특성 곡선을 나타낸 그래프이다.
도 15를 참조하면, 제조예 5에 따른 유기 전계효과 트랜지스터의 전계효과정공이동도가 약 0.13 cm2·V-1·s-1이고, 기존의 진공 증착 공정으로 제작한 구리 필름 전극의 트랜지스터 소자의 전계효과정공이동도는 약 0.006 cm2·V-1·s-1임을 알 수 있다.
따라서, 기존의 진공 증착 공정으로 제작한 구리 필름 전극의 트랜지스터 소자보다 본 발명에 따른 구리 나노섬유 전극을 사용한 트랜지스터 소자가 더 뛰어난 성능을 나타냄을 알 수 있다.

이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.
[부호의 설명]
10 : 용액 저장 장치 20 : 토출 조절기
30 : 노즐 40 : 전압 인가 장치
50 : 콜렉터 51 : 접지 장치
60 : 로봇 스테이지 61 : 석정반
70 : 마이크로 거리 조절기 71 : 조그

Claims (26)

  1. 금속 전구체와 유기 고분자를 증류수 또는 유기 용매에 혼합하여 금속 전구체/유기 고분자 복합체 용액을 준비하는 단계;
    상기 금속 전구체/유기 고분자 복합체 용액을 전기장 보조 로보틱 노즐 프린터에 있는 노즐에 주입하고 전기장을 가하여 상기 금속 전구체/유기 고분자 복합체 용액이 상기 노즐 끝부분에 테일러콘(taylor cone)을 형성할 때, 기판으로부터 수직으로 상기 금속 전구체/유기 고분자 복합체 용액을 토출시키면서 연속적으로 이어진 형태의 고체화된 나노섬유가 형성되어 나올 시에 상기 기판을 이동시킴으로써, 상기 기판 상에 연속적으로 이어진 형태의 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 형성하는 단계; 및
    상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 상기 유기 고분자를 열분해하고, 상기 금속 전구체를 금속 나노그레인으로 환원시켜, 상기 금속 나노그레인으로 이루어진 정렬된 금속나노섬유 패턴을 형성하는 단계를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  2. 제 1 항에 있어서,
    상기 금속 전구체/유기 고분자 복합체 용액을 제공하는 단계는,
    금속 전구체와 유기 고분자를 10:90 내지 97:3의 중량비로, 증류수 또는 유기 용매에 1 중량% 내지 50 중량%의 농도가 되도록 용해하는 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  3. 제1항에 있어서,
    상기 금속 전구체/유기 고분자 복합체 용액을 토출하는 단계는, 기판으로부터 수직으로 10 ㎛ 내지 20 ㎜ 떨어진 지점으로부터 상기 용액을 토출하는 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조 방법.
  4. 제 1 항에 있어서,
    상기 금속 전구체/유기 고분자 복합 나노섬유 패턴을 형성하는 단계는 전기장 보조 로보틱 노즐 프린터에 의하여 실시되며, 상기 전기장 보조 로보틱 노즐 프린터는,
    i) 금속 전구체/유기 고분자 복합체 용액을 수용하는 용액 저장 장치;
    ii) 상기 용액 저장 장치로부터 공급받은 용액을 토출하는 노즐 장치;
    iii) 상기 노즐에 고전압을 인가하는 전압 인가 장치;
    iv) 상기 기판을 고정하는 콜렉터;
    v) 상기 콜렉터를 수평 방향으로 이동시키는 로봇 스테이지;
    vi) 상기 콜렉터를 수직방향으로 이동시키는 마이크로 거리 조절기; 및
    vii) 상기 콜렉터를 지지(support)하는 석정반을 포함하는 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  5. 제1항 에 있어서,
    상기 전기장 보조 로보틱 노즐 프린터에 인가하는 전압은 0.1kV 내지 30kV인 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  6. 제 1 항에 있어서,
    상기 기판은 절연 재료, 금속 재료, 탄소 재료, 및 전도체와 절연막의 복합 재료로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  7. 제1항에 있어서,
    상기 금속 전구체는 구리 전구체, 타이타늄 전구체, 알루미늄 전구체, 은 전구체, 백금 전구체, 니켈 전구체, 및 금 전구체로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  8. 제7항에 있어서,
    상기 구리 전구체는 아세트산구리(Copper acetate), 아세트산구리수화물 (Copper acetate hydrate), 구리아세틸아세토네이트 (Copper acetylacetonate), 구리아이소부티레이트 (Copper i-butyrate), 탄산구리 (Copper carbonate), 염화구리 (Copper chloride), 염화구리수화물 (Copper chloride hydrate), 구리에틸아세토아세테이트 (Copper ethylacetoacetate), 구리2-에틸헥사노에이트 (Copper 2-ethylhexanoate), 불화구리 (Copper fluoride), 포름산구리수화물 (Copper formate hydrate), 구리글루코네이트 (Copper gluconate), 구리헥사플로로아세틸아세토네이트 (Copper hexafluoroacetylacetonate), 구리헥사플로로아세틸아세토네이트수화물 (Copper hexafluoroacetylacetonate hydrate), 구리메톡사이드 (Copper methoxide), 구리네오데카노에이트 (Copper neodecanoate), 질산구리수화물 (Copper nitrate hydrate), 질산구리 (Copper nitrate), 과염소산구리수화물 (Copper perchlorate hydrate), 황산구리 (Copper sulfate), 황산구리수화물 (Copper sulfate hydrate), 주석산구리수화물 (Copper tartrate hydrate), 구리트리플로로아세틸아세토네이트 (Copper trifluoroacetylacetonate), 구리트리플로로메탄설포네이트 (Copper trifluoromethanesulfonate), 및 테트라아민구리황산염수화물 (Tetraamminecopper sulfate hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  9. 제7항에 있어서,
    상기 타이타늄 전구체는 타이타늄카바이드 (Titanium carbide), 염화타이타늄 (Titanium chloride), 타이타늄에톡사이드 (Titanium ethoxide), 타이타늄플로라이드 (Titanium fluoride), 타이타늄소수화합물 (Titanium hydride), 질화타이타늄 (Titanium nitride), 염화타이타늄 (Titanium chloride), 타이타늄아이소프로폭사이드 (Titanium isopropoxide), 타이타늄프로폭사이드 (Titanium propoxide), 불화타이타늄 (Titanium fluoride), 타이타늄메톡사이드 (Titanium methoxide), 타이타늄옥시아세틸아세토네이트(Titanium oxyacetylacetonate), 타이타늄2-에틸헥실옥사이드 (Titanium 2-ethylhexyloxide), 및 타이타늄부톡사이드 (Titanium butoxide)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  10. 제7항에 있어서,
    상기 알루미늄 전구체는 염화알루미늄 (Aluminum chloride), 불화알루미늄 (Aluminum fluoride), 알루미늄헥사플로로아세틸아세토네이트 (Aluminum hexafluoroacetylacetonate), 염화알루미늄수화물 (Aluminum chloride hydrate), 질화알루미늄 (Aluminum nitride), 알루미늄트리플로로메탄설포네이트 (Aluminum trifluoromethanesulfonate), 트리에틸알루미늄 (Triethylaluminum), 알루미늄아세틸아세토네이트 (Aluminum acetylacetonate), 수산화알루미늄 (Aluminum hydroxide), 젖산알루미늄 (Aluminum lactate), 질화알루미늄수화물 (Aluminum nitrate hydrate), 알루미늄2-에틸헥사노에이트 (Aluminum 2-ethylhexanoate), 과염소산알루미늄수화물 (Aluminum perchlorate hydrate), 황산알루미늄수화물 (Aluminum sulfate hydrate), 알루미늄에톡사이드 (Aluminum ethoxide), 알루미늄카바이드 (Aluminum carbide), 황산알루미늄 (Aluminum sulfate), 아세트산알루미늄 (Aluminum acetate), 아세트산알루미늄수화물 (Aluminum acetate hydrate), 황화알루미늄 (Aluminum sulfide), 수산화알루미늄수화물 (Aluminum hydroxide hydrate), 알루미늄펜옥사이드 (Aluminum phenoxide), 불화알루미늄수화물 (Aluminum fluoride hydrate), 알루미늄트리부톡사이드 (Aluminum tributoxide), 알루미늄다이아세테이트 (Aluminum diacetate), 수산화알루미늄다이아세테이트 (Aluminum diacetate hydroxide), 알루미늄 2, 및 4-펜타네디오네이트(Aluminum 2,4-pentanedionate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  11. 제7항에 있어서,
    상기 은 전구체는 은헥사플로로포스페이트 (Silver hexafluorophosphate), 은네오데카노에이트 (Silver neodecanoate), 질산은화합물 (Silver nitrate), 은트리플로로메탄설포네이트 (Silver trifluoromethanesulfonate), 아세트산은 (Silver acetate), 탄산은 (Silver carbonate), 염화은 (Silver chloride), 과염소산은 (Silver perchlorate), 은테트라플로로보라이트 (Silver tetrafluoroborate), 은트리플로로아세테이트 (Silver trifluoroacetate), 은2-에틸헥사노에이트 (Silver 2-ethylhexanoate), 불화은 (Silver fluoride), 과염소산은수화물 (Silver perchlorate hydrate), 젖산은화합물 (Silver lactate), 은아세틸아세토네이트 (Silver acetylacetonate), 은메탄설포네이트 (Silver methanesulfonate), 은헵타플로로부티레이트 (Silver heptafluorobutyrate), 염소산은 (Silver chlorate), 은펩타플로로프로피오네이트 (Silver pentafluoropropionate), 및 불화수소은화합물 (Silver hydrogenfluoride)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  12. 제7항에 있어서,
    상기 백금 전구체는 염화백금산수화물 (Chloroplatinic acid hexahydrate), 이수소헥사하이드록시플래티네이트 (Dihydrogen hexahydroxyplatinate), 백금아세틸아세토네이트 (Platinum acetylacetonate), 염화백금 (Platinum chloride), 염화백금수화물 (Platinum chloride hydrate), 백금헥사플로로아세틸아세토네이트 (Platinum hexafluoroacetylacetonate), 염화테트라아민플래티늄수화물 (Tetraammineplatinum chloride hydrate), 수산화테트라아민플레티늄수화물 (Tetraammineplatinum hydroxide hydrate), 테트라이만플레티늄질화물 (Tetraammineplatinum nitrate), 테트라아민플레티늄테트라클로로플래티네이트 (Tetraammineplatinum tetrachloroplatinate), 테트라클로로디아민플래티늄 (Tetrachlorodiammine platinum), 다이클로로디아민플래티늄 (Dichlorodiammine platinum), 다이아민플래티늄다이클로라이드 (Diammineplatinum dichloride)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  13. 제7항에 있어서,
    상기 니켈 전구체는 염화헥사아민니켈 (Hexaamminenickel chloride), 아세트산니켈 (Nickel acetate) 아세트산니켈수화물 (Nickel acetate hydrate), 니켈아세틸아세토네이트 (Nickel acetylacetonate), 니켈아세틸아세토네이트수화물 (Nickel acetylacetonate hydrate), 니켈카보닐 (Nickel carbonyl), 염화니켈 (Nickel chloride), 염화니켈수화물 (Nickel chloride hydrate), 불화니켈 (Nickel fluoride), 불화니켈수화물 (Nickel fluoride hydrate), 니켈헥사플로로아세틸아세토네이트수화물 (Nickel hexafluoroacetylacetonate hydrate), 니켈헥사플로로아세틸아세토네이트 (Nickel hexafluoroacetylacetonate), 니켈수산화물 (Nickel hydroxide), 니켈하이드록시아세테이트 (Nickel hydroxyacetate), 질화니켈수화물 (Nickel nitrate hydrate), 과염화니켈수화물 (Nickel perchlorate hydrate), 과염화니켈 (Nickel perchlorate), 황산화니켈수화물 (Nickel sulfate hydrate), 황산화니켈 (Nickel sulfate), 니켈트리플로로보레이트수화물 (Nickel tetrafluoroborate hydrate), 니켈트리플로로보레이트 (Nickel tetrafluoroborate), 니켈트리플로로아세틸아세토네이트수화물 (Nickel trifluoroacetylacetonate hydrate), 니켈트리플로로아세틸아세토네이트 (Nickel trifluoroacetylacetonate), 니켈트리플로로메탄설포네이트 (Nickel trifluoromethanesulfonate), 니켈과산화수화물 (Nickel peroxide hydrate), 니켈과산화물 (Nickel peroxide), 황산화니켈 (Nickel sulfate), 니켈옥타노에이트수화물 (Nickel octanoate hydrate), 탄산니켈 (Nickel carbonate), 술파민산니켈수화물 (Nickel sulfamate hydrate), 술파민산니켈 (Nickel sulfamate), 및 수산화탄산니켈수화물 (Nickel carbonate hydroxide hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  14. 제7항에 있어서,
    상기 금 전구체는 클로로카보닐금 (Chlorocarbonylgold), 테트라클로로금산수소 (Hydrogen tetrachloroaurate) 테트라클로로금산수소수화물 (Hydrogen tetrachloroaurate hydrate), 클로로트리에틸포스핀금화합물 (Chlorotriethylphosphinegold), 클로로트리메틸포스핀금화합물 (Chlorotrimethylphosphinegold), 다이메틸(아세틸아세토네이트)금화합물 (Dimethyl(acetylacetonate)gold), 염화금 (Gold(I) chloride), 시안화 금 (Gold cyanide), 황화금(Gold sulfide), 및 염화금수화물 (Gold chloride hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  15. 제1항에 있어서,
    상기 금속 전구체/유기 고분자 복합체 용액을 준비하는 단계에서 상기 금속 전구체/유기 고분자 복합체 용액은 보조 금속 전구체를 더 포함하는 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  16. 제15항에 있어서,
    상기 보조 금속 전구체는 구리 전구체, 타이타늄 전구체, 알루미늄 전구체, 은 전구체, 백금 전구체, 니켈 전구체, 및 금 전구체로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  17. 제1항에 있어서,
    상기 유기 고분자는 폴리비닐알코올(PVA), 폴리비닐아세테이트(PVAc), PPV(Poly(p-phenylene vinylene)), 폴리하이드록시에틸메타클릴레이트(pHEMA), 폴리에틸렌 옥사이드(PEO), 폴리스티렌(PS), 폴리카프로락톤(PCL), 폴리아크릴로니트릴(PAN), 폴리(메틸 메타크릴레이트)(PMMA), 폴리이미드, 폴리(비닐리덴 플루오라이드)(PVDF), 폴리아닐린(PANI), 폴리비닐클로라이드(PVC), 나일론, 폴리아크릴산, 폴리클로로스티렌, 폴리디메틸실록산, 폴리에테르이미드, 폴리에테르술폰, 폴리알킬아크릴레이트, 폴리에틸아크릴레이트, 폴리에틸비닐아세테이트, 폴리에틸-co-비닐아세테이트, 폴리에틸렌테레프탈레이트, 폴리락트산-co-글리콜산, 폴리메타크릴산염, 폴리메틸스티렌, 폴리스티렌술폰산염, 폴리스티렌술포닐플루오라이드, 폴리스티렌-co-아크릴로니트릴, 폴리스티렌-co-부타디엔, 폴리스티렌-co-디비닐벤젠, 폴리락타이드, 폴리아크릴아미드, 폴리벤즈이미다졸, 폴리카보네이트, 폴리디메틸실록산-co-폴리에틸렌옥사이드, 폴리에테르에테르케톤, 폴리에틸렌, 폴리에틸렌이민, 폴리이소프렌, 폴리락타이드, 폴리프로필렌, 폴리술폰, 폴리우레탄, 폴리비닐피롤리돈(PVP), 폴리페닐렌비닐렌(PPV), 및 폴리비닐카바졸(PVK)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 금속 나노섬유 전극 어레이의 제조방법.
  18. 제1항에 있어서,
    상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 50℃ 내지 900℃의 온도 범위에서 5분 내지 8시간 동안 열처리하는 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  19. 제1항에 있어서,
    상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 1회 내지 5회 열처리하는 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  20. 제1항에 있어서,
    상기 정렬된 금속 전구체/유기 고분자 복합 나노섬유 패턴을 열처리하여 정렬된 금속 나노섬유 패턴을 형성하는 단계는 공기 또는 산소, 질소, 수소, 및 아르곤으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 가스분위기에서 열처리되는 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  21. 제1항에 있어서,
    상기 금속 나노섬유는 10nm 내지 3000nm의 직경을 갖는 것을 특징으로 하는 금속 나노섬유 어레이의 제조방법.
  22. 제1항에 있어서,
    상기 금속 전구체/유기 고분자 복합 나노섬유 패턴은 수평 정렬된 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  23. 제1항에 있어서,
    상기 금속 전구체/유기 고분자 복합 나노섬유 패턴은 서로 교차하여 정렬되어 그리드 형태(grid type)로 된 것을 특징으로 하는 금속 나노섬유 전극 어레이의 제조방법.
  24. 게이트 전극, 게이트 절연층, 소스 전극, 드레인 전극, 및 유기 또는 무기 반도체층을 포함하고,
    상기 게이트 전극, 소스 전극 및 드레인 전극 중 적어도 어느 한 전극은 제1항 내지 제23항 중 어느 한 항의 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극인 것을 특징으로 하는 유기 또는 무기 전계효과 트랜지스터.
  25. 양극, 발광층 및 음극을 포함하고,
    선택적으로 보조 전극층, 정공주입층(hole injection layer), 정공수송층(hole transporting layer), 전자수송층(electron transporting layer), 엑시톤마개층(exciton blocking layer), 정공마개층(hole blocking layer) 또는 전자주입층(electron injection layer)을 더 포함하고,
    상기 양극 및 음극 중 적어도 하나의 전극은 제1항 내지 제23항 중 어느 한 항의 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극의 그리드 어레이인 것을 특징으로 하는 유기 발광 다이오드.
  26. 양극, 광활성층 및 음극을 포함하고,
    선택적으로 보조전극층, 정공추출층(hole extraction layer), 엑시톤마개층(exciton blocking layer) 또는 전자추출층(electron extraction layer)을 더 포함하고,
    상기 양극 및 음극 중 적어도 하나의 전극은 제1항 내지 제23항 중 어느 한 항의 금속 나노섬유 전극 어레이의 제조방법에 의해 제조된 금속 나노섬유 전극의 그리드 어레이인 것을 특징으로 하는 유기 태양 전지.
PCT/KR2014/000883 2013-01-31 2014-01-29 정렬된 금속 나노섬유를 이용한 대면적의 금속 나노섬유 전극 어레이의 제조방법 WO2014119943A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/110,720 US20170077403A1 (en) 2013-01-31 2014-01-29 Method for fabricating large metal nanofiber electrode array using aligned metal nanofiber

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20130011503 2013-01-31
KR10-2013-0011502 2013-01-31
KR10-2013-0011503 2013-01-31
KR20130011502 2013-01-31
KR1020130142934A KR101535725B1 (ko) 2013-01-31 2013-11-22 정렬된 구리 나노선을 이용한 대면적의 구리 나노선 전극 어레이의 제조방법
KR1020130142939A KR101520190B1 (ko) 2013-01-31 2013-11-22 정렬된 금속 나노선을 이용한 대면적의 금속 나노선 전극 어레이의 제조방법
KR10-2013-0142939 2013-11-22
KR10-2013-0142934 2013-11-22

Publications (1)

Publication Number Publication Date
WO2014119943A1 true WO2014119943A1 (ko) 2014-08-07

Family

ID=51262591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000883 WO2014119943A1 (ko) 2013-01-31 2014-01-29 정렬된 금속 나노섬유를 이용한 대면적의 금속 나노섬유 전극 어레이의 제조방법

Country Status (1)

Country Link
WO (1) WO2014119943A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244438A (zh) * 2015-10-13 2016-01-13 东北师范大学 一种可编织线状有机单晶场效应晶体管及其制备方法与应用
WO2018016886A1 (ko) * 2016-07-22 2018-01-25 주식회사 엘지화학 유-무기 복합 태양전지용 적층체 제조방법 및 유-무기 복합 태양전지 제조방법
WO2019168288A1 (ko) * 2018-02-28 2019-09-06 최영준 절연막 형성 방법 및 절연막 제조장치
CN112726192A (zh) * 2020-12-18 2021-04-30 江苏大学 电纺碳纳米纤维/还原氧化石墨烯/聚苯胺/碱式碳酸镍复合电极材料的制备方法
CN115216861A (zh) * 2022-07-22 2022-10-21 河南大学 基于金属-介电-发光同轴多层复合纳米纤维的puf器件以及采用该器件生成密钥的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090233057A1 (en) * 2005-10-31 2009-09-17 Aksay Iihan A Electrohydrodynamic printing and manufacturing
KR20110072805A (ko) * 2009-12-23 2011-06-29 한국과학기술연구원 나노섬유 및 그 제조방법
US20120004370A1 (en) * 2010-05-29 2012-01-05 Scott Ashley S Apparatus, methods, and fluid compositions for electrostatically-driven solvent ejection or particle formation
KR20120037882A (ko) * 2010-10-07 2012-04-20 포항공과대학교 산학협력단 미세 패턴 형성 방법 및 이를 이용한 미세 채널 트랜지스터 및 미세 채널 발광트랜지스터의 형성방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090233057A1 (en) * 2005-10-31 2009-09-17 Aksay Iihan A Electrohydrodynamic printing and manufacturing
KR20110072805A (ko) * 2009-12-23 2011-06-29 한국과학기술연구원 나노섬유 및 그 제조방법
US20120004370A1 (en) * 2010-05-29 2012-01-05 Scott Ashley S Apparatus, methods, and fluid compositions for electrostatically-driven solvent ejection or particle formation
KR20120037882A (ko) * 2010-10-07 2012-04-20 포항공과대학교 산학협력단 미세 패턴 형성 방법 및 이를 이용한 미세 채널 트랜지스터 및 미세 채널 발광트랜지스터의 형성방법

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244438A (zh) * 2015-10-13 2016-01-13 东北师范大学 一种可编织线状有机单晶场效应晶体管及其制备方法与应用
CN105244438B (zh) * 2015-10-13 2017-11-17 东北师范大学 一种可编织线状有机单晶场效应晶体管及其制备方法与应用
WO2018016886A1 (ko) * 2016-07-22 2018-01-25 주식회사 엘지화학 유-무기 복합 태양전지용 적층체 제조방법 및 유-무기 복합 태양전지 제조방법
CN109478597A (zh) * 2016-07-22 2019-03-15 株式会社Lg化学 用于制造有机-无机杂化太阳能电池用层合体的方法和用于制造有机-无机杂化太阳能电池的方法
US11031566B2 (en) 2016-07-22 2021-06-08 Lg Chem, Ltd. Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
CN109478597B (zh) * 2016-07-22 2022-07-19 株式会社Lg化学 用于制造有机-无机杂化太阳能电池用层合体的方法和用于制造有机-无机杂化太阳能电池的方法
WO2019168288A1 (ko) * 2018-02-28 2019-09-06 최영준 절연막 형성 방법 및 절연막 제조장치
CN112726192A (zh) * 2020-12-18 2021-04-30 江苏大学 电纺碳纳米纤维/还原氧化石墨烯/聚苯胺/碱式碳酸镍复合电极材料的制备方法
CN112726192B (zh) * 2020-12-18 2022-04-26 江苏大学 电纺碳纳米纤维/还原氧化石墨烯/聚苯胺/碱式碳酸镍复合电极材料的制备方法
CN115216861A (zh) * 2022-07-22 2022-10-21 河南大学 基于金属-介电-发光同轴多层复合纳米纤维的puf器件以及采用该器件生成密钥的方法

Similar Documents

Publication Publication Date Title
KR101407209B1 (ko) 미세 패턴 형성 방법 및 이를 이용한 미세 채널 트랜지스터 및 미세 채널 발광트랜지스터의 형성방법
KR101374401B1 (ko) 전기장 보조 로보틱 노즐 프린터 및 이를 이용한 정렬된 유기 와이어 패턴의 제조 방법
KR101920721B1 (ko) 그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본
WO2014119943A1 (ko) 정렬된 금속 나노섬유를 이용한 대면적의 금속 나노섬유 전극 어레이의 제조방법
TWI529947B (zh) 金屬氧化物薄膜的低溫製造技術及衍生自奈米材料的金屬複合物薄膜
US20160005599A1 (en) Method for forming aligned oxide semiconductor wire pattern and electronic device using same
KR101878750B1 (ko) 알칼리 금속 함유 단일층 그라펜 및 이를 포함하는 전기소자
JP5560281B2 (ja) 有機デバイスの電気コンタクトを形成するための溶液処理方法
KR101919423B1 (ko) 그래핀 반도체 및 이를 포함하는 전기소자
KR101580383B1 (ko) 정렬된 금속 나노섬유를 이용한 대면적의 금속 나노섬유 전극 어레이의 제조방법
KR101777016B1 (ko) 금속 그리드-은 나노와이어 복합 투명전극 및 고분자 나노섬유 마스크를 이용한 금속 그리드 제조방법
KR20160150274A (ko) 금속 나노선 전극 어레이 제조방법
KR101507240B1 (ko) 금속 산화물 나노선 패턴을 포함하는 가스센서 나노어레이의 제조방법
KR101486956B1 (ko) 정렬된 산화물 반도체 나노와이어를 포함하는 전계효과 트랜지스터 어레이 및 그의 제조방법
KR101473693B1 (ko) 정렬된 구리산화물 반도체 나노와이어를 포함하는 전계효과 트랜지스터 어레이 및 그의 제조방법
KR101535725B1 (ko) 정렬된 구리 나노선을 이용한 대면적의 구리 나노선 전극 어레이의 제조방법
KR101358067B1 (ko) 수평 정렬된 단결정 무기물 나노 와이어 패턴의 제조 방법
KR101520190B1 (ko) 정렬된 금속 나노선을 이용한 대면적의 금속 나노선 전극 어레이의 제조방법
KR101486955B1 (ko) 정렬된 산화물 반도체 와이어 패턴의 제조방법 및 이를 이용한 전자소자
CN106794985A (zh) 垂直对齐的GaAs半导体纳米线阵列的大面积制造方法
Yin et al. Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications
CN111048665A (zh) 纤维状垂直沟道晶体管及其制备方法
Chen et al. Inorganic Printable Electronic Materials
KR20140103534A (ko) 정렬된 산화물 반도체 나노와이어를 포함하는 전계효과 트랜지스터 어레이 및 그의 제조방법
US20160374209A1 (en) Method of fabricating metal nanowire pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15110720

Country of ref document: US